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0. Introduction

This is a modest try to investigate iterations Q̄ = 〈Pα,Q
˜
α : α < α∗〉 which

increase the continuum arbitrarily. The support is countable, but defining p ≤ q,
only for finitely many α ∈ Dom(p) we are allowed to fail to have pure extension.
More explicitly, every p ∈ Qα has a “trunk” tr(p), the apure part, and we demand
that 〈tr(p(α)) : α ∈ Dom(p)〉 is an “old” element, i.e. a function from V. In this
context we have a quite explicit form of properness which guarantees ℵ1 is not
collapsed. Assuming CH there are reasonable conditions guaranteeing the ℵ2-c.c.

We may be more liberal in the first step of the iteration. We then concentrate on
more specific context. We let Q0 be RandomA, adding a sequence of random reals
〈ν
˜
γ : γ ∈ A〉, and each Qα = Q1+β is QD̄

˜
α,D̄

˜
α

= 〈D
˜
α
η : η ∈ ω>ω〉, D

˜
α
η a Pα-name of a

non-principal ultrafilter on ω. However, for the results we have in mind, D
˜
α
η should

satisfy some special properties: in the direction of being a Ramsey ultrafilter. If
Q0 = Randomλ, we may try to demand that for every r ∈ VLim(Q̄), for “most”
β < λ, ν

˜
β is random over V[r]. We do not know to do it, but if we can restrict

ourselves to measure 1 sets of the form ∪{lim(T<n>) : n < ω}, T a subtree of ω>2
with the fastness of convergence of 〈|2n ∩ T |/2n : n < ω〉 to Leb(lim(T )) bounded
by g ∈ V, moreover this holds above any η ∈ ω>2. This is a “poor relative” of the
“Borel conjecture + b large”.

The method seems to me more versatile than the method of first forcing whatever
and then forcing with the random algebra.

Lastly in §7 we deal with a relative of [?]. We thank the referee and Andrzej
Roslanowski for infinite many helpful remarks and corrections.
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1. Trunk Controllers

We define in 2.1 the notion “F is based on 〈Fα : α < α∗〉”, note that it is used
in iterations 〈Pα,Q

˜
β : α ≤ α∗, β < α∗〉 with Q

˜
β an Fβ-forcing notion.

The reader may use only the fully based case, and ignore 1.20 (associativity).

Definition 1.1. 1) A trunk controller F is a set or a class with quasi-orders
≤=≤F and ≤pr=≤F

pr (pr for the pure) and ≤apr=≤F
apr (apr for the apure) such

that: ≤pr⊆≤ and ≤apr⊆≤.
2) We may denote ≤F by ≤us=≤F

us (us for the usual).
3) A trunk controller F is ℵ1-complete if (F ,≤pr) is ℵ1-complete.
4) A trunk controller F is an iteration of 〈Fβ : β < α〉 if:

(a) each Fβ is a trunk controller,

(b) if f ∈ F then 1 Dom(f) ⊆ α is countable and f ∈ Fandβ ∈ Dom(f) ⇒
f(β) ∈ Fβ

(c) if f1, f2 ∈ F then f1 ≤F
pr f2 iff Dom(f1) ⊆ Dom(f2)and(∀β ∈ Dom(f1))[Fβ |=

f1(β) ≤pr f2(β)]

(d) f1 ≤F
us f2 iff

(i) Dom(f1) ⊆ Dom(f2),

(ii) β ∈ Dom(f1)⇒ Fβ |= f1(β) ≤us f2(β) and

(iii) {β ∈ Dom(f1) : Fβ |= f1(β) �pr f2(β)} is finite
(e) if f, g ∈ F ,Dom(f) ⊆ β < α, g � β ≤x f , then f ∪ (g � [β, α)) ∈ F is
≤x-lub of {f, g} for x ∈ {us,pr}, also if fn ⊆ fn+1 ∈ F for n < ω and⋃
n
fn ∈ F then

⋃
n
fn is a ≤pr-lub of {fn : n < ω}

(f) f1 ≤F
apr f2 iff

(i) Dom(f1) = Dom(f2),

(ii) β ∈ Dom(f1)⇒ Fβ |= f1(β) ≤ f2(β), moreover

(iii) the set {β ∈ Dom(f1) : f1(β) 6= f2(β)} is finite and for those β’s,
Fβ |= f1(β) ≤apr f2(β)

(g) if f ∈ F and β < α then f � β ∈ F .

4A) In part (4), for β < α let F [β] = F [β] be Fβ , (clearly normally uniquely
defined). If F is a trunk controller, an iteration of F̄ = 〈Fγ : γ < α〉 and β ≤ α
then let F � β = {f ∈ F : Dom(f) ⊆ β}.
5) We say a trunk controller F is a full iteration of 〈Fβ : β < α〉, when:

(α) F is an iteration of 〈Fβ : β < α〉,
(β) whenever f is a function with domain a countable subset of α such that

β ∈ Dom(f)⇒ f(β) ∈ Fβ then f ∈ F .

6) We say a trunk controller F is finitely based on 〈Fβ : β < α〉 when:

(α) F is an iteration of 〈Fβ : β < α〉,
(β) 0 ∈ Fβ minimal (for every β < α),

(γ) f ∈ F iff f is a function with domain a countable subset of α and {β ∈
Dom(f) : ¬(0 ≤pr f(β))} is finite.

1note that we did not say “iff”, this is a reasonable assumption, see part (5)

Paper Sh:707, version 2012-04-06 11. See https://shelah.logic.at/papers/707/ for possible updates.



LONG ITERATIONS FOR THE CONTINUUM SH707 5

7) We say F is the trivial trunk controller if: its set of elements is H (ℵ0) and
≤=≤pr=≤apr are the equality on H (ℵ0).
8) In part (4), (5), replacing 〈Fβ : β < α〉 by α means “for some 〈Fβ : β < α〉”.

We now define when a trunk controller is “simple”. The aim of simple is helping
with proving a forcing in ℵ2-c.c.

Definition 1.2. 1) We say a trunk controller F is simple (or satisfies the pure

Sℵ2

ℵ1
-c.c.) if: for any sequence 〈yβ : β < ω2〉 of members of F for some club E of

ω2 and pressing down function h : E → ω2 we have: for any ordinals ε < ζ from E
of cofinality ℵ1 we have h(ε) = h(ζ)⇒ yε, yζ have a common ≤F

pr-upper bound.
2) We say the trunk controller F is almost simple (or satisfies the ℵ2-c.c.) if: for
any sequence 〈yγ : γ < ω2〉 of members of F for some ε < ζ < ω2, there is a
common ≤-upper bound of yε, yζ .
3) We say the trunk controller F is a semi-simple iteration of F̄ = 〈Fβ : β < α∗〉
(or F̄ is) when it is an iteration of F̄ ,F0 is almost simple and every F1+β is
simple. We say “simple iteration” if also F0 is simple.

Claim 1.3. Suppose that F̄ = 〈Fβ : β < α∗〉 is a sequence of trunk controllers.
1) There is a unique trunk controller F which is the full iteration of F̄ .
2) Assume CH. If F̄ is semi-simple, i.e. F0 is an almost simple trunk controller
and each F1+β is a simple trunk controller whenever 1 +β < α∗, then the F from
part (1) is almost simple.
3) In part (2) if, F̄ is simple, i.e. also F0 is simple, then F is simple.
4) If each Fβ is ℵ1-complete, see 1.1(3), then in part (1) also F is ℵ1-complete.

Proof. 1),4) Are straightforward.
2), 3) For part (2) let γ(∗) = 0 and for part (3) let γ(∗) = −1.
Let fε ∈ F for ε < ω2 and for each γ ∈ ∪{Dom(fε) : ε < ω2} define ȳγ = 〈yγ,ε :
ε < ω2〉 by

yγ,ε =

{
fε(γ) ifγ ∈ Dom(fε)

fmin{ζ<ω2:γ∈Dom(pζ)}(γ) ifγ /∈ Dom(fε).

So yγ,ε ∈ Fγ for ε < ω2, hence by the assumption if γ 6= γ(∗) then Fγ is simple,

so there is a club Eγ of ω2 and a regressive function hγ on S2
1 such that:

(∗) if ε1, ε2 ∈ Eγ ∩ Sℵ2

ℵ1
and hγ(ε1) = hγ(ε2) then yγ,ε1 , yγ,ε2 has a common

≤Fγ
pr -upper bound.

Let cd be a one-to-one function from the following set into ω2:

{g : g is a function into ω2 from some ountable subset of ∪ {Dom(fε) : ε < ω2}}.

Lastly, let E be the set of ordinals ε satisfying

� (a) ε < ω2 is a limit ordinal,

(b) ε ∈ ∩{Eγ : γ ∈ ∪{Dom(fζ) : ζ < ε}}
(c) if ζ < ε and g is a function from a countable subset of

∪{Dom(fξ) : ξ < ζ} into ζ then cd(g) < ε.
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Clearly E is a club of ω2. For ε ∈ Sℵ2

ℵ1
∩ E let gε be the function with domain

Dom(fε) ∩ (∪{Dom(fζ) : ζ < ε}) satisfying gε(γ) := hγ(ε) for γ ∈ Dom(gε).

Lastly, we define the function h with domain E ∩ Sℵ2

ℵ1
by h(ε) = cd(gε).

Easily,

(∗)1 if ε ∈ Sℵ2

ℵ1
∩ E then h(ε) is an ordinal < ε

(∗)2 if ε1 < ε2 belong to Sℵ2

ℵ1
∩ E and h(ε1) = h(ε2) then

(a) gε1 = gε2 ,

(b) Dom(fε1) ∩Dom(fε2) = Dom(gε1) = Dom(gε2),

(c) if γ ∈ Dom(fε1) ∩ Dom(fε2) and γ 6= γ(∗) then fε1(γ), fε2(γ) have a

common ≤Fγ
pr -upper bound (they are yγ,ε1 , yγ,ε2 , of course).

(∗)3 If ε1 < ε2 are as in (∗)2 and satisfy ~ below, then the function f defined
in (∗)4 below is a common ≤F

pr-upper bound of fε1 , fε2 where
~ if γ(∗) = 0 and it belongs to Dom(fε1) ∩Dom(fε2) then fε1(0), fε2(0)

has a common ≤F0
pr -upper bound

(∗)4 we choose f as follows:
(a) Dom(f) = Dom(fε1) ∪Dom(fε2),

(b) if ` ∈ {1, 2} and γ ∈ Dom(fε`)\Dom(f3−`) then f(γ) = fε`(γ),

(c) if γ ∈ Dom(fε1) ∩Dom(fε2) then f(γ) ∈ Fγ is a common

≤Fγ
pr -upper bound of fε1(γ), fε2(γ).

For part (3) we are done, for part (2) clearly there are ε1 < ε2 in Sℵ2

ℵ1
∩E such that

y0,ε1 , y0,ε2 have a common ≤F0-upper bound if 0 ∈ ∪{Dom(fζ) : ζ < ω1}. Now we
choose (f) such that

(∗)5 (a), (b) of (∗)4

(c) like (c) of (∗)4 for γ 6= 0

(d) f(0) is a common ≤F0 -upper bound of y0,ε1 , y0,ε.

So we are done. �1.3

Claim 1.4. 1) If a trunk controller F is an iteration of F̄ = 〈Fγ : γ < α〉 and
β ≤ α then F � β is a trunk controller, an iteration of 〈Fγ : γ < β〉.
1A) Similarly for “full iteration”, “being simple iteration”, “being semi-simple it-
eration”.
2) If F is simple, then F is almost-simple.

Convention 1.5. Let ≤F
us=≤F and we write ≤F

x for x varying on {us,pr, apr}.
Similarly in Definition 1.6 below.

Below we define “Q is an F -forcing”, the intention is that Q is a possible iterand.
Note we define below “very clear” and “weakly clear” as conditions on Q helping
to prove the ℵ2-c.c. Now weakly clear suffices whereas very clear is preserved in the
iterations (the problem in preserving “weakly clear” is when defining a common
upper bound to have its val being an “old” function not just a name).

Definition 1.6. 1) Let F be a trunk controller. An F -forcing notion Q is a tuple
(Q,≤,≤pr,≤apr, val), we may put superscript Q to clarify, satisfying:

(a) Q is a non-empty set (- the set of conditions) (we may write p ∈ Q instead
of p ∈ Q and say Q-names, etc. and (Q,≤) instead of (Q,≤))
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(b) ≤,≤pr,≤apr are quasi-orders on Q (called the usual, the pure and the apure)

(c) ≤pr⊆≤ and ≤apr⊆≤
(d) val is a function from Q to (and usually but not always 2 onto) F , the

trunk controller

(e) Q |= p ≤x q ⇒ F |= valQ(p) ≤x valQ(q) for x = us,pr, apr.

2) An F -forcing Q is very clear (as an F -forcing) or is a very clear F -forcing if:

(∗) if p0, p1 ∈ Q and valQ(p0), valQ(p1) have a common ≤F
pr-upper bound y

then for some q ∈ Q we have p0 ≤pr q, p1 ≤pr q and valQ(q) = y.

3) An F -forcing Q is weakly clear when:

if p0, p1 ∈ Q and valQ(p0), valQ(p1) are ≤pr-compatible in F , then p0, p1

are ≤pr-compatible.

4) An F -forcing Q is apurely clear when: if p0, p1 ∈ Q and valQ(p0), valQ(p1) are
≤-compatible in F then p0, p1 are ≤-compatible in Q.

Discussion 1.7. We can consider some variants: if p ≤pr q` for ` = 1, 2, do we
just ask q1, q2 compatible? Does it suffice to demand “val(q1), val(q2) are ≤F

pr-
compatible”? The natural examples satisfy this but the general theorems do not
need it.

Claim 1.8. 1) For an F -forcing Q: very clear implies weakly clear.
2) Assume Q is an apurely clear F -forcing and F is almost simple, then Q satisfies
the ℵ2-c.c.
3) Assume Q is an F -forcing, Q is weakly clear and F is simple, then Q and even

(Q,≤pr) satisfies the regressive Sℵ2

ℵ1
-c.c., see Definition 1.9 below.

Proof. Straight. �

Definition 1.9. 1) We say that a quasi order P satisfies the regressive S-c.c. where
S is a stationary subset of some regular uncountable cardinal κ when for every
sequence 〈pα : α < κ〉 of members of P there are a club C of κ and a regressive
function f on S ∩ C (i.e. Dom(f) = S ∩ C and for every α ∈ S ∩ C we have
f(α) < α) such that :

if α, β ∈ S ∩ C and h(α) = h(β) then pα, pβ are compatible in P.
2) We say “P satisfies purely regressive S-c.c” if (P,≤P

pr) satisfies the regressive
S-c.c.

Definition 1.10. Let trunk controller F be an iteration of 〈Fβ : β < α∗〉. We
define by induction on the ordinal α ≤ α∗ what is an F -iteration Q̄ of length α
and what is LimF (Q̄).

(a) Q̄ is an F -iteration of length α when:
(α) Q̄ = 〈Pβ ,Q

˜
β : β < α〉

(β) if β < α then Q̄ � β is an F -iteration of length β

2Needed in the iteration, so actually what we need is that the range of the function val from
Q
˜
α is an object not Pα-name. We waive it for the first step in the iteration, but this may cause

us extra demand in associativity of the iteration if phrased not carefully.
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(γ) if β < α is a limit ordinal then Pβ = LimF (Q̄ � β)

(δ) if α = β + 1 then Q
˜
β is a Pβ-name of an Fβ-forcing notion

(ε) Rang(valQ˜
β ) is an object not just a Pβ-name

(b) for an F -iteration Q̄ = 〈Pβ ,Q
˜
β : β < α〉 of length α we define the F -forcing

notion Pα = LimF (Q̄) as follows (see 1.13):
(α) the set of elements of Pα is the set of p such that for some f ∈ F we

have

(i) p is a function

(ii) Dom(p) = Dom(f), so it is a countable subset of α,

(iii) if β ∈ Dom(p) then p(β) is a Pβ-name of
a member of Q

˜
β ,

(iv) 
Pβ “valQ˜
β (p(β)) = f(β)” for β ∈ Dom(p),

(v) β < α⇒ p � β ∈ Pβ .
Clearly f is unique and we call it valPα(p).

(β) ≤Pα
pr is defined by:

p ≤Pα
pr q iff (p, q ∈ Pα and) Dom(p) ⊆ Dom(q) and

β ∈ Dom(p)⇒ q � β 
Pβ “p(β) ≤Q
˜
β

pr q(β)”.

(γ) ≤Pα is defined by:
p ≤Pα q iff (p, q ∈ Pα and)

(i) Dom(p) ⊆ Dom(q) and

(ii) β ∈ Dom(p)⇒ q � β 
Pβ “p(β) ≤Q
˜
β q(β)” and

(iii) for some finite w ⊆ Dom(p) for every β ∈ Dom(p)\w we have

q � β 
Pβ “p(β) ≤Q
˜
β

pr q(β)”

(δ) ≤Pα
apr is defined by

p ≤Pα
apr q iff (p, q ∈ Pα and)

(i) Dom(p) = Dom(q) and

(ii) p ≤ q and (actually follows from the rest)

(iii) β ∈ Dom(p)⇒ q � β 
Pβ “p(β) ≤apr q(β) in Q
˜
β”

(iv) for all but finitely many β ∈ Dom(p) we have q � β 
Pβ

“p(β) ≤Q
˜
β

pr q(β)”.

Remark 1.11. Note the difference between Clause (b)(δ)(iv) of Definition 1.10 which
deals with iterated forcing and clause (f)(iii) of Definition 1.1(4) which deals with
iterated trunks.

Convention 1.12. If F and Q̄ = 〈Pβ ,Q
˜
β : β < α〉 are as in 1.10 then Pα =

LimF (Q̄).

Claim 1.13. Let F be a trunk controller iteration of 〈Fα : α < α∗〉. If Q̄ is an
F -iteration and β ≤ `g(Q̄), then Pβ is a (F � β)-forcing.

Proof. This is proved by induction on β. The proof is straight. �1.13

Claim 1.14. Assume F is a trunk controller iteration of F̄ = 〈Fβ : β < α∗〉;
moreover is a full iteration of F̄ (see Definition 1.1(5)) and α ≤ α∗ and Q̄ is an
F -iteration of length α and γ ≤ β ≤ α.
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1) If p ∈ Pβ then p � γ ∈ Pγ and Pβ |= “p � γ ≤pr p”.

2) Pγ ⊆ Pβ, i.e. p ∈ Pγ ⇒ p ∈ Pβ and ≤Pγ
x =≤Pβ

x � Pγ (see convention 1.5).

3) If p ∈ Pβ , x ∈ {us,pr, apr}, p � γ ≤Pγ
x q ∈ Pγ and r = q ∪ (p � [γ, β)), then r is

≤Pβ
x -lub of {p, q} when x ∈ {us,pr} and p ≤apr r and q ≤pr r when x = apr.

4) If p ≤Pβ
x q then (p�γ) ≤Pγ

x (q�γ0.
5) Pγ l Pβ and Pγ+1/Pγ is equivalent (and even isomorphic) to Q

˜
γ .

Proof. Straight. �

Claim 1.15. Assume Q̄ is an F -iteration of length α and P = Lim(Q̄) where F
is the iteration of F̄ = 〈Fα : α < α∗〉.
1) The property “very clear”, 1.6(4) is preserved, i.e. if each Q

˜
β (β < α) is very

clear, then so is P = LimF (Q̄).
2) If F is [almost] simple and Q̄ is very clear F -iteration, see Definition 1.6(4)
then LimF (Q̄) is [almost] simple hence satisfies the ℵ2-c.c.
3) The property “weakly clear” is preserved.

Proof. Straight. �

Remark 1.16. However in F -iterations where Q0 is only apurely clear (the case
holds by the following we use), no clarity is preserved, but ℵ2-c.c. still holds.

So putting things together we get

Conclusion 1.17. The forcing notion P = Lim(Q̄) satisfies the ℵ2-c.c. when

(a) the trunk controller F is the full iteration of 〈Fα : α < α∗〉
(b) each Fα is simple (see Definition 1.2(1))

(c) Q̄ is a F -iteration (see Definition 1.6(1))

(d) each Q
˜
α is very clear (see Definition 2.5(3)) and weakly clear for α = 0.

Proof. By Claim 1.3(3) we know that F is simple. By Definition 1.10 we know
that P is an F -forcing. By Claim 1.15 we know that P is very clear. By Claim
1.8(1) we know that P is weakly clear.

Lastly, by claim 1.8(2) we know that P, even satisfies pure regressive ℵ2-c.c.
�1.17

We can weaken the hypothesis of 1.17

Conclusion 1.18. The forcing notion P = Lim(Q̄) satisfies the ℵ2-c.c. when

(a) F is the full iteration of 〈Fα : α < α∗〉
(b)1 Fα is simple if α > 0

(b)2 F0 is almost simple (see Definition 1.2(2))

(c) Q̄ is an F -iteration (see Definition 1.6)

(c)1 Qα is very clear if α > 0 (see Definition 2.5)

(c)2 Q0 is apurely clear (see Definition 2.5(5)).

Proof. In the proof we use 1.3(2) instead of 1.3(3). �1.18

Paper Sh:707, version 2012-04-06 11. See https://shelah.logic.at/papers/707/ for possible updates.



10 SAHARON SHELAH

Claim 1.19. Assume F is a trunk controller iteration of 〈Fα : α < α∗〉.
0) The empty sequence is an F -iteration. For every F0-forcing Q there is an
F -iteration Q̄ of length 1 such that Q0 := Q.
1) If Q̄ is an F -iteration of length α, α + 1 ≤ α∗,Pα = LimF (Q̄) and Q

˜
is a Pα-

name of an Fα-forcing notion, then there is a F -iteration Q̄′ of length α+ 1 such
that Q̄′ � α = Q̄ and Q

˜

′
α = Q

˜
that is Q̄ˆ〈LimF (Q̄),Q

˜
〉 is an F -iteration.

2) If Q̄ = 〈Pβ ,Q
˜
β : β < α〉 and α is a limit ordinal and Q̄ � β is an F -iteration for

every β < α then Q̄ is an F -iteration.
3) For any function F and ordinal α ≤ α∗ there is a unique F -iteration Q̄ such
that:

(α) `g(Q̄) ≤ α
(β) β < `g(Q̄)⇒ Q

˜
β = F(Q̄ � β)

(γ) if β := `g(Q̄) < α then F(Q̄) is not a (LimF (Q̄))-name of an Fβ-forcing.

Proof. Straight. �1.20

Not really necessary, but natural and aesthetic, is

Claim 1.20. Associativity holds, that is assume

(a) F is the iteration of 〈Fβ : β < α∗〉
(b) Q̄ = 〈Pβ ,Q

˜
β : β < α∗〉 is an F -iteration so Pα∗ = LimF (Q̄)

(b) 〈αε : ε ≤ ε∗〉 is increasing continuous, α0 = 0, αε∗ = α∗

(c) for γ ≤ β ≤ α∗ we define Pβ/Pγ , an F -forcing, naturally: it is a Pγ-name
and for Gγ ⊆ Pγ generic over V its interpretation is:
(α) the set of elements is {p ∈ Pβ : Dom(p) ⊆ [γ, β)}
(β) val: inherited from Pβ that is valPβ/Pγ (p) = valPβ(p � [β, γ])

(γ) ≤x: p ≤x q iff for some r ∈ Gγ we have Pβ |= r ∪ p ≤x r ∪ q
(d) (α) let F ′ = {f : for some g ∈ F , f is a function with domain

{ε < ε∗ : Dom(g) ∩ [αε, αε+1) 6= ∅} and ε ∈ Dom(f)⇒ f(ε) =
g � [αε, αε+1)}, the orders are natural

(e) (α) Fε = {f ∈ F : Dom(f) ⊆ [αε, αε+1)}
(β) ≤Fε

x =≤F
x � Fε.

Then 
 “Pαε+1
/Pαε is an Fε-forcing” and we can find an F ′-iteration Q̄′ =

〈P′ε,Q
˜

′
ε : ε < ε∗〉 and 〈F

˜
ε : ε < ε∗〉 such that

(α) Fε is an isomorphism from Pαε onto P′ε
(β) when ε < ε∗, Fε maps the Pαε-name Pαε+1

/Pαε to the P′ε-name Q
˜

′
ε.

Proof. Straight. �
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2. Being F -Pseudo c.c.c. is preserved by F -iterations

Our aim is a sufficient condition for not collapsing ℵ1 preserved by our iteration.
We would like to define, in Definition 2.1, what is a F -pseudo c.c.c. forcing. We

will also define a function H, as a witness. Note that:

(a) the point of H is that it may be in the ground model (as is F but not Q)

(b) H really stands for three functions but as we shall use 〈Hα : α < α∗〉
corresponding to the length of the iteration we prefer not to use 〈H` : ` < 3〉.

In the main cases, H disappears but ap is needed for proving properties of (the
limit of the) iteration.

Definition 2.1. 1) Let F be a trunk controller, Q be an F -forcing notion. We
say that Q is F -psc (F -pseudo c.c.c. in full) forcing (notion) as witnessed by H if:

for every p ∈ Q, in the following game ap = ap,Q,H = ap[Q,H] between two
players, Interpolator and Extender, which lasts ω1 moves, the Interpolator has a
winning strategy.

In the ζ-th move:

� the Interpolator chooses a condition p′ζ such that p ≤pr p
′
ζ , ε < ζ ⇒ F |=

valQ(pε) ≤pr valQ(p′ζ) and3 valQ(p′ζ) = H((〈valQ(pξ), valQ(qξ)) : ξ < ζ〉)
and then the Extender chooses qζ ∈ Q (we do not required the natural4

demand p′ζ ≤ qζ) and lastly the Interpolator chooses a condition pζ such

that p′ζ ≤pr pζ and p′ζ ≤ qζ ⇒ pζ ≤apr qζ and p′ζ ≤pr qζ ⇒ pζ ≤pr qζ

and valQ(pζ) = H(〈(valQ(pξ), valQ(qξ)) : ξ < ζ〉ˆ〈valQ(qζ)〉). [For future
notation let q−1 = p].

A play is won by the Interpolator if:

(α) for any stationary A ⊆ ω1, for some B ⊆ A we have

(∗) B is a stationary subset of ω1 and H(〈(valQ(pξ), valQ(qξ)) : ξ < ω1〉ˆ〈B〉) =
1

(β) if B ⊆ ω1 satisfies (∗) then: for every ε < ζ from B we have: qε, qζ are

compatible in Q if valQ(qε), valQ(qζ) are compatible in F and val(pε) ≤
val(qε), val(pζ) ≤ val(qζ).

(in the case the Extender chooses a weird qζ).

(γ) for E = ω1 or just E a club of ω1 computed from 〈(valQ(pε), valQ(qε)) : ε <
ω1〉 we have: if ε < ζ are from E, pε ≤pr qε and pζ ≤pr qζ , then qε, qζ have

a common ≤pr-upper bound q, with valQ(q) = H(ε, ζ, 〈(valQ(pξ), valQ(qξ)) :
ξ ≤ ζ〉).

[Yes, we use ≤pr; true, we have demanded pε ≤apr qε (and pζ ≤apr qζ)
but this does not exclude pε ≤pr qε and even pε = qε.
Why not just ε < ζ from B? For the iteration theorem 2.12.
Note that this is a requirement on F . Note that pε ≤pr qε, pζ ≤pr qζ is
not guaranteed.]

3note that pε ≤pr p′ζ is not demanded; the following demand is needed just in order to show

that if F is as in 2.3, then clause (β) below is not empty
4our not demanding “p′ζ ≤ qζ” is used in the proof of 2.12(1)
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2) We define “Q is (F ,P)-psc as witnessed by (H,P)” as above (when P includes,
among other things, some stationary subsets of ω1; usually, P is V, or some inner
model V′) but at the end defining when a play is won by the Interpolator, we make
the changes:

(α)′ in every limit stage the Interpolator has a legal move or the sequence

〈(valQ(pξ), valQ(qξ)) : ξ < ζ〉 is not in P and he wins immediately

(β)′ if 〈(valQ(pζ), valQ(qζ)) : ζ < ω1〉 ∈P then for every stationary set A ∈P
of ω1, there is a stationary subset B ∈P of ω1 as there.

(We may use (F ,V′),V′ an inner model. In this case normally H and F are from
V′. This means that the Interpolator player does not “cheat” making the play
end prematurely because he has to “obey” H, whereas the Extender player is “not
motivated” to cheat as then he loses the play.)

3) In the description of the game, we can replace 〈(valQ(pε),valQ(qε)) : ε < ζ〉 by

〈valQ(qε) : −1 ≤ ε < ζ〉.
4) If we omit H and, to stress it we may say bare, this means that: we just omit
the relevant demands on the Interpolator in � and in (∗) of (α) of part (1), just
requiring that (β) and (γ) hold.
4A) If we omit clause (γ) of (1) we say “weakly F -psc”.

Remark 2.2. 1) Clause (γ) is used in the proof of the iteration claim 2.12, so we
need it there on each Q

˜
β .

2) To prove clause (γ) it on the limit Pα is not really needed (as clause (γ) of 2.1(2)
is needed only for the iteration claim, i.e., so we need it about the Q

˜
β ’s, but for the

limit Pβ it will be needed only if we like to deal with the associativity law).

Definition 2.3. F satisfies the apure c.c.c. when: if 〈yε : ε < ω1〉 is ≤F
pr-increasing

and yε ≤F
apr zε for every ε < ω1 then there are ε < ζ < ω1 such that zε, zζ are

compatible in F .

Remark 2.4. We may combine Definition 2.1(1), 2.3, that is in 2.1(1) we omit in �
the demand “ε < ζ ⇒ F |= valQ(pε) ≤pr valQ(pζ)” but to clause (β) we add:

(β)′ if B ⊆ ω1 satisfies (∗) then for some ε < ζ from B, valQ(pε), valQ(pζ) are
compatible in F .

Definition 2.5. We say Q̄ is an F -psc iteration as witnessed by H̄ if:

(a) F is a trunk controller, a full iteration of length α′

(b) Q̄ is an F -iteration so `g(Q̄) ≤ α′

(c) for every β < `g(Q̄) we have 
Pβ “Q
˜
β is an (F [β],V)-psc forcing notion as

witnessed by Hβ” and H̄ = 〈Hβ : β < `g(Q̄)〉; note that Hβ ∈ V and is an
object, not a Pβ-name.

Definition 2.6. Let F be a trunk controller and Q be an F -forcing.
1) We say that Q is a strong F -psc forcing notion as witnessed by H when for
every p ∈ Q in the game a′p = a′p,Q,H = a′p[Q,H] the Interpolator has a winning
strategy, where the game is defined as in 2.1 except that in addition we demand

~ ε < ζ ⇒ Q |= pε ≤pr p
′
ζ .
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(Recall that by Definition 2.1(1) ε < ζ ⇒ F |= “val(pε) ≤pr val(p′ζ)”).

2) We say strong∗ when we change ~ to

~′ ε < ζ ⇒ Q |= pε ≤ p′ζ and recall p ≤pr p
′
ζ .

3) Saying “an iteration Q̄ is strong(∗)” in Definition 2.5 means that this holds for
each Q

˜
β .

Definition 2.7. A forcing notion Q is purely proper when:

(a) Q = (Q,≤,≤pr) where ≤pr⊆≤
(b) if χ is large enough Q ∈ N ≺ (H (χ),∈) and N is countable and p ∈ N ∩Q

then there is q such that p ≤pr q ∈ Q which is (N,Q)-generic.

Claim 2.8. 1) If Q is strong F -psc, then Q is strong∗F -psc.
2) Assume

(a) Q is a σ-centered forcing notion, i.e. Q =
⋃
n<ω

Rn each Rn directed and for

simplicity may assume n 6= m⇒ Rm ∩Rm = ∅ and each Rn is non-empty

(b) F is such that its set of elements is ω and F |= (∀n < ω)(∀y ∈ F )[n ≤pr

y ⇒ n = y] similarly for ≤apr

(c) Q, i.e. (Q,≤,≤pr,≤apr, val) is defined by:
(α) (QQ,≤Q) is Q,

(β) ≤Q
pr is equality

(γ) ≤Q
apr is ≤Q

(δ) valQ(q) = Min{n : q ∈ Rn}.

Then F is a simple trunk controller satisfying the apure c.c.c. and Q is a very
clear F -forcing which is F -psc and purely proper. (See Definition 2.7).
3) Assume

(a) Q is a forcing notion, α∗ is an ordinal, h̄ = 〈hq : q ∈ Q〉 is such that
(α) hq is a finite (partial) function from α∗ to ω

(β) if h = hq1 ∪ hq2 is a function then q1, q2 has a least common upper
bound q with hq = hq1 ∪ hq2

(γ) if q1 ≤ q3 then for some q2, q1 ≤ q2 ≤ q3 and hq1 ⊆ hq2 ∧Dom(hq1) =
Dom(hq2)

(δ) if q1 ≤ q2 then Dom(hq1) ⊆ Dom(hq2)
(b) F is a trunk controller whose set of elements is {hq : q ∈ Q} such that

hq1 ⊆ hq2 ⇔ F |= hq1 ≤ hq2 ⇔ F |= hq1 ≤pr hq2

(c) (Q,≤Q,≤Q,≤Q
pr,≤Q

apr, val) is defined by

(α) (Q,≤Q) is Q, the forcing

(β) p ≤Q
pr q iff p ≤ q ∧ hp ⊆ hq

(γ) p ≤Q
apr q iff p ≤ q

(δ) valQ(q) = hq.

Then Q is F -psc.
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Proof. 1) Trivial.
2) See the proof of 5.3.
3) The Interpolator choose pε = p = p′ε. �??

Claim 2.9. Assume F is an apure c.c.c. trunk controller, Q is F -psc.
1) If p ∈ Q and τ

˜
m is a Q-name of an ordinal for m < ω, then for some q and

〈αn : n < ω〉 we have:

(a) p ≤pr q

(b) q 
 “τ
˜
m ∈ {αn : n < ω} for m < ω”.

2) If Q is a strong∗F -psc, then Q is purely proper.
3) Moreover assuming Q is strong F -psc, if Q ∈ N ≺ (H (χ),∈), N countable,
p ∈ Q ∩ N then we can find q such that p ≤pr q and for every Q-name τ

˜
of a

member of V,I q
τ
˜

= {r: for some p′ we have p ≤pr p
′ ≤pr q, p

′ ∈ N, p′ ≤apr r and

r forces a value to }
˜

is predense above q.

4) Assume Q is F -psc; p ∈ Q, N̄ = 〈Nε : ε < ω1〉 is an increasing continuous
sequence of countable elementary submodels of (H (χ),∈, <∗χ) such that F ,Q, p
belong to N0 and N̄ � (ε + 1) ∈ Nε+1. Then for a club of ε < ω1, there is
p′ ∈ Q ∩Nε+1 such that p ≤pr p

′ and p′ is (Nε,Q)-generic.
5) If Q is strong∗F -psc and N̄ is as in part (4), then for every ε < ω1 there is
p′ ∈ Q ∩ Nε+1 such that p ≤pr p

′ and p′ is (N̄ � (ε + 1),Q)-generic; hence Q is
purely ε-proper for every ε < ω1.

Remark 2.10. 1) Note that if Ax+(ℵ1-complete) or just Ax+(Levy(ℵ1, 2
|Q|)) see

e.g. [?, XVII,§1] (slightly more than every stationary S ⊆ [2|Q|]ℵ0 reflects in
some A ⊆ 2|Q| of cardinality ℵ1) then by 2.9(4) also in 2.9(1) we can get purely
properness. So the difference is very small and still strange.
2) Note also that, by 2.9(4), if Q̄ is an iterated F -forcing, F is the trunk controller
iteration of 〈Fα : α < α∗〉 and `g(Q̄) = δ is a limit ordinal of cofinality > ℵ0 then

Pδ “P(ω)V[Pδ] = ∪{P(ω)V[Pα] : α < δ}”.

Proof. Let H be a witness for “Q is psc”.
1) Assume not and simulate a play of the game ap = ap,Q,H, where the Interpolator
plays using a fixed winning strategy whereas the Extender chooses qζ such that:

(α) p′ζ ≤ qζ (see notation in 2.1(1))

(i.e. a legal move)

(β) for some mζ < ω the condition qζ forces a value to τ
˜
mζ , call it jζ

(γ) jζ /∈ {jε : ε < ζ}.

If the Extender can choose qζ for every ζ < ω1, in the end ε < ζandmε = mζ ⇒
qε, qζ are incompatible (as jε 6= jζ) so there exists a stationary B ⊆ ω1, such that
{ε, ζ} ⊆ B ⇒ qε⊥qζ but the Interpolator has to win the play (as he has used
his winning strategy); contradiction by (β) of 2.1(1) because F is apurely c.c.c.

therefore in the sequence 〈valQ(qε) : ε ∈ B〉 there are pairs of compatible members
of F (recalling Definition 2.3).

So necessarily for some ζ < ω1 there is no qζ as required. Let p∗ be p′ζ so p ≤pr p
∗

by the definition of the game. By our assumption toward contradiction, for some
m < ω we have p∗ 1 “τ

˜
m ∈ {jε : ε < ζ}” hence for some q we have p∗ ≤ q and

q 
 “τ
˜
m /∈ {jε : ε < ζ}”. Let an ordinal j /∈ {jε : ε < ζ} and condition q′ be such
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that q ≤ q′ ∈ Q we have q′ 
 “τ
˜
m = j”. But then the Extender could have chosen

qζ = q′, jζ = j and mζ = m and so clauses (α), (β), (γ) hold, a contradiction.
Note that we could have replaced clause (γ) by

(γ)− qζ is incompatible with qε whenever ε < ζ and mζ = mε.

2) Let N ≺ (H (χ),∈, <∗χ) be countable, Q ∈ N and H, st ∈ N and p ∈ N ∩Q. Let
〈τ
˜
n : n < ω〉 list the Q-names of ordinals which belong to N . We define a strategy

Ste for the Extender in the game ap; so in stage ζ he has to choose qζ such that
p′ζ ≤ qζ . If for some n, for no countable set X of ordinals, p′ζ 
 “τ

˜
n ∈ X” let n(ζ) be

the minimal such n. As in the proof of the first part there are (q, j) such that: p′ζ ≤ q
and q 
 “τ

˜
n(ζ) = j” and j /∈ {i : for some ε < ζ we have qε 
 “τ

˜
n(ζ) = i”}, choose

a <∗χ-minimal such pair, call it (qζ , jζ), so the Extender will choose qζ . If there is
no such n, let n(ζ) = ω and qζ = p′ζ . Now in ap the Interpolator has a winning

strategy Sti, without loss of generality Sti ∈ N . Let 〈p′ζ , pζ , qζ : ζ < ω1〉 be a play
where the Interpolator uses the strategy Sti and the Extender uses the strategy
Ste, clearly it exists and the Interpolator wins. Clearly ε < ζ < ω1 ⇒ n(ε) ≤ n(ζ)
(read the choices above, that is, if ε < ζ then pε ≤ p′ζ (by ~′ of Definition 2.6, i.e.

by “strong∗”) and p′ε ≤pr pε (by � of 2.1(1)) hence p′ε ≤ p′ζ). Now we prove by

induction on n that for some ζ < ω1, n(ζ) > n and let ζn be the minimal such ζ,
so p′ζn 
 “τ

˜
n ∈ Xn” for some countable set Xn of ordinals. If we fail for n, then:

if ζ, ε satisfy
⋃
m<n

ζm < ζ < ε < ω1 then (qζ 
 τ
˜
n = jζ)and(qε 
 τ

˜
n = jε). But

necessarily jζ 6= jε hence qζ , qε are incompatible, but this contradicts the use of
Sti.

Now for each n < ω the sequence 〈p′ζ , pζ , qζ : ζ < ζn〉 can be defined from p,

Sti, 〈τ
˜
` : ` ≤ n〉 and H (read the definition of Ste) hence 〈p′ζ , pζ , qζ : ζ < ζn〉 ∈ N , so

ζn ∈ N , and similarly p′ζn ∈ N . So as p′ζn 
 “τ
˜
n ∈ Xn”, the set {ξ : p′ζn 1 “τ

˜
n 6= ξ”}

is countable and it belongs to N . So p′ζn 
 “τ
˜
n ∈ N ∩ Ord”. Now if ζ < ω1 is

≥
⋃
n<ω

ζn then n < ω ⇒ p′ζn ≤ pζ hence p′ζ is (N,Q)-generic, so as p ≤pr p
′
ζ clearly

p′ζ witnesses the desired conclusion required by “purely proper”.

3) As in the proof of (2) above but now ζ < ε⇒ Q |= pζ ≤pr p
′
ε (by the “strong”)

hence the proof of (2) gives the desired conclusion.
4),5) Let δε = Nε ∩ ω1, for ε < ω1. We can find a sequence τ̄

˜
= 〈τ

˜
α : α < ω1〉 such

that we have τ̄
˜
� δε ∈ Nε+1 and τ̄

˜
� δε list the Q-names of members of V from Nε

and α < δε ⇒ τ̄ε � α ∈ Nε.
[Why? Let τ̄

˜
ε be the <∗χ-be the first sequence of length δε enumerating the Q-names

of members of V from Nε such that ζ < ε⇒ τ̄
˜
ζ / τ̄

˜
ε.]

We again simulate a play of the game such that

(a) the Interpolator uses a fix winning strategy which belongs to N0

(b) the Extender chooses qα so that:
(α) if possible for some γ < α the condition qα forces a value xα to τ

˜
γ

which is not forced by any qβ for β < α

(β) modulo clause (α), γ is minimal and then (qα, xα) is ≤∗χ-minimal.

Clearly the play up to the (δε + 1)-th move belongs to Nε+1.
For part (4) let S1 = {α < ω1 : qα is not (Nα,Q)-generic and Nα ∩ ω1 = α}.
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Assume toward contradiction that S1 is stationary. So for each α ∈ S1 there is
γα < α such that qα forces a value to τ

˜
γα not forced by any qβ for β < α hence (by

Fodor’s lemma) there is a stationary S2 ⊆ S1 such that α ∈ S2 ⇒ γα = γ∗. But we
can find α1 < α2 in S2 such that qα1

, qα2
are compatible, easy contradiction.

For part (5), let A = {ε < ω1 : p′ε is not (Nε,Q)-generic}. If A is stationary we
get contradiction to “the Interpolator has won the play because he uses a winning
strategy”. So we are done. �2.9

Remark 2.11. Of course, if (QQ,≤Q
pr) is ℵ1-complete, part (2) of 2.9 follows from

part (1).
[Why? Let N ≺ (H (χ),∈, <∗χ) be countable such that Q ∈ N and p ∈ Q ∩ N .
Let 〈τ

˜
n : n < ω〉 list the Q-names of members of V which belongs to N . We now

choose (pn, Xn) by induction on n < ω such that

~ (a) p0 = p

(b) pn ∈ Q ∩N
(c) pm ≤pr pn if m < n

(d) Xn ∈ N is a countable subset of N so ∈ V

(e) if n = m+ 1 then pn 
 “τ
˜
m ∈ Xn”.

For n = 0 this is trivial.
For n = m + 1 there is a pair (pn, Xn) as required by clauses (c) + (e) by

2.9(1), so as τ
˜
m, pn,Q ∈ N there is such a pair in N , so we are done. Now by the

assumption there is q ∈ Q such that n < ω ⇒ pn ≤pr q, so q is as required.]

Lemma 2.12. Assume F is a full trunk controller iteration of F̄ .
1) If Q̄ is a F -psc iteration and F has the apure c.c.c., then for every α ≤ `g(Q̄)
the forcing notion Pα is a F -psc forcing notion.
2) Similarly with strong.
3) Saharon: you need also, similarly for strong+ for claim 3.3 in the next section.

Proof. 1) Let H̄ = 〈Hα : α < `g(Q̄)〉 be a witness for “Q̄ is an F -psc iteration”.
Let α ≤ `g(Q̄). We prove this by induction on α and let p ∈ Pα, and define Hα

naturally composing the 〈Hγ : γ < α〉 and we shall describe a winning strategy for
the Interpolator in the game ap = ap,Pα,Hα . He just guarantees that:

(∗)0 (a) Dom(p′ζ) = ∪{Dom(pε) : ε < ζ}
(b) Dom(pζ) = Dom(qζ) if p′ζ ≤ qζ and Dom(pζ) = Dom(p′ζ) otherwise

(c) if pζ(γ) 6= qζ(γ) then γ ∈
⋃
ε<ζ

Dom(pε)

(d) if γ ∈
⋃

ζ<ω1

Dom(pζ) and ξ(γ) = ξγ = Min{ζ : γ ∈ Dom(pζ)}

then 
Pγ “〈p′ξ(γ)+1+ζ(γ), qξ(γ)+1+ζ(γ), pξ(γ)+1+ζ(γ) : ζ < ω1〉
is a play of apξ(γ)(γ)[Q

˜
γ ,H

γ ] in which the Interpolator uses a fixed

winning strategy St
˜

γ
pξγ (γ)”.

[Why can he does it? The main point is to check that p′ζ , pζ is well defined and

belongs to Pα (and satisfies the appropriate inequalities). The point is that even
if the Extender plays “reasonably”, i.e. p′ζ ≤Pα

pr qζ , we know that for every γ ∈
Dom(p′ζ), qζ � γ 
Pγ “p′(ζ) ≤ q(ζ)” but this does not mean that pζ � γ 
Pγ
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“p′(γ) ≤ q(γ)”. However, the game was defined in Definition 2.1 such that, in
particular for the game for Q

˜
γ it is not required that 
Pγ “p′(γ) ≤ q(γ)”.

Let us elaborate. There is no problem for the Interpolator to choose p′ζ .

If the Extender has chosen qζ , clearly pζ is a function with domain Dom(qζ) and

pζ(β) is a Pβ-name of a member of Q
˜
β with valQ˜

β(pζ(β)) given by Hβ .]
Now

(∗)1 p′ζ ≤Pα
pr pζ .

[Why? Dom(p′ζ) ⊆ Dom(pζ) in both cases of clause (b) of (∗)0 and for every

β ∈ Dom(p′ζ) we know that pζ(β) is as dictated by the strategy St
˜

β
pξβ (β), hence

purely extends p′ζ(β).]

(∗)2 pζ ≤Pα
apr qζ if Pα |= “p′ζ ≤ qζ”.

[Why? So assume Pα |= “p′ζ ≤ qζ”. Now the conditions pζ , qζ have the same

domain by clause (b) of (∗)0 and if β ∈ Dom(qζ)\Dom(p′ζ), then pζ(β) = qζ(β). If

β ∈ Dom(p′ζ) then qζ � β 
Pβ “p′ζ(β) ≤ qζ(β) hence p′ζ(β) ≤pr pζ(β) ≤apr qζ(β)”,

by the strategy choice, so in particular qζ � β 
 pζ(β) ≤apr qζ(β).
Let wζ := {β ∈ Dom(p′ζ(β)) : qζ � β 1Pβ “p′ζ(β) ≤pr qζ(β)”}, we know that wζ

is finite by the definition of ≤Pα . Now for β ∈ Dom(p′ζ)\wζ we have qζ � β 
Pβ
“p′ζ(β) ≤pr qζ(β)”, this implies qζ � β 
Pβ “pζ(β) ≤pr qζ(β)” by � of Definition

2.1(1). Together all the demands for the satisfaction of Pα |= “pζ ≤apr qζ” holds.]

(∗)3 pζ ≤Pα
pr qζ if p′ζ ≤Pα

pr qζ .

[Why? Assume Pα |= “p′ζ ≤pr qζ”. The proof above works with wζ = ∅.]
By (∗)0 − (∗)3 all the demand in � of 2.1(1) holds, so the Interpolator can use

this strategy, we still have to prove that it is a winning strategy.
Let 〈p′ζ , qζ , pζ : ζ < ω1〉 be a play of the game ap[Pα] in which the Interpolator

uses the strategy described above. To prove that the Interpolator wins the play, let
A ⊆ ω1 be stationary and A ∈ V, of course.

We shall use freely

~ if A ∈ V is a stationary subset of ω1 in V and γ < α then 
Pγ “A is a
stationary subset of ω1”.

[Why? Note that 2.9(1) is not enough and 2.9(2) has an extra assumption but
2.9(4) is enough.]

For ζ ∈
⋃

ε<ω1

Dom(pε) let Eζ be as in clause (γ) of 2.1(1) for Q
˜
ζ and let E = {δ :

δ limit and ζ ∈
⋃
ε<δ

Dom(pε)⇒ δ ∈ Eζ}. Note that E is a club of ω1, so A∩E is a

stationary subset of ω1. Define wζ = {γ ∈ Dom(pζ) : qζ � γ 1Pγ “pζ(γ) ≤pr qζ(γ)”},
so by (∗)2 we have “pζ ≤apr qζ”, hence by the definition of F -iteration, wζ is finite,
and by the strategy of the Interpolator we have wζ ⊆

⋃
ε<ζ

Dom(pε). So by Fodor

lemma for some stationary A0 ⊆ A ∩ E we have ζ ∈ A0 ⇒ wζ = w∗.
Letting w∗ = {γ` : ` < k} be such that γ` < γ`+1, we choose by induction

on ` ≤ k a stationary set A` ⊆ ω1 (from V, of course) such that A`+1 ⊆ A` and

Hγ`(〈valQ˜
γ` (qξ(γ`)+ζ(γ`)) : −1 ≤ ζ < ω1〉, A`+1) is 1. For ` = 0, A0 has already been

chosen, for `+1, in VPγ` , we know that 〈(p′ξ(γ`)+1+ζ(γ`), pξ(γ`)+1+ζ(γ`), qξ(γ`)+1+ζ(γ`)) :
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ζ < ω1〉 is a play of the game apξ(γ`)(γ`)[Q˜
γ` ,Hγ` ] in which the Interpolator uses a

winning strategy and 〈(valQ˜
γ` (pξ(γ`)+1+ζ(γ`)), valQ˜

γ` (qξ(γ`)+1+ζ(γ`)) : ζ < ω1〉 is a

sequence of pairs from F [γ`], and the sequence is from V; recall we use H̄. So by
clause (α) of Definition 2.1(1) there is a stationary A`+1 ⊆ A` as required above
which means that it satisfies (∗) from clause (α) from 2.1(1) hence clause (β) ap-
plies. Lastly, let B =: Ak, we shall prove that B is as required, we concentrate on
(β) of 2.1(1); the other clause, (γ), is similar.

Let ε < ζ from B be such that valPα(qε), valPα(qζ) are compatible in F and
we shall find r as required, i.e. is above qε, qζ . Stipulate γk = α and we now let
Y = Dom(qζ)∪{α} and we choose by induction on γ ∈ Y a condition rγ ∈ Pγ such
that

~ (i) qε � γ ≤ rγ and

(ii) qζ � γ ≤ rγ and

(iii) if γ = β+ 1 and β ∈ Dom(rγ)\w∗ then rγ � β 
Pβ “qε(β) ≤pr rγ(β)
if β ∈ Dom(qε) and qζ(β) ≤pr rγ(β) if β ∈ Dom(qζ)”

(iv) if β ∈ Y ∩ γ and [β, γ] ∩ w∗ = ∅ then rβ = rγ � β.

Case 1: γ = Min(Y ).
Let rγ = ∅, the empty function.

Case 2: γ 6= Min(Y ) but γ ∩ Y has no last element.
Let rγ = ∪{rβ : β ∈ γ ∩ Y and β > max(w∗ ∩ γ) if w∗ ∩ γ 6= ∅}, now check; it

is a well defined function by clause (iv). We use here “F is a full iteration”, see
Definition 1.1(5) to show rγ ∈ Pγ . Lastly note that for checking qζ � γ ≤ rγ and
qε � γ ≤ rγ we are using clause (iii).

Case 3: Y ∩ γ has last element β, β /∈ w∗ and β /∈ Dom(qε).
We let Dom(rγ) = Dom(rβ) ∪ {β}, rγ(β) = qζ(β) and of course rγ � β = rβ .

Case 4: Y ∩ γ has last element β, β /∈ w∗ but β ∈ Dom(qε).
Now, rβ necessarily forces that

(∗)4 pζ(β) ≤pr qζ(β) and pε(β) ≤pr qε(β).

So by clause (γ) of Definition 2.1(1), rβ forces that in Q
˜
β there is r such that

qζ(β) ≤pr r, qε(β) ≤pr r, and valQ˜
β (r) is as it should be by clause (γ) of 2.1(1)

(so it is an object, not just a Pβ-name). Lastly let rγ(β) be a Pβ-name of such a
condition.

Case 5: Y ∩ γ has last element β, β = γ` ∈ w∗.
By the choice of A`+1, we know 
Pβ “qε(β), qζ(β) are ≤Q

˜
β compatible”. So,

for some r′β , rβ ≤Pβ r′β , for some x ∈ F [β] the condition r′β forces that some ≤Q
˜
β -

common upper bound r
˜
′′ of pζ(β), qζ(β), satisfies valQ˜

β (r
˜
′′) = x, and let rγ =

r′β ∪ {(β, r˜
′′)}.

So we are done.
2) The proof for the “strong F -psc” version is similar. In fact, the only additional
point is Stγpξγ (γ) used in (∗)0 is a winning strategy for the Interpolator in the game
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a′pξγ (γ),Q
˜
γ ,Hγ

. Then, of course, we have checked that the strategy we have defined

satisfied also ~ of Definition 2.6(1), i.e. ε < ζ ⇒ pε ≤pr p
′
ζ . But this is easy. �2.12
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3. Nicer pure properness and pure decidability

Is pure decidability preserved by the iteration? We give sufficient conditions.

Definition 3.1. 1) Let F be a trunk controller. We say that an F -forcing Q is
strongly+ F -psc forcing when in Definition 2.1, we:

(a) strengthen � of 2.1(1) demanding (as in Definition 2.6) ε < ζ ⇒ pε ≤pr p
′
ζ

(i.e. Q is strong F -psc)

(b) strengthen clause (β) of 2.1(1) adding: if ε < ζ are from the set B and

valQ(qε), valQ(qζ) are compatible in F then (in addition to qε, qζ has a
common upper bound) there5 is r such that

(i) pζ ≤apr r

(ii) qε ≤ r
(iii) r is a lub of pζ , qε

(iv) if pε ≤pr qε then pζ ≤pr r.

2) For F an iterated trunk controller of 〈Fα : α < α∗〉 and a F -psc iteration Q̄
we say Q̄ is strongly+-psc (for H̄) when 
Pβ “Qα is a strongly+ Fβ-psc for Hβ” for

every β < `g(Q̄).

Claim 3.2. Assume

(a) Q is forcing by a measure algebra or just Q satisfies the stronger version
of the c.c.c. implicit in 2.1(1)(α): if pα ∈ Q for α < ω1 and A ⊆ ω1

is stationary then for some stationary B ⊆ A, 〈pα : α ∈ B〉 are pairwise
compatible

(b) the trunk controller F is defined by

(α) set of elements in Q
(β) ≤F =≤F

apr is the order of Q
(γ) ≤F

pr is equality
(c) Q is an F -psc defined by:

(α) the orders are as in F

(β) valQ(−) is the identity.

Then Q is a F − psc, even strong+ and is apurely clear and F is a purely c.c.c.

Proof. To show that Q is F − psc, we now define a strategy for the Interpolator
player.

In the game ap,Q:

� the Interpolator chooses pζ = p and p′ζ = p.

The demands in � of 2.1(1) are easy: as valQ(−) is constant the demands involving
it are satisfied trivially. Also Q |= “p′ζ ≤pr pζ” hold as it means Q |= “p ≤pr pζ”

which means Q |= “p = p and pζ ≤ qζ” which holds.
Second, Q |= “p′ζ ≤ qζ”⇒ Q |= “pζ ≤apr qζ” is also trivial.

Third, Q |= “p′ζ ≤pr qζ” means p = p′ζ = qζ , so trivially Q |= pζ ≤pr qζ .

5Saharon recheck when Extender chooses weird q’s
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To prove that this is a winning strategy, for any play 〈(p′ζ , qζ , pζ) : ζ < ω1〉
in which the interpolator uses this strategy, clauses (α), (β) hold by clause (c) of
the assumption. As for clause (γ) it assumes pε ≤pr qε ∧ pζ ≤pr qζ but then
qε = p ∧ qζ = p so qε is a common ≤pr-bound as required.

What about “strong+”? See Definition 3.1(1). Clause (a) there says ε < ζ ⇒
pε ≤pr p

′
ζ and it holds as the strategy guarantees pε = p = p′ζ . For clause (b) there

it suffices to prove for ε < ζ from B that there is r such that (substituting the
equalities we know)

(i) p ≤ r
(ii) qε ≤ r

(iii) r is a lub of p, qε

(iv) if p = qε then p = r.

So r := qε is as required. �3.2

Claim 3.3. Let F be apure c.c.c. full trunk controller iteration of F̄ of length α∗∗

and Q̄ be a strongly+ F -psc iteration and α∗ = `g(Q̄).
1) If p 
Pα∗ “τ

˜
n ∈ V” for n < ω, then we can find q and In(n < ω) such that:

p ≤pr q ∈ Pα∗ and for each n < ω we have (∗)q,In,τ
˜
n

, which means:

(a) q ∈ Pα∗
(b) In ⊆ {r : q ≤apr r and r forces a value to τ

˜
n}

(c) In is countable

(d) In is predense above q.

2) If {p, Q̄} ∈ N ≺ (H (χ),∈) and N is countable and 〈τ
˜

(n) : n < ω〉 lists the
Pα∗-names of ordinals from N , then we can add

(e) q is (N,Pα∗)-generic.

Remark 3.4. 1) We can break the claim to two claims; the first saying that for
a strong+ F -psc iteration Q̄,Pα∗ is a strong+ F -psc. The second saying that a
strong+ F -psc forcing P satisfies the conclusion of 3.3(1).
2) Concerning (∗)q,In,τ

˜
n
, we know by 2.9(3) that for some q, 〈In : n < ω〉 clause

(a),(c),(d) there holds, as well as

(b)− In ⊆ {r : q ≤ r and r forces a value to τ
˜
n}, but the q ≤apr r will be

missing.

Proof. Let St
˜
α,q be a Pα-name of a winning strategy for the Interpolator player in

the game for Q
˜
α and q ∈ Q

˜
α as guaranteed in the Definition of “strongly+”.

By the proof of 2.12 we can combine them to a winning strategy St for Pα and
p. Now we simulate a play of the game such that the Interpolator player plays
according to St and the Extender play as in the proof of 2.9 for 〈τ

˜
n : n < ω〉. Let

the play produced be 〈(p′ζ , qζ , pζ ,mζ , jζ) : ζ < ω1〉. In particular 〈pζ : ζ ∈ [−1, ω1)〉
is purely increasing [Saharon: I don’t find the reason for purely increasing] and
pζ ≤apr qζ . So for some ζ we have:

(∗)0 there is no m < ω and q such that

(i) pζ ≤ q
(ii) if ε < ζ ∧m = mε then q, qζ are incompatible.

Paper Sh:707, version 2012-04-06 11. See https://shelah.logic.at/papers/707/ for possible updates.



22 SAHARON SHELAH

Let

U ζ
m = Um = {ε < ζ : mε = m and pζ , qε are compatible}.

For each m < ω, ε ∈ Um let rε be a lub of pζ , qε as guaranteed to exist by clause
(b) of Definition 3.1.

So

(∗)1 ε ∈ Um ⇒ “pζ ≤apr rε”.

[Why? By the same clause (b) of Definition 3.1, i.e. rε has same domain as pζ , for
all but finitely many coordinates r is a pure extension of pζ , and for the exceptional
coordinate r is an apure extension, really for all.]

(∗)2 In := {rε : ε ∈ Um} is predense above pζ .

[Why? If not, there is q ∈ Pα above pζ which for every ε ∈ Um is incompatible
with rε hence with qε (if not let q ≤ q′, qε ≤ q′, but pζ ≤ q ≤ q′ so q′ has to be
above rε as a lub of pζ , qε, contradiction). So q is above pζ but incompatible with
every qε when ε < ζ ∧mε = m. But this contradicts the choice of ζ.]

So pζ , 〈In : n < ω〉 are as required.
2) Like 2.9(2). �3.3

Definition 3.5. Let F be an iterated trunk controller and Q an F -psc iteration
of length α. For β ≤ α let Pα |= p ≤pr,β q mean that:

(a) Pα |= “p ≤ q”
(b) if γ ∈ Dom(p)\β then q � γ 
Pγ “p(γ) ≤pr q(γ)”.

Claim 3.6. If in Definition 3.6 we have β ≤ α and Pα |= “p ≤pr,β q” then for
some non-limit η ≤ β we have Pα |= “p ≤pr,η q”.

Proof. If β = 0 or β is a successor ordinal, choose η = β. If β is a limit ordinal,
take η = (Dom(p) ∩ β) + 1. �

Definition 3.7. 1) A forcing notion Q has (θ, σ)-pure decidability if:
if p ∈ Q and p 
Q “τ

˜
∈ θ”, then for some A ⊆ θ, |A| < σ and q

we have p ≤pr q ∈ Q and q 
 “τ
˜
∈ A”.

2) We write “θ-pure decidability” for “(θ, θ)-pure decidability”.

Claim 3.8. 1) Assume Q̄ is an F -iteration and:

(a) β∗ ≤ α∗ = `g(Q̄) and β ∈ [β∗, α∗) implies 
Pβ “Q
˜
β has pure (2, 2)-

decidability”, see Definition 3.7

(b) t
˜

is a Pα∗-name, 
Pα∗ “t
˜
∈ {0, 1}”

(c) (∗)p,I ,t
˜

from 3.3(1) holds for some I

(d) each Q
˜
β (for β ∈ [β∗, α∗)) satisfies p′ ≤Q

˜
β

pr p′′ ⇒ valQ˜
β (p′) = valQ˜

β (p′′);

a natural sufficient condition for this is for every β ∈ [β∗, α∗) ≤Fβ
pr is the

equality on Fβ.

Then there are t
˜
′, q′ such that:

(α) p ≤pr,β∗ q
′
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(β) q′ � β∗ = p � β∗

(γ) t
˜
′ is a Pβ∗-name

(δ) q′ 
Pα∗ “t
˜
′ = t

˜
”.

2) Similarly for pure (ℵ0, 2)-decidability.

Remark 3.9. Use in 5.16. Saharon check.

Proof. 1) Case 1: Dom(p) ⊆ β∗.
Trivial.

Case 2: Dom(p)\β∗ 6= ∅.
For each β ∈ [β∗, α∗) we define Pβ-names t

˜
0
β , t˜

1
β , q

˜
β (and later t

˜
2
β) as follows. Let

Dom+(p) = Dom(p)∪{sup{γ+ 1 : γ ∈ Dom(p)}}. Let Gβ ⊆ Pβ be generic over V.

Possibility A: There are q ∈ Pα∗/Gβ such that p ≤pr,β q,Dom(q) = Dom(p) and
q 
Pα∗/Gβ “t

˜
= `”.

Let t
˜

1
β [Gβ ] be 1 and t

˜
0
β [Gβ ] = ` and let q

˜
β [Gβ ] be (p � β) ∪ (q � [β, α∗]).

Possibility B: Not possibility A.

Let t
˜

0
β [Gβ ] = 0, t

˜
1
β [Gβ ] = 0 and q

˜
β [Gβ ] = p.

In the first possibility, note that we have demanded Dom(q) = Dom(p); in the
second possibility this holds automatically.

Let t
˜

2
β [Gβ ] ∈ {0, 1} be 1 iff t

˜
1
β [Gβ ] = 1 and for no γ ∈ β ∩ Dom(p)\β∗ do we

have t
˜

1
γ [Gβ ∩ Pγ ] = 1, clearly also t

˜
2
β is a Pβ-name of a number ∈ {0, 1}.

Now note

� 
Pα∗ “there is one and only one β ∈ Dom(p)\β∗ such that t
˜

2
β [G

˜
α∗ ∩Pβ ] = 1

call it β
˜

”.

[Why? First the “at most one” follows by the definition of t
˜

2
β . Second, for the

“at least one” it is enough that p 
Pα∗ “for some β ∈ Dom(p), t1
β = 1”. Now we

separate the proof to two cases. By clause (c) we have (∗)p,I ,t
˜

from 3.3(1), so if
Gα∗ ⊆ Pα∗ is generic over V and p ∈ Gβ then some q ∈ I belongs to Gβ so by
clause (b) from 3.3 we have p ≤apr q and q forces a value of t

˜
. This means that

t
˜

1
γ(∗)[Gα∗ ] = 1 for γ(∗) = sup{γ + 1 : γ ∈ Dom(p)}.]

So we can define q ∈ Pα∗ as follows Dom(q) = Dom(p) and for γ ∈ Dom(p) : q(γ)
is a Pβ-name, so let Gγ ⊆ Pγ be generic over V, now if γ ≥ β∗ and β

˜
[Gγ ] is well

defined and ≤ γ, i.e. for some γ1 ≤ γ, t
˜

2
γ1

[Gγ ∩ Pγ1
] = 1 then q(γ) = q

˜
β
˜

(γ),

otherwise q(γ) = p(γ). (So q in a sense purely extends p but only on a relevant end
segment. Next we shall try to make this end-segment as short as possible).

Now for each β ∈ Dom(p)\β∗ we define a Pβ-name q[β] ∈ Q
˜
β , such that:

� (α) q(β) ≤pr q
˜

[β], i.e. 
Pβ “q(β) ≤Q
˜
β

pr q[β]”

(β) valQ˜
β (q

˜

[β]) = valQ˜
β (p(β)); recalling clause (d) of the assumption

(γ) if ` ≤ 2, and there are q
˜

′, i
˜

such that 
Pβ “q(β) ≤Q
˜
β

pr q′ and

q
˜

′ 
Q
˜
β

t
˜
`
β+1 = i

˜
” where i

˜
is a Pβ-name, then the triple

(q
˜

[β], i
˜
`
β , `) satisfies this for some Pβ-name i

˜
`
β of a number < 2,

moreover
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(γ)′ q
˜
, i
˜

0
β , i˜

1
β are such that:

(i) q
˜

[β] is a Pβ-name of a member of Q
˜
β , purely extending q(β)

(ii) i
˜

0
β , i˜

1
β are Pβ-names of number < 3

(iii) in VPβ either q
˜

[β] 
Q
˜
β

“t
˜
`
β+1 = i

˜
`
β” or q

˜

[β] has no≤Q
˜
β

pr -extension forcing

a value to t
˜
`
β+1 and i

˜
`
β = 2.

So as above t
˜

1
β [Gα∗ ∩Pβ ] = 1 and let q witness it, so Possibility A holds so there is

q ∈ Pα∗/(Gα∗ ∩ Pβ) such that p ≤pr q,Dom(q) = Dom(p) and q 
Pα∗ /G˜
β“t

˜
= `”.

This holds in V[Gβ ] hence there is r ∈ Gβ which forces all this, and without loss
of generality Pβ |= “q � β ≤ r”.

We now define q∗ ∈ Pα∗ as follows Dom(q∗) = Dom(q), q∗ � β∗ = q � β∗ and
β ∈ Dom(q)\β∗ ⇒ q∗(β) = q[β](β), note that val(q∗) = val(q), and we shall show
that q∗ is as required, this suffices. For this it suffices to show that q∗ 
 “β

˜
= β∗”.

Toward this let Gα∗ ⊆ Pα∗ generic over V satisfying q∗ ∈ Gα∗ , so t
˜

[Gα∗ ] = i for
some i ∈ {0, 1}, let Gβ = Gα∗ ∩ Pβ for β ≤ α∗.

Now:

(∗)1 for some β ∈ [β∗, α∗] ∩Dom+(p) we have t
˜

1
β [Gα∗ ∩ Pβ ] = 1.

[Why? As p ≤pr q
∗ ∈ Gα∗ , by assumption (c) necessarily I ∩ Gα∗ 6= ∅ so let

r ∈ I ∩Gα∗ , and so β = α∗ is as required.]
So let β ∈ [β∗, α∗] be minimal such that t

˜
1
β [Gα∗ ∩ Pβ ] = 1. So β is unique such

that t
˜

2
β [Gα∗ ∩ Pβ ] = 1, hence by � we have

(∗)2 β = β
˜

[Gα∗ ]

(∗)3 β cannot be a limit ordinal > β∗.

[Why? By the finiteness clause in the definition of order in Pα∗ by claim ??.]

(∗)4 β = γ + 1 > β∗ is impossible.

[Why? If γ /∈ Dom(p) this is trivial by the choice of β, so assume γ ∈ Dom(p).
Now in V[Gα∗ ∩ Pγ ] the forcing notion Q

˜
γ [Gα∗ ∩ Pγ ] has pure (2, 2)-decidability

hence clearly q
˜

[γ][Gα∗ ∩Pγ ] 
Qγ “t
˜
`
γ+1 = i

˜
`
γ [Gα∗ ∩Pγ ]”. Now t

˜
1
γ+1[Gα∗ ∩Pγ+1] = 1

by the choice of β = γ + 1, hence i
˜

1
γ [Gα∗ ∩ Pγ ] = 1. Define q′ as follows: q′ � β =

q∗ � β, q′ � (Dom(p)\β) = q
˜
β � (Dom(p)\β) it proves γ could serve instead of β,

contradiction.]
So β = β∗ and we are easily done by the definition of q∗.

2) Similar to the proof of part (3). �3.3

∗ ∗ ∗

Discussion 3.10. 0) (f, g)-bounding as application.
We may consider the following variant of our definitions and claims (we do not

mention the cases which trivially do not change). [Why we have not used it in §2?
There was a reunion; what it was? not want to have three orders.]
(A) Defining of ≤Pα

apr in iteration. In Definition 1.10(δ)(iv) we add (those are ob-
jects)
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val
Qβ
˜ (p(β)) = valQ˜

β (q(β)).

(B) For an F -psc forcing Q let p ≤Q
vpr q means (p ≤Q

pr q) ∧ valQ(p) = valQ(p) (vpr
stands for very purely).
(C) The associativity lemma 1.20 still works for this iteration.
(D) In � of Definition 2.1(1) we strengthen “p′ζ ≤pr qζ ⇒ pζ ≤pr qζ” to “p′ζ ≤pr

qζ ⇒ pζ ≤vpr qζ .
(E) The examples in ??(1),(2) work.
(F) Claim 2.9 is not changed: actually our demands are just stronger.
(G) Lemma 2.12: still true with minor changes in the proof. To show that (∗)1 is
possible, we have to check that “p′ζ ≤pr qζ ⇒ pζ ≤vpr q

′
ζ and the same proof gives

it.
(H) At last we get a gain: in 3.8 we can omit clause (d) of the assumption.

Discussion 3.11. We may consider replacing stationary A,B ⊆ ω1 by a subset of
[ω1]2, so we use:

To clarify “F has the apure c.c.c.” note.

Definition 3.12. We call (H,≤H) a (D,κ)-witness if:

(a) ≤H is a partial order of H

(b) D a normal filter on a regular uncountable κ

(c) H ⊆P([κ]2)\{∅}
(d) for any X ∈ H, E ∈ D and a pressing down function h on E for some

Y ≤H X we have h � ∪{{α, β} : {α, β} ∈ Y } is constant and Y ⊆ [E]2.

Definition 3.13. 1) For (H,≤H) a (D,κ)-witness and a forcing notion Q we say
that Q satisfies the (H, <H)-c.c. when: for every κ-sequence 〈pα : α < κ〉 of
members of Q and X ∈ H, there is Y ≤H X such that (α, β) ∈ Y ⇒ pα, pβ are
compatible in Q.
2) Similarly “a trunk controller F” satisfies the apure (H, <H)-c.c. for κ = ℵ1, see
(c) below.

Claim 3.14. The trunk controller F satisfies the apure (H,≤H)-c.c. when the
following hold:

(a) (H, <H) is a (D,ℵ1)-witness (or for some normal filter D on ω1)

(b) F is fully based on 〈Xβ : β < α∗〉
(c) if β < α∗, 〈yε : ε < ω1〉 is ≤pr-increasing in Fβ , yε ≤

Fβ
apr zε then the set

{(ε, ζ) : zε, zζ are compatible in Fβ} belongs to H.
Alternatively

(c)′ Fβ satisfies the (H, <H)-c.c.

Proof. Immediate. �
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4. Averages by an ultrafilter and restricted non-null trees

Definition 4.1. For Borel subsets B,Bn (n < ω) of ω2 and a filter D on ω, let
B = ms− limD〈Bn : n < ω〉 or “〈Bn : n < ω〉 does D-converge” to B mean that
for every ε > 0 the set {n < ω : Leb(B∆Bn) < ε} belongs to D.

Proposition 4.2. Assume

(a) V1 = V[r] where r is a random real over V,

(b) in V, D is a non-principal ultrafilter on ω.

Then we can find in V1 a non-principal ultrafilter D1 on ω extending D such that

(∗)r,D,D1
if in V,B,Bn are Borel subsets of ω2, (so B, 〈Bn : n < ω〉 ∈ V) and
〈Bn : n < ω〉 does D-converge to B, then the following conditions are
equivalent in V1:

(i) r ∈ B (recall, B being a Borel set, is actually a definition of a set and
so B is a definition in V of a Borel set, so it defines a Borel set in
V[r])

(ii) the set {n : r ∈ Bn} belongs to D1.

Proof. It suffices to find in V1 an ultrafilter D1 over ω containing D′ where D′ =
D ∪ {{n : r ∈ B ≡ r ∈ Bn}: in V the sequence 〈Bn : n < ω〉 does D-converge to
B in V}.

For then D1 satisfies: if 〈Bn : n < ω〉 ∈ V does D-converge to B ∈ V then
(i) ⇒ (ii) as D ⊆ D′ ⊆ D1. Also ¬(i) ⇒ ¬(ii) as 〈ω2\Bn : n < ω〉 ∈ V does D
converge to ω2\B ∈ V and we apply (i)⇒ (ii) for it.

The existence of an ultrafilter D1 over ω containing D′ is equivalent to “any
intersection of finitely many members of D′ is not empty”. As D is closed under
finite intersection, clearly it suffices to prove:

� Assume in V that m∗ < ω and for each m < m∗, the sequence 〈Bm,n : n <
ω〉 − D- converges to Bm and B ∈ D. Then for some n ∈ B in V1 we
have m < m∗ ⇒ [r ∈ Bm ≡ r ∈ Bm,n].

�4.2

Proof. Proof of �
It is enough, given a positive real ε > 0 to find a Borel set B = Bε ∈ V of

Lebesgue measure < ε such that, in V

(∗) r ∈ ω2\B ⇒ (∃n ∈ B)(∀m < m∗)[r ∈ Bm ≡ r ∈ Bm,n].

(Why? As then we can find in V a sequence 〈B1,(k+1) : k < ω〉, each B1,(k+1) as
above; so r being random over V does not belong to

⋂
k

B1,(k+1) hence for some

k, r /∈ B1,(k+1) and so there is n as required by (∗) because (∗) holds also in V[r]
by absoluteness).

Given ε > 0, for m < m∗, as 〈Bm,n : n < ω〉 does D-converge to Bm clearly
we can find B′m ∈ D such that (∀n ∈ B′m)[Leb(Bm∆Bm,n) < ε/(m∗ + 1)]. Let
B′′ =

⋂
m<m∗

B′m ∩B, so clearly B′′ ∈ D. Now choose any n ∈ B′′, and note that

the Borel set B =
⋃

m<m∗
(Bm∆Bm,n) will do: clearly Leb(B) < ε and easily n is

as required. �
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Recall

Remark 4.3. T [η] = {ν ∈ T : ν / η or η / ν ∈ T}.
lim(T ) = {η ∈ ω2 : (∀n < ω)(η � n ∈ T )}.

We can do the following more generally, but what we do is enough for our intended
example.

Definition 4.4. If g : ω → ω satisfies n < ω ⇒ g(n) > n and is increasing we define
Tg as the family of subtrees T of ω>2 such that for every n < ω and η ∈ T ∩ n2 we
have

(∗)n (1− 1/n)|T [η] ∩ g(n)2|/2g(n) ≤ Leb(lim(T [η])) ≤ |T [η] ∩ g(n)2|/2g(n)

(the second inequality holds automatically), equivalently, for every m ≥ g(n)

(∗)n,m (1− 1/n)|T [η] ∩ g(n)2|/2g(n) ≤ |T [η] ∩ m2|/2m ≤ |T [η] ∩ g(n)2|/2g(n).

Definition 4.5. 1) For subtrees Tn of ω>2 (for n < ω) and a filter D on ω we say
T = limD〈Tn : n < ω〉 if T = {η ∈ ω>2 : {n < ω : η ∈ Tn} ∈ D} = {η ∈ ω>2 : {n <
ω : η ∈ Tn} 6= ∅ mod D} (so if η is undecided, such T does not exist).

Similarly for Tn ⊆ H (ℵ0). We may omit D if D is the family of co-bounded
subset of ω. Note that limD〈Tn : n < ω〉, if it exists, is uniquely defined and is
absolute and if D is an ultrafilter it is always well defined.
2) Let G V be {g ∈ V : g is an increasing function from ω to ω and g(n) > n}, let
G vary on subsets of G V. Let TG = ∪{Tg : g ∈ G }. Let G V

w = {g � w : g ∈ G V}
for w ⊆ ω.

Claim 4.6. 1) For subtrees Tn of ω>2 (for n < ω) and an ultrafilter D on
ω, limD〈Tn : n < ω〉 is well defined and it is a subtree of ω>2.
2) If Tn is a subtree of ω>2 for n < ω,D is a filter on ω containing the cofinite sets
and limD〈Tn : n < ω〉 is well defined and n < ω ⇒ Tn ∈ Tg (as in Definition 4.4),
then

(a) d ” limD〈Tn : n < ω〉 belongs to Tg

(b) if T = limD〈Tn : n < ω〉 then lim(T ) = ms− limD〈lim(Tn) : n < ω〉.

3) If D1 ⊆ D2 are filters on ω containing the cofinite sets then

(a) T = limD1
〈Tn : n < ω〉 implies T = limD2

〈Tn : n < ω〉
(b) if B = ms− limD1〈Bn : n < ω〉 then B = ms− limD2〈Bn : n < ω〉.

Proof. Easy. �4.6

Definition 4.7. 1) We say ρ ∈ ω2 is (N,TG , D)-continuous or G -continuous over
N for D if :

(a) N ⊆ V a transitive class, a model of ZFC, or ≺ (H (χ),∈) for some χ;
or more generally, a set or a class, which is a model of enough set theory
(say ZFC−) and H (ℵ0) ⊆ N,ω ∈ N , with reasonable absoluteness and
D ∈ N is a filter on ω containing the co-finite sets (so (D∩N)V is the filter
generated in V by D ∩N)

(b) G ∈ N (and of course GN ⊆ G V, see Definition 4.5(2)) and
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(c) if m(∗) < ω and for each m < m(∗) we have gm ∈ G ∩N , and 〈Tmn : n <
ω〉 ∈ N,Tmn ∈ N ∩Tgm , T

m ∈ N ∩Tgm and Tm = limD〈Tmn : n < ω〉, then
ρ ∈ ∩{lim(Tm) : m < m(∗)} ⇒ {n : if m < m(∗) then ρ ∈ lim(Tmn )} 6= ∅
mod (D ∩N)V.

2) We define the ideal NullG ,D as the σ-ideal generated by the sets of the form
{ρ ∈ ω2 : ρ ∈ lim(Tm) for m < m(∗) but {n : if m < m(∗) then ρ ∈ lim(Tmn )} = ∅
mod D} with Tm, Tmn ∈ Tgm , T

m = limD〈Tmn : n < ω〉, for some m < m(∗) and
〈(Tm, 〈Tmn : n < ω〉) : m < m(∗)〉 where m(∗) < ω, gm ∈ G .
3) We may write the dual ideal instead of the filter, if D is the filter of co-finite
subsets of ω, we may omit it. [?? Saharon]

Observation 4.8. Let D,G be as above.
1) If G1 ⊆ G2 and D1 ⊆ D2 then NullG1,D1 ⊆ NullG2,D2 .
2) If G = G V then NullG ,D = the ideal of null subsets of ω2.

Proof. 1) Assume B ∈ NullG1,D1
, so then necessarily for some 〈Bk : k < ω〉, 〈T k,m, T k,mn :

k < ω,m < m(k), n < ω〉 and 〈gkm : k < ω,m < m(k)〉 we have:

~ (a) gkm ∈ G1 ⊆ G2

(b) T k,m, T k,mn ∈ Tgkm

(c) T k,m = limD1
〈T k,mn : n < ω〉, for every n < n(k)

(d) Bk := {ρ ∈ ω2 : ρ ∈ lim(T k,m) for m < m(k) but {n: if m < m(k)
then ρ ∈ lim(T k,mn )} = ∅ mod D1}

(e) B ⊆ ∪{Bk : k < ω}.

Now if we replace D1 by D2 then still T k,m = limD2〈T k,mn : n < ω〉 and the set Bk

can only increase so clearly B ∈ NullG2,D2 .
2) Let B be a Borel subset of ω2 such that Leb(B) = 1. So we can find a sequence
〈Tn : n < ω〉 such that Tn is a perfect subtree of ω>2 such that Leb(lim(Tn)) ≥
1− 2−n, lim(Tn) ⊆ B and Tn ⊆ Tn+1.

So

(∗)1
ω>2 = limJbd

ω
〈Tn : n < ω〉

(∗)2 define g ∈ω ω by g(n) = Min{k : k > n and k > g(n′) for n′ < n and for

every m ≤ 2n+2 and η ∈ Tm∩n2 we have (1−1/n)|T [η]
m ∩ k2| ≤ Leb(T [η]}.

Now note that the demand on k = g(n), (∗)2 holds also for m ≥ 2n + 2 because:
for η ∈ Tm ∩ n2 we have

Leb(T [η]) ≥ 2−n − (1− Leb(lim(Tm)) = 2−n − 2−m

≥ 2−n − 2−(2n+2) ≥ (1− 1/n)− 2−n ≥ (1− 1/n)Leb(limT [η] ∩ n2)

So {T} ∪ {Tm : m < ω} ⊆ Tg and g ∈ G V.
So we can conclude then 2ω, 〈Tm : m < ω〉 witness ω2\B ∈ NullG . So the ideal of

null subsets of ω2 is included in NullG . For the other inclusion let Tm = limD〈Tmn :
n < ω〉 for m < m(∗) where Tm, Tmn ∈ Tg, g ∈ G V. Easily {ρ ∈ ω2 : m < m(∗) ⇒
ρ ∈ lim(Tm) but {n : ρ ∈ Tmn for m < m(∗)} is finite} is a null set. As the ideal of
null subsets of ω2 is a σ-ideal we are done. �
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Remark 4.9. 1) Note that the ideal NullG ,D is included in the ideal of null sets.
2) If in Definition 4.7 we have two candidates D1 ⊆ D2 for D and ρ is (N,TG , D2)-
continuous then ρ is also (N,TG , D1)-continuous. So for small D’s there are more
such ρ’s relevant to Definition 4.7.

Observation 4.10. 1) Assume G ∈ V is 6= ∅ and V1 extends V. If (ω2)V is not
in the ideal (NullG )V1 , then there is no ρ ∈ (ω2)V1 which is a Cohen real over V.
2) If D is an ultrafilter on ω (in V), then in Definition 4.7(1),(2) the case m(∗) = 1
suffices.

Proof. 1) Choose g ∈ G and choose 〈mi : i < ω〉 by m0 = 0,mi+1 = 3g(mi) > mi

hence
∏

j≥i+1

(1− 1
2mj+1−mj ) ≥ (1− 1

mi+1+1 ).

Assume toward a contradiction that ρ ∈ ω2 is Cohen over V. On α2 for α ≤ ω
let + be the coordinatewise addition mod 2.

In V we can find a sequence 〈Ti : i < ω〉 of subtrees of ω>2 such that: Leb(lim(Ti)) ≥
1−1/2i,mi≥2 ⊆ Ti and i ≤ j < ωandη ∈ Tj∩mj2⇒ (∃!ν)(η/ν ∈ (mj+1)2andν /∈ Ti).
So easily Ti ∈ Tg and lim(Ti) ⊆ ω2 is nowhere dense and T =: limJbd

ω
〈Tn : n < ω〉

is ω>2. Now if ν ∈ (ω2)V then ρ+ ν is Cohen over V hence for each n < ω we have
ρ+ ν /∈ lim(Tn) hence ν /∈ ρ+ lim(Tn). So letting T ′n = {ν+ρ � k : ν ∈ Tn ∩ k2, k <
ω}, still limJbd

ω
〈T ′n : n < ω〉 is T = ω>2. Therefore for every ν ∈ (ω2)V we have

n < ω ⇒ ν /∈ lim(T ′n) but ν ∈ lim(T ). So T, 〈T ′n : n < ω〉 exemplify that (ω2)V is
in NullG , contradiction.
2) Easy to check. �4.10

Conclusion 4.11. Assume

(a) V1 ⊇ V

(b) G ∈ V so (recalling 4.5(2)) we have G ⊆ G V

(c) in V, D is a non-principal ultrafilter on ω.

(d) r ∈ (ω2)V1 is G -continuous over V (recall 4.7(3)).

Then we can find D1 such that in V1

(α) D1(∈ V1) is a non-principal ultrafilter on ω extending D

(β) if g ∈ G and T, 〈Tn : n < ω〉 ∈ V, {T, Tn : n < ω} ⊆ Tg T = limD〈Tn : n <
ω〉 then

{n : (r ∈ lim(T )) ≡ (r ∈ lim(Tn))} ∈ D1.

Remark 4.12. In (d) we mean G -continuous over V not (V,TG V , D)-continuous
over V. If we assume the later we can use 4.2 + 4.6(2).

Proof. To find such D1, it is enough to prove

� assume

(∗)1 m∗ < ω and for m < m∗, gm ∈ G , Tm, Tmn ∈ Tgm for n < ω and
〈Tmn : n < ω〉 ∈ V and Tm = limD〈Tmn : m < ω〉 ∈ V and lastly
B ∈ D.

Then for some n ∈ B we have (∀m < m∗)(r ∈ lim(Tm) ≡ r ∈ lim(Tmn )).
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For m < m∗ we can find km < ω such that r /∈ lim(Tm) ⇒ r � km /∈ Tm, let
k = max{km : m < m∗} < ω and let u = {m < m∗ : r ∈ lim(Tm)}. For each
m < m∗,m /∈ u we know that r � k /∈ Tm hence Am =: {n : r � k /∈ Tmn } ∈ D, and
clearly n ∈ Am ⇒ r � k /∈ Tmn . Let B1 = B ∩

⋂
{Am : m < m∗,m /∈ u}, clearly

B1 ∈ V and B1 ∈ D hence B1 is infinite. So we can choose by induction on i < ω,
a number ni ∈ B1 such that ni > nj for j < i and m < m∗ ⇒ Tmni ∩

i≥2 = Tm∩ i≥2
moreover we do this in V (possible as r � k ∈ V) so 〈ni : i < ω〉 ∈ V and clearly
Tm = lim〈Tmni : i < ω〉 for each m ∈ u. By assumption (d), (this is the only place
it is used) and the definition of “r is G -continuous over V”, the Borel set

B = { η ∈ ω2 : η ∈ ∩{lim(Tm) : m ∈ u} but
{i < ω : η ∈ ∩{lim(Tmni ) : m ∈ u}} is finite}

satisfies: r /∈ BV1 . But r ∈ ∩{lim(Tm) : m ∈ u} by the choice of u hence (by the
definition of B) for infinitely many i’s we have r ∈ ∩{lim(Tmni ) : m ∈ u}. Hence we
can choose i such that

(∗) m ∈ u⇒ r ∈ lim(Tmni ).

Now if m < m∗,m /∈ u then r /∈ lim(Tm) by the choice of u and r /∈ lim(Tmni )
as ni ∈ B1 ⊆ Am, see above. In particular ni ∈ B so ni is an n as required in
�. �4.11

Claim 4.13. Assume

(a) δ is a limit ordinal

(b) 〈Pα : α ≤ δ〉 is a l-increasing sequence of forcing notions

(c) for α < δ

Pα “D

˜
α is a non-principal ultrafilter on ω

(d) if α < β < δ then 
Pβ “D
˜
α ⊆ D

˜
β”

(e) r
˜

is a Pδ-name of a real (i.e. ∈ ω2)

(f) G ⊆ G V

(g) if α < δ then 
Pδ “r
˜

is G -continuous over VPα”.

Then we can find D
˜
δ such that

(α) D
˜
δ is a Pδ-name of a non-principal ultrafilter over ω

(β) if α < δ then 
Pδ “D
˜
α ⊆ D

˜
δ”

(γ) like (β) of part 4.11 with VPα ,VPδ here standing for V,V1 there for any
α < δ.

Proof. Like 4.11. �4.13
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5. On iterating QD̄
Definition 5.1. 1) Let IF be the family of D̄ = 〈Dη : η ∈ ω>ω〉 with each Dη a
filter on ω containing all the co-finite subsets of ω.
2) IUF is the family of D̄ = 〈Dη : η ∈ ω>ω〉 with each Dη a non-principal ultrafilter
on ω.

On QD̄ see [?].

Definition 5.2. 1) For D̄ ∈ IF we define QD̄ as follows:

(α) the set of elements is QD̄ = {T : T ⊆ ω>ω is closed under initial segments,
is non-empty and for some member η = tr(T ) ∈ T which is increasing,
and is called the trunk, we have: ν ∈ T and `g(ν) ≤ `g(η) ⇒ ν E η and
η E ν ∈ T ⇒ {n : νˆ〈n〉 ∈ T} ∈ Dν}

(β) ≤=≤QD̄ is the inverse of inclusion

(γ) ≤pr=≤QD̄
pr is defined by T1 ≤pr T2 ≡ (T2 ⊆ T1 and tr(T1) = tr(T2))

(δ) ≤apr= {(p, q) : p ≤ q}
(ε) val(T ) = tr(T ) ∈ ω>ω ⊆H (ℵ0).

2) Let η
˜

= η
˜

(QD̄) = η
˜
QD̄ be ∪{tr(p) : p ∈ G

˜
QD̄}, this is a QD̄-name of a member of

ωω (which is increasing).
3) For p ∈ QD̄, η ∈ p let p[η] = {ν ∈ p : ν E η ∨ η E ν}; so we have p ≤ p[η] ∈
QD̄, tr(p

[η]) ∈ {η, tr(p)}.
4) We define Q′

D̄
similarly except that we change ≤Q′

D̄
apr to be {(p, q) : p, q ∈ QD̄ and

q = p[η] for η = tr(q)}.

Fact 5.3. For D̄ ∈ IUF and F a trunk controller such that the set of elements of
F is ω>ω and η ≤F

pr x⇔ η = x and η ≤F
apr x⇔ η E x(∈ ω>ω), we have:

(a) QD̄ is a σ-centered, very clear F -forcing,

(b) QD̄ is an strong+ F -psc forcing notion hence QD̄ is purely proper (see
Definition 3.1, Claim 3.3(2)),

(c) from η
˜

[G
˜

QD̄ ] we can reconstruct G
˜

QD̄ so it is a generic real for QD̄
(d) p ≤apr p

[η] ∈ QD̄ for η ∈ p ∈ QD̄
(e) F is simple.

Proof. Clause (a): QD̄ is an F -forcing. Just check Definition 1.6.

QD̄ is very clear: See Definition 1.6(2).

Assume trQ(p1) ≤F
pr y and trQ(p2) ≤F

pr y so necessarily y ∈ ω>ω and trQ(p1) =

y = tpQ(p2) hence q := p1 ∩ p2 is a subset of ω>ω, closed under initial segments
trQ(q) = y and y E η ∈ p` ⇒ {n : ηˆ〈n〉 ∈ p`} ∈ Dη hence y E η ∈ q ⇒ {n :
ηˆ〈n〉 ∈ p1} ∈ Dη ∧ {n : ηˆ〈n〉 ∈ p2} ∈ Dη ⇒ {n : ηˆ〈n〉 ∈ p1 and ηˆ〈n〉 ∈ p2} =
{n : ηˆ〈n〉 ∈ p1} ∩ {n : ηˆ〈n〉 ∈ p2} ∈ Dη ⇒ {n : ηˆ〈n〉 ∈ q} ∈ Dη so because each
Dη is a filter on ω clearly q ∈ Q.

This proves also that “Q is σ-centered”.

Clause (b): To prove “Q is F -psc”, see Definition 2.1 let the strategy of the Inter-

polator player be to have p′ε = pε = p.
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For a play 〈(p′ζ , qζ , pζ) : ζ < ωi〉 of ap, given stationary B ⊆ ω1, we can find

η ∈ ω>ω such that A := {ε ∈ B : tr(qε) = η} is stationary. By the proof of
σ-centered, for ε < ζ from A, qε, qζ are purely compatible. For the “strong+” see
Definition 3.1, as clause (a) there (ε < ζ ⇒ pε ≤pr p

′
ζ) holds trivially, we just have

to show in addition: for ε < ζ from A there is r such that pζ ≤apr r, qε ≤ r, r is lub
of pζ , qε and pε ≤pr qε ⇒ pζ ≤pr qε. Let r := pζ ∩ qε = qε, so clearly r is lub of
pζ , qε and pε ≤pr qε ⇒ η = tr(pε) but pζ = pε, so we are done.

clause (c),(d):
Left to the reader.

Clause (e): (F is simple, see Definition ??(1)), holds as its set of elements is ω>ω).
Trivial. �5.3

For completeness we prove the basic properties of QD̄.

Claim 5.4. For D̄ ∈ IUF letting Q = QD̄ we have
1) Q has pure 2-decidability, i.e. if p 
Q “τ

˜
∈ {0, 1}” then for some q, p ≤pr q and

q forces a value to τ
˜

.
2) If p ∈ Q and I ⊆ Q is dense above p, then for some q we have p ≤pr q and

Y0 = {η ∈ p : tr(p) / η and there is r such that p[η] ≤pr r ∈ I } contains a front of
q (where being a front means that η ∈ lim(q) ⇒ (∃!n)[η � n ∈ Y0]) so without loss
of generality η ∈ Y0 ⇒ q[η] ∈ I .
3) If p ∈ Q and Y ⊆ p satisfies η ∈ Y ⇒ tr(p) E η and η ∈ Y ∧ η / ν ∈ p⇒ ν ∈ Y ,
then there is q such that p ≤pr q and: either q ∩ Y = ∅ or there is a function
h : (q\Y ) ∪ {tr(q)} → ω1 such that for η / ν in Dom(h), h(η) > h(ν).
4) Let p ∈ Q,I ⊆ Q. Then I is dense above p (in Q) iff there are Y, 〈(pη, hη):
tr(p) E η ∈ p〉 and 〈qη : η ∈ Y 〉 such that:

(a) p[η] ≤pr pη ∈ Q and Y ⊆ p and η ∈ Y ⇒ p[η] ≤pr qη ∈ Q
(b) if tr(p) E η ∈ p then

(α) hη is a function

(β) dom(hη) is a subset of {ν : η E ν ∈ pη} closed under initial segments

(γ) range of hη is ⊆ ω1

(δ) hη decreasing (i.e. ρ / ν ⇒ h(ρ) > h(ν) when ρ, ν ∈ Dom(hη))

(ε) ν ∈ Dom(hη) and ν /∈ Y then {` : νˆ〈`〉 ∈ Dom(hη)} 6= ∅ mod Dν

(ζ) if ν ∈ Y, ν / ρ ∈ ω>ω then ρ /∈ Dom(hη)
(c) qη ∈ I and tr(qη) = η ∈ qη for η ∈ Y .

Proof. 1) Let p 
Q “τ
˜
∈ {0, 1}”. Let Y0 =: {η ∈ p : tr(p) E η and there is q ∈ Q

forcing a value to τ
˜

such that p[η] ≤pr q} and let Y =: {η ∈ p : for some ν ∈ Y0

we have tr(p) E ν E η}. We apply part (3), (trivially Y is as assumed there) so let
q, p ≤pr q ∈ Q be as there (and without loss of generality ηˆ〈`1, `2〉 ∈ q ⇒ `1 < `2).
If q ∩ Y = ∅ let r be such that q ≤ r and r forces a value to τ

˜
; hence tr(r) ∈ q ∩ Y ,

contradiction. So there is h as there. Stipulate h(ν) = −1 if ν ∈ Y \{tr(p)}. We
prove by induction on α < ω1 (and α ≥ −1) that:

(∗)α if tr(q) E η ∈ Dom(h) and h(η) = α then there is r = rη such that q ≤ r
and tr(q) E tr(rη) E η and rη forces a value to τ

˜
.
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Now if α = −1 then η ∈ Y hence (by the definition of Y ) for some ν we have
tr(q) E ν E η and ν ∈ Y0. Hence (by the definition of Y0) there is r such that
q[ν] ≤pr r ∈ Q and r forces a value to τ

˜
, so r is as required. If α ≥ 0, for each

` < ω such that ηˆ〈`〉 ∈ q there are i` < 2 and a condition rηˆ<`> 
Q “τ
˜

= i`” as
guaranteed by the induction hypothesis, noting h(ηˆ〈`〉)) < h(η) = α. If for some
such `, tr(rηˆ<`>) E η we are done, otherwise as Dη is an ultrafilter, for some i < 2
we have A =: {` : i` = i and ηˆ < ` >∈ q and tr(rηˆ<`>) = ηˆ < ` >} ∈ Dη and
let rη = ∪{rηˆ<`> : ` ∈ A}, clearly rη, i are as required.

Having carried out the induction, for α = h(tr(q)), rtr(q) is as required: it forces a
value to τ

˜
and tr(q) E tr(rtr(q)) E tr(q) we have tr(rtr(q)) = tr(q) hence q ≤pr rtr(q)

but p ≤pr q hence p ≤pr rtr(q).
2) Let Y = {η : for some ν we have tr(p) E ν E η ∈ p and ν ∈ Y0} and Y ′ =
{ν ∈ Y0: there is no ρ ∈ Y0 such that tr(p) E ρ / ν}, clearly Y ′ is a set of pairwise
/-incompatible sequences. Apply part (3) to p and Y (clearly Y is as required
there) and get q as there. If q ∩ Y = ∅ find r such that q ≤ r ∈ I , (exists by
the density of I above p) so by our definitions tr(r) ∈ Y0 ⊆ Y and tr(r) ∈ r ⊆ q
so q ∩ Y 6= ∅, contradiction. So assume q ∩ Y 6= ∅ hence necessarily there is h as
there, in part (3), and for every η ∈ lim(q), as 〈h(η � `) : ` ∈ [`g(tr(q)), ω)〉 cannot
be a strictly decreasing sequence of ordinals, necessarily for some ` ≥ `g(tr(q)) we
have η � ` /∈ Dom(h) hence η � ` ∈ Y hence for some m ∈ [`g(tr(q)), `] we have
η � m ∈ Y0 hence for some k ∈ [`g(tr(q)),m] we have η � k ∈ Y ′. We have actually
proved that Y ′ ⊆ Y0 is a front of q.
3) Let Z = {η : tr(p) E η ∈ p and for p[η] ∈ Q there are q and h as required in the
claim}.

Clearly

(∗)1 Y ⊆ Z ⊆ {η : tr(p) E η ∈ p}.

[Why? If η ∈ Y use hη with Dom(hη) = {ν : ν E η}, hη(ν) = `g(η)− `g(ν).]

(∗)2 if tr(p) E η ∈ p and A = {` : ηˆ〈`〉 ∈ Z} ∈ Dη then η ∈ Z.

[Why? Let the pairs (q`, h`) witness ηˆ〈`〉 ∈ Z for ` ∈ A, let q = ∪{q` : ` ∈ A}
and α∗ = ∪{h`(ηˆ〈`〉) + 1 : ` ∈ A} and define h: Dom(h) = {ν : ν E η} ∪⋃
{Dom(h`)\{ν : ν E η} : ` ∈ A} and

• h � (Dom(h`)\{ν : ν E η}) is h`

• h(ν) = α∗ + `g(η)− `g(ν) if ν E η.]

If tr(p) ∈ Z we get the second possibility in the conclusion. If tr(p) /∈ Z, let
q = {η ∈ p: there is no ν E η which belongs to Z}, so {η : η E tr(p)} ⊆ q (see Z’s
definition + present assumption) and q is closed under initial segments (read its
definition) and by (∗)2 we can prove by induction on m ≥ `g(tr(p)) that η ∈ q∩mω
implies {` : ηˆ < ` >∈ q} ∈ Dη. So clearly p ≤pr q ∈ QD̄, q ∩ Y = ∅ hence q is as
required.
4) Let Y := {η ∈ p : tr(p) E η and there is q ∈ QD̄ such that p[η] ≤pr q and q ∈ I }.

So we can choose 〈qη : η ∈ Y 〉 such that η ∈ Y ⇒ p[η] ≤pr qη ∈ I hence clauses
(a),(c) of part (4) holds. To prove clause (b) assume tr(p) E η ∈ p. If η ∈ Y we
are done, so assume η /∈ Y . We apply part (3) to p[η] and Yη := {ν ∈ p : η E ν
and there is ρ ∈ Y such that η E ρ E ν}, this pair satisfies the demands in part
(3), so one of the two possibilities there holds. The first one says that there is
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a q, p[η] ≤pr q and q ∩ Yη = ∅, but as I is dense above p, there is r such that
q ≤ r ∈ I hence tr(r) ∈ Y and trivially η = tr(q) E tr(r) hence tr(r) ∈ Yη ∩ q
contradiction to “q disjoint to Yη”. Hence the second possibility in part (3) holds,

i.e., there are q, p[η] ≤pr q and a function h as there (for p[η], Yη), and it is required
in the second possibility in clause (b). �5.4

The following is natural to note if we are interested in the Borel conjecture. (Of
course, this claim does not touch the problem of preserving the property by the
later forcings in the iteration we intend to use.) Compare with 5.6.

Claim 5.5. Assume

(a) D̄ ∈ IUF

(b) N ≺ (H (χ),∈) is countable, D̄ ∈ N
(c) ρm ∈ ω2\N for m < ω

(d) p ∈ QD̄ ∩N .

Then we can find q such that

(α) p ≤pr q ∈ QD̄
(β) q 
 “if f ∈ ω2 and f ∈ N [G

˜
QD̄ ] and m < ω then (∀∞n)(f � [η

˜
(n), η

˜
(n +

1)) 6= ρm � [η
˜

(n), η
˜

(n + 1))”, recalling η
˜

is the generic sequence of QD̄ as
defined in 5.2(2).

Proof. As QD̄ satisfies the c.c.c. necessarily p is (N,QD̄)-generic, hence p 

N [G

˜
QD̄ ] ∩ (ω2)V = N ∩ (ω2)V hence ρm /∈ N [G

˜
QD̄ ] for m < ω.

Let 〈f
˜
` : ` < ω〉 list the f

˜
∈ N such that 
QD̄ “f

˜
∈ ω2”.

Now by repeated use of 5.4(1) for every tr(p) E η ∈ p and ` < ω there is a
function f`,η ∈ ω2 such that: for every k < ω there is q`,η,k ∈ QD̄ ∩ N such that

p[η] ≤pr q`,η,k and q`,η,k 
QD̄ “for n < k we have: f`,η(n) = f
˜
`(n)”.

Now q`,η,k ∈ N and without loss of generality 〈q`,η,k : η ∈ p and k < ω〉, 〈f`,η :
η ∈ p〉 belongs to N for each ` (but we cannot have 〈q`,η,k : η ∈ p, η and k <
ω〉 ∈ N). Now for each `, η, k as f`,η ∈ N and ρm /∈ N clearly the set {n :
f`,η(n) 6= ρm(n)} is infinite so let k(`, η,m) = Min{k : f`,η(k) 6= ρm(k) and k >
sup(Rang(η))}.

Now define q as {η ∈ p : if tr(p) E ν / η ∈ p, ` ≤ `g(ν) and m ≤ `g(ν) then η ∈
q`,ν,k(`,ν,m) and η(`g(ν)) > k(`, ν,m)}.

The checking is straightforward. �5.5

A closely related claim is

Claim 5.6. Assume

(a) D̄ ∈ IUF

(b) D̄ ∈ N ≺ (H (χ),∈)

(c) ρ ∈ ω2\N
(d) η

˜
= η

˜
QD̄ .

Then

(α) 
QD̄ “if f ∈ N [G
˜

QD̄ ] and f ∈
∏
n<ω

η
˜

(n)2 then (∀∞n)(¬f(n) / ρ)”,

moreover
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(β) 
QD̄ “if f ∈ N [GQD ], f a function with domain ω, f(n) ⊆ η
˜

(n)2 and |f(n)| ≤

˜
→ η(n − 1) when n ≥ 0, then (∀∞n)(ρ � η

˜
(n) /∈ f(n)) stipulating

η
˜

(−1) = 1”.

Proof. Let f
˜
∈ N be such that 
QD̄ “f

˜
is a function with domain ω such that

|f
˜

(n)| ≤ η
˜

(n− 1) and ∅ 6= f
˜

(n) ⊆ η
˜

(n)2” and we shall prove that


QD̄ “ρ � η
˜

(n) /∈ f
˜

(n) for every n < ω large enough”.

This clearly suffices as clause (β) implies clause (α). For each n > 0 and ν ∈ n+1ω
we can find qν ∈ QD̄ and ρmν for m < ν(n − 1), such that tr(qν) = ν and qν 
QD̄
“f
˜

(n) = {ρmν : m < η
˜

(n − 1)}”. Note that qν 
 “k < `g(ν) ⇒ η
˜

(k) = ν(k) in

particular for k = n − 1” and 
 “f
˜

(n) ⊆ η
˜

(n)2 and 1 ≤ |f
˜

(n)| ≤ η
˜

(n − 1)” hence

ρ`ν ∈ ν(n)2. As f
˜
∈ N without loss of generality 〈(qν , ρmν ) : m < ν(n − 1) and

ν ∈ n+1ω, n < ω〉 belongs to N . Now for each ν ∈ ω>ω and m < ν(`g(ν)− 1) < k
we have ρmνˆ<k> ∈ k2, so for every ` < ω for some ρmν,` ∈ `2 we have {k < ω :

ρmνˆ<k> � ` = ρmν,` and k > `} belongs to Dν , and clearly ρmν,` / ρ
m
ν,`+1 and let

ρmν,∗ =
⋃
`<ω

ρmν,` so ρmν,∗ ∈ N ∩ ω2 hence ρmν,∗ 6= ρ so for some `(ν,m) < ω we have

ρmν,∗ � `(ν,m) 6= ρ � `(ν,m) hence {k : (∃m, ν(`g(ν)− 1))ρmνˆ<k> / ρ} = ∅ mod Dν .
Let p ∈ QD̄, let us define

q = {ν : ν E tr(p) or tr(p) / ν ∈ p and if k ∈ [`g(tr(p)), `g(ν))
and m < ν(k − 1) then ¬(ρmν�(k+1) / ρ)}.

This is a condition above p forcing {n : ρ � η
˜

(n) ∈ f
˜

(n)} is bounded by `g(tr(p)),
so we are done. �5.6

Claim 5.7. Assume

(a) D̄ ∈ IUF

(b) D is a non-principal ultrafilter on ω

(c) p ∈ QD̄, I ⊆ p contains a front and is upward closed, and (∗)⇒ (∗∗) where

(∗) for ν ∈ I and m < ν(`g(ν)−1) we have D′ν,m ≤RK Dν , and, of course,
D′ν,m a non-principal ultrafilter on ω

(∗∗) D * ∪{D′ν,m : ν ∈ I and m < ν(`g(ν)− 1)}.

Then p forces that in VQD̄ we have:

(∗ ∗ ∗) if wn ⊆ [η
˜

(n), η
˜

(n + 1)), |wn| ≤ η
˜

(n), then ∪{wn : n < ω} is disjoint to
some member of D.

Remark 5.8. This is relevant when trying to get no Q-point.

Proof. Without loss of generality n∗ = 0 (just fix η
˜
� n∗) and assume


QD̄ “w̄
˜

= 〈w
˜
n : n < ω〉 where for each n we have

w
˜
n ⊆ [η

˜
(n), η

˜
(n+ 1)) and |w

˜
n| ≤ η

˜
(n)”.

Without loss of generality 
QD̄ “w
˜
n 6= ∅”. For ν ∈ n+2ω let qν ∈ QD̄ and 〈tmν :

m < ν(n)〉 be such that tr(qν) = ν and qν 
 “w
˜
n = {tmν : m < ν(n)}”, possibly
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with repetitions. For ν ∈ n+1ω and m < ν(`g(ν) − 1), let D′ν,m = {A ⊆ ω :
{k : tmνˆ<k> ∈ A} ∈ Dν}; clearly D′ν,m is an ultrafilter on ω which is ≤RK Dν as
ν(`g(ν)− 1) ≤ tmνˆ<k> < k.

For ν ∈ n+1ω and m < ν(n) let D′′ν,m be D′ν,m if D′ν,m is a non-principal ultrafilter
and let D′′ν,m be Dν if D′ν,m is a principal ultrafilter on ω. Let kν,m < ω be such
that {k : tmνˆ<k> = kν,m} ∈ Dν,m, {kν,m} ∈ D′ν,m if D′ν,m is a principal ultrafilter
and kν,m = ν(m) = ν(`g(ν)− 1) otherwise.

By clause (c) of the assumption, as 〈D′′ν,m : ν ∈ I, and m < ν(`g(ν) − 1〉 is a
sequence of non-principal ultrafilter on ω, i.e. as in (∗) there, there is A ∈ D which
belongs to no D′ν,m for ν ∈ I,m < ν(`g(ν)− 1), p0 = p and

p1 = {η ∈ p0 : if n+ 1 < `g(η) and tr(p), η � (n+ 1)) ∈ I
and m ≤ ν(n) then tν�(n+1), ν(n+ 1) /∈ A}.

Clearly

(∗) p0 ≤QD̄ p1.

Let 〈(ηi,Mi) : i < ω〉 be a sequence of finite sets such that

~ (a) 0 = n0 < ni < ni−1

(b) Mi ⊆H (χ), |Mi| = 2ni +Mi ∩ ω = ni

(c) (D̄, w̄
˜
, p) ∈M0

(d) if F is a definable n-place function in (H (χ),∈, <∗) then for every i
large enough, we have x1, . . . , xn ∈Mi ⇒ F (x1, . . . , xn) ∈Mi+1.

By the assumption (c) of 5.7 there is a set u ⊆ ω such that

� (a) ∪ {[ni+1, ni+2) : i ∈ u} ∈ D
(b) if ν ∈ I then ∪{[ni, ni+3) : i ∈ u} /∈ Dν

(c) if i < j are from u then i+ 3 < j.

Let

p2 := {η ∈ pi : if n < `g(η) and tr(p1) / η � n ∈ I
then η(n) /∈ ∪{[ni, ni+2) : i ∈ u}}.

Now p2 is as required. �5.7

Claim 5.9. 1) Assume

(a) V ⊆ V1

(b) D̄ ∈ IUFV.

If D̄1 ∈ IUFV1 and η ∈ ω>ω ⇒ Dη ⊆ D1,η then

(α) QV
D̄
⊆ QD̄1

(so p ∈ QV
D̄
⇔ p ∈ QD̄1

∩V and ≤QV
D̄

=≤QD̄1
� QV

D̄
and similarly

for ≤QD̄
pr , <

QD̄
apr and incompatibility)

(β) if in V we have “I ⊆ QD̄ is predense over p ∈ QD̄” then in V1 we have

“I ⊆ QV1

D̄1
is predense over p”

(γ) if G1 ⊆ QD̄1
is generic over V1, then G =: G1 ∩QV

D̄
is a generic subset of

QV
D̄

over V.
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2) Assume in addition

(c) G ∈ V and G ⊆ G V

(d) r ∈ (ω2)V1 is G -continuous over V.

If the pair (D1,η, Dη) satisfies clause (α), (β) from 4.11 (so D1,η in particular is an
ultrafilter on ω extending Dη) for each η ∈ ω>ω, then in V1 we have

QD̄1

“r is G -continuous over V[η
˜

(QD̄1
)]”.

Conclusion 5.10. 1) So if we get V1 from V by forcing with P ∈ V, D̄
˜

1 a P-name
of D̄, as above then V |= “QD̄ l P ∗QD̄

˜
1
”.

2) Note that by part (1), if G1 ⊆ QV1

D̄1
is generic over V and η = η

˜
QD̄1

[G1] then η

is a generic real for QD̄ over V hence V[η] is a generic extension of V (for QD̄).
3) Assume that V1 ⊆ V2,V` |= D̄|ell = 〈D`

η : η ∈ ω>ω〉 ∈ IF for ` = 1, 2 and

η ∈ ω>ω ∧ A ⊆P(ω)⇒ (A ∈ D1
η ≡ A ∈ D2

η) and V1 |= I is a predense subset of

QV1

D̄1 (above p) then V2 |= I is a predense subset of QV2

D̄2 (above p∗; not used).

Proof. 1),2) Left to the reader.

3) Clearly q ∈ QV1

D̄1 ⇔ q ∈ QV2

D̄2 and ≤QV1
D̄1

=≤QV2
D̄2
� QV1

D̄1 . So it suffices to prove

(without loss of generality every η ∈ p is increasing)

~ for p ∈ QV1

D̄1 and I ⊆V1

D̄1 from V1 and ` ∈ {1, 2} the following are equivalent

(a) I is predense above p in QV`

D̄1

(b) for every increasing η such that tr(p) ≤ η ∈ p we can find T such that

(α) T ⊆ ω>ω

(β) if ν ∈ T then η E ν

(γ) if η E ρ E ν ∈ T then ρ ∈ T
(δ) if ν ∈ T then {n < ω : νˆ〈n〉 ∈ T} 6= ∅ mod D`

ν

(ε) {ν ∈ T : there is r ∈ I ⊆ QV`

D̄`
above p with tr(ν) = ν} contains

a front of T}.

As we shall not use it, we do not elaborate. �

Proof. 1) Clause (α) is obvious, clause (β) holds by 5.4(4), and clause (γ) follows
(this is done also in [?]).
2) By part (1) we can assume that V1 = V. So assume that p ∈ QD̄1

,m∗ < ω

and for each m < m∗, gm ∈ G and T
˜
m, 〈T

˜
m
n : n < ω〉 ∈ V are QV

D̄
-names hence

QD̄1
-names in V1 such that:

(∗)1 p 
QD̄1
“T
˜
m, T

˜
m
n ∈ T

˜
gm and T

˜
m = lim〈T

˜
m
n : n < ω〉”.

Note that above, T
˜
m is the limit of 〈T

˜
m
n : n < ω〉 for the co-finite filter on ω. By the

definition (4.7) it suffices to prove, for a given n(∗∗) < ω that for some n(∗) > n(∗∗)
and q above p (in QD̄1

), q forces that: m < m∗ ⇒ r ∈ lim(T
˜
m) ≡ r ∈ lim(T

˜
m
n(∗)).

By the definition and what we need to prove, as we can replace the name 〈T
˜
m
n :

n < ω〉 by a name of an ω-subsequence (which is not necessarily a subsequence of
the original sequence of names) without loss of generality
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(∗)2 p 
 “T
˜
m ∩ n≥2 = T

˜
m
n ∩ n≥2” for n < ω,m < m∗.

Let q0 = {η ∈ ω>ω : η increasing}), so q0 ∈ QD̄, now we find 〈Tmη , Tmn,η : η ∈ q0, n <
ω and m < m∗〉 of course in V such that:

(∗)3 (i) Tmη , T
m
n,η ⊆ ω>2, for n < ω,m < m∗

(ii) for every η ∈ q0 and k < ω we can find qmη,k, q
m
n,η,k ∈ QD̄ such that:

q
[η]
0 ≤pr q

m
η,k,

q
[η]
0 ≤pr q

m
n,η,k,

qmη,k 
QD̄ “T
˜
m ∩ k≥2 = Tmη ∩ k≥2”

qmn,η,k 
QD̄ “T
˜
m
n ∩ k≥2 = Tmn,η ∩ k≥2”.

Now clearly

(∗)4 (i) Tmη , T
m
n,η ⊆ ω>2,

(ii) Tmη = limDη 〈Tmηˆ<k> : k < ω〉,
(iii) Tmn,η = limDη 〈Tmn,ηˆ<k> : k < ω〉.

Next note that

(∗)5 (a) Tmη , T
m
n,η belong to Tgm ,

(b) Tmη = lim〈Tmn,η : n < ω〉.

[Why does clause (a) hold? Let Tmη ∩ gm(`)≥2 = t then qmη,gm(`) forces that T
˜
m ∩

gm(`)≥2 = t but it also forces that T
˜
m satisfies the condition (∗)` from Definition

4.4, hence in fact t satisfies the relevant parts of it, that is k ≤ ` ⇒ (1 − 1
k )|t ∩

gm(k)2|/2g(k) ≤ |t ∩ Tgm(`)2|. As this holds for every ` clearly Tmη satisfies (∗)`
of 4.4 for every `. Similarly for Tmn,η. Concerning clause (b) there is q satisfying

p[η] ≤pr q ∈ QD̄ forcing T
˜
m ∩ `2 = tm, T

˜
m
n ∩ `2 = tm,n so by (∗)2, if n ≥ ` they are

equal. As any two (even finitely many) pure extensions of p[η] are compatible, we
have Tmη ∩ `2 = tm, T

m
n,η ∩ `2 = tm,n = tm. This is clearly enough.]

Hence by assumption (d) we have for u ⊆ m∗ and η ∈ p

(∗)u,η6 r ∈
⋂
m∈u

lim(Tmη ) implies that (∃∞n)(r ∈
⋂
m∈u

lim(Tmn,η)) and moreover

(∀A ∈ ([ω]ℵ0)V)(∃∞n ∈ A)[r ∈
⋂
m∈u

lim(Tmn,η)].

But if r /∈ lim(Tmη ) then for some k∗ < ω, r � k∗ /∈ Tmη hence for some n∗ < ω we
have n∗ < n < ω ⇒ r � k∗ /∈ Tmn,η (by (∗)5(b)), so we have

(∗)m,η7 if r /∈ lim(Tmη ) then (∀<∞n)[r /∈ lim(Tmn,η)].

By (∗)4 we have

(∗)8(i) r ∈ lim(Tmη ) iff r ∈ lim(limDη 〈Tmηˆ〈k〉 : k < ω〉)

(ii) r ∈ lim(Tmn,η) iff r ∈ lim(limDη 〈Tmn,ηˆ〈k〉 : k < ω〉).
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By (∗)6 + (∗)7 applied to η = tr(p), we can find n(∗) > n(∗∗), see (∗)7 + (∗)6, such
that (∀m < m∗)[r ∈ lim(Tmtr(p)) ≡ r ∈ lim(Tmn(∗),tr(p))]. Next let

q =: {ν ∈ p : if `g(tr(p)) ≤ ` ≤ `g(ν) and m < m∗ then
(r ∈ Tmν�`) ≡ (r ∈ Tmn(∗),ν�`)}.

Now p ≤pr q ∈ QD̄ by (∗)8. Lastly, let q∗ =: {ν ∈ q : if tr(p) E ν, then `g(tr(p)) ≤
` < `g(ν)⇒ ν ∈ qν�`,`}.

Does q∗ 
QD̄1
“r ∈ lim(T

˜
m) ≡ r ∈ lim(T

˜
m
n(∗))”? If not, then for some q∗∗ we have

q∗ ≤ q∗∗ and q∗∗ 
QD̄1
“r ∈ lim(T

˜
m) ≡ r /∈ lim(T

˜
m
n(∗))” and moreover, for some k

we have q∗∗ 
QD̄1
“r � k ∈ T

˜
m ≡ r � k /∈ T

˜
m
n(∗)”. But q∗∗, qtr(q∗∗),k, q

m
n(∗),tr(q∗∗),k

are compatible having the same trunk, so let q′ be a common upper bound with
tr(q′) = tr(q∗∗) and we get a contradiction. �

∗ ∗ ∗

Results here are used in the next section; formally we have to specialize them as
Q0 is just j random reals forcing.

For preservation, including “cardinals are not collpased” we use §2 or §3 (really
more explicit version).

Hypothesis 5.11.

(a) V |= CH

(b) F is a full trunk controller of 〈Fα : α < α∗〉, each Fα is as defined in Fact
?? if α > 0 and α∗ is large enough and

(c) K (0) is a family whose elements we denote by R̄ and Lim is a function
with domain K (0) such that for each R̄ ∈ K (0),Lim(R̄) is a c.c.c. forcing
notion such that for simplicity two compatible elements has a l.u.b. and Q
is considered as a psc forcing by the identity function as in ?? (so for each
member R̄ of K (0), lim(R̄) ⊆ F0)

(d) ≤K (0) is a partial order on K (0) such that R̄′ ≤K (0) R̄
′′ ⇒ Lim(R̄′) l

Lim(R̄′′).

Remark 5.12. Recall that “κ-closed” means every increasing sequence of length
< κ has an upper bound. We say K (0) is θ-exactly closed if for ≤K (0)-increasing

sequence 〈R̄i : i < θ〉 there is R̄ ∈ K (0) such that i < θ ⇒ R̄i ≤K (0) R̄ and

Lim(R̄) =
⋃
i<θ

Lim(R̄i).

Definition 5.13. 1) For an ordinal α > 0 (assuming α ≤ α∗ recalling 5.11(b)) let
Kα be the family of Q̄ such that:

(a) Q̄ is an F -iteration of length α

(b) Q0 is a c.c.c. forcing notion from K(0), i.e. it is Lim(R̄), R̄ ∈ K(0), in
principle Lim(R̄) may not determine R̄ uniquely but we shall ignore this

writing R̄Q0 or R̄Q̄

(c) if 0 < β < α then Q
˜
β is Q

˜
D̄
˜
β

where 
Pβ “D̄
˜
β ∈ IUF” (on Q

˜
D̄ see 5.2, on

IUF, see 5.1).
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2) Let K = ∪{Kα : α < α∗} and K<α = ∪{Kβ : β < α} and K≤α = K<α+1.
We use Pα = LimF (Q̄ � α), so e.g. P1

β = LimF (Q̄1 � β), etc., recalling that: if

β < α and Q̄ ∈ Kα then Pβ l Pα.

Claim 5.14. 1) F is apurely c.c.c. full trunk controller iteration.
2) If Q̄ ∈ Kα then Q̄ is strongly+ F -psc Definition 5.3(2), relying on Definition
2.6(1) and Definition 3.1(1).
3) If Q̄ ∈ Kα then Q̄ satisfies the criterion from 1.18 for “ℵ2-c.c.”
4) If Q̄ ∈ Kα then Lim(Q̄) has (r, i)-pure decidability for [1, `g(Q̄)).

Proof. 1) Note that F is a full trunk control iteration by clause (b) of 5.11.

Version A: Now F0 is apurely c.c.c. as in 3.2, see clause (c) of 5.11. Also each
F1+α is as in 3.1. So by xxx from §1 we get the desired result. Saharon CHECK!

Version B: Now why is F apurely c.c.c. (see Definition 2.3)? Let 〈yε : ε < ω1〉 be
≤F

apr-increasing and yε ≤F
apr zε. So

(a) ε < ζ ∧ 0 ∈ Dom(yε)⇒ yε = yε

(b) 〈Dom(yε) : ε < ω1〉 is increasing

(c) if ε < ζ and α ∈ Dom(yε)\{0} then pε(α) = pζ(α)

(d) if ε < ω1 then wε = {α : α ∈ Dom(pε)\{0} and yε(α) 6= zε(α)} is finite.

So we can find a stationary S ⊆ ω1, ω2, z∗ such that:

(e) ε ∈ S ⇒ |wε| = n∗

(f) ε ∈ S ⇒ wε ∩ ∪{Dom(pζ) : ζ < ε} = w∗

(g) zε � w∗ = z∗.

By clause (c) of the Hypothesis 5.11 clearly F0 satisfies the c.c.c. hence we can
find ε < ζ from S and z0 ∈ F0 which is above zε(0), zζ(0) when defined.

Now we define z ∈ F :

(α) Dom(z) = Dom(zε) ∪Dom(zζ)

(β) z(α) = z0 if α = 0 ∈ Dom(zε) ∪Dom(zζ)

(γ) z(α) = yε(α) = yζ(α) if α ∈ Dom(yε)\w∗\{0}
(δ) z(α) = zε(α) = zζ(α) if w∗\{0}
(ε) z(α) = zζ(α) if α ∈ Dom(zζ)\Dom(zε).

Now z is a common upper bound of zε, zζ , (noting then on Dom(zε)\w∗\{0} it
agrees with zε, etc.).
2) We have to show that each Q

˜
α is (forced to be) strongly+ Fα-psc.

For α = 0: If valQ0(qε), valQ0(qζ) are compatible in F , then trivially pε, qζ are
compatible in Q0, so have a common upper bound (see clause (c) of Hypothesis
5.11, call it r. Now “pζ ≤apr r” as ≤F0

apr=≤F0 and so clause (i) of 3.1(b), also
“qε ≤ r” so clause (ii) there holds, “r is a l.u.b. of pζ , qε” by its choice so clause
(iii) there holds and lastly if pε ≤pr qε then pε = qε but pε ≤pr pζ hence r = pζ is
as required.
3) Note that for α > 0 any two members of Q

˜
with the same trunk has a common

≤pr-upper bound with the same trunk. So the criterion is easy.
4) By 3.6(1). �5.14
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Definition 5.15. 1) For Q̄1, Q̄2 ∈ K let Q̄1 ≤K Q̄2 if:

(a) `g(Q̄1) ≤ `g(Q̄2) and R̄Q̄1 ≤K(0) R̄
Q̄2

(b) for β < `g(Q̄1) we have P1,β l P2,β , i.e. LimF (Q̄1 � β)l LimF (Q̄2 � β)

(c) for β < `g(Q̄1), β 6= 0 and η ∈ ω>ω we have 
LimF (Q̄2�β) “D
˜

1,β,η ⊆ D
˜

2,β,η”

(d) if `g(Q̄1) = β < `g(Q̄2) then LimF (Q̄1�β)l LimF (Q̄2 � β).

Claim 5.16. Assume Q̄1 ≤K Q̄2 are from Kα.
1) If `g(Q̄1) is not a limit ordinal then

LimF (Q̄1)l LimF (Q̄2).

2) If α = `g(Q̄1) is a limit ordinal, LimF (Q̄1) l LimF (Q2),G ⊆ G V, β < α, ν
˜

is
a P2,β-name such that, for every γ ∈ [β, α) we have 
P2,γ

“ν
˜

is G -continuous over

VP1,γ” and P1,α = LimF (Q̄1)lP2,α = Lim(Q̄2 � α), then 
P2,α
“ν
˜

is G -continuous

over VP1,α”.

Proof. 1) Let α = `g(Q̄1), by 1.14 we know that LimF (Q̄2 � α) l LimF (Q̄2) so it
suffices to prove that LimF (Q̄1) l LimF (Q̄2 � α). If α = β + 1, if β = 0 use the
second phrase of clause (a) of Definition 5.15, so assume β > 0, by clause (b) of
Definition 5.15 we know that LimF (Q̄1 � β) l LimF (Q̄2 � β) and by clause (c) of
Definition 5.11 we can apply 5.9(1) so we are done. If α = 0 the statement is trivial
and the case α limit was excluded (really cf(α) 6= ℵ0 suffices.
2) So assume that m(∗) < ω, gm ∈ G for m < m(∗) and 
P1,α “T

˜
m, T

˜
m
m ∈ Tgm and

T
˜
m = lim〈T

˜
m
n : n < ω〉 for m < m(∗)”.

Without loss of generality

~ “
P1,α T
˜
m ∩ n2 = T

˜
m,n ∩ n2 for m < m(∗), n < ω”.

[Why? As in an earlier proof, creating appropriate name of a subsequence.]
By 3.3(1), for a dense set of p ∈ P1,α we have

(∗)p (a) for every m,n, k < ω, the set Im,n,k = {q : p ≤apr q and q forces a
value to T

˜
m ∩ k≥2 and to T

˜
m
n ∩ k≥2} is predense above p

(b) if γ ∈ Dom(p)\{δ} [SAHARON: what for γ − 0? better avoid] and
y ∈ F ,Dom(y) = Dom(p) ∩ [γ, α) and tr(p) � [γ, α) ≤F

apr y and
m,n < ω then T

˜
γ,y,m, T

˜
γ,y,m,n are P1,γ-names of members

of Tgm such that


P1,γ “ if there is q satisfying p ≤ q, tr(q) � [γ, α) = y and q � γ ∈ G
˜

P1,γ

then for every k for some r we have q ≤ r,
tr(r) � [γ, α) = y, r � γ ∈ G

˜
P1,γ and r 
P1,α/P1,γ

“T
˜
m ∩ k>2 = T

˜
γ,y,m[G

˜
P1,γ ] ∩ k≥2

and T
˜
m
n ∩ k>2 = T

˜
γ,y,m,n[G

˜
P1,γ ] ∩ k≥2”.

This is possible as each Q1+α has pure (2, 2)-decidability, and so we can apply 3.8
Saharon.
[Why? Recall that each Q

˜
1+α has pure (2, 2)-decidability hence claim 3.8 apply.]

So easily
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P1,γ
“ T

˜
γ,y,m ∈ TG and T

˜
γ,y,m,n ∈ T

˜
G and ν

˜
∈ T

˜
γ,y,m and

Tγ,y,m = lim〈T
˜
γ,y,m,n : n < ω〉 by ~ ”.

when m < m(∗), n < ω, y as above. So suppose n(∗) < ω, q ∈ P2,α and q 
P2,α “ν
˜
∈

∩{lim(T
˜
m) : m < m(∗)} and we shall prove q 1 “¬(∃n)(n ≥ n(∗)) ∧ ν

˜
∈ ∩{T

˜
m,n :

m < m(∗)}.
Now {p ∈ P1,α : (∗)p} is dense in P1,α hence by an assumption also in P2,α.

Hence q is compatible with some p such that (∗)p, so without loss of generality
P2,α |= “p ≤ q”. So we can find γ such that:

(∗) (a) 0 < γ < α

(b) if β ∈ Dom(p), tr(p)(β) 6= tr(q)(β) then β < α.

[Need considerably more! Saharon!]
Let q � γ ∈ G2,γ ⊆ P2,γ , Gγ generic over V and let G1,γ = G2,γ ∩ P1,γ hence it

is a generic subset of P1,γ over V. Let y = tr(p)�[γ, α).

Now in V[G1,γ ] the objects T
˜
γ,y,m[G1,γ ], T

˜
γ,y,m,n[G1,γ ] belongs to T

˜

V[G1,γ ]
G and

ν
˜

[G1,γ ] = ∩{lim(T
˜
γ,y,m[G1,γ ]) : m < m(∗)} and T

˜
γ,y,m[G1,γ ] = lim〈T

˜
γ,y,m,n[G1,γ ] :

n < ω〉. As we have assumed that 
P2,γ
“ν
˜

is G -continuous over V[G
˜

P2,gamma
∩

P1,γ ]”, it follows that for some n ∈ (n(∗), ω) we have ν
˜

[G1,γ ] ∈ ∩{T
˜
γ,y,m,n[G1,γ ] :

m < m(∗)}.
We continue as in 3.3 [MORE]!! �5.16

Definition 5.17. 1) By induction on α ≥ 1 we define K+
α as the family of Q̄1 ∈

K±α = {Q̄ ∈ Kα : (∀β)(1 ≤ β < α → Q̄ � β ∈ K+
β )} such that Q̄1 ≤K Q̄2 ∈ K±α ⇒

LimF (Q̄1)l LimF (Q̄2).
2) Let K+

<β = ∪{K+
α : α < β} and K+ = K+

<α∗ .

Remark 5.18. Should we now replace the demand in 5.17(1) by: if p ∈ lim(Q̄1) and
I ⊆ {q : p ≤apr q} is predense above p in lim(Q̄1) then also in Lim(Q̄2)? Saharon!

Observation 5.19. 1) If Q̄1 ≤K Q̄2 are both from Kα+1 then LimF (Q̄1)lLimF (Q̄2).
2) ≤K is a partial order on K.
3) If Q̄1, Q̄2 ∈ K+

α and Q̄1 ≤K Q̄2 then LimF (Q̄1)l LimF (Q̄2).
4) If Q̄1 ≤K Q̄2 ∈ Kα and Q1,0 = Q2,0 then Q̄2 = Q̄1.
5) If Q̄i ∈ K+

α for i < δ is ≤K-increasing, δ < κ and K(0) is κ-closed then there is
Q̄ ∈ K+

α such that i < δ ⇒ Q̄i ≤K Q̄.
6) If in (5) if K(0) is cf(δ)-exactly closed, cf(δ) > ℵ0, then we can add LimF (Q̄) =⋃
i<δ

LimF (Q̄i).

7) If Q̄ ∈ Kα, (∀β < κ)(|β|ℵ0 < κ = cf(κ)) and K(0) is κ-closed, each member of
Kα(0) is of cardinality < κ,α < κ,ℵ0 < θ = cf(θ) < κ,K(0) is exactly θ-closed and
|F | < κ then there is Q̄′ ∈ K+

α such that Q̄ ≤K Q̄′ (we can normally bound the
cardinality of LimF (Q̄′)).

Proof. By induction on α, quite straightforward. �5.19
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6. On a relative of Borel conjecture with large b

Hypothesis 6.1.

(a) V |= CH

(b) cf(λ) = λ > ℵ2, (∀α < λ)(|α|ℵ0 < λ), S ⊆ λ is stationary, (∀δ ∈ S)(cf(δ) >
ℵ0)

(c) F is as in 5.11(b), in particular a full trunk controller iteration of 〈Fα :
α < α∗〉, α∗ > λ+,F1+α is from 5.2, F0 = Randomλ (so below and 3.2).
As F is constant we shall write Lim(Q̄) instead of LimF (Q̄).

Note that λ > ℵ2 is not a real restriction.

We now specify the K from §5.

Definition 6.2. 1) Let K(0) be the family of {RandomA : A ⊆ λ} where d(A) =
{ωα + n : α ∈ A,n < ω} and RandomA is the family of Borel subsets of d(A)2 of
positive Lebesgue measure. Let ν

˜
α = ∪{f : f a finite function from [ωα, ωα + ω)

to {0, 1} such that [f ] = {g ∈ A2 : f ⊆ g} belongs to the generic}. Let A(Q) = A if
Q = RandomA and A(Q̄) = A(Q0). Let RandomA ≤K(0) RandomB if A ⊆ B hence
RandomAlRandomB . (So ≤pr will be just equality, ≤apr will be the usual order).
2) For α ≥ 1, let Kα be defined as in 5.13.
3) We define for any ordinal α and ` < 2 the class K′`,α ⊆ Kα as the class of Q̄ such
that:

(a) Q̄ is an F -iteration

(b) `g(Q̄) = α

(c) Q0 ∈ K(0) and A[Q0] ∈ [λ]<λ if ` = 0 and A[Q0] = λ if ` = 1

(d) if 0 < β < α then Q
˜
β = Q(D̄

˜
β) where 
Pβ “D̄

˜
β = 〈D

˜
β,η : η ∈ ω>ω〉 ∈

IUF”

(e) Q̄ � γ ∈ K+
γ for every γ < α where K+

γ is defined in 5.17 for our particular
case.

3A) If we omit `, we 6 mean ` = 0 when α < λ and we mean ` = 1 when α ≥ λ.
We let K′` = ∪{K′`,α : α an ordinal ≤ α∗} and K′ = ∪{K′α : α an ordinal ≤ α∗}.
4) For ` = 0, 1, we define a partial order ≤K′`

on K′` by:

Q̄1 ≤K′`
Q̄2 iff Q̄1 ≤K Q̄2 (see Definition 5.15) and [`g(Q̄1) < `g(Q̄2) ⇒

[there is Q̄′ ∈ K+
`g(Q̄1)

such that Q̄1 ≤K Q̄′ ≤K Q̄2] and

(∗) if γ is the minimal member of A(Q̄2)\A(Q̄1) then (so if A(Q̄1) = A(Q̄2)
this holds vacuously)


LimF (Q̄2) “ν
˜
γ is G V-continuous over VLim(Q̄1)” (see 4.7(1), (3)).

4A) We similarly define the partial order ≤K′ on K′.
5) Let K′′α be the family of Q̄ ∈ K′α such that:

6Why? As we shall build Q̄ ∈ K′λ such that Lim(Q̄) make the continuum λ; it is built as the

limit of an increasing sequence 〈Q̄α : α < λ〉, Q̄α ∈ K′α and we like that A(Q̄α) ∈ [λ]<λ for α < λ

but is λ for α = λ. We later consider Q̄α for α ∈ [λ, λ+], so we write α ≥ λ.
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(f) if α ≥ λ, β ∈ (0, α] and we have g ∈ G V and T, 〈Tn : n < ω〉 ∈ TVPβ
g , T =

lim〈Tn : n < ω〉, then for some club7 E of λ for every j ∈ E ∩ S, we have
ν
˜
j ∈ lim(T )⇒ (∃∞n)ν

˜
j ∈ lim(Tn).

6) Let K′′ = ∪{K′′α : α < α∗} and ≤K′′=≤K′� K′′

Claim 6.3. 1) If Q̄1 ≤K0
Q̄2 then

(a) if p ∈ Lim(Q̄1) then p ∈ Lim(Q̄2)

(b) if x ∈ {us,pr, apr} and p, q ∈ Lim(Q̄1) then Lim(Q̄) |= p ≤x q iff Lim(Q̄2) |=
p ≤x q

(c) if p, q ∈ Lim(Q̄1) then p, q are compatible in Lim(Q̄1) iff p, q are compatible
in Lim(Q̄2).

2) Assume β is a limit ordinal, Q̄` ∈ K′β and γ < β ⇒ Q̄1 � γ ≤K′γ
Q̄2 � γ then

Q̄1 ≤K′β
Q̄2 (and if additionally Q̄1 ∈ K+

β then Lim(Q̄1)l Lim(Q̄2)).

Proof. Should be clear. �6.3

Claim 6.4. 1) The two place relations ≤K′0
,≤K′′1

are partial orders.
2) The two place relations ≤K′ ,≤K′′ are partial orders (on K′0,K

′′
0 respectively or

K′,K′′ respectively).
3) Assume

(a) δ is a limit ordinal

(b) Q̄1, Q̄2 ∈ K0,δ and Q̄1 ≤K Q̄2

(c) P1
δ = LimF (Q̄1 � δ)l P2

δ = LimF (Q̄2 � δ)

(d) α < δ ⇒ Q̄1 � α ≤K′0,α
Q̄2 � (α+ 1), see 6.2(4).

Then Q̄1 ≤K′0
Q̄2.

4) If Q̄1 ≤K Q̄2 and cf(`g(Q̄1)) 6= ℵ0 < `g(Q̄2) then LimF (Q̄1)l LimF (Q̄2 � α).
5) In (4), Q̄1 ≤K′ Q̄2 if the 
Lim(Q̄2) “ν

˜
γ is G -continuous over V[G

˜
Lim(Q1)” when

γ = Min(A(Q̄2)\A(Q̄1).

Proof. 1) Easy.
2) Easy.
3) By 6.2.
4) By 5.9(1). �6.4

Observation 6.5. 1) If Q̄ ∈ K′′β, then in VPβ we have: if B∗ is a Borel subset of
ω2 Lebesgue of measure 1,B∗ =

⋃
n<ω

lim(Tn) and {Tn : n < ω} ⊆ Tg, g ∈ G V then

for a club of j ∈ S we have (cf(j) > ℵ0 and) ν
˜
j ∈ B∗.

2) If Q̄ ∈ K′` and β ≤ `g(Q̄), then the F -forcing notion Pβ is F -psc and has 2-pure
decidability over Q0, recall Definition 3.7(2).
3) Moreover, (in (2)) F̄ is semi-simple, hence if p ∈ Pβ , p 
 “τ

˜
∈ ωOrd” then for

some q we have p ≤pr q and for each n,In = {r : q ≤apr r and r forces a value to
τ
˜

(n)} is predense above q.

7from where is E? as Pβ satisfies the ℵ2-c.c. and λ ≥ ℵ2 it does not matter
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Proof. 1) Apply clause (e) of Definition 6.2 to B∗, 〈lim(Tn) : n < ω〉. [Andrzej:
how you handle?]
2), 3) By previous theorems. �6.5

Claim 6.6. 0) K′0 6= ∅.
1) If α∗ ≤ α < λ, Q̄ ∈ K′0,α∗ , j ∈ λ\A(Q̄) and A∗ ∈ [λ]λ, then there is Q̄′ ∈ K′0,α
such that Q̄ ≤K′ Q̄′ ∈ K+

0,α and A(Q̄′) ⊇ A(Q̄) ∪ {j} but A(Q̄′)\A(Q̄)\{j} ⊆ A∗.
2) If Q̄ζ ∈ K′0,≤α for ζ < δ and ε < ζ < δ ⇒ Q̄ε ≤K′α

Q̄ζ and α < λ so δ < λ, then

for some Q̄δ ∈ K′0,≤α we have ζ < δ ⇒ Q̄ζ ≤K′0,α
Q̄δ.

2A) Moreover, if β ∈ [1, α], Q̄∗ ∈ K0,β and ζ < δ ⇒ Q̄ζ � β ≤K′β
Q̄∗ then we can

demand then Q̄∗ ≤K′0,α
Q̄δ.

2B) Moreover if α is limit and 〈Q̄β,∗ : β ∈ [1, α)〉 is ≤K′
0,≤α

-increasing and Q̄β,∗ ∈
K′0,β and ζ < δ ∧ β ∈ [1, α) ⇒ Q̄ζ � β ≤K′≤β

Q̄β,∗ then we can add in (2):

β ∈ [1, α)⇒ Q̄β,∗ ≤K′
0,≤α

Q̄δ.
3) In part (2), if cf(δ) ≥ ℵ2 then we can demand Lim(Q̄δ) = ∪{Lim(Q̄ζ) : γ < δ}
and if [ζ < δ ⇒ Q̄ζ ∈ K+

0,<α] then Q̄δ ∈ K+
0,<α.

4) For α < λ and A ∈ [λ]<λ there is Q̄ ∈ K′α with A(Q̄) ⊇ A.

Remark 6.7. Note that we have to prove that “ν
˜
γ is G V-continuous” is preserved.

Proof. We prove by induction on α all parts simultaneously and for α we use part
(2),(3) in the proof of part (1) and we use part (3) in the proof of part (2).
0) Trivial.
1) We can ignore the case A(Q̄′)\A(Q̄)\{j} ⊆ A∗ as Randomλ has enough auto-
morphisms.

We choose Q̄β for β ∈ [1, α] by induction on β such that:

(i) Q̄β ∈ K′β

(ii) Q̄ � β ≤K′0
Q̄β hence Lim(Q̄β � β)l Lim(Q̄β)

(iii) Q̄β ∈ K+
β .

Case 1: β = 1.

We choose Qβ0 = RandomA(Q̄)∪{j}.

Case 2: β = β∗ + 1 > 1.
By 5.9(1) + (2) we can choose Q̄′β ∈ K′0,β such that Q̄′β � β∗ = Q̄β∗ and Q̄ �

β ≤K′β
Q̄′β . But maybe Q̄′β /∈ K+

0,β . So we try to choose by induction on i < λ, Q̄′β,i
such that:

(i) Q̄′β,i � β∗ ∈ K+
0,β∗

and Q̄′β,0 = Q̄′β = Q̄β∗

(ii) Q̄′β,i is ≤K0,β
-increasing

(iii) for each i, Q̄′β,i+1 exemplifies Q̄′β,i /∈ K+
β

(iv) if i is a limit ordinal of cofinality ≥ ℵ2 then Lim(Q̄′β,i = ∪{Lim(Q̄′β,j) : j <

i}.

For i = 0 no problem, for i limit use the part (2) or part (3) for β by the induction
hypothesis. For i successor if we cannot continue, we have succeeded having carried
out the induction.
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Now S := {α < λ : cf(α) = ℵ2} is a stationary subset of λ as λ > ℵ2. For each δ ∈
S, clearly the statement “Lim(Q̄′β,δ)lLim(Q̄′β,δ+1)” fails, hence there is a maximal

antichain Iδ of Lim(Q̄′β,δ) which is not a maximal antichain of Lim(Q̄′β,δ+1). But
the assumptions of claim 1.8 holds by ? SAHARON!, hence the forcing notion
Lim(Q̄′β,δ) satisfies the ℵ2-c.c. and therefore |Iδ| ≤ ℵ1 < cf(δ). But by clause (iv),

Lim(Q̄′β,δ) is the union of the increasing sequence 〈Lim(Q̄′β,i) : i < δ〉, this sequence
of forcing notions is increasing in the sense that membership relation, being smaller,
and being incompatible are preserved, see 6.3.

Hence for some γ(δ) < δ we have Iδ ⊆ Iγ(δ). By Fodor lemma for some

stationary S1 ⊆ S, we have δ ∈ S1 ⇒ γ(δ) = γ(∗). As Lim(Q̄′β,γ(∗)) has cardinality

≤ (|β|+ |A|)ℵ0 which is < λ, clearly for some I∗ the set S2 = {δ ∈ S1 : Iδ = I ∗x }
is stationary. So consider δ < δ2 from S2, now Iδ1 is not a maximal antichain
in Lim(Q̄′β,δ1+1) hence for some q ∈ Lim(Q̄′β,δ2+1)\Iδ1 , the set Iδ1 ∪ {q} is an

antichain in Lim(Q̄′β,δ2+1) hence in Lim(Q̄′β,δ2), contradicting Iδ1 = I∗.

Case 3: β limit.
By part (2).

Case 1: α = 1.
Let Qδ0 = Random∪{A(Q̄ζ):ζ<δ}.

Case 2: α = γ + 1.
First by part (1) (and the induction hypothesis) for γ, we can find Q̄δ,∗ ∈ K+

0,γ

such that ζ < δ ⇒ Q̄ζ ≤ Q̄δ,∗. Let uγ = {ζ < δ : γ < `g(Q̄ζ)}, (if uγ = 0 we are
done so assume uγ 6= 0) so for each ζ < ξ from uγ we have Lim(Q̄ζ � γ)lLim(Q̄ξ �
γ)l Lim(Q̄δ,∗) hence for each η ∈ ω>ω we have


Lim(Q̄δ,γ,∗) “ 〈D
˜
Q̄,ζ
η,γ : ζ ∈ uγ〉 is an increasing sequence of filters

on ω containing the co-bounded subsets of ω”.

Hence we can find a Lim(Q̄δ,γ,∗)-name of an ultrafilter on ω containing ∪{D
˜

Q̄ζ
η,γ :

ζ ∈ uγ}. We now can define Q̄δ,β ∈ K′β such that Q̄δ,β � γ = Q̄δ,∗ and D
˜

Q̄δ,β
η is as

above. This clearly is O.K.

Case 3: α limit.
We choose by induction on ε < ω2 a sequence 〈Q̄δ,ε,β : β ∈ [1, α)〉 such that

(i) Q̄δ,ε,β ∈ K+
0,β

(ii) γ < β ⇒ Q̄δ,ε,γ ≤K′β
Q̄δ,ε,β

(iii) ζ < δ ⇒ Q̄ζ � β ≤K′0,β
Q̄δ,ε,β

(iv) if ζ < ε and γ ∈ [β, α] then Q̄δ,ζ,γ � β <K′β
Q̄δ,ε,β .

For each ε we do it by induction on β ∈ [1, α), so all parts hold by the induction
hypothesis.

For β = 0 we act as in case 1, for β successor we act as in case (2) and for limit
use the induction to find Q̄δ,ε,β ∈ K+

β such that γ < β ⇒ Q̄δ,ε,γ ≤K′β
Q̄δ,ε,β . Now

for ζ < ε we know that Q̄δ,ζ,β ≤K′β
Q̄δ,ε,β by 6.3(2).
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3) Without loss of generality either (∀ζ < δ)(`g(Q̄ζ) = α) or α is a limit ordinal
and 〈`g(Q̄ζ) : ζ < δ〉 is increasing with limit α. We choose Q̄δ,β by induction on
β ∈ [1, α] such that

~ (i) Q̄δ,β ∈ K′0,β

(ii) if β < α then Q̄δ,β ∈ K+
0,β

(iii) if γ < β then Q̄δ,γ ≤K′β
Q̄δ,β ; moreover

(iii)+ if γ < β then Q̄δ,γ = Q̄δ,β � γ
(iv) if ζ < δ then Q̄ζ � β ≤K′γ,β

Q̄δ,β

(v) Lim(Q̄δ,β) = ∪{Lim(Q̄ζ � β) : ζ < δ}.

Case 1: As in part (2).

Case 2: β < α.
By the induction hypothesis and the uniqueness of the limit (and preserved by

taking “� γ” for γ < β.

Case 3: β = α is limit.
By (iii)+ clearly we can define Q̄δ,β , and easily it is the union. Now it belongs

to K+
0,β by the proof of (1), case (2).

Case 4: β = α = γ + 1.
So Pγ = Lim(Q̄δ,γ) is well defined. We define 〈D

˜
γ,η : η ∈ ω>ω〉 as in the proof

of case (2), part (2) and so Q̄δ,β is well defined. It belongs to K+
0,β again as in the

proof of part (1), case (2).
4) Should be clear. �6.6

So in particular

Conclusion 6.8. For α < λ, for every ε < λ and Q̄ ∈ K;≤α there is Q̄′ ∈ K+
≤α such

that ε ⊆ A(Q̄′) and Q̄1 ≤K′α
Q̄′.

Now we turn to K′1,α.

Claim 6.9. 1) If α < λ, Q̄ ∈ K′0,α and j ∈ λ\A(Q̄) then there is Q̄′ such that

(a) Q̄ ≤K;0,α Q̄′ ∈ K+
0,α

(b) 
Lim(Q̄′) “ν
˜
j is G V-continuous over VLim(Q̄).

2) If α < λ, δ < λ a limit ordinal 〈Q̄ζ : ζ < δ〉 is a ≤K′
0,≤α

-increasing sequence of

members of K+
0,≤α, Q̄ = Q̄0 and j ∈ A(Q̄1)\A)Q̄0) and ζ ∈ [1, δ) ⇒
Lim(Q̄ζ) “νj is

G V-continuous over VLim(Q̄” then we can choose Q̄δ such that all the conditions
on ζ < δ hold ζ = δ, too.
3) If in part (2), cf(δ) ≥ ℵ2 then we can add Lim(Q̄δ) = ∪{Lim(Q̄ζ) : ζ < δ}.

Proof. This is y (simultaneous) induction on α.
1) Case 1: α = 1.

Trivial, as in case 1 of the proof of 6.6(1), respectively.

Case 2: α = β + 1.
We use 4.11(1).
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Case 3: α is a limit ordinal.
We choose Q̄α by 6.6(2B) (for a constant sequence). Why is the G V continuity

preserved?
We just apply ??(2),

2) Case 1: α = 1.
As in 6.6(2).

Case 2: α = β + 1.
We use 4.11(2).

Case 3: α is a limit ordinal.
As in the proof of (1).

3) No new point. �6.10

Conclusion 6.10. 1) For any ordinal α < λ we can find 〈Q̄ζ : ζ < λ〉 such that:

(a) Q̄ζ ∈ K+
1+ζ

(b) ε < ζ ⇒ Q̄ε ≤K′ζ
Q̄ζ

(c) A(Q̄ζ) ⊇ ζ
(d) if ζ < λ is a limit ordinal of uncountable cofinality then Lim(Q̄ζ) =⋃

ε<ζ

Lim(Q̄ε)

(e) if ζ̄ < λ and εζ = min(λ\A(Q̄ζ)) then εζ ∈ A(Q̄ζ+1) and 
Lim(Q̄ζ+1) “ν
˜
εζ is

G V-continuous over VLim(Q̄ζ).

2) There is Q̄λ ∈ K′′α such that ζ < λ⇒ Q̄ζ ≤K′≤λ
Q̄λ and Lim(Q̄λ) = ∪{Lim(Q̄ζ) :

ζ < λ}.
3) Let α ≤ λ and P = Pα be Lim(Q̄λ � ε). Then

(a) P is a proper forcing notion of cardinality λ satisfying the ℵ2-c.c. (so
cardinal arithmetic in VP should be clear)

(b) if cf(α) > ℵ0 then 
P “b = cf(α) = d”

(c) 
P “there is a set {νζ : ζ < λ} ⊆ ω2 which is not in the G V-ideal”

(d) the continuum in VP is λ.

3) For limit ζ < λ of uncountable cofinality, letting Pζ = Lim(Q̄ζ), we have

(a) Pζ is a proper forcing notion of cardinality (|α|+ |ζ|)ℵ0 satisfying the ℵ2-c.c.

(b) if cf(α) > ℵ0 then 
P “b = cf(α) = d”

(c) if A ⊆ ζ = sup(A) then 
Pζ “the set {νi : i ∈ A} is not in the G V-ideal”

(d) the continuum in VP is ((|α|+ |ζ|)ℵ0)V.

Discussion 6.11. : 1) Is there a Cohen reals in VP over V? By the way we
construct in general, yes, as possibly P0

2 lP and P0
2 is QD̄0

1
which may add Cohen.

To replace 〈ν
˜
i : i < λ〉 by say a Sierpinski set in V we do not know.

2) Similarly, the Borel conjecture may fail.
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Proof. Proof of 6.10:
Easy by quoting.

1) We choose Q̄ζ by induction on ζ.

Case 1: ζ = 0 so 1 + ζ = 1.
Tivial (or use 6.6(4).

Case 2: ζ is a limit ordinal.
Use 6.6(2).

Case 3: ζ = ε+ 1.
Use 6.9(1).

2) Let P be Lim(Q̄ when Q̄ ∈ K′1,λ and Lim(Q̄) = ∪{Lim(Q̄ζ) : ζ < λ}, this is O.K.

by 6.6(3) as cf(λ) ≥ ℵ1.
Now for clause (a): properness holds by 3.3 and ℵ2-c.c. by 1.17. �6.10

Claim 6.12. 1) There is Q̄ ∈ K′′λ+ .

2) If Q̄ ∈ K′′α, α ≥ λ and P
¯

= Lim(Q̄) then

(a) P is a proper forcing notion of cardinality |α|ℵ0 satisfying the ℵ2-c.c.

(b) if cf(α) ≥ ℵ0 then 
P “b = cf(α) = d”

(c) 
P “{ν
˜
i : i < λ} is not in the G V-null ideal”.

Proof. 1) Using ♦λ, as in [?, Ch.IV] (or force by approximations). But now we
replace approximations by Q̄ ∈ K′α, α < λ by Q̄ ∈ K′u for u ∈ [λ]<λ.
2) Like 6.10. �6.12
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7. Continuing [?]

Context 7.1. As in §6.
At present we can deal with this for “G V0 -continuous” instead of Random. To

do it fully we need to make the ultrafilter D
˜
α,η Ramsey but we do not know to

guarantee this.

Theorem 7.2. Assume

(∗)(i) κ ≤ θ < µ < λ = λ<µ = 2κ

(ii) κ regular and (∀α < κ)(|α|ℵ0 < κ)

(iii) θ = cf(θ) and (∀α < µ)(|α|ℵ0 < µ)

(iv) µ is a limit cardinal

(v) G = G V.

Then for some forcing notion P we have:

(α) P is an ℵ2-c.c. proper forcing notion of cardinality λ

(β) in VP we have cov(G -continuous ideal = NullG ) = µ

(γ) in VP we have b = d = θ.

Remark 7.3. 1) We rely on [?], if instead we rely on [?], then we can weaken the
assumptions on the cardinals.
2) By observation in VP we have: the covering by closed null sets number is also µ
so can be ℵω, i.e. “d < µ”.

Proof. Proof of 7.2
Let K(0) be the family of Q̄ ∈ K3 from Definition 2.11 of [?] of length < λ

ordered naturally: Q̄′ ≤ Q̄′′ iff Q̄′ = Q̄′′ � `g(Q̄′), of course, Q̄ stands for the
forcing Lim(Q̄), 5.11(d). Clearly Q̄ is FS iteration, this fixes the choice in 5.11.
Sometimes we replace the ordinal < λ by a set of ordinals, with obvious meaning.
To avoid confusion we use R̄ for the FS iteration mentioned above and if Q0 is such
a forcing, i.e. Lim(R̄) we let R̄ = R̄Q0

and 〈η
˜
ζ : ζ < `g(R̄)〉 for the generic in 5.13

- ??. [REF(18A)]
Clearly K(0) is cf(λ)-closed, but as λ = λ<µ necessarily cf(λ) > µ > θ. For

Q̄ ∈ Kα let 〈η
˜
i[Q̄] : 0 < i < α〉 denote the sequence of generic reals, η

˜
i[Q̄] for Q

˜
i.

So we can find Q̄0 ∈ K′θ. Now by induction on ζ < λ we define Q̄ζ such that:

(a) Q̄ζ ∈ K+
θ ∩ K′θ

(b) ε < ζ ⇒ Q̄ε ≤K′ Q̄ζ (hence LimF (Q̄ε)l LimF (Q̄ζ))
(c) letting R̄Q̄ζ ∈ K(0) be such that Qζ,0 = Lim(R̄Q̄ζ ) we have `g(R̄Q̄ζ ) =

`g(R̄0) + ξζ REF: recalling `g(R̄0) < λ, ξγ < λ is increasing with λ

(d) if

(i) ε < λ, θ ≤ χ = χℵ0 < µ

(ii) Q̄′ ∈ K+
θ , Q̄′ ≤K′ Q̄ε

(iii) A ⊆ `g(R̄Qε,0) is of cardinality ≤ χ
then for some ζ ∈ [ε, λ) we have 
LimF (Q̄ζ+1) “η

˜
`g(R̄Qζ,0 ), the partial random

real of the `g(R̄Q̄ζ,0)-iterand of the iteration Qζ,0 ∈ K(0) is G V-continuous

over V[〈η
˜
ζ : ζ ∈ A〉ˆ〈η

˜
i : i < θ〉]”.
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There is no problem for ζ = 0 and ζ limit. For ζ = ε + 1, let γ = `g(R̄Qε,0), R̄ =

R̄Q̄ε,0 . By bookkeeping we are given ξ ≤ ε and Aε ⊆ `g(R̄Qξ,0) of cardinality ≤ χ.
By the Löwenheim-Skolem argument, choose A∗ε ⊆ γ of cardinality ≤ χ including
Aε, closed enough (in particular, as required in [?], see 2.16 (1),(2) and R̄Q̄ε,0 �
A∗ε ∈ K(0)) and there is Q̄ε ≤K′ Q̄ζ such that R̄Qε,0 = R̄Qζ,0 � A

∗
ε REF: Def. By

the bookkeeping we can ensure every A will appear. Let R
˜
γ = RandomV[η

˜
β :β∈A∗ε ]

and let R̄′′ε be R̄Q′ε,0 when we add R
˜
γ , i.e. R̄Q̄′ε,0 ≤K `g(R̄′ε) = `g(R̄Q̄′ε,0) ∪ {γ}

([REF(19B)] abusing notation) (R̄′′ε )γ = R
˜
γ (R̄′′ε exists by [?]). By ?? we can find

Q̄′′ ∈ K+ ∩ K′θ and R̄′′ε <K(0) Q′′0 which satisfies 
LimF (Q̄′′) “η
˜
γ is random over

VLim(R̄�A)”.
By renaming [REF(22C)], without loss of generality A(Q′′0) ∩A(Q̄ε) = B∗ε .
Now we can define Q̄ζ by amalgamation, i.e. 7.4 below. Let Q̄λ by

⋃
ζ<λ

Q̄ζ and

P = LimF (Q̄λ) =
⋃
ζ<λ

LimF (Q̄ζ). It is as required: 
P “b = d = θ” easily, and


P “cov() ≥ µ” by clause (d) and the bookkeeping concerning the Aε’s.
Lastly, [REF(22D)] 
P “cov() ≤ µ” because 
Qλ,0 “cov() ≤ µ” by [?] and

properties of LimF (Q̄λ)/Qλ,0 [is null, nullG or nul??]. �7.2

Claim 7.4. Assume

(a) Q`,0 ∈ K(0) for ` = 0, 1, 2, 3 and Q0,0 l Q`,0 l Q3,0 moreover Q3,0 =
Q1,0 ∗Q0,0

Q2,0

(b) Q̄` ∈ K+
α for ` = 0, 1, 2

(c) Q̄0 ≤K′ Q̄1 and Q̄0 ≤K′ Q̄2.

Then we can find Q̄3 ∈ K+
α such that Q̄` ≤K′ Q̄3 for ` < 3.

Remark 7.5. 1) How do we get such Q`,0 ∈ K(0)? By [?, Lemma 2.16].
2) We can replace Q3,0 by Q̄3,α as the proof. [REF?]

Proof. We choose Q̄3 � β by induction on β ∈ [1, α], for β = 1 there is nothing to
do. For β limit just use Q̄` � β ∈ K+

α . For β = γ + 1 use 7.6 below [REF: see (19A)
+ (20C)]; we could have demanded something on how Q̄0 ≤K′ Q̄2 (i.e. choosing Āε
in the proof of 7.2 but not needed). �

Claim 7.6. Assume

(a) Q` is a forcing notion for ` ≤ 3

(b) Q0 lQ` lQ3

(c) Q3 = Q1 ∗Q0
Q2

(d) for ` = 0, 1, 2 we have D
˜
` is a Q`-name of an ultrafilter on ω

(e) for ` = 1, 2 we have 
Q` “D
˜

0 ⊆ D
˜
`”.

Then we can find a Q3-name D
˜

such that 
Q3 “D
˜

is an ultrafilter on ω extending
D
˜

1 ∪D
˜
′′
2 .

Proof. As in [?, §3]. �7.6

Claim 7.7. Let Q̄ ∈ Kα and for β ∈ (0, α) let η
˜
β be the generic real of Qβ. Then

G
˜

LimF (Q̄) can be computed from 〈G
˜

Q0
〉ˆ〈η

˜
β : β ∈ (0, α)〉.

Proof. As usual (or see [?]). �

Paper Sh:707, version 2012-04-06 11. See https://shelah.logic.at/papers/707/ for possible updates.



52 SAHARON SHELAH

8. On η is L -big over M

Definition 8.1. 1) Let T = {T : T ⊆ ω>H (ℵ0),T 6= ∅,T closed under initial
segments, no /-maximal member and Tn = {η ∈ T : `g(η) = n} finite for n < ω}.
2) For T1,T2 ∈ T let RT1,T2 = {R : R a closed subset of lim(T1) × lim(T2)}.
Similarly for RT .

We write ηRν instead of (η, ν) ∈ R. We always assume that T1,T2 can be
reconstructed from R̄ ∈ RT1,T2

and write T1[R],T2[R]; similarly for R ∈ RT . Let
R∗ = ∪{RT1,T2

: T1,T2 ∈ T}.
3) If R is a closed subset of lim(T1) × lim(T2) and k < ω then let R<k> = {(η �
k, ν � k) : (η, ν) ∈ R}. Similarly for R ⊆ lim(T ).
4) For every Y ⊆ Y =: {(f,T ) : T ∈ T, f ∈

∏
n<ω

P(Tn)} let DY = {A ⊆ ω: for

some k,m < ω and (f`,T`) ∈ Y and ν` ∈ lim(T`) for ` < k we have A ⊇ {n : n ≥ m
and ` < k ⇒ ν` � n ∈ f`(n)}}. We say Y is nontrivial if ∅ /∈ DY . Let JY be the
dual ideal.

Definition 8.2. 1) We say D is (f,T )-narrow if :

(i) f ∈
∏
n<ω

P(Tn)

(ii) D is a filter on ω containing the co-finite subsets

(iii) for every ν ∈ ω2 the set {n < ω : ν � n ∈ f(n)} belongs to D.

2) For Y ⊆ Y, we say D is Y -narrow if D is (f,T )-narrow for every (f,T ) ∈ Y .
3) Z = {(η,R) : η ∈ lim(T2[R]), R ∈ R∗},ZM = {(η,R) ∈ Z : R ∈ M and
η ∈ lim(T2[R])}.
4) We say that D is (η,R)-big over M if: it is {(η,R)}-big over M (see below).
5) [REF(20B)] We say that η,D is L -big over M if

(i) M is a set or a class (usually an inner model), D is a filter on ω containing
the co-bounded subsets of ω

(ii) L ⊆ ZM , R ∈ RM
T1T2

where T1,T2,T ∈ TM

(iii) η ∈ lim(T2[R]) when L = {(η,R)} for 8 every m∗ < ω, 〈νm,n : n < ω〉 ∈
M,νm ∈ M for m < m∗, (ηm, Rm) ∈ L such that {νm,n, νm : n < ω} ⊆
lim(T1[Rm]), if m < m∗ ⇒ νm = limD〈νm,n : n < ω〉 then {n : m <
m∗ ⇒ νmRmηm ≡ νm,nRmηm} 6= ∅ mod D.

6) [REF(20A)] We say η is R-big over M if the filter of co-finite subsets of ω is
(η,R)-big. We say that η is L -big over M if (η,D) is with D the filter of co-finite
subsets of ω.

One Step Claim 8.3. Assume (all in V2)

(a) V1 ⊆ V2

(b) in V1, D1 is a non principal ultrafilter on ω

(c) for ζ < ζ∗1 , fζ ∈ V1,Tζ ∈ TV1 [REF: omit]

(d) D1 is Y -narrow, Y ⊆ YV1 (of course, Y ∈ V2, but possibly Y /∈ V1)

(e) Z ⊆ ZV1

8note that if D is an ultrafilter then the case m∗ = 1 suffices
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(f) (Y ,Z ) is high over V1 which means (in V2):

Y ⊆ YV1 ,Z ⊆ ZV2

V1
[REF(21B)], and if m∗ < ω, (ηm, Rm) ∈ Z for

m < m∗,Y ′ ⊆ Y is finite, B ∈ (JY ′)
+ and for m < m∗, ν̄m = 〈νm,n :

n ∈ B〉 ∈ V1 and νm,n, νm ∈ lim(T1[Rm])V1 , νm = lim〈νm,n : n ∈ B〉 then
{n ∈ B: if m < m∗ then νm,nRmηm ≡ νmRmηm} is infinite.

Then there is D2 such that:

(α) D2 (∈ V2) is an ultrafilter on ω

(β) D1 ⊆ D2

(γ) D2 is Y -narrow over V1 [REF(22C): not defined yet]

(δ) D2 is Z -big over V1.

Remark 8.4. Better if we predetermine D2 ∩P(ω)V2 , good for u = cf(αq) > ℵ0.
[REF: unclear]

Proof. Proof of 8.3
For (f,T ) ∈ Y and ρ ∈ lim(T )V2 let

A1
f,ρ = {n : ρ � n ∈ f(n)}.

For (η,R) ∈ Z and νn, ν ∈ lim(T1[R])V1 for n < ω such that ν̄ = 〈νn : n < ω〉 ∈ V1

and ν = limD(ν̄) we let

A2
η,R,ν̄,ν = {n : νnRη ≡ νRη}.

So we just need to find an ultrafilter D2 on ω which extends D1 ∪ {A1
f,ν : ν ∈

lim(T ), (f,T ) ∈ Y } ∪ {A2
η,R,ν̄,ν : (η,R) ∈ Z and ν̄, ν ∈ V1 are as above}. For

this it suffices to prove

(∗) assume B ∈ D1, n
∗
1 < ω, n∗2 < ω,A1

f`,ρ`
, A2

ηm,Rm,ν̄m,νm
well defined for ` <

n∗1,m < n∗2 then B ∩ ∩{A1
f`,ρ`

: ` < n∗1} ∩ ∩{A2
ηm,Rm,ν̄m,νm

: m < n∗2}
is non-empty where (f`,T`) ∈ Y where ρ` ∈ lim(T`)(ηm, Rm) ∈ Z and
ν̄m, νm as usual.

As νm = limD〈νm,n : n < ω〉 and B ∈ D1 we have Bm,k = {n ∈ B : νm,n �
k = νm � k} ∈ D1 for m < n∗2, k < ω hence Bk =

⋂
m<n∗2

Bm,k ∈ D1 and clearly

Bk+1 ⊆ Bk, hence Bk 6= ∅ mod D1 hence Bk /∈ JV1

Y ∗ , see Definition 8.1(4) where
Y ∗ =: {(f`,T`) : ` < n∗1}.

Clearly it suffices to prove that B ∩ ∩{A2
ηm,Rm,ν̄m,νm

: m < n∗2} is not in JY ∗ .

By part (2) of Claim 8.5 below there is B∗ ⊆ B in V1 such that B∗\Bk is finite for
k < ω and B∗ /∈ JY ∗ .

So we have:

(∗) (i) Y ∗ ⊆ Y is finite

(ii) B∗ ⊆ ω is from V1, B
∗ /∈ JY ∗

(iii) νm, νm,n ∈ lim(T1[Rm]) for m < n∗2, n < ω

(iv) νm = lim〈νm,n : n ∈ B∗〉 for m < n∗2
(v) 〈νm,n : n < ω〉 and νm belong to V1.
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By assumption (f) we are done. �8.3

Claim 8.5. 1) Let Y ⊆ Y, then the following are equivalent for B ⊆ ω:

(i) B /∈ JY

(ii) for every n∗ < ω, (f`,T`) ∈ Y for ` < n∗ and m0 < ω there is m1 ∈ (m0, ω)
such that:

(∗) if ν` ∈ (T`)m1
for ` < n∗ then for some n ∈ B ∩ [m0,m1) we have

(∀` < n∗)(ν` � n ∈ f`(n)).

2) For Y ⊆ Y, if Bn ∈ J+
Y , Bn+1 ⊆ Bn then there is B ∈ J+

Y such that n < ω ⇒
B ⊆∗ Bn. [REF(21A)]

3) If V1 ⊆ V2,Y ⊆ YV1 ,Y ∈ V1, A ∈P(ω)V1 , then A ∈ JV1

Y ⇔ A ∈ JV2

Y .

Proof. Easy.
1) Assume clause (i), i.e. B /∈ JY ; to prove clause (ii) assume toward a contradiction
that n∗ and 〈(f`,T`) : ` < n∗〉 and m0 < ω are as there but there is no m1 ∈
(m0, ω) such that (∗) there holds, so there are νm1

` ∈ (T`)m1 for ` < n∗ such that
n ∈ B ∩ [m0,m1) ⇒ (∃` < n∗)(νm1

` � n /∈ f`(n)). By König lemma there are
ν` ∈ Lim(T`) for ` < n∗ such that ∀m < ω, ∃∞m1 < ω(m < m1andm0 < m1 and∧
`<n∗

νm1

` � m = ν` � m). [REF: m0 < m < m1 see (22C)]

Now for each `, by Definition 8.1(4) as (f`,T`) ∈ Y , the set A` =: {m < ω :
ν` � m ∈ f`(m)} ∈ DY hence A =

⋂
`<n∗

A` ∈ DY , but we assume B 6= ∅ mod DY

hence A ∩ B 6= ∅ mod DY so there is m,m0 < m ∈ A ∩ Y . Let m1 > m be
such that ` < n∗ ⇒ νm1

` � m = ν` � m and this m1 contradicts the choice of
〈νm1

` : ` < n∗〉. So (i)⇒ (ii) indeed. The other direction is even easier.
2) Just use clause (ii) of part (1) as the definition. This is straight.
3) Follows using clause (ii) of part (1). �8.6

The Limit Claim 8.6. Assume:

(a) δ a limit ordinal

(b) 〈Vζ : ζ < δ〉 is an increasing sequence of inner models

(c) Yζ ⊆ YVζ is increasing with ζ

(d) Dζ is a filter on P(ω)Vζ , increasing with ζ

(e) Dζ is disjoint to JY for every finite Y ⊆ Yζ .

Then ∪{Dζ : ζ < δ} can be extended to a uniform ultrafilter on ω disjoint to
J∪{Yζ :ζ<δ}.

Proof. Easy. �

Definition 8.7. 1) Assume T ∈ T, h ∈ ωω,∞ = lim〈h(n) : n < ω〉 and f ∈∏
n<ω

P(Th(n)). We say that “D on ω is (f, h,T )-narrow” if

(a) D is a filter on ω containing the co-bounded subsets

(b) for every ν ∈ lim(T ), the set {n : ν � h(n) ∈ f(n)} belongs to D.
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2) We say (f ′,T ′) is the translation of (f, h,T ) if:

T ′ = {〈η � h(m) : m < n〉 : n < ω, η ∈ lim(T )},

f ′(n) = {〈η � h(m) : m ≤ n〉 : η ∈ lim(T ) and η � h(n) ∈ f(n)}.

[REF: used??]

Remark 8.8. We may like to have Y ′ ⊆ YV2 is this needed? Helpful.
[REF: not clear]

Definition 8.9. 1) Let for a class M,ZM be the set of (η, R̄) such that:

(a) R̄ = 〈Rn : n < ω〉 ∈ ω(RM
∗ ),T1[Rn] = T1[R0] and T2[Rn] = T2[R0] and

for R̄ we let T`[R̄] = T`[R0] for ` = 1, 2

(b) η ∈ lim(T2[R0])

(c) η does R̄-cover M , which means (∀ν ∈ lim(T1[R̄])M )(∃n < ω)[νRnη] [re-
turn: context with one R??].

Claim 8.10. 1) Assume (with V = V2)

(a) V1 ⊆ V2 = V

(b) L ⊆ ZV1

(c) D̄2 = 〈D2,η : η ∈ ω>ω〉, D2,η a non principal ultrafilter on ω (all in V2)

(d) 〈D1,η : η ∈ ω>ω〉 ∈ V1 where D1,η = D2,η ∩P(ω)V1

(e) D2,η is L -big ultrafilter over V1 for every η ∈ ω>ω. [REF:(22B)]

Then 
QD̄2
“η is R-big over V1[η

˜
QD̄2

]”. [REF:(22A)(η double role)]

2) Assume (a), (c), (d) above and

(b)′ (η, R̄) ∈ ZV1

(e)′ D2,η is (ρ,Rn)-big ultrafilter when ρ ∈ nω.

Then 
QD̄2
“(η, R̄) ∈ ZV1[η

˜
[QD̄2

]]”.

Proof. [Saharon revised: copied from 5.9(2). [See REF(23A); why not prove(2)?]
1) By clause (a) of Definition 8.9 this is a special case of part (2). So assume that
p ∈ QD̄1

,m∗ < ω and for each m < m∗, (ρm, Rm) ∈ L and ν
˜
m, 〈ν

˜
m
n : n < ω〉 ∈ V1

are QV
D̄2

-names hence QD̄1
-names such that

(∗)1 p 
QD̄1
“ν
˜
m, ν

˜
m
n ∈ lim(T1[Rm]) and ν

˜
m
n = lim〈ν

˜
m : n < ω〉”.

By the definition and what we need to prove, without loss of generality

(∗)2 p 
 “ν
˜
m � n = ν

˜
m
n � n”.

We shall find p′ ≥ p in QD̄2
such that p′ 
 “(ν

˜
mRmρm) ≡ (ν

˜
mRmρm) for every

m < m∗; for some n < ω”, this suffices (see 4.10(2) REF!); work in V1. Let
q0 = (ω>ω), so q0 ∈ QD̄1

, now we find 〈νmη , νmn,η : η ∈ q0, n < ω〉 of course in V1

such that:

(∗)3 (i) νmη , ν
m
n,η ∈ lim(T1[Rm]),m < m∗
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(ii) for every η ∈ q0 and k < ω we can find qmη,k, q
m
n,η,k ∈ QD̄1

such that:

q
[η]
0 ≤pr q

m
η,k, q

[η]
0 ≤pr q

m
n,η,k

qmη,k 
QD̄1
“ν
˜
m � k = νmη � k”

qmn,η,k 
QD̄1
“ν
˜
m
n � k = νmn,η � k”.

Now clearly

(∗)4 (i) νmη = limD1,η
〈νmηˆ<k> : k < ω〉

(ii) νmn,η = limD1,η 〈νmn,ηˆ<k> : k < ω〉.

Next note that

(∗)5 νmη = lim〈νmn,η : n < ω〉.

[Why? By (∗)2.]
Let uη = {m < m∗ : νmη Rmρm holds}.
Now as each Rm is closed (see Definition 8.1(2)) there is kη < ω such that

(∗)6 if m < m∗,m /∈ uη and νmη � kη/ν ∈ lim(T1[Rm]), ρm � kη/ρ ∈ lim(T2[Rm])
then ¬(νRmρ).

By (∗)4(i) + (ii) + (∗)6 we have

(∗)7 (i) ¬(νmη Rmρm) implies {k < ω : νmηˆ〈k〉Rmρm} /∈ D1,η

(ii) ¬(νmn,ηRmρm) implies {k < ω : νmn,ηˆ〈k〉Rmρm} /∈ D1,η.

By the assumption (e) on D2,η and (∗)7(i) + (ii) we have

(∗)8 (i) νmη Rmρm iff {k < ω : νmηˆ〈k〉Rmρm} ∈ D2,η

(ii) νmn,mRmρm iff {k : νmn,ηˆ〈k〉Rmρm holds} ∈ D2,η.

By (∗)5 applied to η = tr(p), as the cofinite filter is L -big over V1 (which is
a consequence of assumption (e) [REF] we can find n(∗) < ω such that (∀m <
m∗)[(νmη Rmρm) ≡ (νmn(∗),ηRmρm)]. Next let

p∗ =: {ν ∈ p : if `g(tr(p)) ≤ ` ≤ `g(ν) and m < m∗ then
νmν�`Rmρm ≡ νmn(∗),ν�`Rmρm}.

Now p ≤pr p
∗ ∈ QD̄2

by (∗)8. Lastly, let q∗ =: {ν ∈ p∗ : if ` < `g(ν), then
ν ∈ qmν�`,kη and ν ∈ qmn(∗),ν�`,kη}.

Does q∗ 
QD̄1
“(ν

˜
mRmρm) ≡ (ν

˜
m
n(∗)Rmρm)”? If not, then for some q∗∗ we

have q∗ ≤ q∗∗ and q∗∗ 
QD̄2
“(ν

˜
mRmρm) ≡ ¬(ν

˜
m
n(∗)Rmρm)”; moreover, with-

out loss of generality for some truth value t, q∗∗ 
QD̄2
“(ν

˜
mRmρm) ≡ t and

(ν
˜
n
n(∗)Rmρm) ≡ ¬t” and for some k∗ < ω, q∗∗ 
QD̄2

“t = false ⇒ (∀ν, ρ)[ν
˜
m �

k∗ E ν ∈ lim(T1[Rm])andρm � k∗ / ρ ∈ lim(T2[Rm])→ (ν, ρ) /∈ Rm] and ¬t = false
⇒ (∀ν, ρ)[ν

˜
m
n(∗) � k

∗ / ν ∈ lim(T1[Rm])andρm � k∗ / ρ ∈ lim(T2[Rm]) → (ν, ρ) /∈
Rm]”.

But q∗∗, qmtr(q∗∗),k∗ , q
m
n(∗),tr(q∗∗),k∗ for m < m∗ are compatible having the same

trunk, so let q′ be a common upper bound with tr(q′) = tr(q∗∗) and we get a
contradiction.
2) Return! ?? [REF:(24B)]. Left to the reader. �8.10
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Definition 8.11. 1) For g ∈ G let

T [g] = ω>2

T2[g] = {〈T ∩ g(`)2 : ` < n〉 : T ∈ Tg, n < ω},

so η ∈ lim(T2[g]) can be identified with

T = T [η] ∈ Tg : η = ηT =
〈
〈T ∩ `≥2 : ` < n〉 : n < ω

〉
Rg = {(η, ν) : ν ∈ ω>2, η ∈ lim(T2[g]) and ν ∈ lim(T [η])}.

2) Let w̄∗ = 〈w∗k : k < ω〉 list with no repetition ∪{P(n2)\{∅} : n < ω} such that

w∗` ∈ les[w∗]2, `1 < `2 ⇒ les[w∗`1 ] ≤ [w∗`2 ] and `1 < `2andles[w∗`1 ] = les[w∗`2 ] ⇒ the
<lex-first ρ such that ρ ∈ w∗`1 ≡ ρ /∈ w∗`2 satisfies ρ ∈ w∗` . Let it be defined as

T 0 = ω2 and h∗(`) = n[w∗` ]. [REF: (25B): (a) not clear, (b) where used?]

The following shows that the “G -continuous” treated in §4-§6 fits our present frame-
work.

Claim 8.12. 1) Assume V1 ⊆ V2, g ∈ G V1 , r ∈ (ω2)V2 , then we have: r is
{g}-continuous over V1 iff r is Rg-big over V1.
2) Assume:

(a) V1 ⊆ V2 = V

(b) Z ⊆ {(r, Rg) : g ∈ G V1 , r ∈ (ω2)V2 and r is Rg-big over V1}.

Then Y = ∅ and Z are as required in 8.3, i.e. (Y ,Z ) is high over V1 (i.e. clause
(f) there).
3) Assume (a), (b) as in (2) and

(c) Y has the form {(w̄, h∗,Y 0
∗ )}. [REF: (24A)]

Then (Y ,Z ) are as required in 8.3.

Proof. (Or use Z with R1, see later [REF??]).
1) Compare the definitions 4.7(1) + (3) and 8.2(4),(5),(6) check.
2) So assume m∗ < ω and (ηm, Rm) ∈ L for m < m∗ and B ⊆ ω is infinite and
νm, νm,n ∈ lim(T1[Rm]), 〈νm,n : n < ω〉 ∈ V1 and νm = lim〈νm,n : n ∈ B〉 for
m < m∗. We should prove that {n ∈ B : if m < m∗ then νmRmηm ≡ νm,nRmηm}
is infinite. [REF (25A): what if 〈ηm : m < ω〉 are pairwise distinct]
3) Left to the reader. �8.12
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9. Refinements of §1 - §3

SAHARON - what is ???

Definition 9.1. We define the (ᾱ,X, ζ)-standard trunk controller F = Fᾱ,ζ [X]
in V by induction on ζ ≤ ω1, where ᾱ = 〈αε : ε ≤ ζ〉, αε an ordinal and X is
a trunk controller, but we may write ᾱ′ with ᾱ′ � (ζ + 1) = ᾱ instead of ᾱ: the
(ᾱ,X, ζ)-standard trunk controller F in V is:

(a) the set of elements is the set of functions f from a countable subset of αζ into
X ∪

⋃
{Fᾱ,ε[X] : ε < ζ}, abusing notation we assume that 〈X〉ˆ〈Fᾱ,ε[X] :

ε < ζ〉 is an increasing sequence of structures and for ε = 0 we stipulate
Fᾱ,ε−1[X] = X

(b) f1 ≤pr f2 iff Dom(f1) ⊆ Dom(f2) and β ∈ Dom(f1)⇒
∨

ε∈[−1,ζ)

Fᾱ,ε[X] |=

f1(β) ≤pr f2(β)

(c) f1 ≤ f2 iff

(i) Dom(f1) ⊆ Dom(f2)

(ii) β ∈ Dom(f1)⇒
∨

ε∈[−1,ζ)

Fᾱ,ε[X] |= f1(β) ≤ f2(β)

(iii) the set {β ∈ Dom(f1) :
∨

ε∈[−1,ζ)

Fᾱ,ε[X] |= f1(β) ≤ f2(β)∧¬[f1(β) ≤pr

f2(β)]} is finite

(d) f1 ≤apr f2 iff

(i) f1 ≤ f2 (this in fact follows by the later clauses)

(ii) Dom(f1) = Dom(f2)

(iii) for all but finitely many β ∈ Dom(f1) we have f1(β) = f2(β) and for
the rest

∨
ε∈[−1,ζ)

Fᾱ,ε[X] |= f1(β) ≤apr f2(β).

Claim 9.2. 1) We say F is transparent if p0 ≤pr p1 and p0 ≤pr p2 ⇒ (∃p3)(p1 ≤pr

p3andp2 ≤pr p3).
2) For every trunk controller X and ζ and ᾱ = 〈αε : ε ≤ ζ〉,Fᾱ,ζ [X], is a well
defined trunk controller, simple if X is simple.

Definition 9.3. 1) Q, an F -forcing is very clear (as an F -forcing) or a very clear
F -forcing if:

(∗) if p0, p1 ∈ Q and valQ(p0), valQ(p1) have a common ≤F
pr-upper bound y then

for some q ∈ Q we have p0 ≤pr q, p1 ≤pr q and valQ(q) = y.

2) Q is basic when: if p0 ≤ p2 then for some p1 we have p0 ≤pr p1 ≤apr p2 and

valQ(p1) = intervalF (p0, p2).
3) Let Q be an F -forcing, it is straight, or F -straight when: if p1 ≤apr q1, p1 ≤pr p2

and p2, q1 are compatible, then there is q2 such that q1 ≤pr q2, p2 ≤apr q2 which is a

≤Q-lub of p2, q1 and valQ(q2) can be computed from 〈valQ(p1), valQ(p2), valQ(q1)〉,
and we stipulate that this computation is a function which is part of the trunk
controller. We call it amalF (−,−,−) (the point is that when we iterate over V
this function will be in V). If p2, q1 are incompatible, we use q2 = q1. [Used in 2.8,
??].
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4) An F -forcing Q is called pseudo clear or pseudo F -clear when: if p ≤pr p1, p ≤pr

p2 and p1, p2 are ≤pr-compatible then they have a common ≤pr-upper bound q with

valQ(q) computable (see (3)) from 〈valQ(p), valQ(p1), valQ(p2)〉 and we denote it by
pramal(−,−,−). [Used in 2.8, ??; the difference from part (1) is the assumption
of compatibility, and the val of the common upper bound is not any ≤F

pr-common
upper bound of val(p0), val(p1) but a specific one].
5) An F forcing Q is weakly clear when:

(1) If p0, p1 ∈ Q and valQ(p0), valQ(p1) are ≤pr-compatible in F , then p0, p1

are ≤pr-compatible.

6) We say Q is transparent 9 (or F -transparent) when: if p0 ≤ pr p1, p0 ≤pr

p2, valQ(p1) ≤pr y3, valQ(p2) ≤pr y3 ∈ F , then there is p3 ∈ Q such that p1 ≤pr

p3, p2 ≤pr p3 and valQ(p3) = y3.

Definition 9.4. 1) F is a trunk controller with inter when it may also have a
function inter = interF such that: if F |= “p0 ≤ p2” then inter(p0, p2) ∈ F is well
defined and F |= “p0 ≤pr inter(p0, p2) ≤apr p2”. F is a trunk3 controller.
If we write “trunk” we mean it does not matter which case we use.
2) For F is a trunk controller with inter we say Q is a F -forcing notions if (a)-(e)
of Definition 1.6 and

(e) if p0 ≤ p2 then for some p1 we have p0 ≤pr p1 ≤apr p2 and valQ(p1) =

interF (val)Q(p0), valQ(p2)).

Claim 9.5. 1) For an F -forcing Q: very clear implies clear and implies weakly
clear.
2) Assume Q is a F -forcing, Q is weakly clear (??(5)), and F is semi-simple, then
Q and even (Q,≤pr) satisfies the ℵ2-c.c.
3) Assume Q is an F -forcing, Q is weakly clear and F is simple, then Q and even

(Q,≤pr) satisfies the regressive Sℵ2

ℵ1
-c.c.

Remark 9.6. No harm demanding

(c) Q
˜

0 satisfies the c.c.c. and ≤Q0
pr is equality, ≤Q0

apr is ≤Q0 and valQ0 is con-
stantly 0.

Definition 9.7. Adding the adjective “semi” (in 2.1(1) hence in (1) of 2.6) means
that in clause (β) we just ask for some ε < ζ in B, the conditions qε, qζ are com-
patible in Q; so we call the games semi-ap, semi-a′p. In Definition 2.5 and adding
“semi” means, Q0 satisfies the semi version, each Q1+α the regular one.

Claim 9.8. 1) If in Definition 2.1, Q is bare F -psc forcing and is F -clear or at
least straight (see Definition ??) then Q is F -psc (as witnessed by some H, so H
is redundant), similarly with P.

Proof. Straightforward. In part (1), the “Q is a clear F -forcing” is used for clause
(γ) in 2.1(1); for using “straight” note that in clause (γ) also pε ≤pr qε holds by
the demands in 2.1(γ), as well as pε ≤apr qε by � of 2.1(1). �2.8

9This simplifies quite a number of definitions below. Of course, instead of for every y3 it is
enough to have one such y3 = y3(valQ(p`) : ` < 3), this function being part of F
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Definition 9.9. Let F be a trunk controller.
1) F satisfies the psc if:

(∗) if F |= “x ≤pr yε ≤apr zε” for ε < ω1 and A ⊆ ω1 is stationary then for
some stationary B ⊆ A we have:

if ε < ζ are from B then zε, zζ has a common upper bound z such that:

(α) z = glueF ,ε,ζ(zε, zζ , yε, yζ)

(β) if yε ≤pr zε, yζ ≤pr zζ then zζ ≤pr z, zε ≤pr z.

2) F satisfies the almost-psc if:

(∗) if F |= “x ≤pr yε ≤apr zε” for ε < ω1, then for some ε < ζ < ω1, zε, zζ has
a common upper bound z such that (α) + (β) above holds.

3) In parts (1), (2) we add the adjective “continuous” if in (∗) we add ε < ζ <
ω1 ⇒ F |= “yε ≤pr yζ”. We add Knaster if we replace stationary by unbounded
(this is alternative to semi7, but not for iteration!)
4) We add the adjective “finished” if we omit clause (γ) in 2.1(1) and its variants.
5) We say that an F -forcing Q is [Knaster] explicitly [almost] F -psc forcing if

(a) Q is an F -forcing

(b) F satisfies the [Knaster][almost] psc

(c) if z = glueF ,ε,ζ(z
′, z′′, y′, y′′) and q′, q′′, p′, p′′ ∈ Q and p′ ≤pr p

′′, p′ ≤apr

q′, p′′ ≤apr q
′′, y′ = valQ(p′), y′′ = valQ(p′′), z′ = valQ(q′), z′′ = valQ(q′′),

then there is q ∈ Q such that:

(α) valQ(q) = glueF (z, z′, z′′, y′, y′′)

(β) if p′ ≤pr q
′, p′′ ≤pr q

′′ then q′′ ≤pr q.

6) We say Q̄ is a Knaster explicit [almost] F -psc iteration if:

(a) F is a trunk controller, fully based on some α′ ≥ `g(Q̄)

(b) Q̄ is an F -iteration

(c) F [0] satisfies the Knaster [semi] psc; ℵ1-complete

(d) F [1+β] satisfies the [Knaster] psc when 1 + β < `g(Q̄);ℵ1-complete

(e) Q0 is explicitly [Knaster][semi] F [0]-psc,≤pr −ℵ1-complete

(f) Q1+β is (forced to be) an explicitly [Knaster] F -psc forcing ≤pr −ℵ1-
complete.

7) We (in (5), (6)) add continuous if so are the F ’s.

Claim 9.10. 1) Assume

(a) F is a [semi]-psc trunk controller

(b) Q is an F -forcing notion.

Then Q is a [semi] F -psc forcing notion.
2) Assume

(a) F is a continuous [semi]-psc trunk controller

(b) Q is a straight F -forcing notion

(c) (Q,≤pr) is ℵ1-complete.

Paper Sh:707, version 2012-04-06 11. See https://shelah.logic.at/papers/707/ for possible updates.



LONG ITERATIONS FOR THE CONTINUUM SH707 61

Then Q is a [semi] strong F -psc forcing notion.

Claim 9.11. Assume Q̄ is an explicitly [Knaster/semi] F -psc iteration.
1) If β ≤ `g(Q̄), then Q̄ � β is an explicitly [Knaster/semi] F -psc iteration.
2) If the trunk controller F is fully based on 〈F β : β < α∗〉 each F [1+β] satisfies
[Knaster]-psc and F [0] satisfies [Knaster/semi]-psc, then F satisfies [Knaster/semi]-
psc.
3) If Q is explicitly [semi] F -psc forcing, then Q is strongly [semi] F -psc forcing.

Proof. Should be clear. �

Claim 9.12. If Q is explicitly [Knaster/semi] F -psc, then Q is purely proper.

Proof. Same as 2.9 only easier (in some cases by ??(3)). �

Claim 9.13. FILL.

Proof. 1) Assume not and let H̄ be a witness for “Q̄ is F -psc” hence by 2.12 some
H witnesses Pα∗ is F -pcf. So simulate a play of the game ap = ap,Pα∗ ,H, where
the interpolator plays using a fixed winning strategy whereas the extender chooses
qζ and nζ ≤ ω such that:

(α) p′ζ ≤ qζ (see notation in 2.1(1)) (i.e. a legal move)

(β) nζ ≤ ω is the minimal n such that {qε : ε < ζ, nε = n, and qε forces a value
of τ

˜
(n)} is not predense over p∗ζ

(γ) if nζ < ω, qζ forces a value to τ
˜

(nζ), call it jζ

(δ) if nζ < ω then qζ is incompatible with qε if ε < ζandnε = nζ .

Now

� for some ζ, nζ = ω.

Why? Otherwise the extendor can choose qζ for every ζ < ω1, and nζ = n∗ for
every ζ ∈ [ζ∗, ω1) for some ζ∗; in the end ζ∗ < ε < ζ ⇒ qε, qζ are incompatible
but the interpolator has to win the play (as he has used his winning strategy),
contradicting clauses (β) of 2.1(1).

So necessarily for some ζ < ω1, nζ = ω. Let p∗ be: p if ζ = 0, pζ−1 if ζ is a
successor ordinal and p′ζ if ζ is a limit ordinal, so p ≤pr p

∗ by the definition of

the game. For each ε < ζ let q′ε be a ≤-lub of qε, p
∗, exists as Q is straight, so

p∗ ≤apr q
′
ε. Let In = {q′ε : ε < ζ and nε = n} and we shall show that p∗,In are as

required (p∗ standing for q). Now clauses (a), (b), (c) are obvious, toward clause
(d) assume n < ω, p∗ ≤ q and q is incompatible with all members of In and let
ζn = Min{ζ : nζ > n}, so q could not have been a good candidate for qζn hence is
compatible with some qε, nε = n. So by the choice of q′ε clearly q′ε ≤ q and q′ε ∈ In,
contradiction. �
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10. §T

Recall ([?, ?]).

Definition 10.1. 1) For an ordinal α(∗),F = Fα(∗) is the α-th standard trunk
controller (we let α(F ) = α) so

(a) f ∈ F iff f is a function from some countable u ⊂ α into ω>ω

(b) ≤x=≤F
x is the following partial order on Fα

(α) f ≤pr g iff f = g � Dom(f)

(β) f ≤apr g iff Dom(f) = Dom(g)
(∀β ∈ Dom(f))(f(β) E g(β))
(∃<ℵ0β ∈ Dom(f))(f(β) 6= g(β))

(γ) f ≤us g iff (∃h)(f ≤pr h ≤apr g).

2) We define also ≤x=≤Fα
x for x = qr, aqr: we let

(α) f ≤qr g iff for some h, h ≤apr f ∧ h ≤ g
(β) f ≤aqr g iff Dom(f) = Dom(g) ∧ f ≤qr g.

3) For f ∈ F let Rf be ({g : f ≤aqr g},≤apr) and let R′f = ({g : f ≤apr g},≤apr).

Observation 10.2. 1) ≤qr is a partial order on Fα.
2) ≤aqr is an equivalence relation, the Rf ’s are the equivalence classes.

Definition 10.3. Let F be a standard trunk controller. For f ∈ Fα let

(a) aext(f) = {g : f ≤aqr g} and ext(f) = {g : f ≤apr g}
(b) pos(f) = {η̄ : η̄ = 〈ηβ : β ∈ Dom(f)〉 and f(α) / ηα ∈ ωω for α ∈ Dom(f)

(c) apos(f) = ∪{pos(g) : g ≤aqr f}
(d) dst(f) = {I : I ⊆ {g : f ≤aqr g} and for every g ∈ aext(f) and η̄ ∈ pos(g)

there is h such that g ≤ap h ∧ η̄ ∈ pos(h)
[dst(f) is the family of “dense subsets” of Rf = aext(f), so if Dom(f) =

{β} it means that we have fronts In of ω>ω for n < ω such that (∀η ∈
In)(∀ν ∈ In)(¬ν E η) and I includes (the copy of) ∪{In : n < ω} that
is I ⊇ {{(β, ν)} : ν ∈ In, n < ω}]

(e) if I ∈ dst(f) and S ⊆ aext(f) we say S is decidable by I when: if
η̄ ∈ apos(f), then for some g ∈ axnt(f) and truth value t we have η̄ ∈ pos(g)
and: for every h, g ≤apr h ∈ I ∧ ν̄ ∈ pos(h)⇒ ((h ∈ S) ≡ t)

[this says in an appropriate sense that for a dense set of open subsets u
of apos(f), u ∩I is included in S or disjoint to S̄]

(f) for I1,I2 ∈ dst(f), let I1 ≤∗ I2 means that for every η̄ ∈ apos(f) there
is g ∈ axnt(f) such that η̄ ∈ pos(g) ∧ (∀h)(g ≤apr h ∈ I2 ⇒ h ∈ I1)

[this says that on a dense open set I2 ⊆ I1]

(g) let DEC(f) = {D : D ⊆ dst(f),D is <∗-downward closed, D is (≤∗,ℵ1)-
directed and for every S ⊆ apos(f) is decidable by some I ∈ D}.

[those D ’s are like P -points].

Definition 10.4. Assume f1 ≤qr f2.
1) Let prjf1,f2

: apos(f2)→ apos(f1) be prf(g2) = g2 � Dom(f1).
2) For I2 ∈ dst(f2), let prjf1,f2(I2) = {prjf1,f2

(g) : g ∈ I }.
3) For D2 ∈ DEC(f2), let prjf1,f2

(D2) = {prjf2,f2
(I ) : I ∈ D2}.

Paper Sh:707, version 2012-04-06 11. See https://shelah.logic.at/papers/707/ for possible updates.



LONG ITERATIONS FOR THE CONTINUUM SH707 63

Alernatively

Definition 10.5. 1) For u ∈ [α(∗)] ≤ ℵ0 let

flsq(u) = {D̄ : D̄ = 〈Dα,η : α ∈ u, η ∈ ω>ω〉, Dα,η an ultrafilter on ω}

Let flsq(f) = flsq(Dom(f)).
2) Let F 1

α(∗) = {(u,D) : u ∈ [α(∗)]≤ℵ0 and D̄ ∈ flsq(u)}.
3) For f ∈ Fα(∗) and D̄ ∈ flsq(f) let dst(f, D̄) is the set of I ⊆ {g : f ≤apr g}
such that

(∗)g,D̄,I in the following game the first player wins (i.e., has a winning strategy)

(a) a play lasts at most ω moves

(b) before the n-th move gn ∈ pos(g) is chosen

(c) g0 = g

(d) in the n-thmove, the first player chooses.

Observation 10.6. Assume f1 ≤qr f2.
1) prjf1,f2

is a function from apos(f2) onto apos(f1).
2) prjf1,f2

maps dst(f2) onto dst(f1).
3) If I ⊆ J are from dst(f2) then I ⊆ J ⇒ prjf2,f1

(I ) ⊆ prjf2,f1
(J ) and

I ≤∗ J ⇒ prjf2,f2
(I ) ⊆ prjf2,f1

(J ) provided that FILL prjf1,f2
maps every

member of DEC(f2) to a member of DEC(f1).

Proof. FILL. �

Claim 10.7. Assume f ∈ Fα(∗).
1) If In ∈ dst(f) and In ≤∗ In+1 for n < ω then there is I ∈ dst(f) satisfying

n < ω ⇒ In ≤∗ I .
2) Assume 〈un : n < ω〉 is an increasing sequence of finite sets with union Dom(f)
and I ⊆ apos(f). We have I ∈ dst(f) iff I has a ū-witness (see Definition
below).
3) Similarly for I1 ≤∗ I2.

Definition 10.8. Assume ū = 〈un : n < ω〉 is an increasing sequence of finite sets
with union Dom(f) and I ⊆ apos(f).

1) We say that (n, ζ̇) is a ū-witness for I when

(a) n is a function from apos(f) to ω

(b) if g1 ≤apr g2 are from apos(f) then n(g1) ≤ n(g2)

(c) ζ̇ is a function from apos(f) to ω1

(d) if ζ̇(g) = 0 then g ∈ I

(e) if g1 <apr g2 are from apos(f) and ζ̇(g1) > ζ̇(g2) = 0 then n(g1) < n(g2)

(f) if g1 ∈ apos(f), ζ̇(g1) > 0, g1 <apr g2, un(g1) = {β ∈ Dom(f) : g1(n) 6=
g2(n)} and ¬(∃g ∈ I )(g1 ≤apr g ≤apr q2) then ζ̇(g1) > ζ̇(g2).

2) Assume I1,I2 ≤ apos(f). We say that (n, ζ̇) is a ū-witness that I1 ≤∗ I2

when

(a)− (c) as in part (1)
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(d) if ζ̇(g) = 0 then (∀h)(g ≤ap h ∈ I2 ⇒ h ∈ I1)

(e) if g1 ≤apr g2 are from apos(f) then ζ̇(g1) ≥ ζ̇(g2)

(f) as above.

Proof. Proof of 10.7:
1) By parts (2) + (3) and diagonalization.
2), 3) Straight. �10.7

Claim 10.9. Assume

(a) fn, f ∈ Fα(∗)

(b) fn ≤qr fn+1 ≤qr f for n < ω

(c) In ∈ dst(fn)

(d) In ≤∗ prjfn,fn+1
(In+1) for n < ω.

Then for some I ∈ dst(fn) we have n < ω ⇒ In ≤∗ prjfn,f (I ).

Definition 10.10. D̄ is a full Fα(∗)-choice if

(a) D̄ = 〈Df : f ∈ Fα(∗)〉
(b) Df ∈ DEC(f)

(c) if f1 ≤qr f2 then D1 ≈ prj(D2).

Definition 10.11. 1) The forcing notion R∗α(∗) is defined as follows

(a) p ∈ R∗α(∗) iff p = (f,I ) = (fp,I p), f ∈ Fα(∗),I ∈ dst(f)

(b) R∗α(∗) |= p ≤ q iff fp ≤qr f
q ∧I

˜
p ≤∗ prjfp,fq (I

˜
q).

2) We define a R∗α(∗)-name, D̄
˜

= 〈D
˜
f : f ∈ Fα(∗)〉,D

˜
f = {I ⊆ apos(f) : I ≤∗

πf,fp(I p) for some p ∈ G
˜
}.

Claim 10.12. Assume CH.
1) R∗<α(∗) is a ℵ2-c.c., ℵ1-complete forcing notions.

2) 
R∗
α(∗)

D̄
˜

a full Fα(∗)-choice.

Proof. Should be clear. �
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11. §U

SAHARON: What is ??? See Glossary

Definition 11.1. 1) We say x is an α(∗)-parameter when it consists of the following
objects satisfying the following conditions

(a) D̄
˜

= 〈Df : f ∈ Fα(∗)〉 is a full Fα(∗)-choice

(b) D̄ = 〈Dα,η : α < α(∗), η ∈ ω>ω〉 such that Dα,η is a non-principal ultrafilter
on ω.

2) Let Kx be the class of Q̄ such that

(a) Q̄ is as in [?, 5.11], but also Q0 is QD̄0

(b) D
˜
β,η, a Pβ-name is defined as follows: for Gβ a subset of Pβ generic over

U, D
˜
β,η[Gβ ] is the set of A

˜
[Gβ ] such that for some A

˜
, p ∈ Gβ and J̄ =

〈Jn : n < ω〉 we have

(c) A
˜

is a Pβ-name

(d) Jn is a subset of {q : p ≤ap q ∈ Pβ} predense over p if q ∈ Jn then q
forces a value

(e) if for some I ∈ Dx
tr(p) for every g ∈ I we have for some B ∈ Dx

α,η we have:
sn
(∗) if p ≤apr q ∈ Pα, tr(q) = g and n < ω then for some r, q ≤apr r ∈

Pα, tr(r) = g we have r 
Pα “A
˜
∩ n = B ∩ n”.

Claim 11.2. 1) For every α(∗) ∈ Ord and α(∗)-parameter x there is one and only
one Q̄ ∈ Kx.

Proof. We prove this by induction on α(∗). �

Case 1: α(∗) = 0.
Trivial

Case 2: α(∗) is a limit ordinal.
This holds by [?, xxx].

Case 3: α(∗) = α+ 1.
Clearly y = x � α is an α-parameter hence Q̄α = 〈Pβ ,Q

˜
β : β < α〉 is well defined

as well as Pα = Lim(Q̄α).
Now for every η ∈ ω>ω, D̄

˜
α,η is a well defined Pα-name of a subset of P(ω).

Now by [?, xxx] it suffices to prove

� D̄
˜
α,η is a Pα-name of a non-principal on ω.

For this it suffices to prove (∗)1 + (∗)2 where

(∗)1 if A
˜

is a Pα-name of a subset of ω then for a dense open set of p ∈ Pα, p 
Pα
“A
˜
∈ D

˜

x
α,eta” or p 
Pα “ω\A

˜
∈ Dx

α,η”.
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[Why (∗)1 holds? Let p0 ∈ Pα and A
˜
q = A

˜
, A
˜

0 = ω\A
˜

. By [?, xxx] there is
p, p0 ≤ p0 ∈ Pα such that (p,A

˜
) satisfies clause (b) of Definition 11.1(2), S` := {g ∈

apos(tr(p)): if there is q, p ≤apr qr, g = tr(q) then (g,A
˜
`) are as in (c) of Definition

11.1(2)}.
As Dx

tr(p) ∈ DEC(tr(p)) clearly (p,A
˜
`) is as in ??(2) for some ` ∈ {0, 1} so we

are done.]

(∗)2 if n < ω and for ` < n,A
˜
` is a Pα-name of a subset of ω,A

˜
`[Gα] ∈ D then⋂

`<n

A
˜
`[Gα] 6= ∅.

[Why? For each ` < n there is (p`, I`), p` ∈ Gβ witnessing A
˜

[Gα] ∈ D
˜
α,η[G] as

in ??(2) so I` ∈ Dtr(p`). As G is directed, there is p ∈ G such that p` ≤Pα p for
` < n, so clearly Fα |= tr(p`) ≤ap tr(p).

By the assumption D̄x, see clause (a) of Definition 11.1, for some I ∈ Dtr such
that ` < n⇒ I` ≤∗ prjtr(p`),tr(p)(I ). Hence by [?, zzz] there is q, p ≤ap q such that

` < n ⇒ prjtr(p`),tr(p)(tr(q)) ∈ I` hence there is B` as in clause (c) of Definition

??(2). So B0, . . . , Bn−1 ∈ Dx
α,et hence B := ∩{B` : ` < n} belongs to the the

ultrafilter Dx
α,η from V and let k(n) ∈ B. So for each ` < n there is q` such that

p` ≤apr q`, tr(q`) = tr(g) � Dom(p`), q` 
 k(∗) ∈ A
˜
`. By {q} ∪ {q` : ` < n} easily

has a common upper bound say r so c ` “k ∈ ∪{A
˜
` : ` < n} hence this intersection

is non-empty”, so also (∗)2 holds.]

Claim 11.3. Let Q̄ ∈ Kx, x a α(∗)-parameter.
1) For α < α(x) and η ∈ ω>ω if Dx

α,η is a P -point, then 
Px
α

“D
˜

x
α,η is a P -point.

2) Moreover 
Px
α

if A
˜
n ∈ D

˜
x
α,n for n < ω then we can find vn ∈ [An]fm(n) such that

∪{vn : n < ω} ∈ Dx
α,n if Dx

α,n satisfies this for y where

(∗) f, g, h, g ∈ ω(ω\{0}), h ≤ g ≤ f, 〈g(n) : n < ω〉, 〈h(n) : n < ω〉 converge to
infinity and (∀n)[f(n) ⊇ g(n), h(n)].

Proof. Proof of 11.3
1) Let p 
 “A

˜
n ∈ D

˜
x
α,η” for n < ω. Possibly increasing p without loss of generality

each (p,A
˜
n) is as in ??(2)(b) for each n. Hence by the proof of 11.2 there is

In ∈ Dx
tr(p) such that (p,A

˜
r,I ) is as in ??(2)(c). Without loss of generality

In ⊆ In+1 (see ??) and there is I ∈ Dx
tr(p) such that n < ω ⇒ In ≤∗ I and let

(n, ζ) ū-witness I (for some ū). For each q, p ≤ap q let Bq,n = {k < ω: there is r
such that p ≤pr q ∧ p ≤apr q ∧ q 
 “k ∈ A

˜
n”}. For each g ∈ I let m(g) = max{m:

if n ≤ n(g) and n < m then Bq,n ∈ Dx
α,η}.

Clearly

p 
 “ for every m there is g ∈ pos(tr(p)) such that
〈η
˜
β : β ∈ Dom(p)〉 ∈ real(g) and

g ≤pr h ∈ I ⇒m(g) ≥ m”.

Now we define A
˜

a P-name:

A
˜

= {k < ω : there is g ∈ I for which 〈η
˜
β : β ∈ Dom(p)〉 ∈ real(g)

and there is g ∈ G
˜

Pα(x)
such that tr(q) = g,

q 
 “k ∈ ∩{A` : ` < boldm(g)}”.
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Cearly A
˜

is a Pxα(x)-name of a subset of ω and (p,I ) witness A
˜
∈ D

˜
x
α,η (after minor

doctoring). �11.3

Definition 11.4. The α(∗)-parameter is called Ramsey if for any sequence 〈(α`, η`) :
` < ω〉 of members of α(∗)× ω>ω (possibly with repetitions) in the following game
the ultrafilter player has no winning strategy: in the nth play,

the challenger player chooses An,` ∈ Dx
α`,η`

for ` < n the chooser chooses kn,` ∈
An,` for ` < n.

In the end the chooser wins if ` < ω ⇒ {kn,` : n ≤ ` < ω} ∈ Dα`,η` .

Observation 11.5. 1) If x is an α(∗)-parameter, D a Ramsey ultrafilter on ω and
(α, η) ∈ α(x)× ω>ω ⇒ Dx

α,η = D, then x is a Ramsey ultrafilter.

2) If we force 〈D̄x
α,η : α < α(x), η ∈ ω>ω} by countable approximations then it is

Ramsey.

Claim 11.6. 1) If x is a Ramsey α(∗)-parameter then the forcing notion Px has
the Laver property, i.e.

Definition 11.7. A forcing notion P has the Laver property when: f, g ∈ ω(ω\{0}), f ≤
g and 〈g(n) : n < ω〉 goes to infinity then P has the (f, g)-bounding property.

Proof. Proof of 11.6
1) Let f, g be as in ?? or ?? and assume p ∈ Px, p 
 “η

˜
∈
∏
n<ω

f(n)”. Let kn =

Min{k : (∀m < n)(km < kn) and m ≥ n ⇒ g(n) ≥ 2n}. We can find q, p ≤ q such
that η

˜
be read purely above r whenever q ≤apr r. For each g ∈ {tr(r) : q ≤apr r}

let η
˜
g ∈

∏
n<ω

f(n) be such that for every n for some r, we have q ≤apr r ∧ tr(r) =

g ∧ r 
 “η
˜
� n = ηg � n”.

By claim [?, xxx] without loss of generality

(∗) if tr(q) ≤apr g, β ∈ Dom(q) and we let for k < ω, hg,β,k be g � (Dom(q)\{β})∪
{〈β, g(β)∧ < k >〉 such that ηg = limDη,β,g 〈ηhg,β,k : k < ω〉.

Let 〈(α`, η`) : ` < ω〉 list the pairs (α, η) such that α ∈ Dom(q), tr(q) ≤ η` and
tr(q, α`) E η / η` ⇒ (α`, η) ∈ {(αi, ηi) : i < `}.

We simulate a play of the game from ?? (or ??) for 〈(α`, η`) : ` < ω〉 such that
the chosen player preserves

� after n(∗) moves, for every n < ω the following set has at most g(m)
members

tn(∗),m{ηg � m : tr(q) ≤apr g and
(∀β ∈ Dom(q))(∀i)(g(β) 6= tr(q(β))⇒
∧`g(tr(q)) ≤ i < `g(g(β))⇒
(∃` < n)[(β, g(β) � i) = (α`, η`) ∧ (g(β))(i) ∈ {kn,` : n < n(∗)}.

By ~ there is no problem to carry this. Now define r such that:⊙
q ≤pr r, q ≤apr r if β ∈ Dom(q), tr(q(β)) E η ∈ ω>ω then r � β 
P “if

η ∈ T r(β) and (β, η) = (q`(∗), η`(∗)) then η ∈ T q(β) and

{k : η_ < k >∈ T r(β)} = {k : η_ < k >∈ T q(β)

and k ∈ {kn,`(∗) : `(∗) < n < ω}}.
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Clearly there is such r and r 
 “η
˜
� m ∈

⋃
m
{tn,m : m < ω} and 〈tn,m : n < ω〉 is

increasing hence with union ≤ g(m) members so we are done. �11.6

Remark 11.8. 1) This is enough to answer yes. Juday problem.
For CUN(ZFC + d large and even b large + BC) we need more.

2) So here 
Px
β(∗)

“f
˜
∈ ω(ω\{0}) in increasing with f(n) > g(n) := n”.

∗ ∗ ∗

An alternative is

Definition 11.9. 1) J̄ is a witness for I ∈ dsl(f) which means that

(a) J̄ = 〈Jn : n < ω〉
(b) Jn ∈ nac(f), i.e., is a strong antichain of Rf , see below

(c) Jn+1 is above Jn, i.e. (∀g2 ∈ In+1)(∃g1 ∈ In)(g1 <apr g2)

(d) for every g ∈ ext(f) for some (every large enough) n and every g′ ∈J is
above g or is incompatible with g in (ext(f),≤apr)

(e) Jn ⊆ I for n < ω.

2) J̄ is a witness for I ∈ adst(f) iff (a),(c) above and

(b)′ Jn ∈ anac(f), see below

(d)′ like (d) using aext(f).

3) J ∈ ac(f) when

(a) J is an antichain of Rf

(b) for every η̄ ∈ apos(f) there is g ∈ J such that η̄ ∈ pos(g) (by (a), g is
unique).

4) We define J ∈ aac(f) similarly using R′f .

5) We say J ∈ nac(f) is decisive for g ∈ ...?

Observation 11.10. Let f ∈ I .
0) dsf(f) ⊆ adst(f), ac(f) ⊆ aac(f).
1) If I ∈ anac(f) and for each g ∈ I , Jg ∈ ac(g) then J =: ∪{Jg : g ∈ I } ∈
acc(f).
2) If I ∈ nac(f) and for each g ∈ I ,J ∈ nac(g) then J =: ∪{Jg : g ∈ I } ∈
nac(f).
3) If J ∈ anac(f) and g ∈ aext(f) then for some g′ ∈ J in (aext(f),≤apr) we
have g, g′ are compatible.
4) Similarly to (d) for nac(f), ext(f).

Claim 11.11. 1) I ∈ dst(f) iff there is a witness J̄ for I ∈ dst(f).
2) I ∈ dst(f) iff there is a witness J̄ for I ∈ ads(f).

Proof. the “if” direction:
Let η̄ ∈ pos(f) and g ∈ ext(f). Choose n as in clause (d) of Definition 11.9(1).

As Jn ∈ ac(f), see Definition 11.9(3), necessarily there is g′ ∈ Jn such that
η̄ ∈ pos(g′). As η̄ ∈ pos(g) ∩ pos(g′) by 11.10(x), g, g′ cannot be incompatible in
(ext(f),≤apr, hence by the choice of n necessarily g <apr g

′.
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The “only if” direction:
First

� if f∗ ∈ ext(f) then there is J ∈ nac(f∗),J ⊆J .

[Why? Let

Y1 =: {g ∈ ext(f∗) : there is J ∈ nac(g∗),J ⊆ I }

Y2 =: {g ∈ Y1 : there is no g′ ∈ Y1 such that f <apr g
′ <apr g}

�
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12. Glossary

§1 Trunk Controllers

1.1 (Definition) Trunk controllers, standard (trunk control), ℵ1-complete based,
fully based, F [β], trivial, transparent

1.2 (Definition) (A trunk controller F is) simple (= purely regressively ℵ2-c.c. on
S2

1), semi-simple (= ℵ2-c.c. for pure extensions), (semi) simply based (all are simple
except the first is semi simple)

1.6 (Definition) F -forcing

?? (Definition) (An F -forcing Q is) clear (help put together extensions), basic,
straight (help put together p1 ≤apr q1, p1 ≤pr p2, (used in 3.3(1)) and transparent

1.10 (Definition) F -iteration

1.13 (Claim) LimF (Q̄) is a F -forcing

1.14 (Claim) in a F -iteration, β < γ ⇒ Pβ l Pγ naturally

1.15 (Claim) Preservation of clear (+ variant) and straight

1.8 (Claim) Simplicity of F+ clarity of the F -forcing Q, impure/pure ℵ2-c.c. (+
variants)

1.19 (Claim) Existence of F -iteration

1.20 (Claim) Associativity (of F -iterations)

?? (Discussion)

3.7 (Definition) Pure decidability

§2 Being F -pseudo c.c.c. (F -psc) is preserved by F -iterations

2.1 (Definition) Q is F -psc, (F ,P)-psc, clear, straight; consider (F ,P)

2.5 (Definition) Q is F -psc iteration as witnessed by H̄, is essentially ... (except
Q0), semi-simple F -psc strong

2.6 (Definition) Q is strong F , psc, Q̄ is strong

2.8 (Claim) Sufficient conditions for ps

?? (Definition) F is psc, strongly psc; continuous, Knaster, explicit, semi [??]

?? (Claim) Implications

?? (Claim) Basic fact on the explicit version

2.9 (Claim) F -psc implies pure (∞,ℵ1)-decidability for ℵ0 anmes; the strong ver-
sion and the explicit version implies purely proper

2.10 (Remark) On “straight” and on stationary S ⊆ [λ]ℵ0

2.11 (Remark) On ℵ1-completeness

2.12 (Lemma) Preserving psc under F -iteration

?? (Claim) Preserving the explicit version under F -iteration

3.12 (Definition) (H, <H) is a c.c.c. witness
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§3 Nicer pure properness and pure decidability

3.3 (Claim) Sufficient conditions for pure decidability

?? (Claim) Preservation of “purely proper + preservation” of (D,R,<)

§4 Averages by an ultrafilter and restricted non-null trees

4.2 (Claim) For V1 = V[r], r random over V, we consider extending an ultrafilter
D on ω from V to an ultrafilter D1 on ω from V1 relevant to the randomness of r.

4.4 (Definition) We define Tg as the set of T ⊆ ω>2 whose convergence to their
Lebesgue measure is bounded by g.

4.5 (Definition) We define T = limD〈Tn : n < ω〉,G V and B = ms− limD〈Bn :
n < ω〉.
4.6 (Claim) We note obvious things on limD〈Tn : n < ω〉.
4.7 (Definition) We define “ρ is G -continuous over N for D”, the ideal NullG ,D and
NullG .

4.10 (Observation) 1) If V ⊆ V1, (
ω2)V not in (NullG )V1 then V1 has no Cohen

over V.
2) On the ultrafilter case in 4.7.

4.11 (Conclusion) We can extend an ultrafilter D ∈ V to an ultrafilter D1 in V1

preserving “r is G -continuous over V”.

§5 On iterating QD̄
5.1 (Definition) We define D̄ ∈ IF, D̄ ∈ IUF(D̄ = 〈Dη : η ∈ ω>ω〉, Dη a filter or
ultrafilter on ω, non-principal).

5.2 (Definition) QD̄, a forcing notion, for D̄ ∈ IF, η
˜

= η
˜

(QD̄), the generic.

5.3 (Fact) For D̄ ∈ IUF,QD̄ is straight, clear, simple, σ-centered, purely proper,
F -psc forcing when ω>ω ⊆ F , with η

˜
(QD̄) a generic real.

5.4 (Claim) On 2-pure decidability, fronts and absoluteness for Q̄D.

5.5 (Claim) New f ∈ ωω run away from old on Rang[η
˜

(QD̄)]

5.9 (Claim) (1) On QD̄′ l P ∗QD̄′
˜

, when Dη ≤ D
˜
′
η.

(2) Preserving G
˜

-continuity.

5.6 (Claim) On new f ∈
∏
n

η
˜ (QD̄)(n)2 running away from old ρ ∈ ω2

5.7 (Claim) ForD ultrafilter on ω, when doesQD̄ satisfy: in VQD̄ , wn ⊆ [η
˜
QD̄ (n), η

˜
QD̄ (n+

1)], |wn| ≤ η
˜
QD̄ (n) then ∪{wn : n < ω} is disjoint to some member of D.

5.11 (Hypothesis) CH + F ∗ + K(0), with Lim(R̄) - c.c.c.

5.13 (Definition) Of Kα,K.

5.15 (Definition) Q̄1 ≤K Q̄2.

?? (Definition) cr(Q), set of p giving an autonomous description of a condition in
the iteration

5.17 (Definition) We define K+
α for the context above.
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?? (Remark)

5.19 (Observation) Collect the properties, not used.

§6 On a relative of Borel conjecture with large b

6.1 (Hypothesis)

6.2 (Definition) (1) We fix K(0),the candidates for first forcing in the iterations as
adding λ-randoms and define A(Q0).
(2) Kα in this context.
(3) K′α,K

′
`,α; mainly Q̄ � β ∈ K+

β for β < α, Q̄ ∈ K′α but for α ≥ λ,Q0 has all
randoms and they look internally a Sierpinski such that if α < λ has < λ randoms.
(4) ≤K′`,α

,≤K′α
(the first new random is G V-continuous over the (smaller forcing).

(5) K′′α (mainly ⊆ K+
α ).

6.5 (Observation) (1) The Sierpinski-ness of the randoms.
(2) Essentially F -psc with 2-pure decidability over Q0.
(3) Semi-simple + .

6.6 (Claim) Existence of extensions and appear bound of increasing sequences for
K′≤α,K

′′
≤α.

6.10 (Conclusion) We get Q̄ ∈ Kα with α < λ, using λ or less of the randoms
manipulating b, d, covering number for nullG (??)

6.12 (Claim) Similar to 6.10, for α = λ+.

§7 Continuing [?]

7.2 (Theorem) We find a forcing as in [?] replacing the null ideal by NullG but with
b = d is quite small, e.g. in VP, cov(NullG ) = ℵω, b = d = ℵ2.

7.3 (Remark) Connection to [?].

7.4 (Claim) Amalgamation in K+
α or above an amalgamation in K(0).

7.6 (Claim) The fact needed for the induction step in 5.19 putting two ultrafilters
together over amalgamated forcings.

7.7 (Claim) The generic real for Q̄ ∈ K′`,α are enough.

§8 On “η is L -big over M”

8.1 (Definition) (1) We define T, the set of finitary trees ⊆ ω>H (ℵ0).
(2) RT1,T2

is the set of closed subsets of Lim(T2); also RT ,R∗ ⊆ lim(T1[R]) ×
lim(T2[R]). [CHECK??]
(3) R<k>.
(4) Y is a set of (f,T ), DY for Y ⊆ Y.

8.2 (Definition) (1) D is (f,T )-narrow for f ∈ Π{P(Tn) : n < ω}.
(2) D is Y -narrow.
(3) ZM set of (η,R) with R ∈M,η ∈ lim(T2[R]).
(4) D is (η,R)-big over M .
(5) D is L -big over M .
(6) η is R-big or L -big over M .

8.3 (Claim) Sufficient condition for extending the ultrafilters D1 ∈ V1 to D2 ∈ V2

which is L -big, Y -narrow over V1.
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8.5 (Claim) Equivalent condition to B /∈ JY , the narrowness ideal for Y ⊆ Y.

8.6 (Claim) Limit of Yζ-narrow filters which is
⋃
ζ

Yζ-narrow.

8.7 (Definition) (f, h,T )-narrow (return??) [releveling T ]

8.9 (Definition) Zµ set of (η, R̄) (?) [return??]

8.10 (Claim) (1) Extending D̄ to preserve such that η ∈ V2 is R-big on V1[ηQD̄ ].
(2) Similarly for Z.

8.11 (Definition) (1) Tree of subsets for Tg.
(2) More notation on trees.

8.12 (Claim) (1) {g}-continuous and Rg-bigness equivalent.
(2) Sufficient conditions for 8.3 for Y = ∅.
(3) Similarly Y 6= ∅ using 8.11(2).

*********************************

4.4 Tg

4.5 T = limD〈Tn : n < ω〉,G ⊆ G V,B = ms− limD〈Bn : n < ω〉

8.6 ρ is G -continuous over N (for D), NullG ,D **************************

Moved from pgs.5-10:

Move from pg. 34,35,36: ∗ ∗ ∗

Moved from pg.8,9:

2) If F is a basic trunk controller, i.e., interF is well defined, then “Q is a basic
F -forcing” is defined similarly adding

(f)1 if p0 ≤ p2 then for some p1 we have p0 ≤pr p1 ≤apr p2 and val(p1) =
interF (val(p0), val(p2)).

3) If F is a straight trunk controller, we say Q is a straight F -forcing notion,
(a)-(e) above and

(f)2 if Q |= p0 ≤pr p2, p0 ≤apr p1 and p1, p2 are 10 compatible+ which means
(∃p3)(p1 ≤pr p ∧ p2 ≤apr p3), then for some p3 we have

(α) Q |= p1 ≤pr p3 ∧ p2 ≤apr p3

(β) if also Q |= p0 ≤pr p1 then Q |= p2 ≤pr p3

(γ) valQ(p3) = amalF (valQ(p0), valQ(p1), valQ(p2)

(δ) p3 is a ≤us-lub of p1, p2 in Q.

10this may seem unnatural but note that it is not satisfied by QD̄.
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∗ ∗ ∗

Moved from pg.11:
Clause (f): Assume p0 ≤ p2 and we shall define p1. Let Dom(p1) = Dom(p2)

and let the finite w ⊆ Dom(f1) be as in (γ)(iii) of 1.10(b), and we choose p1(α)
for α ∈ Dom(p1) a follows. If α ∈ Dom(p2)\Dom(p0) we let p1(α) = p2(α),
and if α ∈ Dom(p0) and α /∈ w we let p1(α) = p2(α). If α ∈ w by Definition

1.6(f), we know that p2 � α 
Pα “p0(α) ≤ p2(α)” hence (∃p)[p0(α) ≤Qα
pr p ≤Q

˜
α

apr

p2(α)andvalQ˜
β (p) = interF [α](valQ˜

α(p0(α)), valQ˜
α(p2(α)))] and choose p(α) a Pα-

name of such p. Now check.

∗ ∗ ∗

Moved from pg.18:
1) [?] If Q is straight (see 1.6(3)) we can add in 2.9(1):

(c) Fq,τ
˜
n

= {r : q ≤apr r and r forces a value to τ
˜
n} is predense over q for each

n; see §3. [Here?]

∗ ∗ ∗

Moved from pg.4:

Definition 12.1. 1) Let S ⊆ [λ]ℵ0 be stationary. We say that Q is purely (S,F )-
proper when if N ≺ (H (χ),∈) is countable, N ∩ λ ∈ S,Q,F ∈ N, p ∈ Q∩N then
there is q such that:

(a) p ≤pr q ∈ Q
(b) q is (N,Q)-generic

(c) valQ(q) = propF (p,N ∩ S), as usual propF is considered part of F .

2) We omit S when S = [λ]ℵ0 .

∗ ∗ ∗

Moved from pg.5:

Definition 12.2. 1) A forcing notion Q has (θ, σ)-pure decidability if:
if p ∈ Q and p 
Q “τ

˜
∈ θ”, then for some A ⊆ θ, |A| < σ and q we have

p ≤pr q ∈ Q and q 
 “τ
˜
∈ A”.

2) We write “θ-pure decidability” for “(θ, θ)-pure decidability”.

∗ ∗ ∗

Definition from Definition 2.1, moved from pg.6:
2) We say F is a straight? trunk controller if F is a trunk controller expanded

by a three-place function amalF such that: amalF (f0, f1, f2) is well defined when

f0 ≤apr f1, f0 ≤pr f2 and f3 = amalF (f0, f1, f2) satisfies f1 ≤pr f0, f2 ≤apr f3 and
f0 = f1 ⇒ f = f2.

∗ ∗ ∗
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Moved from Definition 2.1, pg.15:

5) We say Q̄ is F -straight if each Q
˜
β is F [β]-straight.

6) We say Q̄ is semi-straight (or semi F -straight) if each Q1+β is F [β]-straight.
[Used?]

Remark 12.3. Note that 3.3(1) speaks actually on any semi straight F -psc forcing
P. See 3.3.

∗ ∗ ∗

Moved from pg.22:

Claim 12.4. Assume Q̄ is a [Knaster] explicit [semi] F -psc iteration. Then
LimF (Q̄) satisfies the [Knaster/semi] explicit F -psc.

Proof. Similar to 2.12. �

Old proof of 3.3,pg.40:
1) We use 2.9(3) to get q and I q

τ
˜

for τ
˜
∈ N a Pα∗ -name of a member of V. Now

as F is straight for each r ∈ I q
τ
˜

we can choose a r+ ∈ Q, a lub of pε, r in Q and

let I = {r+ : r ∈ I q
τ
˜
} is as required.

2) Essentially the same proof.

∗ ∗ ∗

Moved from pg.42-43:
We can also generalize the preservation theorems.

Claim 12.5. 1) Assume

(a) Q̄,F are as in 3.3

(b) each Q
˜
β is purely proper

(c) (D,R,<) is a fine covering 11 model in the sense of [?, Ch.VI,Definition
1.2]

(d) 
Pβ “Qβ is purely (D,R,<)-preserving”.

Then Pβ is purely (D,R,<)-preserving and purely proper.
2) Similarly for Q̄ a Knaster explicitly semi F -psc iteration.

Proof. See [?, Ch.VI,1.13A,p.270] or see AP here. Andrzej: in the end; why purely?
(a) as was in §3 is 3.3...relevant. �

Moved from pg.52:
From 5.3 proof of clause (a):

QD̄ straight: So assume p0 ≤pr p2 and p0 ≤apr p1 and p1, p2 are compatible so

p = p
[tr(p1)]
2 is as required.

QD̄ basic: If p0 ≤ p2 let inter(p0, p2) = {ν : ν ∈ p0 and if tr(p2) E ν then ν ∈ p2}.

11can use also the weaker version there
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Old remark to 5.6 or see 5.5,moved from pg.59:

Instead of D̄ ∈ N ≺ (H (χ),∈) it is enough to have assumptions like [?].

FILL or drop see [?], [?].

Moved from pgs.63,64,65 (from §5):

Remark 12.6. (was after 5.17)
1) The following is intended to help mainly in chain conditions, but at present not
used. Alternatively, to 5.17, K+

α is the family of Q̄1 ∈ Kα such that if Q̄2 ∈ Kα
and Q̄1 ≤K Q̄2, then for every p2 ∈ cr(Q̄2) (see Definition ??, see below) there is
p1 ∈ cr(Q̄1), strongly isomorphic to p2 say as witnessed by the h such that

(∗) if β ∈ w[p] ∪ {γ[p]}\{0} is minimal and r1 ∈ Pβ [p] and r2 = h(r1) then
r2, r1, r has a common upper bound in Lim(Q̄) [older are compatible in Q0]
whenever r1 � {0}, r2 � {0} ≤ r ∈ P1 older r1 ≤ r ∈ Q0.

Remark ?? use Definition ?? below (though anyhow we do not use it).

Definition 12.7. Let Q̄ ∈ Kα.
1) We define cr(Q̄) as the family of objects p consisting of:

(a) w[p] ∈ [α]≤ℵ0 and let γ(p) = ∪{β + 1 : β ∈ w[p]}
(b) val(p) ∈ F ,Dom(val(p)) = w[p]

(c) for β ∈ w[p]∪{γ[p]}\{0}, a countable subset Pβ [p] of {q : q ∈ Pβ ,Dom(q) =
w(p)∩β and F |= val(p) � q ≤F

apr val(q)}, so for the minimal such β we get
a subset of Q0

(d) for β ∈ w[p] ∪ {γ[p]}, a countable family τβ [p] of Pβ-names τ
˜

of a member
of {true,false} and for each τ

˜
∈ τβ [p] we have a set Iτ

˜
[p] ⊆ Pβ [p] such

that q ∈ Iτ
˜
[p]⇒ q forces a value to τ

˜
(e) for β ∈ w[p] ∪ {γ[p]} and τ

˜
∈ τβ [p] the set Iτ

˜
[p] is a predense subset of

{q ∈ Pβ : val(q) ∈Pβ [p]}
(f) if β ∈ w[p] ∪ {γ[p]}\{0} and q ∈Pβ [p] and γ ∈ w[p] ∩ β and η ∈ ω>ω then

each “truth value(η ∈ q(γ))” belongs to τγ [p]. [So p involves a countable
subset of Q0.]

2) We say p1, p2 (which are in cr(Q̄), or more generally p` ∈ cr(Q̄`) for ` = 1, 2 with
the obvious changes) are strongly isomorphic as witnessed by the function h if:

(a) w[p1] = w[p2] and val(p1) = val(p2)

(b) h �Pβ [p1] is a 1-to-1 mapping from Pβ [p1] onto Pβ [p2]

(c) h � τβ [p] is a one-to-one mapping from τβ [p1] onto τβ [p2]

(d) for q ∈Pβ [p1] we have val(h(q)) = val(q)

(e) if τ
˜
∈ τβ [p1] then h maps Iτ

˜
[p1] onto Ih(τ

˜
)[p2] that is Ih(τ

˜
)[p2] = {h(q) :

q ∈ Iτ
˜
[p1]}

(f) if t is a truth value, τ
˜
∈ τβ [p1] and q ∈ Iτ

˜
[p1] and q 
 “τ

˜
= t” then

h(q) 
 “h(τ
˜

) = t”.

3) We omit the “strongly” if we replace in part (2) clause (a) by:
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(a)′ h is an order preserving map from w[p1] onto w[p2] and such that 0 ∈
w[p1]⇔ 0 ∈ w[p2].

Definition 12.8. We define “Q̄ is a semi F -psc iteration as witnessed by H̄ simi-
larly Definition 2.5 but

(a)′ F is a trunk control full iteration of length α∗ ≥ `g(Q̄) but F is trivial,
i.e. has one element (and still)

(b)′ Q̄ is a trunk control F -iteration but Q0 is just a forcing i.e. ≤Q0
apr is equality

as ≤Q0
pr =≤Q0

us

(c)′1 for every β < `g(Q̄) but β 6= 0 we have


Pβ “ Q
˜
β is an (F [β],V)− psc forcing notion

as witnessed by H′β and H̄ = 〈Hβ : β < `g(Q̄), β 6= 0〉
is an object so Hβ is not a Pβ-name

(c)′2 Q0 is proper.

Claim 12.9. 1) If Q̄ is a semi F -psc iteration then Lim(Q̄) satisfies the conclusion
of 2.9(1).
2) Lim(Q̄) is purely proper.
3) If Q̄ is strong (?? i.e. β ∈ [1, `g(Q̄) =
Pβ “Q

˜
β is a strong F [β]-psc”, see 2.9(2).

Saharon see §3.
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