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0. INTRODUCTION

This is a modest try to investigate iterations Q = (P4, Q, : @ < «*) which
increase the continuum arbitrarily. The support is (:ountablé7 but defining p < g,
only for finitely many a € Dom(p) we are allowed to fail to have pure extension.
More explicitly, every p € Q,, has a “trunk” tr(p), the apure part, and we demand
that (tr(p(a)) : @ € Dom(p)) is an “old” element, i.e. a function from V. In this
context we have a quite explicit form of properness which guarantees N; is not
collapsed. Assuming CH there are reasonable conditions guaranteeing the No-c.c.

We may be more liberal in the first step of the iteration. We then concentrate on
more specific context. We let Qp be Random 4, adding a sequence of random reals
(vy iy € A),and each Qy = Q45 is Qp_ p, = (D5 : n € ““w), Dy aPy-name of a
non-principal ultrafilter on w. However, for the results we have in mind, D} should
satisfy some special properties: in the direction of being a Ramsey ultrafilter. If
Qo = Random), we may try to demand that for every r € VU@ for “most”
B < A vg is random over V[r]. We do not know to do it, but if we can restrict
ourselves to measure 1 sets of the form U{lim(7T<">) : n < w},T a subtree of ¥>2
with the fastness of convergence of (|2" N T|/2" : n < w) to Leb(lim(T")) bounded
by g € V, moreover this holds above any € “>2. This is a “poor relative” of the
“Borel conjecture + b large”.

The method seems to me more versatile than the method of first forcing whatever
and then forcing with the random algebra.

Lastly in §7 we deal with a relative of [?]. We thank the referee and Andrzej
Roslanowski for infinite many helpful remarks and corrections.



Paper Sh:707, version 2012-04-06_11. See https://shelah.logic.at/papers/707/ for possible updates.

4 SAHARON SHELAH

1. TRUNK CONTROLLERS

We define in 2.1 the notion “.# is based on (%, : a < o*)”, note that it is used
in iterations (Po, Qp : a < o*, 8 < o) with Qp an Fs-forcing notion.
The reader may use only the fully based case, and ignore 1.20 (associativity).

Definition 1.1. 1) A trunk controller .# is a set or a class with quasi-orders
<=<Z and gprzgi (pr for the pure) and gaprzgfpr (apr for the apure) such
that: <, C< and <u,,C<.

2) We may denote <7 by <., =<7 (us for the usual).

—us

3) A trunk controller .# is Ni-complete if (&, <p;) is Ri-complete.
4) A trunk controller .Z is an iteration of (%3 : 8 < a) if:

(a) each #3 is a trunk controller,

(b) if f € .Z then ! Dom(f) C «a is countable and f € .FandB € Dom(f) =
f(B) € Fs

(¢) if f1, fo € Z then f; Sﬁ fo it Dom(f1) € Dom(f2)and(Vj3 € Dom(f1))[.%s =
J1(8) <pr f2(B)]

(d) f1 <7 fo iff
(¢) Dom(f1) € Dom(f2),
(i) B € Dom(f1) = Fp = f1(B) <us f2(B) and

(i#1) {8 € Dom(fr) : Fs |= F1(8) Zor fo(5)} is finite

(e) if f,g € F,Dom(f) C B <a,g| B <x f,then fU(g | [B,a)) € F is
<s-lub of {f, g} for x € {us,pr}, also if f, C fro41 € Z for n < w and
Ufn € F then U frnis a <p-lub of {f,, :n <w}

(f) f1 <Z, fo iff
(i) Dom(f1) = Dom(/f2),
(12) B € Dom(f1) = F5 = f1(B) < f2(B), moreover
(i7i) the set {8 € Dom(f1) : f1(8) # f2(8)} is finite and for those f’s,
T b= f[1(B) apr [2(B)
(9) if fe # and B<athen f[fe.Z.

4A) In part (4), for 8 < a let FV = Z[3] be Z3, (clearly normally uniquely
defined). If .# is a trunk controller, an iteration of . = (%, : vy < a) and < «
thenlet # | p = {f € # : Dom(f) C 5}.
5) We say a trunk controller .# is a full iteration of (%3 : 8 < «), when:

(o) Z is an iteration of (Fp: 5 < a),

(8) whenever f is a function with domain a countable subset of « such that

B € Dom(f) = f(B) € Fp then f € Z.

6) We say a trunk controller .% is finitely based on (%3 : 8 < «) when:

(o) Z is an iteration of (F3: 5 < a),
(B) 0 € Z5 minimal (for every 8 < a),

(y) f € Z iff fis a function with domain a countable subset of o and {3 €
Dom(f) : =(0 <pr f(8))} is finite.

Lnote that we did not say “iff”, this is a reasonable assumption, see part (5)
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7) We say % is the trivial trunk controller if: its set of elements is . (Rg) and
<=<pr=<apr are the equality on JZ(Ny).
8) In part (4), (5), replacing (%3 : < o) by a means “for some (Fg: 5 < a)”.

We now define when a trunk controller is “simple”. The aim of simple is helping
with proving a forcing in RNe-c.c.

Definition 1.2. 1) We say a trunk controller .# is simple (or satisfies the pure

Sﬁf—c.c.) if: for any sequence (yg : 5 < wq) of members of .# for some club E of
wy and pressing down function h : E — wo we have: for any ordinals € < ¢ from FE
of cofinality R; we have h(e) = h({) = y.,yc have a common Si—upper bound.

2) We say the trunk controller .% is almost simple (or satisfies the No-c.c.) if: for
any sequence (y, : v < wy) of members of .Z for some ¢ < ¢ < wy, there is a
common <-upper bound of y., y¢.

3) We say the trunk controller .% is a semi-simple iteration of ¥ = (%5 : < a*)
(or . is) when it is an iteration of .%,.%; is almost simple and every Fiyp is
simple. We say “simple iteration” if also % is simple.

Claim 1.3. Suppose that F = (Fp: B < a*)is a sequence of trunk controllers.
1) There is a unique trunk controller F which is the full iteration of % .

2) Assume CH. If F is semi-simple, i.e. Fq is an almost simple trunk controller
and each F14a is a simple trunk controller whenever 1+ < o, then the F from
part (1) is almost simple.

3) In part (2) if, F is simple, i.e. also Fy is simple, then F is simple.

4) If each Fg is Wy-complete, see 1.1(3), then in part (1) also F is Vy-complete.

Proof. 1),4) Are straightforward.

2), 3) For part (2) let y(*) = 0 and for part (3) let y(x) = —1.

Let f. € F for ¢ < wy and for each v € U{Dom(f.) : € < wa} define g, = (yy ¢ :
€ < ws) by

Yo — fe(7) ify € Dom(f)

& — .

? fmin{{<w2:'y€Dom(p<)}<'7) ﬁ’y ¢ DOIIl(fE)

S0 Yy,e € Fy for € < wy, hence by the assumption if v # () then %, is simple,

so there is a club E., of we and a regressive function h. on S? such that:

(x) if e1,e2 € E, N ng and h(e1) = hy(e2) then y, .,y -, has a common

gi”—upper bound.

Let cd be a one-to-one function from the following set into ws:

{g : g is a function into ws from some ountable subset of U {Dom(f:):e < wy}}.

Lastly, let E be the set of ordinals ¢ satisfying
©® (a) & < wsg is a limit ordinal,
(b) een{Ey:veU{Dom(f):¢ <e}}

(¢) if ¢ <eand gis a function from a countable subset of
U{Dom(f¢) : £ < ¢} into ¢ then cd(g) < e.
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Clearly E is a club of wy. For ¢ € Sﬁf N E let g. be the function with domain

Dom(f.) N (U{Dom(f;) : ¢ < €}) satisfying g.(7y) := hy(e) for v € Dom(g).
Lastly, we define the function h with domain £ N S§f by h(e) = cd(ge)-
Easily,

(x); ife e ng N E then h(e) is an ordinal < ¢
(x)2 if &1 < &2 belong to ng N E and h(e1) = h(e2) then

(@) gey = Gess
(b) Dom(fal) N Dom(f€2) = Dom(gsl) = Dom(g€2)7

(¢) if v € Dom(f.,) N Dom(f.,) and v # ~(x) then fe, (v), fe,(7) have a
F.
common <p,”-upper bound (they are y. ¢, ,¥Yy,e,, of course).
(%) If &1 < €9 are as in (*)9 and satisfy ® below, then the function f defined
in (%)4 below is a common Si—upper bound of f.,, f., where
@® if y(*) = 0 and it belongs to Dom(f.,) N Dom(f.,) then f., (0), fe,(0)
has a common §iﬂ—uppcr bound
(¥)4 we choose f as follows:

(a) Dom(f) = Dom(f,)U Dom(fe,),

(b) if € {1,2} and v € Dom(f.,)\Dom(f5_¢) then f(y) = f.,(7),
(¢) if v € Dom(f.,) NDom(f.,) then f(v) € %, is a common

Si”-upper bound of f.,(7), fe, (7)-

For part (3) we are done, for part (2) clearly there are £; < &5 in ng N E such that

Yo,e1,Y0.e, have a common <Zo-upper bound if 0 € U{Dom(f;) : ¢ < wi}. Now we
choose (f) such that

()5 (a), (b)  of (¥)a
(¢) like (c) of (x)4 for v #0
(d)  f(0) is a common <Zo-upper bound of o, ,Yo.c-

So we are done. 3

Claim 1.4. 1) If a trunk controller 7 is an iteration of F = (%, : v < a) and
B < a then F | B is a trunk controller, an iteration of (%~ : v < f3).

14) Similarly for “full iteration”, “being simple iteration”, “being semi-simple it-
eration”.

2) If F is simple, then F is almost-simple.

Convention 1.5. Let <7 =<7 and we write <7 for x varying on {us, pr,apr}.
Similarly in Definition 1.6 below.

Below we define “Q is an .%-forcing”, the intention is that Q is a possible iterand.
Note we define below “very clear” and “weakly clear” as conditions on Q helping
to prove the No-c.c. Now weakly clear suffices whereas very clear is preserved in the
iterations (the problem in preserving “weakly clear” is when defining a common
upper bound to have its val being an “old” function not just a name).

Definition 1.6. 1) Let .% be a trunk controller. An .%-forcing notion Q is a tuple
(@, <, <pr, <apr, val), we may put superscript Q to clarify, satisfying:

(a) @ is a non-empty set (- the set of conditions) (we may write p € Q instead
of p € @ and say Q-names, etc. and (Q, <) instead of (Q, <))
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(b) <, <pr, <apr are quasi-orders on Q (called the usual, the pure and the apure)

(€) <prC< and < C<

(d) val is a function from @ to (and usually but not always ? onto) .7, the
trunk controller

(e) QEp <. q= ZF E=val%(p) <, val¥(q) for z = us, pr, apr.

2) An Z-forcing Q is very clear (as an .%-forcing) or is a very clear % -forcing if:

F

(%) if po,p1 € Q and val®(pg), val?(p;) have a common <pr-upper bound y

then for some ¢ € Q we have py <pr ¢,p1 <pr ¢ and ValQ(q) =y.
3) An Z-forcing Q is weakly clear when:

if po,p1 € Q and Val@(po),valQ(pl) are <p,-compatible in %, then po,p:
are <p,-compatible.

4) An Z-forcing Q is apurely clear when: if po,p1 € Q and val®(po), val®(py) are
<-compatible in .% then pg, p; are <-compatible in Q.

Discussion 1.7. We can consider some variants: if p <, g, for £ = 1,2, do we
just ask ¢1,¢2 compatible? Does it suffice to demand “val(qy),val(gz) are Si—
compatible”? The natural examples satisfy this but the general theorems do not

need it.

Claim 1.8. 1) For an Z -forcing Q: very clear implies weakly clear.

2) Assume Q is an apurely clear F -forcing and F is almost simple, then Q satisfies
the Ny-c.c.

3) Assume Q is an F -forcing, Q is weakly clear and F is simple, then Q and even
(Q, <pr) satisfies the regressive ng—c,c,, see Definition 1.9 below.

Proof. Straight. O

Definition 1.9. 1) We say that a quasi order [P satisfies the regressive S-c.c. where
S is a stationary subset of some regular uncountable cardinal x when for every
sequence (p, : o < k) of members of P there are a club C of x and a regressive
function f on SN C (i.e. Dom(f) = SN C and for every o« € SN C we have
f(a) < ) such that :
if a, 8 € SNC and h(a) = h(B) then p,,ps are compatible in P.

2) We say “P satisfies purely regressive S-c.c” if (P, Sgr) satisfies the regressive
S-c.c.

Definition 1.10. Let trunk controller . be an iteration of (%5 : 8 < a*). We
define by induction on the ordinal o < a* what is an .#-iteration Q of length «

and what is Lim & (Q).

(a) Q is an ZF-iteration of length o when:

(@) Q= (Pg,Qs: 8 <a)
(B) if B < a then Q | B is an .Z-iteration of length 3

2Needed in the iteration, so actually what we need is that the range of the function val from
Qq is an object not Po-name. We waive it for the first step in the iteration, but this may cause
us extra demand in associativity of the iteration if phrased not carefully.
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(v) if 8 < v is a limit ordinal then Pg = Lim&(Q [ §)
(6) if @ = B +1 then Qs is a Pg-name of an F-forcing notion
(¢) Rang(val®?) is an object not just a Pg-name
(b) for an .F-iteration Q = (P3,Qp : f < ) of length o we define the .7 -forcing
notion P, = Lim(Q) as follows (see 1.13):
() the set of elements of P, is the set of p such that for some f € .F we
have
(i) pis a function
(#4) Dom(p) = Dom(f), so it is a countable subset of a,
(#5i) if B € Dom(p) then p(p) is a Pg-name of
a member of Qg,
(iv) e, “val®* (p(8)) = f(B)" for # € Dom(p),
(v) B<a=p]lpePs
Clearly f is unique and we call it val®=(p).
(B) <P¢ is defined by:
p <be ¢ iff (p,q € P, and) Dom(p) C Dom(q) and
“ Q »
B € Dom(p) = q | BlFe, “p(B) <pr a(B)”-
() <Fe is defined by:
p <P qiff (p,q € Py and)
(¢) Dom(p) C Dom(q) and
(i) B € Dom(p) = q | BlFe, “p(8) < ¢(8)” and
(#4i)  for some finite w C Dom(p) for every § € Dom(p)\w we have
[ Q R
g1 Blrp, “p(B) <pr q(B)
(9) gfgﬁ; is dfeﬁned by
P <ape ¢ iff (p,q € P, and)
(1) Dom(p) = Dom(q) and
(#1) p < g and (actually follows from the rest)
(#ii) B € Dom(p) = q | BlFp, “p(B) <apr ¢(B) in Qp”
(iv)  for all but finitely many 8 € Dom(p) we have ¢ | 3 IFp,

“P(B) i’ a(B)".

Remark 1.11. Note the difference between Clause (b)(d)(iv) of Definition 1.10 which
deals with iterated forcing and clause (f)(iii) of Definition 1.1(4) which deals with
iterated trunks.

Convention 1.12. If # and Q = (P3,Qs : 8 < «) are as in 1.10 then P, =

Limg(Q).
Claim 1.13. Let .Z be a trunk controller iteration of (F, : a < a*). If Q is an

F -iteration and B < Lg(Q), then Pg is a (F | 5)-forcing.
Proof. This is proved by induction on 8. The proof is straight. Oq.13

Claim 1.14. Assume .Z is a trunk controller iteration of F = (Fs - B < a*y;
moreover is a full iteration of % (see Definition 1.1(5)) and o < o™ and Q is an
Z -iteration of length o and v < g < a.
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1) IfpePg then p [y €Py and P |= “p [ v <pr p7.

2)P, CPg, t.e. pe P, = pePgand <r=<ir [ P, (see convention 1.5).

3) If p € Pg,x € {us,pr,apr},p [ v gfﬁw qgePyandr =qU(p | [v,B)), then r is
<% -lub of {p,q} when x € {us,pr} and p <,p, v and g <, © when x = apr.

4) If p <2 q then (ply) <a” (a]70.

5) Py <Pg and P,y 1 /P, is equivalent (and even isomorphic) to Q..

Proof. Straight. |

Claim 1.15. Assume Q is an Z -iteration of length a and P = Lim(Q) where F
is the iteration of F = (Fo :a < a*).

1) The property “very clear”, 1.6(4) is preserved, i.e. if each Qg (8 < ) is very
clear, then so is P = Lim #(Q).

2) If Z is [almost] simple and Q is very clear .Z -iteration, see Definition 1.6(4)
then Limg(Q) is [almost] simple hence satisfies the Ra-c.c.

3) The property “weakly clear” is preserved.

Proof. Straight. O

Remark 1.16. However in .Z-iterations where Q is only apurely clear (the case
holds by the following we use), no clarity is preserved, but Ng-c.c. still holds.

So putting things together we get

Conclusion 1.17. The forcing notion P = Lim(Q) satisfies the Ny-c.c. when

(a) the trunk controller Z is the full iteration of (%, : a < a*)
(b) each Fo is simple (see Definition 1.2(1))
(c) Qis a F-iteration (see Definition 1.6(1))

(d) each Q, is very clear (see Definition 2.5(3)) and weakly clear for a = 0.
Proof. By Claim 1.3(3) we know that % is simple. By Definition 1.10 we know
that P is an %-forcing. By Claim 1.15 we know that P is very clear. By Claim
1.8(1) we know that P is weakly clear.

Lastly, by claim 1.8(2) we know that P, even satisfies pure regressive Na-c.c.
U117

We can weaken the hypothesis of 1.17

Conclusion 1.18. The forcing notion P = Lim(Q) satisfies the Na-c.c. when

(a) Z is the full iteration of (%, : o < o)
(0)1

(b)2 Fo is almost simple (see Definition 1.2(2))
(¢) Qis an F-iteration (see Definition 1.6)

(¢)1 Qg is very clear if & > 0 (see Definition 2.5)
(¢)2 Qo is apurely clear (see Definition 2.5(5)).

F, 18 simple if a > 0

Proof. In the proof we use 1.3(2) instead of 1.3(3). Oi1s
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Claim 1.19. Assume % is a trunk controller iteration of (F, : a < a*).

0) The empty sequence is an F -iteration. For every Fo-forcing Q there is an
F -iteration Q of length 1 such that Qg := Q.

1) If Q is an .ZF -iteration of length a, o+ 1 < o*, P, = Lim#(Q) and Q is a Pq-
name of an F-forcing notion, then there is a .Z -iteration Q' of length o+ 1 such
that Q' | o = Q and Ql, = Q that is Q" (Lim#(Q), Q) is an F -iteration.

2)IfQ = (Ps,Qp : B < a) and « is a limit ordinal and Q | B is an Z -iteration for
every B < o then Q is an .F -iteration.

3) For any function F and ordinal o < o* there is a unique % -iteration Q such
that:

(@) £9(Q) <

(8) B<t9(Q) = Qs =F(@Q15)
(7) if B :=£g(Q) < a then F(Q) is not a (Lim#(Q))-name of an Fs-forcing.

Proof. Straight. 0120
Not really necessary, but natural and aesthetic, is
Claim 1.20. Associativity holds, that is assume

(a) F is the iteration of (Fs: [ < o)
(0)
(0)
(¢) forv < B < a* we define Pg/P,, an F-forcing, naturally: it is a P,-name
and for G, C P, generic over V its interpretation is:
() the set of elements is {p € Pg : Dom(p) C [v,5)}
(8) val: inherited from Pg that is vals/% (p) = valPg(p | [5,7])
(7) <a:p <z q iff for somer € G, we have Pg =rUp <, rUgq
(d) (@) let F' ={f:for somege F, [ isa function with domain
{e < &*: Dom(g) N [ae, acy1) # O} and € € Dom(f) = f(e) =
g | [oe, aeq1)}, the orders are natural
() () F.=1{f € F: Dom(f) C [z, csr)}
B) <T=<I17
Then I+ “Po..,,/Pa. is an F.-forcing” and we can find an F'-iteration Q' =
(PL,QL:e <e*) and (F. : € < €*) such that

Q = (Ps,Qp : B < a) is an F-iteration so Po+ = Limz(Q)
o'

(e 1 € < %) is increasing continuous, ag = 0, aex = a*

() F. is an isomorphism from P,_ onto PL
(B) when e < e, F. maps the P,_-name Py, /Po. to the PL-name Q.

Proof. Straight. O
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2. BEING #-PSEUDO C.C.C. IS PRESERVED BY .%-ITERATIONS

Our aim is a sufficient condition for not collapsing X; preserved by our iteration.
We would like to define, in Definition 2.1, what is a .%-pseudo c.c.c. forcing. We
will also define a function H, as a witness. Note that:

(a) the point of H is that it may be in the ground model (as is .# but not Q)

(b) H really stands for three functions but as we shall use (H, : a < a*)
corresponding to the length of the iteration we prefer not to use (Hy : £ < 3).

In the main cases, H disappears but O, is needed for proving properties of (the
limit of the) iteration.

Definition 2. 1 1) Let % be a trunk controller, Q be an .#-forcing notion. We
say that Q is F-psc (F-pseudo c.c.c. in full) forcing (notion) as witnessed by H if:
for every p € Q, in the following game 0, = 0,0 u = 0p[Q, H] between two
players, Interpolator and Extender, which lasts w; moves, the Interpolator has a
winning strategy.
In the {-th move:

X the Interpolator chooses a condition p’C such that p <, p’C,a <(=FE
val®(p.) <pr val®(pl) and® val®(p,) = H(((val®(p¢), val®(ge)) : € < ()
and then the Extender chooses ¢- € Q (we do not required the natural
demand p’C < ¢¢) and lastly the Interpolator chooses a condition pc such
that pC <pr p¢ and p< < g¢ = p¢ Zapr q¢ and pc <pr @¢ = P¢ Zpr q¢
and val%(p;) = H(((val%(pe),val%(qe)) : € < )" (val%(qe))). [For future
notation let ¢_; = p|.

A play is won by the Interpolator if:

(«) for any stationary A C wy, for some B C A we have

(¥) Bis astationary subset of w; and H({(val%(p¢), val%(ge)) : € < w1) " (B)) =
1

(B) if B C w; satisfies (%) then: for every ¢ < ¢ from B we have: ¢.,q¢ are
compatible in Q if ValQ(qE),valQ(qC) are compatible in % and val(p;) <
val(ge), val(pe) < val(qe).

(in the case the Extender chooses a weird g¢).

(y) for E = w; or just E a club of w computed from <(valQ(pE) val?(g.)) s e <
wi) we have: if ¢ < ( are from E, p. <, ¢- and p¢ <;r g¢, then g., g¢ have
a common <p,-upper bound ¢, with val®(q) = H(e, ¢, ((val®(p¢), val®(qe)) :
£<Q).

[Yes, we use <p,; true, we have demanded p. <apr ¢- (and pe <apr qc)
but this does not exclude p. <pr ¢- and even p. = ¢..
Why not just € < ¢ from B? For the iteration theorem 2.12.
Note that this is a requirement on .#. Note that p. <ur ¢e, pc <pr ¢ 18
not guaranteed.]

3note that Pe <pr pC is not demanded; the following demand is needed just in order to show

that if .7 is as in 2.3, then clause (3) below is not empty
4our not demanding “p’ < q¢” is used in the proof of 2.12(1)
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2) We define “Q is (F, £)-psc as witnessed by (H, £2)” as above (when &2 includes,
among other things, some stationary subsets of wy; usually, & is V, or some inner
model V') but at the end defining when a play is won by the Interpolator, we make
the changes:

(o) in every limit stage the Interpolator has a legal move or the sequence
(val®(pe), val®(ge)) : € < ¢) is not in P and he wins immediately

(B) if (val%(pe), val%(qe)) : ¢ <wi) € P then for every stationary set A € &2
of wy, there is a stationary subset B € & of w; as there.

(We may use (%, V'), V' an inner model. In this case normally H and .% are from
V’. This means that the Interpolator player does not “cheat” making the play
end prematurely because he has to “obey” H, whereas the Extender player is “not
motivated” to cheat as then he loses the play.)

3) In the description of the game, we can replace <(ValQ(p5),valQ(qE)) ce < () by
(val%(g.): =1 <e < ().

4) If we omit H and, to stress it we may say bare, this means that: we just omit
the relevant demands on the Interpolator in X and in (%) of («) of part (1), just
requiring that (5) and () hold.

4A) If we omit clause () of (1) we say “weakly .#-psc”.

Remark 2.2. 1) Clause (7y) is used in the proof of the iteration claim 2.12, so we
need it there on each Qg.

2) To prove clause (7) it on the limit P, is not really needed (as clause (v) of 2.1(2)
is needed only for the iteration claim, i.e., so we need it about the Qg’s, but for the
limit Pg it will be needed only if we like to deal with the associati;/ity law).

Definition 2.3. .7 satisfies the apure c.c.c. when: if (y. : € < wy) is §§
and y. Sir ze for every ¢ < wy then there are ¢ < ¢ < w; such that z., z¢ are

compatible in .%.

-increasing

Remark 2.4. We may combine Definition 2.1(1), 2.3, that is in 2.1(1) we omit in X
the demand “c < ¢ = .Z = val%(p.) <, val%(p¢)” but to clause (8) we add:

(B)" if B C w satisfies (*) then for some ¢ < ¢ from B,val%(p.),val®(p;) are
compatible in 7.

Definition 2.5. We say Q is an .#-psc iteration as witnessed by H if:

(a) Z is a trunk controller, a full iteration of length o’

(b) Q is an F-iteration so £g(Q) < o

(c) for every B < £g(Q) we have IFp, “Qp is an (F1P1 V)-psc forcing notion as
witnessed by Hg” and H = (Hg : § < £g(Q)); note that Hg € V and is an
object, not a Pg-name.

Definition 2.6. Let .%# be a trunk controller and QQ be an .%#-forcing.
1) We say that Q is a strong Z-psc forcing notion as witnessed by H when for
/

every p € Q in the game D; =p0H = D;, [Q, H] the Interpolator has a winning
strategy, where the game is defined as in 2.1 except that in addition we demand

® £ < (= QI pe <pr 1.
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(Recall that by Definition 2.1(1) e < ( = 7 | “val(pc) <pr val(p)”).
2) We say strong® when we change ® to

® e<(=QFp.< p’C and recall p <, plg.

3) Saying “an iteration Q is strong™” in Definition 2.5 means that this holds for
each Qg.

Definition 2.7. A forcing notion Q is purely proper when:

(a) Q=(Q, <, <pr) where <,,C<

(b) if x is large enough Q € N < ((x), €) and N is countable and p € NNQ
then there is ¢ such that p <,, ¢ € @ which is (N, Q)-generic.

Claim 2.8. 1) If Q is strong .Z -psc, then Q is strong* .% -psc.
2) Assume

(a) Q is a o-centered forcing notion, i.e. Q = |J R, each R, directed and for
n<w
simplicity may assume n # m = R,, N R, = 0 and each R,, is non-empty

(b) F is such that its set of elements is w and .F = (Vn < w)(Vy € F)[n <p:
y = n =y similarly for <,p.
(¢) Q, i.e. (Q,<,<pr,<apr,val) is defined by:
(@) (Q% <) isQ,
(B) <% is equality
(7) <& is <
)

apr
(8) val®(¢g) = Min{n : g € R,}.

Then % is a simple trunk controller satisfying the apure c.c.c. and Q is a very
clear F -forcing which is % -psc and purely proper. (See Definition 2.7).
3) Assume

(a) Q is a forcing notion, o* is an ordinal, h = (hy : ¢ € Q) is such that
(o) hq is a finite (partial) function from o to w

(B) if h = hqg, U hg, is a function then gi,q2 has a least common upper
bound g with hy = hg, U hy,

(7) if @1 < g3 then for some q2,q1 < g2 < q3 and hg, < hg, A Dom(hg,) =
Dom(hy,)

(0) if 1 < g2 then Dom(hg, ) € Dom(hg,)
(b) F is a trunk controller whose set of elements is {hq : ¢ € Q} such that
hlh g hqz g y ': hth < hlJ2 And y ): h!h Spr hQ2
(c) (Q, <9< <R, <2 val) is defined by
(a) (@, g@) is Q, the forcing
B) p<qiff p<qNhyChy
M <t qif r<q
(8) val%(q) = hy,.

Then Q is F-psc.
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Proof. 1) Trivial.
2) See the proof of 5.3.
3) The Interpolator choose p. = p = pL. Clee

Claim 2.9. Assume % is an apure c.c.c. trunk controller, Q is .F -psc.
1) If p € Q and 7., is a Q-name of an ordinal for m < w, then for some q and
(an 1 n < w) we have:

(@) p<p q
() qlF “T € {an :n <w} form <w”.

2) If Q is a strong* F -psc, then Q is purely proper.

3) Moreover assuming Q is strong F-psc, if Q € N < (A (x),€), N countable,
p € QNN then we can find q such that p <, q and for every Q-name 7 of a
member of V, 79 = {r: for some p’ we have p <,; ' <pr ¢,p’ € N,p’ <apr r and
r forces a value to } is predense above q.

4) Assume Q is F-psc; p € QN = (N. : € < wy) is an increasing continuous
sequence of countable elementary submodels of (H(x),€,<%) such that F,Q,p
belong to No and N | (e4+1) € Noy1. Then for a club of ¢ < wi, there is
P € QN Neyq such that p <, p’ and p’ is (N, Q)-generic.

5) If Q is strong* . -psc and N is as in part (4), then for every ¢ < wy there is
p' € QN Neyq such that p <p, p' and p' is (N | (¢ + 1),Q)-generic; hence Q is
purely e-proper for every € < wy.

Remark 2.10. 1) Note that if AxT(X;-complete) or just Axt(Levy(Xy,2/9)) see
e.g. [?, XVIL§1] (slightly more than every stationary . C [2/Q]R0 reflects in
some A C 2/ of cardinality ®;) then by 2.9(4) also in 2.9(1) we can get purely
properness. So the difference is very small and still strange.

2) Note also that, by 2.9(4), if Q is an iterated .#-forcing, .7 is the trunk controller

iteration of (%, : a < o*) and £g(Q) = ¢ is a limit ordinal of cofinality > R then
IFp, “«P(w)VIsl = {2 (w)VIPel - o < 6},

Proof. Let H be a witness for “Q is psc”.
1) Assume not and simulate a play of the game O, = O g1, where the Interpolator
plays using a fixed winning strategy whereas the Extender chooses g¢ such that:

(@) pp < g¢ (see notation in 2.1(1))
(i.e. alegal move)
(B) for some m¢ < w the condition ¢, forces a value to Tme, call it j¢

(1) J¢ ¢ {Je re < ()

If the Extender can choose g¢ for every ¢ < wi, in the end € < (andm. = m¢ =
¢e, q¢ are incompatible (as j. # j¢) so there exists a stationary B C wy, such that
{e,{} € B = ¢.Lq; but the Interpolator has to win the play (as he has used
his winning strategy); contradiction by (3) of 2.1(1) because % is apurely c.c.c.
therefore in the sequence (val®(q.) : € € B) there are pairs of compatible members
of .Z (recalling Definition 2.3).

So necessarily for some ¢ < w; there is no g¢ as required. Let p* be p’c 50D <pr P
by the definition of the game. By our assumption toward contradiction, for some
m < w we have p* W “r,, € {je : € < (}” hence for some ¢ we have p* < ¢ and
qF “7p & {jc : € < (}”. Let an ordinal j ¢ {j. : ¢ < (} and condition ¢’ be such
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that ¢ < ¢’ € Q we have ¢’ I “7,, = j7. But then the Extender could have chosen
gc =¢',jc = j and m¢e = m and so clauses («), (5), () hold, a contradiction.
Note that we could have replaced clause () by

(7)~ gc is incompatible with ¢. whenever € < ¢ and m¢ = me.

2) Let N < (#(x), €, <) be countable, Q € N and H, st € N and p € NNQ. Let
(Tn : n < w) list the Q-names of ordinals which belong to N. We define a strategy
St. for the Extender in the game o,; so in stage ¢ he has to choose g such that
pf: < ¢¢. If for some n, for no countable set X of ordinals, p’C I “r, € X7 let n(¢) be
the minimal such n. As in the proof of the first part there are (g, j) such that: p’C <q
and q Ik “7, ¢y = 57 and j ¢ {i : for some € < ¢ we have g. IF “7,,(¢) = "}, choose
a <} -minimal such pair, call it (gc, j¢), so the Extender will choose g¢. If there is
no such n, let n(¢) = w and ¢c = p’C. Now in o, the Interpolator has a winning
strategy St;, without loss of generality St; € N. Let <p’<7pg, gc : ¢ <wi) be a play
where the Interpolator uses the strategy St; and the Extender uses the strategy
St., clearly it exists and the Interpolator wins. Clearly € < { < w1 = n(e) < n(()
(read the choices above, that is, if € < ¢ then p. < p} (by &' of Definition 2.6, i.e.
by “strong™”) and p. <, pe (by X of 2.1(1)) hence p. < p};). Now we prove by
induction on n that for some ¢ < wy,n(¢) > n and let ¢, be the minimal such (,
o) p’C IF “7, € X,,” for some countable set X, of ordinals. If we fail for n, then:
if (,e satisfy |J (m < ¢ < e < wi then (g¢ IF 7o = jc)and(g: IF 7, = jc). But

m<n
necessarily jo # jo hence g¢, . are incompatible, but this contradicts the use of

Sti.

Now for each n < w the sequence <p’c, Pe,qe © ¢ < () can be defined from p,
Sti, (7¢ : £ < n) and H (read the definition of St.) hence (p¢., p¢, g¢ : ¢ < () € N, s0
¢, € N, and similarly p’cn € N. So as p’< Ik “r, € X,,7, the set {¢ :p’gn Wi, £}
is countable and it belongs to N. So p} |- “r, € NN Ord”. Now if ( < w; is
> U ¢ thenn < w= p'c < p¢ hence p’C is (IV, Q)-generic, so as p <pr p’C clearly

n<w
p’C witnesses the desired conclusion required by “purely proper”.

3) As in the proof of (2) above but now ( < ¢ = Q = p¢ < p. (by the “strong”)
hence the proof of (2) gives the desired conclusion.
4),5) Let §. = N Nwy, for € < wy. We can find a sequence T = (7, : & < wy) such
that we have T [ §; € N.4+1 and T | 0. list the Q-names of members of V from N,
and a < 6. = 7° [ a € N,.
[Why? Let 7¢ be the <}-be the first sequence of length J. enumerating the Q-names
of members of V from N; such that ( < e = 7¢<17°.]

We again simulate a play of the game such that

(a) the Interpolator uses a fix winning strategy which belongs to Ny

(b) the Extender chooses g, so that:
(o) if possible for some v < « the condition ¢, forces a value z, to 7
which is not forced by any g¢g for 8 < a

(B) modulo clause («),~ is minimal and then (ga, 74 ) is <}-minimal.

Clearly the play up to the (d. + 1)-th move belongs to N.1.
For part (4) let S1 = {a < wy : ¢q is n0t (Ng, Q)-generic and N, Nw; = a}.
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Assume toward contradiction that S; is stationary. So for each o € Sy there is
Yo < a such that g, forces a value to 7, not forced by any gg for 5 < « hence (by
Fodor’s lemma) there is a stationary S C Sy such that o € Sy = 7, = 7.. But we
can find a; < ag in Sy such that g, ¢a, are compatible, easy contradiction.

For part (5), let A = {e < wy : pL is not (N, Q)-generic}. If A is stationary we
get contradiction to “the Interpolator has won the play because he uses a winning
strategy”. So we are done. oo

Remark 2.11. Of course, if (QQ, Sgr) is Wy-complete, part (2) of 2.9 follows from
part (1).

[Why? Let N < (J(x),€,<}) be countable such that Q € N and p € QN N.
Let (15, : n < w) list the Q-names of members of V which belongs to N. We now
choose (p,, X,,) by induction on n < w such that

® (a) po=p
() pn€QNN
(€) pm<prpnifm<n
(d) X, € N is a countable subset of N so € V
(e) ifn=m+1thenp, IF “r,, € X,,”.

~—

For n = 0 this is trivial.

For n = m + 1 there is a pair (p,, X,) as required by clauses (c) + (e) by
2.9(1), so as Tm,Pn, Q € N there is such a pair in N, so we are done. Now by the
assumption there is ¢ € Q such that n < w = p, <, ¢, so ¢ is as required.]

Lemma 2.12. Assume .Z is a full trunk controller iteration of .F .

1) If Q is a .Z -psc iteration and .F has the apure c.c.c., then for every a < £g(Q)
the forcing notion P, is a F-psc forcing notion.

2) Similarly with strong.

3) Saharon: you need also, similarly for strong™ for claim 3.8 in the next section.
Proof. 1) Let H = (H, : a < £g(Q)) be a witness for “Q is an .#-psc iteration”.
Let a < £g(Q). We prove this by induction on a and let p € P,, and define H®
naturally composing the (H, : v < a) and we shall describe a winning strategy for
the Interpolator in the game o, = Dy, p, . He just guarantees that:

(*)o (a) Dom(p;) = U{Dom(p.) : e < (}

b) Dom(p¢) = Dom(qc) if p;: < g¢ and Dom(p¢) = Dom(py) otherwise

(
(
(¢) if pe(y) # ge(y) then vy € L<J< Dom(p.)
(

d) ifvye CU Dom(p¢) and &(v) = & = Min{¢ : v € Dom(p¢)}
<wi
then ”‘IPw “<p/5(7)+1+¢(7)7Q§(w)+1+c(7)7pg(y)+1+4(7) tC<wr)
is a play of O, _ (,)[Q,, H] in which the Interpolator uses a fixed

”

L 5
winning strategy Sj:p&W () -

[Why can he does it? The main point is to check that p’C,pC is well defined and
belongs to P, (and satisfies the appropriate inequalities). The point is that even
if the Extender plays “reasonably”, i.e. p’C Sﬂgg gc, we know that for every v €
Dom(p’g),qc Iy ke, “p'(Q) < q(¢)” but this does not mean that pe [ v IFp,

See https://shelah.logic.at/papers/707/ for possible updates.
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“p'(v) < q(v)”. However, the game was defined in Definition 2.1 such that, in
particular for the game for Q, it is not required that IFp. “p’(v) < q(v)”.

Let us elaborate. There is no problem for the Interpolator to choose p’c.

If the Extender has chosen g¢, clearly p¢ is a function with domain Dom(g.) and
pc(B) is a Pg-name of a member of Qg with val?##<(®) given by Hp.]

Now

(#)1 P <pe pe-
[Why? Dom(p;) € Dom(p¢) in both cases of clause (b) of (x)o and for every
B € Dom(p’c) we know that pc(8) is as dictated by the strategy Stiﬁ () hence
purely extends pg(3).]

(#)2 pc < ac if Pa = “pf < qc”.

[Why? So assume P, E “p’C < ¢¢”. Now the conditions p¢,gc have the same
domain by lclause (b) of (%)o arid/if g€ Dom(QC)\Donll(p/C)’ then p¢(8) = q¢c(B). gf
8 € Dom(p,.) then g | Ik, “p,(8) < gc(8) hence p-(8) <pr Pc(B) Zapr 4c(8)”,
by the strategy choice, so in particular g¢ [ 51 pe(8) <apr q¢c(5)-

Let we == {f € Dom(p’g(ﬁ)) tqc | B e, “p’C(B) <pr 4¢(B)”}, we know that we¢
is finite by the definition of <F~. Now for 8 € Dom(p’c)\wc we have q¢ [ 8 IFp,
“Pe(B) <pr qc(B)”, this implies g¢ [ B ke, “pe(B) <pr ¢¢(8)” by X of Definition
2.1(1). Together all the demands for the satisfaction of Py = “pc <apr q¢” holds.]

(¥)3 pe <pe qc if pp <pr qc-

[Why? Assume Py, = “p}: <pr g¢”- The proof above works with w¢ = 0).]

By (%)p — ()3 all the demand in X of 2.1(1) holds, so the Interpolator can use
this strategy, we still have to prove that it is a winning strategy.

Let (p;,qc,pe + ¢ <wi) be a play of the game O,[P,] in which the Interpolator
uses the strategy described above. To prove that the Interpolator wins the play, let
A C wy be stationary and A € V| of course.

We shall use freely

® if A € V is a stationary subset of w; in V and v < « then IFp, “A is a
stationary subset of wy”.

[Why? Note that 2.9(1) is not enough and 2.9(2) has an extra assumption but
2.9(4) is enough.]

For ¢ € |J Dom(pc) let E¢ be as in clause () of 2.1(1) for Q¢ and let E' = {4 :

e<wy
d limit and ¢ € |J Dom(p,) = ¢ € E}. Note that E is a club of w1, s0 ANE is a
e<d

stationary subset of w;. Define w; = { € Dom(p¢) : q¢ | v ¥e, “pc(v) <pr ac(7)"}
s0 by (*)2 we have “pe <apr g¢”, hence by the definition of .#-iteration, we is finite,

and by the strategy of the Interpolator we have we C |J Dom(p.). So by Fodor
e<(
lemma for some stationary Ag C AN E we have ¢ € Ay = we = w*.

Letting w* = {7, : £ < k} be such that v, < 7441, we choose by induction
on ¢ < k a stationary set Ay C w;y (from V| of course) such that Ay C Ay and
H,, ((val% (@e(ro)+c(e)) : =1 < ( <wi), Apyr) is 1. For £ = 0, Ag has already been

chosen, for £+1, in Ve, we know that (9%, 1 1.4¢ (70)s Pe(re)+14¢ (V0)s ey 4 14¢ (V) -
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¢ <wi) is a play of the game Oy, _ ' (+,)[Q,, H,,] in which the Interpolator uses a

winning strategy and ((val® (pg(wHHC(w)),val@W (Geyo)+14¢(ve)) 1 ¢ < wi) is a
sequence of pairs from .# D¢ and the sequence is from V; recall we use H. So by
clause («) of Definition 2.1(1) there is a stationary Ay,y1; C A, as required above
which means that it satisfies (%) from clause («) from 2.1(1) hence clause (3) ap-
plies. Lastly, let B =: A, we shall prove that B is as required, we concentrate on
(8) of 2.1(1); the other clause, (), is similar.

Let € < ¢ from B be such that val®(q.), val®»(g;) are compatible in .# and
we shall find 7 as required, i.e. is above ¢.,qc. Stipulate v, = o and we now let
Y = Dom(g¢) U{a} and we choose by induction on v € Y a condition 7, € P, such
that

® (1) g v <ryand
(1) qc v <ry,and
(i) ify=6-+1and § € Dom(r,)\w* then r, | 1, “6.(8) <pr r4(5)
if 8 € Dom(g.) and q¢(8) <pr r4(8) if 5 € Dom(q¢)”
() fpeYnyand [B,y]Nw* =0 thenrg =r, | 5.

Case 1: v = Min(Y).
Let 7y = 0, the empty function.

Case 2: v # Min(Y) but yNY has no last element.

Let 7y = U{rg : B € yNY and § > max(w* N~) if w* N~y # 0}, now check; it
is a well defined function by clause (iv). We use here “# is a full iteration”, see
Definition 1.1(5) to show 7, € P,. Lastly note that for checking g, [ v < r, and
ge [ v <y we are using clause (iii).

Case 3: Y N+ has last element 8, 8 ¢ w* and 8 ¢ Dom(q.).
We let Dom(r.,) = Dom(rg) U {8}, 7r,(8) = gc(B) and of course r, [ = rg.

Case 4: Y N~ has last element 3, 8 ¢ w* but 8 € Dom(qe).
Now, rg necessarily forces that

(*)4 p((ﬂ) Spr %(5) and pe(ﬂ) Spr q.e(ﬂ)-

So by clause (v) of Definition 2.1(1), rg forces that in Qp there is r such that

4c(B) <pr 7,¢-(8) <pr 7, and val®* (r) is as it should be by clause () of 2.1(1)
(so it is an object, not just a Pg-name). Lastly let r.,(5) be a Pg-name of such a
condition.

Case 5: Y N~ has last element 5,5 = v, € w*.

By the choice of Ay1, we know IFp, “q-(8),qc(B) are <9 compatible”. So,
for some r'ﬁ,rﬁ <Ps 7",’3, for some z € .Z¥ the condition r’ﬁ forces that some <@4-
common upper bound 7 of p¢(B),qc(B), satisfies val® (1) = x, and let r, =
rp U{(8,r")}-

So we are done.

2) The proof for the “strong .%-psc” version is similar. In fact, the only additional
point is St;fEw (7) used in () is a winning strategy for the Interpolator in the game
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E);) e (1.0, H, " Then, of course, we have checked that the strategy we have defined
satisfied also ® of Definition 2.6(1),ie. e <{=pe <pr p’c. But this is easy. .19
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3. NICER PURE PROPERNESS AND PURE DECIDABILITY
Is pure decidability preserved by the iteration? We give sufficient conditions.

Definition 3.1. 1) Let .% be a trunk controller. We say that an #-forcing Q is
strongly ™ .#-psc forcing when in Definition 2.1, we:

(a) strengthen X of 2.1(1) demanding (as in Definition 2.6) ¢ < ¢ = pe <pr P}
(i.e. Q is strong .Z-psc)

(b) strengthen clause (8) of 2.1(1) adding: if € < ¢ are from the set B and
valQ(qg),valQ(qC) are compatible in % then (in addition to ¢.,gc has a
common upper bound) there® is 7 such that

(i) p¢ <aprT
(“) g <1
(#4@) 1 is a lub of p¢, g.
(tv) if p. <pr ge then pe <pp 7.

2) For .Z an iterated trunk controller of (Z, : & < o*) and a .Z-psc iteration Q
we say Q is strongly"-psc (for H) when IFp, “Q, is a strongly™ .%g-psc for Hg” for
every 3 < £g(Q).

Claim 3.2. Assume

(a) Q is forcing by a measure algebra or just Q satisfies the stronger version
of the c.c.c. implicit in 2.1(1)(a): if po € Q for @ < wy and A C w
is stationary then for some stationary B C A,(p, : « € B) are pairwise
compatible

(b) the trunk controller % is defined by
(a) set of elements in Q

(B) <7=<7Z s the order of Q

—apr
() §f§ s equality

(¢) Q is an F-psc defined by:
(«) the orders are as in F

(B) val®(=) is the identity.
Then Q is a .F — psc, even strongt and is apurely clear and .F is a purely c.c.c.

Proof. To show that Q is . — psc, we now define a strategy for the Interpolator
player.
In the game 0, g:

(1 the Interpolator chooses p; = p and p’C =Dp.

The demands in K of 2.1(1) are easy: as val®(—) is constant the demands involving
it are satisfied trivially. Also Q | “pi <pr p¢” hold as it means Q | “p <pr p¢”
which means Q = “p = p and p¢ < ¢.” which holds.

Second, Q = “pi < q¢” = Q F “p¢ <apr q¢” is also trivial.

Third, Q = “p’C <pr q¢” means p = p’C = q¢, so trivially Q = pe <pr gc-

5Saharon recheck when Extender chooses weird q’s
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To prove that this is a winning strategy, for any play ((p¢,qc,pc) @ ¢ < w1)
in which the interpolator uses this strategy, clauses («), () hold by clause (c) of
the assumption. As for clause () it assumes p. <pr ¢= A p¢ <pr ¢c but then
e =PpAg¢ =D S0 ¢ is a common <p.-bound as required.

What about “strong®”? See Definition 3.1(1). Clause (a) there says ¢ < ¢ =
De Zpr p’C and it holds as the strategy guarantees p. = p = p’c. For clause (b) there
it suffices to prove for ¢ < ¢ from B that there is r such that (substituting the
equalities we know)

(i) p<r

(”) g <r

(#i7) r is a lub of p, .
(iv) if p = g. then p = r.

So r := ¢, is as required. Us.o

Claim 3.3. Let .Z be apure c.c.c. full trunk controller iteration of F of length o**
and Q be a stronglyt .F -psc iteration and o = Lg(Q).

1) Ifplkp, . “Tn, € V" forn < w, then we can find g and I,,(n < w) such that:
P <pr ¢ € Po~ and for each n < w we have (*)q,7, r,, which means:

(a) q¢€ ]P)a*

(b) Fn C{r:q <apr 7 and r forces a value to T}
(¢) &, is countable

(d) £, is predense above q.

2) If {p,Q} € N < (H#(x),€) and N is countable and (7(n) : n < w) lists the
Py« -names of ordinals from N, then we can add

(e) q is (N,Pqx)-generic.

Remark 3.4. 1) We can break the claim to two claims; the first saying that for
a strong™ .Z-psc iteration Q,P,- is a strong® .Z-psc. The second saying that a
strong™ % -psc forcing P satisfies the conclusion of 3.3(1).

2) Concerning (*)gq,.7,,r,,» we know by 2.9(3) that for some ¢, (%, : n < w) clause
(a),(c),(d) there holds, as well as

(b)~ A C {r : ¢ < r and r forces a value to 7,}, but the ¢ <., r will be
missing.

Proof. Let St 4 be a Py-name of a winning strategy for the Interpolator player in
the game for Q, and ¢ € Q, as guaranteed in the Definition of “strongly™*”.

By the proof of 2.12 we can combine them to a winning strategy St for P, and
p. Now we simulate a play of the game such that the Interpolator player plays
according to St and the Extender play as in the proof of 2.9 for (1, : n < w). Let
the play produced be ((p}, q¢,pe;me,j¢) : ¢ < wi). In particular (p¢ : ¢ € [~1,w1))
is purely increasing [Saharon: I don’t find the reason for purely increasing] and
D¢ Zapr g¢- So for some ¢ we have:

(%)o there is no m < w and ¢ such that

(i) pc < q
ii) if e < { A'm = m. then ¢, ¢¢ are incompatible.
¢
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Let

US = Uy = {e < C:m.=m and D¢, ge are compatible}.

m

For each m < w,e € %y, let r. be a lub of p¢, ¢. as guaranteed to exist by clause
(b) of Definition 3.1.
So

(*)1 S %m = “pC Sapr TE”‘

[Why? By the same clause (b) of Definition 3.1, i.e. 7. has same domain as p, for
all but finitely many coordinates  is a pure extension of p¢, and for the exceptional
coordinate r is an apure extension, really for all.]

(¥)2 I :={r. 1€ € Uy} is predense above p.

[Why? If not, there is ¢ € P, above pc which for every € € %,, is incompatible
with r. hence with ¢. (if not let ¢ < ¢’,q- < ¢/, but pc < ¢ < ¢’ so ¢’ has to be
above . as a lub of p¢, ¢, contradiction). So ¢ is above pe but incompatible with
every ¢. when € < { A m. = m. But this contradicts the choice of (.]

So p¢, (F 1 n < w) are as required.

Definition 3.5. Let .% be an iterated trunk controller and Q an .%#-psc iteration
of length a.. For 8 < a let P, = p <pr g ¢ mean that:

(a> Pa ’: ccp S q77
(b) if v € Dom(p)\B then ¢ [ v IFp, “p(7) <pr q(7)”.

Claim 3.6. If in Definition 3.6 we have § < o and Py = “p <,vp ¢ then for
some non-limit n < f we have Py = “p <prn q”.

Proof. If B = 0 or 8 is a successor ordinal, choose n = 8. If § is a limit ordinal,
take n = (Dom(p) N B) + 1. O
Definition 3.7. 1) A forcing notion Q has (6, o)-pure decidability if:

if pe Qandplrg “7 € 607, then for some A C 0,|A| < ¢ and ¢

we have p <, g€ Qand ¢ IF “7 € A”.
2) We write “-pure decidability” for “(8, 8)-pure decidability”.

Claim 3.8. 1) Assume Q is an . -iteration and:

(a) B* < o = Lg(Q) and B € [B*,a*) implies IFp, “Qp has pure (2,2)-
decidability”, see Definition 3.7

(b) t is a Py~-name, IFp_. “t € {0,1}”
(€) (¥)p,.z¢ from 8.8(1) holds for some &
(d) each Qg (for B € [B*,a")) satisfies p’ ggf P’ = val® (p) = val¥ (p);

a natural sufficient condition for this is for every g € [B*,a™) Si” is the
equality on Fga.

Then there are t',q' such that:

(Oé) p Spr,ﬂ* q/
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B) d 1B =plp*
(7) t' is a Pg«-name
(6) q/ }_]Pa* “1;/ :1:7).
2) Similarly for pure (Ng, 2)-decidability.
Remark 3.9. Use in 5.16. Saharon check.

Proof. 1) Case 1: Dom(p) C 5*.

Trivial.
Case 2: Dom(p)\g* # 0.

For each 8 € [8*, a*) we define Pg-names t%,g}g,gg (and later g%) as follows. Let
Dom™ (p) = Dom(p) U {sup{y+1: v € Dom(p)}}. Let G5 C Ps be generic over V.

Possibility A: There are ¢ € P,+/Gg such that p <, 3 ¢, Dom(q) = Dom(p) and
qlrp,.jq, “t=1".

Let th[Gﬁ] be 1 and t%[Gg] = ( and let gg[Gg] be (p | B) U (q | [B,a"]).
Possibility B: Not possibility A.

Let t3[Gs] = 0,t5[Gs] = 0 and g[Gp] = p.

In the first possibility, note that we have demanded Dom(q) = Dom(p); in the
second possibility this holds automatically.

Let t3(Gs] € {0,1} be 1 iff t3[Gp] = 1 and for no v € 4N Dom(p)\f* do we
have t1[Gs NP,] = 1, clearly also t3 is a Pg-name of a number € {0, 1}.

Now note

X IFp_ . “there is one and only one 3 € Dom(p)\B* such that t%[Ga* NPgl =1
call it B7.

[Why? First the “at most one” follows by the definition of 1;%. Second, for the
“at least one” it is enough that p IFp_. “for some 5 € Dom(p),té =1". Now we
separate the proof to two cases. By clause (c) we have (*), # ¢ from 3.3(1), so if
Go+ C Py~ is generic over V and p € Gg then some ¢ € . belongs to G so by
clause (b) from 3.3 we have p <,,; ¢ and ¢ forces a value of t. This means that
t) ([Gar] =1 for y(x) = sup{y +1: v € Dom(p)} ]

So we can define ¢ € P~ as follows Dom(g) = Dom(p) and for v € Dom(p) : ¢(7)
is a Pg-name, so let G, C P, be generic over V, now if v > * and B[G,] is well
defined and < «, ie. for some y; < ’y,gil [Gy NPy, ] = 1 then q(v) = gs(7),
otherwise ¢() = p(7). (So ¢ in a sense purely extends p but only on a relevant end
segment. Next we shall try to make this end-segment as short as possible).

Now for each 3 € Dom(p)\3* we define a Pg-name ¢l%! € Qp, such that:

© () a(B) <pr g, ie. Iy, “q(B) <pf ¢
8 val® (glfl) = val®s 3)); recalling clause (d) of the assumption
( q p g p
~v) if £ <2, and there are ¢/, 4 such that IFp, “q(3 S@Qf ¢’ and
4 ) P
g’ ”_@5 ~tgH = 1" where 3 is a Pg-name, then the triple

(g[m,jg,ﬁ) satisfies this for some Pg-name g’g of a number < 2,
moreover
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(7)" gq,i%,i} are such that:
(i) g[ﬁ] is a Pg-name of a member of Qg, purely extending ¢(3)

(i) j%,g’é are Pg-names of number < 3

(ii7) in VP# either g[ﬁ] IFqg, “ggﬂ = jg” gg[ﬁ] has no ng -extension forcing

¢ 0
a value to tz ; and iz = 2.

So as above gé[Ga* NPg] =1 and let ¢ witness it, so Possibility A holds so there is
g € Po+ /(Gox NPg) such that p <, ¢,Dom(q) = Dom(p) and ¢ lFp_. /Gg“t = £".
This holds in V[Gpg] hence there is € G which forces all this, and without loss
of generality Pg = “q [ 8 < r”.

We now define ¢* € P,- as follows Dom(¢*) = Dom(q),q¢* | * = ¢ | 8* and
B € Dom(q)\B* = ¢*(B) = ¢’1(B), note that val(¢*) = val(g), and we shall show
that ¢* is as required, this suffices. For this it suffices to show that ¢* I “8 = *7.
Toward this let G,+ C Py« generic over V satisfying ¢* € G4, so ;[GQ*T = 4 for
some i € {0,1}, let Gg = Go- NPs for B < o*.

Now:

(¥)1 for some 8 € [B*,a*] N Dom™ (p) we have t5[Gar NPg] = 1.

[Why? As p <pr ¢* € Go~, by assumption (c) necessarily % N G+ # 0 so let
r € S NGy, and so B = a* is as required.]

So let 8 € [B*, @*] be minimal such that jé[Ga* NPg] = 1. So B is unique such
that t3(Gq- N Pg] = 1, hence by X we have

(x)2 B = BlGa-]

()3 [ cannot be a limit ordinal > 5*.
[Why? By the finiteness clause in the definition of order in P+ by claim ??.]
(%) B=v+1>p*is impossible.

[Why? If v ¢ Dom(p) this is trivial by the choice of 3, so assume vy € Dom(p).
Now in V[G4- NP,] the forcing notion Q,[G4- NP,] has pure (2,2)-decidability
hence clearly g[V] [Go- NP ] IFg, “t! ;) =i [Ga-NP,]7. Now t![Go- NPy 4] =1
by the choice of 8 =« + 1, hence g’}y[Ga* NP,] = 1. Define ¢’ as follows: ¢’ [ 8 =
g | 8,4 | (Dom(p)\B) = gz | (Dom(p)\3) it proves v could serve instead of S,
contradiction. ] )
So = * and we are easily done by the definition of ¢*.

2) Similar to the proof of part (3). Os.3

Discussion 3.10. 0) (f, g)-bounding as application.

We may consider the following variant of our definitions and claims (we do not
mention the cases which trivially do not change). [Why we have not used it in §27?
There was a reunion; what it was? not want to have three orders.]

(A) Defining of <fs in iteration. In Definition 1.10(6)(iv) we add (those are ob-
jects)
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val® (p(B)) = val®” (q(8)).

(B) For an .Z-psc forcing Q let p <& ¢ means (p <% ¢) A val?(p) = val®(p) (vpr
stands for very purely).

(C) The associativity lemma 1.20 still works for this iteration.

(D) In X of Definition 2.1(1) we strengthen “p’C <pr ¢ = pe <pr q¢” to “p’C <pr
qc = P¢ Svpr qc-

(E) The examples in 7?(1),(2) work.

(F) Claim 2.9 is not changed: actually our demands are just stronger.

(G) Lemma 2.12: still true with minor changes in the proof. To show that (x); is
possible, we have to check that “p’C <pr ¢ = D¢ Zvpr qg and the same proof gives
it.

(H) At last we get a gain: in 3.8 we can omit clause (d) of the assumption.
Discussion 3.11. We may consider replacing stationary A, B C w; by a subset of
[w1]?, so we use:

To clarify “# has the apure c.c.c.” note.

Definition 3.12. We call (9, <g) a (D, x)-witness if:

(b) D a normal filter on a regular uncountable x
(c) 5 C 2([s*)\{0}
)

(a) <g is a partial order of $
(d

for any X € $,E € D and a pressing down function h on F for some
Y <4 X we have h | U{{a, B} : {o, 3} € Y} is constant and Y C [E]?.

Definition 3.13. 1) For (), <g) a (D, k)-witness and a forcing notion Q we say
that Q satisfies the (), <g)-c.c. when: for every k-sequence (p, : a < k) of
members of Q and X € §), there is Y <g X such that (o,8) € Y = p,,pp are
compatible in Q.

2) Similarly “a trunk controller %
(c) below.

”

satisfies the apure ($), <g)-c.c. for K = Ny, see

Claim 3.14. The trunk controller F satisfies the apure (9,<g)-c.c. when the
following hold:

(a) (9,<g5) is a (D,Ry)-witness (or for some normal filter D on wy)
(b) Z is fully based on (Xz: B < a*)

(¢) if B < a*,(ye : € < wi) is <pe-increasing in Fg,Ye gfpfi ze then the set
{(e,C) : ze, z¢c are compatible in Fg} belongs to $.
Alternatively

(c)' Fs satisfies the (£, <gq)-c.c.
Proof. Immediate. (]
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4. AVERAGES BY AN ULTRAFILTER AND RESTRICTED NON-NULL TREES

Definition 4.1. For Borel subsets %, %, (n < w) of “2 and a filter D on w, let
PB=ms —limp(P,:n <w)or (%, :n <w) does D-converge” to # mean that
for every € > 0 the set {n < w : Leb(BAZRB,,) < £} belongs to D.

Proposition 4.2. Assume

(a) Vi = V][r] where r is a random real over V,
(b) in V, D is a non-principal ultrafilter on w.

Then we can find in V1 a non-principal ultrafilter D1 on w extending D such that

(*)r,p.p, if in V,B,PB, are Borel subsets of “2, (so B,(Hn :n < w) € V) and
(B : n < w) does D-converge to B, then the following conditions are
equivalent in Vq:

(i) v € B (recall, B being a Borel set, is actually a definition of a set and
so B is a definition in 'V of a Borel set, so it defines a Borel set in
Vir])

(ii) the set {n:r € AB,} belongs to D;.

Proof. Tt suffices to find in V an ultrafilter D; over w containing D’ where D' =
DU{{n:re B=rec %,}: inV the sequence (%, : n < w) does D-converge to
% in V}.

For then D; satisfies: if (%, : n < w) € V does D-converge to # € V then
(1) = (i) as D C D’ C Dy. Also —(i) = —(it) as (“2\%B,, : n < w) € V does D
converge to “2\% € V and we apply (¢) = (4) for it.

The existence of an ultrafilter D; over w containing D’ is equivalent to “any
intersection of finitely many members of D’ is not empty”. As D is closed under
finite intersection, clearly it suffices to prove:

X Assume in V that m* < w and for each m < m*, the sequence (% : 1 <
w) — D- converges to B, and # € D. Then for some n € Z in Vy we
have m < m* = [r € B, =1 € Br.n.

Ui

Proof. Proof of X
It is enough, given a positive real € > 0 to find a Borel set B = HB. € V of
Lebesgue measure < ¢ such that, in V

() re“2\B = (Inec B)(Ym <m*)[r € B, =1 € B n)-

(Why? As then we can find in V a sequence (% (y41) : k < w), each % (y11) as
above; so r being random over V does not belong to (% (r+1) hence for some
E

k,r & %1 (k+1) and so there is n as required by () because () holds also in V|r]
by absoluteness).

Given € > 0, for m < m*, as (Bm.n : 1 < w) does D-converge to %, clearly
we can find %), € D such that (Vn € £,,)[Leb(BnABmn) < e/(m* +1)]. Let
B'= (N B, NAB,so clearly B” € D. Now choose any n € %", and note that

m<m*
the Borel set Z = | (BmAPBm.n) will do: clearly Leb(#) < ¢ and easily n is
m<m*
as required. ([
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Recall

Remark 4.3. T ={v € T:v<anornav e T}.
Im(T)={ne“2: (Vn<w)(nlnel)}

We can do the following more generally, but what we do is enough for our intended
example.

Definition 4.4. If g : w — w satisfies n < w = g(n) > n and is increasing we define
T, as the family of subtrees T of ¥~ 2 such that for every n < w and n € TN"2 we
have

() (1 — 1/n)|T[’7] n9(mg| /29 < Leb(lim(T["])) < |T[n] N 92| /29(n)
(the second inequality holds automatically), equivalently, for every m > g(n)
(F)nm (1 — 1/n)| T 92| /20 < Tl M| /om < |l 9| /29(n),

Definition 4.5. 1) For subtrees T}, of “>2 (for n < w) and a filter D on w we say
T=limp(T,:n<w)if T={ne*2:{n<w:nel,}eD}={ne“>2:{n<
w:n€T,}#0 mod D} (so if n is undecided, such T" does not exist).

Similarly for T;, C J2(Xg). We may omit D if D is the family of co-bounded
subset of w. Note that limp (T, : n < w), if it exists, is uniquely defined and is
absolute and if D is an ultrafilter it is always well defined.

2) Let 4V be {g € V : g is an increasing function from w to w and g(n) > n}, let
¢ vary on subsets of V. Let Ty = U{T,: g € 9}. Let Y ={g w:9g€ ¥V}
for w C w.

Claim 4.6. 1) For subtrees T,, of “”2 (for n < w) and an ultrafilter D on
w,imp (T, : n < w) is well defined and it is a subtree of ¥~ 2.

2) If T,, is a subtree of “~2 forn < w, D is a filter on w containing the cofinite sets
and imp (T, : n < w) is well defined and n < w = T, € Ty (as in Definition 4.4),
then

(a) d 7 limp(T, : n < w) belongs to T,
(b) if T =1limp(T, : n < w) then im(T) = ms — limp{lim(7},) : n < w).

3) If D1 C Dy are filters on w containing the cofinite sets then

(a) T =limp, (T), : n < w) implies T =limp, (T, : n < w)
(b) if B=ms—limp, (B, : n <w) then B =ms — limp, (B, :n <w).

Proof. Easy. Uae

Definition 4.7. 1) We say p € “2 is (N, Ty, D)-continuous or ¥-continuous over
N for D if:

(a) N C V a transitive class, a model of ZFC, or < (J#(x), €) for some Y;
or more generally, a set or a class, which is a model of enough set theory
(say ZFC™) and #(Rg) C N,w € N, with reasonable absoluteness and
D € N is a filter on w containing the co-finite sets (so (DN N)V is the filter
generated in V by DN N)

(b) ¢4 € N (and of course 4 C ¥V see Definition 4.5(2)) and
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(¢) if m(*) < w and for each m < m(x) we have g,, € ¢ NN, and (T} : n <
w) e N,T™ e NOT,, , T™ € NNT,, and T™ = limp(T™ : n < w), then
p € N{lim(T™) : m < m(x)} = {n :if m < m(x) then p € im(T™)} £ 0
mod (DN N)V.

2) We define the ideal Nully p as the o-ideal generated by the sets of the form
{p €“2:pelim(T™) for m < m(x) but {n : if m < m(x) then p € im(T*)} =0
mod D} with T™,T)" € T, ,T™ = limp(T}" : n < w), for some m < m(*) and
(T, (T i m < w)) :m < m(*)) where m(x) < w, gm € 9.

3) We may write the dual ideal instead of the filter, if D is the filter of co-finite
subsets of w, we may omit it. [?7 Saharon]

Observation 4.8. Let D,¥4 be as above.
1) If 4 C % and Dy C Dy then Nullgth C Null%7D2.

2)If9 =9V then Nully p = the ideal of null subsets of “2.

Proof. 1) Assume % € Nully, p,, so then necessarily for some (%, : k < w), (TF™ TF™m
k<w,m<mk),n <w)and (g : k <w,m < m(k)) we have:

® (a) gk ed C%
(b) Th™ Thm €T,
() TF™ =limp, (TF™ :n < w), for every n < n(k)
(d) B :={pe“2:peclim(Tr™) for m < m(k) but {n: if m < m(k)

then p € lim(7%™)} = () mod D;}
() BCU{PB : k<w}.

Now if we replace D; by Dy then still T%™ = limp, (T¥™ : n < w) and the set %y,
can only increase so clearly # € Nullg, p,.
2) Let & be a Borel subset of “2 such that Leb(#) = 1. So we can find a sequence
(T, : n < w) such that T,, is a perfect subtree of “~2 such that Leb(lim(7},)) >
1—-27"1im(7T,) C B and T, C T)41.

So

(#)1 “72 = lim jpa (T, : 1 < w)
(%)2 define g € w by g(n) = Min{k : £ > n and k > g(n’) for n’ < n and for
every m < 2n+2 and n € T, N"2 we have (1 — 1/n)|T,[,?] N*2| < Leb(TM}.

Now note that the demand on k& = g(n), (x)2 holds also for m > 2n + 2 because:
for n € T,,, N ™2 we have

Leb(T) >27" — (1 — Leb(lim(T},)) = 27" — 2~™
>27" =27 > (1-1/n) = 27" > (1 - 1/n)Leb(lim T N "2)

So {T}U{T}, :m<w}CT,and gegV.

So we can conclude then 2, (T, : m < w) witness wy\%# € Nully. So the ideal of
null subsets of “2 is included in Nullg. For the other inclusion let 7 = limp (T} :
n < w) for m < m(x) where T™, T/ € T,,g € 4V. Easily {p € “2:m < m(x) =
p € lm(T™) but {n:p e T for m < m(x)} is finite} is a null set. As the ideal of
null subsets of “2 is a o-ideal we are done. (]



Paper Sh:707, version 2012-04-06_11. See https://shelah.logic.at/papers/707/ for possible updates.

LONG ITERATIONS FOR THE CONTINUUM SH707 29

Remark 4.9. 1) Note that the ideal Nully p is included in the ideal of null sets.
2) If in Definition 4.7 we have two candidates D1 C Do for D and p is (N, T, Ds)-
continuous then p is also (N, Ty, Dy )-continuous. So for small D’s there are more
such p’s relevant to Definition 4.7.

Observation 4.10. 1) Assume 4 € V is # 0 and Vi extends V. If (*2)V is not
in the ideal (Nully)V1, then there is no p € (“2)Vt which is a Cohen real over V.
2) If D is an ultrafilter on w (in'V ), then in Definition 4.7(1),(2) the case m(x) = 1
suffices.

Proof. 1) Choose g € 4 and choose {(m; : i < w) by mg = 0,m;+1 = 3g(m;) > m;
hence ]2111(1 - W) >(1- ﬁ)

Assume toward a contradiction that p € “2 is Cohen over V. On *2 for a < w
let + be the coordinatewise addition mod 2.

In V we can find a sequence (T} : i < w) of subtrees of “~2 such that: Leb(lim(7;)) >
1-1/21, ™22 C Ty and i < j < wandn € T;N™2 = (W) (nav € M5+1)2andv ¢ T;).
So easily T; € Ty and lim(7;) C “2 is nowhere dense and 7' =: lim jua (T), : n < w)
is “>2. Now if v € (“2)V then p+ v is Cohen over V hence for each n < w we have
p+v ¢ 1lim(T,) hence v ¢ p+1im(T},). So letting T/, = {v+p [ k:v € T, N*2,k <
w}, still lim jpa(T}, : n < w) is T = “>2. Therefore for every v € (¥2)V we have
n <w=v¢lim(T)) but v € im(T). So T, (T : n < w) exemplify that (“2)V is
in Nully, contradiction.

2) Easy to check. 0410

Conclusion 4.11. Assume

Then we can find D; such that in V;

() Di(€ V1) is a non-principal ultrafilter on w extending D
B)ifgedand T, (T, :n<w) e VAT, T, :n <w} C Ty T =limp(T, :n <
w) then
{n:(r € lim(T)) = (r € lim(7},))} € D;.

Remark 4.12. In (d) we mean ¥-continuous over V not (V,Tgv, D)-continuous
over V. If we assume the later we can use 4.2 + 4.6(2).

Proof. To find such Dy, it is enough to prove

X assume

(¥*)1 m* < w and for m < m*,g,, € 4, 7™, T;" € Ty for n < w and
(T’ :n <w) € Vand T™ = limp(T)" : m < w) € V and lastly
BeD.

Then for some n € B we have (Vm < m*)(r € im(T™) = r € im(T")).
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For m < m* we can find k,, < w such that r ¢ Uim(T™) = r | k,, ¢ T™, let
k = max{k, : m < m*} < w and let u = {m < m* : r € lim(T™)}. For each
m < m*,m ¢ u we know that r [ k ¢ T hence A, = {n:r [ k¢ T} € D, and
clearly n € A, = r [ k¢ T)". Let By = BN({An : m < m*,m ¢ u}, clearly
By € V and B; € D hence Bj is infinite. So we can choose by induction on i < w,
a number n; € By such that n; > nj for j <iandm <m* = T/"N=2=TmN=2
moreover we do this in V (possible asr [ k € V) so (n; : i < w) € V and clearly
T™ = lim(T}" : i < w) for each m € u. By assumption (d), (this is the only place
it is used) and the definition of “r is ¥-continuous over V”, the Borel set

B={ ne?2:pen{lim(T™):m € u} but
{i <w:nen{lim(T}") : m € u}} is finite}
satisfies: r ¢ ZV1. But r € N{lim(7T™) : m € u} by the choice of u hence (by the

definition of %) for infinitely many i’s we have r € N{lim(7}") : m € u}. Hence we
can choose ¢ such that

(x) meu=rclim(T}?).

Now if m < m*,m ¢ u then r ¢ lim(7™) by the choice of u and r ¢ lim(7}")
as n; € By C A,,, see above. In particular n; € B so n; is an n as required in
X. Os11
Claim 4.13. Assume

(a) ¢ is a limit ordinal
() (Py : a0 < 6) is a <-increasing sequence of forcing notions
(c) fora <o
lFp, “Dq is a non-principal ultrafilter on w

(d) if a < B <0 thenlrp, “Dq C Dg”
(e) r is a Ps-name of a real (i.e. € “2)
(f) 9 cov
(9) if @ < 9§ then IFp, “r is G-continuous over VFo7.
Then we can find Dy such that

() Ds is a Ps-name of a non-principal ultrafilter over w

(B) if a < & then IFp, “Dy C Dy

(7) like (B) of part 4.11 with VP« VFs here standing for V, V1 there for any
a < 4.

Proof. Like 4.11. Uaas
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5. ON ITERATING Qp

Definition 5.1. 1) Let IF be the family of D = (D,, : n € “>w) with each D, a
filter on w containing all the co-finite subsets of w.

2) IUF is the family of D = (D,, : n € “”w) with each D, a non-principal ultrafilter
on w.

On Qp see [?].
Definition 5.2. 1) For D € IF we define Qp as follows:

(a) the set of elements is Q5 = {T : T C “”w is closed under initial segments,
is non-empty and for some member 7 = tr(T) € T which is increasing,
and is called the trunk, we have: v € T and lg(v) < lg(n) = v < n and
n<dveT={n:v(n)eT}eD,}

B) <=<@ ig the inverse of inclusion

v) <pr=<2P is defined by T} <pr T = (T C Ty and tr(Ty) = tr(T))

5) Sapr: {(paQ) 'p < q}

(e) val(T) = tr(T) € “w C H(Rp).

2) Let n =n(Qp) = nq, be U{tr(p) : p € G, }, this is a Qp-name of a member of
“w (which is increasing).

3) For p € Qp,n € plet pll = {v € p:v A nVvny < v} so we have p < pll €
Qp, tr(p") € {n, tr(p)}. ,

4) We define Q' similarly except that we change g?g to be {(p,q) : p,q € Qp and
q = pl"l for n = tr(q)}.

Fact 5.3. For D € IUF and .% a trunk controller such that the set of elements of
Fis YPw andngix@n:xandn<9 x < n<dz(€“w), we have:

—apr

—_—

(a) Qp is a o-centered, very clear .#-forcing,
(b) Qp is an strong®™ F-psc forcing notion hence Qp is purely proper (see
Definition 3.1, Claim 3.3(2)),

(¢) from 5[Gq,] we can reconstruct Gg, so it is a generic real for Qp

(d) P <apr P € Qp for n € p € Qp
(e) F is simple.

Proof. Clause (a): Qp is an .Z-forcing. Just check Definition 1.6.

Qp is very clear: See Definition 1.6(2).

Assume t12(p;) g}j{ y and tr(py) §5’; y so necessarily y € “>w and tr%(p;) =
y = tp%(p2) hence g := p; N py is a subset of “w, closed under initial segments
tr%q) =yandy A n € pr = {n:n(n) € p} € D, hencey < n € qg= {n:
n°(n) € p1} € Dy A{n:n"(n) € p2} € Dy = {n:n"(n) € p1 and 1" (n) € p2} =
{n:n"(n) epr}n{n:n"(n) € p2} € D, = {n:n"(n) € q} € D, so because each
D,, is a filter on w clearly q € Q.

This proves also that “Q is o-centered”.

Clause (b): To prove “Q is .#-psc”, see Definition 2.1 let the strategy of the Inter-
polator player be to have p. = p. = p.
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For a play <(plg,q<,p<) 1 ( < w;) of Op, given stationary B C wy, we can find
17 € “?w such that A := {¢ € B : tr(¢q.) = n} is stationary. By the proof of
o-centered, for ¢ < ¢ from A, ¢.,qc are purely compatible. For the “strong™” see
Definition 3.1, as clause (a) there (¢ < ( = p. <pr p) holds trivially, we just have
to show in addition: for ¢ < ¢ from A there is r such that p; <a.pr 7,¢c < 7,7 is lub
of p¢,qe and p. <o ¢c = P <pr ¢e- Let 7 := pe N g. = g¢, so clearly r is lub of
P, e and pe <pr ge = n = tr(pe) but pc = p., so we are done.

clause (c),(d):
Left to the reader.

Clause (e): (:F is simple, see Definition ?7(1)), holds as its set of elements is “~w).
Trivial. |:|5_3

For completeness we prove the basic properties of Qp.

Claim 5.4. For D € IUF letting Q = Qp we have

1) Q has pure 2-decidability, i.e. if plrq “T € {0,1}” then for some q,p <pr q and
q forces a value to 7.

2)IfpeQ and £ C Q is dense above p, then for some q we have p <, q and
Yo = {n € p:tr(p) <n and there is r such that p"l <., r € #} contains a front of
q (where being a front means that n € lim(q) = (3n)[n | n € Yy]) so without loss
of generality n € Yy = ¢[" € .7.

3)IfpeQandY Cp satisfiesn €Y =tr(p) InpandneY Andqvep=v ey,
then there is q such that p <, q and: either ¢NY = 0 or there is a function
h:(g\Y)U{tr(q)} — w1 such that for n<v in Dom(h), h(n) > h(v).

4) Letp € Q,.# C Q. Then J is dense above p (in Q) iff there are Y, ((py, hy):
tr(p) < n € p) and (g, : 1 €Y) such that:

(a) pl! <prPpn €QandY Cop andnéY:>pm <pr @y €Q

(b) if tr(p) < € p then
(o) hyy is a function

)
)
(0) hy decreasing (i.e. p<v = h(p) > h(v) when p,v € Dom(h,))
(6) v € Dom(hy,) and v ¢ Y then {£:v"(¢) € Dom(hy)} # 0 mod D,
) ifveY,vape“w then p ¢ Dom(h,)
(¢) @y € I and tr(qy) =n € qy forneY.

Proof. 1) Let p kg “7 € {0,1}". Let Yy =: {n € p: tr(p) < n and there is ¢ € Q
forcing a value to 7 such that pl”l <pr ¢} andlet Y =: {n € p: for some v € Yj
we have tr(p) < v dn}. We apply part (3), (trivially Y is as assumed there) so let
q,p <pr ¢ € Q be as there (and without loss of generality 1" (f1,42) € ¢ = {1 < £2).
If gNY = 0 let r be such that ¢ < r and r forces a value to 7; hence tr(r) € ¢NY,
contradiction. So there is h as there. Stipulate h(v) = —1 if v € Y\{tr(p)}. We
prove by induction on a < wy (and o > —1) that:

(*¥)q if tr(q) < n € Dom(h) and h(n) = « then there is r = r, such that ¢ < r
and tr(g) < tr(r,) < n and r, forces a value to 7.
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Now if &« = —1 then n € Y hence (by the definition of Y) for some v we have
tr(¢) < v < nand v € Yy. Hence (by the definition of Yy) there is » such that
g <pr 7 € Q and r forces a value to 7, so r is as required. If o« > 0, for each
¢ < w such that n"(¢) € g there are iy < 2 and a condition </~ kg “7 =i, as
guaranteed by the induction hypothesis, noting h(n"(£))) < h(n) = a. If for some
such ¢, tr(r,~<¢>) < n we are done, otherwise as D, is an ultrafilter, for some i < 2
we have A =: {{ iy =i and n° < ¢ >€ g and tr(r,-<¢>) =n" < { >} € D, and
let 7, = U{ry~<¢> : £ € A}, clearly 7, are as required.

Having carried out the induction, for a = h(tr(q)), (4 is as required: it forces a
value to 7 and tr(q) < tr(ry(q)) < tr(g) we have tr(ry(q)) = tr(g) hence ¢ <pr 1ir(q)
but p <pr g hence p <pp 71 -

2) Let Y = {n : for some v we have tr(p) < v Inpe€pand v € Yo} and Y’ =
{v €Y} there is no p € Yy such that tr(p) < p<v}, clearly Y’ is a set of pairwise
<-incompatible sequences. Apply part (3) to p and Y (clearly Y is as required
there) and get g as there. If ¢NY = ) find r such that ¢ < r € .#, (exists by
the density of .# above p) so by our definitions tr(r) € Yy C Y and tr(r) € r C g
so g NY # (), contradiction. So assume q N'Y # () hence necessarily there is h as
there, in part (3), and for every n € lim(q), as (h(n [ £) : £ € [lg(tr(¢)),w)) cannot
be a strictly decreasing sequence of ordinals, necessarily for some ¢ > £g(tr(q)) we
have n [ ¢ ¢ Dom(h) hence n [ £ € Y hence for some m € [€g(tr(q)),f] we have
1 | m € Yy hence for some k € [£g(tr(q)), m] we have n | k € Y'. We have actually
proved that Y’ C Y} is a front of q.

3) Let Z = {n: tr(p) <7 € p and for pl"l € Q there are ¢ and h as required in the
claim}.

Clearly

()1 Y CZC{n:tx(p) <ne€p}
[Why? If n € Y use h,, with Dom(h,) = {v: v I n}, hy(v) = Lg(n) — Lg(v).]
(x)2 iftr(p) Inepand A={l:n"({) € Z} € D, thenn € Z.

[Why? Let the pairs (g, he) witness n°(¢) € Z for £ € A, let ¢ = U{qe : £ € A}
and a* = U{he(n"(€)) + 1 : £ € A} and define h: Dom(h) = {v : v < n} U
U{Dom(h)\{v:v <n}: L€ A} and

e i | (Dom(hy)\{v:v <n})is hy
o h(v)=a*+Lg(n) —Lg(v) if v <]

If tr(p) € Z we get the second possibility in the conclusion. If tr(p) ¢ Z, let
q = {n € p: there is no v I n which belongs to Z}, so {n:n Jtr(p)} C q (see Z’s
definition + present assumption) and ¢ is closed under initial segments (read its
definition) and by ()2 we can prove by induction on m > £g(tr(p)) that n € gN™w
implies {¢ : n° < ¢ >€ q} € D,. So clearly p <,; ¢ € Qp,¢NY = 0 hence ¢ is as
required.
4) Let Y := {n € p: tr(p) < n and there is ¢ € Qp such that pl" < gandge I}
So we can choose (g, : 7 € Y) such that n € Y = pl] <pr gy € & hence clauses
(a),(c) of part (4) holds. To prove clause (b) assume tr(p) <n €p. If n € Y we
are done, so assume 7 ¢ Y. We apply part (3) to pi” and Y, := {v € p:n < v
and there is p € Y such that 7 < p < v}, this pair satisfies the demands in part
(3), so one of the two possibilities there holds. The first one says that there is
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a ¢, pl <pr ¢ and ¢NY; = 0, but as .# is dense above p, there is r such that
g < r € . hence tr(r) € Y and trivially n = tr(¢) < tr(r) hence tr(r) € ¥, Ng
contradiction to “g disjoint to Y;”. Hence the second possibility in part (3) holds,
i.e., there are ¢, pl" < <pr g and a functlon h as there (for pl" Y, ), and it is required
in the second possibility in clause (b). Os 4

The following is natural to note if we are interested in the Borel conjecture. (Of
course, this claim does not touch the problem of preserving the property by the
later forcings in the iteration we intend to use.) Compare with 5.6.

Claim 5.5. Assume

(a) D € TUF

(b) N < (#(x),€) is countable, D € N
(¢) pm €“2\N form <w

(d) pe QpNN.

Then we can find q such that

(@) p<prq€Qp

(B) qIF “if f €“2 and f € N[Gq,] and m < w then (V*n)(f [ [n(n),n(n +
1)) # pm [ [n(n),n(n + 1))”, recalling n is the generic sequence of Qp as
defined in 5.2(2). )

Proof. As Qp satisfies the c.c.c. necessarily p is (N,Qp)-generic, hence p I+

N[Gg,] N (“2)Y = NN (“2)Y hence p,, ¢ N[Gg,] for m < w.

Let (f¢: ¢ <w) list the f € N such that Ikg, “f € “27.

Now by repeated use of 5.4(1) for every tr( ) < nepand { < w there is a
function f;, € “2 such that: for every k < w there is g, v € Qp N N such that
pl! <pr @on,k and gk Ik, “for n < k we have: fy,(n) = fg(n)”.

Now ggn1 € N and without loss of generality (genx:n € pand k < w),(fey :
n € p) belongs to N for each ¢ (but we cannot have (g/, 1 : 7 € p,n and k <
w) € N). Now for each ¢,n,k as f;, € N and p,, ¢ N clearly the set {n :
fon(n) # pm(n)} is infinite so let k(¢,n,m) = Min{k : fr,(k) # pm(k) and k >
sup(Rang(n))}.

Now define q as {n € p: if tr(p) Qv<n € p,l < {lg(v) and m < Lg(v) then n €
9e,v,k(L,v,m) and 77(39(”)) > ]{;(f, v, m)}

The checking is straightforward. Os5

A closely related claim is
Claim 5.6. Assume
(a) D € TUF
() De N < (A(x).€)
(c) pE“2\N
( ) =7Qp-
Then

(a) ko, “if f € N[Go,] and f € TI ™2 then (V>°n)(=f(n) < p)”,

n<w
moreover
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(B) ko, “if f € N[Goyl, f a function with domaznw f(n) €72 and | f(n)] <
_ = n(n — 1) when n > 0, then (Y°n)(p [ n(n) ¢ ( )) stipulating

n(=1)=1".
Proof. Let f € N be such that IFg, “f is a function with domain w such that
|f(n)| <n(n—1) and @ # f(n) C 7(M9” and we shall prove that

lFq, “p In(n) & f(n) for every n < w large enough”.

This clearly suffices as clause () implies clause (a). For each n > 0 and v € "*lw
we can find ¢, € Qp and p* for m < v(n — 1), such that tr(¢,) = v and ¢, kg,
“f(n) = {py : m < n(n—1)}". Note that g, I- “k < Lg(v) = n(k) = v(k) in
particular for k = n — 1”7 and IF “f(n) C 7" and 1 < |f(n)] < n(n—1)" hence
pl € *M2. As f € N without loss of generality ((q,,p?) : m < v(n — 1) and
ve"lun< w>~ belongs to N. Now for each v € “Zw and m < v(lg(v) — 1) < k
we have pt _, o € k2, so for every £ < w for some poie € 2 we have {k < w :
Pk | €= pJty and k > £} belongs to D, and clearly pJ', < ppp,; and let
Pt = U Poe 80 pyl, € N M “2 hence pyl, # p so for some £(v,m) < w we have

Pt | (1/ m) # p | £(v,m) hence {k : (Im,v(lg(v) — 1))p]: .}~ <p} =0 mod D,.
Let p € Qp, let us define

g={v: v<tr(p)ortr(p)<v € p and if k € [lg(tr(p)),Lyg(v))
and m < w(k — 1) then ~(pJ} ;1) <p)}-

This is a condition above p forcing {n : p [ n(n) € f(n)} is bounded by {g(tr(p)),
so we are done. Os6
Claim 5.7. Assume

(a) D € TUF

(b) D is a non-principal ultrafilter on w

(¢) p € Qp,I Cp contains a front and is upward closed, and (x) = (xx) where

(¥) forv el andm < v(lg(v)—1) we have D, ,,, <rk D, and, of course,

D, ,,, a non-principal ultrafilter on w

(%) DL U{D,, ,,:vel andm <v(lg(v) —1)}.
Then p forces that in VOO we have:

(k% %) if wy, C [n(n),n(n + 1)), |wa| < n(n), then U{w, : n < w} is disjoint to
some member of D.

Remark 5.8. This is relevant when trying to get no @-point.
Proof. Without loss of generality n* = 0 (just fix nl n*) and assume

(wp, : n < w) where for each n we have
wn € [n(n),n(n +1)) and |w,| < n(n)”.

o, “0 =

Without loss of generality Ikg, “w, # 0. For v € ""2w let ¢, € Qp and (¢} :
m < v(n)) be such that tr(q,) = v and ¢, IF “w, = {t' : m < v(n)}”, possibly
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with repetitions. For v € "*'w and m < v({g(v) — 1), let D], = {A C w :
{k: )%~ € A} € D,}; clearly D, is an ultrafilter on w which is <gx D, as
v{tg) = 1) < tm o < k.

For v € "tlwandm < v(n)let D be D], . if D], is a non-principal ultrafilter
and let Dy, be D, if D;,,, is a principal ultrafilter on w. Let k, ., < w be such
that {k : 1% 4o = kum} € Dum,{kum} € D,,,, if D, is a principal ultrafilter
and k, ,, = v(m) = v(¢g(v) — 1) otherwise.

By clause (c) of the assumption, as (D, : v € I, and m < v({g(v) — 1, is a
sequence of non-principal ultrafilter on w, i.e. as in (x) there, there is A € D which
belongs to no Dy, ,, for v € I,m < v(¢g(v) —1),po = p and

,m

pr={ne€po: ifn+1</lg(n) and tr(p),n[(n+1)) €l
and m < v(n) then t, g1y, v(n+1) & A}

Clearly
(*) Po SQD DP1.
Let ((n;, M;) : i < w) be a sequence of finite sets such that
® (a) 0=ng<n; <n;_1
(b) M; C %(X), |M,| =2n;, + M;Nw=mn;,
(C) (Dv@ap> € MO
(

d) if F is a definable n-place function in (#(x), €, <.) then for every i
large enough, we have z1,...,2, € M; = F(x1,...,2,) € M;41.

By the assumption (c¢) of 5.7 there is a set © C w such that

X (a) U{[ni+1,ni+2) :ieu} eD
(b) ifvelthen U{[n;niq3):icul ¢ D,
(¢) ifi < jare from u then i+ 3 < j.

Let
pe:={nep;: ifn<ly(n) and tr(p1)<nnel
then n(n) & U{[n;,ni12) : i € u}}.
Now ps is as required. Us.7
Claim 5.9. 1) Assume
(a) A\Y Q V1
(b) D € TUFV.

If Dy € IUFV' and n € “>w = D,, C Dy, then

(@) QY S Qp, (sopeQf & peQp NV and <gv=<q, | QY and similarly
for §9P, <9£ and incompatibility)

(B) if in V we have “¥ C Qp is predense over p € Qp” then in Vi we have
“7C Q\D/i is predense over p”

(v) if G1 € Qp, is generic over Vi, then G =: Gy OQ‘D/ is a generic subset of
Q‘D’ over V.
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2) Assume in addition

() 9€Vand9 C9V
(d) r € (“2)Vt is G-continuous over V.

If the pair (D1, D) satisfies clause (o), (B) from 4.11 (so D1, in particular is an
ultrafilter on w extending D,,) for each n € “Zw, then in Vi we have

oy, “r is G-continuous over V[n(Qp,)]”.

Conclusion 5.10. 1) So if we get V; from V by forcing with P € V, D; a P-name
of D, as above then V |= “Qp <P+ Qp,”.

2) Note that by part (1), if G; C Q\D/i is generic over V and 1 = g, [G1] then n
is a generic real for Qp over V hence V(] is a generic extension of V (for Qp).

3) Assume that V; C V5,V |= Dlell = (Df7 :n € “Pw) € IF for £ = 1,2 and
ne“wAAC Pw)=(AeD)=AecD})and V; |= .7 is a predense subset of

Q‘Df} (above p) then Vy = 7 is a predense subset of Q\Dlﬁ (above p*; not used).

Proof. 1),2) Left to the reader.
3) Clearly ¢ € Qg} & q € Q‘[{g and SQvlzﬁszf Qg}. So it suffices to prove
bl D2
without loss of generality every 7 € p 1s Increasing
thout 1 ¢ i . L X
® forpe Qg} and . Q‘DI} from V1 and ¢ € {1, 2} the following are equivalent
(a) # is predense above p in ng
or every increasing 1 such that tr(p) < n € p we can fin such tha
b) f i i h that t < find T such that

() TC¥w

(8) ifveTthenn<v

(v) ifn<p<veTthenpeT

(6) ifveTthen {n<w:v (n)€T}+#0mod D,

() {veT: thereisre ¥ C Q‘Dfﬁ above p with tr(v) = v} contains
a front of T'}.

As we shall not use it, we do not elaborate. ([

Proof. 1) Clause («) is obvious, clause (3) holds by 5.4(4), and clause () follows
(this is done also in [?]).

2) By part (1) we can assume that V; = V. So assume that p € Qp,,m* < w
and for each m < m*, g, € 4 and T™, (T : n < w) € V are (@g—names hence
Qp,-names in V; such that:

(1 plhgy, “T™, T3 € Ty, and T =1im(T7" : n < w)”.

Note that above, T™ is the limit of (T : n < w) for the co-finite filter on w. By the
definition (4.7) it suffices to prove, for a given n(**) < w that for some n(*) > n(xx)
and ¢ above p (in Qp, ), ¢ forces that: m <m* = r € lim(I™) = r € im(T77,)).
By the definition and what we need to prove, as we can replace the name (T7" :
n < w) by a name of an w-subsequence (which is not necessarily a subsequence of
the original sequence of names) without loss of generality
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(¥)2 plF “T™mN"22 =T™mN"22" for n < w,m < m*.
Let go = {n € “”w : 7 increasing}), so qo € Qp, now we find (T;", T}, : 1 € qo,n <
w and m < m*) of course in V such that:

(¥)3 (1) T, Ty, C“”2, for n <w,m < m*

(i)  for every n € qo and k < w we can find ;"% q,", , € Qp such that:

Q([)n] Spr q:;}k’

Q([)T,] Spr q:{fn,]w
q:’r’Lk H_QD uzﬂm e k22 — T;n e k22”

4 ox Fop T nk22="T;" Nk227.

Now clearly

(x)a (i) T Ty, €72,

X7
(i) T =limp (Tt h <w),
(ii) Ty, =limp (T - o+ k < w).

Next note that

(%)s (a) T3, T, belong to Ty,

(b) T =1m(T}", :n <w).

[Why does clause (a) hold? Let 73" N 9m(©)22 = { then Qg () forces that T N

9m(0)22 = ¢ but it also forces that 7™ satisfies the condition (), from Definition
4.4, hence in fact t satisfies the relevant parts of it, that is k < £ = (1 — 4)[t N
gm(k)2| /29(k) < |t N Tg,,(£)2|. As this holds for every ¢ clearly T satisfies (k)¢
of 4.4 for every £. Similarly for T} . Concerning clause (b) there is g satisfying
pl! <pr ¢ € Qp forcing T N2 = t,,,, T N*2 = t,,.,, 50 by (¥)2, if n > ¢ they are
equal. As any two (even finitely many) pure extensions of pl” are compatible, we
have T,’]71 Nt = tim, T,Tn Nt = tmn = tm. This is clearly enough.]
Hence by assumption (d) we have for u C m* and n € p

(x)g" r € Q lim(7;") implies that (3%n)(r € Q lim(7}",)) and moreover
(VA € (W)V)(EF*n e A)r e N Lm(T}")].

meu

But if r ¢ lim(7}") then for some k* < w,r | k* ¢ T;" hence for some n* < w we
have n* <n <w=r[k* ¢ T}, (by ()5(b)), so we have

()27 if r ¢ lim(T%”) then (V<%°n)[r ¢ hm(Try,Ln)]-
By (%)4 we have
(#)s(i) r € lm(T") iff r € lim(limp, (T3% ) : k < w))

(1) v € im(T77)) iff r € lim(limp, (T}, - 4y + kb < w)).
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By (*)6 + ()7 applied to n = tr(p), we can find n(x) > n(*x*), see (x)7 + (*)g, such
that (Vm < m*)[r € im(77y,)) = r € im(T}7,) ()] Next let

g=:{vep: iflyg(tr(p)) < ¢ <Lg(v) and m < m* then
(reT),)=(re T:Z’(L*))VM)}.

Now p <pr ¢ € Qp by (x)s. Lastly, let ¢* =: {v € ¢ : if tr(p) < v, then lg(tr(p)) <
L<lg(v) =V Equet

Does ¢" IFq,, “relim(T™)=re lim(;l’zl(*))”? If not, then for some ¢** we have
q* < ¢** and ¢** II—QIjl “relim(I™)=r¢ lim(IZl(*))" and moreover, for some k
we have ¢** IFQD1 ‘rlkeT™=rlk¢ Izl(*)”. But q**’Qtr(Q**),k’qnm(*),tr(q**),k
are compatible having the same trunk, so let ¢’ be a common upper bound with
tr(q’) = tr(¢**) and we get a contradiction. O

* * *

Results here are used in the next section; formally we have to specialize them as
Qq is just j random reals forcing.

For preservation, including “cardinals are not collpased” we use §2 or §3 (really
more explicit version).

Hypothesis 5.11.

(a) VECH

(b) Z# is a full trunk controller of (%, : o < a*), each %, is as defined in Fact
7?7 if & > 0 and «* is large enough and

(¢) (0) is a family whose elements we denote by R and Lim is a function
with domain .#(0) such that for each R € J#(0), Lim(R) is a c.c.c. forcing
notion such that for simplicity two compatible elements has a L.u.b. and Q
is considered as a psc forcing by the identity function as in ?? (so for each
member R of £ (0),lim(R) C %)

(d) <. (0) is a partial order on £ (0) such that R’ <) R’ = Lim(R') <
Lim(R").

Remark 5.12. Recall that “k-closed” means every increasing sequence of length
< & has an upper bound. We say .#"(0) is f-exactly closed if for < ()-increasing
sequence (R' : i < 6) there is R € J(0) such that i < 6 = R’ <4 R and
Lim(R) = U Lim(R;).

i<6
Definition 5.13. 1) For an ordinal a > 0 (assuming o < o* recalling 5.11(b)) let
£, be the family of Q such that:

(a) Q is an .F-iteration of length o

(b) Qo is a c.c.c. forcing notion from K(0), ie. it is Lim(R), R € £(0), in
principle Lim(R) may not determine R uniquely but we shall ignore this
writing R or RV

(c) if 0 < B < athen Qg is Qp, where IFp, “Dg € TUF” (on Qp see 5.2, on
IUF, see 5.1).
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2) Let R=U{R, :a < a’} and Rep = U{Rs : B < a} and R<y = Renq1.
We use P, = Lim#(Q | a), so e.g. P = Lim#(Q' | B), etc., recalling that: if
B < aand Q € &, then Pg < P,.

Claim 5.14. 1) % is apurely c.c.c. full trunk controller iteration.

2) If Q € R, then Q is stronglyt .F-psc Definition 5.3(2), relying on Definition
2.6(1) and Definition 3.1(1).

3) If@ € R, then Q satisfies the criterion from 1.18 for “Ny-c.c.”

4) If Q € R, then Lim(Q) has (r,4)-pure decidability for [1,£g(Q)).

Proof. 1) Note that .# is a full trunk control iteration by clause (b) of 5.11.

Version A: Now % is apurely c.c.c. as in 3.2, see clause (c) of 5.11. Also each
F1+a 18 asin 3.1. So by xxx from §1 we get the desired result. Saharon CHECK!

Version B: Now why is .% apurely c.c.c. (see Definition 2.3)7 Let (y. : € < wy) be

F <7
<apr-increasing and y. <0, 2. So

(a
(b
(

€ < (A0 €Dom(ye) = ye = ye

(Dom(y.) : € < wy) is increasing

if e < ¢ and a € Dom(y.)\{0} then p.(a) = pc(e)

if ¢ < wy then w. = {a: a € Dom(p:)\{0} and y.(a) # z-()} is finite.

(d

— = D —

So we can find a stationary S C wy,ws, 24 such that:
(e) e € S = |we| =n,
(f) e€ §S=w.NU{Dom(p) : { < e} = ws
(9) ze | Wy = 2.
By clause (c¢) of the Hypothesis 5.11 clearly .%, satisfies the c.c.c. hence we can
find e < ¢ from S and zy € %y which is above z.(0), z¢(0) when defined.
Now we define z € %:
(o) Dom(z) = Dom(z.) U Dom(z¢)
z(a) = 2z if @ =0 € Dom(z.) UDom(z¢)

)
(7) z(@) = ye(@) = y¢(@) if a € Dom(ye)\w.\{0}
(0) 2(a) = ze(@) = z¢(@) if w\{0}
(e) z(a) = z(a) if & € Dom(z¢)\Dom(ze).

Now z is a common upper bound of z., z¢, (noting then on Dom(z.)\w,\{0} it
agrees with z., etc.).
2) We have to show that each Q, is (forced to be) strongly™ .Z,-psc.

For o = 0: If val® (qs),valQ0 (g¢) are compatible in %, then trivially p.,qc are
compatible in Qp, so have a common upper bound (see clause (c) of Hypothesis
5.11, call it r. Now “pc <apr 77 as <i§—§5z0 and so clause (i) of 3.1(b), also
“ge <17 so clause (ii) there holds, “r is a Lu.b. of p¢,¢.” by its choice so clause
(iii) there holds and lastly if p. <y ¢. then p. = ¢. but p. <, pc hence r = p¢ is
as required.

3) Note that for @ > 0 any two members of Q with the same trunk has a common
<pr-upper bound with the same trunk. So the criterion is easy.

4) By 3.6(1). Us.14

See https://shelah.logic.at/papers/707/ for possible updates.
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Definition 5.15. 1) For Q;,Q; € & let Q; <g Q- if:

(a) £g(Q1) < £g(Qs) and R <g() R
(b) for B < £g(Q1) we have Py g <Py 5, i.e. Limg(Q; | ) < Limg(Q2 | B)
(c) for B < £g(Q1),B # 0 and n € “>w we have |FLim9(@2 18) “D1gn C D2 gy’

(d) if £g(Q1) = B < £g(Q2) then Limg(Q;[8) < Limg(Q2 | B).

Claim 5.16. Assume Q1 <z Qq are from R,.
1) If £g(Qy) is not a limit ordinal then

Lim 7 (Q;) < Limz(Qy).

2) If a = £g(Qy) is a limit ordinal, Lim#(Q;) < Lim#(Q2),9 C 9V,B < a,v is
a Py g-name such that, for every v € [3,a) we have lbp,  “v is G-continuous over
VP and P = Lim #(Q,) <Py = Lim(Qs | «), then lFp, ., “vis &-continuous
over VFia?,

Proof. 1) Let a = £g(Q1), by 1.14 we know that Lim#(Qa | ) < Lim#(Q2) so it
suffices to prove that Lim#(Q;) < Lim#(Qq | a). If @ = B+ 1, if 3 = 0 use the
second phrase of clause (a) of Definition 5.15, so assume 5 > 0, by clause (b) of
Definition 5.15 we know that Lim#(Q; | 3) < Lim#(Q; | 3) and by clause (c) of
Definition 5.11 we can apply 5.9(1) so we are done. If « = 0 the statement is trivial
and the case « limit was excluded (really cf(a) # Ry suffices.

2) So assume that m(*) < w,gm € ¢4 for m < m(x) and kg, | “T'p,, T € Ty, and
Ty = lm(T : n < w) for m < m(x)”.

Without loss of generality

® “bp,  TmN"2="Ty,N"2for m <m(x),n <w.

[Why? As in an earlier proof, creating appropriate name of a subsequence.]
By 3.3(1), for a dense set of p € P o, we have

(*)p (a) for every m,n,k < w, the set Z, i = {q : p <apr ¢ and ¢ forces a
value to T, N *¥22 and to T N *¥22} is predense above p

(b) if v € Dom(p)\{6} [SAHARON: what for v — 0?7 better avoid] and
y € 7. Dom(y) = Dom(p) N[y, a) and tr(p) [ [y,0) <, y and
m,n < w then T 4 m, Ty y mn are Py ,-names of members

of Ty, such that

[43

if there is ¢ satisfying p < ¢,tr(q) | [y,a) =y and q [ v € Gp, |
then for every k for some r we have ¢ <,

tr(r) [ [v,a) =y,r [ v €Gp,, and 7 lFp, _/p,

TN ¥>2 = T%ym[G]P’l,w] nk=2

and T NK>2 =T, o [Gp, ] Nk227,

IFp,

This is possible as each Q1 has pure (2,2)-decidability, and so we can apply 3.8

Saharon.

[Why? Recall that each Q1. has pure (2, 2)-decidability hence claim 3.8 apply.]
So easily
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Fe,, “ Thym € Jg and Ty ymn € Ty and v €T, 1, and
Ty yom = (T ympn i n <w) by ®@7.

when m < m(x),n < w,y as above. So suppose n(*) < w,q € Py o and ¢ lFp, , “v €
N{lim(7,,) : m < m(x)} and we shall prove ¢ ¥ “=(In)(n > n(x)) Av e N{Thn:
m < m(x)}.

Now {p € P14 : (%)p} is dense in Py , hence by an assumption also in Py 4.
Hence ¢ is compatible with some p such that (x),, so without loss of generality
Pyo = “p < ¢”. So we can find + such that:

(*) () 0<y<a
(b) if 5 € Dom(p), tr(p)(B) # tr(q)(B) then § < o

[Need considerably more! Saharon!]
Let ¢ [ v € G2y C P> ,,G, generic over V and let G 4 = G2, NPy, hence it
is a generic subset of Py , over V. Let y = tr(p)[[y, ).
V[Gln]

Now in V|G ,] the objects Ty im[G1,], Ty y,mn|G1,y] belongs to T'y and
V[G1y] = N{lim(Ty ym[G14]) - m <m()} and Ty m [G15] = Hm(Ty .m0 [G14] -
n < w). As we have assumed that IFp, —“v is ¥-continuous over V[Gp, ... N
Py 4]7, it follows that for some n € (n(x),w) we have v[G1 5] € {Ty ymn[G1] :
m < m(*)}.

We continue as in 3.3 [MORE]!! Os.16

Definition 5.17. 1) By induction on o > 1 we define &) as the family of Q: €
AE ={Qcfh,: (V1 <B<a—Q [ﬂeﬁg)}suchthat(@l <g Q€ & =
Limg(Q1) < Limg (Q2).

2) Let ﬁiﬁ =U{&} :a < B} and & = &L ,..

Remark 5.18. Should we now replace the demand in 5.17(1) by: if p € lim(Q;) and
& C{q:p <apr q} is predense above p in lim(Q;) then also in Lim(Q3)? Saharon!

Observation 5.19. 1) If Q; <g Q2 are both from fq+1 then Limg(Q;)<Lim g (Qs).
2) <g 1is a partial order on K.

3) If Q1, Q2 € &Y and Q1 <a Qa then Limz(Q;) < Lim#(Q2).

4) 1If Q1 <g Q2 € Ro and Q10 = Qa0 then Q2 = Q.

5) If Q; € &Y fori < 4 is <g-increasing, 6 < r and K(0) is k-closed then there is
Q € &F such thati < = Q; <z Q.

6) If in (5) if R(0) is cf(8)-ezactly closed, cf(8) > No, then we can add Lim z(Q) =
‘U5 Limg(Q;).

1<

7) If Q € Ra, (VB < 8)(|B|° < k = cf(x)) and R(0) is k-closed, each member of
£a(0) is of cardinality < k,a < K, Ny < 0 = cf(0) < k, R(0) is exactly 0-closed and
|F| < k then there is Q' € &Y such that Q <g Q' (we can normally bound the

cardinality of Lim g (Q')).

Proof. By induction on «, quite straightforward. Os.19
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6. ON A RELATIVE OF BOREL CONJECTURE WITH LARGE b

Hypothesis 6.1.

(a) VE=CH
(b) cf(N) = A > Ny, (Va < N)(Ja¥ < N), S C A is stationary, (V6 € S)(cf(5) >
No)

(¢) % is as in 5.11(b), in particular a full trunk controller iteration of (%, :
a < af),af > NP P4, is from 5.2, %, = Random, (so below and 3.2).

As Z is constant we shall write Lim(Q) instead of Lim & (Q).

Note that A > Ny is not a real restriction.
We now specify the £ from §5.

Definition 6.2. 1) Let R(0) be the family of {Randomy : A C A} where d(A4) =
{wa+n:a€ An < w} and Random 4 is the family of Borel subsets of 442 of
positive Lebesgue measure. Let v, = U{f : f a finite function from |[wa, wa + w)
to {0,1} such that [f] = {g € 42 : f C g} belongs to the generic}. Let A(Q) = A if
Q = Random and A(Q) = A(Qp). Let Random <g(o) Randomp if A C B hence
Randomy < Randomp. (So <p, will be just equality, <, will be the usual order).
2) For a > 1, let &, be defined as in 5.13.

3) We define for any ordinal o and ¢ < 2 the class ﬁg’a C R, as the class of Q such
that:

(a) Q is an ZF-iteration

(b) L9(Q) =«

(¢) Qo € £(0) and A[Qp] € [N|<*if £ =10 and A[Qy] = N if £ =1
)

(d) if 0 < B < a then Qg = Q(Dg) where Ibp, “Dg = (Dg, : 1 € “w) €
IUF”

(e) Q1€ &S for every v < a where & is defined in 5.17 for our particular
case.

3A) If we omit £, we  mean £ = 0 when a < A and we mean ¢ = 1 when a > \.
We let &) = U{#), : @ an ordinal < a*} and & = U{f], : o an ordinal < a*}.
4) For £ = 0,1, we define a partial order <g, on £ by:
Q' <w Q@ iff Q' <g Q7 (see Definition 5.15) and [(g(Q") < (g(Q*) =
[there is Q' € ﬁjg(@) such that Q' <g Q' <z Q? and
(%) if 7 is the minimal member of A(Q?)\A(Q!) then (so if A(Q') = A(Q?)
this holds vacuously)
FLim s (@2) “Vy is Y -continuous over VEm@)7 (gee 4.7(1), (3)).

4A) We similarly define the partial order <g/ on g
5) Let R be the family of Q € K, such that:

6Why? As we shall build Q € R such that Lim(Q) make the continuum ); it is built as the
limit of an increasing sequence (Qq : a< ), Qa € &L, and we like that A(Qq) € [N<* for a < A
but is A for & = A\. We later consider Qq for a € [A\,A1], so we write a > .



Paper Sh:707, version 2012-04-06_11. See https://shelah.logic.at/papers/707/ for possible updates.

44 SAHARON SHELAH

(f) if a >\, 3 € (0,a] and we have g € Y and T, (T,, : n < w) € T;’%,T =
lim(T}, : n < w), then for some club” E of A for every j € EN S, we have
v; € im(T) = (3°n)y; € im(T,,).

6) Let ﬁ// = U{.ﬁlolé o< OZ*} and SR”:SJQ’ [ ﬁ”

Claim 6.3. 1) If Q! <g, Q? then

(a) if p € Lim(Q') then p € Lim(Q?)
(b) ifx € {us,pr,apr} and p,q € Lim(Q!) then Lim(Q) = p <, q iff Lim(Q?) =
P<zq
(¢) ifp,q e Pim(@l) then p,q are compatible in Lim(Q') iff p, q are compatible
in Lim(Q?).
2) Assume f3 is a limit ordinal, Q° € ﬁ’ﬁ and v < = Q' | v <w, Q? | v then
Q! <a, Q? (and if additionally Q" € & then Lim(Q") < Lim(Q?)).

Proof. Should be clear. Us.3

Claim 6.4. 1) The two place relations <a,: <ay are partial orders.

2) The two place relations <g,<gr are partial orders (on Ry, R} respectively or
R, R respectively).

3) Assume

(a) & is a limit ordinal

(b) Ql Q? € Ro,5 and Q' <g Q

(¢) P} = Limg(Q! | §) < P? = Lim(Q? | 4)

(d) a<d=Q'a <s. Q% [ (a+1), see 6.2(4).

Then Q! <w, Q2.

4) If Q' <g Q2 and cf(Lg(QY)) # Ny < £g(Q?) then Lim#(Q') < Lim#(Q? | a).
5) In (4), Q' <g Q2 if the IFLim(@2) “Vy is G-continuous over V[GLimqr)” when
v = Min(A(Q*)\A(Q").

Proof. 1) Easy.
2) Easy.
3) By 6.2.

Observation 6.5. 1) If Q € &%, then in VF# we have: if #* is a Borel subset of
“2 Lebesgue of measure 1, B* = U lim(7,,) and {T,, :n <w} C Ty, g €YV then

for a club of j € S we have (cf(j ) > Ry and) v; € B*.

2) IfQ € &) and B < Lg(Q), then the F -forcing notion Pg is F -psc and has 2-pure
deczdabzlzty over Qo, recall Definition 3.7(2).

8) Moreover, (in (2)) F is semi-simple, hence if p € Pg,p - “7 € “Ord” then for
some q we have p <y q and for each n, S, = {r: ¢ <qpr 7 and r forces a value to
7(n)} is predense above q.

Tfrom where is E? as Pg satisfies the Na-c.c. and A > N3 it does not matter
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Proof. 1) Apply clause (e) of Definition 6.2 to B*, (lim(7},) : n < w). [Andrzej:
how you handle?]
2), 3) By previous theorems. U5

Claim 6.6. 0) &) # 0.

)Ifa, <a<XA\Qe Ry, i< NAQ) and A* € [\, then there is Q' € &,
such that Q <w @ € K and AQ) 2 A(@) U {7} but A@NA@)\{} C A"
2)[f@<€R6,<af0rC<5 and e < (<6 = Q° <g, Q° and o < X s0 § < A, then
for some Q° €7ﬁ67<a we have ¢ < 6 = Q¢ <, . Q°.

24) Moreover, sz € [1,a],Q* € Rop and ¢ <65= Q15 <s, Q* then we can
demand then Q* <8 Q7.

2B) Moreover if o is limit and (Q%* : B € [1,a)) is <g, __-increasing and QP e
ﬁ(w and ( < §AB € [L,a) = Q° | B <a., QB+ ﬁzﬂ we can add in (2):
Be [1,04) = Qﬁ’* Sﬁf, - Qé.

3) In part (2), if cf(éj_z Ny then we can demand Lim(Q%) = U{Lim(Q¢) : v < 6}
and if [( <0 = Q¢ € &Y _,] then Q° € & _,,.

4) For a < X and A € [N|<* there is Q € &, with A(Q) 2 A.

Remark 6.7. Note that we have to prove that “v. is @V _continuous” is preserved.

Proof. We prove by induction on « all parts simultaneously and for o we use part
(2),(3) in the proof of part (1) and we use part (3) in the proof of part (2).
0) Trivial.
1) We can ignore the case A(Q)\A(Q)\{j} € A* as Random, has enough auto-
morphisms.

We choose QF for 3 € [1,a] by induction on § such that:

(i) Q° € 8
(i1) Q1 B <g, O hence Lim(@s | 6) < Lim(@?)
oo —~ +
(iii) Q° € R
Case 1: f=1.
We choose Qg = Random 4 (g)uy;3-
Case 2: B=0,+1>1. B B B B
By 5.9(1) + (2) we can choose Q} € ngﬁ such that Q% I B, = QP and Q |
Ié] <s, @/ﬁ But maybe @b ¢ ﬁgﬁ. So we try to choose by induction on ¢ < A, @;31
such that:
(@) 1 B € K5, and g = T = O
(i1) Qj,; is <g, ,-increasing
(#it) for each i, @;3,141 exemplifies QIBZ ¢ ﬁ;
(tv) if ¢ is a limit ordinal of cofinality > Ny then Lim(@%d = U{Lim(@’ﬁyj) 1j<
For ¢ = 0 no problem, for 4 limit use the part (2) or part (3) for 8 by the induction

hypothesis. For i successor if we cannot continue, we have succeeded having carried
out the induction.
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Now S := {a < A : cf(a) = Ny} is a stationary subset of A as A > Ny. Foreach 6 €
S, clearly the statement “Lim(Qj ;) <Lim(Qj 5,,)” fails, hence there is a maximal

antichain %5 of le(@ﬁ ) which is not a maximal antichain of le(@ﬁ s+1). But
the assumptions of claim 1.8 holds by 7 SAHARON!, hence the forcing notion
le((@ﬁ,é) satisfies the Ng-c.c. and therefore |.Z5| < Ny < cf(d). But by clause (iv),
Lim(Q%,(s) is the union of the increasing sequence <Lim(@’ﬂ7i) : 1 < d), this sequence
of forcing notions is increasing in the sense that membership relation, being smaller,
and being incompatible are preserved, see 6.3.

Hence for some v(0) < § we have %5 C % (5. By Fodor lemma for some
stationary S1 C S, we have 6 € S1 = () = y(*). As Lim((@bw(*)) has cardinality
< (|8] + |A])¥e which is < A, clearly for some .#, the set Sy = {6 € S : S5 = 7}
is stationary. So consider § < Jy from S3, now %5 is not a maximal antichain
in le((@ﬁ(S 4+1) hence for some ¢ € le(@ﬁ s,+1)\Fs,, the set Z5 U {q} is an
antichain in le(Qﬁ 5,41) hence in le(Qﬂ 5,), contradicting S5, = I..

Case 3: ( limit.
By part (2).

Case 1: a = 1.
Let Q) = Randomy¢ 4(g¢):c<s} -

Case 2: a =~v+1.

First by part (1) (and the induction hypothesis) for v, we can find Q%* € ﬁ({ .
such that ¢ < 6 = Q¢ < Q%*. Let u, = {¢ < §: v < £g(Q%)}, (if u, = 0 we are
done so assume u,, # 0) so for each ¢ < ¢ from u., we have Lim(Q¢ | v) < Lim(Q*% |
7) < Lim(Q%*) hence for each 1 € “>w we have

IFLim(@sve) <~D§,$ : ¢ € uy) is an increasing sequence of filters
on w containing the co-bounded subsets of w”.

Hence we can find a Lim(Q%7*)-name of an ultrafilter on w containing U{NDgi/ :

¢ € uy}. We now can define Q%7 € R such that Q%F | v = Q% and Dgw is as
above. This clearly is O.K.

Case 3: « limit. -
We choose by induction on e < wy a sequence (Q%*# : 3 € [1,a)) such that

() @7 e 55,

) 7 < B Q5 <q Q57

) (< b= QF [ B<q , Q=

(iv) if ¢ < e and v € [, ] then Q> | 3 <s, Qo=h,

(i

(iii

For each ¢ we do it by induction on 8 € [1,«), so all parts hold by the induction
hypothesis.

For 8 =0 we act as in case 1, for § successor we act as in case (2) and for limit
use the induction to find Q%= ¢ RE such that v < 8 = Q% Sﬁ/ﬂ Q%=#. Now

for ¢ < e we know that Q%¢-# <w, Q%= by 6.3(2).
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3) Without loss of generality either (V¢ < 6)(£g(Q°) = @) or « is a limit ordinal
and (£g(Q°) : ¢ < &) is increasing with limit . We choose Q%# by induction on
B € [1,a] such that
® (i) Qe Ro 5

(ii) if B < o then Q%P € ﬁgﬁ

(iii)  if v < B then Q%7 <w, Q%#; moreover
(iii)T  if v < B then Q%7 = Q%A | v
(iv) if ¢ < 4 then Q¢ | B <w Q%8

(

v) Lim(Q%) = U{Lim(QF | B) : ¢ < 3}.
Case 1: As in part (2).

Case 2: < a.
By the induction hypothesis and the uniqueness of the limit (and preserved by
taking “[ v” for v < .

Case 3: f = « is limit. B
By (ii)" clearly we can define Q%#, and easily it is the union. Now it belongs
to RS:B by the proof of (1), case (2).

Cased: B=a=~vy+1.

So P, = Lim(Q%") is well defined. We define (D.,,, : 7 € “”w) as in the proof
of case (2), part (2) and so Q%? is well defined. It belongs to Rarﬁ again as in the
proof of part (1), case (2).

4) Should be clear. Og.6

So in particular

Conclusion 6.8. For a < \, for every € < X and Q € R;<q there is Q € Kl’a such
that ¢ C A(Q’) and Q, <a, Q.

Now we turn to £ .

Claim 6.9. 1) If a <\, Q€ &, and j € N\\A(Q) then there is Q' such that

(a’) Q Sﬁ;o,a @I € ﬁ({a
() FLim@y vy ds GV _continuous over VH™(Q)

2) If a < \,6 < X a limit ordinal (Q° : ( < 8) is a <g, __-increasing sequence of
members of 85 ., Q= Q° and j € AQ")\A)Q®) and ¢ € [1,6) =lrrm@e) “vj is
@V _continuous over VU@ then we can choose Q? such that all the conditions

on ¢ <6 hold ¢ =6, too. - B
3) If in part (2), cf(8) > Ny then we can add Lim(Q°) = U{Lim(Q¢) : ¢ < d}.

Proof. This is y (simultaneous) induction on a.
1) Case 1: o = 1.
Trivial, as in case 1 of the proof of 6.6(1), respectively.

Case 2: a =+ 1.
We use 4.11(1).
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Case 3: « is a limit ordinal.

We choose Q% by 6.6(2B) (for a constant sequence). Why is the ¢V continuity
preserved?

We just apply ?7(2),

2) Case 1: av=1.
As in 6.6(2).

Case 2: a =+ 1.
We use 4.11(2).

Case 3: « is a limit ordinal.
As in the proof of (1).
3) No new point. Ue.10

Conclusion 6.10. 1) For any ordinal o < A we can find (Q¢ : ¢ < \) such that:
(a) Q¢ € ﬁi:-c
(5) e < ¢ =@ <qy O
() AQ@%)2¢
) if ¢ < Ais a limit ordinal of uncountable cofinality then Lim(Q¢) =
U Lim(Q*9)
e<(
(e) if { < A and g = min(A\A(Q°)) then e € A(QSH!) and IFLim(@ct1) “Ve, 18

. (B
@V _continuous over VHm(@Q)

C

d

2) There is Q* € &” such that ¢ < A = Q¢ <a, Q* and Lim(Q*) = U{Lim(Q¢) :
¢ < AL
3) Let a < X\ and P = P, be Lim(Q” | ¢). Then
(a) P is a proper forcing notion of cardinality A satisfying the Ns-c.c. (so
cardinal arithmetic in V¥ should be clear)
(b) if cf(a) > Ro then IFp “b = cf(a) = 07
(¢) IFp “there is a set {v¢ : ¢ < A} C “2 which is not in the ¢V-ideal”

(d) the continuum in V¥ is \.
3) For limit ¢ < A of uncountable cofinality, letting P; = Lim(Q¢), we have

(a) P is a proper forcing notion of cardinality (|a|+[¢])0 satisfying the Ro-c.c.

(b) if cf(a) > Ny then IFp “b = cf(a) =07
(c) if A C ¢ =sup(A) then Ibp, “the set {v; : i € A} is not in the ¥V-ideal”
(d) the continuum in V¥ is ((Ja| + [¢])N)V.
Discussion 6.11. : 1) Is there a Cohen reals in VF over V? By the way we
construct in general, yes, as possibly P§ <P and PY is Q po which may add Cohen.

To replace (v; : i < A) by say a Sierpinski set in V we do not know.
2) Similarly, the Borel conjecture may fail.



Paper Sh:707, version 2012-04-06_11. See https://shelah.logic.at/papers/707/ for possible updates.

LONG ITERATIONS FOR THE CONTINUUM SH707 49

Proof. Proof of 6.10:
Easy by quoting.
1) We choose Q¢ by induction on (.

Case1: (=0s0o1+(¢=1.
Tivial (or use 6.6(4).

Case 2: ( is a limit ordinal.
Use 6.6(2).

Case 3: (=¢e+1.

Use 6.9(1).
2) Let P be Lim(Q when Q € &/ , and Lim(Q) = U{Lim(Qc) : ¢ < A}, this is O.K.
by 6.6(3) as cf(A) > Ry.

Now for clause (a): properness holds by 3.3 and Na-c.c. by 1.17. Us.10

Claim 6.12. 1) There is Qe 84
2)IfQe R, a> X and P=Lim(Q) then
(a) P is a proper forcing notion of cardinality |a|®° satisfying the Ra-c.c.
(b) if cf(a) > Rg then IFp “b = cf(a) =0
(¢) IFp “fu; i < A} is not in the 9V -null ideal”.
Proof. 1) Using <y, as in [?, Ch.IV] (or force by approximations). But now we

replace approximations by Q € &, a < A by Q € &, for u € [\]<*.
2) Like 6.10. Ue.12
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7. CONTINUING [?]

Context 7.1. As in §6.

At present we can deal with this for “¢Vo-continuous” instead of Random. To
do it fully we need to make the ultrafilter D, , Ramsey but we do not know to
guarantee this.

Theorem 7.2. Assume

(%) (@

(ii

E<O< < A= H =2

Kk regular and (Vo < k)(|a|™ < k)
0 = cf() and (Va < p)(|aft0 < u)
(i) w is a limit cardinal

(v) 4 =9V.

(iii

— N —

Then for some forcing notion P we have:

() P is an Ng-c.c. proper forcing notion of cardinality \
(B) in VE we have cov(¥-continuous ideal = Nully) = p1
(7) in V¥ we have b =0 = 0.

Remark 7.3. 1) We rely on [?], if instead we rely on [?], then we can weaken the
assumptions on the cardinals.

2) By observation in V¥ we have: the covering by closed null sets number is also
so can be N, i.e. “D < u”.

Proof. Proof of 7.2

Let £(0) be the family of Q € £ from Definition 2.11 of [?] of length < A
ordered naturally: Q' < Q" iff Q' = Q" | £g(Q’), of course, Q stands for the
forcing Lim(Q), 5.11(d). Clearly Q is FS iteration, this fixes the choice in 5.11.
Sometimes we replace the ordinal < A by a set of ordinals, with obvious meaning.
To avoid confusion we use R for the FS iteration mentioned above and if Qg is such
a forcing, i.e. Lim(R) we let R = Rg, and (¢ : ¢ < £g(R)) for the generic in 5.13
- 7?7. [REF(18A)]

Clearly £(0) is cf(M)-closed, but as A = A<* necessarily cf(A) > p > 6. For
Q € R, let (;[Q] : 0 < i < ) denote the sequence of generic reals, 7;[Q] for Q.
So we can find Qo € £). Now by induction on ¢ < A we define QC such that:

(a) @C S ﬁ; N .ﬁle
(b) e < (= Q: <g Q¢ (hence Lim#(Q.) < Lim#(Q¢))
(c) letting R@c € R(0) be such that Q¢ = Lim(R@C) we have €g(R@C) =
Lg(Ro) + & REF: recalling lg(Ro) < A, &y < A is increasing with A
(d) if
(i) e<ANO<x=x"<p
(i) Q' e &, Q <w Q.
(iii) A CLg(Rg.,) is of cardinality < x
then for some ¢ € [¢, A) we have IFLim s (@cy1) “WQ(RQg,o)’ the partial random

real of the ég(R@m)—iterand of the iteration Q¢ o € £(0) is ¥V -continuous
over V[(n¢:¢ € A)"(n; 11 <0)]".
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There is no problem for ¢ = 0 and ¢ limit. For ( = ¢+ 1, let v = lg(Rq, ,), R =
Rg,_ - By bookkeeping we are given §{ < e and A. C lg(Rg, ,) of cardinality < x.
By the Lowenheim-Skolem argument, choose A% C v of cardinality < x including
Ac, closed enough (in particular, as required in [?], see 2.16 (1),(2) and Rg_, |
A% € £(0)) and there is Q. <@ Q¢ such that Rq., = Rg., [ A7 REF: Def. By
the bookkeeping we can ensure every A will appear. Let R, = Random Y [7:9€4<]
and let R/ be R, when we add R, ie. Ry =—<a Lg(RL) = ZQ(R@’E,O) U {v}
([REF(19B)] abusing notation) (RY), = R, (R exists by [?]). By 7?7 we can find
Q" € A" N /Yy and R! <g@) Qg which satisfies IFy;, _(@n) “7y is random over
VLim(R[A)n'

By renaming [REF(22C)], without loss of generality A(Qf) N A(Q®) = B:.

Now we can define Q; by amalgamation, i.e. 7.4 below. Let Qy by |J Q¢ and

<A
P = Limg(Q)) = U Limz(Q¢). It is as required: Ikp “b = 0 = 6” Ceasily, and
<A

IFp “cov() > u” by clause (d) and the bookkeeping concerning the A.’s.
Lastly, [REF(22D)] IFp “cov() < p” because Ikg, , “cov() < u” by [?] and
properties of Lim g (@)\)/Q/\,O [is null, nullg or nul??]. O 9

Claim 7.4. Assume
(a) Qeo € R(0) for £ = 0,1,2,3 and Qo0 < Qo < Q3,0 moreover Q3¢ =
Q1,0 *Qo.0 Q2,0
(b) Q¢ € & for £ =0,1,2
(¢) Qo <w Q1 and Qp <x Q..
Then we can find Qs € 8 such that Q < Q3 fort < 3.

Remark 7.5. 1) How do we get such Qo € £(0)? By [?, Lemma 2.16].
2) We can replace Q3 ¢ by Q3 o as the proof. [REF?]

Proof. We choose Q3 | 8 by induction on 3 € [1,a], for 8 = 1 there is nothing to
do. For A3 limit just use Q, | 3 € &%. For 8 =~ + 1 use 7.6 below [REF: see (19A)
+ (20C)]; we could have demanded something on how Qo <& Q2 (i.e. choosing A.
in the proof of 7.2 but not needed). O

Claim 7.6. Assume

(a) Qg is a forcing notion for £ <3

(b) Qo<Qr<Qs

(c) Q3 = Q1 xq, Q2

(d) for £ =0,1,2 we have Dy is a Qg-name of an ultrafilter on w

(e) for £ =1,2 we have kg, “Do C D,”.

Then we can find a Qz-name D such that lFg, “D is an ultrafilter on w extending
Dy U Dj.

Proof. Asin [?, §3]. Uz
Claim 7.7. Let Q € R, and for B € (0,) let np be the generic real of Qp. Then
Grim (@) can be computed from (Gq,) (s : B € (0,q)).

Proof. As usual (or see [?]). O
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8. ON 7 1S Z-BIG OVER M

Definition 8.1. 1) Let T ={7 : 7 C“>#(Ry), T # 0,7 closed under initial
segments, no <-maximal member and .7, = {n € 7 : £g(n) = n} finite for n < w}.
2) For 71,7 € T let Ry, 2, = {R : R a closed subset of lim(.77) x lim(%2)}.
Similarly for Rz.

We write nRv instead of (n,v) € R. We always assume that 77, % can be
reconstructed from R € Ry, 7, and write 71 [R], Z[R]; similarly for R € Rz. Let
R, = U{R%’yg : %, T € T}

3) If R is a closed subset of lim(.7;) x lim(.%3) and k < w then let R<*> = {(n |
kv | k):(n,v) € R}. Similarly for R C lim(.7).
4) Forevery  CY = {(f,7): T €T, f € [] £(I)} et Dy ={A C w: for

n<w

some k, m < w and (fr, %) € ¥ and vy € lim(%) for ¢ < kwehave AD {n:n>m
and £ < k= vy [ n € fu(n)}}. We say & is nontrivial if § ¢ Dy . Let Jo be the
dual ideal.

Definition 8.2. 1) We say D is (f, 7 )-narrow if :
(@) fe Il 2(7)

n<w
(#4) D is a filter on w containing the co-finite subsets
(73i) for every v € “2 the set {n <w:v [ n € f(n)} belongs to D.

2) For % CY, we say D is % -narrow if D is (f, .7 )-narrow for every (f, 7) € #.
3) Z = {(n,R) : n € lm(RK[R]),R € R.},Zy = {(n,R) € Z : R € M and
ne lim([R)).

4) We say that D is (n, R)-big over M if: it is {(n, R)}-big over M (see below).

5) [REF(20B)] We say that n, D is Z-big over M if

(i) M is a set or a class (usually an inner model), D is a filter on w containing
the co-bounded subsets of w

(1) £ CZpy,Re Rf‘%% where 7, 5,7 € TM

(iii) n € lim(%[R]) when .Z = {(n, R)} for 8 every m* < w, (U : 1 < W) €
M, vy, € M for m < m*, (N, Rm) € £ such that {vm n,Vm : 1 < w} C
Im(Z[Ry]), if m < m* = vy, = limpVy, 1 n < w) then {n:m <
m* = Uy Rplim = Vo Bmfm } # 0 mod D.

6) [REF(20A)] We say n is R-big over M if the filter of co-finite subsets of w is
(n, R)-big. We say that n is Z-big over M if (n, D) is with D the filter of co-finite
subsets of w.

One Step Claim 8.3. Assume (all in V3)
(a) V1 CV,

)
(b) in V1, Dy is a non principal ultrafilter on w

(¢) for ¢ <(f, fe € Vi, Te € TVt [REF: omit]

(d) Dy is ¥ -narrow, % C YVt (of course, % € Vo, but possibly ¥ ¢ Vi)
(€)

(& ggZVl

8hote that if D is an ultrafilter then the case m* = 1 suffices
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(f) (#, %) is high over Vi which means (in Vy):
¥ C YV, ¥ C 23 [REF(21B)], and if m* < w, (m, Rm) € Z for
m < m*, %' C ¥ is finite, B € (Jg)T and for m < m*, vy, = (Vo :
n € B) € Vi and v n, Vi € Uim( A [Rn])VY, Vi = lim(vy, , = 0 € B) then
{n € B: if m <m* then Vi nRulm = VmRmnm} is infinite.
Then there is Do such that:

() Dy (€ Va3) is an ultrafilter on w

(B) D1 C Dy

(v) Dsq is & -narrow over Vi [REF(22C): not defined yet]
(6) Do is Z-big over V.

Remark 8.4. Better if we predetermine Dy N 2 (w)V2, good for u = cf(a%) > No.
[REF: unclear]

Proof. Proof of 8.3
For (f,7) € % and p € lim(7)V2 let
AL, ={n:pine f)
For (n,R) € 2 and v,,,v € lim(Z[R])V! forn < wsuch that v = (v, 1 n <w) € V;
and v = limp () we let
A%,R,D,y = {n:v,Rn=vRn}.

So we just need to find an ultrafilter Dy on w which extends Dy U {A},V v E

im(7),(f,7) € #YU{A? g, (n,R) € Z and p,v € V; are as above}. For
this it suffices to prove

() assume B € Dq,nj < w,n§1< w,A}Z)pZ,A%WRWWS% well defined for ¢ <
ni,m < nj then BNN{A; € <ni}nn{A} r ., , :+m<mn3}

is non-empty where (fy, %) € # where py € Um(%)(Nm, Rim) € Z and
Um, Vm as usual.

As vy, = limp(Vpy : 1 < wy and B € Dy we have By, = {n € B : vy |
=vpy | k} € Dy for m < nj,k < whence By = (| Bpx € Dy and clearly

m<nj
By11 C By, hence By, # 0 mod D; hence By, ¢ ngl, see Definition 8.1(4) where
W = {(fe, Tp) : £ < ni}.
Clearly it suffices to prove that B N N{A?2 :m < n3} is not in Jg-.

N s B s U, Vim

By part (2) of Claim 8.5 below there is B* C B in V5 such that B*\ By, is finite for
k <wand B* ¢ Jg-.
So we have:

(x) (i) % C % is finite

it1) B* Cwis from Vi, B* ¢ Jo -

19) Vi, Umn € Im(J[R,,]) for m < nf,n <w
i) Uy = lim(vy, , : n € B*) for m < nj

V) (Umn:n <w) and vy, belong to V.
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By assumption (f) we are done. Us.3

Claim 8.5. 1) Let % CY, then the following are equivalent for B C w:

(1) B¢ Jo
(1) for everyn* < w,(fe, Tp) € ¥ for L <n* and my < w there is my € (Mg, w)
such that:

(%) if ve € (To)m, for £ < n* then for some n € BN [mg,m1) we have
(Ve <n*)(ve I € fo(n)).

2) For% CY, if B, € J;;,B,H_l C B,, then there is B € J;, such thatn < w =
B C* B,. [REF(21A)]
3 IfViC Ve, @ CYV' . % €V, A€ P(w)V1, then A€ Jy' < A€ Ty

Proof. Easy.

1) Assume clause (i), i.e. B ¢ Jg; to prove clause (ii) assume toward a contradiction
that n* and ((fe, 7%) : £ < n*) and mg < w are as there but there is no my €
(mo,w) such that (%) there holds, so there are v;"' € (), for £ < n* such that
n € BN[mg,m) = (3 < n*)(v,” | n & fe(n)). By Konig lemma there are
vy € Lim(7;) for ¢ < n* such that Ym < w,3%m; < w(m < miandmg < mp and

N v ITm=wv[m). [REF: my <m < my see (22C)]
L<n*

Now for each ¢, by Definition 8.1(4) as (fs, Z2) € %, the set Ay =: {m < w :
ve | m € fe(m)} € Dy hence A= (| Ay € Dy, but we assume B # () mod Dy

<n*
hence AN B # () mod Dg so there is m,mg < m € ANY. Let m; > m be

such that £ < n* = v, | m = v, | m and this m; contradicts the choice of
(v : £ < n*). So (i) = (4i) indeed. The other direction is even easier.

2) Just use clause (ii) of part (1) as the definition. This is straight.

3) Follows using clause (ii) of part (1). Os

The Limit Claim 8.6. Assume:

(a) & a limit ordinal

(b) (V¢ :( <d) is an increasing sequence of inner models
(¢) % CYVe¢ is increasing with ¢

(d) D¢ is a filter on P(w)V¢, increasing with ¢

(e) D¢ is disjoint to Ja for every finite & C %.

Then U{D; : ¢ < 0} can be extended to a uniform ultrafilter on w disjoint to
Juizec<sy-
Proof. Easy. (I

Definition 8.7. 1) Assume 7 € T,h € “w,00 = lim(h(n) : n < w) and f €
II Z(Jhn)). We say that “D on w is (f, h, 7 )-narrow” if

n<w

(a) D is a filter on w containing the co-bounded subsets
(b) for every v € lim(.7), the set {n : v [ h(n) € f(n)} belongs to D.
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2) We say (f’, ") is the translation of (f, h, ) if:

T'={m I h(m):m<n):n<wmne lim(7)},

filn)y={nTh(m):m<n):nelim(T) and n | h(n) € f(n)}.
[REF: used??]

Remark 8.8. We may like to have #/ C Y V2 is this needed? Helpful.
[REF: not clear]

Definition 8.9. 1) Let for a class M, 3, be the set of (n, R) such that:
(@) R= (R, :n <w)e“RY), 7[R, 1[Ro] and Z[R,] = J|Rp] and
for R we let Z|R] = ,%[Ro] for £ =
(b) n € lim(F[Ro])
(¢) n does R-cover M, which means (Vv € lim(.Z[R])™)(3n < w)[vR,1n] [re-

turn: context with one R?7].

Claim 8.10. 1) Assume (with V. =Vy)

| =
1,2

(€) Da,, is ZL-big ultrafilter over Vi for every n € ““w. [REF:(22B)]
Then kg, “n is R-big over Vi[ng, |”. [REF:(22A)(n double role)]
2) Assume (a), (c), (d) above and

()" (n,R) € 3v,
(€)' Doy, is (p, Ry)-big ultrafilter when p € "w.

Then Irq,, “(n,R) € 3v,pmiep,)”-

Proof. [Saharon revised: copied from 5.9(2). [See REF(23A); why not prove(2)?]
1) By clause (a) of Definition 8.9 this is a special case of part (2). So assume that
p € Qp,,m* <w and for each m < m*, (pm, Rp) € £ and v™, (v} : n <w) € Vy
are ng—names hence Qp,-names such that

(*)1 p Fo,, “v™ vy € Hm (7 [Ry]) and v' = lim(y,, 1 n < w)”.

r < 7L

By the definition and what we need to prove, without loss of generality

()2 plE“v™ [n=wi' [ n”
We shall find p" > p in Qp, such that p’ I “(v™Rppm) = (V" Ripm) for every
m < m*; for some n < w”, this suffices (see 4.10(2) REF!); work in V;. Let
q = (“"w), s0 g0 € Qp,, now we find (", ", : 7 € go,n < w) of course in V;
such that:

(s (i) vty € n(Fi [Rp),m <
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(ii) for every n € go and k < w we can find 4% Qoo € Qp, such that:

[n] (]
Qo <pr k90 Spr gk
G FQp, VT TR =10 TR

m W, m — m 9
Dok ”_QDl vt k= Vpn [ k7.

Now clearly

(#)a (1) v =limp, ()} s 1k <w)

(i) vy, =lmp, ()"~ ps 1k <w).

Next note that

(%)5 vyt = lm(yy, i n < w).

[Why? By (+)2.]
Let u, = {m <m*: vy R pm holds}.
Now as each Ry, is closed (see Definition 8.1(2)) there is k, < w such that
(%)¢ if m <m*,m ¢ uy and v | ky<w € im(A[Ryn]), pm | ky<p € lim( T [R.n])
then ~(vRp,p).

By (%)4(2) + (i) + (%) we have
(¥)7 (1) (v Ripm) implies {k < w : )" s Riypm} & D1y
(i) (v Rmpm) implies {k <w : 1" - Rinpm} & D1y
By the assumption (e) on D, and (*)7(i) + (ii) we have
(¥)s (1) vy Rupm M {k <w v Rinpm} € Doy
(i) vpt Rmpm iff {k u;’fnmempm holds} € Dy .
By ()5 applied to n = tr(p), as the cofinite filter is .#-big over V; (which is
a consequence of assumption (e) [REF] we can find n(x) < w such that (Vm <
m*)[(VZI"Rum) = (y;'“E*MRmpm)]. Next let

p*={vep: iflg(tr(p)) < £ <{lg(v) and m < m* then
VteRmpm = V) 1o Bmpm}-
Now p <, p* € Qp, by (¥)s. Lastly, let ¢* =: {v € p* : if £ < lg(v), then
VE Qi g, and v € q;n(*),u[é,kn}'
Does ¢* IF@D1 “W"Rmpm) = (ynm(*)Rmpm)”? If not, then for some ¢** we
have ¢* < ¢** and ¢** II—@]32 “W"Rpmpm) = —|(~1/Z‘(*)Rmpm)”; moreover, with-

out loss of generality for some truth value t,¢** II—Q]52 “WmRmpm) = t and
(Vo Bmpm) = —t7 and for some k* < w, ¢** kg, “t = false = (Vv,p)[v™ |

k* <v e lim(F[Ry])andpy, | k* <p € im(%[Rn]) — (v,p) ¢ Ry] and —t = false
= (W, p)lvny | k" <v € im(A[Rp])andpy | k* <p € im(%[Ry]) = (v,p) €
R,

But q**,q{?(q**)7k*,qﬁ*)7tr(q**)7k* for m < m™* are compatible having the same
trunk, so let ¢’ be a common upper bound with tr(¢’) = tr(¢**) and we get a
contradiction.

2) Return! 77 [REF:(24B)]. Left to the reader. Os 10
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Definition 8.11. 1) For g € ¥ let
Tlgl =72

Dolgl = {(TNID2: 0 <n): T eTyn<uwl,
so n € lim(%]g]) can be identified with

T=TheTy:n=nr=(TN*22:0<n):n<w)

Ry ={(n,v):v€“72,n € lim(%lg]) and v € lim(T[n])}.

2) Let w* = (wj, : k < w) list with no repetition U{22("2)\{0} : n < w} such that
wy €120 < by = 1wy ] < [w] and £1 < lrandles[w] ] = les[w],] = the

<lex-first p such that p € w; = p ¢ wy, satisfies p € wy. Let it be defined as
T9 =92 and h*(¢) = n[w}]. [REF: (25B): (a) not clear, (b) where used?]

The following shows that the “¢-continuous” treated in §4-§6 fits our present frame-
work.

Claim 8.12. 1) Assume Vi C Vy,9 € 9Vir € (“2)V2, then we have: t is
{g}-continuous over V1 iff r is Ry-big over V7.
2) Assume:

(CL) V1 Q V2 =V
(b) Z C{(r,Ry):g€9Vr,r € (“2)V2 and r is Ry-big over V1}.

Then % =0 and & are as required in 8.3, i.e. (¥, %) is high over V1 (i.e. clause

(f) there).
3) Assume (a), (b) as in (2) and

(c) % has the form {(w,h*,Z°)}. [REF: (24A)]
Then (¥ ,%) are as required in 8.5.

Proof. (Or use 2 with R, see later [REF?7?)).

1) Compare the definitions 4.7(1) + (3) and 8.2(4),(5),(6) check.

2) So assume m* < w and (N, Rym) € £ for m < m* and B C w is infinite and
Vi, Vmn € UM(A[Rn]), (Umn 1 < w) € Vy and v, = lim(v,,, : n € B) for
m < m*. We should prove that {n € B :if m < m* then vy, Rnnm = Vi Rmiim }
is infinite. [REF (25A): what if (n,, : m < w) are pairwise distinct]

3) Left to the reader. Og 19
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9. REFINEMENTS OF §1 - §3
SAHARON - what is 777

Definition 9.1. We define the (&, X, {)-standard trunk controller .# = %5 ([X]
in V by induction on ¢ < wy, where @ = {a. : € < (), an ordinal and X is
a trunk controller, but we may write @’ with & | (( + 1) = & instead of a: the
(a, X, ¢)-standard trunk controller .% in V is:

(a) the set of elements is the set of functions f from a countable subset of c¢ into
X UUH{Za.[X] : € < ¢}, abusing notation we assume that (X) (%5 . [X] :
€ < () is an increasing sequence of structures and for ¢ = 0 we stipulate
j\d,s—l [X] =X

(b) fi <pr fo it Dom(f1) € Dom(fy) and 8 € Dom(f)) = V  Fao[X] |

e€[-1,{)
f1(8) <pr f2(B)
() fi < foiff
(1) Dom(f1) € Dom(fa2)

@) peDom(f) =V FaclX] F ()< £(5)

(ii7) the set {8 € Dom(fy) : [yl ; FaelX] E f1(B) < f28)A=[f1(8) <pr

f2(B)]} is finite

(d) f

<apr f2 iff

(1) f1 < fo (this in fact follows by the later clauses)
)
)

(i) Dom(f1) = Dom(f2)
(#41) for all but finitely many 8 € Dom(f;) we have f1(8) = f2(8) and for
the rest \/ ﬂ&@[X] ): fl(ﬁ) Sapr f2(ﬁ)
e€[-1,0)

Claim 9.2. 1) We say F is transparent if pg <pr p1 and po <pr p2 = (Ip3)(p1 <
psandps <pr p3).
2) For every trunk controller X and ¢ and & = (o : € < (), Fac[X], is a well
defined trunk controller, simple if X is simple.

Definition 9.3. 1) Q, an .%-forcing is very clear (as an .%-forcing) or a very clear
Z -forcing if:

(%) if po, p1 € Q and val@(py), valQ(pl) have a common <‘7—upper bound y then
for some ¢ € Q we have pg <pr ¢,p1 <pr ¢ and valQ( ) =y.

2) Q is basic when: if py < py then for some p; we have pg <pr p1 <apr P2 and
ValQ(pl) interval” (po, p2)-

3) Let Q be an .Z-forcing, it is straight, or F#-straight when: if p1 <upr q1,P1 <pr P2
and py, g1 are compatible, then there is go such that ¢ <,; g2, p2 <apr ¢2 Which is a
<@1ub of ps, g1 and val®(gz) can be computed from (val®(p), val®(ps), val®(qy)),
and we stipulate that this computation is a function which is part of the trunk
controller. We call it amalg(—, —, —) (the point is that when we iterate over V

this function will be in V). If po, g1 are incompatible, we use g2 = ¢1. [Used in 2.8,
?7].
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4) An Z-forcing Q is called pseudo clear or pseudo #-clear when: if p <y, p1,p <p»
p2 and p1, p2 are <,,-compatible then they have a common <,,-upper bound ¢ with
val®(q) computable (see (3)) from (val?(p), val®(p1), val®(ps)) and we denote it by
pramal(—, —, —). [Used in 2.8, ??; the difference from part (1) is the assumption
of compatibility, and the val of the common upper bound is not any < -common
upper bound of val(pg), val(p;) but a specific one].

5) An % forcing Q is weakly clear when:

(1) If po,p1 € Q and val@(po),val@(pl) are <p,-compatible in .#, then po,p:
are <,,-compatible.

6) We say Q is transparent G —transparent) when: if pg < pr p1,po <
p2.val?(p1) <pe yg,val (p2) <pr y3 € Z, then there is p3 € Q such that p;
p3, P2 <pr p3 and val®(ps) = ys.

pr

IN

Definition 9.4. 1) .% is a trunk controller with inter when it may also have a
function inter = inter’ such that: if .Z = “pg < po” then inter(pg, p2) € F is well
defined and & = “py <pr inter(po, p2) <apr p2”. F is a trunk® controller.

If we write “trunk” we mean it does not matter which case we use.

2) For .# is a trunk controller with inter we say Q is a .#-forcing notions if (a)-(e)
of Definition 1.6 and

(e) if po < py then for some p; we have py <pr p1 <apr P2 and valQ(pl) =
inter” (val)@(po), val®(p2)).

Claim 9.5. 1) For an % -forcing Q: wvery clear implies clear and implies weakly
clear.

2) Assume Q is a F -forcing, Q is weakly clear (?7(5)), and F is semi-simple, then
Q and even (Q, <p;) satisfies the Na-c.c.

3) Assume Q is an F -forcing, Q is weakly clear and F is simple, then Q and even
(Q, <pr) satisfies the regressive Sy? 2-c.c.

Remark 9.6. No harm demanding

(¢) Qo satisfies the c.c.c. and ggg is equality, <(a@§r is <@ and val® is con-
stantly 0

Definition 9.7. Adding the adjective “semi” (in 2.1(1) hence in (1) of 2.6) means
that in clause (8) we just ask for some € < ¢ in B, the conditions ¢, g; are com-
patible in Q; so we call the games semi-oy, semi—D;. In Definition 2.5 and adding
“semi” means, Qq satisfies the semi version, each Q1 the regular one.

Claim 9.8. 1) If in Definition 2.1, Q is bare F -psc forcing and is F -clear or at
least straight (see Definition 77) then Q is Z -psc (as witnessed by some H, so H
is redundant), similarly with &.

Proof. Straightforward. In part (1), the “Q is a clear .%-forcing” is used for clause
(7) in 2.1(1); for using “straight” note that in clause () also p. <pr g holds by
the demands in 2.1(7y), as well as pe <apr ge by X of 2.1(1). o5

9This simplifies quite a number of definitions below. Of course, instead of for every ys it is
enough to have one such y3 = y3(val@(p,) : £ < 3), this function being part of .F
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Definition 9.9. Let .% be a trunk controller.
1) # satisfies the psc if:

(%) if ZF | “@ <pr Yo <apr 2" for € < w; and A C w; is stationary then for
some stationary B C A we have:
if e <  are from B then z., z¢ has a common upper bound z such that:

(Oé) z = glue? £ ((ZEa ZC Ye, y()
(6) if ys Spr Res Y¢ Spr ¢ then Z( Sopr %, %e Spr zZ.
2) .7 satisfies the almost-psc if:

(%) if F = “@ <pr Ye <apr 22" for € < wy, then for some € < ¢ < wy, 2, z¢ has
a common upper bound z such that («) + (8) above holds.

3) In parts (1), (2) we add the adjective “continuous” if in (x) we add ¢ < { <
wi = Z E “Ye <pr y”. We add Knaster if we replace stationary by unbounded
(this is alternative to semi’, but not for iteration!)

4) We add the adjective “finished” if we omit clause (y) in 2.1(1 ) and its variants.
5) We say that an F-forcing Q is [Knaster] explicitly [almost] .Z-psc forcing if

(a) Q is an F-forcing

(b) Z satisfies the [Knaster][almost] psc

() if z = glueygg(z’,z”,y’,y”) and ¢',¢",p',p" € Q and p’ <pr P70 Zapr
¢, p" <apr ¢,y = Val@(p’)7y” = ValQ(p”)7z' = ValQ( N, 2" = ValQ(q”)7
then there is ¢ € Q such that:
(@) ValQ(q) =glues(z, 2, 2",y y")
(B) if p' <pr ¢, 0" <pr ¢" then ¢ <p,1 g

6) We say Q is a Knaster explicit [almost] .#-psc iteration if:

(a

(b) Q is an .F-iteration
(

) F
)
c)
)
)
)

is a trunk controller, fully based on some o > £g(Q)

satisfies the Knaster [semi| psc; Nj-complete

Fl
F1+8] satisfies the [Knaster] psc when 1+ 8 < £g(Q); R;-complete
] o‘*[O]

(d
(e) Qo is explicitly [Knaster][semi -psc,<pr —Nj-complete
(f) Qi4p is (forced to be) an explicitly [Knaster] #-psc forcing <,, —N;-
complete.
7) We (in (5), (6)) add continuous if so are the Z’s
Claim 9.10. 1) Assume

(a) F is a [semi]-psc trunk controller
(b) Q is an F-forcing notion.
Then Q is a [semi] & -psc forcing notion.
2) Assume

(a) F is a continuous [semi]-psc trunk controller
(b) Q is a straight F -forcing notion

( ) (Qv p'r) 18 N1—Complete.
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Then Q is a [semi] strong F-psc forcing notion.

Claim 9.11. Assume Q is an explicitly [Knaster/semi] F -psc iteration.

1) If B < £g(Q), then Q | B is an explicitly [Knaster/semi] F -psc iteration.

2) If the trunk controller F is fully based on (F? : B < a*) each FU+P! satisfies
[Knaster]-psc and F satisfies [Knaster/semi-psc, then F satisfies [Knaster/semi-

psc.
3) If Q is explicitly [semi] F-psc forcing, then Q is strongly [semi] F -psc forcing.
Proof. Should be clear. O

Claim 9.12. If Q is explicitly [Knaster/semi] F -psc, then Q is purely proper.
Proof. Same as 2.9 only easier (in some cases by 77(3)). O
Claim 9.13. FILL.

Proof. 1) Assume not and let H be a witness for “Q is .#-psc” hence by 2.12 some
H witnesses Py is #-pcf. So simulate a play of the game o0, = O, p_. 1, where
the interpolator plays using a fixed winning strategy whereas the extender chooses
g¢ and n¢ < w such that:

(@) p; < g¢ (see notation in 2.1(1)) (i.e. a legal move)

(B) n¢ < w is the minimal n such that {¢. : € < {,n. = n, and ¢. forces a value
of 7(n)} is not predense over p}

(7) if ne < w, g¢ forces a value to 7(n¢), call it j.

(0) if n¢ < w then ¢¢ is incompatible with ¢, if € < andn. = nc.

X for some (,n¢ = w.

Why? Otherwise the extendor can choose g¢ for every ¢ < wq, and ne = n* for
every ¢ € [(*,w1) for some ¢*; in the end (* < ¢ < ( = ¢.,qc are incompatible
but the interpolator has to win the play (as he has used his winning strategy),
contradicting clauses (8) of 2.1(1).

So necessarily for some ( < wi,n¢ = w. Let p* be: pif ( = 0,pc—1 if ( is a
successor ordinal and p’C if ¢ is a limit ordinal, so p <, p* by the definition of
the game. For each ¢ < ( let ¢/ be a <-lub of ¢.,p*, exists as Q is straight, so
P* <apr ¢.. Let I, = {¢. : ¢ < ( and n. = n} and we shall show that p*, .7, are as
required (p* standing for ¢). Now clauses (a), (b), (c) are obvious, toward clause
(d) assume n < w,p* < ¢ and ¢ is incompatible with all members of .#, and let
¢n = Min{¢ : n¢ > n}, so ¢ could not have been a good candidate for g, hence is
compatible with some g, n. = n. So by the choice of ¢ clearly ¢, < g and ¢, € .7,
contradiction. g
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10. §T
Recall ([?, ?]).

Definition 10.1. 1) For an ordinal a(*),.# = Z,() is the a-th standard trunk
controller (we let a(.#) = a) so

(a) f e Fiff fisa function from some countable u C « into “~w
(b) <,=<7 is the following partial order on .7,
(@) f <pe g iff f =g | Dom(f)
(B) f <apr g iff Dom(f) = Dom(g)
(V8 € Dom(f))(f(8) < g(5))
(3<% 8 € Dom(f))(f(B) # 9(B))
(V) f <us g i 3R)(f <pr B <apr 9)-

2) We define also nggf‘a for x = qr,aqr: we let
(o) f <qv g iff for some h,h <oy fAR<g
(B) f <aqr g iff Dom(f) = Dom(g) A f <qr g
3) For f € F let Ry be ({9: f <aqr 9}, <apr) and let R = ({g: f <apr 9}, <apr)-

Observation 10.2. 1) <, is a partial order on Z,.
2) <aqr ts an equivalence relation, the Ry’s are the equivalence classes.

Definition 10.3. Let .# be a standard trunk controller. For f € %, let

(a) aext(f) ={g: f <aqr g} and ext(f) = {g: f <apr g}

(b) pos(f)={7:7=(ng: B € Dom(f)) and f(a)<n, € “w for a € Dom(f)

(¢) apos(f) = U{pos(g) : g <aqr f}

(d) dst(f) ={F : I C{g: f <aqr 9} and for every g € aext(f) and 7 € pos(g)
there is h such that g <,, h A 7j € pos(h)

[dst(f) is the family of “dense subsets” of R; = aext(f), so if Dom(f) =
{B} it means that we have fronts .#, of “”w for n < w such that (Vn €
Fn) Vv € 2,)(—v < n) and # includes (the copy of) U{.#, : n < w} that
is S D {{(B,v)}:v e IFpn<wl]

(e) if & € dst(f) and S C aext(f) we say S is decidable by # when: if
7 € apos(f), then for some g € axnt(f) and truth value t we have 7j € pos(g)
and: for every h,g <apr h € Z AU € pos(h) = ((h€ S) =t)

[this says in an appropriate sense that for a dense set of open subsets u
of apos(f),u N . is included in S or disjoint to 9]

(f) for A, S5 € dst(f), let S <, F5 means that for every 77 € apos(f) there
is g € axnt(f) such that 77 € pos(g) A (Vh)(g <apr h € o = h € F)

[this says that on a dense open set % C I4]

(9) let DEC(f) = {2 : 2 C dst(f), 2 is <*-downward closed, Z is (<., N;)-
directed and for every S C apos(f) is decidable by some .# € D}.

[those 2’s are like P-points].

Definition 10.4. Assume f; <4 fo.
1) Let prjy, s, - apos(f2) — apos(f1) be prf(ge) = go [ Dom(f1).

2) For 5 € dst(fa), let prjy, 1, (H2) = {priy, 1,(9) 19 € I}
3) For 2, € DEC(f2), let prjy, r,(%2) = {priy, 1,(F) : I € Do}
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Alernatively
Definition 10.5. 1) For u € [a(x)] < Ng let

fisq(u) ={D: D = (Dy, : @ € u,n € “”w), Dy ,, an ultrafilter on w}

Let flsq(f) = flsq(Dom(f)). B

2) Let Z) .,y = {(u, D) : u € [a(x)]=" and D € fisq(u)}.

3) For f € F4 () and D € flsq(f) let dst(f, D) is the set of & C {g: f <apr g}
such that

(*)4.p5,7 in the following game the first player wins (i.e., has a winning strategy)
(a) a play lasts at most w moves
(b) before the n-th move g,, € pos(g) is chosen
(©) go=g
(d) in the n-thmove, the first player chooses.
Observation 10.6. Assume f1 <g fo.
1) prijg, 4, is a function from apos(fa) onto apos(fi).
2) prjy, s, maps dst(fz) onto dst(f1).
38) If 7 C 7 are from dst(fz) then S C ¢ = prjg, (&) C priy, () and
I < J = prig, ,(F) C prig, 5, (F) provided that FILL prjg s maps every
member of DEC(f2) to a member of DEC(f1).

Proof. FILL. O

Claim 10.7. Assume f € Fo(x).

1) If 4, € dst(f) and I, <, Ipt1 forn < w then thereis & € dst(f) satisfying
n<w= I, <, 7.
2) Assume (u, :n < w) is an increasing sequence of finite sets with union Dom(f)
and & C apos(f). We have & € dst(f) iff & has a G-witness (see Definition
below).
3) Similarly for 91 <. 9.

Definition 10.8. Assume @ = (u, : n < w) is an increasing sequence of finite sets
with union Dom(f) and .# C apos(f).
1) We say that (n, () is a @-witness for .# when

(a) n is a function from apos(f) to w

(b) if g1 <apr g2 are from apos(f) then n(g;) < n(gz)

(¢) ¢ is a function from apos(f) to w;

(d) if {(g) = 0 then g € .¥

(€) if g1 <apr g2 ave from apos(f) and ¢(g1) > ¢(g2) = 0 then n(g1) < n(gz)

(f) if g1 € apos(f),C(g1) > 0,01 <apr 92, Un(gr) = {8 € Dom(f) : g1(n) #
g2(n)} and ~(39 € F)(91 <apr g <apr ¢2) then ((g1) > ((g2)-

2) Assume .1, .% < apos(f). We say that (n,¢) is a @-witness that .# <, .%
when

(a) — (¢) as in part (1)
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(d) if ¢(g) = 0 then (YA)(g <ap h € Jo = h € )
(e) if g1 <apr g2 are from apos(f) then C(gl) > C(gg)
(f) as above.

Proof. Proof of 10.7:
1) By parts (2) + (3) and diagonalization.
2), 3) Stra1ght 510,7

Claim 10.9. Assume
(a) f’fuf S }\a(*)
(b) fn gqr fn+1 Sqr f fOT’TL < w
(c) Fn € dst(fn)
(d) In <« prjfm

Then for some .7 € dst(fn) we have n <w = ., <, prj; ¢(5).

Foss (Fnt1) forn <w.

Definition 10.10. Z is a full Z o(x)-choice if

(a) 9 = <@f : f c ya(*ﬁ
(b) 27 € DEC(f)
(¢) if f1 <qr f2 then Dy = prj(Ds).
Definition 10.11. 1) The forcing notion R?, (+) is defined as follows

(a) pe R’;(*) ift p = (f,7) = (fP,47), f € o), € dst(f)
(b) R )lngqiﬂfp Sar JINIP <, prjfp,fQ(uﬂq)-

a(x
2) We define a R}, -name, 9 =Dy : [ € Faw), P ={F Capos(f) : 7 <.
wy o (FP) for some p € G}.
Claim 10.12. Assume CH.
1) Rza(*) is a Na-c.c., Ny-complete forcing notions.
2) |F]R;(*) :@ a full ﬁa(*)—choice.

Proof. Should be clear. O
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11. §U
SAHARON: What is 77?7 See Glossary

Definition 11.1. 1) We say ¢ is an a(*)-parameter when it consists of the following
objects satisfying the following conditions

(a)
(0)

(Zy : f € Fov)) is a full F,(,)-choice

= (Do, o < ax),n € “Zw) such that D, , is a non-principal ultrafilter

g I IENSY
€

2) Let £, be the class of Q such that

(a) Qis asin [?, 5.11], but also Qq is Qp,

(b) Dp.y, a Pg-name is defined as follows: for G a subset of Ps generic over
U, Dg ,[Gg] is the set of A[Gg| such that for some A,p € Gg and J =
(Zn:n <w) we have

(c) AisaPg-name

(d) #n is a subset of {q : p <ap, ¢ € Pg} predense over p if ¢ € _#, then ¢
forces a value

(e) if for some .# € .@fr(p) for every g € .# we have for some B € D}, , we have:
sn
() if p <apr ¢ € Py, tr(q) = g and n < w then for some 7,q <upr 7 €

Py, tr(r) = g we have r lkp, “ANn=BNn".

Claim 11.2. 1) For every a(x) € Ord and o(x)-parameter ¢ there is one and only
one Q € K.

Proof. We prove this by induction on o(x). O

Case 1: a(x) =0.
Trivial

Case 2: a(x) is a limit ordinal.
This holds by [?, xxx].

Case 3: a(x) =a+1.

Clearly y =r | o is an a-parameter hence Q® = (Pg, Qg : 8 < ) is well defined
as well as P, = Lim(Q®).

Now for every n € “”w, Qam is a well defined P,-name of a subset of Z(w).
Now by [?, xxx] it suffices to prove

X Qa,n is a Z,-name of a non-principal on w.
For this it suffices to prove (x); + (*)2 where

()1 if A is a Po-name of a subset of w then for a dense open set of p € Py, p IFp,
“Ae Dy oy orplie, ‘w\A e DL,

~ a,eta
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[Why (%); holds? Let pg € P, and 4, = A4, 4y = w\A. By [?, xxx]| there is
P, o < po € P, such that (p, A) satisfies clause (b) of Definition 11.1(2), Sy := {g €
apos(tr(p)): if there is ¢, p <apr ¢r, 9 = tr(g) then (g, A¢) are as in (c) of Definition
11.1(2)}.
As Dir
are done.]

o € DEC(tr(p)) clearly (p, Ag) is as in ?7?(2) for some £ € {0,1} so we

(%)2 if n < w and for £ < n, Ay is a Py-name of a subset of w, A¢[G,] € D then
n Al[Ga] 7é 0.
{<n
[Why? For each ¢ < n there is (p¢,I¢),pe € Gg witnessing A[G,] € D, ,[G] as
in 72(2) so S € Dyy(p,)- As G is directed, there is p € G such that p, <p, p for
¢ < n, so clearly F, = tr(pe) <ap tr(p).

By the assumption Z¥, see clause (a) of Definition 11.1, for some .# € Dy, such
that £ <n = 7 <, prjtr(m),tr(p)(f). Hence by [?, zzz] there is ¢, p <,p, ¢ such that
€ < n = Prig(p,).ae(p) (t1(q)) € Lo hence there is By as in clause (c) of Definition
??(2). So Bo,...,Bn_1 € D, hence B := N{By : £ < n} belongs to the the
ultrafilter DY, from V and let k(n) € B. So for each £ < n there is ¢ such that
Pe Sapr qe,tr(qe) = tr(g) | Dom(pe), qe I k(x) € Ap. By {q} U{qe : € < n} easily
has a common upper bound say r so ¢ “k € U{A4, : £ < n} hence this intersection
is non-empty”, so also ()2 holds.]

Claim 11.3. LetQ € R, 1 a af*)-parameter.

1) For a < a(x) and n € “”w if DY,  is a P-point, then Ip: “DY, . is a P-point.
2) Moreover kp: if Ay, € D2, forn < w then we can find v, € [An]P ") such that
U{vn :n < w} € D, if DY . satisfies this for y where

a,n a,n

(+) frg.h g € “(@\{O0}),h < g < f,{g(n) : n < w), (hn) : n < w) converge to
infinity and (¥n)[f(n) 2 g(n), h(n)).

Proof. Proof of 11.3

1) Let pI- “A,, € DY, )" for n < w. Possibly increasing p without loss of generality
each (p,A,) is as in ??(2)(b) for each n. Hence by the proof of 11.2 there is
In € Dfr(p) such that (p, 4,,.#) is as in ??(2)(c). Without loss of generality
I C Fpi1 (see 77) and there is & € er(p) such that n < w = I, <, I and let
(n, ¢) -witness # (for some @). For each ¢,p <., q let By, = {k < w: there is r
such that p <p ¢ Ap <apr ¢ A gl “k € A, }. For each g € .7 let m(g) = max{m:
if n <n(g) and n < m then B, , € D§, ,}.

Clearly

plk“ for every m there is g € pos(tr(p)) such that

(ng : B € Dom(p)) € real(g) and
g <prh €7 =m(g) >m".

Now we define A a P-name:
A={k<w: thereis g€ .7 for which (ns : 8 € Dom(p)) € real(g)

and there is g € Gp, ,, such that tr(q) = g,
qlF “k e N{Ay: € <boldm(g)}”.
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Cearly Ais a P! o(p)"ame of a subset of w and (p, #) witness A € D%, (after minor
doctoring). Uiis

Definition 11.4. The «a(x)-parameter is called Ramsey if for any sequence ((ay, 1) :
¢ < w) of members of a(x) x “”w (possibly with repetitions) in the following game
the ultrafilter player has no winning strategy: in the nth play,

the challenger player chooses A, ¢ € D}, for £ < n the chooser chooses ky, ; €
A, ¢ for £ < n.

In the end the chooser wins if £ < w = {kn ¢ :n <l <w} € Dq, z,-

QgNe

Observation 11.5. 1) Ifr is an a(x)-parameter, D a Ramsey ultrafilter on w and
(,m) € alx) x “2w= D}, = D, then ¢ is a Ramsey ultrafilter.

2) If we force (D%, : a < a(xr),n € “Zw} by countable approzimations then it is
Ramsey.

Claim 11.6. 1) If ¢ is a Ramsey a(x)-parameter then the forcing notion P has
the Laver property, i.e.

Definition 11.7. A forcing notion P has the Laver property when: f,g € “(w\{0}), f <
g and {g(n) : n < w) goes to infinity then P has the (f, g)-bounding property.

Proof. Proof of 11.6

1) Let f,g be as in ?? or ?? and assume p € P* p I- “n € [] f(n)”. Let k,, =
- n<w

Min{k : (Ym < n)(kn < kp) and m > n = g(n) > 2"}. We can find ¢,p < ¢ such

that 1 be read purely above r whenever ¢ <., 7. For each g € {tr(r) : ¢ <apr 7}

let ny € [] f(n) be such that for every n for some r, we have ¢ <.pr 7 A tr(r) =

nw
gATiE*nIn=mn[n
By claim [?, xxx] without loss of generality

(%) iftr(q) <apr 9,8 € Dom(q) and we let for k < w, hg g1 be g | (Dom(g)\{8})U
{(B, g(B)A\ < k >) such that Ng = 1imDn,ﬁ,g<77hg,B,k k< w).

7

Let {(cw,me) : £ < w) list the pairs («,n) such that a € Dom(q),tr(q) < n, and
tr(g, ag) Sn<ane = (o, n) € {(cvi,mi) + i < £}

We simulate a play of the game from ?? (or ??) for ((ay,ne) : £ < w) such that
the chosen player preserves

X after n(x) moves, for every n < w the following set has at most g(m)
members

t’ﬂ(*),M{ng r m: tI‘(q) Sapr g and
(V8 € Dom(q))(Vi)(g(8) # tr(q(B)) =
Ng(tr(q)) <i < 59(9( ) =
(3 <n)[(B,9(8) [1) = (e, ne) A (g(B))(@) € {kne s n <n(x)}.

By ® there is no problem to carry this. Now define r such that:
O ¢ <pr g <apr 7 if B € Dom(q),tr(¢(8)) < n € ““w then r | B IFp “if
neT"® and (8,7) = (qe(s)> Me(s)) then n € T4 and

(ki <k>eT®}={k: n~ <k>cTi
and k € {ky, g0y 1 £(¥) <n < w}}.
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Clearly there is such r and r I- “n [ m € (H{tnm :m < w} and (t,;m 1 n < w) is
m
increasing hence with union < g(m) members so we are done. R

Remark 11.8. 1) This is enough to answer yes. Juday problem.
For CUN(ZFC + 0 large and even b large + BC) we need more.
2) So here H—P%( ) “f € “(w\{0}) in increasing with f(n) > g(n) :==n".

* * *

An alternative is

Definition 11.9. 1) ¢ is a witness for .# € dsl(f) which means that

() F =(In:n<w)

(b) _Zn € mnac(f), i.e., is a strong antichain of Ry, see below

(€¢) Fny1is above g, 1e. (Vg2 € Fpi1)( 391 € ) (91 <apr 92)

(d) for every g € ext(f) for some (every large enough) n and every ¢’ € 7 is
above g or is incompatible with g in (ext(f), <apr)

(e) Fn C I forn<w.

2) 7 is a witness for .# € adst(f) iff (a),(c) above and

(b)" 7, € anac(f), see below
(d)’ like (d) using aext(f).

3) 7 € ac(f) when

(a) 7 is an antichain of Ry

(b) for every 71 € apos(f) there is g € _# such that 77 € pos(g) (by (a), g is
unique).

4) We define # € aac(f) similarly using R’
5) We say # € nac(f) is decisive for g € ...7

Observation 11.10. Let f € 7.

0) dst(f) C adst(f),ac(f) C aac(f).

1) If & € anac(f) and for each g € 7, J, € ac(g) then 7 =:U{ 7, : g€ J} €
acc(f).

2) If F € nac(f) and for each g € #, J € nac(g) then ¢ = U{ fy:9€ F} €
nac(f).

3) If 7 € anac(f) and g € aext(f) then for some g’ € ¢ in (aext(f), <apr) we
have g,q’" are compatible.

4) Similarly to (d) for nac(f),ext(f).

Claim 11.11. 1) .7 € dst(f) iff there is a witness ¢ for 5 € dst(f).
2) F € dst(f) iff there is a witness ¢ for & € ads(f).

Proof. the “if” direction:

Let 77 € pos(f) and g € ext(f). Choose n as in clause (d) of Definition 11.9(1).
As 7, € ac(f), see Definition 11.9(3), necessarily there is ¢’ € _#, such that
71 € pos(g’). As 7] € pos(g) Npos(g’) by 11.10(x), g,¢' cannot be incompatible in
(ext(f), <apr, hence by the choice of n necessarily g <apr ¢’
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The “only if” direction:
First
X if f* € ext(f) then thereis ¢ € nac(f*), # C Z.
[Why? Let

Y1 =: {g € ext(f") : thereis ¢ €nac(g”), # C J}

Yo =: {g € Y1 : there is no ¢’ € Y] such that f <apr ¢’ <apr 9}
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12. GLOSSARY

§1 Trunk Controllers

1.1 (Definition) Trunk controllers, standard (trunk control), Nj-complete based,
fully based, .Z!#!, trivial, transparent

1.2 (Definition) (A trunk controller .% is) simple (= purely regressively Ns-c.c. on
S?), semi-simple (= Ny-c.c. for pure extensions), (semi) simply based (all are simple
except the first is semi simple)

1.6 (Definition) .#-forcing

?7? (Definition) (An .#-forcing Q is) clear (help put together extensions), basic,
straight (help put together p1 <apr ¢1,01 <pr P2, (used in 3.3(1)) and transparent

1.10 (Definition) .#-iteration

1.13 (Claim) Lim#(Q) is a .#-forcing

1.14 (Claim) in a F-iteration, § < v = Pg < P, naturally
1.15 (Claim) Preservation of clear (+ variant) and straight

1.8 (Claim) Simplicity of . %+ clarity of the .#-forcing Q, impure/pure Rs-c.c. (4
variants)

1.19 (Claim) Existence of .#-iteration
1.20 (Claim) Associativity (of .#-iterations)
?7? (Discussion)

3.7 (Definition) Pure decidability

§2 Being % -pseudo c.c.c. (F-psc) is preserved by .Z-iterations

2.1 (Definition) Q is .Z-psc, (%, &)-psc, clear, straight; consider (%, &)

2.5 (Definition) Q is .#-psc iteration as witnessed by H, is essentially ... (except
Qo), semi-simple % -psc strong

2.6 (Definition) Q is strong .%, psc, Q is strong

2.8 (Claim) Sufficient conditions for ps

?? (Definition) .Z is psc, strongly psc; continuous, Knaster, explicit, semi [?7]
?7? (Claim) Implications

?7? (Claim) Basic fact on the explicit version

2.9 (Claim) Z-psc implies pure (oo, Ny )-decidability for Ry anmes; the strong ver-
sion and the explicit version implies purely proper

2.10 (Remark) On “straight” and on stationary . C [A]®0
2.11 (Remark) On R;-completeness

2.12 (Lemma) Preserving psc under .#-iteration

?7? (Claim) Preserving the explicit version under .#-iteration

3.12 (Definition) (9, <g) is a c.c.c. witness
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§3 Nicer pure properness and pure decidability

3.3 (Claim) Sufficient conditions for pure decidability

?? (Claim) Preservation of “purely proper + preservation” of (D, R, <)

§4 Averages by an ultrafilter and restricted non-null trees

4.2 (Claim) For V; = V]r],r random over V, we consider extending an ultrafilter
D on w from V to an ultrafilter D; on w from V; relevant to the randomness of r.

4.4 (Definition) We define T as the set of ' C “~2 whose convergence to their
Lebesgue measure is bounded by g.

4.5 (Definition) We define T = limp(T,, : n < w),¥Y and & = ms — limp(%,, :
n < w).

4.6 (Claim) We note obvious things on limp (7T, : n < w).

4.7 (Definition) We define “p is 4-continuous over N for D”, the ideal Nully p and
Nully.

4.10 (Observation) 1) If V.C Vy,(“2)V not in (Nully)V? then V; has no Cohen
over V.
2) On the ultrafilter case in 4.7.

4.11 (Conclusion) We can extend an ultrafilter D € V to an ultrafilter D; in V;
preserving “r is ¢-continuous over V”.
§5 On iterating Qp

5.1 (Definition) We define D € IF, D € IUF(D = (D, : n € “”w), D, a filter or
ultrafilter on w, non-principal).

5.2 (Definition) Qp, a forcing notion, for D € IF,n =n(Qp), the generic.

5.3 (Fact) For D € TUF,Qj is straight, clear, simple, o-centered, purely proper,
F-psc forcing when “~w C .7, with n(Qp) a generic real.

5.4 (Claim) On 2-pure decidability, fronts and absoluteness for Qp.
5.5 (Claim) New f € “w run away from old on Rang[n(Qp)]

5.9 (Claim) (1) On Qp, <P+ Qp/, when D, < D7
(2) Preserving ¢-continuity.

5.6 (Claim) On new f € [[?(Qp)(n)2 running away from old p € “2

5.7 (Claim) For D ultrafilter on w, when does Qp satisfy: in V2, w, C [ng,(n), ng, (n+
D], lwn| < ngp(n) then U{w, : n < w} is disjoint to some member of D.

5.11 (Hypothesis) CH + .#* + £(0), with Lim(R) - c.c.c.

5.13 (Definition) Of &,, .

5.15 (Definition) Q; <g Qo.

?? (Definition) cr(Q), set of p giving an autonomous description of a condition in
the iteration

5.17 (Definition) We define &} for the context above.
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7?7 (Remark)

5.19 (Observation) Collect the properties, not used.

§6 On a relative of Borel conjecture with large b
6.1 (Hypothesis)

6.2 (Definition) (1) We fix £(0),the candidates for first forcing in the iterations as
adding A-randoms and define A(Qyp).

(2) R, in this context.

(3) ﬁ&fﬁ,@; mainly Q | 8 € ﬁg for B < a,Q € &, but for a > X\, Qp has all
randoms and they look internally a Sierpinski such that if & < A has < A randoms.
(4) < 80 Ssy, (the first new random is ¢V -continuous over the (smaller forcing).

(5) R (mainly C &).

6.5 (Observation) (1) The Sierpinski-ness of the randoms.
(2) Essentially #-psc with 2-pure decidability over Q.
(3) Semi-simple + .

6.6 (Claim) Existence of extensions and appear bound of increasing sequences for
R 82,
6.10 (Conclusion) We get Q € &, with a < A, using A or less of the randoms

manipulating b, 9, covering number for nully (77)

6.12 (Claim) Similar to 6.10, for a = A*.

§7 Continuing [?]

7.2 (Theorem) We find a forcing as in [?] replacing the null ideal by Nully but with
b = 0 is quite small, e.g. in V¥, cov(Nully) = R, b =0 = Ny.

7.3 (Remark) Connection to [?].

7.4 (Claim) Amalgamation in &) or above an amalgamation in £(0).

7.6 (Claim) The fact needed for the induction step in 5.19 putting two ultrafilters
together over amalgamated forcings.

7.7 (Claim) The generic real for Q € &), are enough.

§8  On “nis Z-big over M”

8.1 (Definition) (1) We define T, the set of finitary trees C “~ 7 (Xg).

(2) Rg,, 7, is the set of closed subsets of Lim(.%); also Rz, R. C lim(Z[R]) x
lim(%[R]). [CHECK??]

(3) R<F>.

4) Y isaset of (f,7),Dy for # CY.

(

8.2 (Definition) (1) D is (f, 7 )-narrow for f € II{Z(Z,) : n < w}.
(2) D is & -narrow.

(3) Zy; set of (n, R) with R € M,n € lim(%[R]).

(4) D is (n, R)-big over M.

(5) D is .Z-big over M.

(6) n is R-big or .Z-big over M.

8.3 (Claim) Sufficient condition for extending the ultrafilters D; € Vi to Dy € Vo
which is .Z-big, #-narrow over V7.
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8.5 (Claim) Equivalent condition to B ¢ Jg, the narrowness ideal for # C Y.
8.6 (Claim) Limit of #¢-narrow filters which is | #;-narrow.
¢

8.7 (Definition) (f, h, 7 )-narrow (return??) [releveling 7]

8.9 (Definition) 3, set of (7, R) (?) [return??]

8.10 (Claim) (1) Extending D to preserve such that € Vy is R-big on Vi[ng,].
(2) Similarly for 3.

8.11 (Definition) (1) Tree of subsets for T,.
(2) More notation on trees.

8.12 (Claim) (1) {g}-continuous and Rg4-bigness equivalent.
(2) Sufficient conditions for 8.3 for # = ().
(3) Similarly % = ) using 8.11(2).

koo sk okoskosk sk ok skok sk sk ok skok sk sk sk skok sk ok skokok skok kokoskoskok
44T,

45T =lmp(T, :n<w),9 CYV, % =ms—limp(%, :n < w)

8.6 p is ¥-continuous over N (for D), Nullg p HH¥¥xcoiasccobossco

Moved from pgs.5-10:
Move from pg. 34,35,36: * * *

Moved from pg.8,9:

2) If .7 is a basic trunk controller, i.e., inter” is well defined, then “Q is a basic
Z-forcing” is defined similarly adding

()1 if po < po then for some p; we have pg <pr p1 <apr P2 and val(pr) =
inter & (val(pg ), val(pz)).
3) If Z is a straight trunk controller, we say Q is a straight %#-forcing notion,
(a)-(e) above and
5 if Q = po <pr P2,P0 <apr p1 and pi,pe are ° compatible™ which means
P p

(Fps)(p1 <pr P A P2 <apr P3), then for some ps we have
(a) Q ': b1 Spr Dp3 A\ D2 Sapr DPs3
(/B) if also Q ': Do Spr D1 then Q ': D2 Spr D3
(7) val®(ps) = amal” (val®(po), val®(p1), val® (p,)
(0) ps is a <us-lub of p1,p2 in Q.

10this may seem unnatural but note that it is not satisfied by Qp.
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Moved from pg.11:

Clause (f): Assume py < po and we shall define p;. Let Dom(p;) = Dom(psz)
and let the finite w C Dom(f1) be as in (v)(4i7) of 1.10(b), and we choose p; ()
for a € Dom(p;) a follows. If o € Dom(pz)\Dom(py) we let pi(a) = pa2(a),
and if @ € Dom(pg) and a ¢ w we let p1(a) = p2(a). If @ € w by Definition

13 2 QOt
1.6(f), we know that ps | a lFp, “po(a) < pa(a)” hence (Ip)[po(c) S(g;’ p <apr

pa(@)andval®® (p) = inter z (4 (val®™ (po()), val®* (p2(e)))] and choose p(a) a P,-
name of such p. Now check.

Moved from pg.18:
1) [?] If Q is straight (see 1.6(3)) we can add in 2.9(1):

(€) Fqrn = {r: q <apr v and r forces a value to 7, } is predense over ¢ for each
n; see §3. [Here?]

Moved from pg.4:

Definition 12.1. 1) Let S C [A\]*° be stationary. We say that Q is purely (S,.%)-
proper when if N < (J(x), €) is countable, NNA € 5,Q,.% € N,p € QNN then
there is g such that:

(@) p<prqeQ
(b) qis (N, Q)-generic
(¢) ValQ(q) = propg(p, N N S), as usual prop# is considered part of .%.

2) We omit S when S = [A]%o.

Moved from pg.5:

Definition 12.2. 1) A forcing notion Q has (6, o)-pure decidability if:

if pe Qand plg “7 € 0”, then for some A C 0,|A| < ¢ and g we have
p<prqg€QandqlF“r €A,
2) We write “O-pure decidability” for “(6,6)-pure decidability”.

* * *

Definition from Definition 2.1, moved from pg.6:

2) We say .7 is a straight? trunk controller if % is a trunk controller expanded
by a three-place function amal” such that: amal” (fo, f1, f2) is well defined when
fo Sapr f1: fo <pr fo and f3 = amal” (fo, f1, f2) satisfies f1 <pr fo, fo apr f3 and

fo=fi=f=f
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Moved from Definition 2.1, pg.15:

5) We say Q is .#-straight if each Qg is FP_straight.

6) We say Q is semi-straight (or semi .Z-straight) if each Q44 is .#Pl-straight.
[Used?]

Remark 12.3. Note that 3.3(1) speaks actually on any semi straight .#-psc forcing
P. See 3.3.

Moved from pg.22:

Claim 12.4. Assume Q is a [Knaster] explicit [semi] .F -psc iteration. Then

Lim g (Q) satisfies the [Knaster/semi] explicit F -psc.
Proof. Similar to 2.12. O

Old proof of 3.3,pg.40:

1) We use 2.9(3) to get ¢ and £ for 7 € N a P,--name of a member of V. Now
as & is straight for each r € ﬂ;i we can choose a r™ € Q, a lub of p.,r in Q and
let & = {r* :7 € .79} is as required.

2) Essentially the same proof.

Moved from pg.42-43:
We can also generalize the preservation theorems.

Claim 12.5. 1) Assume
(a) Q,.F are as in 3.3
(b) each Qg is purely proper

(¢) (D,R,<) is a fine covering *' model in the sense of [7, Ch.VI,Definition
1.2]

(d) Ik, “Qp is purely (D, R, <)-preserving”.

Then Pg is purely (D, R, <)-preserving and purely proper.
2) Similarly for Q a Knaster explicitly semi F -psc iteration.

Proof. See [?, Ch.VI,1.13A,p.270] or see AP here. Andrzej: in the end; why purely?
(a) as was in §3 is 3.3...relevant. O

Moved from pg.52:
From 5.3 proof of clause (a):

Qp straight: So assume py <pr p2 and pg <apr p1 and pi,pe are compatible so

p= p[ztr(pl)] is as required.

Qp basic: If pg < po let inter(pg, p2) = {v : v € pp and if tr(pz) < v then v € pa}.

Hean use also the weaker version there
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Old remark to 5.6 or see 5.5,moved from pg.59:
Instead of D € N < (5(x), €) it is enough to have assumptions like [?].

FILL or drop see [?], [?].

Moved from pgs.63,64,65 (from §5):

Remark 12.6. (was after 5.17)

1) The following is intended to help mainly in chain conditions, but at present not
used. Alternatively, to 5.17, &5 is the family of Q; € &, such that if Qs € &,
and Q; <g Qo, then for every ps € cr(Qy) (see Definition ??, see below) there is
p1 € cr(Qy), strongly isomorphic to py say as witnessed by the h such that

(x) if B € wlp] U {7[p]}\{0} is minimal and r1 € Pg[p] and ro = h(r1) then
r9,71,7 has a common upper bound in Lim(Q) [older are compatible in Q]
whenever r1 | {0}, 72 [ {0} <r € Py older 71 <7 € Q.

Remark ?? use Definition ?? below (though anyhow we do not use it).

Definition 12.7. Let Q € A..
1) We define cr(Q) as the family of objects p consisting of:

(a) wlp] € [a]=™ and let y(p) = U{B+1: B € w[p]}
(b) val(p) € F, Dom(val(p)) = w(p]
(c) for B € wip ]U{v[ 11\{0}, acountable subset Zgp] of {q : ¢ € Pg,Dom(q) =

w(p)N P and .Z = val(p) | _apr val(q)}, so for the minimal such 8 we get
a subset of Qg

(d) for B € wp] U {y[p]}, a countable family 75[p] of Pg-names 7 of a member
of {true,false} and for each 7 € 73[p] we have a set Z;[p] C Ps[p| such
that ¢ € Z;[p] = ¢ forces a value to 7

(e) for B € wlp] U {y[p]} and 7 € 75[p] the set .#;[p] is a predense subset of
{g € Pg :val(q) € Ps[pl}

(f) if B € wp] U {~[p]}\{0} and q € F3[p] and v € w[p] N 3 and n € “7w then
each “truth value(n € ¢(v))” belongs to 7,[p]. [So p involves a countable
subset of Qg.]

2) We say p1, p2 (which are in cr(Q), or more generally py € cr(QF) for £ = 1,2 with
the obvious changes) are strongly isomorphic as witnessed by the function h if:

(@) wlp1] = wlp] and val(p1) = val(ps)

(b) h | Plp1] is a 1-to-1 mapping from Ps[p1] onto Fs[ps]
(¢) h | 73[p] is a one-to-one mapping from 73[p1] onto 75[ps]
(d) for q € Pglp1] we have val(h(q)) = val(q)

()

e) if 7 € 7g[p1] then h maps & [p1] onto S (r)[p2] that is S [p2] = {h(q) :
q € Jr[p]}

(f) if t is a truth value, 7 € 73[p1] and ¢ € Z;[p1] and ¢ IF “7 = t” then

hg) I “h(r) = ¢".

3) We omit the “strongly” if we replace in part (2) clause (a) by:
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(a)’ h is an order preserving map from w[p;] onto w[ps] and such that 0 €
wlp1] < 0 € wlps].

Definition 12.8. We define “Q is a semi .%-psc iteration as witnessed by H simi-
larly Definition 2.5 but

(a)" .Z is a trunk control full iteration of length o* > £g(Q) but % is trivial,
i.e. has one element (and still)

(b)" Qis a trunk control .Z-iteration but Qy is just a forcing i.e. g‘ggr is equality
as SpY=<i

(¢); for every 5 < £g(Q) but 8 # 0 we have

g, “ Qg is an (ZFP1 V) — psc forcing notion B
as witnessed by H; and H = (Hg : 8 < £g(Q), 8 # 0)
is an object so Hg is not a Pg-name

(¢)4 Qo is proper.
Claim 12.9. 1) IfQ is a semi . -psc iteration then Lim(Q) satisfies the conclusion
of 2.9(1).
2) Lim(Q) is purely proper.
3) If Q is strong (27 i.e. B € [1,49(Q) =lFp, “Qgp is a strong FB psc”, see 2.9(2).
Saharon see §3.
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