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BOREL CONJECTURE AND DUAL BOREL CONJECTURE

MARTIN GOLDSTERN, JAKOB KELLNER, SAHARON SHELAH, AND WOLFGANG WOHOFSKY

AssTrACT. We show that it is consistent that the Borel Conjecture and the dual Borel Conjecture hold simulta-
neously.

INTRODUCTION

History. A set X of real{] is called “strong measure zero” (smz), if for all functions f : w — w there are
intervals [, of measure < 1/ f(n) covering X. Obviously, a smz set is a null set (i.e., has Lebesgue measure
zero), and it is easy to see that the family of smz sets forms a o-ideal and that perfect sets (and therefore
uncountable Borel or analytic sets) are not smz.

At the beginning of the 20th century, Borel [?, p. 123] conjectured:

Every smz set is countable.

This statement is known as the “Borel Conjecture” (BC). In the 1970s it was proved that BC is independent,
i.e., neither provable nor refutable.

Let us very briefly comment on the notion of independence: A sentence ¢ is called independent of a set
T of axioms, if neither ¢ nor —¢ follows from 7. (As a trivial example, (Vx)(Vy)x -y = y - x is independent
from the group axioms.) The set theoretic (first order) axiom system ZFC (Zermelo Fraenkel with the axiom
of choice) is considered to be the standard axiomatization of all of mathematics: A mathematical proof is
generally accepted as valid iff it can be formalized in ZFC. Therefore we just say “¢ is independent” if ¢
is independent of ZFC. Several mathematical statements are independent, the earliest and most prominent
example is Hilbert’s first problem, the Continuum Hypothesis (CH).

BC is independent as well: Sierpinski [?] showed that CH implies =BC (and, since Goédel showed the
consistency of CH, this gives us the consistency of =BC). Using the method of forcing, Laver [?] showed
that BC is consistent.

Galvin, Mycielski and Solovay [?] proved the following conjecture of Prikry:

X € 2¢is smz if and only if every comeager (dense G;) set contains a translate of X.

Prikry also defined the following dual notion:

X C 2¢is called “strongly meager” (sm) if every set of Lebesgue measure 1 contains
a translate of X.
The dual Borel Conjecture (dBC) states:

Every sm set is countable.

Prikry noted that CH implies —~dBC and conjectured dBC to be consistent (and therefore independent),
which was later proved by Carlson [?].

Numerous additional results regarding BC and dBC have been proved: The consistency of variants of
BC or of dBC, the consistency of BC or dBC together with certain assumptions on cardinal characteristics,
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etc. See [?, Ch. 8] for several of these results. In this paper, we prove the consistency (and therefore
independence) of BC+dBC (i.e., consistently BC and dBC hold simultaneously).

The problem. The obvious first attempt to force BC+dBC is to somehow combine Laver’s and Carlson’s
constructions. However, there are strong obstacles:
Laver’s construction is a countable support iteration of Laver forcing. The crucial points are:

e Adding a Laver real makes every old uncountable set X non-smz.
e And this set X remains non-smz after another forcing P, provided that P has the “Laver property”.

So we can start with CH and use a countable support iteration of Laver forcing of length w,. In the final
model, every set X of reals of size N| already appeared at some stage @ < w; of the iteration; the next Laver
real makes X non-smz, and the rest of the iteration (as it is a countable support iteration of proper forcings
with the Laver property) has the Laver property, and therefore X is still non-smz in the final model.
Carlson’s construction on the other hand adds w, many Cohen reals in a finite support iteration (or

equivalently: finite support product). The crucial points are:

e A Cohen real makes every old uncountable set X non-sm.

e And this set X remains non-sm after another forcing P, provided that P has precaliber N;.

So we can start with CH, and use more or less the same argument as above: Assume that X appears at
@ < wy. Then the next Cohen makes X non-sm. It is enough to show that X remains non-sm at all
subsequent stages S < w;. This is guaranteed by the fact that a finite support iteration of Cohen reals of
length < w; has precaliber N;.

So it is unclear how to combine the two proofs: A Cohen real makes all old sets smz, and it is easy
to see that whenever we add Cohen reals cofinally often in an iteration of length, say, w,, all sets of any
intermediate extension will be smz, thus violating BC. So we have to avoid Cohen realsﬂ which also
implies that we cannot use finite support limits in our iterations. So we have a problem even if we find a
replacement for Cohen forcing in Carlson’s proof that makes all old uncountable sets X non-sm and that
does not add Cohen reals: Since we cannot use finite support, it seems hopeless to get precaliber 8, an
essential requirement to keep X non-sm.

Note that it is the proofs of BC and dBC that are seemingly irreconcilable; this is not clear for the
models. Of course Carlson’s model, i.e., the Cohen model, cannot satisfy BC, but it is not clear whether
maybe already the Laver model could satisfy dBC. (It is even still open whether a single Laver forcing
makes every old uncountable set non-sm.) Actually, Bartoszyriski and Shelah [?] proved that the Laver
model does satisfy the following weaker variant of dBC (note that the continuum has size N; in the Laver
model):

Every sm set has size less than the continuum.

In any case, it turns out that one can reconcile Laver’s and Carlson’s proof, by “mixing” them “generi-
cally”, resulting in the following theorem:

Theorem. If ZFC is consistent, then ZFC+BC+dBC is consistent.

Prerequisites. To understand anything of this paper, the reader

e should have some experience with finite and countable support iteration, proper forcing, N,-cc,
o-closed, etc.,
e should know what a quotient forcing is,
e should have seen some preservation theorem for proper countable support iteration,
e should have seen some tree forcings (such as Laver forcing).
To understand everything, additionally the following is required:

e The “case A” preservation theorem from [?], more specifically we build on the proof of [?] (or [?]).

e In particular, some familiarity with the property “preservation of randoms” is recommended. We
will use the fact that random and Laver forcing have this property.

e We make some claims about (a rather special case of) ord-transitive models in Section ??. The
readers can either believe these claims, or check them themselves (by some rather straightforward
proofs), or look up the proofs (of more general settings) in [?] or [?].

2An iteration that forces dBC without adding Cohen reals was given in [?], using non-Cohen oracle-cc.
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From the theory of strong measure zero and strongly meager, we only need the following two results
(which are essential for our proofs of BC and dBC, respectively):

e Pawlikowski’s result from [?] (which we quote as Theorem ?? below), and
e Theorem 8 of Bartoszyniski and Shelah’s [?] (which we quote as Lemma ??).

We do not need any other results of Bartoszynski and Shelah’s paper [?]; in particular we do not use the
notion of non-Cohen oracle-cc (introduced in [?]); and the reader does not have to know the original proofs
of Con(BC) and Con(dBC), by Laver and Carlson, respectively.

The third author claims that our construction is more or less the same as a non-Cohen oracle-cc con-
struction, and that the extended version presented in [?] is even closer to our preparatory forcing.

Notation and some basic facts on forcing, strongly meager (sm) and strong measure zero (smz) sets.
We call a lemma “Fact” if we think that no proof is necessary — either because it is trivial, or because it is
well known (even without a reference), or because we give an explicit reference to the literature.

Stronger conditions in forcing notions are smaller, i.e., ¢ < p means that g is stronger than p.

Let P C Q be forcing notions. (As usual, we abuse notation by not distinguishing between the underlying
set and the quasiorder on it.)

e For py, p» € P we write p; Lp p, for “p; and p, are incompatible”. Otherwise we write p; ||p p».
(We may just write L or || if P is understood.)

e g <" p(or: g <}, p) means that g forces that p is in the generic filter, or equivalently that every
q’ < g is compatible with p. And g =" pmeans g <* p A p<'gq.

e P is separative, if < is the same as <*, or equivalently, if for all ¢ < p with ¢ # p thereisanr < p
incompatible with g. Given any P, we can define its “separative quotient” Q by first replacing (in
P) < by <* and then identifying elements p, ¢ whenever p =" g. Then Q is separative and forcing
equivalent to P.

e “Pis a subforcing of Q” means that the relation <p is the restriction of < to P.

e “P is an incompatibility-preserving subforcing of Q” means that P is a subforcing of Q and that
p1Lp p2iff py Lo po forall py, p € P.

Let additionally M be a countable transitiveﬂ model (of a sufficiently large subset of ZFC) containing P.

e “Pisan M-complete subforcing of Q” (or: P<j, Q) means that P is a subforcing of Q and: if A C P
is in M a maximal antichain, then it is a maximal antichain of Q as well. (Or equivalently: P is
an incompatibility-preserving subforcing of Q and every predense subset of P in M is predense
in Q.) Note that this means that every Q-generic filter G over V induces a P-generic filter over M,
namely GM := G N P (i.e., every maximal antichain of P in M meets G N P in exactly one point).
In particular, we can interpret a P-name 7 in M as a Q-name. More exactly, there is a Q-name 7’
such that 7'[G] = 7[G] for all Q-generic filters G. We will usually just identify 7 and 7’.

e Analogously, if P e M andi: P — Q is a function, then i is called an M-complete embedding if it
preserves < (or at least <*) and L and moreover: If A € M is predense in P, then i[A] is predense
in Q.

There are several possible characterizations of sm (“strongly meager”’) and smz (“strong measure zero™)
sets; we will use the following as definitions:

A set X is not sm if there is a measure 1 set into which X cannot be translated; i.e., if there is a null set
Z such that (X + 1) N Z # 0 for all reals ¢, or, in other words, Z + X = 2¢. To summarize:

0.1) X is not sm iff there is a Lebesgue null set Z such that Z + X = 2¢.

We will call such a Z a “witness” for the fact that X is not sm (or say that Z witnesses that X is not sm).
The following theorem of Pawlikowski [?] is central for our proolﬂ that BC holds in our model:

Theorem 0.2. X C 2% is smz iff X + F is null for every closed null set F.
Moreover, for every dense G set H we can construct (in an absolute way) a closed null set F such that for
every X C 2¢ with X + F null there is t € 2 witht+ X C H.

3We will also use so-called ord-transitive models, as defined in Section ??.
4We thank Tomek Bartoszynski for pointing out Pawlikowski’s result to us, and for suggesting that it might be useful for our
proof.
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In particular, we get:

X is not smz iff there is a closed null set F' such that X + F has positive outer Lebesgue
measure.

0.3)

Again, we will say that the closed null set F' “witnesses” that X is not smz (or call F' a witness for this
fact).

Annotated contents.

Section ??, p. ??: We introduce the family of ultralaver forcing notions and prove some properties.

Section ??, p. ??: We introduce the family of Janus forcing notions and prove some properties.

Section ??, p. ??: We define ord-transitive models and mention some basic properties. We define the
“almost finite” and “almost countable” support iteration over a model. We show that in many
respects they behave like finite and countable support, respectively.

Section ??, p. ??: We introduce the preparatory forcing notion R which adds a generic forcing itera-
tion P.

Section ??, p. ??: Putting everything together, we show that R = P, forces BC+dBC, i.e., that an un-
countable X is neither smz nor sm. We show this under the assumption X € V, and then introduce
a factorization of R * P that this assumption does not result in loss of generality.

Section ??, p. ??: We briefly comment on alternative ways some notions could be defined.

An informal overview of the proof, including two illustrations, can be found at http://arxiv.org/
abs/1112.4424/.

1. ULTRALAVER FORCING

In this section, we define the family of ultralaver forcings Lj, variants of Laver forcing which depend
on a system D of ultrafilters.

In the rest of the paper, we will use the following properties of L. (And we will use only these
properties. So readers who are willing to take these properties for granted could skip to Section ??.)

(1) Lp is o-centered, hence ccc.
(This is Lemma ??.)

(2) Lp is separative.

(This is Lemma ??.)

(3) Ultralaver kills smz: There is a canonical Ly-name ¢ for a fast growing real in w® called the
ultralaver real. From this real, we can define (in an absolute way) a closed null set F such that
X + F is positive for all uncountable X in V (and therefore F witnesses that X is not smz, according
to Theorem ?7?).

(This is Corollary ??.)

(4) Whenever X is uncountable, then Lj; forces that X is not “thin”.
(This is Corollary ??.)

(5) If (M, €) is a countable model of ZFC* and if Lpw is an ultralaver forcing in M, then for any
ultrafilter system D extending D, Lu is an M-complete subforcing of the ultralaver forcing L.
(This is Lemma ??.)

Moreover, the real £ of item (2?) is so “canonical” that we get: If (in M) £ is the Lzu-name for
the LLu-generic real, and if (in V) £ is the L-name for the LL;-generic real, and if H is L5-generic
over V and thus HY = H N Lpu is the induced Lpu-generic filter over M, then £[H] is equal to
&M,

Since the closed null set F is constructed from Nf in an absolute way, the same holds for F, i.e., the
Borel codes F[H] and F[HM] are the same.

(6) Moreover, given M and Lju as above, and a random real r over M, we can choose D extending
DM such that L5 forces that randomness of r is preserved (in a strong way that can be preserved in
a countable support iteration).

(This is Lemma ??.)
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1.A. Definition of ultralaver.

Notation. We use the following fairly standard notation:

A tree is a nonempty set p C w=<“ which is closed under initial segments and has no maximal elementsﬂ
The elements (“nodes”) of a tree are partially ordered by C.

For each sequence s € w<“ we write lh(s) for the length of s.

For any tree p C w=“ and any s € p we write succ,(s) for one of the following two sets:

fkew:s"kep} or {tep:(Fkecw) t=s"k}

and we rely on the context to help the reader decide which set we mean.
A branch of p is either of the following:
e A function f : w — w with f[n € pforalln € w.
e A maximal chain in the partial order (p, S). (As our trees do not have maximal elements, each
such chain C determines a branch | C in the first sense, and conversely.)

We write [p] for the set of all branches of p.
For any tree p C w=“ and any s € p we write p'*! for the set {t € p : t D s or t C s}, and we write [s] for
either of the following sets:
{tep:sct} or {xe[p]:sCux}
The stem of a tree p is the shortest s € p with [succ,(s)| > 1. (The trees we consider will never be
branches, i.e., will always have finite stems.)

Definition 1.1. e For trees g, p we write g < p if ¢ C p (“q is stronger than p”), and we say that “g
is a pure extension of p” (q <o p) if ¢ < p and stem(q) = stem(p).

e A filter system D is a family (Dy)c.,< of filters on w. (All our filters will contain the Fréchet filter
of cofinite sets.) We write D7 for the collection of D,-positive sets (i.e., sets whose complement is
not in Dy).

e We define L to be the set of all trees p such that succ,(¢) € D] for all ¢ € p above the stem.

e The generic filter is determined by the generic branch £ = (£;)ic, € w®, called the generic real:
{€} = NpecLp] or equivalently, £ = | g stem(p).

e An ultrafilter system is a filter system consisting of ultrafilters. (Since all our filters contain the
Fréchet filter, we only consider nonprincipal ultrafilters.)

o An ultralaver forcing is a forcing Lj defined from an ultrafilter system. The generic real for an
ultralaver forcing is also called the ultralaver real.

Recall that a forcing notion (P, <) is o-centered if P = |J, P,, where for all n,k € w and for all
Pl,-.-, Pk € Py thereis g < pi,..., pr.
Lemma 1.2. All ultralaver forcings L are o-centered (hence ccc).
Proof. Every finite set of conditions sharing the same stem has a common lower bound. O
Lemma 1.3. Ly is separative.ﬁ
Proof. If ¢ < p, and g # p, then there is s € p \ g. Now pl* L q. |
If each Dy is the Fréchet filter, then L is Laver forcing (often just written L).

1.B. M-complete embeddings. Note that for all ultrafilter systems D we have:

Two conditions in Ly are compatible if and only if their stems are comparable and

1.4 ) i .
(14 moreover, the longer stem is an element of the condition with the shorter stem.

Lemma 1.5. Let M be countable.[] In M, let Lpw be an ultralaver forcing. Let D be (in V) a filter system
extending[ﬂ DM, Then Lpw is an M-complete subforcing of L.

5Except for the proof of Lemma ??, where we also allow trees with maximal elements, and even empty trees.

6See page ?? for the definition.

7Here, we can assume that M is a countable transitive model of a sufficiently large finite subset ZFC* of ZFC. Later, we will also
use ord-transitive models instead of transitive ones, which does not make any difference as far as properties of L are concerned, as
our arguments take place in transitive parts of such models.

8I.e., DY C D; forall s € w<“.
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Proof. For any tred’| T, any filter system E = (E;)sepw, and any 5o € T we define a sequence (Tg’m )acw, Of
“derivatives” (where we may abbreviate Tg’so to T%) as follows:
o T0:= Tl
e Given T%, we let To*! := T\ J{[s] : s € T?, 50 C s, succye(s) ¢ ET}, where [s] == {t : s C 1.
e For limit ordinals 6 > 0 we let 7% := (), T°.
Then we have
(a) Each T is closed under initial segments. Also: & < 8 implies 7% 2 T?.
(b) There is an @y < w; such that T® = T%*! = T for all 8 > ay. We write T* or T &, for T
(©) Ifso € Ty, ,then Ty € Ly with stem so. ’
Conversely, if stem(7) = sg, and T € Lg, then T = T.
(d) If T contains a tree g € Lz with stem(q) = so, then 7™ contains ¢ = g, so in particular s € 7.
(e) Thus: T contains a condition in Lz with stem sg iff so € T ESO.
(f) The computation of T is absolute between any two models containing 7 and E. (In particular,
any transitive ZFC*-model containing 7 and £ will also contain a.)
(g) Moreover: Let T € M, E € M, and let E’ be a filter system extending E such that for all sy and
all A € Z(w) N M we have: A € (E)"iff A € (E}))". (In particular, this will be true for any E'
extending E, provided that each Ej, is an M-ultrafilter.)
Then for each @ € M we have Tg,s() = Tg,"vo (and hence Tg,,s0 € M). (Proved by induction on «.)
Now let A = (p; : i € I) € M be a maximal antichain in Lj», and assume (in V) that g € L. Let
so = stem(q).
We will show that g is compatible with some p; (in Lp). This is clear if there is some i with sy € p; and
stem(p;) C sp, by (??). (In this case, p; N g is a condition in L with stem sy.)
So for the rest of the proof we assume that this is not the case, i.e.:
(1.6) There is no i with sy € p; and stem(p;) C so.

Let J :={i € I : 59 C stem(p;)}. We claim that there is j € J with stem(p;) € g (which as above implies
that g and p; are compatible).
Assume towards a contradiction that this is not the case. Then ¢ is contained in the following tree 7"

(1.7) T = @)\ | istem(p))].
jer
Note that T € M. In V we have:
(1.8) The tree T contains a condition g with stem sp.
So by (e) (applied in V), followed by (g), and again by (e) (now in M) we get:
(1.9) The tree T also contains a condition p € M with stem s.

Now p has to be compatible with some p;. The sequences sy = stem(p) and stem(p;) have to be comparable,
so by (??) there are two possibilities:
(1) stem(p;) C stem(p) = so € p;. We have excluded this case in our assumption (??).
(2) so = stem(p) C stem(p;) € p. Soi € J. By construction of T (see (??)), we conclude stem(p;) ¢ T,
contradicting stem(p;) € p C T (see ??). O

1.C. Ultralaver Kkills strong measure zero. The following lemma appears already in [?, Theorem 9]. We
will give a proof below in Lemma ??.

Lemma 1.10. If A is a finite set, @ an Ly-name, p € Lp, and p v @ € A, then there is B € A and a pure
extension q <o p such that q v @ = 5.

Definition 1.11. Let £ be an increasing sequence of natural numbers. We say that X C 2¢ is smz with
respect to €, if there exists a sequence (Ii)re, Of basic intervals of 2 of measure < 2% (i.e., each I is of
the form [s;] for some sz € 2%) such that X € Mue Uism I-

Remark 1.12. It is well known and easy to see that the properties

9Here we also allow empty trees, and trees with maximal nodes.
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e For all 7 there exists exists a sequence (I, Of basic intervals of 2¢ of measure < 2% such that
X C ngw Ii.

o For all ¢ there exists exists a sequence (I )xe, Of basic intervals of 2¢ of measure < 2% such that
Xc mmew UkZm Ik'

are equivalent. Hence, a set X is smz iff X is smz with respect to all £ € w®.

The following lemma is a variant of the corresponding lemma (and proof) for Laver forcing (see for
example [?, Lemma 28.20]): Ultralaver makes old uncountable sets non-smz.

Lemma 1.13. Let D be a system of ultrafilters, and let { be the Lp-name for the ultralaver real. Then each
uncountable set X € V is forced to be non-smz (witnessed by the ultralaver real {).
More precisely, the following holds:

(1.14) b, VX € V2T Yok €22 X & ()| luted.

mew k>m

We first give two technical lemmas:

Lemma 1.15. Let p € L with stem s € w=%, and let x be a Lz-name for a real in 2*. Then there exists a
pure extension q <o p and a real T € 2“ such that for every n € w,

(1.16) {i € succy(s) : ¢ Vv xtn =10} € D;.

Proof. For each i € succ,(s), let ¢; <o p'* 7l be such that ¢; decides x|i, i.e., there is a #; of length i such
that g; - x[i = t; (this is possible by Lemma ??).

Now we define the real v € 2¢ as the D,-limit of the #;’s. In more detail: For each n € w there is a
(unique) 7, € 2" such that {i : #;[n = 7,} € Dy; since D; is a filter, there is a real T € 2¢ with 7[n = 1, for
each n. Finally, let g := |J; ¢;. O

Lemma 1.17. Let p € Lj with stem s, and let (Xi)rew be a sequence of Lp-names for reals in 2. Then
there exists a pure extension q <o p and a family of reals (Ty)yeq,mos © 2% such that for each n € q above s,
and every n € w,

(1.18) {i € succ,m) : ¢ i M = 7,0} € Dy,

Proof. We apply Lemma ?? to each node 77 in p above s (and to x;;) separately: We first geta p; <o pand a
7, € 2¢; for every immediate successor 17 € succ, (s), we get g, <o p[]”] and a 7, € 2%, and let p, = |, q;;

in this way, we get a (fusion) sequence (p, p1, p2, . ..), and let g := (" px- O

Proof of Lemma ??. We want to prove (2?). Assume towards a contradiction that X is an uncountable set
in V, and that (x;)xe, 1S a sequence of names for reals in 2“ and p € L such that

(1.19) prXxc(Jmral.

mew k>m

Let s € w<“ be the stem of p.

By Lemma ??, we can fix a pure extension ¢ <o p and a family (7;))yeq, 525 € 2 such that for each i € ¢
above the stem s and every n € w, condition (??) holds.

Since X is (in V and) uncountable, we can find a real x* € X which is different from each real in the
countable family (7,),eq, yos; more specifically, we can pick a family of natural numbers (1,);cq, ;25 Such
that x* In,, # 1, I'n,, for any 7.

We can now find r < ¢ such that:

e For all n € r above s and all i € succ,() we have i > n,,.
e Foralln € r above s and all i € succ,(17) we have r'" Vi x, T, = 7,0y, # x* [y

So for all € r above s we have, writing k for ||, that 77 forces x* & [x;1n,] 2 [x¢ ['€x]. We conclude
that r forces x* ¢ Uy g [« [€], contradicting (2?). O

Corollary 1.20. Let (t;)rew be a dense subset of 2°.
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Let D be a system of ultrafilters, and let { be the Lp-name for the ultralaver real. Then the set

H= () Jimre

mew k>m

is forced to be a comeager set with the property that H does not contain any translate of any old uncount-
able set.

Pawlikowski’s theorem ?? gives us:

Corollary 1.21. There is a canonical name F for a closed null set such that X + F is positive for all
uncountable X in V.
In particular, no uncountable ground model set is smz in the ultralaver extension.

1.D. Thin sets and strong measure zero. For the notion of “(very) thin” set, we use an increasing func-
tion B*(k) (the function we use will be described in Corollary ??). We will assume that £* = (Ckew 18
an increasing sequence of natural numbers with £, > B*(k). (We will later use a subsequence of the
ultralaver real £ as £*, see Lemma ??).

Definition 1.22. For X C 2 and k € w we write X[{}, {}, ) for the set {x[[{}, €}, ) : x € X}. We say that
o X C 2% is “very thin with respect to £* and B*”, if there are infinitely many k with |X [[£?, oIS
B*(k).
e X C 2% is “thin with respect to €* and B*”, if X is the union of countably many very thin sets.

Note that the family of thin sets is a o-ideal, while the family of very thin sets is not even an ideal. Also,
every very thin set is covered by a closed very thin (in particular nowhere dense) set. In particular, every
thin set is meager and the ideal of thin sets is a proper ideal.

Lemma 1.23. Let B* be an increasing function. Let € be an increasing sequence of natural numbers. We
define a subsequence {* of € in the following way: {; = €, where i1 — ny = B*(k) - 2k,
Then we get: If X is thin with respect to €* and B, then X is smz with respect to .

Proof. Assume that X = (Jc,, Y;, each Y; very thin with respect to £* and B*. Let (X)) je,, be an enumeration
of {Y; : i € w} where each Y; appears infinitely often. So X C (e, U jom Xj-
By induction on j € w, we find for all j > 0 some k; > k;_; such that
IX; Ty - G o)l < B7(kj)  hence  |X;T[0, 6 )l < B'(kj) - 2 = ny 1 — n,.

So we can enumerate X; [0, €Zj+l) as (s,-)nkl_gknkjﬂ. Hence X is a subset of U”A’I-Si<"/sj+l [s:]; and each s; has

length é’,*(jH > {;, since f,j/_H = Knkjﬂ and i < ny41. This implies
XC ﬂ UXj c ﬂ U[S,‘].
mew j>m mew i>m
Hence X is smz with respect to £. m

Lemma ?? and Lemma ?? yield:

Corollary 1.24. Let B* be an increasing function. Let D be a system of ultrafilters, and { the name for the
ultralaver real. Let {* be constructed from B* and { as in Lemma ??.
Then Ly forces that for every uncountable X C 2%:

e X is not smz with respect to {.
o X is not thin with respect to {* and B*.

1.E. Ultralaver and preservation of Lebesgue positivity. It is well known that both Laver forcing and
random forcing preserve Lebesgue positivity; in fact they satisfy a stronger property that is preserved
under countable support iterations. (So in particular, a countable support iteration of Laver and random
also preserves positivity.)

Ultralaver forcing L will in general not preserve positivity. Indeed, if all ultrafilters D; are equal to the
same ultrafilter D¥, then the range L := {£y, {1, ...} C w of the ultralaver real £ will diagonalize D*, so every
ground model real x € 2¢ (viewed as a subset of w) will either almost contain L or be almost disjoint to L,
which implies that the set 2 N V of old reals is covered by a null set in the extension. However, later in
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this paper it will become clear that if we choose the ultrafilters D; in a sufficiently generic way, then many
old positive sets will stay positive. More specifically, in this section we will show (Lemma 2?): If D is
an ultrafilter system in a countable model M and r a random real over M, then we can find an extension D
such that L5 forces that  remains random over M[HM] (where H™ denotes the L 5-name for the restriction
of the L-generic filter H to Lv N M). Additionally, some “side conditions™ are met, which are necessary
to preserve the property in forcing iterations.

In Section ?? we will see how to use this property to preserve randoms in limits.

The setup we use for preservation of randomness is basically the notation of “Case A” preservation
introduced in [?, Ch.XVIII], see also [?, ?] or the textbook [?, 6.1.B]:

Definition 1.25. We write cLopeN for the collection of clopen sets on 2. We say that the function Z : w —
CLOPEN is a code for a null set, if the measure of Z(n) is at most 27" for each n € w.
For such a code Z, the set nullset(Z) coded by Z is

nullset(Z) = ﬂ U Z(k).

n k>n

The set nullset(Z) obviously is a null set, and it is well known that every null set is contained in such a
set nullset(Z).

Definition 1.26. For a real r and any code Z, we define Z C,, r by:
~Vk > n)r ¢ Z(k).
We write Z C rif Z C, r holds for some n; i.e., if r ¢ nullset(Z).

For later reference, we record the following trivial fact:

1.27) p Ik Z C riff there is a name 7 for an element of w such that p F Z T, 7.

Let P be a forcing notion, and Z a P-name of a code for a null set. An interpretation of Z below p is
some code Z* such that there is a sequence p = py > p; > po > ... such that p,, forces Z[m = Z* [m.
Usually we demand (which allows a simpler proof of the preservation theorem at limit stages) that the
sequence (po, pi, - .. ) is inconsistent, i.e., p forces that there is an m such that p,, ¢ G. Note that whenever
P adds a new w-sequence of ordinals, we can find such an interpretation for any Z.

If Z=(Zi,...,Z,)is a tuple of names of codes for null sets, then an interpretation of Z below p is some
tuple (Z7, ..., Z,) such that there is a single sequence p = py > p1 = p> > ... interpreting each Z; as Z:.

We now turn to preservation of Lebesgue positivity:

Definition 1.28. (1) A forcing notion P preserves Borel outer measure, if P forces Leb*(A") = Leb(A"1Cr1)
for every code A for a Borel set. (Leb" denotes the outer Lebesgue measure, and for a Borel code
A and a set-theoretic universe V, AV denotes the Borel set coded byAin V.)

(2) P strongly preserves randoms, if the following holds: Let N < H(y*) be countable for a sufficiently
large regular cardinal y*, let P,p,Z = (Z1,...,Zn) € N, let p € P and let r be random over N.
Assume that in N, Z* is an interpretation of Z and assume Z; Cy, r for each i. Then there is an
N-generic ¢ < p forcing that r is still random over N[G] and moreover, Z; T, r for each i. (In
particular, P has to be proper.)

(3) Assume that P is absolutely definable. P strongly preserves randoms over countable models if (2)

holds for all countable (transitive@b models N of ZFC".

It is easy to see that these properties are increasing in strength. (Of course (3)=(2) works only if ZFC*
is satisfied in H(y").)

In [?] it is shown that (1) implies (3), provided that P is nep (“non-elementary proper”, i.e., nicely
definable and proper with respect to countable models). In particular, every Suslin ccc forcing notion such
as random forcing, and also many tree forcing notions including Laver forcing, are nep. However L is not
nicely definable in this sense, as its definition uses ultrafilters as parameters.

Lemma 1.29. Both Laver forcing and random forcing strongly preserve randoms over countable models.

10 ater we will introduce ord-transitive models, and it is easy to see that it does not make any difference whether we demand
transitive or not; this can be seen using a transitive collapse.
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Proof. For random forcing, this is easy and well known (see, e.g., [?, 6.3.12]).
For Laver forcing: By the above, it is enough to show (1). This was done by Woodin (unpublished) and
Judah-Shelah [?]. A nicer proof (including a variant of (2)) is given by Pawlikowski [?]. |

Ultralaver will generally not preserve Lebesgue positivity, let alone randomness. However, we get
the following “local” variant of strong preservation of randoms (which will be used in the preservation
theorem ??). The rest of this section will be devoted to the proof of the following lemma.

Lemma 1.30. Assume that M is a countable model, DM an ultrafilter system in M and r a random real
over M. Then there is (in V) an ultrafilter system D extendingE] DM, such that the following holds:
If
e pelpu,
o inM, Z = (Z1,...,2Zn) is a sequence of Lpu-names for codes for null sets,[zl and Zf, ..., 2y are
interpretations under p, witnessed by a sequence (p,)nc., With strictly increasing stems,
o ZiTy rfori=1,...,m,
then there is a q < p in Lp forcing that

o ris random over M[GM],
o ZiCyrfori=1,...,m.

For the proof of this lemma, we will use the following concepts:

Definition 1.31. Let p C w=“ be a tree. A “front name below p” is a functiorE] h : F — CLOPEN, where
F C pis a front (a set that meets every branch of p in a unique point). (For notational simplicity we also
allow & to be defined on elements ¢ p; this way, every front name below p is also a front name below ¢
whenever g < p.)

If 4 is a front name and D is any filter system with p € Lp, we define the corresponding Lp-name (in
the sense of forcing) z" by

(1.32) =@, p") s € F, yeh(s).

(This does not depend on the D we use, since we set ¥ = {(¥, w<“) : x € y}.)
Up to forced equality, the name gh is characterized by the fact that pl*! forces (in any L) that gh = h(s),
for every s in the domain of 4.

Note that the same object i can be viewed as a front name below p with respect to different forcings
Lp,,Lp,,aslongas p € Lp NLp,.

Definition 1.33. Let p C w=* be a tree. A “continuous name below p” is either of the following:

e An w-sequence of front names below p.
e A C-increasing function g : p — cLoPeN® such that lim,_,. lh(g(c[n)) = oo for every branch
c€[pl
For each n, the set of minimal elements in {s € p : 1h(g(s)) > n} is a front, so each continuous name in the
second sense naturally defines a name in the first sense, and conversely. Being a continuous name below p
does not involve the notion of I nor does it depend on the filter system D.
If g is a continuous name and D is any filter system, we can again define the corresponding L;-name
Z¢# (in the sense of forcing); we leave a formal definition of Z8 to the reader and content ourselves with this
characterization:

(1.34) (Vs € p): pt*h iy, g(s) € Z5.

Note that a continuous name below p naturally corresponds to a continuous function F : [p] — CLOPEN®,
and Z8 is forced (by p) to be the value of F at the generic real £.

Lemma 1.35. Lj has the following “pure decision properties”:
UThis implies, by Lemma ??, that the Lj-generic filter G induces an L -generic filter over M, which we call GM.

12Recall that nullset(Z) = N, Ugsn Z(k) is a null set in the extension.
Bnstead of cLopen we may also consider other ranges of front names, such as the class of all ordinals, or the set w.
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(1) Whenever y is a name for an element of CLOPEN, p € Lp, then there is a pure extension p; <o p
such thaty = gh (is forced) for a front name h below p.

(2) Whenever Y is a name for a sequence of elements of CLOPEN, p € Ly, then there is a pure extension
q <o p such that Y = Z8 (is forced) for some continuous name g below q.

(3) (This is Lemma ??.) If A is a finite set, @ a name, p € Lp, and p forces a € A, then there is B € A
and a pure extension q <y p such that q v ¢ = 5.

Proof. Let p € Lp, s = stem(p), y a name for an element of cLoPEN.
We call € p a “good node in p” if y is a front name below p'! (more formally: forced to be equal to z"

for a front name /). We can find p; <¢ p such that for all ¢ € p; above sq: If there is g <¢ p[lt] such that # is
good in g, then ¢ is already good in p;.

We claim that s( is now good (in p;). Note that for any bad node s the set {# € succ), (s) : tbad} is
in D?. Hence, if sy is bad, we can inductively construct p, <y p; such that all nodes of p, are bad nodes
in p;. Now let g < p, decide y, s := stem(g). Then g < p[ls], so0 s is good in pj, contradiction. This finishes
the proof of (22). )

To prove (??), we first construct p; as in (??) with respect to yo. This gives a front F; C p; deciding
yo. Above each node in F; we now repeat the construction from Z??) with respect to y;, yielding p», etc.
Finally, ¢ := N, pa- )

To prove (??): Similar to (??), we can find p; < p such that for each ¢ € p;: If there is a pure extension
of p[lt] deciding ¢, then p[l’] decides ¢; in this case we again call # good. Since there are only finitely many
possibilities for the value of @, any bad node ¢ has D] many bad successors. So if the stem of p; is bad, we
can again reach a contradiction as in (??). |

Corollary 1.36. Let D be a filter system, and let G C L, be generic. Then every Y € cLoPEN® in V[G] is
the evaluation of a continuous name Z8 by G.

Proof. InV, fixa p € L and a name Y for an element of cLopEN®. We can find ¢ <y p and a continuous
name g below ¢ such that g I+ Y = Z8. O

We will need the following modification of the concept of “continuous names”.

Definition 1.37. Let p C w<“ be a tree, b € [p] a branch. An “almost continuous name below p (with
respect to b)” is a C-increasing function g : p — cLoPEN™® such that lim,_, lh(g(cn)) = oo for every
branch ¢ € [p], except possibly for ¢ = b.

Note that “except possibly for ¢ = b” is the only difference between this definition and the definition of
a continuous name.

Since for any D it is force(f__‘I] that the generic real (for Lp) is not equal to the exceptional branch b, we
again get a name Z# of a function in cLoPEN® satisfying:

(Vs € p): pi, gls) € Z8.

An almost continuous name naturally corresponds to a continuous function F from [p] \ {b} into cLOPEN“.

Note that being an almost continuous name is a very simple combinatorial property of g which does
not depend on D, nor does it involve the notion I. Thus, the same function g can be viewed as an almost
continuous name for two different forcing notions L, L, simultaneously.

Lemma 1.38. Let D be a system of filters (not necessarily ultrafilters).
Assume that p = (py)nen Witnesses that Y™ is an interpretation of Y, and that the lengths of the stems of
the p, are strictly increasingE] Then there exists a sequence q = (qn)new SUch that

(1) qozq1 2.

(2) gn < pnforalln.

(3) q also interprets Y as Y*. (This follows from the previous two statements. )

(4) Y is almost continuous below qy, i.e., there is an almost continuous name g such that qg forces
Y=2%)

14 This follows from our assumption that all our filters contain the Fréchet filter.
B is easy to see that for every L-name Y we can find such j and Y*: First find p which interprets both ¥ and ¢, and then thin
out to get a strictly increasing sequence of stems.
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(5) Y is almost continuous below gy, for all n. (This follows from the previous statement.)
Proof. Let b be the branch described by the stems of the conditions p,,:
b :={s:(@n)s C stem(p,)}.

We now construct a condition gg. For every s € b satisfying stem(p,) € s C stem(p,,;) we set
succg, (s) = succ,, (s), and for all ¢ € succ,,(s) except for the one in b we let qg] <o p,[f] be such that Y is

continuous below qg]. We can do this by Lemma ??2(??).

Now we set
Gn=pa N qo =gy " < py.
This takes care of (1) and (2). Now we show (4): Any branch ¢ of gy not equal to b must contain a node
s"k ¢ b with s € b, so cis a branch in q{f M below which Y was continuous. O

The following lemmas and corollaries are the motivation for considering continuous and almost contin-
uous names.

Lemma 1.39. Let D be a system of filters (not necessarily ultrafilters). Let p € Lp, let b be a branch, and
let g : p — cLOPEN™® be an almost continuous name below p with respect to b; write Z8 for the associated
Lj-name.
Let r € 2% be a real, ng € w. Then the following are equivalent:
(1) pirLy ¥ & Unsn, Z5(), i.e., Z8 Ty 1.
(2) Forall n > ny and for all s € p for which g(s) has length > n we have r ¢ g(s)(n).

Note that (2) does not mention the notion I~ and does not depend on D.

Proof. =(2) = —(1): Assume that there is s € p for which g(s) = (Cy,...,Cy,...,Cy) and r € C,. Then
p!s) forces that the generic sequence Z¢ = (Z(0), Z(1),...) starts with Co, ..., C,, so p'*! forces r € Z8(n).
(1) = —(2): Assume that p does not force r ¢ (J,5,,, Z8(n). So there is a condition ¢ < p and some
n > ng such that g I r € Z8(n). By increasing the stem of g, if necessary, we may assume that s := stem(q)
is not on b (the “exceptional” branch), and that g(s) has already length > n. Let C,, := g(s)(n) be the n-th
entry of g(s). So p!*! already forces Z&(n) = C,; now ¢'*) < pl¥l, and ¢!*! forces the following statements:
r € Z8(n), Z8(n) = C,,. Hence r € C,, so (2) fails. |

Corollary 1.40. Let Dy and D, be systems of filters, and assume that p is in Lp N Lp,. Let g : p —
CLOPENY be an almost continuous name of a sequence of clopen sets, and let Z‘f and Z§ be the associated
Lp, -name and Lp,-name, respectively.

Then for any real r and n € w we have

P Ly, Zic,r © p Ly, Zsc,r.
(We will use this corollary for the special case that L, is an ultralaver forcing, and L, is Laver forcing.)

Lemma 1.41. Let D and D» be systems of filters, and assume that p is in Lp, NLp,. Let g : p — cLOPEN™®
be a continuous name of a sequence of clopen sets, let F C p be a front and let h : F — w be a front name.
Again we will write 78, Z§ for the associated names of codes for null sets, and we will write n; and n, for
the associated Lp, - and L, -names, respectively, of natural numbers.

Then for any real r we have:

g g
P, ZiCyr © p L, Z, Cpy 1.

Proof. Assume p FLp, Zf Ty, - So for each s € F' we have: plsl FLp, Zf Cis) r- By Corollary ??, we also
have pl*! Ly, Z5 Cis) r. So also p!*! Ly, Z5 C,, r for each s € F. Hence p Ly, Z5Cy, 1. o

Corollary 1.42. Assume q € L forces in Laver forcing that Z8 C r for k = 1,2,..., where each g is a
continuous name of a code for a null set. Then there is a Laver condition q’ <y q such that for all ultrafilter
systems D we have:

If ¢’ € Lp, then q’ forces (in ultralaver forcing L) that Z8 C r for all k.
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Proof. By (??) we can find a sequence (m),~, of L-names such that ¢ + Z% C, r for each k. By
Lemma ??(??) we can find ¢’ <y g be such that this sequence is continuous below ¢’. Since each ny
is now a front name below ¢’, we can apply the previous lemma. O

Lemma 1.43. Let M be a countable model, r € 2°, DM € M an ultrafilter system, D a filter system
extending DM, q € Ly. For any V-generic filter G C Lp we write GM for the (M-generic, by Lemma ??)
filter on Lu.

The following are equivalent:

(1) q Wy, ris random over M[GM].
(2) For all names Z € M of codes for null sets: q v, Z T r.
(3) For all continuous names g € M: q v, Z8 C 1.

Proof. (1)&(2) holds because every null set is contained in a set of the form nullset(Z), for some code Z.
(2)&(3): Every code for a null set in M[GM] is equal to Z¢[GM], for some g € M, by Corollary 2?. O

The following lemma may be folklore. Nevertheless, we prove it for the convenience of the reader.

Lemma 1.44. Let r be random over a countable model M and A € M. Then there is a countable model
M’ D M such that A is countable in M’, but r is still random over M.

Proof. We will need the following forcing notions, all defined in M:

M— M

J e

MB] MC*I}Z
P=CxB,/B;

Let C be the forcing that collapses the cardinality of A to w with finite conditions.

Let B; be random forcing (trees T C 2<“ of positive measure).

Let B, be the C-name of random forcing.

Leti: By — C * B, be the natural complete embedding T+ (1¢, T).

Let P be a B;-name for the forcing C * B, /i[Gp, ], the quotient of C * B, by the complete subforcing
i[By].

The random real r is B;-generic over M. In M[r] we let P := P[r]. Now let H C P be generic over M[r].
Then r« H C By * P ~ C * B, induces an M-generic filter J/ € C and an M[J]-generic filter K C B,[J]; it
is easy to check that K interprets the B,-name of the canonical random real as the given random real r.

Hence r is random over the countable model M’ := M[J], and A is countable in M’.

M—' ~ M[J]

M[r] ——— MIrI[H]
O

Proof of Lemma ??. We will first describe a construction that deals with a single triple (p, Z, Z*) (where p
is a sequence of conditions with strictly increasing stems which interprets Z as Z*); this construction will
yield a condition ¢’ = ¢’(p, Z, Z*). We will then show how to deal with all possible triples.

So let p be a condition, and let p = (py)ieo be a sequence interpreting Z as Z*, where the lengths of the
stems of p, are strictly increasing and py = p. It is easy to see that it is enough to deal with a single null
set, i.e., m = 1, and with k; = 0. We write Z and Z" instead of Z; and Z].

Using Lemma ?? we may (strengthening the conditions in our interpretation) assume (in M) that the
sequence (Z(k))re,, is almost continuous, witnessed by g : p — cLoPEN<“. By Lemma ??, we can find a
model M’ 2 M such that (2“)™ is countable in M’, but r is still random over M’.

We now work in M’. Note that g still defines an almost continuous name, which we again call Z.
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Each filter in DY is now countably generated; let A, be a pseudo-intersection of DY which additionally
satisfies Ay C succ,(s) for all s € p above the stem. Let D/, be the Fréchet filter on A,. Let p’ € L, be the
tree with the same stem as p which satisfies succ, (s) = A, for all s € p” above the stem.

By Lemma ??, we know that Lsx is an M-complete subforcing of L, (in M’ as well as in V). We write
GM for the induced filter on L.

We now work in V. Note that below the condition p’, the forcing L, is just Laver forcing L, and that
p’ <L p- Using Lemma ?? we can find a condition ¢ < p’ (in Laver forcing L) such that:

(1.45) q is M’-generic.
(1.46) q 1, ris random over M’[Gy] (hence also over M [GM)).
(1.47) Moreover, g Ik, Z Cg .
Enumerate all continuous Lpx-names of codes for null sets from M as Z8',7%2,... Applying Corol-

lary ?? yields a condition ¢’ < g such that for all filter systems E satisfying ¢’ € Lz, we have ¢’ Iy, Z& C r
for all i. Corollary ?? and Lemma ?? now imply:

For every filter system E satisfying ¢’ € L, ¢’ forces in Ly that r is random over
M[GM] and that Z g r.

By thinning out ¢’ we may assume that

(1.48)

(1.49) For each v € w“ N M there is k such that v[k ¢ ¢’.

We have now described a construction of ¢’ = ¢’(p, Z, Z%).

Let (p",Z",Z™) enumerate all triples (p,Z,Z*) € M where p interprets Z as Z* (and consists of con-
ditions with strictly increasing stems). For each n write v" for | J; stem(p}), the branch determined by the
stems of the sequence p”. We now define by induction a sequence ¢g" of conditions:

o ¢"=q . 2°2).
e Given ¢"! and (p",Z",Z*"), we find ko such that v' ko ¢ ¢° U --- U ¢"! (using (2?)). Let k; be
such that stem(p}; ) has length > ko. We replace p" by p’ = (p])k=k, - (Obviously, p’ still interprets
Z"as Z"™.) Now let ¢" == q'(p’, 2", Z™").
Note that the stem of ¢” is at least as long as the stem of P and is therefore not in ¢’ U --- U ¢"!, so
stem(q’) and stem(q’) are incompatible for all i # j. Therefore we can choose for each s an ultrafilter D,
extending DY such that stem(q’) C s implies succ,i(s) € D;.
Note that all ¢’ are in L. Therefore, we can use (2?). Also, ¢’ < pj). O

Below, in Lemma ??, we will prove a preservation theorem using the following “local” variant of “ran-
dom preservation”:

Definition 1.50. Fix a countable model M, a real » € 2¢ and a forcing notion Q¥ € M. Let QM be an
M-complete subforcing of Q. We say that “Q locally preserves randomness of r over M”, if there is in M
a sequence (DHQM),,Ew of open dense subsets of QM such that the following holds:
Assume that
e M thinks that p = (p"),e, interprets (Zi,...,Zy) as (Z:,...,Z) (so each Z; is a QM-name of a
code for a null set and each Z! is a code for a null set, both in M);

. . M . . .
e moreover, each p” is in D,,Q (we call such a sequence (p"),cw, Or the according interpretation,

“quick”;
e ris random over M;
o ZiTy rfori=1,...,m.

Then there is a ¢ <o p° forcing that

e risrandom over M[G¥];
o Zicyrfori=1,...,m.

Note that this is trivially satisfied if r is not random over M.
For a variant of this definition, see Section ??.
M
Setting D,? to be the set of conditions with stem of length at least n, Lemma ?? gives us:
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Corollary 1.51. If QM is an ultralaver forcing in M and r a real, then there is an ultralaver forcing Q
overp_z] OM locally preserving randomness of r over M.

2. JANUS FORCING

In this section, we define a family of forcing notions that has two faces (hence the name “Janus forcing”):
Elements of this family may be countable (and therefore equivalent to Cohen), and they may also be
essentially random.

In the rest of the paper, we will use the following properties of Janus forcing notions J. (And we will
use only these properties. So readers who are willing to take these properties for granted could skip to
Section ??.)

Throughout the whole paper we fix a function B* : w — w given by Corollary ??. The Janus forcings
will depend on a real parameter £* = (£%,)ne. € w” Which grows fast with respect to B*. (In our application,

¢* will be given by a subsequence of an ultralaver real.)
The sequence £* and the function B* together define a notion of a “thin set” (see Definition ??).

(1) There is a canonical J-name for a (code for a) null set Zy.

Whenever X C 2¢ is not thin, and J is countable, then J forces that X is not strongly meager,
Witnesseﬂ by nullset(Zy) (the set we get when we evaluate the code Zy). Moreover, for any J-
name Q of a o-centered forcing, also J * Q forces that X is not strongly meager, again witnessed
by nulfset(Zv). .

(This is Lemma ??; “thin” is defined in Definition ??.)

(2) Let M be a countable transitive model and J¥ a Janus forcing in M. Then J¥ is a Janus forcing in
V as well (and of course countable in V). (Also note that trivially the forcing J¥ is an M-complete
subforcing of itself.)

(This is Fact ??.)
(3) Whenever M is a countable transitive model and J is a Janus forcing in M, then there is a Janus
forcing J such that
e JM is an M-complete subforcing of J.
e J is (in V) equivalent to random forcing (actually we just need that J preserves Lebesgue
positivity in a strong and iterable way).
(This is Lemma ?? and Lemma ??.)

(4) Moreover, the name Zy referred to in (??) is so “canonical” that it evaluates to the same code in
the J-generic extension over V as in the JM-generic extension over M.

(This is Fact ??.)

2.A. Definition of Janus. A Janus forcing J will consist ofE]

e A countable “core” (or: backbone) V which is defined in a combinatorial way from a parameter £*.
(In our application, we will use a Janus forcing immediately after an ultralaver forcing, and £* will
be a subsequence of the ultralaver real.) This core is of course equivalent to Cohen forcing.

e Some additional “stuffing” J \ V (countable{lf] or uncountable). We allow great freedom for this,
we just require that the core V is a “sufficiently” complete subforcing (in a specific combinatorial
sense, see Definition 2?(??)).

We will use the following combinatorial theorem from [?]:

Lemma 2.1 ([?, Theorem 8123). For every €,5 > 0 there exists N5 € w such that for all sufficiently large

A
nite sets 1 C w there is a nonempty family A; consisting of sets A C 2" with — < & such that if X € 2/,
1 1 here i ily A St A C 2! with |2|1|| h that if X € 2!

16“Q over QM just means that QM is an M-complete subforcing of Q.

17in the sense of 27

18We thank Andreas Blass and Jindfich Zapletal for their comments that led to an improved presentation of Janus forcing.

19Also the trivial case J = V is allowed.

20The theorem in [?] actually says “for a sufficiently large I, but the proof shows that this should be read as “for all sufficiently
large I”.
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|X| > N, then
HAe A : X+A =21

>1-6.
|A;|

(Recall that X + A ={x+a:xe X,acA}.)
Rephrasing and specializing to 6 = } and £ = 5. we get:

Corollary 2.2. For every i € w there exists B*(i) such that for all finite sets 1 with |I| > B*(i) there is a
nonempty family A; satisfying the following:
A 1
o Aj consists of sets A C 2! with % < 5
o Forevery X C 2! satisfying |X| > B*(i), the set {A € A; : X + A = 2!} has at least %Iﬂ;l elements.

Assumption 2.3. We fix a sufficiently fast increasing sequence * = ())icy of natural numbers; more
precisely, the sequence £* will be a subsequence of an ultralaver real £, defined as in Lemma ?? using the
function B* from Corollary ??. Note that in this case £7,, — £; > B*(i); so we can fix for each i a family

A; € P25 on the interval L; := [£7, 7, ) according to Corollary ??.

i+1

Definition 2.4. First we define the “core” V = V;. of our forcing:

v=U[ ]
icw j<i
In other words, o € V iff o0 = (Ay,...,A;_1) for some i € w, Ag € Ay, ..., Ai-1 € A;_1. We will denote the
number i by height(o).
The forcing notion V is ordered by reverse inclusion (i.e., end extension): 7 < o if 7 2 0.

Definition 2.5. Let £* = (£});c,, be as in the assumption above. We say that J is a Janus forcing based on £*
if:
(1) (V,2) is an incompatibility-preserving subforcing of J.
(2) For each i € w the set {o € V : height(oc) = i} is predense in J. So in particular, J adds a
branch through V. The union of this branch is called C¥ = (C, QIV, Q2V ,...), where in ¢ 2% with
C lV € A,.
3) “Fatness”E] For all p € J and all real numbers & > 0 there are arbitrarily large i € w such that there
is a core condition o = (A, ...,A;-1) € V (of length i) with

HAe A : oAl pll
| A
(Recall that p ||; ¢ means that p and g are compatible in J.)
(4) Tis ccc.
(5) Jis separativeEZ]
(6) (To simplify some technicalities:) J C H(N).

>1-e.

We now define Zy, which will be a canonical J-name of (a code for) a null set. We will use the sequence
QV added by J (see Definition ??(2?)).

Definition 2.6. Each C} defines a clopen set Z7 = {x € 2 : x[L; € CY} of measure at most . The
sequence Zy = (Z,Z),Z, ,...) is (a name for) a code for the null set

nullset(Zy) = ﬂ U zv.

n<w izn

Since CV is defined “canonically” (see in particular Definition 2?(2?),(??)), and ZV is constructed in an
absolute way from C", we get:

21This is the crucial combinatorial property of Janus forcing. Actually, (??) implies (??).
22Separative is defined on page ??.



Paper Sh:969, version 2011-12-27_10. See https://shelah.logic.at/papers/969/ for possible updates.

BOREL CONJECTURE AND DUAL BOREL CONJECTURE 17

Fact 2.7. If J is a Janus forcing, M a countable model and 7™ a Janus forcing in M which is an M-complete
subset of J, if H is J-generic over V and HY the induced J™-generic filter over M, then CV evaluates to the
same real in M[H™] as in V[H], and therefore Z" evaluates to the same code (but of course not to the same
set of reals).

For later reference, we record the following trivial fact:

Fact 2.8. Being a Janus forcing is absolute. In particular, if V € W are set theoretical universes and J is a
Janus forcing in V, then J is a Janus forcing in W. In particular, if M is a countable model in V and J € M
a Janus forcing in M, then J is also a Janus forcing in V.

Let (M"),e, be an increasing sequence of countable models, and let J* € M" be Janus forcings. Assume
that " is M"-complete in J"*!. Then | J, J" is a Janus forcing, and an M"-complete extension of J” for all 7.

2.B. Janus and strongly meager. Carlson [?] showed that Cohen reals make every uncountable set X of
the ground model not strongly meager in the extension (and that not being strongly meager is preserved
in a subsequent forcing with precaliber ;). We show that a countable Janus forcing J does the same
(for a subsequent forcing that is even o-centered, not just precaliber &X;). This sounds trivial, since any
(nontrivial) countable forcing is equivalent to Cohen forcing anyway. However, we show (and will later
use) that the canonical null set Zy defined above witnesses that X is not strongly meager (and not just some
null set that we get out of the isomorphism between J and Cohen forcing). The point is that while V is not
a complete subforcing of J, the condition (??) of the Definition ?? guarantees that Carlson’s argument still
works, if we assume that X is non-thin (not just uncountable). This is enough for us, since by Corollary ??
ultralaver forcing makes any uncountable set non-thin.

Recall that we fixed the increasing sequence £* = ())icw and B*. In the following, whenever we say
“(very) thin” we mean “(very) thin with respect to £* and B*” (see Definition ??).

Lemma 2.9. If X is not thin, J is a countable Janus forcing based on €, and R is a J-name for a o-centered
forcing notion, then J = R forces that X is not strongly meager witnessed by the null set Zy.

Proof. Let ¢ be a J-name for a function ¢ : R — w witnessing that R is o-centered.

Recall that “Zy witnesses that X is not strongly meager” means that X + Zy = 2“. Assume towards
a contradiction that (p,r) € J * R forces that X + Zy # 2“. Then we can fix a (J * R)-name ¢ such that
(pr)FE@ X +Zv,ie., (p,r) Ik (Yx € X) £ ¢ x+ Zy. By definition of Zy, we get )

(p,n)IF(Vxe X)(dn € w) (Vi >n) §I‘Li ¢ xIL; + le
For each x € X we can find (p,, r,) < (p, r) and natural numbers n, € w and m, € w such that p, forces
that ¢(r,) = m, and
(por) b (Vi 2 ny) 1L ¢ xILi + C) .
So X = U permewnew Xpamn> Where X, is the set of all x with p, = p, my = m, n, = n. (Note that J is

countable, so the union is countable.) As X is not thin, there is some p*,m*, n* such that X* = X« - is
not very thin. So we get for all x € X*:

(2.10) (p*,r) F (Yi>n™) ETL; & xTL; + c’.
Since X* is not very thin, there is some iy € w such that for all i > i
(2.11) the (finite) set X* [ L; has more than B*(i) elements.
Due to the fact that J is a Janus forcing (see Definition ?? (??)), there are arbitrarily large i € w such that
there is a core condition o = (Ag,...,A;_1) € V with
HAe A : c"Alsp}l _ 2
2.12) 0 LALIEN =

Fix such an i larger than both iy and n*, and fix a condition o satisfying (2?).
We now consider the following two subsets of A;:
(2.13) (AcA;: o Al p*) and {Ae A : X' IL; + A =25},

By (2?), the relative measure (in A;) of the left one is at least %; due to (??) and the definition of A;
according to Corollary ??, the relative measure of the right one is at least 3; so the two sets in (??) are not
disjoint, and we can pick an A belonging to both.



Paper Sh:969, version 2011-12-27_10. See https://shelah.logic.at/papers/969/ for possible updates.

18 MARTIN GOLDSTERN, JAKOB KELLNER, SAHARON SHELAH, AND WOLFGANG WOHOFSKY

Clearly, o~ A forces (in J) that in is equal to A. Fix g € J witnessing A ||y p*. Then
(2.14) gy XML+ CY = X* ML + A =25,

Since p* forces that for each x € X* the color ¢(r,) = m*, we can find an * which is (forced by ¢ < p*
to be) a lower bound of the finite set {r, : x € X**}, where X** C X is any finite set with X**[L; = X" [L;.
By (?7),
(. r')FEML; ¢ XL+ C} = X"[Li + C,

contradicting (??). O

Corollary 2.15. Let X be uncountable. If Ly is any ultralaver forcing adding an ultralaver real ¢, and ¢*
is defined from € as in Lemma ??, and if ] is a countable Janus forcing based on t*, Q is any o-centered
Jorcing, then L, = ] * Q forces that X is not strongly meager.

2.C. Janus forcing and preservation of Lebesgue positivity. We show that every Janus forcing in a
countable model M can be extended to locally preserve a given random real over M. (We showed the same
for ultralaver forcing in Section ??.)

We start by proving that every countable Janus forcing can be embedded into a Janus forcing which is
equivalent to random forcing, preserving the maximality of countably many maximal antichains. (In the
following lemma, the letter M is just a label to distinguish J¥ from J, and does not necessarily refer to a
model.)

Lemma 2.16. Let JM be a countable Janus forcing (based on €*) and let {Dy : k € w} be a countable
family of open dense subsets of IM. Then there is a Janus forcing J (based on the same €*) such that

o M is an incompatibility-preserving subforcing of J.

e FEach Dy is still predense in J.

e J is forcing equivalent to random forcing.

Proof. Recall that V = v was defined in Definition ?2. Note that for each jthe set {o- € V : height(o) =
j} is predense in I, so the set

(2.17) E;={pel”: 30 €V: height(c) = j, p < 7}

is dense open in J¥; hence without loss of generality each E ; appears in our list of Dy’s.
Let {r* : n € w)} be an enumeration of J¥.
We now fix n for a while (up to (??)). We will construct a finitely splitting tree S” C w<* and a family

(o, p, 75" sesn satisfying the following (suppressing the superscript n):

(@) oy€V, 04 =), s Ctimplies oy C 0y, and s Lgn ¢t implies oy Ly 0.
(So in particular the set {0, : t € succg«(s)} is a (finite) antichain above o5 in V.)
() ps €IM, py =" if s C t then p, <y py (hence p, < r); s Lgn t implies p; Lyu p;.
(©) ps < o
(d) oy C1;€V,and {o;: t € succs-(s)} is the set of all T € succy(;) which are compatible with p;.
(e) The set {0 : t € succgx(s)} is a subset of succy(7}) of relative size at least 1 —
(f) Each s € S" has at least 2 successors (in §").
(g) If k = 1Ih(s), then p, € Dy (and therefore also in all D; for / < k).

Set oy = () and py, = r". Given 5,0, and p,, we construct succg.(s) and (0, Pr)resuccsn(s): We apply
fatness ??(??) to p, with € = m. So we get some 7; € V of height bigger than the height of o such
that the set B of elements of succy(7;) which are compatible with p; has relative size at least 1 — . Since
ps <pu 0 we get that 7§ is compatible with (and therefore stronger than) o-y. Enumerate B as {7, ..., 7/-1}.
Set succga(s) = {s7i: i < I} and oy~; = 7;. For t € succg(s), choose p, € IM stronger than both o, and p;
(which is obviously possible since o, and p are compatible), and moreover p; € D). This concludes the
construction of the family (o}, p}, 7¢") sesn-

So (8§, Q) is a finitely splitting nonempty tree of height w with no maximal nodes and no isolated
branches. [S"] is the (compact) set of branches of S”. The closed subsets of [S"] are exactly the sets of
the form [T'], where T C S" is a subtree of §” with no maximal nodes. [S"] carries a natural (‘“uniform”)

1
h(s)+10"
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probability measure y,, which is characterized by

Ha((S™M) = (™)

|[succgn ()|
for all s € S™ and all 7 € succgx(s). (We just write u,(T") instead of w,([T]) to increase readability.)

We call T C S" positive if u,(T) > 0, and we call T pruned if p,(T"*!) > 0 for all s € T. (Clearly every
tree T contains a pruned tree 7’ of the same measure, which can be obtained from 7 by removing all nodes
s with 1,(TH) = 0.)

Let T € S” be a positive, pruned tree and & > 0. Then on all but finitely many levels k thereisan s € T
such that

(2.18) succy(s) C succgn(s) has relative size > 1 —¢.

(This follows from Lebesgue’s density theorem, or can easily be seen directly: Set Cy,, = U e, in=m (S ml,
Then C,, is a decreasing sequence of closed sets, each containing [7T']. If the claim fails, then w,(C,11)) <
1 (Cpy) - (1 — &) infinitely often; so w,(T) < u,(N),, C) = 0.)

It is well known that the set of positive, pruned subtrees of S”, ordered by inclusion, is forcing equivalent
to random forcing (which can be defined as the set of positive, pruned subtrees of 2<¢).

We have now constructed S” for all n. Define

(2.19) I=1My U {(n,T): T C §" is a positive pruned tree }

with the following partial order:

The order on J extends the order on J¥.

W, TY<m,T)ifn=n"andT" CT.

For p € IM: (n,T) < p if there is a k such that p! < p for all 7 € T of length k. (Note that this will
then be true for all bigger k as well.)

p < (n, T) never holds (for p € M),

The lemma now easily follows from the following properties:

(1) The order on ] is transitive.

(2) J™ is an incompatibility-preserving subforcing of J.

In particular, J satisfies item (??) of Definition ?? of Janus forcing.

(3) For all k: the set {(n, T") : t € T, 1h(¢) = k} is a (finite) predense antichain below (1, T).

(4) (n, Ty is stronger than p} for each t € T (witnessed, e.g., by k = Ih(r)). Of course, (n, T is
stronger than (n, T) as well.

(5) Since p} € Dy for k = 1h(¢), this implies that each Dy is predense below each (n,S") and therefore
inJ.

Also, since each set E; appeared in our list of open dense subsets (see (??)), the set {o € V :
height(o) = j} is still predense in J, i.e., item (??) of the Definition ?? of Janus forcing is satisfied.

(6) The condition (n,S") is stronger than 7", so {(n,S") : n € w} is predense in J and J \ J™ is dense
inJ.

Below each (n, S™), the forcing J is isomorphic to random forcing.

Therefore, J itself is forcing equivalent to random forcing. (In fact, the complete Boolean algebra
generated by J is isomorphic to the standard random algebra, Borel sets modulo null sets.) This
proves in particular that J is ccc, i.e., satisfies property ??(??).

(7) It is easy (but not even necessary) to check that J is separative, i.e., property ??(??). In any case,
we could replace <y by <7, thus making J separative without changing <y, since IM was already
separative.

(8) Property ?22(2?),i.e.,J € H(N}), is obvious.

(9) The remaining item of the definition of Janus forcing, fatness ??(??), is satisfied.

Le., given (n,T) € J and & > O there is an arbitrarily high " € V such that the relative size of the
set {T € sucey(t*) : T || (n,T)} is at least 1 — &. (We will show > (1 — &)? instead, to simplify the
notation.)
We show (??): Given (n,T) € J and € > 0, we use (??) to get an arbitrarily high s € T such that succy(s)
is of relative size > 1 — ¢ in succg«(s). We may choose s of length > é We claim that 775 is as required:



Paper Sh:969, version 2011-12-27_10. See https://shelah.logic.at/papers/969/ for possible updates.

20 MARTIN GOLDSTERN, JAKOB KELLNER, SAHARON SHELAH, AND WOLFGANG WOHOFSKY

Let B := {0 : t € succgn(s)}. Note that B = {7 € succy(7;) : 7| ps}-

B has relative size > 1 — m > 1 — g in succy(7}) (according to property (??) of S™).
C := {0, : t € succy(s)} is a subset of B of relative size > 1 — & according to our choice of s.
So C is of relative size (1 — &) in succy(7y).

Each o, € C is compatible with (n, T), as (n, T") < p, < o, (see (22)). O

So in particular if J is a Janus forcing in a countable model M, then we can extend it to a Janus forcing
J which is in fact random forcing. Since random forcing strongly preserves randoms over countable models
(see Lemma ??), it is not surprising that we get local preservation of randoms for Janus forcing, i.e., the
analoga of Lemma ?? and Corollary ??. (Still, some additional argument is needed, since the fact that J
(which is now random forcing) “strongly preserves randoms” just means that a random real r over M is
preserved with respect to random forcing in M, not with respect to JM.)

Lemma 2.20. IfI™ is a Janus forcing in a countable model M and r a random real over M, then there is
a Janus forcing J such that JM is an M-complete subforcing of J and the following holds:

If
e pe ™
e inM,7Z = (Zi,...,Zn) is a sequence of IM-names for codes for null sets, and Zi,.... 2, are
interpretations under p, witnessed by a sequence (Dy)new,
o ZiCy rfori=1,...,m,

then there is a q < p inJ forcing that

e ris random over M[GM],
o ZiCyrfori=1,...,m.

Remark 2.21. In the version for ultralaver forcings, i.e., Lemma ??, we had to assume that the stems of
the witnessing sequence are strictly increasing. In the Janus version, we do not have any requirement of
that kind.

Proof. Let D be the set of dense subset of ¥ in M. According to Lemma ??, we can first find some count-
able M’ such that r is still random over M’ and such that in M’ both J¥ and D are countable. According
to Fact 22, I is a (countable) Janus forcing in M’, so we can apply Lemma ?? to the set D to construct a
Janus forcing J¥* which is equivalent to random forcing such that (from the point of V) JM <), I In V,
let J be random forcing; since this is a Suslin ccc forcing we know that J¥' is an M’-complete subforcing
of J and therefore that J¥ <, J. Moreover, as was noted in Lemma ??, we even know that random forcing
strongly preserves randoms over M’ (see Definition ??).

So assume that (in M) the sequence (p,)nco of J¥-conditions interprets Z as Z*. In M’, I -names can
be reinterpreted as J M _names, and the J¥ -name Z is interpreted as Z* by the same sequence (p,)nc.. Let
ki,...,ky be such that Z' cy, rfori = 1,...,m. So by strong preservation of randoms, we can in V find
some g < po forcing that r is random over M’[HM'] (and therefore also over the subset M[H™]), and that
Z; Ty, r (where Z; can be evaluated in M’[H™'] or equivalently in M[HM]). |

JM

So Janus forcing is locally preserving randoms (just as ultralaver forcing):

Corollary 2.22. If OM is a Janus forcing in M and r a real, then there is a Janus forcing Q over QM (which
is in fact equivalent to random forcing) locally preserving randomness of r over M.

M
Proof. In this case, the notion of “quick” interpretations is trivial, i.e., DkQ = OM for all k, and the claim
follows from the previous lemma. O

3. ALMOST FINITE AND ALMOST COUNTABLE SUPPORT ITERATIONS

A main tool to construct the forcing for BC+dBC will be “partial countable support iterations”, more
particularly “almost finite support” and “almost countable support” iterations. A partial countable support
iteration is a forcing iteration (Py, Qg )a<w, such that for each limit ordinal ¢ the forcing notion P is a subset
of the countable support limit of (P,, Q,)e<s Which satisfies some natural properties (see Definition ??).

Instead of transitive models, we will use ord-transitive models (which are transitive when ordinals are
considered as urelements). Why do we do that? We want to “approximate” the generic iteration P of length
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wy with countable models; this can be done more naturally with ord-transitive models (since obviously
countable transitive models only see countable ordinals). We call such an ord-transitive model a “candi-
date” (provided it satisfies some nice properties, see Definition ??). A basic point is that forcing extensions
work naturally with candidates.

In the following, x = (M*, P*) will denote a pair such that M~ is a candidate and P~ is (in M*) a partial
countable support iteration; similarly we write, e.g., y = (M”, P¥) or x,, = (M*", P*),

We will need the following results to prove BC+dBC. (However, as opposed to the case of the ultralaver
and Janus section, the reader will probably have to read this section to understand the construction in the
next section, and not just the following list of properties.)

Given x = (M*, P¥), we can construct by induction on « a partial countable support iteration P =
(Po, Qa)a<w, satisfying:

There is a canonical M*-complete embedding from P* to P.

In this construction, we can use at each stage § any desired QOg, as long as Pg forces that Qg is (evaluated
as) an M* [Hg]-complete subforcing of Qg (Where H; C Pg is the M*-generic filter induced by the generic
filter Hg C Pp).

Moreover, we can demand either of the following two additional propertieﬂ of the limit of this iteration P:

(1) If all Qg are forced to be o-centered, and Qp is trivial for all 8 ¢ M*, then P,, is o-centered.
(2) If r is random over M*, and all Qg locally preserve randomness of r over M"[H/;‘] (see Defini-
tion ??), then also P,,, locally preserves the randomness of r.

Actually, we need the following variant: Assume that we already have P,, for some @9 € M*, and that P,
canonically embeds into P,,, and that the respective assumption on Qg holds for all 8 > ag. Then we get
that P,, forces that the quotient P, /P,, satisfies the respective conclusion.

We also need ]

(3) If instead of a single x we have a sequence x, such that each P* canonically (and M*-completely)
embeds into P*+!, then we can find a partial countable support iteration P into which all P* embed
canonically (and we can again use any desired Qg, assuming that Qg" is an M™ [H;”]-complete
subforcing of Qg for all n € w).

(4) (A fact that is easy to prove but awkward to formulate.) If a A-system argument produces two
X1, X2 as in Lemma ?2(2?), then we can find a partial countable support iteration P such that P~
canonically (and M*-completely) embeds into P for i = 1,2.

3.A. Ord-transitive models. We will use “ord-transitive” models, as introduced in [?] (see also the pre-
sentation in [?]). We briefly summarize the basic definitions and properties (restricted to the rather simple
case needed in this paper):

Definition 3.1. Fix a suitable finite subset ZFC* of ZFC (that is satisfied by H(y*) for sufficiently large
regular y*).
(1) A set M is called a candidate, if
e M is countable,
e (M, €)is amodel of ZFC*,
e M is ord-absolute: M E a € Ord iff @ € Ord, for all @ € M,
e M is ord-transitive: if x € M \ Ord, then x C M,
e w+1CM.

“a is a limit ordinal” and “a@ = 8 + 1” are both absolute between M and V.

(2) A candidate M is called nice, if “a has countable cofinality” and “the countable set A is cofinal
in @” both are absolute between M and V. (So if @ € M has countable cofinality, then @ N M is
cofinal in @.) Moreover, we assume w; € M (which implies w;” = w;) and w, € M (but we do
not require w,™ = wy).

(3) Let P¥ be a forcing notion in a candidate M. (To simplify notation, we can assume without loss
of generality that P N Ord = 0 (or at least C w) and that therefore P € M and also A € M

BThe o-centered version is central for the proof of dBC; the random preserving version for BC.
24This will give o-closure and N,-cc for the preparatory forcing R.
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whenever M thinks that A is a subset of PM.) Recall that a subset H” of PM is M-generic (or:
PM_generic over M), if |A N HY| = 1 for all maximal antichains A in M.

(4) Let HY be PM-generic over M and 7 a PM-name in M. We define the evaluation T[HM]M to be x if
M thinks that p IFpu T = ¥ for some p € H™ and x € M (or equivalently just for x € M N Ord), and
{o[HMM : (g, p) € 7, p € HM} otherwise. Abusing notation we write T[HM] instead of T[HM M,
and we write M[HM] for {t[H™] : 7is a PM-name in M}.

(5) The ord-collapse k (or k™) is a recursively defined function with domain M: k(x) = x if x € Ord,
and k(x) = {k(y) : y € x N M} otherwise.

(6) The ord-transitive closure of a set x is defined inductively on the rank:

ordclos(x) = x U U{ordclos(y) :y e x\Ord}.

So ordclos(x) is the smallest ord-transitive set containing x as a subset. HCON is the collection of
all sets x such that the ord-transitive closure of x is countable. x is in HCON iff x is element of
some candidate. In particular, all reals and all ordinals are HCON.

We write HCON,, for the family of all sets x in HCON whose ord-transitive closure (or, in this
case equivalently, transitive closure) only contains ordinals < .

The following facts can be found in [?] or [?] (they can be proven by rather straightforward, if tedious,
inductions on the ranks of the according objects).

Fact 3.2. (1) The ord-collapse of a countable elementary submodel of H(y*) is a nice candidate.

(2) Unions, intersections etc. are generally not absolute for candidates. For example, let x € M \ Ord.
In M we can construct a set y such that M = y = w; U {x}. Then y is not an ordinal and therefore a
subset of M, and in particular y is countable and y # w; U {x}.

(3) Let j : M — M’ be the transitive collapse of a candidate M, and f : w; N M” — Ord the inverse
(restricted to the ordinals). Obviously M’ is a countable transitive model of ZFC*; moreover M
is characterized by the pair (M’, f) (we call such a pair a “labeled transitive model”). Note that f
satisfies f(a@ + 1) = f(@) + 1, f(@) = afora € w U {w}. M E (aisalimit) iff f(a) is a limit.
M E cf(a) = w iff cf(f(@)) = w, and in that case f[a] is cofinal in @. On the other hand, given
a transitive countable model M’ of ZFC* and an f as above, then we can construct a (unique)
candidate M corresponding to (M’, f).

(4) All candidates M with M N Ord C w; are hereditarily countable, so their number is at most 2%,
Similarly, the cardinality of HCON,, is at most continuum whenever o < ws.

(5) If M is a candidate, and if H" is PM-generic over M, then M[H"] is a candidate as well and an
end-extension of M such that M N Ord = M[H™] N Ord. If M is nice and (M thinks that) P¥ is
proper, then M[H™] is nice as well.

(6) Forcing extensions commute with the transitive collapse j: If M corresponds to (M’, f), then
HM c PM is PM_generic over M iff H' := jlH]is P’ := j(PM)-generic over M’, and in that case
M[HM] corresponds to (M’[H’], f). In particular, the forcing extension of M[HY] of M satisfies
the forcing theorem (everything that is forced is true, and everything true is forced).

(7) For elementary submodels, forcing extensions commute with ord-collapses: Let N be a countable
elementary submodel of H(y*), P € N, k : N — M the ord-collapse (so M is a candidate), and let
H be P-generic over V. Then H is P-generic over N iff HY := k[H] is PM := k(P)-generic over M;
and in that case the ord-collapse of N[H]is M[HM].

Assume that a nice candidate M thinks that (PY, QM) is a forcing iteration of length w," (we will
usually write w, for the length of the iteration, by this we will always mean w," and not the possibly
different w,™). In this section, we will construct an iteration (P, Q) in V, also of length w,, such that each
PM canonically and M-completely embeds into P, for all @ € w, N M. Once we know (by induction) that
PM M-completely embeds into P,, we know that a P,-generic filter H, induces a PM-generic (over M)
filter which we call HM. Then M[H"] is a candidate, but nice only if P is proper. We will not need that
M [Hé” ] is nice, actually we will only investigate set of reals (or elements of H(N;)) in M [Hg” ], so it does
not make any difference whether we use M[HM] or its transitive collapse.
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Remark 3.3. In the discussion so far we omitted some details regarding the theory ZFC* (that a candidate
has to satisfy). The following “fine print” hopefully absolves us from any liability. (It is entirely irrelevant
for the understanding of the paper.)

We have to guarantee that each M[HM] that we consider satisfies enough of ZFC to make our arguments
work (for example, the definitions and basic properties of ultralaver and Janus forcings should work). This
turns out to be easy, since (as usual) we do not need the full power set axiom for these arguments (just the
existence of, say, ds). So it is enough that each M [H(’YV’ ] satisfies some fixed finite subset of ZFC minus
power set, which we call ZFC*.

Of course we can also find a bigger (still finite) set ZFC** that implies: J;( exists, and each forcing
extension of the universe with a forcing of size < 2, satisfies ZFC*. And it is provable (in ZFC) that each
H(y) satisfies ZFC** for sufficiently large regular y.

We define candidate using the weaker theory ZFC*, and require that nice candidates satisfies the stronger
theory ZFC**. This guarantees that all forcing extensions (by small forcings) of nice candidates will be
candidates (in particular, satisfy enough of ZFC such that our arguments about Janus or ultralaver forcings
work). Also, every ord-collapse of a countable elementary submodel N of H(y) will be a nice candidate.

3.B. Partial countable support iterations. We introduce the notion of “partial countable support limit”:
a subset of the countable support (CS) limit containing the union (i.e., the direct limit) and satisfying some
natural requirements.

Let us first describe what we mean by “forcing iteration”. They have to satisfy the following require-
ments:

o A “topless forcing iteration” (Py, Qq)a<e 18 a sequence of forcing notions P, and P,-names Q,
of quasiorders with a weakest element 1y, . A “topped iteration” additionally has a final limit P,.
Each P, is a set of partial functions on « (as, e.g., in [?]). More specifically, if « < < € and
p € Pg, then pla € P,. Also, pI p, p(B) € Qp for all B € dom(p). The order on Py will
always be the “natural” one: g < p iff g« forces (in P,) that ¢"' () < p*'(@) for all @ < B, where
r(@) = r(a) for all @ € dom(r) and 1y, otherwise. P, consists of all p with pla € P, and
pla i pa) € Q,, so it is forcing equivalent to Py * Q.

e P, C Pg whenever @ < 8 < &. (In particular, the empty condition is an element of each Pg.)

e Forany p € P, and any g € P, (a < ) with g < pe, the partial functiong A p := gU plla,e)isa
condition in P, as well (so in particular, p [« is a reduction of p, hence P, is a complete subforcing
of P.; and g A p is the weakest condition in P, stronger than both ¢ and p).

e Abusing notation, we usually just write P for an iteration (be it topless or topped).

e We usually write Hp for the generic filter on Pg (which induces P,-generic filters called H, for
a < B). For topped iterations we call the filter on the final limit sometimes just H instead of H..

We use the following notation for quotients of iterations:

e For @ < g, in the P,-extension V[H,], we let Pg/H, be the set of all p € Pg with pla € H,
(ordered as in Pg). We may occasionally write Pg/P, for the P,-name of Pg/H,.

e Since P, is a complete subforcing of Pg, this is a quotient with the usual properties, in particular
Pg is equivalent to P, * (Pg/H,).

Remark 3.4. It is well known that quotients of proper countable support iterations are naturally equivalent
to (names of) countable support iterations. In this paper, we can restrict our attention to proper forcings, but
we do not really have countable support iterations. It turns out that it is not necessary to investigate whether
our quotients can naturally be seen as iterations of any kind, so to avoid the subtle problems involved we
will not consider the quotient as an iteration by itself.

Definition 3.5. Let P be a (topless) iteration of limit length £. We define three limits of P:

e The “direct limit” is the union of the P, (for @ < &). So this is the smallest possible limit of the
iteration.

e The “inverse limit” consists of all partial functions p with domain C ¢ such that pla € P, for all
a < . This is the largest possible limit of the iteration.

e The “full countable support limit P$S” of P is the inverse limit if cf(g) = w and the direct limit
otherwise.
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We say that P, is a “partial CS limit”, if P, is a subset of the full CS limit and the sequence (P,)q<. 1S a
topped iteration. In particular, this means that P, contains the direct limit, and satisfies the following for
each @ < &: P, is closed under p — pla, and whenever p € P, g € P,, g < ple, then also the partial
function g A p is in P.

So for a given topless P there is a well-defined inverse, direct and full CS limit. If cf(¢) > w, then they
all coincide. If cf(¢) = w, then the direct limit and the full CS limit (=inverse limit) differ. Both of them
are partial CS limits, but there are many more possibilities for partial CS limits. By definition, all of them
will yield iterations.

Note that the name “CS limit” is slightly inappropriate, as the size of supports of conditions is not part
of the definition. To give a more specific example: Consider a topped iteration P of length w + w where P,
is the direct limit and P, is the full CS limit. Let p be any element of the full CS limit of Pw which is
not in P,,; then p is not in P, either. So not every countable subset of w + w can appear as the support of
a condition.

Definition 3.6. A forcing iteration P is called a “partial CS iteration”, if

e every limit is a partial CS limit, and
e every Q, is (forced to be) separative

The following fact can easily be proved by transfinite induction:
Fact 3.7. Let P be a partial CS iteration. Then for all & the forcing notion P, is separative.

From now on, all iterations we consider will be partial CS iterations. In this paper, we will only be
interested in proper partial CS iterations, but properness is not part of the definition of partial CS iteration.
(The reader may safely assume that all iterations are proper.)

Note that separativity of the Q, implies that all partial CS iterations satisfy the following (trivially
equivalent) properties:

Fact 3.8. Let P be a topped partial CS iteration of length &. Then:

(1) Let H be P.-generic. Then p € Hiff pla € H, forall a < €.
(2) Forallg,p € P.: If gla <* pla for each a < ¢, then g <* p.
(3) Forallg,p € P.: If gla <* pla foreach a < g, then g || p.

We will be concerned with the following situation:

Assume that M is a nice candidate, PY is (in M) a topped partial CS iteration of length & (a limit ordinal
in M), and P is (in V) a topless partial CS iteration of length & := sup(e N M). (Recall that “cf(e) = w”
is absolute between M and V, and that cf(e) = w implies ¢’ = £.) Moreover, assume that we already have
a system of M-complete coherenﬁ embeddings ig : Pg” — Pgforf e & NM=¢en M. (Recall that any
potential partial CS limit of P is a subforcing of the full CS limit PSS.) It is easy to see that there is only one
possibility for an embedding j : PY — PS,S (in fact, into any potential partial CS limit of P) that extends
the ig’s naturally:

Definition 3.9. For a topped partial CS iteration P in M of length £ and a topless one P in V of length
& = sup(eN M) together with coherent embeddings iz, we define j : P¥ — PS,S, the “canonical extension”,
in the obvious way: Given p € PY, take the sequence of restrictions to M-ordinals, apply the functions ig,
and let j(p) be the union of the resulting coherent sequence.

We do not claim that j : P — PS,S is M—completeE] In the following, we will construct partial CS
limits P, such that j : P¥ — P, is M-complete. (Obviously, one requirement for such a limit is that

25The reason for this requirement is briefly discussed in Section ??. Separativity, as well as the relations <* and =", are defined
on page ??.

26I.e., they commute with the restriction maps: i,(p[a@) = ig(p)la fora < S and p € Pg”.

27 For example, if & = & = w and if P is the finite support limit of a nontrivial iteration, then j : PM — PSS is not complete:
For notational simplicity, assume that all Q,’y are (forced to be) Boolean algebras. In M, let ¢, be (a P,’;” -name for) a nontrivial
element of Q,,M (so ¢y, the Boolean complement, is also nontrivial). Let p, be the P,,M -condition (cy, ..., Cn-1), 1.€., the truth value
of “c,, € H(m) for all m < n”. Let g, be the P%l—condition (€Os -+ - Cn—1, TCp), 1.€., the truth value of “n is minimal with ¢, ¢ H(n)”.
In M, the set A = {g, : n € w} is a maximal antichain in Pé‘f . Moreover, the sequence (p,)ne. 1s a decreasing coherent sequence,
therefore i,(p,) defines an element p,, in PSS, which is clearly incompatible with all j(g,), hence j[A] is not maximal.
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jIPM] C P...) We will actually define two versions: The almost FS (“almost finite support™) and the almost
CS (“almost countable support™) limit.

Note that there is only one effect that the “top” of P (i.e., the forcing PM) has on the canonical extension
j: Tt determines the domain of j. In particular it will generally depend on P whether j is complete or not.
Apart from that, the value of any given j(p) does not depend on PY.

Instead of arbitrary systems of embeddings i,, we will only be interested in “canonical” ones. We as-
sume for notational convenience that Q¥ is a subset of Q, (this will naturally be the case in our application
anyway).

Definition 3.10 (The canonical embedding). Let P be a partial CS iteration in V and PM a partial CS

iteration in M, both topped and of length £ € M. We construct by induction on @ € (¢ + 1) N M the

canonical M-complete embeddings i, : P¥ — P,. More precisely: We try to construct them, but it
is possible that the construction fails. If the construction succeeds, then we say that “P™ (canonically)
embeds into P, or “the canonical embeddings work”, or just: “P is over PM”, or “over PM”.

e Let @ = B+ 1. By induction hypothesis, ig is M-complete, so a V-generic filter Hg C Pg induces
an M-generic filter Hg” = ilgl [Hg] C Pg’ . We require that (in the Hp extension) the set Qg’ [Hg” ]is
an M [Hg’ ]-complete subforcing of Qg[Hjg]. In this case, we define i, in the obvious way.

e For o limit, let i, be the canonical extension of the family (ig)geony. We require that P, contains the
range of i,, and that i, is M-complete; otherwise the construction fails. (If @’ := sup(a N M) < «,
then i, will actually be an M-complete map into P, , assuming that the requirement is fulfilled.)

In this section we try to construct a partial CS iteration P (over a given PM) satisfying additional prop-
erties.

Remark 3.11. What is the role of & := sup(e N M)? When our inductive construction of P arrives at
P, where & < g, it would be too latﬂ to take care of M-completeness of i, at this stage, even if all
io work nicely for @ € € " M. Note that & < & implies that ¢ is uncountable in M, and that therefore
Pé"’ = Uneenm Pg” . So the natural extension j of the embeddings (i, )qecsna has range in P, which will be
a complete subforcing of P,. So we have to ensure M-completeness already in the construction of P, .

For now we just record:

Lemma 3.12. Assume that we have topped iterations PM (in M) of length & and P (in V) of length &' =
sup(e N M), and that for all « € € N M the canonical embedding i, : Pg” — P, works. Let iy : PlgW - Pg',s
be the canonical extension.

(1) If PM is (in M) a direct limit (which is always the case if & has uncountable cofinality) then i,
(might not work, but at least) has range in P, and preserves incompatibility.

(2) Ifi; has a range contained in P, and maps predense sets D C PQ” in M to predense sets i;[D] C
P, then i. preserves incompatibility (and therefore works).

Proof. (1) Since P is a direct limit, the canonical extension i, has range in |, Py, Which is subset of
any partial CS limit P,,. Incompatibility in P¥ is the same as incompatibility in P¥ for sufficiently large
a € €N M, so it by assumption it is preserved by i, and hence also by i,.

2) Fix p1,p> € PQV , and assume that their images are compatible in P, ; we have to show that they are
compatible in PQ” . So fix a generic filter H C P containing i.(p;) and i (p»).

In M, we define the following set D:

D = {qEPQ/I:(qul ANg<por(Ja<e:qla Lpy pila)or(Ja<e:gla Lpy prla)}

Using Fact ??(??) it is easy to check that D is dense. Since i, preserves predensity, there is ¢ € D
such that i.(q) € H. We claim that g is stronger than p; and p,. Otherwise we would have without loss
of generality gla@ Lpu p;la for some @ < &. But the filter Hla contains both iy(qla) and iy (p1 @),
contradicting the assumption that i, preserves incompatibility. O

28 For example: Let ¢ = w; and & = w; N M. Assume that Pﬂj’l is (in M) a (or: the unique) partial CS limit of a nontrivial

iteration. Assume that we have a topless iteration P of length &’ in V such that the canonical embeddings work for all @ € w; N M.
If we set P, to be the full CS limit, then we cannot further extend it to any iteration of length w; such that the canonical embedding
iw, works: Let p, and g, be as in footnote ??. In M, the set A = {g, : @ € w1} is a maximal antichain, and the sequence (po)acw,
is a decreasing coherent sequence. But in V there is an element p € Pg,s with p @ = p, for all @ € e N M. This condition p. is
clearly incompatible with all elements of j[A] = {j(ps) : @ € € N M}. Hence j[A] is not maximal.
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3.C. Almost finite support iterations. Recall Definition ?? (of the canonical extension) and the setup that
was described there: We have to find a subset P, of PS,S such that the canonical extension j : PQ” — Py is
M-complete.

We now define the almost finite support limit. (The direct limit will in general not do, as it may not
contain the range j[PY]. The almost finite support limit is the obvious modification of the direct limit, and
it is the smallest partial CS limit P such that j[Pé” ] € P., and it indeed turns out to be M-complete as
well.)

Definition 3.13. Let & be a limit ordinal in M, and let &' := sup(e N M). Let P™ be a topped iteration in M
of length &, and let P be a topless iteration in V of length &’. Assume that the canonical embeddings i,
work for all @ € eN M = & N M. Let i, be the canonical extension. We define the almost finite support
limit of P over PM (or: almost FS limit) as the following subforcing P, of PS5

Py ={qNisp) € PS,S :pe Pé” and g € P, for some o € £ N M such that ¢ <p, i,(pla@)}.

Note that for cf(g) > w, the almost FS limit is equal to the direct limit, as each p € P is in fact in P¥
for some @ € e N M, 50 i(p) = io(p) € P,.

Lemma 3.14. Assume that P and PM are as above and let P, be the almost FS limit. Then P" P, is a
partial CS iteration, and i, works, i.e., i is an M-complete embedding from P to P,. (As Py is a complete
subforcing of Py, this also implies that i, is M-complete from P to P..)

Proof. ltis easy to see that P, is a partial CS limit and contains the range i.[PY]. We now show preserva-
tion of predensity; this implies M-completeness by Lemma 2?.

Let (p})jes € M be a maximal antichain in PQ” . (Since Pé” does not have to be ccc in M, J can have any
cardinality in M.) Let g A i.(p) be a condition in P.. (If ¢’ < ¢, i.e., if cf(e) > w, then we can choose p to
be the empty condition.) Fix @ € £ M be such that g € P,. Let H, be P,-generic and contain ¢, so p [« is
in HY. Now in M[HY] the set {p; : j € J,p; € PM/HM} is predense in PY /HY (since this is forced by the
empty condition in P¥). In particular, p is compatible with some p;, witnessed by p’ < p, p; in P /HY.

We can find ¢’ <p, ¢ deciding j and p’; since certainly ¢’ <* i,(p’ [@), we may assume even < without
loss of generality. Now g’ A i(p’) < g Ai(p) (since ¢ < g and p’ < p), and ¢’ A i(p’) < ic(p;) (since
P <p). m

Definition and Claim 3.15. Let P be a topped partial CS iteration in M of length &. We can construct by
induction on 8 € € + 1 an almost finite support iteration P over PM (or: almost FS iteration) as follows:

(1) As induction hypothesis we assume that the canonical embedding i, works for all @ € SN M. (So
the notation M| [Hg” ] makes sense.)

(2) Let B = a + 1. If @ € M, then we can use any Q, provided that (it is forced that) Q¥ is an
M[H {;4 ]-complete subforcing of Q,. (If @ ¢ M, then there is no restriction on Q,.)

(3) Letp € M and cf(B) = w. Then Py is the almost FS limit of (Py, Qo )a<p OVer Pg” .

(4) Let 8 € M and cf(B) > w. Then Py is again the almost FS limit of (Py, Qy)e<s Over Pg” (which
also happens to be the direct limit).

(5) For limit ordinals not in M, Py is the direct limit.

So the claim includes that the resulting P is a (topped) partial CS iteration of length & over P¥ (i.e.,
the canonical embeddings i, work for all @ € (¢ + 1) N M), where we only assume that the Q, satisfy the
obvious requirement given in (2?). (Note that we can always find some suitable Q, for @ € M, for example
we can just take QY itself.)

Proof. We have to show (by induction) that the resulting sequence P is a partial CS iteration, and that P
embeds into P. For successor cases, there is nothing to do. So assume that @ is a limit. If P, is a direct
limit, it is trivially a partial CS limit; if P, is an almost FS limit, then the easy part of Lemma ?? shows
that it is a partial CS limit.

So it remains to show that for a limit @ € M, the (naturally defined) embedding i, : Pg” — P, is
M-complete. This was the main claim in Lemma ??. O

The following lemma is natural and easy.
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Lemma 3.16. Assume that we construct an almost FS iteration P over PM where each Q, is (forced to be)
ccc. Then P, is ccc (and in particular proper).

Proof. We show that P, is ccc by induction on a@ < &. For successors, we use that Q, is ccc. For a of
uncountable cofinality, we know that we took the direct limit coboundedly often (and all Py are ccc for
B < @), so by a result of Solovay P, is again ccc. For « a limit of countable cofinality not in M, just use
that all Pg are ccc for 8 < «, and the fact that P, is the direct limit. This leaves the case that & € M has
countable cofinality, i.e., the P, is the almost FS limit. Let A C P, be uncountable. Each a € A has the
form g A iu(p) for p € PM and g € Uy<a Py- We can thin out the set A such that p are the same and all ¢
are in the same P,. So there have to be compatible elements in A. O

All almost FS iterations that we consider in this paper will satisfy the countable chain condition (and
hence in particular be proper).
We will need a variant of this lemma for o-centered forcing notions.

Lemma 3.17. Assume that we construct an almost FS iteration P over PM where only countably many Q,,
are nontrivial (e.g., only those with « € M) and where each Q, is (forced to be) o-centered. Then P, is
o-centered as well.

Proof. By induction: The direct limit of countably many o-centered forcings is o-centered, as is the almost
FS limit of o-centered forcings (to color g A i,(p), use p itself together with the color of g). O

We will actually need two variants of the almost FS construction: Countably many models M"; and
starting the almost FS iteration with some «y.

Firstly, we can construct an almost FS iteration not just over one iteration PM, but over an increasing
chain of iterations. Analogously to Definition ?? and Lemma ??, we can show:

Lemma 3.18. For each n € w, let M" be a nice candidate, and let P" be a topped partial CS iteration
in M" of lengthE;]s € M of countable cofinality, such that M™ € M™ and M" thinks that P" canonically
embeds into P", for all m < n. Let P be a topless iteration of length & into which all P" canonically embed.

Then we can define the almost FS limit P, over (P")ne., as follows: Conditions in P, are of the form
q N i(p) where n € w, p € P, and q € P, for some @« € M" N e with q < i.(pla). Then P, is a partial CS
limit over each P".

As before, we get the following corollary:

Corollary 3.19. Given M" and P" as above, we can construct a topped partial CS iteration P such that
each P" embeds M"-completely into it; we can choose Q, as we wish (subject to the obvious restriction
that each Q" is an M"[H"]-complete subforcing). If we always choose Q, to be ccc, then P is ccc; this is
the case if we set Q, to be the union of the (countable) sets Q.

Proof. We can define P, by induction. If @ € | J,¢,, M" has countable cofinality, then we use the almost FS
limit as in Lemma ??. Otherwise we use the direct limit. If @ € M" has uncountable cofinality, then @’ =
sup(a N M) is an element of M"'. In our induction we have already considered o’ and have defined P,
by Lemma ?? (applied to the sequence (P™*!, P**2, . ..)). This is sufficient to show that i’ : P* — P, <P,
is M"-complete. O

Secondly, we can start the almost FS iteration after some «q (i.e., P is already given up to ay, and we
can continue it as an almost FS iteration up to &), and get the same properties that we previously showed
for the almost FS iteration, but this time for the quotient P./P,,. In more detail:

Lemma 3.20. Assume that PM is in M a (topped) partial CS iteration of length &, and that P is in V a
topped partial CS iteration of length ay over PM [y for some ag € € N M. Then we can extend P to a
(topped) partial CS iteration of length & over PM, as in the almost FS iteration (i.e., using the almost FS
limit at limit points B > ag with 8 € M of countable cofinality; and the direct limit everywhere else). We
can use any Q, for a > aq (provided QY is an M[{HM]-complete subforcing of Q). If all Q, are ccc, then
P, forces that P./H,, is ccc (in particular proper); if moreover all Q, are o-centered and only countably
many are nontrivial, then P, forces that P.[/H,, is o-centered.

290; only: £ € M"0 for some ng.
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3.D. Almost countable support iterations. “Almost countable support iterations P (over a given itera-
tion PM in a candidate M) will have the following two crucial properties: There is a canonical M-complete
embedding of PM into P, and P preserves a given random real (similar to the usual countable support
iterations).

Definition and Claim 3.21. Let PY be a topped partial CS iteration in M of length &. We can construct by
induction on 8 € & + 1 the almost countable support iteration P over PM (or: almost CS iteration):

(1) As induction hypothesis, we assume that the canonical embedding i, works for every @ € SN M.
We se

(3.22) §=min(M\pB), ¢ =supla+1:aednM).

Note that &’ <5 < 6.
(2) LetB = a + 1. We can choose any desired forcing Q,; if 8 € M we of course require that

(3.23) Q?f is an M[Hfl”]—complete subforcing of Q,.

This defines Pg.
(3) Let cf(8) > w. Then Py is the direct limit.
(4) Let cf(B) = w and assume that 8 € M (so M N B is cofinal in 8 and " = B = 6). We define Pg = Ps
as the union of the following two sets:
e The almost FS limit of (P,, Q)a<s, see Definition ??.
e The set P§™" of M-generic conditions g € PS3, i.e., those which satisfy

q IFpes ig‘[Hpgs] c P¥ is M-generic.

(5) Let cf(8) = w and assume that 8 ¢ M but M N S is cofinal in B, so &' = B < 6. We define P = Py
as the union of the following two sets:
e The direct limit of (P, Qu)a<s -
e The set P of M-generic conditions ¢ € PSS, i.e., those which satisfy

q I pes iy [Hpes] € PY is M-generic.
& S

(Note that the M-generic conditions form an open subset of P[SS =P$3)
(6) Letcf(B) = wand M N B not cofinal in B (so B ¢ M). Then Py is the full CS limit of (Py, Qo)a<p
(see Definition ?7?).

So the claim is that for every choice of Q, (with the obvious restriction (??)), this construction always
results in a partial CS iteration P over PM. The proof is a bit cumbersome; it is a variant of the usual proof
that properness is preserved in countable support iterations (see e.g. [?]).

We will use the following fact in M (for the iteration PM):

Let P be a topped iteration of length . Let @) < @ < 8 < &. Let p; be a P,,-name
for a condition in P,, and let D be an open dense set of Pg. Then there is a P,,-name
p> for a condition in D such that the empty condition of P,, forces: p, < p;[B and:
if py is in P./H,,, then the condition p; is as well.

(3.24)

(Proof: Work in the P,,-extension. We know that p’ := p; I B is a Pg-condition. We now define p, as
follows: If p” ¢ Pg/H,, (which is equivalent to p; ¢ P./H,,), then we choose any p, < p’ in D (which is
dense in Pg). Otherwise (using that DN Pg/H,, is dense in Pg/H,,) we can choose p> < p"in DN Pg/H,,.)

The following easy fact will also be useful:

Let P be a subforcing of Q. We define Plp = {r € P : r < p}. Assume that p € P
(3.25) and Plp = QIp.
Then for any P-name x and any formula ¢(x) we have: p Irp ¢(x) iff p IFg @(x).

We now prove by induction on 8 < ¢ the following statement (which includes that the Definition and
Claim ?? works up to B). Let 4,6’ be as in (2?).

Lemma 3.26. (a) The topped iteration P of length B is a partial CS iteration.
(b) The canonical embedding is - Pg” — Ps works, hence also is : Pfs” — Ps works.

3080 for successors B € M, we have &’ = 8 = 6. For 8 € M limit, 8 = § and &’ is as in Definition ??.
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(c¢) Moreover, assume that
e veMNI,
e peMisaP-name ofa Pé" -condition,
e g € P, forces (in P,) that pla[HM] is in HY.
Then there is a q* € Py (and th~eref0re in Pg) extending q and forcing that g[Hg” lisin H g” .

Proof. First let us deal with the trivial cases. It is clear that we always get a partial CS iteration.

e Assume that 8 =8y + 1€ M,ie,§ = = B. Itis clear that iz works. To get ¢*, first extend g to
some ¢’ € Pg, (by induction hypothesis), then define ¢* extending ¢’ by ¢*(8o) := p(Bo).

o If B =Ly + 1¢ M, there is nothing to do. )

e Assume that cf(8) > w (whether 8 € M ornot). Then &’ <. Sois : P§4 — Pg works by induction,
and similarly (c) follows from the inductive assumption. (Use the inductive assumption for 8 = ¢’;
the & that we got at that stage is the same as the current &, and the g™ we obtained at that stage will
still satisfy all requirements at the current stage.)

e Assume that cf(8) = w and that M N B is bounded in 8. Then the proof is the same as in the
previous case.

We are left with the cases corresponding to (4) and (5) of Definition ??: c¢f(8) = w and M N B is cofinal
in 8. So either 8 € M, then &’ =B =6, 0r8 ¢ M, then & = < § and cf(9) > w.

We leave it to the reader to check that Pg is indeed a partial CS limit. The main point is to see that
for all p,q € Pg the condition g A p is in Pg as well, provided ¢ € P, and g < pla for some & < §. If
pE Pl%en, then this follows because P;en is open in Pgs; the other cases are immediate from the definition
(by induction).

We now turn to claim (c). Assume g € P, and p €M are given, @ € M N 6.

Let (D,),c., enumerate all dense sets of P(’s"’ which lie in M, and let (@), be a sequence of ordinals in
M which is cofinal in 8, where o = a.

Using (??) in M, we can find a sequence (pn)ne satisfying the following in M, for all n > 0:

* po=p.

® pu € M is a P} -name of a P}'-condition in D,,.

s "'P%T Pn SP{’,” Pn-1.

o pu If ppi ey € HY, then p, e, € HY as well.

Using the inductive assumption for the a,,’s, we can now find a sequence (g, )., Of conditions satisfying
the following:

® 40 =¢,qn € Py,.
® dn ran—l = {qn-1-
® qup, pnila, € HY

@’

Letg* € PES be the union of the g,,. Then for all n:

so also p, [, € HY.

(1) gn ¥ pes pultan € HY, s0 also ¢* forces this.
(Using induction on n.)
(2) Forallnand allm > n: g* IFpcS P ta € HY | s0 also Pulan € H).
(AS pm < pn.)
3) q* Ikps pn € HY.
(Recall that Pgs is separative, see Fact 22. S0 is(p,) € H iff iy, (plam) € Ho,, for all large m.)
Asqg* K pes Pn € Dy 0 HY, we conclude that ¢* € Pie" (using ??, applied to Pgs). In particular, Pff"
is dense in Pg: Let g A is(p) be an element of the almost FS limit; so g € P, for some @ < 8. Now find a
generic ¢* extending ¢ and stronger than is(p), then ¢g* < g A is(p).
It remains to show that i5 is M-complete. Let A € M be a maximal antichain of P¥, and p € Pg. Assume
towards a contradiction that p forces in Pg that i;'[Hg] does not intersect A in exactly one point.
Since Pf;en is dense in Pg, we can find some g < p in Pf:n. Let

P’:={r€P§S:rﬁq}z{rePﬁ:qu},

where the equality holds because P[gf“ is open in Pgs.
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Let I be the canonical name for a P’-generic filter, i.e.: [ := {(#,7) : r € P’}. Let R be either Pgs or Pg.
We write (I')g for the filter generated by I'in R, i.e., (INg :={reR:(Ar e+ <r}. So

(3.27) q '+ Hg = D)r.

We now see that the following hold:
~ qFp, ig' [Hp,] does not intersect A in exactly one point. (By assumption.)
- qlp, i(;l [<I")p,] does not intersect A in exactly one point. (By (??).)
- ql PCs ig' [{T')p,] does not intersect A in exactly one point. (By (2?).)
= qkpss i(;l [KT) PES] does not intersect A in exactly one point. (Because is maps A into Pg C Pgs, SO
AN igl KVpl=AN ig' [<Y>P§s] forall Y.)

- ql P igl [H PES] does not intersect A in exactly one point. (Again by (??).)

But this, according to the definition of P[gfn, implies ¢ ¢ P[gf", a contradiction. O

We can also show that the almost CS iteration of proper forcings Q, is proper. (We do not really need
this fact, as we could allow non-proper iterations in our preparatory forcing, see Section ??(??). In some
sense, M-completeness replaces properness, so the proof of M-completeness was similar to the “usual”
proof of properness.)

Lemma 3.28. Assume that in Definition ??, every Q, is (forced to be) proper. Then also each P is proper.

Proof. By induction on ¢ < ¢ we prove that for all @ < ¢ the quotient Ps/H, is (forced to be) proper. We
use the following facts about properness:

(3.29) If P is proper and P forces that Q is proper, then P % Q is proper.

If P is an iteration of length w and if each Q, is forced to be proper, then the inverse

(3.30) _ . .
limit P, is proper, as are all quotients P,,/H,,.

If P is an iteration of length § with cf(6) > w, and if all quotients Pg/H, (for a <

(3.31) B < o) are forced to be proper, then the direct limit Py is proper, as are all quotients
Ps/H,.

If 6 is a successor, then our inductive claim easily follows from the inductive assumption together
with (2?).

Let 6 be a limit of countable cofinality, say 6 = sup,d,. Define an iteration P’ of length w with
Q, = Ps . /Hs,. (Each Q) is proper, by inductive assumption.) There is a natural forcing equivalence
between PSS and P,$3, the full CS limit of P’.

Let N < H(y*) contain P, Ps, P’, M, PM. Let p € Ps N N. Without loss of generality p € Pﬁen. So below
p we can identify P; with P$® and hence with P/S®; now apply (22).

The case of uncountable cofinality is similar, using (??) instead. O

Recall the definition of =, and C from Definition ??, the notion of (quick) interpretation Z* (of a name
Z of a code for a null set) and the definition of local preservation of randoms from Definition ??. Recall
that we have seen in Corollaries ?? and ??:

Lemma 3.32. o If QM is an ultralaver forcing in M and r a real, then there is an ultralaver forcing
0 over QM locally preserving randomness of r over M.
o If QM is a Janus forcing in M and r a real, then there is a Janus forcing Q over QM locally
preserving randomness of r over M.

We will prove the following preservation theorem:

Lemma 3.33. Let P be an almost CS iteration (of length &) over PM, r random over M, and p € PY.
Assume that each P, forces that Q, locally preserves randomness of r over M{HM]. Then there is some
q < pin P, forcing that r is random over M[HM].

What we will actually need is the following variant:
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Lemma 3.34. Assume that PM is in M a topped almost CS iteration of length &, and we already have some
topped partial CS iteration P over PMayq of length ay € M N &. Let r be a P,,-name of a random real
over M [H%]. Assume that we extend P to length & as an almost CS itemtiorE-I using forcings Q. which

locally preserve the randomness of r over M, witnessed by a sequence (DkQ‘/’W Yecw- Let p € PM. Then we can
find a q < p in P, forcing that r is random over M[H].

Actually, we will only prove the two previous lemmas under the following additional assumption (which
is enough for our application, and saves some unpleasant work). This additional assumption is not really
necessary; without it, we could use the method of [?] for the proof.

Assumption 3.35. e For each @ € M N g, (PY forces that) Q¥ is either triviaﬁ or adds a new w-
sequence of ordinals. Note that in the latter case we can assume without loss of generality that
MNhew D,?‘A’d = 0 (and, of course, that the D,?‘A’d are decreasing).
e Moreover, we assume that already in M there is a set T C & such that P, forces: Q, is trivial iff
a € T. (So whether Q, is trivial or not does not depend on the generic filter below ¢, it is already
decided in the ground model.)

The result will follow as a special case of the following lemma, which we prove by induction on £.
(Note that this is a refined version of the proof of Lemma ?? and similar to the proof of the preservation
theorem in [?, 5.13].)

Definition 3.36. Under the assumptions of Lemma ?? and Assumption ??, let Z be a Ps-name, oy < @ < 0,
and let p = (pk)k€w be a sequence of P,-names of conditions in Ps/H,. Let Z* be a P,-name.

We say that (jp, Z*) is a quick interpretation of Z if p interprets Z as Z* (i.e., P, forces that p* forces
Z 1k = Z* [k for all k), and moreover:

Letting 8 > « be minimal with ng nontrivial (if such g exists): Pg forces that the sequence
(P*(B))kew is quick in Qg’, ie., pp) e Dfﬁ for all k.
It is easy to see that:
(3.37) For every name Z there is a quick interpretation (p, Z*).

Lemma 3.38. Under the same assumptions as above, let 3, 5, & be as in (??) (so in particular we have
0 <B<s<Le).
Assume that
ceaeMnS(=MnB)and a > ap (soa <),
e peMisaPY-name ofa Pg"[—condition,
e ZeMisa Pé”-name of a code for null set,
e Z* € M is a PM-name of a code for a null set,
o PM forces: p = (p")ew € M is a quick sequence in Pg”/Hé” interpreting Z as Z* (as in Defini-
tion ??),
PM forces: if pta € HM, then p° < p,
e g€ P, forces pla € HY,
e ¢ forces that r is random over M [Hé” 1, so in particular there is (in V) a P,-name ¢y below q for
the minimal c with Z* C, r.

Then there is a condition q* € Pg, extending q, and forcing the following:
e pc HY,
e ris random over M[HY),
o L.

We actually claim a slightly stronger version, where instead of Z* and Z we have finitely many codes
for null sets and names of codes for null sets, respectively. We will use this stronger claim as inductive
assumption, but for notational simplicity we only prove the weaker version; it is easy to see that the weaker
version implies the stronger version.

31of course our official definition of almost CS iteration assumes that we start the construction at 0, so we modify this definition
in the obvious way.
32More specifically, QM = {0).



Paper Sh:969, version 2011-12-27_10. See https://shelah.logic.at/papers/969/ for possible updates.

32 MARTIN GOLDSTERN, JAKOB KELLNER, SAHARON SHELAH, AND WOLFGANG WOHOFSKY

Proof. The nontrivial successor case: 3=y +1¢e M.

If ny” is trivial, there is nothing to do.

Now let yg > @ be minimal with Q% nontrivial. We will distinguish two cases: y = yp and y > .

Consider first the case that y = yo. Work in V[H,] where g € H,. Note that M[H}'] = M[H}']. So r is
random over M[H}'], and (p*(y))iew quickly interprets Z as Z* in Q. Now let g* I'y = ¢, and use the fact
that Q, locally preserves randomness to find ¢*(y) < P°(y).

Next consider the case that ny” isnontrivial and y > yp+1. Again work in V[H, ]. Let k* be maximal with
p* Iy € H)!. (This k* exists, since the sequence (p*)re, Was quick, so there is even a k with p* [(yo + 1) ¢
H% +1-) Consider Z as a Q’y” -name, and (using (??)) find a quick interpretation Z’ of Z witnessed by a
sequence starting with p* (). In M[H}'], Z' is now a P}/ /H)-name. Clearly, the sequence (p* 'y )ie, is a
quick sequence interpreting Z’ as Z*. (Use the fact that p* |y forces k* > k.)

Using the induction hypothesis, we can first extend ¢ to a condition ¢’ € P, and then (again by our
assumption that Q,, locally preserves randomness) to a condition g* € P,,j.

The nontrivial limit case: M N (3 unbounded in B, i.e., 8 = B. (This deals with cases (4) and (5) in
Definition ??. In case (4) we have 8 € M, i.e., 8 = §;in case (5) we have 8 ¢ M and 8 < §.)

Let @ = 09 < 6 < --- be a sequence of M-ordinals cofinal in M N§" = M N 6. We may assumeF_?] that
each O} is nontrivial.

Let (Z,)new be a list of all Pg” -names in M of codes for null sets (starting with our given null set Z = Z;).
Let (E,)qe enumerate all open dense sets of Pé?” from M, without loss of generality{ﬂ we can assume that:

(3.39) E, decides ZyIn, ..., Z,n.

We write p’é for pk , and Zy for Z*; as mentioned above, Z = Z.
By induction on n we can now find a sequence p, = (Plf,)kew and Pg’n’ -names Z;, fori € {0,...,n}
satisfying the following:
(1) Pg‘;’ forces that p < p* | whenever p*_| € Pg”/H{’s‘n”.
(2) Ps, forces that pj) € E,. (Clearly E, N P} /H}" is a dense set.)
(3) ppeMisa ng-name for a quick sequence interpreting (Zo, . . ., Z,) as (Zou, . . . » Zn.) (in Pg”/Hé‘f),
s0Z,isa Pg’n’-name of a code for a null set, for0 <i < n.

Note that this implies that the sequence ( pﬁ_l 16,) is (forced to be) a quick sequence interpreting (Zo , - - - s Zn—1.)
as (Zon-1»---»Zn-1n-1) -
Using the induction hypothesis, we now define a sequence (g,).e., of conditions g, € Ps, and a sequence
(cn)new (Where ¢, is a Ps,-name) such that (for n > 0) g, extends g,-; and forces the following:
o p°_ 16, € H.
e Therefore, p¥ < pg_l.
e ris random over M[Hé‘f].
e Let ¢, be the least ¢ such that Z, ,, C, r.
® ZinCerfori=0,....,n—1.
Now let g = U, qn € Pg,s. As in Lemma ?? it is easy to see that g € P(%,en C Ps. Moreover, by (??) we
get that g forces that Z; = lim, Z;,. Since each set C., := {x : x C. r} is closed, this implies that g forces
Z; C, r,in particular Z = Zy C, r.
The trivial cases: In all other cases, M N 3 is bounded in B, so we already dealt with everything at stage
Bo = sup(B N M). Note that 6, and o used at stage By are the same as the current ¢" and 6. O

4. THE FORCING CONSTRUCTION

In this section we describe a o-closed “preparatory” forcing notion R; the generic filter will define a
“generic” forcing iteration P, so elements of R will be approximations to such an iteration. In Section ??
we will show that the forcing R + P,,, forces BC and dBC.

From now on, we assume CH in the ground model.

331f from some 7y on all QQ” are trivial, then Pg” = Py , so by induction there is nothing to do. If Qf‘{’ itself is trivial, then we let

dp = min{{ : Qg” nontrivial} instead.

34well, if we just enumerate a basis of the open sets instead of all of them. ..
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4.A. Alternating iterations, canonical embeddings and the preparatory forcing R. The preparatory
forcing R will consist of pairs (M, P), where M is a countable model and P € M is an iteration of ultralaver
and Janus forcings.

Definition 4.1. An alternating iteratioﬂ is a topped partial CS iteration P of length w, satisfying the
following:
e Each P, is properm
e For a even, either both Q, and Q,.; are (forced by the empty condition to be) trivial or P,
forces that Q, is an ultralaver forcing adding the generic real ., and P, forces that Q. is a
Janus forcing based on £ (where £* is defined from £ as in Lemma ??).

We will call an even index an “ultralaver position” and an odd one a “Janus position”.

As in any partial CS iteration, each P; for cf(d) > w (and in particular P,,) is a direct limit.

Recall that in Definition ?? we have defined the notion “P¥ canonically embeds into P” for nice candi-
dates M and iterations P € V and PM € M. Since our iterations now have length w,, this means that the
canonical embedding works up to and includinﬂ ws.

In the following, we will use pairs x = (M*, P¥) as conditions in a forcing, where P* is an alternating
iteration in the nice candidate M*. We will adapt our notation accordingly: Instead of writing M, PM, PM
ny (the induced filter), Q(’y , etc., we will write M~, P~, P, H;, Q) etc. Instead of “P* canonically embeds
into P” we will sany] “x canonically embeds into P or “(M*, P*) canonically embeds into P (which is a
more exact notation anyway, since the test whether the embedding is M*-complete uses both M* and P~,
not just P¥).

The following rephrases Definition ?? of a canonical embedding in our new notation, taking into account
that:

Lp: is an M*-complete subforcing of L iff D extends D*

(see Lemma ?7?).

Fact 4.2. x = (M*, P*) canonically embeds into P, if (inductively) for all 8 € wy N M* U {w-} the following
holds:

e Letg = @+1 for @ even (i.e., an ultralaver position). Then either Q) is trivial (and Q, can be trivial
or not), or we require that (P,, forces that) the V[H,]-ultrafilter system D used for Q, extends the
M*[H:]-ultrafilter system D* used for Q.

e LetfB = a+ 1 for @ odd (i.e., a Janus position). Then either Q) is trivial, or we require that (P,
forces that) the Janus forcing Q, is an M*[H,]-complete subforcing of the Janus forcing Q,.

e Let B be a limit. Then the canonical extension ig : Py — Py is M*-complete. (The canonical
extension was defined in Definition ??.)

Fix a sufficiently large regular cardinal y* (see Remark ?7?).

Definition 4.3. The “preparatory forcing” R consists of pairs x = (M~, P¥) such that M* € H(y*) is a nice
candidate (containing w»), and P* is in M~ an alternating iteration (in particular topped and of length w,).
We define y to be stronger than x (in symbols: y <g x), if the following holds: either x =y, or:

e M* € M’ and M”* is countable in M".
e M’ thinks that (M*, P¥) canonically embeds into P”.

Note that this order on R is transitive.

We will sometimes write i, for the canonical embedding (in M”) from P}, to P,,,.

35See Section ?? for possible variants of this definition.

36This does not seem to be necessary, see Section ??, but it is easy to ensure and might be comforting to some of the readers
and/or authors.

3TFor definiteness, let us agree that the trivial forcing is the singleton {0}.

3 This is stronger than to require that the canonical embedding works for every @ € w> N M, even though both P, and P%z are
just direct limits; see footnote ??.

3Note the linguistic asymmetry here: A symmetric and more verbose variant would say “x = (M*, P*) canonically embeds into
(v, Py”.
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There are several variants of this definition which result in equivalent forcing notions. We will briefly
come back to this in Section ??.
The following is trivial by elementarity:

Fact 4.4. Assume that P is an alternating iteration (in V), that x = (M*, P¥) € R canonically embeds into
P, and that N < H(x*) contains x and P. Let y = (M”, P*) be the ord-collapse of (N, P). Then y € R and
y<x

This fact will be used, for example, to get from the following Lemma ?? to Corollary 2?.
Lemma 4.5. Given x € R, there is an alternating iteration P such that x canonically embeds into P.

Proof. For the proof, we use either of the partial CS constructions introduced in the previous chapter (i.e.,
an almost CS iteration or an almost FS iteration over P¥). The only thing we have to check is that we can
indeed choose Q, that satisfy the definition of an alternating iteration (i.e., as ultralaver or Janus forcings)
and such that Q) is M*-complete in Q,.
In the ultralaver case we arbitrarily extend D* to an ultrafilter system D, which is justified by Lemma ?2.
In the Janus case, we take Q, = Q) (this works by Fact ??). Alternatively, we could extend Q} to a
random forcing (using Lemma ??). O

Corollary 4.6. Given x € R and an HCON object b € H(x") (e.g., a real or an ordinal), there isay < x
such that b € M’.

What we will actually need are the following three variants:

Lemma 4.7. (1) Given x € R there is a o-centered alternating iteration P above x.

(2) Given a decreasing sequence ¥ = (X,)nee in R, there is an alternating iteration P such that each
x, embeds into P. Moreover, we can assume that for all Janus positions B, the Janus m forcing Qp
is (forced to be) the union of the Q;", and that for all limits a, the forcing P, is the almost FS limit
over (Xp)new (as in Corollary ??).

(3) Let x,y € R. Let j* be the transitive collapse of M*, and define j> analogously. Assume that
FIM*] = PIM?], that j*(P¥) = 7(P?) and that there are oy < a1 < wy such that:

e M*Nayg= M Nay(and thus j*Tag = j Tap).
o M* N [agy,wy) C [ap, ay).
o M” N [ag,wr) C [ag, wy).
Then there is an alternating iteration P such that both x and y canonically embed into it.

Proof. For (1), use an almost FS iteration. We only use the coordinates in M*, and use the (countable!)
Janus forcings Q, = Q for all Janus positions @ € M~ (see Fact ??). Ultralaver forcings are o-centered
anyway, so P, will be o-centered, by Lemma ??.

For (2), use the almost FS iteration over the sequence (x,),e, as in Corollary ??, and at Janus positions
a set Q, to be the union of the Q). (By Fact 22, Q. is M*-complete in Q,, so Corollary ?? can be applied

here.)
For (3), we again use an almost FS construction. This time we start with an almost FS construction over
xup to @y, and then continue with an almost FS construction over y. m]

As above, Fact ?? gives us the following consequences:

Corollary 4.8. (1) Ris o-closed. Hence R does not add new HCON objects (and in particular: no
new reals).
(2) R forces that the generic filter G C R is o-directed, i.e., for every countable subset B of G there is
ay € G stronger than each element of B.
(3) R forces CH. (Since we assume CHin'V.)
(4) Given a decreasing sequence X = (X,)new in R and any HCON object b € H(x"), thereisay € R
such that
o y < x,foralln,
e M’ contains b and the sequence X,

40t a1 Q;;” are trivial, then we may also set Qg to be the trivial forcing, which is formally not a Janus forcing.
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e for all Janus positions B, M” thinks that the Janus forcing Q;V; is (forced to be) the union of
the Q7
e for all limits a, M thinks that P, is the almost FS limiﬂ over (X,)new (Of (Pz)[ka).

Proof. Ttem (??) directly follows from Lemma ??(??) and Fact ??. Item (??) is a special case of (2?),
and (??) and (??) are trivial consequences of (??). |

Another consequence of Lemma ?? is:
Lemma 4.9. The forcing notion R is X,-cc.

Proof. Recall that we assume that V (and hence V[G]) satisfies CH.

Assume towards a contradiction that (x; : i < wy) is an antichain. Using CH we may without loss of
generality assume that for each i € w, the transitive collapse of (M*, P¥) is the same. Set L; := M¥ N w;.
Using the A-lemma we find some uncountable / C w, such that the L; for i € I form a A-system with root L.
Set ag = sup(L) + 3. Moreover, we may assume sup(L;) < min(L; \ ap) for all i < j.

Now take any 7, j € I, set x := x; and y = x;, and use Lemma ??(??). Finally, use Fact ?? to find
Z < X, Xj. O

4.B. The generic forcing P’. Let G be R-generic. Obviously G is a <g-directed system. Using the
canonical embeddings, we can construct in V[G] a direct limit P, of the directed system G: Formally,
we set

P, ={(x,p): xeGandpe P, },
and we set (y,q) < (x,p) if y <p x and g is (in y) stronger than i,,(p) (where i,y : P;, — PZ,Z is the
canonical embedding). Similarly, we define for each «

P, ={(x,p): xeG,aec M and p € P}

with the same order.
To summarize:

Definition 4.10. For o < w», the direct limit of the P, with x € G is called P,.

Formally, elements of P;, are defined as pairs (x, p). However, the x does not really contribute any
information. In particular:

Fact 4.11. (1) Assume that (x, p*) and (y, p”) are in P;Jz, that y < x, and that the canonical embedding
iy, Witnessing y < x maps p* to p*. Then (x, p*) =" (y, p*).

(2) (3,9)isin P, stronger than (x, p) iff for some (or equivalently: for any) z < x,y in G the canoni-
cally embedded g is in P, stronger than the canonically embedded p. The same holds if “stronger
than” is replaced by “compatible with” or by “incompatible with”.

(3) If (x, p) € P, and if y is such that M* = M* and P’ [a = P*|a, then (y, p) =* (x, p).

In the following, we will therefore often abuse notation and just write p instead of (x, p) for an element
of P,.

We can define a natural restriction map from P, to P, by mapping (x, p) to (x, pla). Note that by the
fact above, we can assume without loss of generality that « € M*. More exactly: Thereisay < xin G
such that @ € M” (according to Corollary ??). Then in P;,) we have (x, p) =* (3, p).

Fact 4.12. The following is forced by R:
. Pé is completely embedded into P, for 8 < @ < w, (witnessed by the natural restriction map).
o If x € G, then P}, is M*-completely embedded into P,, for < w, (by the identity map p — (x, p)).
o If cf(a) > w, then P/, is the union of the P;g for B < a.
e By definition, P/, is a subset of V.

G will always denote an R-generic filter, while the P;, -generic filter over V[G] will be denoted by H,,
(and the induced P/,-generic by H)). Recall that for each x € G, the map p — (x, p) is an M*-complete
embedding of P;, into P;, (and of P} into P,). This way H;, C P, induces an M*-generic filter H;, C P;.

So x € R forces that P, is approximated by P;. In particular we get:

4 constructed in Lemma 2?2
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Lemma 4.13. Assume that x € R, that @« < w; in M*, that p € P, that ¢(x) is a first order formula
of the language {€} with one free variable x and that t is a P}-name in M*. Then M* | p \px (1) iff
x kg (x, p) ke, MY[H] E ¢(F[H,)).

Proof. “=" 1is clear. So assume that ¢(7) is not forced in M~*. Then some g <p: p forces the negation. Now
x forces that (x, g¢) < (x, p) in P/,; but the conditions (x, p) and (x, g) force contradictory statements. |

4.C. The inductive proof of ccc. We will now prove by induction on « that P/, is (forced to be) ccc and
(equivalent to) an alternating iteration. Once we know this, we can prove Lemma ??, which easily implies
all the lemmas in this section. So in particular these lemmas will only be needed to prove ccc and not for
anything else (and they will probably not aid the understanding of the construction).

In this section, we try to stick to the following notation: R-names are denoted with a tilde underneath
(e.g., 7), while P-names or P/-names (for any @ < w,) are denoted with a dot accent (e.g., 7). We use
both accents when we deal with R-names for P/,-names (e.g., 7).

We first prove a few lemmas that are easy generalizations of the following straightforward observation:

Assume that x Ik (g, p) € P,,. In particular, x I z € G. We first strengthen x to some x; that decides
zand p to be z* and p*. Then x; <* z* (the order <* is defined on page 2??), so we can further strengthen
x; to some y < z*. By definition, this means that z* is canonically embedded into P”; so (by Fact ??)
the P% -condition p* can be interpreted as a P,-condition as well. So we end up with some y < x and a
P},-condition p* such that y g (z, p) =* (3, p*).

Since R is o-closed, we can immediately generalize this to countably many (R-names for) P’ -conditions:

Fact 4.14. Assume that x g p, € P, for all n € w. Then there is a y < x and there are p, € P, such that
yr pn =" p, foralln € w.

Recall that more formally we should write: x kg (z,, g,,) eP,;andy kg (2, I]n) =" (y, py)-
We will need a variant of the previous fact:

Lemma 4.15. Assume that P,; is forced to be ccc, and assume that x forces (in R) that i, is a P;-name for
a real (or an HCON object) for every n € w. Then there is a’y < x and there are P};—names iy in MY such
that y Irg (Il—p;3 in = i,) for all n.

(Of course, we mean: 7, is evaluated by G = Hj,, while 7 is evaluated by Hg.)

Proof. The proof is an obvious consequence of the previous fact, since names of reals in a ccc forcing can
be viewed as a countable sequence of conditions.

In more detail: For notational simplicity assume all 7, are names for elements of 2. Working in V, we
can find for each n, m € w names for a maximal antichain A,,, and for a function f,,, : A,,» — 2 such that
x forces that (P;, forces that) 7,,(m) = f,,,m(a) for the unique a € 4, N H['f. Since P;g is ccc, each A, is
countable, and since R is o-closed, it is forced that the sequence Z = (4,1, fum)nmew 1510 V.

In V, we strengthen x to x; to decide Z to be some Z*. We can also assume that * € M (see
Corollary ??). Each A}, consists of countably many a such that x; forces a € P/'g. Using Fact ?? iteratively
(and again the fact that R is o-closed) we get some y < x; such that each such a is actually an element of
P,)B'. So in M?, we can use (A, ,,, [ m)nmew O CONstruct Pz-names 7, in the obvious way.

Now assume that y € G and that Hé is Pé—generic over V[G]. Fixany a € A}, = A, m. Since a € Pz, we
geta € Hé iffa € Hj. So there is a unique element a ofA:’mﬁHg, and i,(m) = fy (@) = fum(@) = ix(m). O

n,m
We will also need the following modification:
Lemma 4.16. (Same assumptions as in the previous lemma.) In V[G][H[’_;], let Qg be the union of QE[HE]
forallz € G. In'V, assume that x forces that each i, is a name for an element of Qg. Then thereisay < x
and there is in M” a sequence (i},)nee Of Plyg-names for elements of Q; such that y forces i, = i, for all n.
So the difference to the previous lemma is: We additionally assume that 7, is in (J,cg Qf;, and we
additionally get that 7, is a name for an element of QZ,

Proof. Assume x € G and work in V[G]. Fix n. P’ﬁ forces that there is some y, € G and some Pﬁ"-name
T, € M’ of an element of an such that 7, (evaluated by H é) is the same as 7, (evaluated by HZ”). Since
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we assume that Pé is ccc, we can find a countable set ¥,, C G of the possible y,, i.e., the empty condition
of P,Zf forces y, € Y,,. (As R is o-closed and ¥, C R C V, we must have ¥,, € V.)

So in V, there is (for each n) an R-name Y, for this countable set. Since R is o-closed, we can find
some zo < x deciding each Y, to be some countable set Y, C R. In particular, for each y € ¥, we know
that zp Fr y € G, i.e., 7o <* y; so using once again that R is o-closed we can find some z stronger than zg
and all the y € | J,c, Y. Let X contain all 7 € M” such that for some y € | J,c, ¥, Tis a Pz—name for a
Qz—element. Since z < y,eacht € X is actuallyﬁa Pg—name for an element of Qﬁ

So X is a set of Pé-names for Qg-elements; we can assume that X € M*. Also, z forces that 7, € X for
all n. Using Lemma ??, we can additionally assume that there are names Pé—name i in M* such that z
forces that i, = i, is forced for each n. By Lemma ??, we know that M* thinks that Pz forces that i, € X.
Therefore 7, is a Pg-name for a Q-element. ]

We now prove by induction on « that P/, is equivalent to a ccc alternating iteration:

Lemma 4.17. The following holds in V]G] for a < wy:

(1) P, is equivalent to an alternating iteration. More formally: There is an iteration (Pg, Qg)s<q
with limit P, that satisfies the definition of alternating iteration (up to «), and there is a naturally
defined dense embedding j, : P, — P, such that for B < a we have jg C j,, and the embeddings
commute with the restrictions@ Each Q, is the union of all O}, with x € G. For x € G witha € M~,
the function i, : PL — P, that maps p to jo(x, p) is the canonical M*-complete embedding.

(2) In particular, a P,,-generic filter H,, can be translated into a P,-generic filter which we call H,
(and vice versa).

(3) P, has a dense subset of size Ny.

(4) P, is ccc.

(5) P, forces CH.

Proof. a = 0 is trivial (since Py and P both are trivial: Py is a singleton, and Py, consists of pairwise
compatible elements).

So assume that all items hold for all 8 < .

Proof of (??).

Ultralaver successor case: Let @ = 8+ 1 with § an ultralaver position. Let Hg be Pg-generic over V[G].
Work in V[G][Hg]. By induction, for every x € G the canonical embedding jg defines a Pg-generic filter
over M™* called Hg.

Definition of Qg (and thus of P,): In M"[Hg], the forcing notion Qg., is defined as L. for some system
of ultrafilters D* in MX[H/’;]. Fix some s € w*®. If y < x in G, then D), extends D?. Let D; be the union
of all Dy with x € G. So D; is a proper filter. It is even an ultrafilter: Let r be a Pg-name for a real. Using
Lemma ??, we know that there is some y € G and some P[yg-name 1’ € M” such that (in V[G][Hp]) we have
[~"[Hg] =r.Sore M)’[Hz], hence either r or its complement is in D’ and therefore in D;. So all filters in
the family D = (D,)c.< are ultrafilters.

Now work again in V[G]. We set Qg to be the Pg-name for L. (Note that Py forces that Qg literally is
the union of the QslH,] for x € G, again by Lemma ??.)

Definition of j,: Let (x,p)beinP,. If p € Pg, then we set j,(x, p) = jg(x, p), i.e., jo will extend jg. If
p = (plB, p(B)) is in P, but not in PE, we set jo(x, p) = (1, 5) € Pg * Qg where r = jg(x, p[fB) and s is the
(P,-name for) p(B) as evaluated in M"[Hg]. From Qg = U, QE[H;;] we conclude that this embedding is
dense.

The canonical embedding: By induction we know that i, g which maps p € PE to jg(x, p) is (the restric-
tion to PZ; of) the canonical embedding of x into P,,. So we have to extend the canonical embedding to
ixa : Py — P,. By definition of “canonical embedding”, i, , maps p € P;, to the pair (i,s(p 1), p(B)). This
is the same as j,(x, p). We already know that D7 is (forced to be) an MX[HE]-ultraﬁlter that is extended
by D;.

“2Here we use two consequences of z < y: Every Pz—name in M” can be canonically interpreted as a Pé—name in M*, and Q/‘; is
(forced to be) a subset of Q[Zf'

Ble., jpx pIB) = jolx, pIB) = jalx, p)IB.
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Janus successor case: This is similar, but simpler than the previous case: Here, Qg is just defined as
the union of all Q;[Hg] for x € G. We will show below that this union satisfies the ccc; just as in Fact ??,
it is then easy to see that this union is again a Janus forcing.

In particular, Qg consists of hereditarily countable objects (since it is the union of Janus forcings, which
by definition consist of hereditarily countable objects). So since Py forces CH, Qg is forced to have size N;.
Also note that since all Janus forcings involved are separative, the union (which is a limit of an incom-
patibility-preserving directed system) is trivially separative as well.

Limit case: Let  be a limit ordinal.

Definition of P, and j,: First we define j, : P, — PSS: For each (x, p) € P/, let j,(x,p) € PSS be
the union of all jz(x, p[B) (for § € a N M¥). (Note that 8; < S, implies that j (x, pI/5;) is a restriction of
Jg,(x, p1B2), so this union is indeed an element of P$S.)

P, is the set of all g A p, where p € j,[P,], g € Pg for some 8 < @, and g < p|S.

It is easy to check that P, actually is a partial countable support limit, and that j, is dense. We will
show below that P,, satisfies the ccc, so in particular it is proper.

The canonical embedding: To see that iy, is the (restriction of the) canonical embedding, we just have
to check that i,, is M*-complete. This is the case since P, is the direct limit of all P, for y € G (without
loss of generality y < x), and each i, , is M*-complete (see Fact 2?).

Proof of (2?).

Recall that we assume CH in the ground model.

The successor case, @ = § + 1, follows easily from (2?)—(2??) for Ps (since Pg forces that Qg has size
2N = N = N}/)

If cf(@) > w, then Py = (g, Pg, s0 the proof is easy.

So let cf(a) = w. The following straightforward argument works for any ccc partial CS iteration where
all iterands Qg are of size < N;.

For notational simplicity we assume Irp, Qg C w; for all B < a (this is justified by inductive assump-
tion (??)). By induction, we can assume that for all § < a there is a dense P} C P; of size N and that every
P; is ccc. For each p € P, and all 8 € dom(p) we can find a maximal antichain Ag c P; such that each
element a € Ag decides the value of p(B), say a Irp, p(B) = yg (a). Writinﬂ p~qif p<qandgq < p, the
map p — (A? ,yg)ﬂedom(p) is 1-1 modulo ~. Since each Az is countable, there are only 8| many possible
values, therefore there are only N; many ~-equivalence classes. Any set of representatives will be dense.

Alternatively, we can prove (??) directly for P/,. I.e., we can find a <*-dense subset P” C P/, of
cardinality N¥;. Note that a conditions (x, p) € P/, essentially depends only on p (cf. Fact ??). More
specifically, given (x, p) we can “transitivelyﬁ] collapse x above ”, resulting in a ="-equivalent condition
(x’, p'). Since |a| = Ny, there are only Nf‘” = 2% many such candidates x” and since each x’ is countable
and p’ € x’, there are only 2% many pairs (x’, p’).

Proof of (??).

Ultralaver successor case: Let @ = 4+ 1 with § an ultralaver position. We already know that P, =
P + Qg where Qg is an ultralaver forcing, which in particular is ccc, so by induction Py, is ccc.

Janus successor case: As above it suffices to show that Qg, the union of the Janus forcings QE [Hg] for
x € G, is (forced to be) ccc.

Assume towards a contradiction that this is not the case, i.e., that we have an uncountable antichain
in Q. We already know that Qs has size N; and therefore the uncountable antichain has size ;. So,
working in V, we assume towards a contradiction that

4.18) Xo IFr po IFp, {@; : i € w} is a maximal (uncountable) antichain in Qg.

#Since < is separative, p ~ q iff p =* g, but this fact is not used here.

45In more detail: We define a function [ M* — V by induction as follows: If 8 € M* Na + 1 or if B = wy, then f(B) = .
Otherwise, if 8 € M* N Ord, then f(B) is the smallest ordinal above f[B]. If a € M* \ Ord, then f(a) = {f(b) : b € an M*}. Ttis
easy to see that f is an isomorphism from M~ to MY = fIM~*] and that M¥ is a candidate. Moreover, the ordinals that occur in M*
are subsets of @ + w; together with the interval [w2, w2 + w1]; i.e., there are | many ordinals that can possibly occur in M~ , and
therefore there are 250 many possible such candidates. Moreover, setting p’ := f(p), it is easy to check that (x, p) =" (x, p) (similarly
to Fact ??).
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We construct by induction on n € w a decreasing sequence of conditions such that x,,; satisfies the
following:

(i) Forall i € wy N M* there is (in M™+') a PE”*‘ -name & for a QE”” -condition such that

. .k
Xn+1 FR po Fp, 4i = a; .

Why can we get that? Just use Lemma ??.
(1) If risin M™* a Pg"-name for an element of Q7", then there is k*(7) € w; such that

Xpr1 bR po ke, (Fi<K'(7)) &illp, T
Also, all these k*(7) are in M™*!.
Why can we get that? First note that x, I pg I (i € wy) & || 7. Since Py is ccc, x, forces that there
is some bound k(7) for i. So it suffices that x,,; determines k(7) to be k*(7) (for all the countably
many 7).
Set 6* == w; N Upew M™. By Corollary ??(??), there is some y such that
e y<x,forallnew,
b (xn)new and (a:f)ieé* are in My,
e (M” thinks that) Pz forces that Q;; is the union of Q, i.e., as a formula: M’ E P; - Q; =
Unew Q;”‘
Let G be R-generic (over V) containing y, and let Hg be Pg-generic (over V[G]) containing po.
Set A* = {al’.‘[H};] : i < 6*}. Note that A* is in M"[H;]. We claim

(4.19) A* C Q};[HZ] is predense.

Pick any ¢ € Q; So there is some 7 € w and some T which is in M a PE”-name of a Q;”-condition, such
that g = T[H;;"]. By (ii) above, x,.; and therefore y forces (in R) that for some i < k*(7) (and therefore
some i < ¢") the condition pg forces the following (in Pg):
The conditions ¢; and 7 are compatible in Qg. Also, ¢; = a; and 7 both are in Qyﬁ, and Q;
is an incompatibility-preserving subforcing of Qg. Therefore M” [Hg] thinks that &} and 7
are compatible.
This proves (??).
Since Q};[Hz] is M»"[Hg]—complete in Qg[Hp), and since A* € M?[H"], this implies (as a:.‘[HZ] = 4[G *
Hpg] for all i < 6*) that {¢;[G = Hg] : i < ¢"} already is predense, a contradiction to (??).
Limit case: We work with P/, which by definition only contains HCON objects.
Assume towards a contradiction that P/, has an uncountable antichain. We already know that P/, has a
dense subset of size 8; (modulo =*), so the antichain has size N;.
Again, work in V. We assume towards a contradiction that

4.20) Xo kg {g; : i € w1} is a maximal (uncountable) antichain in P,,.

So each g; is an R-name for an HCON object (x, p) in V.

To lighten the notation we will abbreviate elements (x, p) € P/, by p; this is justified by Fact ??.

Fix any HCON object p and 8 < a. We will now define the (R = Pé)—names i(B, p) and (B, p): Let G
be R-generic and containing x(, and H/; be P/’g-generic. Let R be the quotient P, /H[;. If p is not in R, set
iB,p) = (B, p) = 0. Otherwise, let i(3, p) be the minimal i such that g; € R and g; and p are compatible
(in R), and set i(8, p) € R to be a witness of this compatibility. Since P}, is (forced to be) ccc, we can
find (in V[G]) a countable set X*(8, p) € w; containing all possibilities for i(5, p) and similarly X"(85, p)
consisting of HCON objects for (8, p).

To summarize: For every 8 < a and every HCON object p, we can define (in V) the R-names X*(5, p)
and X" (B, p) such that

(4.21) Xo g py (P €P,/Hy — (Jie X' B, p)(@re X (B.p)r<v,m; p Qi).

Similarly to the Janus successor case, we define by induction on n € w a decreasing sequence of con-
ditions such that x,,; satisfies the following: For all 8 € @ N M* and p € Py, x,.1 decides X'(B, p) and
X"(B, p) to be some X"“(B, p) and X" (B, p). For all i € w; N M™, x,,1 decides g; to be some a; € Pyt
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Moreover, each such X** and X" is in M*+', and every r € X"(B, p) is in Py*'. (For this, we just use
Fact ?? and Lemma ??.)
Set 0" = w1 N Upew M™, and set A™ = {a} : i € 6"}. By Corollary ??(??), there is some y such that

4.22) y<x,forallne w,
(4.23) X = (X)new and A™ are in M”,
4.24) (M? thinks that) P}, is defined as the almost FS limit over X.

We claim that y forces
(4.25) A* is predense in P},

Then P, is M”-completely embedded into P/, and since A* € M” (and since g; = a; for all i € 6*) we get
that {g; : i € 6"} is predense, a contradiction to (??).

So it remains to show (??). Let G be R-generic containing y. Let r be a condition in P}; we will find
i < 6" such that r is compatible with a;. Since P}, is the almost FS limit over %, there is some n € w and
B € a N M* such that r has the form g A p with pin P}, g € Pz and g < p|p.

Now let H,,; be P[’g-generic containing g. Work in V[G] [Hé]. Since g < p[B, we get p € P;/Hé. Let *
be the evaluation by G = H[; of i(8, p), and let r* be the evaluation of i, p). Note that ¢* < §* and r* € P},
So we know that a;. and p are compatible in P, /H[; witnessed by r*. Find ¢’ € H[’; forcing r* <p, /Hj P> a..
We may find ¢’ < g. Now ¢’ A r* witnesses that ¢ A p and a’. are compatible in P;,.

To summarize: The crucial point in proving the ccc is that “densely” we choose (a variant of) a finite
support iteration, see (??). Still, it is a bit surprising that we get the ccc, since we can also argue that densely
we use (a variant of) a countable support iteration. But this does not prevent the ccc, it only prevents the
generic iteration from having direct limits in stages of countable coﬁnality@

Proof of (??).
This follows from (??) and (??). |

4.D. The generic alternating iteration P. In Lemma ?? we have seen:

Corollary 4.26. Let G be R-generic. Then we can construcﬂ (in V[G]) an alternating iteration P such
that the following holds:
e Pisccc
e If x € G, then x canonically embeds into P. (In particular, a P,,-generic filter H,, induces a
Py, -generic filter over M*, called H,,.)
o Each Q, is the union of all Q3[H;] with x € G.
o P, is equivalent to the direct limit P,,, of G: There is a dense embedding j : P,, — P,,, and for
each x € G the function p — j(x, p) is the canonical embedding.

Lemma 4.27. Let x € R. Then R forces the following: x € G iff x canonically embeds into P.

Proof. If x € G, then we already know that x canonically embeds into P.

So assume (towards a contradiction) that y forces that x embeds, but y + x ¢ G. Work in V[G] where
y € G. Both x (by assumption) and y € G canonically embed into P. Let N be an elementary submodel
of H"161(y*) containing x,y,P; let z = (M?, P%) be the ord-collapse of (N,P). Then z € V (as R is o-
closed) and z € R, and (by elementarity) z < x,y. This shows that x |[g y, i.e., y cannot force x ¢ G, a
contradiction. O

Using ccc, we can now prove a lemma that is in fact stronger than the lemmas in the previous section ??:

Lemma 4.28. The following is forced by R: Let N < H"'C)(y*) be countable, and let y be the ord-collapse
of (N,P). Theny € G. Moreover, if x € GN N, theny < x.

46 Assume that x forces that P/, is the union of the P; for B < a; then we can find a stronger y that uses an almost CS iteration
over x. This almost CS iteration contains a condition p with unbounded support. (Take any condition in the generic part of the almost
CS limit; if this condition has bounded domain, we can extend it to have unbounded domain, see Definition ??.) Now p will be in P/,
and have unbounded domain.

4Tin an “absolute way”: Given G, we first define PL)Z to be the direct limit of G, and then inductively construct the P,’s from P} .
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Proof. Work in V[G] with x € G. Pick an elementary submodel N containing x and P. Let y be the ord-
collapse of (N, P) via a collapsing map k. As above, it is clear that y € R and y < x. To show y € G, it
is (by the previous lemma) enough to show that y canonically embeds. We claim that k~! is the canonical
embedding of y into P. The crucial point is to show M*-completeness. Let B € M” be a maximal antichain
of PLZ, say B = k(A) where A € N is a maximal antichain of P,,. So (by ccc) A is countable, hence A C N.
So not only A = k' (B) but even A = k~!'[B]. Hence k™' is an M”-complete embedding. O

Remark 4.29. We used the ccc of P, to prove Lemma ??; this use was essential in the sense that we can
in turn easily prove the ccc of P,,, if we assume that Lemma ?? holds. In fact Lemma ?? easily implies all
other lemmas in section ?? as well.

5. THe proor oF BC+dBC

We ﬁrleg] prove that no uncountable X in V will be smz or sm in the final extension V[G * H]. Then we
show how to modify the argument to work for all uncountable sets in V[G = H].

5.A. BC+dBC for ground model sets.
Lemma 5.1. Let X € V be an uncountable set of reals. Then R = P,,, forces that X is not smz.

Proof.

(1) Fix any even a < w; (i.e., an ultralaver position) in our iteration. The ultralaver forcing Q, adds a
(canonically defined code for a) closed null set £ constructed from the ultralaver real £,. (Recall
Corollary ??.) In the following, when we consider various ultralaver forcings Qq, Q.. O, we treat
F not as an actual name, but rather as a definition which depends on the forcing used.

(2) According to Theorem ??, it is enough to show that X + F is non-null in the R = P,,-extension, or
equivalently, in every R x Pg-extension (@ < 8 < w;). So assume towards a contradiction that there
isaf > a and an R * Pg-name Z of a (code for a) Borel null set such that some (x, p) € R x P,
forces that X + F C Z.

(3) Using the dense embedding j, : P, — P,,, we may replace (x, p) by a condition (x, p’) € R«P,, .
According to Fact ?? (recall that we now know that P, satisfies ccc) and Lemma ?? we can assume
that p’ is already a Pg-condition p* and that Z is (forced by x to be the same as) a Pj-name Z¥in
M*.

(4) We construct (in V) an iteration P in the following way:

(a) Up to a, we take an arbitrary alternating iteration into which x embeds. In particular, P, will
be proper and hence force that X is still uncountable.

(b) Let Q, be any ultralaver forcing (over Q) in case & € M*). So according to Corollary ??, we
know that Q, forces that X + F is not null.

Therefore we can pick (in V[H,.]) some i in X + F which is random over (the countable
model) M*[H 1, where H}, | is induced by Hpy1.

(c) In the rest of the construction, we preserve randomness of /- over MX[HZC] foreach < w,. We
can do this using an almost CS iteration over x where at each Janus position we use a random
version of Janus forcing and at each ultralaver position we use a suitable ultralaver forcing;
this is possible by Lemma ??. By Lemma ??, this iteration will preserve the randomness of 7.

(d) So we get P over x (with canonical embedding i,) and g <p., i(p*) such that g[8 forces (in
Pp) that 7 is random over M"[Hg], in particular that i+ ¢ Z*.

We now pick a countable N < H(y*) containing everything and ord-collapse (N, P) to y < x. (See
Fact ??.) Set X := X N M” (the image of X under the collapse). By elementarity, M” thinks that
(a)—(d) above holds for P’ and that X” is uncountable. Note that X* C X.

(5) This gives a contradiction in the obvious way: Let G be R-generic over V and contain y, and let Hg
be Ps-generic over V[G] and contain g[f. So My[H;] thinks that » ¢ Z* (which is absolute) and
that » = x + f for some x € X* C X and f € F (actually even in F as evaluated in M"[HZH]). So
in V[GI[Hpg], r is the sum of an element of X and an element of F. So (y,q) < (x, p’) forces that
r € X + F\ Z, a contradiction to (2). o

48Note that for this weak version, it would be enough to produce a generic iteration of length 2 only, i.e., Qg * Q;, where Qp is an
ultralaver forcing and Q; a corresponding Janus forcing.
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Of course, we need this result not just for ground model sets X, but for R * P,,,-names X = (&; : i € w;)
of uncountable sets. It is easy to see that it is enough to deal with R * Pg-names for (all) 8 < w;. So given
X, we can (in the proof) pick a such that X is actually an R % P,-name. We can try to repeat the same proof;
however, the problem is the following: When constructing P in (4), it is not clear how to simultaneously
make all the uncountably many names (;) into P-names in a sufficiently “absolute” way. In other words:
It is not clear how to end up with some M” and X” uncountable in M” such that it is guaranteed that X”
(evaluated in M”[H.,]) will be a subset of 2( (evaluated in V[G][H,]). We will solve this problem in the
next section by factoring R.

Let us now give the proof of the corresponding weak version of dBC:

Lemma 5.2. Let X € V be an uncountable set of reals. Then R = P,,, forces that X is not strongly meager.

Proof. The proof is parallel to the previous one:

(1) Fix any even a < w; (i.e., an ultralaver position) in our iteration. The Janus forcing Q.. adds a
(canonically defined code for a) null set Zy. (See Definition ?? and Fact 2?.)

(2) According to (??), it is enough to show that X + Zy = 2¢ in the R * P,,,-extension, or equivalently,
in every R * Pg-extension (¢ < 8 < wj). (For every real r, the statement r € X + Zv, ie.,
(Ax € X) x + r € Zy, is absolute.) So assume towards a contradiction that there is a 8 > @ and an
R * Pg-name j of a real such that some (x, p) € R = P,,, forces that i ¢ X + Zy.

(3) Again, we can assume that j-is a Pg-name *in M™*.

(4) We construct (in V) an iteration P in the following way:

(a) Up to a, we take an arbitrary alternating iteration into which x embeds. In particular, P, again
forces that X is still uncountable.
(bl) Let Q, be any ultralaver forcing (over Q). Then Q, forces that X is not thin (see Corol-
lary 2?).
(b2) Let Q,+1 be a countable Janus forcing. So Q41 forces X + Zy = 2%. (See Lemma ??.)
(c) We continue the iteration in a o-centered way. L.e., we use an almost FS iteration over x of ul-
tralaver forcings and countable Janus forcings, using trivial Q, for all { ¢ M*; see Lemma 2?.
(d) So Py still forces that X + Zy = 2, and in particular that /* € X + Zy. (Again by Lemma ??.)
Again, by collapsing some N as in the previous proof, we gety < x and X” C X.

(5) This again gives the obvious contradiction: Let G be R-generic over V and contain y, and let Hg

be Ps-generic over V[G] and contain p. So M” [H;] thinks that r = x + z for some x € X¥ C X and

7 € Zy (this time, Zy is evaluated in M—"[Hg]), contradicting (2). O

5.B. A factor lemma. We can restrict R to any @* < w, in the obvious way: Conditions are pairs x =
(M~*, P*) of nice candidates M~ (containing *) and alternating iterations P*, but now M~ thinks that P* has
length o (and not w;). We call this variant R [a*.

Note that all results of Section ?? about R are still true for R[a*. In particular, whenever G C Rla* is
generic, it will define a direct limit (which we call P’*), and an alternating iteration of length " (called P*);
again we will have that x € G iff x canonically embeds into P*.

There is a natural projection map from R (more exactly: from the dense subset of those x which satisfy
a* € M*) into Ra*, mapping x = (M*, P*) to x[a* = (M*, P*[a*). (It is obvious that this projection is
dense and preserves <.)

There is also a natural embedding ¢ from Rla* to R: We can just continue an alternating iteration of
length o by appending trivial forcings.

@ is complete: It preserves < and L. (Assume that z < ¢(x), ¢(y). Then z[a* < x,y.) Also, the projection
is a reduction: If y < x[e* in Rla", then let M* be a model containg both x and y. In M*, we can first
construct an alternating iteration of length a* over y (using almost FS over y, or almost CS — this does
not matter here). We then continue this iteration P using almost FS or almost CS over x. So x and y both
embed into P?, hence z = (M7, P?) < x, y.

So according to the general factor lemma of forcing theory, we know that R is forcing equivalent to
Rla* «= (R/RTa*), where R/R[a” is the quotient of R and Rla*, i.e., the (R[a*-name for the) set of x € R
which are compatible (in R) with all ¢(y) for y € G[a” (the generic filter for R[a*), or equivalently, the set
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of x € R such that x[a* € Gla*. So Lemma ?? (relativized to R [a*) implies:

5.3) R/RTe" is the set of x € R that canonically embed (up to @*) into P,-.

Setup. Fix some a* < w, of uncountable coﬁnality.@ Let Gla™ be Rla*-generic over V and work in
V* = VIGTa"]. Set P* = (Pg)g<q+, the generic alternating iteration added by R [a*. Let R* be the quotient
R/Rla*.

We claim that R* satisfies (in V*) all the properties that we proved in Section ?? for R (in V), with the

obvious modifications. In particular:

(A) R*is Ny-cc, since it is the quotient of an N;-cc forcing.

(B)o+ R* does not add new reals (and more generally, no new HCON objects), since it is the quotient of a
o-closed forcingF_ﬁ]

(C)o Let G* be R*-generic over V*. Then G* is R-generic over V, and therefore Corollary ?? holds for G*.
(Note that P, and then P, is constructed from G*.) Moreover, it is easy to seeErI that P starts with
P

(D)o+ In particular, we get a variant of Lemma ??: The following is forced by R*: Let N < H'IF1(y*) be
countable, and let y be the ord-collapse of (N, P). Then y € G*. Moreover: If x € G*N\N, then y < x.

We can use the last item to prove the R*-version of Fact ??:

Corollary 5.4. In V*, the following holds:
(1) Assume that x € R* forces that p € P,,. Then there isay < x and a p’ € P, such that y forces
P ="p.
(2) Assume that x € R* forces that i is a P,,-name of a real. Then there is a’y < x and a P,,,-name i’
such that y forces that i’ and i are equivalent as P, -names.

Proof. We only prove (??), the proof of (??) is similar.

Let G* contain x. In V[G*], pick an elementary submodel N containing x, p, P and let (M?, P%, p%) be
the ord-collapse of (N, P, p). Then z € G*. This whole situation is forced by some y < z < x € G*. So y
and p” is as required, where p” € P}, is the canonical image of p*. O

We also get the following analogue of Fact ??:

In V* we have: Let x € R*. Assume that P is an alternating iteration that extends P [a*
5.5 and that x = (M~, P¥) € R canonically embeds into P, and that N < H(y*) contains x
and P. Let y = (M”, P”) be the ord-collapse of (N, P). Theny € R* and y < x.
We now claim that R«P,,, forces BC+dBC. We know that R is forcing equivalent to R [a**R*. Obviously
we have
R#P,, =Rla" «R" « Py % Py,
(where P, ,, is the quotient of P,, and P,-). Note that P, is already determined by R [a", so R* * Py is
(forced by Rla* to be) a product R* X P, = P,- X R*.
But note that this is not the same as P, # R*, where we evaluate the definition of R* in the P,--extension
of V[Gla*]: We would get new candidates and therefore new conditions in R* after forcing with P,-. In
other words, we can not just argue as follows:

Wrong argument. R * P, is the same as (R[a” * Pg+) * (R* * Py ,,); so given an R * P,,,-name X of a
set of reals of size 8|, we can choose a* large enough so that X is an (R[a* * P,+)-name. Then, working in
the (R[a™ * P,-)-extension, we just apply Lemmas ?? and ??.

So what do we do instead? Assume that X = {& : i € w;}isan R * P,,-name for a set of reals of
size 81. So there is a B < ws such that X is added by R = Py (using N,-cc of R). In the R-extension,
P; is ccc, therefore we can assume that each & is a system of countably many countable antichains AT

49Probably the cofinality is completely irrelevant, but the picture is clearer this way.
0p i easy to see that R* is even o-closed, by “relativizing” the proof for R, but we will not need this.
Slpet P/’j be the direct limit of G [a* (for 8 < a*), and P;f the direct limit of G*. The function kg : P[’;‘ - P;f that maps (x, p) to

s

(¢(x), p) preserves < and L and is surjective modulo =*, see Fact ??(??). So it is clear that defining P* by induction from Pfuz yields

the same result as defining P from P,,.
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of Pg, together with functions f" : A7 — {0, 1}. For the following argument, we prefer to work with the
equivalent Pé instead of Pg. We can assume that each of the sequences B; = (A7, fi’")mew is an element
of V (since Pé is a subset of V and since R is o-closed). So each B; is decided by a maximal antichain Z;
of R. Since R is N;-cc, these N; many antichains all are contained in some R [a* with o > .

So in the R[a™-extension V* we have the following situation: Each ¢; is a very “absoluteF_?f’ R* % Py
name (or equivalently, R* X P,.-name), in fact they are already determined by antichains that are in P,- and
do not depend on R*. So we can interpret them as P,--names.

Note that:

(5.6) The ¢&; are forced (by R* = P,-) to be pairwise different, and therefore already by P,-.

Now we are finally ready to prove that R » P, forces that every uncountable X is neither smz nor sm. It
is enough to show that for every name X of an uncountable set of reals of size 8 the forcing R = P, forces
that X is neither smz nor sm. For the rest of the proof we fix such a name X, the corresponding &;’s, i € w,
and the appropriate o* as above. From now on, we work in the R[a* extension V*. )

So we have to show that R*  P,,, forces that X is neither smz nor sm.

After all our preparations, we can just repeat the proofs of BC (Lemma ??) and dBC (Lemma ??) of
Section ??, with the following modifications. The modifications are the same for both proofs; for better
readability we concentrate on the proof of dBC.

(1) Change: Instead of an arbitrary ultralaver position @ < w,, we obviously have to choose a > o*.
For the dBC: we choose @ > a* an arbitrary Laver position. The Janus forcing Q,+; adds a
(canonically defined code for a) null set Zy.

(2) Change: No change here. (Of course we now have an R* * P,--name X instead of a ground model
set.)

For the dBC: It is enough to show that X + Zy = 2¢ in the R* P, -extension of V*, or equivalently,

in every R* * Pg-extension (@ < 8 < w). So assume towards a contradiction that there is a § > «

and an R* x Pg-name i of a real such that some (x, p) € R* * P, forces that i ¢ X + Zy.

(3) Change: no change. (But we use Corollary ?? instead of Lemma ??.)

For dBC: Using Corollary ??(??), without loss of generality x forces p* =" p and there is a

R* Pg—name ¥ in M~ such that 7* = i is forced.

(4) Change: The iteration obviously has to start with the R [a*-generic iteration which we call P*
(which is ccc), the rest is the same.

For dBC: In V* we construct an iteration P in the following way:

(al) Uptoa*, we use the iteration P* (which already lives in our current universe V*). As explained
above in the paragraph preceding (??), X can be interpreted as a P,--name X, and by (2?), X
is forced to be uncountable.

(a2) We continue the iteration from a* to @ in way that embeds x and such that P, is proper. So
P, will force that X is still uncountable.

(b1) Let Q, be any ultralaver forcing (over Q¥). Then Q, forces that X is not thin.

(b2) Let Q441 be a countable Janus forcing. So Q. forces X + Zy = 2¢.

(c) We continue the iteration in a o-centered way. Le., we use an almost FS iteration over x of
ultralaver forcings and countable Janus forcings, using trivial Q, for all { ¢ M”*.
(d) So Py still forces that X + Zy = 2¢, and in particular that 7 € X + Zy.

We now pick (in V*) a countable N < H(y*) containing everything and ord-collapse (N, P) to

y < x, by (2?). The HCON object y is of course in V (and even in R), but we can say more: Since

the iteration P starts with the (R[a*)-generic iteration P*, the condition y will be in the quotient

forcing R*.

Set X¥ := X N M” (which is the image of X under the collapse, since we view X as a set of HCON-

names). By elementarity, M thinks that (a)—(d) above holds for P* and that X” is forced to be

uncountable by P*. Note that X’ C X in the following sense: Whenever G* x H is R*  P,,,,-generic
over V¥, and y € G*, then the evaluation of X in MP[H”] is a subset of the evaluation of X in

V*[G* = H].

526r: “nice” in the sense of [2,5.11]
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(5) Change: No change here.
For dBC: We get our desired contradiction as follows:
Let G* be R*-generic over V* and contain y. Let Hg be P;—generic over V*[G*] and contain p. So

M [H[’;] thinks that i = x + z for some x € X* € X andz € Zy, contradicting (2).

6. A WORD ON VARIANTS OF THE DEFINITIONS

The following is not needed for understanding the paper, we just briefly comment on alternative ways
some notions could be defined.

6.A. Regarding ““alternating iterations. We call the set of @ € w; such that Q, is (forced to be) nontriv-
ial the “true domain” of P (we use this notation in this remark only). Obviously P is naturally isomorphic
to an iteration whose length is the order type of its true domain. In Definitions ?? and ??, we could have
imposed the following additional requirements. All these variants lead to equivalent forcing notions.

(1) M* is (an ord-collapse of) an elementary submodel of H(y").
This is equivalent, as conditions coming from elementary submodels are dense in our R, by Fact 2?.
While this definition looks much simpler and therefore nicer (we could replace ord-transitive mod-
els by the better understood elementary models), it would not make things easier and just “hides”
the point of the construction: For example, we use models M* that are (an ord-collapse of) an
elementary submodel of H"'(y*) for some forcing extension V’ of V.

(2) Require that (M* thinks that) the true domain of P* is ws.
This is equivalent for the same reason as (1) (and this requirement is compatible with (1)).
This definition would allow to drop the “trivial” option from the definition. The whole proof would
still work with minor modifications — in particular, because of the following fact: Ei]

6.1) The finite support iteration of o-centered forcing notions of length < (2¥)* is again
o-centered.

We chose our version for two reasons: first, it seems more flexible, and second, we were initially
not aware of (??).

(3) Alternatively, require that (M* thinks that) the true domain of P~ is countable.
Again, equivalence can be seen as in (1), again (3) is compatible with (1) but obviously not with (2).
This requirement would not make the definition easier, so there is no reason to adopt it. It would
have the slight inconvenience that instead of using ord-collapses as in Fact ??, we would have to
put another model on top to make the iteration countable. Also, it would have the (purely aesthetic)
disadvantage that the generic iteration itself does not satisfy this requirement.

(4) Also, we could have dropped the requirement that the iteration is proper. It is never directly used,
and “densely” P is proper anyway. (E.g., in Lemma ??(4)(a), we would just construct P up to a to
be proper or even ccc, so that X remains uncountable.)

6.B. Regarding “‘almost CS iterations and separative iterands”. Recall that in Definition ?? we required
that each iterand Q, in a partial CS iteration is separative. This implies the property (actually: the three
equivalent properties) from Fact ??. Let us call this property “suitability” for now. Suitability is a property
of the limit P, of P. Suitability always holds for finite support iterations and for countable support iter-
ations. However, if we do not assume that each Q, is separative, then suitability may fail for partial CS
iterations. We could drop the separativity assumption, and instead add suitability as an additional natural
requirement to the definition of partial CS limit.

The disadvantage of this approach is that we would have to check in all constructions of partial CS
iterations that suitability is indeed satisfied (which we found to be straightforward but rather cuambersome,
in particular in the case of the almost CS iteration).

In contrast, the disadvantage of assuming that Q, is separative is minimal and purely cosmetic: It is
well known that every quasiorder Q can be made into a separative one which is forcing equivalent to the
original Q (e.g., by just redefining the order to be <j,).

53Note that we get the same Borel code, whether we evaluate Zy in M” [H;] orin V*[G* x Hg]. Accordingly, the actual Borel set
of reals coded by Zy in the smaller universe is a subset of the corresponding Borel set in the larger universe.
S4We are grateful to Stefan Geschke and Andreas Blass for pointing out this fact. The only reference we are aware of is [?].
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6.C. Regarding “preservation of random and quick sequences”. Recall Definition ?? of local preserva-
tion of random reals and Lemma ??.

In some respect the dense sets D, are unnecessary. For ultralaver forcing Lp, the notion of a “quick”
sequence refers to the sets D, of conditions with stem of length at least n.

We could define a new partial order on L as follows:

qg<' p © (q=p)or(q < pand the stem of ¢ is strictly longer than the stem of p).

Then (Lp, <) and (L, <’) are forcing equivalent, and any <’-interpretation of a new real will automatically
be quick.

Note however that (L, <”) is now not separative any more. Therefore we chose not to take this approach,
since losing separativity causes technical inconvenience, as described in 2?.
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