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Abstract. We show that it is consistent that the Borel Conjecture and the dual Borel Conjecture hold simulta-
neously.

Introduction

History. A set X of reals1 is called “strong measure zero” (smz), if for all functions f : ω → ω there are
intervals In of measure ≤ 1/ f (n) covering X. Obviously, a smz set is a null set (i.e., has Lebesgue measure
zero), and it is easy to see that the family of smz sets forms a σ-ideal and that perfect sets (and therefore
uncountable Borel or analytic sets) are not smz.

At the beginning of the 20th century, Borel [?, p. 123] conjectured:

Every smz set is countable.

This statement is known as the “Borel Conjecture” (BC). In the 1970s it was proved that BC is independent,
i.e., neither provable nor refutable.

Let us very briefly comment on the notion of independence: A sentence ϕ is called independent of a set
T of axioms, if neither ϕ nor ¬ϕ follows from T . (As a trivial example, (∀x)(∀y)x · y = y · x is independent
from the group axioms.) The set theoretic (first order) axiom system ZFC (Zermelo Fraenkel with the axiom
of choice) is considered to be the standard axiomatization of all of mathematics: A mathematical proof is
generally accepted as valid iff it can be formalized in ZFC. Therefore we just say “ϕ is independent” if ϕ
is independent of ZFC. Several mathematical statements are independent, the earliest and most prominent
example is Hilbert’s first problem, the Continuum Hypothesis (CH).

BC is independent as well: Sierpiński [?] showed that CH implies ¬BC (and, since Gödel showed the
consistency of CH, this gives us the consistency of ¬BC). Using the method of forcing, Laver [?] showed
that BC is consistent.

Galvin, Mycielski and Solovay [?] proved the following conjecture of Prikry:

X ⊆ 2ω is smz if and only if every comeager (dense Gδ) set contains a translate of X.

Prikry also defined the following dual notion:
X ⊆ 2ω is called “strongly meager” (sm) if every set of Lebesgue measure 1 contains
a translate of X.

The dual Borel Conjecture (dBC) states:

Every sm set is countable.

Prikry noted that CH implies ¬dBC and conjectured dBC to be consistent (and therefore independent),
which was later proved by Carlson [?].

Numerous additional results regarding BC and dBC have been proved: The consistency of variants of
BC or of dBC, the consistency of BC or dBC together with certain assumptions on cardinal characteristics,
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etc. See [?, Ch. 8] for several of these results. In this paper, we prove the consistency (and therefore
independence) of BC+dBC (i.e., consistently BC and dBC hold simultaneously).

The problem. The obvious first attempt to force BC+dBC is to somehow combine Laver’s and Carlson’s
constructions. However, there are strong obstacles:

Laver’s construction is a countable support iteration of Laver forcing. The crucial points are:
• Adding a Laver real makes every old uncountable set X non-smz.
• And this set X remains non-smz after another forcing P, provided that P has the “Laver property”.

So we can start with CH and use a countable support iteration of Laver forcing of length ω2. In the final
model, every set X of reals of size ℵ1 already appeared at some stage α < ω2 of the iteration; the next Laver
real makes X non-smz, and the rest of the iteration (as it is a countable support iteration of proper forcings
with the Laver property) has the Laver property, and therefore X is still non-smz in the final model.

Carlson’s construction on the other hand adds ω2 many Cohen reals in a finite support iteration (or
equivalently: finite support product). The crucial points are:

• A Cohen real makes every old uncountable set X non-sm.
• And this set X remains non-sm after another forcing P, provided that P has precaliber ℵ1.

So we can start with CH, and use more or less the same argument as above: Assume that X appears at
α < ω2. Then the next Cohen makes X non-sm. It is enough to show that X remains non-sm at all
subsequent stages β < ω2. This is guaranteed by the fact that a finite support iteration of Cohen reals of
length < ω2 has precaliber ℵ1.

So it is unclear how to combine the two proofs: A Cohen real makes all old sets smz, and it is easy
to see that whenever we add Cohen reals cofinally often in an iteration of length, say, ω2, all sets of any
intermediate extension will be smz, thus violating BC. So we have to avoid Cohen reals,2 which also
implies that we cannot use finite support limits in our iterations. So we have a problem even if we find a
replacement for Cohen forcing in Carlson’s proof that makes all old uncountable sets X non-sm and that
does not add Cohen reals: Since we cannot use finite support, it seems hopeless to get precaliber ℵ1, an
essential requirement to keep X non-sm.

Note that it is the proofs of BC and dBC that are seemingly irreconcilable; this is not clear for the
models. Of course Carlson’s model, i.e., the Cohen model, cannot satisfy BC, but it is not clear whether
maybe already the Laver model could satisfy dBC. (It is even still open whether a single Laver forcing
makes every old uncountable set non-sm.) Actually, Bartoszyński and Shelah [?] proved that the Laver
model does satisfy the following weaker variant of dBC (note that the continuum has size ℵ2 in the Laver
model):

Every sm set has size less than the continuum.
In any case, it turns out that one can reconcile Laver’s and Carlson’s proof, by “mixing” them “generi-

cally”, resulting in the following theorem:

Theorem. If ZFC is consistent, then ZFC+BC+dBC is consistent.

Prerequisites. To understand anything of this paper, the reader
• should have some experience with finite and countable support iteration, proper forcing, ℵ2-cc,
σ-closed, etc.,

• should know what a quotient forcing is,
• should have seen some preservation theorem for proper countable support iteration,
• should have seen some tree forcings (such as Laver forcing).

To understand everything, additionally the following is required:
• The “case A” preservation theorem from [?], more specifically we build on the proof of [?] (or [?]).
• In particular, some familiarity with the property “preservation of randoms” is recommended. We

will use the fact that random and Laver forcing have this property.
• We make some claims about (a rather special case of) ord-transitive models in Section ??. The

readers can either believe these claims, or check them themselves (by some rather straightforward
proofs), or look up the proofs (of more general settings) in [?] or [?].

2An iteration that forces dBC without adding Cohen reals was given in [?], using non-Cohen oracle-cc.
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From the theory of strong measure zero and strongly meager, we only need the following two results
(which are essential for our proofs of BC and dBC, respectively):

• Pawlikowski’s result from [?] (which we quote as Theorem ?? below), and
• Theorem 8 of Bartoszyński and Shelah’s [?] (which we quote as Lemma ??).

We do not need any other results of Bartoszyński and Shelah’s paper [?]; in particular we do not use the
notion of non-Cohen oracle-cc (introduced in [?]); and the reader does not have to know the original proofs
of Con(BC) and Con(dBC), by Laver and Carlson, respectively.

The third author claims that our construction is more or less the same as a non-Cohen oracle-cc con-
struction, and that the extended version presented in [?] is even closer to our preparatory forcing.

Notation and some basic facts on forcing, strongly meager (sm) and strong measure zero (smz) sets.
We call a lemma “Fact” if we think that no proof is necessary — either because it is trivial, or because it is
well known (even without a reference), or because we give an explicit reference to the literature.

Stronger conditions in forcing notions are smaller, i.e., q ≤ p means that q is stronger than p.
Let P ⊆ Q be forcing notions. (As usual, we abuse notation by not distinguishing between the underlying

set and the quasiorder on it.)
• For p1, p2 ∈ P we write p1 ⊥P p2 for “p1 and p2 are incompatible”. Otherwise we write p1 ‖P p2.

(We may just write ⊥ or ‖ if P is understood.)
• q ≤∗ p (or: q ≤∗P p) means that q forces that p is in the generic filter, or equivalently that every

q′ ≤ q is compatible with p. And q =∗ p means q ≤∗ p ∧ p ≤∗ q.
• P is separative, if ≤ is the same as ≤∗, or equivalently, if for all q ≤ p with q , p there is an r ≤ p

incompatible with q. Given any P, we can define its “separative quotient” Q by first replacing (in
P) ≤ by ≤∗ and then identifying elements p, q whenever p =∗ q. Then Q is separative and forcing
equivalent to P.

• “P is a subforcing of Q” means that the relation ≤P is the restriction of ≤Q to P.
• “P is an incompatibility-preserving subforcing of Q” means that P is a subforcing of Q and that

p1 ⊥P p2 iff p1 ⊥Q p2 for all p1, p2 ∈ P.
Let additionally M be a countable transitive3 model (of a sufficiently large subset of ZFC) containing P.

• “P is an M-complete subforcing of Q” (or: PlM Q) means that P is a subforcing of Q and: if A ⊆ P
is in M a maximal antichain, then it is a maximal antichain of Q as well. (Or equivalently: P is
an incompatibility-preserving subforcing of Q and every predense subset of P in M is predense
in Q.) Note that this means that every Q-generic filter G over V induces a P-generic filter over M,
namely GM B G ∩ P (i.e., every maximal antichain of P in M meets G ∩ P in exactly one point).
In particular, we can interpret a P-name τ in M as a Q-name. More exactly, there is a Q-name τ′

such that τ′[G] = τ[GM] for all Q-generic filters G. We will usually just identify τ and τ′.
• Analogously, if P ∈ M and i : P→ Q is a function, then i is called an M-complete embedding if it

preserves ≤ (or at least ≤∗) and ⊥ and moreover: If A ∈ M is predense in P, then i[A] is predense
in Q.

There are several possible characterizations of sm (“strongly meager”) and smz (“strong measure zero”)
sets; we will use the following as definitions:

A set X is not sm if there is a measure 1 set into which X cannot be translated; i.e., if there is a null set
Z such that (X + t) ∩ Z , ∅ for all reals t, or, in other words, Z + X = 2ω. To summarize:

(0.1) X is not sm iff there is a Lebesgue null set Z such that Z + X = 2ω.

We will call such a Z a “witness” for the fact that X is not sm (or say that Z witnesses that X is not sm).
The following theorem of Pawlikowski [?] is central for our proof4 that BC holds in our model:

Theorem 0.2. X ⊆ 2ω is smz iff X + F is null for every closed null set F.
Moreover, for every dense Gδ set H we can construct (in an absolute way) a closed null set F such that for
every X ⊆ 2ω with X + F null there is t ∈ 2ω with t + X ⊆ H.

3We will also use so-called ord-transitive models, as defined in Section ??.
4We thank Tomek Bartoszyński for pointing out Pawlikowski’s result to us, and for suggesting that it might be useful for our

proof.
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In particular, we get:

(0.3) X is not smz iff there is a closed null set F such that X +F has positive outer Lebesgue
measure.

Again, we will say that the closed null set F “witnesses” that X is not smz (or call F a witness for this
fact).

Annotated contents.

Section ??, p. ??: We introduce the family of ultralaver forcing notions and prove some properties.
Section ??, p. ??: We introduce the family of Janus forcing notions and prove some properties.
Section ??, p. ??: We define ord-transitive models and mention some basic properties. We define the

“almost finite” and “almost countable” support iteration over a model. We show that in many
respects they behave like finite and countable support, respectively.

Section ??, p. ??: We introduce the preparatory forcing notion R which adds a generic forcing itera-
tion P̄.

Section ??, p. ??: Putting everything together, we show that R ∗ Pω2 forces BC+dBC, i.e., that an un-
countable X is neither smz nor sm. We show this under the assumption X ∈ V , and then introduce
a factorization of R ∗ P̄ that this assumption does not result in loss of generality.

Section ??, p. ??: We briefly comment on alternative ways some notions could be defined.

An informal overview of the proof, including two illustrations, can be found at http://arxiv.org/
abs/1112.4424/.

1. Ultralaver forcing

In this section, we define the family of ultralaver forcings LD̄, variants of Laver forcing which depend
on a system D̄ of ultrafilters.

In the rest of the paper, we will use the following properties of LD̄. (And we will use only these
properties. So readers who are willing to take these properties for granted could skip to Section ??.)

(1) LD̄ is σ-centered, hence ccc.
(This is Lemma ??.)

(2) LD̄ is separative.
(This is Lemma ??.)

(3) Ultralaver kills smz: There is a canonical LD̄-name ¯
˜
` for a fast growing real in ωω called the

ultralaver real. From this real, we can define (in an absolute way) a closed null set F such that
X + F is positive for all uncountable X in V (and therefore F witnesses that X is not smz, according
to Theorem ??).
(This is Corollary ??.)

(4) Whenever X is uncountable, then LD̄ forces that X is not “thin”.
(This is Corollary ??.)

(5) If (M, ∈) is a countable model of ZFC∗ and if LD̄M is an ultralaver forcing in M, then for any
ultrafilter system D̄ extending D̄M , LD̄M is an M-complete subforcing of the ultralaver forcing LD̄.
(This is Lemma ??.)
Moreover, the real ¯

˜
` of item (??) is so “canonical” that we get: If (in M) ¯

˜
`M is the LD̄M -name for

the LD̄M -generic real, and if (in V) ¯
˜
` is the LD̄-name for the LD̄-generic real, and if H is LD̄-generic

over V and thus HM B H ∩ LD̄M is the induced LD̄M -generic filter over M, then ¯
˜
`[H] is equal to

¯
˜
`M[HM].
Since the closed null set F is constructed from ¯

˜
` in an absolute way, the same holds for F, i.e., the

Borel codes F[H] and F[HM] are the same.
(6) Moreover, given M and LD̄M as above, and a random real r over M, we can choose D̄ extending

D̄M such that LD̄ forces that randomness of r is preserved (in a strong way that can be preserved in
a countable support iteration).
(This is Lemma ??.)
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BOREL CONJECTURE AND DUAL BOREL CONJECTURE 5

1.A. Definition of ultralaver.

Notation. We use the following fairly standard notation:
A tree is a nonempty set p ⊆ ω<ω which is closed under initial segments and has no maximal elements.5

The elements (“nodes”) of a tree are partially ordered by ⊆.
For each sequence s ∈ ω<ω we write lh(s) for the length of s.
For any tree p ⊆ ω<ω and any s ∈ p we write succp(s) for one of the following two sets:

{k ∈ ω : s_k ∈ p} or {t ∈ p : (∃k ∈ ω) t = s_k}

and we rely on the context to help the reader decide which set we mean.
A branch of p is either of the following:
• A function f : ω→ ω with f�n ∈ p for all n ∈ ω.
• A maximal chain in the partial order (p,⊆). (As our trees do not have maximal elements, each

such chain C determines a branch
⋃

C in the first sense, and conversely.)
We write [p] for the set of all branches of p.

For any tree p ⊆ ω<ω and any s ∈ p we write p[s] for the set {t ∈ p : t ⊇ s or t ⊆ s}, and we write [s] for
either of the following sets:

{t ∈ p : s ⊆ t} or {x ∈ [p] : s ⊆ x}.
The stem of a tree p is the shortest s ∈ p with | succp(s)| > 1. (The trees we consider will never be

branches, i.e., will always have finite stems.)

Definition 1.1. • For trees q, p we write q ≤ p if q ⊆ p (“q is stronger than p”), and we say that “q
is a pure extension of p” (q ≤0 p) if q ≤ p and stem(q) = stem(p).

• A filter system D̄ is a family (Ds)s∈ω<ω of filters on ω. (All our filters will contain the Fréchet filter
of cofinite sets.) We write D+

s for the collection of Ds-positive sets (i.e., sets whose complement is
not in Ds).

• We define LD̄ to be the set of all trees p such that succp(t) ∈ D+
t for all t ∈ p above the stem.

• The generic filter is determined by the generic branch ¯̀ = (`i)i∈ω ∈ ω
ω, called the generic real:

{ ¯̀} =
⋂

p∈G[p] or equivalently, ¯̀ =
⋃

p∈G stem(p).
• An ultrafilter system is a filter system consisting of ultrafilters. (Since all our filters contain the

Fréchet filter, we only consider nonprincipal ultrafilters.)
• An ultralaver forcing is a forcing LD̄ defined from an ultrafilter system. The generic real for an

ultralaver forcing is also called the ultralaver real.

Recall that a forcing notion (P,≤) is σ-centered if P =
⋃

n Pn, where for all n, k ∈ ω and for all
p1, . . . , pk ∈ Pn there is q ≤ p1, . . . , pk.

Lemma 1.2. All ultralaver forcings LD̄ are σ-centered (hence ccc).

Proof. Every finite set of conditions sharing the same stem has a common lower bound. �

Lemma 1.3. LD̄ is separative.6

Proof. If q ≤ p, and q , p, then there is s ∈ p \ q. Now p[s] ⊥ q. �

If each Ds is the Fréchet filter, then LD̄ is Laver forcing (often just written L).

1.B. M-complete embeddings. Note that for all ultrafilter systems D̄ we have:

(1.4)
Two conditions in LD̄ are compatible if and only if their stems are comparable and
moreover, the longer stem is an element of the condition with the shorter stem.

Lemma 1.5. Let M be countable.7 In M, let LD̄M be an ultralaver forcing. Let D̄ be (in V) a filter system
extending8 D̄M . Then LD̄M is an M-complete subforcing of LD̄.

5Except for the proof of Lemma ??, where we also allow trees with maximal elements, and even empty trees.
6See page ?? for the definition.
7Here, we can assume that M is a countable transitive model of a sufficiently large finite subset ZFC∗ of ZFC. Later, we will also

use ord-transitive models instead of transitive ones, which does not make any difference as far as properties of LD̄ are concerned, as
our arguments take place in transitive parts of such models.

8I.e., DM
s ⊆ Ds for all s ∈ ω<ω.
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Proof. For any tree9 T , any filter system Ē = (Es)s∈ω<ω , and any s0 ∈ T we define a sequence (Tα
Ē,s0

)α∈ω1 of
“derivatives” (where we may abbreviate Tα

Ē,s0
to Tα) as follows:

• T 0 B T [s0].
• Given Tα, we let Tα+1 B Tα \

⋃
{[s] : s ∈ Tα, s0 ⊆ s, succTα (s) < E+

s }, where [s] B {t : s ⊆ t}.
• For limit ordinals δ > 0 we let T δ B

⋂
α<δ Tα.

Then we have
(a) Each Tα is closed under initial segments. Also: α < β implies Tα ⊇ T β.
(b) There is an α0 < ω1 such that Tα0 = Tα0+1 = T β for all β > α0. We write T∞ or T∞

Ē,s0
for Tα0 .

(c) If s0 ∈ T∞
Ē,s0

, then T∞
Ē,s0
∈ LĒ with stem s0.

Conversely, if stem(T ) = s0, and T ∈ LĒ , then T∞ = T .
(d) If T contains a tree q ∈ LĒ with stem(q) = s0, then T∞ contains q∞ = q, so in particular s0 ∈ T∞.
(e) Thus: T contains a condition in LĒ with stem s0 iff s0 ∈ T∞

Ē,s0
.

(f) The computation of T∞ is absolute between any two models containing T and Ē. (In particular,
any transitive ZFC∗-model containing T and Ē will also contain α0.)

(g) Moreover: Let T ∈ M, Ē ∈ M, and let Ē′ be a filter system extending Ē such that for all s0 and
all A ∈ P(ω) ∩ M we have: A ∈ (Es0 )+ iff A ∈ (E′s0

)+. (In particular, this will be true for any Ē′

extending Ē, provided that each Es0 is an M-ultrafilter.)
Then for each α ∈ M we have Tα

Ē,s0
= Tα

Ē′,s0
(and hence Tα

Ē′,s0
∈ M). (Proved by induction on α.)

Now let A = (pi : i ∈ I) ∈ M be a maximal antichain in LD̄M , and assume (in V) that q ∈ LD̄. Let
s0 B stem(q).

We will show that q is compatible with some pi (in LD̄). This is clear if there is some i with s0 ∈ pi and
stem(pi) ⊆ s0, by (??). (In this case, pi ∩ q is a condition in LD̄ with stem s0.)

So for the rest of the proof we assume that this is not the case, i.e.:

(1.6) There is no i with s0 ∈ pi and stem(pi) ⊆ s0.

Let J B {i ∈ I : s0 ⊆ stem(pi)}. We claim that there is j ∈ J with stem(p j) ∈ q (which as above implies
that q and p j are compatible).

Assume towards a contradiction that this is not the case. Then q is contained in the following tree T :

T B (ω<ω)[s0] \
⋃
j∈J

[stem(p j)].(1.7)

Note that T ∈ M. In V we have:

(1.8) The tree T contains a condition q with stem s0.

So by (e) (applied in V), followed by (g), and again by (e) (now in M) we get:

(1.9) The tree T also contains a condition p ∈ M with stem s0.

Now p has to be compatible with some pi. The sequences s0 = stem(p) and stem(pi) have to be comparable,
so by (??) there are two possibilities:

(1) stem(pi) ⊆ stem(p) = s0 ∈ pi. We have excluded this case in our assumption (??).
(2) s0 = stem(p) ⊆ stem(pi) ∈ p. So i ∈ J. By construction of T (see (??)), we conclude stem(pi) < T ,

contradicting stem(pi) ∈ p ⊆ T (see ??). �

1.C. Ultralaver kills strong measure zero. The following lemma appears already in [?, Theorem 9]. We
will give a proof below in Lemma ??.

Lemma 1.10. If A is a finite set,
˜
α an LD̄-name, p ∈ LD̄, and p 


˜
α ∈ A, then there is β ∈ A and a pure

extension q ≤0 p such that q 

˜
α = β.

Definition 1.11. Let ¯̀ be an increasing sequence of natural numbers. We say that X ⊆ 2ω is smz with
respect to ¯̀, if there exists a sequence (Ik)k∈ω of basic intervals of 2ω of measure ≤ 2−`k (i.e., each Ik is of
the form [sk] for some sk ∈ 2`k ) such that X ⊆

⋂
m∈ω

⋃
k≥m Ik.

Remark 1.12. It is well known and easy to see that the properties

9Here we also allow empty trees, and trees with maximal nodes.
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• For all ¯̀ there exists exists a sequence (Ik)k∈ω of basic intervals of 2ω of measure ≤ 2−`k such that
X ⊆

⋃
k∈ω Ik.

• For all ¯̀ there exists exists a sequence (Ik)k∈ω of basic intervals of 2ω of measure ≤ 2−`k such that
X ⊆

⋂
m∈ω

⋃
k≥m Ik.

are equivalent. Hence, a set X is smz iff X is smz with respect to all ¯̀ ∈ ωω.

The following lemma is a variant of the corresponding lemma (and proof) for Laver forcing (see for
example [?, Lemma 28.20]): Ultralaver makes old uncountable sets non-smz.

Lemma 1.13. Let D̄ be a system of ultrafilters, and let ¯
˜
` be the LD̄-name for the ultralaver real. Then each

uncountable set X ∈ V is forced to be non-smz (witnessed by the ultralaver real ¯
˜
`).

More precisely, the following holds:

(1.14) 
LD̄
∀X ∈ V ∩ [2ω]ℵ1 ∀(xk)k∈ω ⊆ 2ω X *

⋂
m∈ω

⋃
k≥m

[xk�
˜
`k].

We first give two technical lemmas:

Lemma 1.15. Let p ∈ LD̄ with stem s ∈ ω<ω, and let
˜
x be a LD̄-name for a real in 2ω. Then there exists a

pure extension q ≤0 p and a real τ ∈ 2ω such that for every n ∈ ω,

(1.16) {i ∈ succq(s) : q[s_i] 

˜
x�n = τ�n} ∈ Ds.

Proof. For each i ∈ succp(s), let qi ≤0 p[s_i] be such that qi decides
˜
x�i, i.e., there is a ti of length i such

that qi 
 ˜
x�i = ti (this is possible by Lemma ??).

Now we define the real τ ∈ 2ω as the Ds-limit of the ti’s. In more detail: For each n ∈ ω there is a
(unique) τn ∈ 2n such that {i : ti�n = τn} ∈ Ds; since Ds is a filter, there is a real τ ∈ 2ω with τ�n = τn for
each n. Finally, let q B

⋃
i qi. �

Lemma 1.17. Let p ∈ LD̄ with stem s, and let (
˜
xk)k∈ω be a sequence of LD̄-names for reals in 2ω. Then

there exists a pure extension q ≤0 p and a family of reals (τη)η∈q, η⊇s ⊆ 2ω such that for each η ∈ q above s,
and every n ∈ ω,

(1.18) {i ∈ succq(η) : q[η_i] 

˜
x|η|�n = τη�n} ∈ Dη.

Proof. We apply Lemma ?? to each node η in p above s (and to
˜
x|η|) separately: We first get a p1 ≤0 p and a

τs ∈ 2ω; for every immediate successor η ∈ succp1 (s), we get qη ≤0 p[η]
1 and a τη ∈ 2ω, and let p2 B

⋃
η qη;

in this way, we get a (fusion) sequence (p, p1, p2, . . .), and let q B
⋂

k pk. �

Proof of Lemma ??. We want to prove (??). Assume towards a contradiction that X is an uncountable set
in V , and that (

˜
xk)k∈ω is a sequence of names for reals in 2ω and p ∈ LD̄ such that

(1.19) p 
 X ⊆
⋂
m∈ω

⋃
k≥m

[
˜
xk�

˜
`k].

Let s ∈ ω<ω be the stem of p.
By Lemma ??, we can fix a pure extension q ≤0 p and a family (τη)η∈q, η⊇s ⊆ 2ω such that for each η ∈ q

above the stem s and every n ∈ ω, condition (??) holds.
Since X is (in V and) uncountable, we can find a real x∗ ∈ X which is different from each real in the

countable family (τη)η∈q, η⊇s; more specifically, we can pick a family of natural numbers (nη)η∈q, η⊇s such
that x∗�nη , τη�nη for any η.

We can now find r ≤0 q such that:

• For all η ∈ r above s and all i ∈ succr(η) we have i > nη.
• For all η ∈ r above s and all i ∈ succr(η) we have r[η_i] 


˜
x|η|�nη = τη�nη , x∗�nη.

So for all η ∈ r above s we have, writing k for |η|, that r[η_i] forces x∗ < [
˜
xk�nη] ⊇ [

˜
xk�`k]. We conclude

that r forces x∗ <
⋃

k≥|s|[˜
xk�`k], contradicting (??). �

Corollary 1.20. Let (tk)k∈ω be a dense subset of 2ω.
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Let D̄ be a system of ultrafilters, and let ¯
˜
` be the LD̄-name for the ultralaver real. Then the set

˜
H B

⋂
m∈ω

⋃
k≥m

[tk�
˜
`k]

is forced to be a comeager set with the property that
˜
H does not contain any translate of any old uncount-

able set.

Pawlikowski’s theorem ?? gives us:

Corollary 1.21. There is a canonical name F for a closed null set such that X + F is positive for all
uncountable X in V.

In particular, no uncountable ground model set is smz in the ultralaver extension.

1.D. Thin sets and strong measure zero. For the notion of “(very) thin” set, we use an increasing func-
tion B∗(k) (the function we use will be described in Corollary ??). We will assume that ¯̀∗ = (`∗k)k∈ω is
an increasing sequence of natural numbers with `∗k+1 � B∗(k). (We will later use a subsequence of the
ultralaver real ¯̀ as ¯̀∗, see Lemma ??).

Definition 1.22. For X ⊆ 2ω and k ∈ ω we write X�[`∗k , `
∗
k+1) for the set {x�[`∗k , `

∗
k+1) : x ∈ X}. We say that

• X ⊆ 2ω is “very thin with respect to ¯̀∗ and B∗”, if there are infinitely many k with |X�[`∗k , `
∗
k+1)| ≤

B∗(k).
• X ⊆ 2ω is “thin with respect to ¯̀∗ and B∗”, if X is the union of countably many very thin sets.

Note that the family of thin sets is a σ-ideal, while the family of very thin sets is not even an ideal. Also,
every very thin set is covered by a closed very thin (in particular nowhere dense) set. In particular, every
thin set is meager and the ideal of thin sets is a proper ideal.

Lemma 1.23. Let B∗ be an increasing function. Let ¯̀ be an increasing sequence of natural numbers. We
define a subsequence ¯̀∗ of ¯̀ in the following way: `∗k = `nk where nk+1 − nk = B∗(k) · 2`

∗
k .

Then we get: If X is thin with respect to ¯̀∗ and B∗, then X is smz with respect to ¯̀.

Proof. Assume that X =
⋃

i∈ω Yi, each Yi very thin with respect to ¯̀∗ and B∗. Let (X j) j∈ω be an enumeration
of {Yi : i ∈ ω} where each Yi appears infinitely often. So X ⊆

⋂
m∈ω

⋃
j≥m X j.

By induction on j ∈ ω, we find for all j > 0 some k j > k j−1 such that

|X j�[`∗k j
, `∗k j+1)| ≤ B∗(k j) hence |X j�[0, `∗k j+1)| ≤ B∗(k j) · 2

`∗k j = nk j+1 − nk j .

So we can enumerate X j�[0, `∗k j+1) as (si)nk j≤i<nk j+1 . Hence X j is a subset of
⋃

nk j≤i<nk j+1
[si]; and each si has

length `∗k j+1 ≥ `i, since `∗k j+1 = `nk j+1 and i < nk j+1. This implies

X ⊆
⋂
m∈ω

⋃
j≥m

X j ⊆
⋂
m∈ω

⋃
i≥m

[si].

Hence X is smz with respect to ¯̀. �

Lemma ?? and Lemma ?? yield:

Corollary 1.24. Let B∗ be an increasing function. Let D̄ be a system of ultrafilters, and
˜
¯̀ the name for the

ultralaver real. Let
˜
¯̀∗ be constructed from B∗ and

˜
¯̀ as in Lemma ??.

Then LD̄ forces that for every uncountable X ⊆ 2ω:
• X is not smz with respect to

˜
¯̀.

• X is not thin with respect to
˜
¯̀∗ and B∗.

1.E. Ultralaver and preservation of Lebesgue positivity. It is well known that both Laver forcing and
random forcing preserve Lebesgue positivity; in fact they satisfy a stronger property that is preserved
under countable support iterations. (So in particular, a countable support iteration of Laver and random
also preserves positivity.)

Ultralaver forcing LD̄ will in general not preserve positivity. Indeed, if all ultrafilters Ds are equal to the
same ultrafilter D∗, then the range L B {`0, `1, . . .} ⊆ ω of the ultralaver real ¯̀ will diagonalize D∗, so every
ground model real x ∈ 2ω (viewed as a subset of ω) will either almost contain L or be almost disjoint to L,
which implies that the set 2ω ∩ V of old reals is covered by a null set in the extension. However, later in
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this paper it will become clear that if we choose the ultrafilters Ds in a sufficiently generic way, then many
old positive sets will stay positive. More specifically, in this section we will show (Lemma ??): If D̄M is
an ultrafilter system in a countable model M and r a random real over M, then we can find an extension D̄
such that LD̄ forces that r remains random over M[HM] (where HM denotes the LD̄-name for the restriction
of the LD̄-generic filter H to LD̄M ∩M). Additionally, some “side conditions” are met, which are necessary
to preserve the property in forcing iterations.

In Section ?? we will see how to use this property to preserve randoms in limits.
The setup we use for preservation of randomness is basically the notation of “Case A” preservation

introduced in [?, Ch.XVIII], see also [?, ?] or the textbook [?, 6.1.B]:

Definition 1.25. We write clopen for the collection of clopen sets on 2ω. We say that the function Z : ω→
clopen is a code for a null set, if the measure of Z(n) is at most 2−n for each n ∈ ω.

For such a code Z, the set nullset(Z) coded by Z is

nullset(Z) B
⋂

n

⋃
k≥n

Z(k).

The set nullset(Z) obviously is a null set, and it is well known that every null set is contained in such a
set nullset(Z).

Definition 1.26. For a real r and any code Z, we define Z @n r by:

(∀k ≥ n) r < Z(k).

We write Z @ r if Z @n r holds for some n; i.e., if r < nullset(Z).

For later reference, we record the following trivial fact:

(1.27) p 

˜
Z @ r iff there is a name

˜
n for an element of ω such that p 


˜
Z @

˜
n r.

Let P be a forcing notion, and
˜
Z a P-name of a code for a null set. An interpretation of

˜
Z below p is

some code Z∗ such that there is a sequence p = p0 ≥ p1 ≥ p2 ≥ . . . such that pm forces
˜
Z�m = Z∗�m.

Usually we demand (which allows a simpler proof of the preservation theorem at limit stages) that the
sequence (p0, p1, . . . ) is inconsistent, i.e., p forces that there is an m such that pm < G. Note that whenever
P adds a new ω-sequence of ordinals, we can find such an interpretation for any

˜
Z.

If
˜
Z̄ = (

˜
Z1, . . . , ˜

Zm) is a tuple of names of codes for null sets, then an interpretation of ¯
˜
Z below p is some

tuple (Z∗1 , . . . ,Z
∗
m) such that there is a single sequence p = p0 ≥ p1 ≥ p2 ≥ . . . interpreting each

˜
Zi as Z∗i .

We now turn to preservation of Lebesgue positivity:

Definition 1.28. (1) A forcing notion P preserves Borel outer measure, if P forces Leb∗(AV ) = Leb(AV[GP])
for every code A for a Borel set. (Leb∗ denotes the outer Lebesgue measure, and for a Borel code
A and a set-theoretic universe V , AV denotes the Borel set coded by A in V .)

(2) P strongly preserves randoms, if the following holds: Let N ≺ H(χ∗) be countable for a sufficiently
large regular cardinal χ∗, let P, p, ¯

˜
Z = (

˜
Z1, . . . , ˜

Zm) ∈ N, let p ∈ P and let r be random over N.
Assume that in N, Z̄∗ is an interpretation of

˜
Z̄, and assume Z∗i @ki r for each i. Then there is an

N-generic q ≤ p forcing that r is still random over N[G] and moreover,
˜
Zi @ki r for each i. (In

particular, P has to be proper.)
(3) Assume that P is absolutely definable. P strongly preserves randoms over countable models if (2)

holds for all countable (transitive10) models N of ZFC∗.

It is easy to see that these properties are increasing in strength. (Of course (3)⇒(2) works only if ZFC∗

is satisfied in H(χ∗).)
In [?] it is shown that (1) implies (3), provided that P is nep (“non-elementary proper”, i.e., nicely

definable and proper with respect to countable models). In particular, every Suslin ccc forcing notion such
as random forcing, and also many tree forcing notions including Laver forcing, are nep. However LD̄ is not
nicely definable in this sense, as its definition uses ultrafilters as parameters.

Lemma 1.29. Both Laver forcing and random forcing strongly preserve randoms over countable models.

10Later we will introduce ord-transitive models, and it is easy to see that it does not make any difference whether we demand
transitive or not; this can be seen using a transitive collapse.

Paper Sh:969, version 2011-12-27 10. See https://shelah.logic.at/papers/969/ for possible updates.



10 MARTIN GOLDSTERN, JAKOB KELLNER, SAHARON SHELAH, AND WOLFGANG WOHOFSKY

Proof. For random forcing, this is easy and well known (see, e.g., [?, 6.3.12]).
For Laver forcing: By the above, it is enough to show (1). This was done by Woodin (unpublished) and

Judah-Shelah [?]. A nicer proof (including a variant of (2)) is given by Pawlikowski [?]. �

Ultralaver will generally not preserve Lebesgue positivity, let alone randomness. However, we get
the following “local” variant of strong preservation of randoms (which will be used in the preservation
theorem ??). The rest of this section will be devoted to the proof of the following lemma.

Lemma 1.30. Assume that M is a countable model, D̄M an ultrafilter system in M and r a random real
over M. Then there is (in V) an ultrafilter system D̄ extending11 D̄M , such that the following holds:
If

• p ∈ LD̄M ,
• in M,

˜
Z̄ = (

˜
Z1, . . . , ˜

Zm) is a sequence of LD̄M -names for codes for null sets,12 and Z∗1 , . . . ,Z
∗
m are

interpretations under p, witnessed by a sequence (pn)n∈ω with strictly increasing stems,
• Z∗i @ki r for i = 1, . . . ,m,

then there is a q ≤ p in LD̄ forcing that
• r is random over M[GM],
•

˜
Zi @ki r for i = 1, . . . ,m.

For the proof of this lemma, we will use the following concepts:

Definition 1.31. Let p ⊆ ω<ω be a tree. A “front name below p” is a function13 h : F → clopen, where
F ⊆ p is a front (a set that meets every branch of p in a unique point). (For notational simplicity we also
allow h to be defined on elements < p; this way, every front name below p is also a front name below q
whenever q ≤ p.)

If h is a front name and D̄ is any filter system with p ∈ LD̄, we define the corresponding LD̄-name (in
the sense of forcing)

˜
zh by

˜
zh B {(y̌, p[s]) : s ∈ F, y ∈ h(s)}.(1.32)

(This does not depend on the D̄ we use, since we set y̌ B {(x̌, ω<ω) : x ∈ y}.)
Up to forced equality, the name

˜
zh is characterized by the fact that p[s] forces (in any LD̄) that

˜
zh = h(s),

for every s in the domain of h.

Note that the same object h can be viewed as a front name below p with respect to different forcings
LD̄1

, LD̄2
, as long as p ∈ LD̄1

∩ LD̄2
.

Definition 1.33. Let p ⊆ ω<ω be a tree. A “continuous name below p” is either of the following:
• An ω-sequence of front names below p.
• A ⊆-increasing function g : p → clopen<ω such that limn→∞ lh(g(c�n)) = ∞ for every branch

c ∈ [p].
For each n, the set of minimal elements in {s ∈ p : lh(g(s)) > n} is a front, so each continuous name in the
second sense naturally defines a name in the first sense, and conversely. Being a continuous name below p
does not involve the notion of 
 nor does it depend on the filter system D̄.

If g is a continuous name and D̄ is any filter system, we can again define the corresponding LD̄-name

˜
Zg (in the sense of forcing); we leave a formal definition of

˜
Zg to the reader and content ourselves with this

characterization:

(∀s ∈ p) : p[s] 
LD̄
g(s) ⊆

˜
Zg.(1.34)

Note that a continuous name below p naturally corresponds to a continuous function F : [p]→ clopenω,
and

˜
Zg is forced (by p) to be the value of F at the generic real

˜
¯̀.

Lemma 1.35. LD̄ has the following “pure decision properties”:

11This implies, by Lemma ??, that the LD̄-generic filter G induces an LD̄M -generic filter over M, which we call GM .
12Recall that nullset(

˜
Z) =

⋂
n
⋃

k≥n ˜
Z(k) is a null set in the extension.

13Instead of clopen we may also consider other ranges of front names, such as the class of all ordinals, or the set ω.
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(1) Whenever
˜
y is a name for an element of clopen, p ∈ LD̄, then there is a pure extension p1 ≤0 p

such that
˜
y =

˜
zh (is forced) for a front name h below p1.

(2) Whenever
˜
Y is a name for a sequence of elements of clopen, p ∈ LD̄, then there is a pure extension

q ≤0 p such that
˜
Y =

˜
Zg (is forced) for some continuous name g below q.

(3) (This is Lemma ??.) If A is a finite set,
˜
α a name, p ∈ LD̄, and p forces

˜
α ∈ A, then there is β ∈ A

and a pure extension q ≤0 p such that q 

˜
α = β.

Proof. Let p ∈ LD̄, s0 B stem(p),
˜
y a name for an element of clopen.

We call t ∈ p a “good node in p” if
˜
y is a front name below p[t] (more formally: forced to be equal to

˜
zh

for a front name h). We can find p1 ≤0 p such that for all t ∈ p1 above s0: If there is q ≤0 p[t]
1 such that t is

good in q, then t is already good in p1.
We claim that s0 is now good (in p1). Note that for any bad node s the set { t ∈ succp1 (s) : t bad } is

in D+
s . Hence, if s0 is bad, we can inductively construct p2 ≤0 p1 such that all nodes of p2 are bad nodes

in p1. Now let q ≤ p2 decide
˜
y, s B stem(q). Then q ≤0 p[s]

1 , so s is good in p1, contradiction. This finishes
the proof of (??).

To prove (??), we first construct p1 as in (??) with respect to
˜
y0. This gives a front F1 ⊆ p1 deciding

˜
y0. Above each node in F1 we now repeat the construction from (??) with respect to

˜
y1, yielding p2, etc.

Finally, q B
⋂

n pn.
To prove (??): Similar to (??), we can find p1 ≤0 p such that for each t ∈ p1: If there is a pure extension

of p[t]
1 deciding

˜
α, then p[t]

1 decides
˜
α; in this case we again call t good. Since there are only finitely many

possibilities for the value of
˜
α, any bad node t has D+

t many bad successors. So if the stem of p1 is bad, we
can again reach a contradiction as in (??). �

Corollary 1.36. Let D̄ be a filter system, and let G ⊆ LD̄ be generic. Then every Y ∈ clopenω in V[G] is
the evaluation of a continuous name

˜
Zg by G.

Proof. In V , fix a p ∈ LD̄ and a name
˜
Y for an element of clopenω. We can find q ≤0 p and a continuous

name g below q such that q 

˜
Y =

˜
Zg. �

We will need the following modification of the concept of “continuous names”.

Definition 1.37. Let p ⊆ ω<ω be a tree, b ∈ [p] a branch. An “almost continuous name below p (with
respect to b)” is a ⊆-increasing function g : p → clopen<ω such that limn→∞ lh(g(c�n)) = ∞ for every
branch c ∈ [p], except possibly for c = b.

Note that “except possibly for c = b” is the only difference between this definition and the definition of
a continuous name.

Since for any D̄ it is forced14 that the generic real (for LD̄) is not equal to the exceptional branch b, we
again get a name

˜
Zg of a function in clopenω satisfying:

(∀s ∈ p) : p[s] 
LD̄
g(s) ⊆

˜
Zg.

An almost continuous name naturally corresponds to a continuous function F from [p] \ {b} into clopenω.
Note that being an almost continuous name is a very simple combinatorial property of g which does

not depend on D̄, nor does it involve the notion 
. Thus, the same function g can be viewed as an almost
continuous name for two different forcing notions LD̄1

, LD̄2
simultaneously.

Lemma 1.38. Let D̄ be a system of filters (not necessarily ultrafilters).
Assume that p̄ = (pn)n∈ω witnesses that Y∗ is an interpretation of

˜
Y, and that the lengths of the stems of

the pn are strictly increasing.15 Then there exists a sequence q̄ = (qn)n∈ω such that
(1) q0 ≥ q1 ≥ · · · .
(2) qn ≤ pn for all n.
(3) q̄ also interprets

˜
Y as Y∗. (This follows from the previous two statements.)

(4)
˜
Y is almost continuous below q0, i.e., there is an almost continuous name g such that q0 forces

˜
Y =

˜
Zg.)

14 This follows from our assumption that all our filters contain the Fréchet filter.
15It is easy to see that for every LD̄-name

˜
Y we can find such p̄ and Y∗: First find p̄ which interprets both

˜
Y and ¯

˜
`, and then thin

out to get a strictly increasing sequence of stems.

Paper Sh:969, version 2011-12-27 10. See https://shelah.logic.at/papers/969/ for possible updates.



12 MARTIN GOLDSTERN, JAKOB KELLNER, SAHARON SHELAH, AND WOLFGANG WOHOFSKY

(5)
˜
Y is almost continuous below qn, for all n. (This follows from the previous statement.)

Proof. Let b be the branch described by the stems of the conditions pn:

b B {s : (∃n) s ⊆ stem(pn)}.

We now construct a condition q0. For every s ∈ b satisfying stem(pn) ⊆ s ( stem(pn+1) we set
succq0 (s) = succpn (s), and for all t ∈ succq0 (s) except for the one in b we let q[t]

0 ≤0 p[t]
n be such that

˜
Y is

continuous below q[t]
0 . We can do this by Lemma ??(??).

Now we set
qn B pn ∩ q0 = q[stem(pn)]

0 ≤ pn.

This takes care of (1) and (2). Now we show (4): Any branch c of q0 not equal to b must contain a node
s_k < b with s ∈ b, so c is a branch in q[s_k]

0 , below which
˜
Y was continuous. �

The following lemmas and corollaries are the motivation for considering continuous and almost contin-
uous names.

Lemma 1.39. Let D̄ be a system of filters (not necessarily ultrafilters). Let p ∈ LD̄, let b be a branch, and
let g : p→ clopen<ω be an almost continuous name below p with respect to b; write

˜
Zg for the associated

LD̄-name.
Let r ∈ 2ω be a real, n0 ∈ ω. Then the following are equivalent:

(1) p 
LD̄
r <

⋃
n≥n0 ˜

Zg(n), i.e.,
˜
Zg @n0 r.

(2) For all n ≥ n0 and for all s ∈ p for which g(s) has length > n we have r < g(s)(n).

Note that (2) does not mention the notion 
 and does not depend on D̄.

Proof. ¬(2)⇒ ¬(1): Assume that there is s ∈ p for which g(s) = (C0, . . . ,Cn, . . . ,Ck) and r ∈ Cn. Then
p[s] forces that the generic sequence

˜
Zg = (

˜
Z(0),

˜
Z(1), . . .) starts with C0, . . . ,Cn, so p[s] forces r ∈

˜
Zg(n).

¬(1) ⇒ ¬(2): Assume that p does not force r <
⋃

n≥n0 ˜
Zg(n). So there is a condition q ≤ p and some

n ≥ n0 such that q 
 r ∈
˜
Zg(n). By increasing the stem of q, if necessary, we may assume that s B stem(q)

is not on b (the “exceptional” branch), and that g(s) has already length > n. Let Cn B g(s)(n) be the n-th
entry of g(s). So p[s] already forces

˜
Zg(n) = Cn; now q[s] ≤ p[s], and q[s] forces the following statements:

r ∈
˜
Zg(n),

˜
Zg(n) = Cn. Hence r ∈ Cn, so (2) fails. �

Corollary 1.40. Let D̄1 and D̄2 be systems of filters, and assume that p is in LD̄1
∩ LD̄2

. Let g : p →
clopen<ω be an almost continuous name of a sequence of clopen sets, and let

˜
Zg

1 and
˜
Zg

2 be the associated
LD̄1

-name and LD̄2
-name, respectively.

Then for any real r and n ∈ ω we have

p 
LD̄1 ˜
Zg

1 @n r ⇔ p 
LD̄2 ˜
Zg

2 @n r.

(We will use this corollary for the special case that LD̄1
is an ultralaver forcing, and LD̄2

is Laver forcing.)

Lemma 1.41. Let D̄1 and D̄2 be systems of filters, and assume that p is in LD̄1
∩LD̄2

. Let g : p→ clopen<ω

be a continuous name of a sequence of clopen sets, let F ⊆ p be a front and let h : F → ω be a front name.
Again we will write

˜
Zg

1 , ˜
Zg

2 for the associated names of codes for null sets, and we will write
˜
n1 and

˜
n2 for

the associated LD̄1
- and LD̄2

-names, respectively, of natural numbers.
Then for any real r we have:

p 
LD̄1 ˜
Zg

1 @˜
n1 r ⇔ p 
LD̄2 ˜

Zg
2 @˜

n2 r.

Proof. Assume p 
LD̄1 ˜
Zg

1 @˜
n1 r. So for each s ∈ F we have: p[s] 
LD̄1 ˜

Zg
1 @h(s) r. By Corollary ??, we also

have p[s] 
LD̄2 ˜
Zg

2 @h(s) r. So also p[s] 
LD̄2 ˜
Zg

2 @˜
n2 r for each s ∈ F. Hence p 
LD̄2 ˜

Zg
2 @˜

n2 r. �

Corollary 1.42. Assume q ∈ L forces in Laver forcing that
˜
Zgk @ r for k = 1, 2, . . ., where each gk is a

continuous name of a code for a null set. Then there is a Laver condition q′ ≤0 q such that for all ultrafilter
systems D̄ we have:

If q′ ∈ LD̄, then q′ forces (in ultralaver forcing LD̄) that
˜
Zgk @ r for all k.
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Proof. By (??) we can find a sequence (
˜
nk)∞k=1 of L-names such that q 


˜
Zgk @

˜
nk r for each k. By

Lemma ??(??) we can find q′ ≤0 q be such that this sequence is continuous below q′. Since each
˜
nk

is now a front name below q′, we can apply the previous lemma. �

Lemma 1.43. Let M be a countable model, r ∈ 2ω, D̄M ∈ M an ultrafilter system, D̄ a filter system
extending D̄M , q ∈ LD̄. For any V-generic filter G ⊆ LD̄ we write GM for the (M-generic, by Lemma ??)
filter on LD̄M .

The following are equivalent:

(1) q 
LD̄
r is random over M[GM].

(2) For all names
˜
Z ∈ M of codes for null sets: q 
LD̄ ˜

Z @ r.
(3) For all continuous names g ∈ M: q 
LD̄ ˜

Zg @ r.

Proof. (1)⇔(2) holds because every null set is contained in a set of the form nullset(Z), for some code Z.
(2)⇔(3): Every code for a null set in M[GM] is equal to

˜
Zg[GM], for some g ∈ M, by Corollary ??. �

The following lemma may be folklore. Nevertheless, we prove it for the convenience of the reader.

Lemma 1.44. Let r be random over a countable model M and A ∈ M. Then there is a countable model
M′ ⊇ M such that A is countable in M′, but r is still random over M′.

Proof. We will need the following forcing notions, all defined in M:

M C //

B1

��

MC

˜
B2

��
MB1

˜
P=C∗

˜
B2/B1

// MC∗
˜
B2

• Let C be the forcing that collapses the cardinality of A to ω with finite conditions.
• Let B1 be random forcing (trees T ⊆ 2<ω of positive measure).
• Let

˜
B2 be the C-name of random forcing.

• Let i : B1 → C ∗
˜
B2 be the natural complete embedding T 7→ (1C ,T ).

• Let
˜
P be a B1-name for the forcing C ∗

˜
B2/i[GB1 ], the quotient of C ∗

˜
B2 by the complete subforcing

i[B1].

The random real r is B1-generic over M. In M[r] we let P B
˜
P[r]. Now let H ⊆ P be generic over M[r].

Then r ∗ H ⊆ B1 ∗ ˜
P ' C ∗

˜
B2 induces an M-generic filter J ⊆ C and an M[J]-generic filter K ⊆

˜
B2[J]; it

is easy to check that K interprets the
˜
B2-name of the canonical random real as the given random real r.

Hence r is random over the countable model M′ B M[J], and A is countable in M′.

M J //

r

��

M[J]

K
��

M[r]
H

// M[r][H]

�

Proof of Lemma ??. We will first describe a construction that deals with a single triple (p̄, ¯
˜
Z, Z̄∗) (where p̄

is a sequence of conditions with strictly increasing stems which interprets ¯
˜
Z as Z̄∗); this construction will

yield a condition q′ = q′( p̄, ¯
˜
Z, Z̄∗). We will then show how to deal with all possible triples.

So let p be a condition, and let p̄ = (pk)k∈ω be a sequence interpreting ¯
˜
Z as Z̄∗, where the lengths of the

stems of pn are strictly increasing and p0 = p. It is easy to see that it is enough to deal with a single null
set, i.e., m = 1, and with k1 = 0. We write

˜
Z and Z∗ instead of

˜
Z1 and Z∗1 .

Using Lemma ?? we may (strengthening the conditions in our interpretation) assume (in M) that the
sequence (

˜
Z(k))k∈ω is almost continuous, witnessed by g : p → clopen<ω. By Lemma ??, we can find a

model M′ ⊇ M such that (2ω)M is countable in M′, but r is still random over M′.
We now work in M′. Note that g still defines an almost continuous name, which we again call

˜
Z.

Paper Sh:969, version 2011-12-27 10. See https://shelah.logic.at/papers/969/ for possible updates.
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Each filter in DM
s is now countably generated; let As be a pseudo-intersection of DM

s which additionally
satisfies As ⊆ succp(s) for all s ∈ p above the stem. Let D′s be the Fréchet filter on As. Let p′ ∈ LD̄′ be the
tree with the same stem as p which satisfies succp′ (s) = As for all s ∈ p′ above the stem.

By Lemma ??, we know that LD̄M is an M-complete subforcing of LD̄′ (in M′ as well as in V). We write
GM for the induced filter on LD̄M .

We now work in V . Note that below the condition p′, the forcing LD̄′ is just Laver forcing L, and that
p′ ≤L p. Using Lemma ?? we can find a condition q ≤ p′ (in Laver forcing L) such that:

q is M′-generic.(1.45)

q 
L r is random over M′[GL] (hence also over M[GM]).(1.46)
Moreover, q 
L ˜

Z @0 r.(1.47)

Enumerate all continuous LD̄M -names of codes for null sets from M as
˜
Zg1 ,

˜
Zg2 , . . . Applying Corol-

lary ?? yields a condition q′ ≤ q such that for all filter systems Ē satisfying q′ ∈ LĒ , we have q′ 
LĒ ˜
Zgi @ r

for all i. Corollary ?? and Lemma ?? now imply:

(1.48) For every filter system Ē satisfying q′ ∈ LĒ , q′ forces in LĒ that r is random over
M[GM] and that

˜
Z @0 r.

By thinning out q′ we may assume that

(1.49) For each ν ∈ ωω ∩ M there is k such that ν�k < q′.

We have now described a construction of q′ = q′( p̄,
˜
Z,Z∗).

Let ( p̄n,
˜
Zn,Z∗n) enumerate all triples ( p̄,

˜
Z,Z∗) ∈ M where p̄ interprets

˜
Z as Z∗ (and consists of con-

ditions with strictly increasing stems). For each n write νn for
⋃

k stem(pn
k), the branch determined by the

stems of the sequence p̄n. We now define by induction a sequence qn of conditions:
• q0 B q′( p̄0,

˜
Z0,Z∗0).

• Given qn−1 and (p̄n,
˜
Zn,Z∗n), we find k0 such that νn�k0 < q0 ∪ · · · ∪ qn−1 (using (??)). Let k1 be

such that stem(pn
k1

) has length > k0. We replace p̄n by p̄′ B (pn
k)k≥k1 . (Obviously, p̄′ still interprets

˜
Zn as Z∗n.) Now let qn B q′(p̄′,

˜
Zn,Z∗n).

Note that the stem of qn is at least as long as the stem of pn
k1

, and is therefore not in q0 ∪ · · · ∪ qn−1, so
stem(qi) and stem(q j) are incompatible for all i , j. Therefore we can choose for each s an ultrafilter Ds

extending DM
s such that stem(qi) ⊆ s implies succqi (s) ∈ Ds.

Note that all qi are in LD̄. Therefore, we can use (??). Also, qi ≤ pi
0. �

Below, in Lemma ??, we will prove a preservation theorem using the following “local” variant of “ran-
dom preservation”:

Definition 1.50. Fix a countable model M, a real r ∈ 2ω and a forcing notion QM ∈ M. Let QM be an
M-complete subforcing of Q. We say that “Q locally preserves randomness of r over M”, if there is in M
a sequence (DQM

n )n∈ω of open dense subsets of QM such that the following holds:
Assume that

• M thinks that p̄ B (pn)n∈ω interprets (
˜
Z1, . . . , ˜

Zm) as (Z∗1 , . . . ,Z
∗
m) (so each

˜
Zi is a QM-name of a

code for a null set and each Z∗i is a code for a null set, both in M);
• moreover, each pn is in DQM

n (we call such a sequence (pn)n∈ω, or the according interpretation,
“quick”;

• r is random over M;
• Z∗i @ki r for i = 1, . . . ,m.

Then there is a q ≤Q p0 forcing that
• r is random over M[GM];
•

˜
Zi @ki r for i = 1, . . . ,m.

Note that this is trivially satisfied if r is not random over M.
For a variant of this definition, see Section ??.
Setting DQM

n to be the set of conditions with stem of length at least n, Lemma ?? gives us:
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Corollary 1.51. If QM is an ultralaver forcing in M and r a real, then there is an ultralaver forcing Q
over16 QM locally preserving randomness of r over M.

2. Janus forcing

In this section, we define a family of forcing notions that has two faces (hence the name “Janus forcing”):
Elements of this family may be countable (and therefore equivalent to Cohen), and they may also be
essentially random.

In the rest of the paper, we will use the following properties of Janus forcing notions J. (And we will
use only these properties. So readers who are willing to take these properties for granted could skip to
Section ??.)

Throughout the whole paper we fix a function B∗ : ω → ω given by Corollary ??. The Janus forcings
will depend on a real parameter ¯̀∗ = (`∗m)m∈ω ∈ ω

ω which grows fast with respect to B∗. (In our application,
¯̀∗ will be given by a subsequence of an ultralaver real.)

The sequence ¯̀∗ and the function B∗ together define a notion of a “thin set” (see Definition ??).

(1) There is a canonical J-name for a (code for a) null set
˜
Z∇.

Whenever X ⊆ 2ω is not thin, and J is countable, then J forces that X is not strongly meager,
witnessed17 by nullset(

˜
Z∇) (the set we get when we evaluate the code

˜
Z∇). Moreover, for any J-

name
˜
Q of a σ-centered forcing, also J ∗

˜
Q forces that X is not strongly meager, again witnessed

by nullset(
˜
Z∇).

(This is Lemma ??; “thin” is defined in Definition ??.)
(2) Let M be a countable transitive model and JM a Janus forcing in M. Then JM is a Janus forcing in

V as well (and of course countable in V). (Also note that trivially the forcing JM is an M-complete
subforcing of itself.)
(This is Fact ??.)

(3) Whenever M is a countable transitive model and JM is a Janus forcing in M, then there is a Janus
forcing J such that
• JM is an M-complete subforcing of J.
• J is (in V) equivalent to random forcing (actually we just need that J preserves Lebesgue

positivity in a strong and iterable way).
(This is Lemma ?? and Lemma ??.)

(4) Moreover, the name
˜
Z∇ referred to in (??) is so “canonical” that it evaluates to the same code in

the J-generic extension over V as in the JM-generic extension over M.
(This is Fact ??.)

2.A. Definition of Janus. A Janus forcing J will consist of:18

• A countable “core” (or: backbone) ∇ which is defined in a combinatorial way from a parameter ¯̀∗.
(In our application, we will use a Janus forcing immediately after an ultralaver forcing, and ¯̀∗ will
be a subsequence of the ultralaver real.) This core is of course equivalent to Cohen forcing.

• Some additional “stuffing” J \ ∇ (countable19 or uncountable). We allow great freedom for this,
we just require that the core ∇ is a “sufficiently” complete subforcing (in a specific combinatorial
sense, see Definition ??(??)).

We will use the following combinatorial theorem from [?]:

Lemma 2.1 ([?, Theorem 8]20). For every ε, δ > 0 there exists Nε,δ ∈ ω such that for all sufficiently large

finite sets I ⊆ ω there is a nonempty family AI consisting of sets A ⊆ 2I with
|A|
2|I|
≤ ε such that if X ⊆ 2I ,

16“Q over QM” just means that QM is an M-complete subforcing of Q.
17in the sense of (??)
18We thank Andreas Blass and Jindřich Zapletal for their comments that led to an improved presentation of Janus forcing.
19Also the trivial case J = ∇ is allowed.
20The theorem in [?] actually says “for a sufficiently large I”, but the proof shows that this should be read as “for all sufficiently

large I”.
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|X| ≥ Nε,δ then
|{A ∈ AI : X + A = 2I}|

|AI |
≥ 1 − δ.

(Recall that X + A B {x + a : x ∈ X, a ∈ A}.)

Rephrasing and specializing to δ = 1
4 and ε = 1

2i we get:

Corollary 2.2. For every i ∈ ω there exists B∗(i) such that for all finite sets I with |I| ≥ B∗(i) there is a
nonempty familyAI satisfying the following:

• AI consists of sets A ⊆ 2I with
|A|
2|I|
≤

1
2i .

• For every X ⊆ 2I satisfying |X| ≥ B∗(i), the set {A ∈ AI : X + A = 2I} has at least 3
4 |AI | elements.

Assumption 2.3. We fix a sufficiently fast increasing sequence ¯̀∗ = (`∗i )i∈ω of natural numbers; more
precisely, the sequence ¯̀∗ will be a subsequence of an ultralaver real ¯̀, defined as in Lemma ?? using the
function B∗ from Corollary ??. Note that in this case `∗i+1 − `

∗
i ≥ B∗(i); so we can fix for each i a family

Ai ⊆P(2Li ) on the interval Li B [`∗i , `
∗
i+1) according to Corollary ??.

Definition 2.4. First we define the “core” ∇ = ∇ ¯̀∗ of our forcing:

∇ =
⋃
i∈ω

∏
j<i

A j.

In other words, σ ∈ ∇ iff σ = (A0, . . . , Ai−1) for some i ∈ ω, A0 ∈ A0, . . . , Ai−1 ∈ Ai−1. We will denote the
number i by height(σ).

The forcing notion ∇ is ordered by reverse inclusion (i.e., end extension): τ ≤ σ if τ ⊇ σ.

Definition 2.5. Let ¯̀∗ = (`∗i )i∈ω be as in the assumption above. We say that J is a Janus forcing based on ¯̀∗

if:

(1) (∇,⊇) is an incompatibility-preserving subforcing of J.
(2) For each i ∈ ω the set {σ ∈ ∇ : height(σ) = i} is predense in J. So in particular, J adds a

branch through ∇. The union of this branch is called
˜
C∇ = (

˜
C∇0 , ˜

C∇1 , ˜
C∇2 , . . .), where

˜
C∇i ⊆ 2Li with

˜
C∇i ∈ Ai.

(3) “Fatness”:21 For all p ∈ J and all real numbers ε > 0 there are arbitrarily large i ∈ ω such that there
is a core condition σ = (A0, . . . , Ai−1) ∈ ∇ (of length i) with

|{A ∈ Ai : σ_A ‖J p }|
|Ai|

≥ 1 − ε.

(Recall that p ‖J q means that p and q are compatible in J.)
(4) J is ccc.
(5) J is separative.22

(6) (To simplify some technicalities:) J ⊆ H(ℵ1).

We now define
˜
Z∇, which will be a canonical J-name of (a code for) a null set. We will use the sequence

˜
C∇ added by J (see Definition ??(??)).

Definition 2.6. Each
˜
C∇i defines a clopen set

˜
Z∇i = {x ∈ 2ω : x�Li ∈

˜
C∇i } of measure at most 1

2i . The
sequence

˜
Z∇ = (

˜
Z∇0 , ˜

Z∇1 , ˜
Z∇2 , . . .) is (a name for) a code for the null set

nullset(
˜
Z∇) =

⋂
n<ω

⋃
i≥n ˜

Z∇i .

Since
˜
C∇ is defined “canonically” (see in particular Definition ??(??),(??)), and

˜
Z∇ is constructed in an

absolute way from
˜
C∇, we get:

21This is the crucial combinatorial property of Janus forcing. Actually, (??) implies (??).
22Separative is defined on page ??.
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Fact 2.7. If J is a Janus forcing, M a countable model and JM a Janus forcing in M which is an M-complete
subset of J, if H is J-generic over V and HM the induced JM-generic filter over M, then

˜
C∇ evaluates to the

same real in M[HM] as in V[H], and therefore
˜
Z∇ evaluates to the same code (but of course not to the same

set of reals).

For later reference, we record the following trivial fact:

Fact 2.8. Being a Janus forcing is absolute. In particular, if V ⊆ W are set theoretical universes and J is a
Janus forcing in V , then J is a Janus forcing in W. In particular, if M is a countable model in V and J ∈ M
a Janus forcing in M, then J is also a Janus forcing in V .
Let (Mn)n∈ω be an increasing sequence of countable models, and let Jn ∈ Mn be Janus forcings. Assume
that Jn is Mn-complete in Jn+1. Then

⋃
n J

n is a Janus forcing, and an Mn-complete extension of Jn for all n.

2.B. Janus and strongly meager. Carlson [?] showed that Cohen reals make every uncountable set X of
the ground model not strongly meager in the extension (and that not being strongly meager is preserved
in a subsequent forcing with precaliber ℵ1). We show that a countable Janus forcing J does the same
(for a subsequent forcing that is even σ-centered, not just precaliber ℵ1). This sounds trivial, since any
(nontrivial) countable forcing is equivalent to Cohen forcing anyway. However, we show (and will later
use) that the canonical null set

˜
Z∇ defined above witnesses that X is not strongly meager (and not just some

null set that we get out of the isomorphism between J and Cohen forcing). The point is that while ∇ is not
a complete subforcing of J, the condition (??) of the Definition ?? guarantees that Carlson’s argument still
works, if we assume that X is non-thin (not just uncountable). This is enough for us, since by Corollary ??
ultralaver forcing makes any uncountable set non-thin.

Recall that we fixed the increasing sequence ¯̀∗ = (`∗i )i∈ω and B∗. In the following, whenever we say
“(very) thin” we mean “(very) thin with respect to ¯̀∗ and B∗” (see Definition ??).

Lemma 2.9. If X is not thin, J is a countable Janus forcing based on ¯̀∗, and
˜
R is a J-name for a σ-centered

forcing notion, then J ∗
˜
R forces that X is not strongly meager witnessed by the null set

˜
Z∇.

Proof. Let
˜
c be a J-name for a function

˜
c :

˜
R→ ω witnessing that

˜
R is σ-centered.

Recall that “
˜
Z∇ witnesses that X is not strongly meager” means that X +

˜
Z∇ = 2ω. Assume towards

a contradiction that (p, r) ∈ J ∗
˜
R forces that X +

˜
Z∇ , 2ω. Then we can fix a (J ∗

˜
R)-name

˜
ξ such that

(p, r) 

˜
ξ < X +

˜
Z∇, i.e., (p, r) 
 (∀x ∈ X)

˜
ξ < x +

˜
Z∇. By definition of

˜
Z∇, we get

(p, r) 
 (∀x ∈ X) (∃n ∈ ω) (∀i ≥ n)
˜
ξ�Li < x�Li +

˜
C∇i .

For each x ∈ X we can find (px, rx) ≤ (p, r) and natural numbers nx ∈ ω and mx ∈ ω such that px forces
that

˜
c(rx) = mx and

(px, rx) 
 (∀i ≥ nx)
˜
ξ�Li < x�Li +

˜
C∇i .

So X =
⋃

p∈J,m∈ω,n∈ω Xp,m,n, where Xp,m,n is the set of all x with px = p, mx = m, nx = n. (Note that J is
countable, so the union is countable.) As X is not thin, there is some p∗,m∗, n∗ such that X∗ B Xp∗,m∗,n∗ is
not very thin. So we get for all x ∈ X∗:

(2.10) (p∗, rx) 
 (∀i ≥ n∗)
˜
ξ�Li < x�Li +

˜
C∇i .

Since X∗ is not very thin, there is some i0 ∈ ω such that for all i ≥ i0
(2.11) the (finite) set X∗�Li has more than B∗(i) elements.

Due to the fact that J is a Janus forcing (see Definition ?? (??)), there are arbitrarily large i ∈ ω such that
there is a core condition σ = (A0, . . . , Ai−1) ∈ ∇ with

(2.12)
|{A ∈ Ai : σ_A ‖J p∗}|

|Ai|
≥

2
3
.

Fix such an i larger than both i0 and n∗, and fix a condition σ satisfying (??).
We now consider the following two subsets ofAi:

(2.13) {A ∈ Ai : σ_A ‖J p∗} and {A ∈ Ai : X∗�Li + A = 2Li }.

By (??), the relative measure (in Ai) of the left one is at least 2
3 ; due to (??) and the definition of Ai

according to Corollary ??, the relative measure of the right one is at least 3
4 ; so the two sets in (??) are not

disjoint, and we can pick an A belonging to both.
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Clearly, σ_A forces (in J) that
˜
C∇i is equal to A. Fix q ∈ J witnessing σ_A ‖J p∗. Then

(2.14) q 
J X∗�Li +
˜
C∇i = X∗�Li + A = 2Li .

Since p∗ forces that for each x ∈ X∗ the color
˜
c(rx) = m∗, we can find an r∗ which is (forced by q ≤ p∗

to be) a lower bound of the finite set {rx : x ∈ X∗∗}, where X∗∗ ⊆ X∗ is any finite set with X∗∗�Li = X∗�Li.
By (??),

(q, r∗) 

˜
ξ�Li < X∗∗�Li +

˜
C∇i = X∗�Li +

˜
C∇i ,

contradicting (??). �

Corollary 2.15. Let X be uncountable. If LD̄ is any ultralaver forcing adding an ultralaver real ¯̀, and ¯̀∗

is defined from ¯̀ as in Lemma ??, and if
˜
J is a countable Janus forcing based on ¯̀∗,

˜
Q is any σ-centered

forcing, then LD̄ ∗ ˜
J ∗

˜
Q forces that X is not strongly meager.

2.C. Janus forcing and preservation of Lebesgue positivity. We show that every Janus forcing in a
countable model M can be extended to locally preserve a given random real over M. (We showed the same
for ultralaver forcing in Section ??.)

We start by proving that every countable Janus forcing can be embedded into a Janus forcing which is
equivalent to random forcing, preserving the maximality of countably many maximal antichains. (In the
following lemma, the letter M is just a label to distinguish JM from J, and does not necessarily refer to a
model.)

Lemma 2.16. Let JM be a countable Janus forcing (based on ¯̀∗) and let {Dk : k ∈ ω} be a countable
family of open dense subsets of JM . Then there is a Janus forcing J (based on the same ¯̀∗) such that

• JM is an incompatibility-preserving subforcing of J.
• Each Dk is still predense in J.
• J is forcing equivalent to random forcing.

Proof. Recall that ∇ = ∇J
M

was defined in Definition ??. Note that for each j the set {σ ∈ ∇ : height(σ) =

j} is predense in JM , so the set

E j B {p ∈ JM : ∃σ ∈ ∇ : height(σ) = j, p ≤ σ}(2.17)

is dense open in JM; hence without loss of generality each E j appears in our list of Dk’s.
Let {rn : n ∈ ω} be an enumeration of JM .
We now fix n for a while (up to (??)). We will construct a finitely splitting tree S n ⊆ ω<ω and a family

(σn
s , pn

s , τ
∗n
s )s∈S n satisfying the following (suppressing the superscript n):

(a) σs ∈ ∇, σ〈〉 = 〈〉, s ⊆ t implies σs ⊆ σt, and s ⊥S n t implies σs ⊥∇ σt.
(So in particular the set {σt : t ∈ succS n (s)} is a (finite) antichain above σs in ∇.)

(b) ps ∈ J
M , p〈〉 = rn; if s ⊆ t then pt ≤JM ps (hence pt ≤ rn); s ⊥S n t implies ps ⊥JM pt.

(c) ps ≤JM σs.
(d) σs ⊆ τ

∗
s ∈ ∇, and {σt : t ∈ succS n (s)} is the set of all τ ∈ succ∇(τ∗s) which are compatible with ps.

(e) The set {σt : t ∈ succS n (s)} is a subset of succ∇(τ∗s) of relative size at least 1 − 1
lh(s)+10 .

(f) Each s ∈ S n has at least 2 successors (in S n).
(g) If k = lh(s), then ps ∈ Dk (and therefore also in all Dl for l < k).

Set σ〈〉 = 〈〉 and p〈〉 = rn. Given s, σs and ps, we construct succS n (s) and (σt, pt)t∈succS n (s): We apply
fatness ??(??) to ps with ε = 1

lh(s)+10 . So we get some τ∗s ∈ ∇ of height bigger than the height of σs such
that the set B of elements of succ∇(τ∗s) which are compatible with ps has relative size at least 1 − ε. Since
ps ≤JM σs we get that τ∗s is compatible with (and therefore stronger than) σs. Enumerate B as {τ0, . . . , τl−1}.
Set succS n (s) = {s_i : i < l} and σs_i = τi. For t ∈ succS n (s), choose pt ∈ J

M stronger than both σt and ps

(which is obviously possible since σt and ps are compatible), and moreover pt ∈ Dlh(t). This concludes the
construction of the family (σn

s , pn
s , τ
∗n
s )s∈S n .

So (S n,⊆) is a finitely splitting nonempty tree of height ω with no maximal nodes and no isolated
branches. [S n] is the (compact) set of branches of S n. The closed subsets of [S n] are exactly the sets of
the form [T ], where T ⊆ S n is a subtree of S n with no maximal nodes. [S n] carries a natural (“uniform”)
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probability measure µn, which is characterized by

µn((S n)[t]) =
1

|succS n (s)|
· µn((S n)[s])

for all s ∈ S n and all t ∈ succS n (s). (We just write µn(T ) instead of µn([T ]) to increase readability.)
We call T ⊆ S n positive if µn(T ) > 0, and we call T pruned if µn(T [s]) > 0 for all s ∈ T . (Clearly every

tree T contains a pruned tree T ′ of the same measure, which can be obtained from T by removing all nodes
s with µn(T [s]) = 0.)

Let T ⊆ S n be a positive, pruned tree and ε > 0. Then on all but finitely many levels k there is an s ∈ T
such that

(2.18) succT (s) ⊆ succS n (s) has relative size ≥ 1 − ε.

(This follows from Lebesgue’s density theorem, or can easily be seen directly: Set Cm =
⋃

t∈T, lh(t)=m (S n)[t].
Then Cm is a decreasing sequence of closed sets, each containing [T ]. If the claim fails, then µn(Cm+1)) ≤
µn(Cm) · (1 − ε) infinitely often; so µn(T ) ≤ µn(

⋂
m Cm) = 0.)

It is well known that the set of positive, pruned subtrees of S n, ordered by inclusion, is forcing equivalent
to random forcing (which can be defined as the set of positive, pruned subtrees of 2<ω).

We have now constructed S n for all n. Define

J = JM ∪
⋃

n

{
(n,T ) : T ⊆ S n is a positive pruned tree

}
(2.19)

with the following partial order:
• The order on J extends the order on JM .
• (n′,T ′) ≤ (n,T ) if n = n′ and T ′ ⊆ T .
• For p ∈ JM: (n,T ) ≤ p if there is a k such that pn

t ≤ p for all t ∈ T of length k. (Note that this will
then be true for all bigger k as well.)

• p ≤ (n,T ) never holds (for p ∈ JM).
The lemma now easily follows from the following properties:

(1) The order on J is transitive.
(2) JM is an incompatibility-preserving subforcing of J.

In particular, J satisfies item (??) of Definition ?? of Janus forcing.
(3) For all k: the set {(n,T [t]) : t ∈ T, lh(t) = k} is a (finite) predense antichain below (n,T ).
(4) (n,T [t]) is stronger than pn

t for each t ∈ T (witnessed, e.g., by k = lh(t)). Of course, (n,T [t]) is
stronger than (n,T ) as well.

(5) Since pn
t ∈ Dk for k = lh(t), this implies that each Dk is predense below each (n, S n) and therefore

in J.
Also, since each set E j appeared in our list of open dense subsets (see (??)), the set {σ ∈ ∇ :
height(σ) = j} is still predense in J, i.e., item (??) of the Definition ?? of Janus forcing is satisfied.

(6) The condition (n, S n) is stronger than rn, so {(n, S n) : n ∈ ω} is predense in J and J \ JM is dense
in J.
Below each (n, S n), the forcing J is isomorphic to random forcing.
Therefore, J itself is forcing equivalent to random forcing. (In fact, the complete Boolean algebra
generated by J is isomorphic to the standard random algebra, Borel sets modulo null sets.) This
proves in particular that J is ccc, i.e., satisfies property ??(??).

(7) It is easy (but not even necessary) to check that J is separative, i.e., property ??(??). In any case,
we could replace ≤J by ≤∗J , thus making J separative without changing ≤JM , since JM was already
separative.

(8) Property ??(??), i.e., J ∈ H(ℵ1), is obvious.
(9) The remaining item of the definition of Janus forcing, fatness ??(??), is satisfied.

I.e., given (n,T ) ∈ J and ε > 0 there is an arbitrarily high τ∗ ∈ ∇ such that the relative size of the
set {τ ∈ succ∇(τ∗) : τ ‖ (n,T )} is at least 1 − ε. (We will show ≥ (1 − ε)2 instead, to simplify the
notation.)

We show (??): Given (n,T ) ∈ J and ε > 0, we use (??) to get an arbitrarily high s ∈ T such that succT (s)
is of relative size ≥ 1 − ε in succS n (s). We may choose s of length > 1

ε
. We claim that τ∗s is as required:
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• Let B B {σt : t ∈ succS n (s)}. Note that B = {τ ∈ succ∇(τ∗s) : τ ‖ ps}.
B has relative size ≥ 1 − 1

lh(s) ≥ 1 − ε in succ∇(τ∗s) (according to property (??) of S n).
• C B {σt : t ∈ succT (s)} is a subset of B of relative size ≥ 1 − ε according to our choice of s.
• So C is of relative size (1 − ε)2 in succ∇(τ∗s).
• Each σt ∈ C is compatible with (n,T ), as (n,T [t]) ≤ pt ≤ σt (see (??)). �

So in particular if JM is a Janus forcing in a countable model M, then we can extend it to a Janus forcing
Jwhich is in fact random forcing. Since random forcing strongly preserves randoms over countable models
(see Lemma ??), it is not surprising that we get local preservation of randoms for Janus forcing, i.e., the
analoga of Lemma ?? and Corollary ??. (Still, some additional argument is needed, since the fact that J
(which is now random forcing) “strongly preserves randoms” just means that a random real r over M is
preserved with respect to random forcing in M, not with respect to JM .)

Lemma 2.20. If JM is a Janus forcing in a countable model M and r a random real over M, then there is
a Janus forcing J such that JM is an M-complete subforcing of J and the following holds:
If

• p ∈ JM ,
• in M,

˜
Z̄ = (

˜
Z1, . . . , ˜

Zm) is a sequence of JM-names for codes for null sets, and Z∗1 , . . . ,Z
∗
m are

interpretations under p, witnessed by a sequence (pn)n∈ω,
• Z∗i @ki r for i = 1, . . . ,m,

then there is a q ≤ p in J forcing that
• r is random over M[GM],
•

˜
Zi @ki r for i = 1, . . . ,m.

Remark 2.21. In the version for ultralaver forcings, i.e., Lemma ??, we had to assume that the stems of
the witnessing sequence are strictly increasing. In the Janus version, we do not have any requirement of
that kind.

Proof. LetD be the set of dense subset of JM in M. According to Lemma ??, we can first find some count-
able M′ such that r is still random over M′ and such that in M′ both JM and D are countable. According
to Fact ??, JM is a (countable) Janus forcing in M′, so we can apply Lemma ?? to the set D to construct a
Janus forcing JM

′

which is equivalent to random forcing such that (from the point of V) JM lM J
M′ . In V ,

let J be random forcing; since this is a Suslin ccc forcing we know that JM
′

is an M′-complete subforcing
of J and therefore that JM lM J. Moreover, as was noted in Lemma ??, we even know that random forcing
strongly preserves randoms over M′ (see Definition ??).

So assume that (in M) the sequence (pn)n∈ω of JM-conditions interprets
˜
Z̄ as Z̄∗. In M′, JM-names can

be reinterpreted as JM
′

-names, and the JM
′

-name
˜
Z̄ is interpreted as Z̄∗ by the same sequence (pn)n∈ω. Let

k1, . . . , km be such that Z∗i @ki r for i = 1, . . . ,m. So by strong preservation of randoms, we can in V find
some q ≤ p0 forcing that r is random over M′[HM′ ] (and therefore also over the subset M[HM]), and that

˜
Zi @ki r (where

˜
Zi can be evaluated in M′[HM′ ] or equivalently in M[HM]). �

So Janus forcing is locally preserving randoms (just as ultralaver forcing):

Corollary 2.22. If QM is a Janus forcing in M and r a real, then there is a Janus forcing Q over QM (which
is in fact equivalent to random forcing) locally preserving randomness of r over M.

Proof. In this case, the notion of “quick” interpretations is trivial, i.e., DQM

k = QM for all k, and the claim
follows from the previous lemma. �

3. Almost finite and almost countable support iterations

A main tool to construct the forcing for BC+dBC will be “partial countable support iterations”, more
particularly “almost finite support” and “almost countable support” iterations. A partial countable support
iteration is a forcing iteration (Pα,Qα)α<ω2 such that for each limit ordinal δ the forcing notion Pδ is a subset
of the countable support limit of (Pα,Qα)α<δ which satisfies some natural properties (see Definition ??).

Instead of transitive models, we will use ord-transitive models (which are transitive when ordinals are
considered as urelements). Why do we do that? We want to “approximate” the generic iteration P̄ of length
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ω2 with countable models; this can be done more naturally with ord-transitive models (since obviously
countable transitive models only see countable ordinals). We call such an ord-transitive model a “candi-
date” (provided it satisfies some nice properties, see Definition ??). A basic point is that forcing extensions
work naturally with candidates.

In the following, x = (Mx, P̄x) will denote a pair such that Mx is a candidate and P̄x is (in Mx) a partial
countable support iteration; similarly we write, e.g., y = (My, P̄y) or xn = (Mxn , P̄xn ).

We will need the following results to prove BC+dBC. (However, as opposed to the case of the ultralaver
and Janus section, the reader will probably have to read this section to understand the construction in the
next section, and not just the following list of properties.)

Given x = (Mx, P̄x), we can construct by induction on α a partial countable support iteration P̄ =

(Pα,Qα)α<ω2 satisfying:
There is a canonical Mx-complete embedding from P̄x to P̄.

In this construction, we can use at each stage β any desired Qβ, as long as Pβ forces that Qx
β is (evaluated

as) an Mx[Hx
β]-complete subforcing of Qβ (where Hx

β ⊆ Px
β is the Mx-generic filter induced by the generic

filter Hβ ⊆ Pβ).
Moreover, we can demand either of the following two additional properties23 of the limit of this iteration P̄:

(1) If all Qβ are forced to be σ-centered, and Qβ is trivial for all β < Mx, then Pω2 is σ-centered.
(2) If r is random over Mx, and all Qβ locally preserve randomness of r over Mx[Hx

β] (see Defini-
tion ??), then also Pω2 locally preserves the randomness of r.

Actually, we need the following variant: Assume that we already have Pα0 for some α0 ∈ Mx, and that Px
α0

canonically embeds into Pα0 , and that the respective assumption on Qβ holds for all β ≥ α0. Then we get
that Pα0 forces that the quotient Pω2/Pα0 satisfies the respective conclusion.

We also need:24

(3) If instead of a single x we have a sequence xn such that each Pxn canonically (and Mxn -completely)
embeds into Pxn+1 , then we can find a partial countable support iteration P̄ into which all Pxn embed
canonically (and we can again use any desired Qβ, assuming that Qxn

β is an Mxn [Hxn
β ]-complete

subforcing of Qβ for all n ∈ ω).
(4) (A fact that is easy to prove but awkward to formulate.) If a ∆-system argument produces two

x1, x2 as in Lemma ??(??), then we can find a partial countable support iteration P̄ such that P̄xi

canonically (and Mxi -completely) embeds into P̄ for i = 1, 2.

3.A. Ord-transitive models. We will use “ord-transitive” models, as introduced in [?] (see also the pre-
sentation in [?]). We briefly summarize the basic definitions and properties (restricted to the rather simple
case needed in this paper):

Definition 3.1. Fix a suitable finite subset ZFC∗ of ZFC (that is satisfied by H(χ∗) for sufficiently large
regular χ∗).

(1) A set M is called a candidate, if
• M is countable,
• (M, ∈) is a model of ZFC∗,
• M is ord-absolute: M |= α ∈ Ord iff α ∈ Ord, for all α ∈ M,
• M is ord-transitive: if x ∈ M \ Ord, then x ⊆ M,
• ω + 1 ⊆ M.
• “α is a limit ordinal” and “α = β + 1” are both absolute between M and V .

(2) A candidate M is called nice, if “α has countable cofinality” and “the countable set A is cofinal
in α” both are absolute between M and V . (So if α ∈ M has countable cofinality, then α ∩ M is
cofinal in α.) Moreover, we assume ω1 ∈ M (which implies ω1

M = ω1) and ω2 ∈ M (but we do
not require ω2

M = ω2).
(3) Let PM be a forcing notion in a candidate M. (To simplify notation, we can assume without loss

of generality that PM ∩ Ord = ∅ (or at least ⊆ ω) and that therefore PM ⊆ M and also A ⊆ M

23The σ-centered version is central for the proof of dBC; the random preserving version for BC.
24This will give σ-closure and ℵ2-cc for the preparatory forcing R.
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whenever M thinks that A is a subset of PM .) Recall that a subset HM of PM is M-generic (or:
PM-generic over M), if |A ∩ HM | = 1 for all maximal antichains A in M.

(4) Let HM be PM-generic over M and
˜
τ a PM-name in M. We define the evaluation

˜
τ[HM]M to be x if

M thinks that p 
PM

˜
τ = x̌ for some p ∈ HM and x ∈ M (or equivalently just for x ∈ M∩Ord), and

{
˜
σ[HM]M : (

˜
σ, p) ∈

˜
τ, p ∈ HM} otherwise. Abusing notation we write

˜
τ[HM] instead of

˜
τ[HM]M ,

and we write M[HM] for {
˜
τ[HM] :

˜
τ is a PM-name in M}.

(5) The ord-collapse k (or kM) is a recursively defined function with domain M: k(x) = x if x ∈ Ord,
and k(x) = {k(y) : y ∈ x ∩ M} otherwise.

(6) The ord-transitive closure of a set x is defined inductively on the rank:

ordclos(x) = x ∪
⋃
{ordclos(y) : y ∈ x \ Ord}.

So ordclos(x) is the smallest ord-transitive set containing x as a subset. HCON is the collection of
all sets x such that the ord-transitive closure of x is countable. x is in HCON iff x is element of
some candidate. In particular, all reals and all ordinals are HCON.

We write HCONα for the family of all sets x in HCON whose ord-transitive closure (or, in this
case equivalently, transitive closure) only contains ordinals < α.

The following facts can be found in [?] or [?] (they can be proven by rather straightforward, if tedious,
inductions on the ranks of the according objects).

Fact 3.2. (1) The ord-collapse of a countable elementary submodel of H(χ∗) is a nice candidate.
(2) Unions, intersections etc. are generally not absolute for candidates. For example, let x ∈ M \ Ord.

In M we can construct a set y such that M |= y = ω1 ∪ {x}. Then y is not an ordinal and therefore a
subset of M, and in particular y is countable and y , ω1 ∪ {x}.

(3) Let j : M → M′ be the transitive collapse of a candidate M, and f : ω1 ∩ M′ → Ord the inverse
(restricted to the ordinals). Obviously M′ is a countable transitive model of ZFC∗; moreover M
is characterized by the pair (M′, f ) (we call such a pair a “labeled transitive model”). Note that f
satisfies f (α + 1) = f (α) + 1, f (α) = α for α ∈ ω ∪ {ω}. M |= (α is a limit) iff f (α) is a limit.
M |= cf(α) = ω iff cf( f (α)) = ω, and in that case f [α] is cofinal in α. On the other hand, given
a transitive countable model M′ of ZFC∗ and an f as above, then we can construct a (unique)
candidate M corresponding to (M′, f ).

(4) All candidates M with M ∩ Ord ⊆ ω1 are hereditarily countable, so their number is at most 2ℵ0 .
Similarly, the cardinality of HCONα is at most continuum whenever α < ω2.

(5) If M is a candidate, and if HM is PM-generic over M, then M[HM] is a candidate as well and an
end-extension of M such that M ∩ Ord = M[HM] ∩ Ord. If M is nice and (M thinks that) PM is
proper, then M[HM] is nice as well.

(6) Forcing extensions commute with the transitive collapse j: If M corresponds to (M′, f ), then
HM ⊆ PM is PM-generic over M iff H′ B j[HM] is P′ B j(PM)-generic over M′, and in that case
M[HM] corresponds to (M′[H′], f ). In particular, the forcing extension of M[HM] of M satisfies
the forcing theorem (everything that is forced is true, and everything true is forced).

(7) For elementary submodels, forcing extensions commute with ord-collapses: Let N be a countable
elementary submodel of H(χ∗), P ∈ N, k : N → M the ord-collapse (so M is a candidate), and let
H be P-generic over V . Then H is P-generic over N iff HM B k[H] is PM B k(P)-generic over M;
and in that case the ord-collapse of N[H] is M[HM].

Assume that a nice candidate M thinks that (P̄M , Q̄M) is a forcing iteration of length ω2
V (we will

usually write ω2 for the length of the iteration, by this we will always mean ω2
V and not the possibly

different ω2
M). In this section, we will construct an iteration (P̄, Q̄) in V , also of length ω2, such that each

PM
α canonically and M-completely embeds into Pα for all α ∈ ω2 ∩ M. Once we know (by induction) that

PM
α M-completely embeds into Pα, we know that a Pα-generic filter Hα induces a PM

α -generic (over M)
filter which we call HM

α . Then M[HM
α ] is a candidate, but nice only if PM

α is proper. We will not need that
M[HM

α ] is nice, actually we will only investigate set of reals (or elements of H(ℵ1)) in M[HM
α ], so it does

not make any difference whether we use M[HM
α ] or its transitive collapse.
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Remark 3.3. In the discussion so far we omitted some details regarding the theory ZFC∗ (that a candidate
has to satisfy). The following “fine print” hopefully absolves us from any liability. (It is entirely irrelevant
for the understanding of the paper.)

We have to guarantee that each M[HM
α ] that we consider satisfies enough of ZFC to make our arguments

work (for example, the definitions and basic properties of ultralaver and Janus forcings should work). This
turns out to be easy, since (as usual) we do not need the full power set axiom for these arguments (just the
existence of, say, i5). So it is enough that each M[HM

α ] satisfies some fixed finite subset of ZFC minus
power set, which we call ZFC∗.

Of course we can also find a bigger (still finite) set ZFC∗∗ that implies: i10 exists, and each forcing
extension of the universe with a forcing of size ≤ i4 satisfies ZFC∗. And it is provable (in ZFC) that each
H(χ) satisfies ZFC∗∗ for sufficiently large regular χ.

We define candidate using the weaker theory ZFC∗, and require that nice candidates satisfies the stronger
theory ZFC∗∗. This guarantees that all forcing extensions (by small forcings) of nice candidates will be
candidates (in particular, satisfy enough of ZFC such that our arguments about Janus or ultralaver forcings
work). Also, every ord-collapse of a countable elementary submodel N of H(χ) will be a nice candidate.

3.B. Partial countable support iterations. We introduce the notion of “partial countable support limit”:
a subset of the countable support (CS) limit containing the union (i.e., the direct limit) and satisfying some
natural requirements.

Let us first describe what we mean by “forcing iteration”. They have to satisfy the following require-
ments:

• A “topless forcing iteration” (Pα,Qα)α<ε is a sequence of forcing notions Pα and Pα-names Qα

of quasiorders with a weakest element 1Qα
. A “topped iteration” additionally has a final limit Pε.

Each Pα is a set of partial functions on α (as, e.g., in [?]). More specifically, if α < β ≤ ε and
p ∈ Pβ, then p�α ∈ Pα. Also, p�β 
Pβ p(β) ∈ Qβ for all β ∈ dom(p). The order on Pβ will
always be the “natural” one: q ≤ p iff q�α forces (in Pα) that qtot(α) ≤ ptot(α) for all α < β, where
rtot(α) = r(α) for all α ∈ dom(r) and 1Qα

otherwise. Pα+1 consists of all p with p�α ∈ Pα and
p�α 
 ptot(α) ∈ Qα, so it is forcing equivalent to Pα ∗ Qα.

• Pα ⊆ Pβ whenever α < β ≤ ε. (In particular, the empty condition is an element of each Pβ.)
• For any p ∈ Pε and any q ∈ Pα (α < ε) with q ≤ p�α, the partial function q∧ p B q∪ p�[α, ε) is a

condition in Pε as well (so in particular, p�α is a reduction of p, hence Pα is a complete subforcing
of Pε; and q ∧ p is the weakest condition in Pε stronger than both q and p).

• Abusing notation, we usually just write P̄ for an iteration (be it topless or topped).
• We usually write Hβ for the generic filter on Pβ (which induces Pα-generic filters called Hα for
α ≤ β). For topped iterations we call the filter on the final limit sometimes just H instead of Hε.

We use the following notation for quotients of iterations:

• For α < β, in the Pα-extension V[Hα], we let Pβ/Hα be the set of all p ∈ Pβ with p�α ∈ Hα

(ordered as in Pβ). We may occasionally write Pβ/Pα for the Pα-name of Pβ/Hα.
• Since Pα is a complete subforcing of Pβ, this is a quotient with the usual properties, in particular

Pβ is equivalent to Pα ∗ (Pβ/Hα).

Remark 3.4. It is well known that quotients of proper countable support iterations are naturally equivalent
to (names of) countable support iterations. In this paper, we can restrict our attention to proper forcings, but
we do not really have countable support iterations. It turns out that it is not necessary to investigate whether
our quotients can naturally be seen as iterations of any kind, so to avoid the subtle problems involved we
will not consider the quotient as an iteration by itself.

Definition 3.5. Let P̄ be a (topless) iteration of limit length ε. We define three limits of P̄:

• The “direct limit” is the union of the Pα (for α < ε). So this is the smallest possible limit of the
iteration.

• The “inverse limit” consists of all partial functions p with domain ⊆ ε such that p�α ∈ Pα for all
α < ε. This is the largest possible limit of the iteration.

• The “full countable support limit PCS
ε ” of P̄ is the inverse limit if cf(ε) = ω and the direct limit

otherwise.
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We say that Pε is a “partial CS limit”, if Pε is a subset of the full CS limit and the sequence (Pα)α≤ε is a
topped iteration. In particular, this means that Pε contains the direct limit, and satisfies the following for
each α < ε: Pε is closed under p 7→ p�α, and whenever p ∈ Pε, q ∈ Pα, q ≤ p�α, then also the partial
function q ∧ p is in Pε.

So for a given topless P̄ there is a well-defined inverse, direct and full CS limit. If cf(ε) > ω, then they
all coincide. If cf(ε) = ω, then the direct limit and the full CS limit (=inverse limit) differ. Both of them
are partial CS limits, but there are many more possibilities for partial CS limits. By definition, all of them
will yield iterations.

Note that the name “CS limit” is slightly inappropriate, as the size of supports of conditions is not part
of the definition. To give a more specific example: Consider a topped iteration P̄ of length ω+ω where Pω

is the direct limit and Pω+ω is the full CS limit. Let p be any element of the full CS limit of P̄�ω which is
not in Pω; then p is not in Pω+ω either. So not every countable subset of ω+ω can appear as the support of
a condition.

Definition 3.6. A forcing iteration P̄ is called a “partial CS iteration”, if
• every limit is a partial CS limit, and
• every Qα is (forced to be) separative.25

The following fact can easily be proved by transfinite induction:

Fact 3.7. Let P̄ be a partial CS iteration. Then for all α the forcing notion Pα is separative.

From now on, all iterations we consider will be partial CS iterations. In this paper, we will only be
interested in proper partial CS iterations, but properness is not part of the definition of partial CS iteration.
(The reader may safely assume that all iterations are proper.)

Note that separativity of the Qα implies that all partial CS iterations satisfy the following (trivially
equivalent) properties:

Fact 3.8. Let P̄ be a topped partial CS iteration of length ε. Then:
(1) Let H be Pε-generic. Then p ∈ H iff p�α ∈ Hα for all α < ε.
(2) For all q, p ∈ Pε: If q�α ≤∗ p�α for each α < ε, then q ≤∗ p.
(3) For all q, p ∈ Pε: If q�α ≤∗ p�α for each α < ε, then q ‖ p.

We will be concerned with the following situation:
Assume that M is a nice candidate, P̄M is (in M) a topped partial CS iteration of length ε (a limit ordinal

in M), and P̄ is (in V) a topless partial CS iteration of length ε′ B sup(ε ∩ M). (Recall that “cf(ε) = ω”
is absolute between M and V , and that cf(ε) = ω implies ε′ = ε.) Moreover, assume that we already have
a system of M-complete coherent26 embeddings iβ : PM

β → Pβ for β ∈ ε′ ∩ M = ε ∩ M. (Recall that any
potential partial CS limit of P̄ is a subforcing of the full CS limit PCS

ε′ .) It is easy to see that there is only one
possibility for an embedding j : PM

ε → PCS
ε′ (in fact, into any potential partial CS limit of P̄) that extends

the iβ’s naturally:

Definition 3.9. For a topped partial CS iteration P̄M in M of length ε and a topless one P̄ in V of length
ε′ B sup(ε∩M) together with coherent embeddings iβ, we define j : PM

ε → PCS
ε′ , the “canonical extension”,

in the obvious way: Given p ∈ PM
ε , take the sequence of restrictions to M-ordinals, apply the functions iβ,

and let j(p) be the union of the resulting coherent sequence.

We do not claim that j : PM
ε → PCS

ε′ is M-complete.27 In the following, we will construct partial CS
limits Pε′ such that j : PM

ε → Pε′ is M-complete. (Obviously, one requirement for such a limit is that

25The reason for this requirement is briefly discussed in Section ??. Separativity, as well as the relations ≤∗ and =∗, are defined
on page ??.

26I.e., they commute with the restriction maps: iα(p�α) = iβ(p)�α for α < β and p ∈ PM
β .

27 For example, if ε = ε′ = ω and if PM
ω is the finite support limit of a nontrivial iteration, then j : PM

ω → PCS
ω is not complete:

For notational simplicity, assume that all QM
n are (forced to be) Boolean algebras. In M, let cn be (a PM

n -name for) a nontrivial
element of QM

n (so ¬cn, the Boolean complement, is also nontrivial). Let pn be the PM
n -condition (c0, . . . , cn−1), i.e., the truth value

of “cm ∈ H(m) for all m < n”. Let qn be the PM
n+1-condition (c0, . . . , cn−1,¬cn), i.e., the truth value of “n is minimal with cn < H(n)”.

In M, the set A = {qn : n ∈ ω} is a maximal antichain in PM
ω . Moreover, the sequence (pn)n∈ω is a decreasing coherent sequence,

therefore in(pn) defines an element pω in PCS
ω , which is clearly incompatible with all j(qn), hence j[A] is not maximal.
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j[PM
ε ] ⊆ Pε′ .) We will actually define two versions: The almost FS (“almost finite support”) and the almost

CS (“almost countable support”) limit.
Note that there is only one effect that the “top” of P̄M (i.e., the forcing PM

ε ) has on the canonical extension
j: It determines the domain of j. In particular it will generally depend on PM

ε whether j is complete or not.
Apart from that, the value of any given j(p) does not depend on PM

ε .
Instead of arbitrary systems of embeddings iα, we will only be interested in “canonical” ones. We as-

sume for notational convenience that QM
α is a subset of Qα (this will naturally be the case in our application

anyway).

Definition 3.10 (The canonical embedding). Let P̄ be a partial CS iteration in V and P̄M a partial CS
iteration in M, both topped and of length ε ∈ M. We construct by induction on α ∈ (ε + 1) ∩ M the
canonical M-complete embeddings iα : PM

α → Pα. More precisely: We try to construct them, but it
is possible that the construction fails. If the construction succeeds, then we say that “P̄M (canonically)
embeds into P̄”, or “the canonical embeddings work”, or just: “P̄ is over P̄M”, or “over PM

ε ”.
• Let α = β + 1. By induction hypothesis, iβ is M-complete, so a V-generic filter Hβ ⊆ Pβ induces

an M-generic filter HM
β B i−1

β [Hβ] ⊆ PM
β . We require that (in the Hβ extension) the set QM

β [HM
β ] is

an M[HM
β ]-complete subforcing of Qβ[Hβ]. In this case, we define iα in the obvious way.

• For α limit, let iα be the canonical extension of the family (iβ)β∈α∩M . We require that Pα contains the
range of iα, and that iα is M-complete; otherwise the construction fails. (If α′ B sup(α ∩ M) < α,
then iα will actually be an M-complete map into Pα′ , assuming that the requirement is fulfilled.)

In this section we try to construct a partial CS iteration P̄ (over a given P̄M) satisfying additional prop-
erties.

Remark 3.11. What is the role of ε′ B sup(ε ∩ M)? When our inductive construction of P̄ arrives at
Pε where ε′ < ε, it would be too late28 to take care of M-completeness of iε at this stage, even if all
iα work nicely for α ∈ ε ∩ M. Note that ε′ < ε implies that ε is uncountable in M, and that therefore
PM
ε =

⋃
α∈ε∩M PM

α . So the natural extension j of the embeddings (iα)α∈ε∩M has range in Pε′ , which will be
a complete subforcing of Pε. So we have to ensure M-completeness already in the construction of Pε′ .

For now we just record:

Lemma 3.12. Assume that we have topped iterations P̄M (in M) of length ε and P̄ (in V) of length ε′ B
sup(ε ∩ M), and that for all α ∈ ε ∩ M the canonical embedding iα : PM

α → Pα works. Let iε : PM
ε → PCS

ε′

be the canonical extension.
(1) If PM

ε is (in M) a direct limit (which is always the case if ε has uncountable cofinality) then iε
(might not work, but at least) has range in Pε′ and preserves incompatibility.

(2) If iε has a range contained in Pε′ and maps predense sets D ⊆ PM
ε in M to predense sets iε[D] ⊆

Pε′ , then iε preserves incompatibility (and therefore works).

Proof. (1) Since PM
ε is a direct limit, the canonical extension iε has range in

⋃
α<ε′ Pα, which is subset of

any partial CS limit Pε′ . Incompatibility in PM
ε is the same as incompatibility in PM

α for sufficiently large
α ∈ ε ∩ M, so it by assumption it is preserved by iα and hence also by iε.

(2) Fix p1, p2 ∈ PM
ε , and assume that their images are compatible in Pε′ ; we have to show that they are

compatible in PM
ε . So fix a generic filter H ⊆ Pε′ containing iε(p1) and iε(p2).

In M, we define the following set D:

D B {q ∈ PM
ε : (q ≤ p1 ∧ q ≤ p2) or (∃α < ε : q�α ⊥PM

α
p1�α) or (∃α < ε : q�α ⊥PM

α
p2�α)}.

Using Fact ??(??) it is easy to check that D is dense. Since iε preserves predensity, there is q ∈ D
such that iε(q) ∈ H. We claim that q is stronger than p1 and p2. Otherwise we would have without loss
of generality q�α ⊥PM

α
p1�α for some α < ε. But the filter H�α contains both iα(q�α) and iα(p1�α),

contradicting the assumption that iα preserves incompatibility. �

28 For example: Let ε = ω1 and ε′ = ω1 ∩ M. Assume that PM
ω1

is (in M) a (or: the unique) partial CS limit of a nontrivial
iteration. Assume that we have a topless iteration P̄ of length ε′ in V such that the canonical embeddings work for all α ∈ ω1 ∩ M.
If we set Pε′ to be the full CS limit, then we cannot further extend it to any iteration of length ω1 such that the canonical embedding
iω1 works: Let pα and qα be as in footnote ??. In M, the set A = {qα : α ∈ ω1} is a maximal antichain, and the sequence (pα)α∈ω1

is a decreasing coherent sequence. But in V there is an element pε′ ∈ PCS
ε′

with pε′�α = pα for all α ∈ ε ∩ M. This condition pε′ is
clearly incompatible with all elements of j[A] = { j(pα) : α ∈ ε ∩ M}. Hence j[A] is not maximal.
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3.C. Almost finite support iterations. Recall Definition ?? (of the canonical extension) and the setup that
was described there: We have to find a subset Pε′ of PCS

ε′ such that the canonical extension j : PM
ε → Pε′ is

M-complete.
We now define the almost finite support limit. (The direct limit will in general not do, as it may not

contain the range j[PM
ε ]. The almost finite support limit is the obvious modification of the direct limit, and

it is the smallest partial CS limit Pε′ such that j[PM
ε ] ⊆ Pε′ , and it indeed turns out to be M-complete as

well.)

Definition 3.13. Let ε be a limit ordinal in M, and let ε′ B sup(ε ∩M). Let P̄M be a topped iteration in M
of length ε, and let P̄ be a topless iteration in V of length ε′. Assume that the canonical embeddings iα
work for all α ∈ ε ∩ M = ε′ ∩ M. Let iε be the canonical extension. We define the almost finite support
limit of P̄ over P̄M (or: almost FS limit) as the following subforcing Pε′ of PCS

ε′ :

Pε′ B { q ∧ iε(p) ∈ PCS
ε′ : p ∈ PM

ε and q ∈ Pα for some α ∈ ε ∩ M such that q ≤Pα iα(p�α) }.

Note that for cf(ε) > ω, the almost FS limit is equal to the direct limit, as each p ∈ PM
ε is in fact in PM

α

for some α ∈ ε ∩ M, so iε(p) = iα(p) ∈ Pα.

Lemma 3.14. Assume that P̄ and P̄M are as above and let Pε′ be the almost FS limit. Then P̄_Pε′ is a
partial CS iteration, and iε works, i.e., iε is an M-complete embedding from PM

ε to Pε′ . (As Pε′ is a complete
subforcing of Pε, this also implies that iε is M-complete from PM

ε to Pε.)

Proof. It is easy to see that Pε′ is a partial CS limit and contains the range iε[PM
ε ]. We now show preserva-

tion of predensity; this implies M-completeness by Lemma ??.
Let (p j) j∈J ∈ M be a maximal antichain in PM

ε . (Since PM
ε does not have to be ccc in M, J can have any

cardinality in M.) Let q ∧ iε(p) be a condition in Pε′ . (If ε′ < ε, i.e., if cf(ε) > ω, then we can choose p to
be the empty condition.) Fix α ∈ ε∩M be such that q ∈ Pα. Let Hα be Pα-generic and contain q, so p�α is
in HM

α . Now in M[HM
α ] the set {p j : j ∈ J, p j ∈ PM

ε /H
M
α } is predense in PM

ε /H
M
α (since this is forced by the

empty condition in PM
α ). In particular, p is compatible with some p j, witnessed by p′ ≤ p, p j in PM

ε /H
M
α .

We can find q′ ≤Pα q deciding j and p′; since certainly q′ ≤∗ iα(p′�α), we may assume even ≤ without
loss of generality. Now q′ ∧ iε(p′) ≤ q ∧ iε(p) (since q′ ≤ q and p′ ≤ p), and q′ ∧ iε(p′) ≤ iε(p j) (since
p′ ≤ p j). �

Definition and Claim 3.15. Let P̄M be a topped partial CS iteration in M of length ε. We can construct by
induction on β ∈ ε + 1 an almost finite support iteration P̄ over P̄M (or: almost FS iteration) as follows:

(1) As induction hypothesis we assume that the canonical embedding iα works for all α ∈ β ∩ M. (So
the notation M[HM

α ] makes sense.)
(2) Let β = α + 1. If α ∈ M, then we can use any Qα provided that (it is forced that) QM

α is an
M[HM

α ]-complete subforcing of Qα. (If α < M, then there is no restriction on Qα.)
(3) Let β ∈ M and cf(β) = ω. Then Pβ is the almost FS limit of (Pα,Qα)α<β over PM

β .
(4) Let β ∈ M and cf(β) > ω. Then Pβ is again the almost FS limit of (Pα,Qα)α<β over PM

β (which
also happens to be the direct limit).

(5) For limit ordinals not in M, Pβ is the direct limit.

So the claim includes that the resulting P̄ is a (topped) partial CS iteration of length ε over P̄M (i.e.,
the canonical embeddings iα work for all α ∈ (ε + 1) ∩ M), where we only assume that the Qα satisfy the
obvious requirement given in (??). (Note that we can always find some suitable Qα for α ∈ M, for example
we can just take QM

α itself.)

Proof. We have to show (by induction) that the resulting sequence P̄ is a partial CS iteration, and that P̄M

embeds into P̄. For successor cases, there is nothing to do. So assume that α is a limit. If Pα is a direct
limit, it is trivially a partial CS limit; if Pα is an almost FS limit, then the easy part of Lemma ?? shows
that it is a partial CS limit.

So it remains to show that for a limit α ∈ M, the (naturally defined) embedding iα : PM
α → Pα is

M-complete. This was the main claim in Lemma ??. �

The following lemma is natural and easy.
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Lemma 3.16. Assume that we construct an almost FS iteration P̄ over P̄M where each Qα is (forced to be)
ccc. Then Pε is ccc (and in particular proper).

Proof. We show that Pα is ccc by induction on α ≤ ε. For successors, we use that Qα is ccc. For α of
uncountable cofinality, we know that we took the direct limit coboundedly often (and all Pβ are ccc for
β < α), so by a result of Solovay Pα is again ccc. For α a limit of countable cofinality not in M, just use
that all Pβ are ccc for β < α, and the fact that Pα is the direct limit. This leaves the case that α ∈ M has
countable cofinality, i.e., the Pα is the almost FS limit. Let A ⊆ Pα be uncountable. Each a ∈ A has the
form q ∧ iα(p) for p ∈ PM

α and q ∈
⋃
γ<α Pγ. We can thin out the set A such that p are the same and all q

are in the same Pγ. So there have to be compatible elements in A. �

All almost FS iterations that we consider in this paper will satisfy the countable chain condition (and
hence in particular be proper).

We will need a variant of this lemma for σ-centered forcing notions.

Lemma 3.17. Assume that we construct an almost FS iteration P̄ over P̄M where only countably many Qα

are nontrivial (e.g., only those with α ∈ M) and where each Qα is (forced to be) σ-centered. Then Pε is
σ-centered as well.

Proof. By induction: The direct limit of countably many σ-centered forcings is σ-centered, as is the almost
FS limit of σ-centered forcings (to color q ∧ iα(p), use p itself together with the color of q). �

We will actually need two variants of the almost FS construction: Countably many models Mn; and
starting the almost FS iteration with some α0.

Firstly, we can construct an almost FS iteration not just over one iteration P̄M , but over an increasing
chain of iterations. Analogously to Definition ?? and Lemma ??, we can show:

Lemma 3.18. For each n ∈ ω, let Mn be a nice candidate, and let P̄n be a topped partial CS iteration
in Mn of length29 ε ∈ M0 of countable cofinality, such that Mm ∈ Mn and Mn thinks that P̄m canonically
embeds into P̄n, for all m < n. Let P̄ be a topless iteration of length ε into which all P̄n canonically embed.

Then we can define the almost FS limit Pε over (P̄n)n∈ω as follows: Conditions in Pε are of the form
q ∧ inε(p) where n ∈ ω, p ∈ Pn

ε, and q ∈ Pα for some α ∈ Mn ∩ ε with q ≤ inα(p�α). Then Pε is a partial CS
limit over each P̄n.

As before, we get the following corollary:

Corollary 3.19. Given Mn and P̄n as above, we can construct a topped partial CS iteration P̄ such that
each P̄n embeds Mn-completely into it; we can choose Qα as we wish (subject to the obvious restriction
that each Qn

α is an Mn[Hn
α]-complete subforcing). If we always choose Qα to be ccc, then P̄ is ccc; this is

the case if we set Qα to be the union of the (countable) sets Qn
α.

Proof. We can define Pα by induction. If α ∈
⋃

n∈ω Mn has countable cofinality, then we use the almost FS
limit as in Lemma ??. Otherwise we use the direct limit. If α ∈ Mn has uncountable cofinality, then α′ B
sup(α ∩ M) is an element of Mn+1. In our induction we have already considered α′ and have defined Pα′

by Lemma ?? (applied to the sequence (P̄n+1, P̄n+2, . . .)). This is sufficient to show that inα : Pn
α → Pα′ l Pα

is Mn-complete. �

Secondly, we can start the almost FS iteration after some α0 (i.e., P̄ is already given up to α0, and we
can continue it as an almost FS iteration up to ε), and get the same properties that we previously showed
for the almost FS iteration, but this time for the quotient Pε/Pα0 . In more detail:

Lemma 3.20. Assume that P̄M is in M a (topped) partial CS iteration of length ε, and that P̄ is in V a
topped partial CS iteration of length α0 over P̄M�α0 for some α0 ∈ ε ∩ M. Then we can extend P̄ to a
(topped) partial CS iteration of length ε over P̄M , as in the almost FS iteration (i.e., using the almost FS
limit at limit points β > α0 with β ∈ M of countable cofinality; and the direct limit everywhere else). We
can use any Qα for α ≥ α0 (provided QM

α is an M[HM
α ]-complete subforcing of Qα). If all Qα are ccc, then

Pα0 forces that Pε/Hα0 is ccc (in particular proper); if moreover all Qα are σ-centered and only countably
many are nontrivial, then Pα0 forces that Pε/Hα0 is σ-centered.

29Or only: ε ∈ Mn0 for some n0.
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3.D. Almost countable support iterations. “Almost countable support iterations P̄” (over a given itera-
tion P̄M in a candidate M) will have the following two crucial properties: There is a canonical M-complete
embedding of P̄M into P̄, and P̄ preserves a given random real (similar to the usual countable support
iterations).

Definition and Claim 3.21. Let P̄M be a topped partial CS iteration in M of length ε. We can construct by
induction on β ∈ ε + 1 the almost countable support iteration P̄ over P̄M (or: almost CS iteration):

(1) As induction hypothesis, we assume that the canonical embedding iα works for every α ∈ β ∩ M.
We set30

(3.22) δ B min(M \ β), δ′ B sup(α + 1 : α ∈ δ ∩ M).

Note that δ′ ≤ β ≤ δ.
(2) Let β = α + 1. We can choose any desired forcing Qα; if β ∈ M we of course require that

(3.23) QM
α is an M[HM

α ]-complete subforcing of Qα.

This defines Pβ.
(3) Let cf(β) > ω. Then Pβ is the direct limit.
(4) Let cf(β) = ω and assume that β ∈ M (so M ∩ β is cofinal in β and δ′ = β = δ). We define Pβ = Pδ

as the union of the following two sets:
• The almost FS limit of (Pα,Qα)α<δ, see Definition ??.
• The set Pgen

δ of M-generic conditions q ∈ PCS
δ , i.e., those which satisfy

q 
PCS
δ

i−1
δ [HPCS

δ
] ⊆ PM

δ is M-generic.

(5) Let cf(β) = ω and assume that β < M but M ∩ β is cofinal in β, so δ′ = β < δ. We define Pβ = Pδ′

as the union of the following two sets:
• The direct limit of (Pα,Qα)α<δ′ .
• The set Pgen

δ′ of M-generic conditions q ∈ PCS
δ′ , i.e., those which satisfy

q 
PCS
δ′

i−1
δ [HPCS

δ′
] ⊆ PM

δ is M-generic.

(Note that the M-generic conditions form an open subset of PCS
β = PCS

δ′ .)
(6) Let cf(β) = ω and M ∩ β not cofinal in β (so β < M). Then Pβ is the full CS limit of (Pα,Qα)α<β

(see Definition ??).

So the claim is that for every choice of Qα (with the obvious restriction (??)), this construction always
results in a partial CS iteration P̄ over P̄M . The proof is a bit cumbersome; it is a variant of the usual proof
that properness is preserved in countable support iterations (see e.g. [?]).

We will use the following fact in M (for the iteration P̄M):

(3.24)

Let P̄ be a topped iteration of length ε. Let α1 ≤ α2 ≤ β ≤ ε. Let p1 be a Pα1 -name
for a condition in Pε, and let D be an open dense set of Pβ. Then there is a Pα2 -name
p2 for a condition in D such that the empty condition of Pα2 forces: p2 ≤ p1�β and:
if p1 is in Pε/Hα2 , then the condition p2 is as well.

(Proof: Work in the Pα2 -extension. We know that p′ B p1 � β is a Pβ-condition. We now define p2 as
follows: If p′ < Pβ/Hα2 (which is equivalent to p1 < Pε/Hα2 ), then we choose any p2 ≤ p′ in D (which is
dense in Pβ). Otherwise (using that D∩Pβ/Hα2 is dense in Pβ/Hα2 ) we can choose p2 ≤ p′ in D∩Pβ/Hα2 .)

The following easy fact will also be useful:

(3.25)
Let P be a subforcing of Q. We define P�p B {r ∈ P : r ≤ p}. Assume that p ∈ P
and P�p = Q�p.
Then for any P-name

˜
x and any formula ϕ(x) we have: p 
P ϕ(

˜
x) iff p 
Q ϕ(

˜
x).

We now prove by induction on β ≤ ε the following statement (which includes that the Definition and
Claim ?? works up to β). Let δ, δ′ be as in (??).

Lemma 3.26. (a) The topped iteration P̄ of length β is a partial CS iteration.
(b) The canonical embedding iδ : PM

δ → Pδ′ works, hence also iδ : PM
δ → Pδ works.

30 So for successors β ∈ M, we have δ′ = β = δ. For β ∈ M limit, β = δ and δ′ is as in Definition ??.
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(c) Moreover, assume that
• α ∈ M ∩ δ,
•

˜
p ∈ M is a PM

α -name of a PM
δ -condition,

• q ∈ Pα forces (in Pα) that
˜
p�α[HM

α ] is in HM
α .

Then there is a q+ ∈ Pδ′ (and therefore in Pβ) extending q and forcing that
˜
p[HM

α ] is in HM
δ .

Proof. First let us deal with the trivial cases. It is clear that we always get a partial CS iteration.
• Assume that β = β0 + 1 ∈ M, i.e., δ = δ′ = β. It is clear that iβ works. To get q+, first extend q to

some q′ ∈ Pβ0 (by induction hypothesis), then define q+ extending q′ by q+(β0) B
˜
p(β0).

• If β = β0 + 1 < M, there is nothing to do.
• Assume that cf(β) > ω (whether β ∈ M or not). Then δ′ < β. So iδ : PM

δ → Pδ′ works by induction,
and similarly (c) follows from the inductive assumption. (Use the inductive assumption for β = δ′;
the δ that we got at that stage is the same as the current δ, and the q+ we obtained at that stage will
still satisfy all requirements at the current stage.)

• Assume that cf(β) = ω and that M ∩ β is bounded in β. Then the proof is the same as in the
previous case.

We are left with the cases corresponding to (4) and (5) of Definition ??: cf(β) = ω and M ∩ β is cofinal
in β. So either β ∈ M, then δ′ = β = δ, or β < M, then δ′ = β < δ and cf(δ) > ω.

We leave it to the reader to check that Pβ is indeed a partial CS limit. The main point is to see that
for all p, q ∈ Pβ the condition q ∧ p is in Pβ as well, provided q ∈ Pα and q ≤ p�α for some α < β. If
p ∈ Pgen

β , then this follows because Pgen
β is open in PCS

β ; the other cases are immediate from the definition
(by induction).

We now turn to claim (c). Assume q ∈ Pα and
˜
p ∈ M are given, α ∈ M ∩ δ.

Let (Dn)n∈ω enumerate all dense sets of PM
δ which lie in M, and let (αn)n∈ω be a sequence of ordinals in

M which is cofinal in β, where α0 = α.
Using (??) in M, we can find a sequence (

˜
pn)n∈ω satisfying the following in M, for all n > 0:

•
˜
p0 =

˜
p.

•
˜
pn ∈ M is a PM

αn
-name of a PM

δ -condition in Dn.
• 
PM

αn ˜
pn ≤PM

δ ˜
pn−1.

• 
PM
αn

If
˜
pn−1�αn ∈ HM

αn
, then

˜
pn�αn ∈ HM

αn
as well.

Using the inductive assumption for the αn’s, we can now find a sequence (qn)n∈ω of conditions satisfying
the following:

• q0 = q, qn ∈ Pαn .
• qn�αn−1 = qn−1.
• qn 
Pαn

˜
pn−1�αn ∈ HM

αn
, so also

˜
pn�αn ∈ HM

αn
.

Let q+ ∈ PCS
β be the union of the qn. Then for all n:

(1) qn 
PCS
β ˜

pn�αn ∈ HM
αn

, so also q+ forces this.
(Using induction on n.)

(2) For all n and all m ≥ n: q+ 
PCS
β ˜

pm�αm ∈ HM
αm

, so also
˜
pn�αm ∈ HM

αm
.

(As
˜
pm ≤

˜
pn.)

(3) q+ 
PCS
β ˜

pn ∈ HM
δ .

(Recall that PCS
β is separative, see Fact ??. So iδ(

˜
pn) ∈ Hδ iff iαn (

˜
p�αm) ∈ Hαm for all large m.)

As q+ 
PCS
β ˜

pn ∈ Dn ∩ HM
δ , we conclude that q+ ∈ Pgen

β (using ??, applied to PCS
β ). In particular, Pgen

β

is dense in Pβ: Let q ∧ iδ(p) be an element of the almost FS limit; so q ∈ Pα for some α < β. Now find a
generic q+ extending q and stronger than iδ(p), then q+ ≤ q ∧ iδ(p).

It remains to show that iδ is M-complete. Let A ∈ M be a maximal antichain of PM
δ , and p ∈ Pβ. Assume

towards a contradiction that p forces in Pβ that i−1
δ [Hβ] does not intersect A in exactly one point.

Since Pgen
β is dense in Pβ, we can find some q ≤ p in Pgen

β . Let

P′ B {r ∈ PCS
β : r ≤ q} = {r ∈ Pβ : r ≤ q},

where the equality holds because Pgen
β is open in PCS

β .
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Let Γ be the canonical name for a P′-generic filter, i.e.: Γ B {(ř, r) : r ∈ P′}. Let R be either PCS
β or Pβ.

We write 〈Γ〉R for the filter generated by Γ in R, i.e., 〈Γ〉R B {r ∈ R : (∃r′ ∈ Γ) r′ ≤ r}. So

(3.27) q 
R HR = 〈Γ〉R.

We now see that the following hold:
– q 
Pβ i−1

δ [HPβ ] does not intersect A in exactly one point. (By assumption.)
– q 
Pβ i−1

δ [〈Γ〉Pβ ] does not intersect A in exactly one point. (By (??).)
– q 
PCS

β
i−1
δ [〈Γ〉Pβ ] does not intersect A in exactly one point. (By (??).)

– q 
PCS
β

i−1
δ [〈Γ〉PCS

β
] does not intersect A in exactly one point. (Because iδ maps A into Pβ ⊆ PCS

β , so

A ∩ i−1
δ [〈Y〉Pβ ] = A ∩ i−1

δ [〈Y〉PCS
β

] for all Y .)
– q 
PCS

β
i−1
δ [HPCS

β
] does not intersect A in exactly one point. (Again by (??).)

But this, according to the definition of Pgen
β , implies q < Pgen

β , a contradiction. �

We can also show that the almost CS iteration of proper forcings Qα is proper. (We do not really need
this fact, as we could allow non-proper iterations in our preparatory forcing, see Section ??(??). In some
sense, M-completeness replaces properness, so the proof of M-completeness was similar to the “usual”
proof of properness.)

Lemma 3.28. Assume that in Definition ??, every Qα is (forced to be) proper. Then also each Pδ is proper.

Proof. By induction on δ ≤ ε we prove that for all α < δ the quotient Pδ/Hα is (forced to be) proper. We
use the following facts about properness:

(3.29) If P is proper and P forces that Q is proper, then P ∗ Q is proper.

(3.30) If P̄ is an iteration of length ω and if each Qn is forced to be proper, then the inverse
limit Pω is proper, as are all quotients Pω/Hn.

(3.31)
If P̄ is an iteration of length δ with cf(δ) > ω, and if all quotients Pβ/Hα (for α <
β < δ) are forced to be proper, then the direct limit Pδ is proper, as are all quotients
Pδ/Hα.

If δ is a successor, then our inductive claim easily follows from the inductive assumption together
with (??).

Let δ be a limit of countable cofinality, say δ = supn δn. Define an iteration P̄′ of length ω with
Q′n B Pδn+1/Hδn . (Each Q′n is proper, by inductive assumption.) There is a natural forcing equivalence
between PCS

δ and P′CS
ω , the full CS limit of P̄′.

Let N ≺ H(χ∗) contain P̄, Pδ, P̄′,M, P̄M . Let p ∈ Pδ ∩ N. Without loss of generality p ∈ Pgen
δ . So below

p we can identify Pδ with PCS
δ and hence with P′CS

ω ; now apply (??).
The case of uncountable cofinality is similar, using (??) instead. �

Recall the definition of @n and @ from Definition ??, the notion of (quick) interpretation Z∗ (of a name

˜
Z of a code for a null set) and the definition of local preservation of randoms from Definition ??. Recall
that we have seen in Corollaries ?? and ??:

Lemma 3.32. • If QM is an ultralaver forcing in M and r a real, then there is an ultralaver forcing
Q over QM locally preserving randomness of r over M.

• If QM is a Janus forcing in M and r a real, then there is a Janus forcing Q over QM locally
preserving randomness of r over M.

We will prove the following preservation theorem:

Lemma 3.33. Let P̄ be an almost CS iteration (of length ε) over P̄M , r random over M, and p ∈ PM
ε .

Assume that each Pα forces that Qα locally preserves randomness of r over M[HM
α ]. Then there is some

q ≤ p in Pε forcing that r is random over M[HM
ε ].

What we will actually need is the following variant:
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Lemma 3.34. Assume that P̄M is in M a topped almost CS iteration of length ε, and we already have some
topped partial CS iteration P̄ over P̄M�α0 of length α0 ∈ M ∩ ε. Let

˜
r be a Pα0 -name of a random real

over M[HM
α0

]. Assume that we extend P̄ to length ε as an almost CS iteration31 using forcings Qα which

locally preserve the randomness of
˜
r over M, witnessed by a sequence (DQM

α

k )k∈ω. Let p ∈ PM
ε . Then we can

find a q ≤ p in Pε forcing that
˜
r is random over M[HM

ε ].

Actually, we will only prove the two previous lemmas under the following additional assumption (which
is enough for our application, and saves some unpleasant work). This additional assumption is not really
necessary; without it, we could use the method of [?] for the proof.

Assumption 3.35. • For each α ∈ M ∩ ε, (PM
α forces that) QM

α is either trivial32 or adds a new ω-
sequence of ordinals. Note that in the latter case we can assume without loss of generality that⋂

n∈ω DQM
α

n = ∅ (and, of course, that the DQM
α

n are decreasing).
• Moreover, we assume that already in M there is a set T ⊆ ε such that Pα forces: Qα is trivial iff
α ∈ T . (So whether Qα is trivial or not does not depend on the generic filter below α, it is already
decided in the ground model.)

The result will follow as a special case of the following lemma, which we prove by induction on β.
(Note that this is a refined version of the proof of Lemma ?? and similar to the proof of the preservation
theorem in [?, 5.13].)

Definition 3.36. Under the assumptions of Lemma ?? and Assumption ??, let
˜
Z be a Pδ-name, α0 ≤ α < δ,

and let p̄ = (pk)k∈ω be a sequence of Pα-names of conditions in Pδ/Hα. Let Z∗ be a Pα-name.
We say that ( p̄,Z∗) is a quick interpretation of

˜
Z if p̄ interprets

˜
Z as Z∗ (i.e., Pα forces that pk forces

˜
Z�k = Z∗�k for all k), and moreover:

Letting β ≥ α be minimal with QM
β nontrivial (if such β exists): Pβ forces that the sequence

(pk(β))k∈ω is quick in QM
β , i.e., pk(β) ∈ D

QM
β

k for all k.

It is easy to see that:

(3.37) For every name
˜
Z there is a quick interpretation ( p̄,Z∗).

Lemma 3.38. Under the same assumptions as above, let β, δ, δ′ be as in (??) (so in particular we have
δ′ ≤ β ≤ δ ≤ ε).
Assume that

• α ∈ M ∩ δ (= M ∩ β) and α ≥ α0 (so α < δ′),
• p ∈ M is a PM

α -name of a PM
δ -condition,

•
˜
Z ∈ M is a PM

δ -name of a code for null set,
• Z∗ ∈ M is a PM

α -name of a code for a null set,
• PM

α forces: p̄ = (pk)k∈ω ∈ M is a quick sequence in PM
δ /H

M
α interpreting

˜
Z as Z∗ (as in Defini-

tion ??),
• PM

α forces: if p�α ∈ HM
α , then p0 ≤ p,

• q ∈ Pα forces p�α ∈ HM
α ,

• q forces that r is random over M[HM
α ], so in particular there is (in V) a Pα-name

˜
c0 below q for

the minimal c with Z∗ @c r.
Then there is a condition q+ ∈ Pδ′ , extending q, and forcing the following:

• p ∈ HM
δ ,

• r is random over M[HM
δ ],

•
˜
Z @

˜
c0 r.

We actually claim a slightly stronger version, where instead of Z∗ and
˜
Z we have finitely many codes

for null sets and names of codes for null sets, respectively. We will use this stronger claim as inductive
assumption, but for notational simplicity we only prove the weaker version; it is easy to see that the weaker
version implies the stronger version.

31Of course our official definition of almost CS iteration assumes that we start the construction at 0, so we modify this definition
in the obvious way.

32More specifically, QM
α = {∅}.
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Proof. The nontrivial successor case: β = γ + 1 ∈ M.
If QM

γ is trivial, there is nothing to do.
Now let γ0 ≥ α be minimal with QM

γ0
nontrivial. We will distinguish two cases: γ = γ0 and γ > γ0.

Consider first the case that γ = γ0. Work in V[Hγ] where q ∈ Hγ. Note that M[HM
γ ] = M[HM

α ]. So r is
random over M[HM

γ ], and (pk(γ))k∈ω quickly interprets
˜
Z as Z∗ in QM

γ . Now let q+�γ = q, and use the fact
that Qγ locally preserves randomness to find q+(γ) ≤ p0(γ).

Next consider the case that QM
γ is nontrivial and γ ≥ γ0+1. Again work in V[Hγ]. Let k∗ be maximal with

pk∗�γ ∈ HM
γ . (This k∗ exists, since the sequence (pk)k∈ω was quick, so there is even a k with pk�(γ0 + 1) <

HM
γ0+1.) Consider

˜
Z as a QM

γ -name, and (using (??)) find a quick interpretation Z′ of
˜
Z witnessed by a

sequence starting with pk∗ (γ). In M[HM
α ], Z′ is now a PM

γ /H
M
α -name. Clearly, the sequence (pk�γ)k∈ω is a

quick sequence interpreting Z′ as Z∗. (Use the fact that pk�γ forces k∗ ≥ k.)
Using the induction hypothesis, we can first extend q to a condition q′ ∈ Pγ and then (again by our
assumption that Qγ locally preserves randomness) to a condition q+ ∈ Pγ+1.

The nontrivial limit case: M ∩ β unbounded in β, i.e., δ′ = β. (This deals with cases (4) and (5) in
Definition ??. In case (4) we have β ∈ M, i.e., β = δ; in case (5) we have β < M and β < δ.)

Let α = δ0 < δ1 < · · · be a sequence of M-ordinals cofinal in M ∩ δ′ = M ∩ δ. We may assume33 that
each QM

δn
is nontrivial.

Let (
˜
Zn)n∈ω be a list of all PM

δ -names in M of codes for null sets (starting with our given null set
˜
Z =

˜
Z0).

Let (En)n∈ω enumerate all open dense sets of PM
δ from M, without loss of generality34 we can assume that:

(3.39) En decides
˜
Z0�n, . . . ,

˜
Zn�n.

We write pk
0 for pk, and Z0,0 for Z∗; as mentioned above,

˜
Z =

˜
Z0.

By induction on n we can now find a sequence p̄n = (pk
n)k∈ω and PM

δn
-names Zi,n for i ∈ {0, . . . , n}

satisfying the following:
(1) PM

δn
forces that p0

n ≤ pk
n−1 whenever pk

n−1 ∈ PM
δ /H

M
δn

.
(2) Pδn forces that p0

n ∈ En. (Clearly En ∩ PM
δ /H

M
δn

is a dense set.)
(3) p̄n ∈ M is a PM

δn
-name for a quick sequence interpreting (

˜
Z0, . . . , ˜

Zn) as (Z0,n, . . . ,Zn,n) (in PM
δ /H

M
δn

),
so Zi,n is a PM

δn
-name of a code for a null set, for 0 ≤ i ≤ n.

Note that this implies that the sequence (pk
n−1�δn) is (forced to be) a quick sequence interpreting (Z0,n, . . . ,Zn−1,n)

as (Z0,n−1, . . . ,Zn−1,n−1) .
Using the induction hypothesis, we now define a sequence (qn)n∈ω of conditions qn ∈ Pδn and a sequence

(cn)n∈ω (where cn is a Pδn -name) such that (for n > 0) qn extends qn−1 and forces the following:
• p0

n−1�δn ∈ HM
δn

.
• Therefore, p0

n ≤ p0
n−1.

• r is random over M[HM
δn

].
• Let cn be the least c such that Zn,n @c r.
• Zi,n @ci r for i = 0, . . . , n − 1.

Now let q =
⋃

n qn ∈ PCS
δ′ . As in Lemma ?? it is easy to see that q ∈ Pgen

δ′ ⊆ Pδ′ . Moreover, by (??) we
get that q forces that

˜
Zi = limn Zi,n. Since each set Cc,r B {x : x @c r} is closed, this implies that q forces

˜
Zi @ci r, in particular

˜
Z =

˜
Z0 @c0 r.

The trivial cases: In all other cases, M ∩ β is bounded in β, so we already dealt with everything at stage
β0 B sup(β ∩ M). Note that δ′0 and δ0 used at stage β0 are the same as the current δ′ and δ. �

4. The forcing construction

In this section we describe a σ-closed “preparatory” forcing notion R; the generic filter will define a
“generic” forcing iteration P̄, so elements of R will be approximations to such an iteration. In Section ??
we will show that the forcing R ∗ Pω2 forces BC and dBC.

From now on, we assume CH in the ground model.

33If from some γ on all QM
ζ are trivial, then PM

δ = PM
γ , so by induction there is nothing to do. If QM

α itself is trivial, then we let
δ0 B min{ζ : QM

ζ nontrivial} instead.
34well, if we just enumerate a basis of the open sets instead of all of them. . .
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4.A. Alternating iterations, canonical embeddings and the preparatory forcing R. The preparatory
forcing R will consist of pairs (M, P̄), where M is a countable model and P̄ ∈ M is an iteration of ultralaver
and Janus forcings.

Definition 4.1. An alternating iteration35 is a topped partial CS iteration P̄ of length ω2 satisfying the
following:

• Each Pα is proper.36

• For α even, either both Qα and Qα+1 are (forced by the empty condition to be) trivial,37 or Pα

forces that Qα is an ultralaver forcing adding the generic real ¯̀
α, and Pα+1 forces that Qα+1 is a

Janus forcing based on ¯̀∗
α (where ¯̀∗ is defined from ¯̀ as in Lemma ??).

We will call an even index an “ultralaver position” and an odd one a “Janus position”.
As in any partial CS iteration, each Pδ for cf(δ) > ω (and in particular Pω2 ) is a direct limit.
Recall that in Definition ?? we have defined the notion “P̄M canonically embeds into P̄” for nice candi-

dates M and iterations P̄ ∈ V and P̄M ∈ M. Since our iterations now have length ω2, this means that the
canonical embedding works up to and including38 ω2.

In the following, we will use pairs x = (Mx, P̄x) as conditions in a forcing, where P̄x is an alternating
iteration in the nice candidate Mx. We will adapt our notation accordingly: Instead of writing M, P̄M , PM

α

HM
α (the induced filter), QM

α , etc., we will write Mx, P̄x, Px
α, Hx

α, Qx
α, etc. Instead of “P̄x canonically embeds

into P̄” we will say39 “x canonically embeds into P̄” or “(Mx, P̄x) canonically embeds into P̄” (which is a
more exact notation anyway, since the test whether the embedding is Mx-complete uses both Mx and P̄x,
not just P̄x).

The following rephrases Definition ?? of a canonical embedding in our new notation, taking into account
that:

LD̄x is an Mx-complete subforcing of LD̄ iff D̄ extends D̄x

(see Lemma ??).

Fact 4.2. x = (Mx, P̄x) canonically embeds into P̄, if (inductively) for all β ∈ ω2∩Mx ∪{ω2} the following
holds:

• Let β = α+1 for α even (i.e., an ultralaver position). Then either Qx
α is trivial (and Qα can be trivial

or not), or we require that (Pα forces that) the V[Hα]-ultrafilter system D̄ used for Qα extends the
Mx[Hx

α]-ultrafilter system D̄x used for Qx
α.

• Let β = α + 1 for α odd (i.e., a Janus position). Then either Qx
α is trivial, or we require that (Pα

forces that) the Janus forcing Qx
α is an Mx[Hx

α]-complete subforcing of the Janus forcing Qα.
• Let β be a limit. Then the canonical extension iβ : Px

β → Pβ is Mx-complete. (The canonical
extension was defined in Definition ??.)

Fix a sufficiently large regular cardinal χ∗ (see Remark ??).

Definition 4.3. The “preparatory forcing” R consists of pairs x = (Mx, P̄x) such that Mx ∈ H(χ∗) is a nice
candidate (containing ω2), and P̄x is in Mx an alternating iteration (in particular topped and of length ω2).
We define y to be stronger than x (in symbols: y ≤R x), if the following holds: either x = y, or:

• Mx ∈ My and Mx is countable in My.
• My thinks that (Mx, P̄x) canonically embeds into P̄y.

Note that this order on R is transitive.
We will sometimes write ix,y for the canonical embedding (in My) from Px

ω2
to Py

ω2 .

35See Section ?? for possible variants of this definition.
36This does not seem to be necessary, see Section ??, but it is easy to ensure and might be comforting to some of the readers

and/or authors.
37For definiteness, let us agree that the trivial forcing is the singleton {∅}.
38This is stronger than to require that the canonical embedding works for every α ∈ ω2 ∩ M, even though both Pω2 and PM

ω2
are

just direct limits; see footnote ??.
39Note the linguistic asymmetry here: A symmetric and more verbose variant would say “x = (Mx, P̄x) canonically embeds into

(V, P̄)”.
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There are several variants of this definition which result in equivalent forcing notions. We will briefly
come back to this in Section ??.

The following is trivial by elementarity:

Fact 4.4. Assume that P̄ is an alternating iteration (in V), that x = (Mx, P̄x) ∈ R canonically embeds into
P̄, and that N ≺ H(χ∗) contains x and P̄. Let y = (My, P̄y) be the ord-collapse of (N, P̄). Then y ∈ R and
y ≤ x.

This fact will be used, for example, to get from the following Lemma ?? to Corollary ??.

Lemma 4.5. Given x ∈ R, there is an alternating iteration P̄ such that x canonically embeds into P̄.

Proof. For the proof, we use either of the partial CS constructions introduced in the previous chapter (i.e.,
an almost CS iteration or an almost FS iteration over P̄x). The only thing we have to check is that we can
indeed choose Qα that satisfy the definition of an alternating iteration (i.e., as ultralaver or Janus forcings)
and such that Qx

α is Mx-complete in Qα.
In the ultralaver case we arbitrarily extend D̄x to an ultrafilter system D̄, which is justified by Lemma ??.
In the Janus case, we take Qα B Qx

α (this works by Fact ??). Alternatively, we could extend Qx
α to a

random forcing (using Lemma ??). �

Corollary 4.6. Given x ∈ R and an HCON object b ∈ H(χ∗) (e.g., a real or an ordinal), there is a y ≤ x
such that b ∈ My.

What we will actually need are the following three variants:

Lemma 4.7. (1) Given x ∈ R there is a σ-centered alternating iteration P̄ above x.
(2) Given a decreasing sequence x̄ = (xn)n∈ω in R, there is an alternating iteration P̄ such that each

xn embeds into P̄. Moreover, we can assume that for all Janus positions β, the Janus 40 forcing Qβ

is (forced to be) the union of the Qxn
β , and that for all limits α, the forcing Pα is the almost FS limit

over (xn)n∈ω (as in Corollary ??).
(3) Let x, y ∈ R. Let jx be the transitive collapse of Mx, and define jy analogously. Assume that

jx[Mx] = jy[My], that jx(P̄x) = jy(P̄y) and that there are α0 ≤ α1 < ω2 such that:
• Mx ∩ α0 = My ∩ α0 (and thus jx�α0 = jy�α0).
• Mx ∩ [α0, ω2) ⊆ [α0, α1).
• My ∩ [α0, ω2) ⊆ [α1, ω2).

Then there is an alternating iteration P̄ such that both x and y canonically embed into it.

Proof. For (1), use an almost FS iteration. We only use the coordinates in Mx, and use the (countable!)
Janus forcings Qα B Qx

α for all Janus positions α ∈ Mx (see Fact ??). Ultralaver forcings are σ-centered
anyway, so Pε will be σ-centered, by Lemma ??.

For (2), use the almost FS iteration over the sequence (xn)n∈ω as in Corollary ??, and at Janus positions
α set Qα to be the union of the Qxn

α . (By Fact ??, Qxn
α is Mxn -complete in Qα, so Corollary ?? can be applied

here.)
For (3), we again use an almost FS construction. This time we start with an almost FS construction over

x up to α1, and then continue with an almost FS construction over y. �

As above, Fact ?? gives us the following consequences:

Corollary 4.8. (1) R is σ-closed. Hence R does not add new HCON objects (and in particular: no
new reals).

(2) R forces that the generic filter G ⊆ R is σ-directed, i.e., for every countable subset B of G there is
a y ∈ G stronger than each element of B.

(3) R forces CH. (Since we assume CH in V.)
(4) Given a decreasing sequence x̄ = (xn)n∈ω in R and any HCON object b ∈ H(χ∗), there is a y ∈ R

such that
• y ≤ xn for all n,
• My contains b and the sequence x̄,

40If all Qxn
β are trivial, then we may also set Qβ to be the trivial forcing, which is formally not a Janus forcing.
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• for all Janus positions β, My thinks that the Janus forcing Qy
β is (forced to be) the union of

the Qxn
β ,

• for all limits α, My thinks that Py
α is the almost FS limit41 over (xn)n∈ω (of (Py

β)β<α).

Proof. Item (??) directly follows from Lemma ??(??) and Fact ??. Item (??) is a special case of (??),
and (??) and (??) are trivial consequences of (??). �

Another consequence of Lemma ?? is:

Lemma 4.9. The forcing notion R is ℵ2-cc.

Proof. Recall that we assume that V (and hence V[G]) satisfies CH.
Assume towards a contradiction that (xi : i < ω2) is an antichain. Using CH we may without loss of

generality assume that for each i ∈ ω2 the transitive collapse of (Mxi , P̄xi ) is the same. Set Li B Mxi ∩ ω2.
Using the ∆-lemma we find some uncountable I ⊆ ω2 such that the Li for i ∈ I form a ∆-system with root L.
Set α0 = sup(L) + 3. Moreover, we may assume sup(Li) < min(L j \ α0) for all i < j.

Now take any i, j ∈ I, set x B xi and y B x j, and use Lemma ??(??). Finally, use Fact ?? to find
z ≤ xi, x j. �

4.B. The generic forcing P′. Let G be R-generic. Obviously G is a ≤R-directed system. Using the
canonical embeddings, we can construct in V[G] a direct limit P′ω2

of the directed system G: Formally,
we set

P′ω2
B {(x, p) : x ∈ G and p ∈ Px

ω2
},

and we set (y, q) ≤ (x, p) if y ≤R x and q is (in y) stronger than ix,y(p) (where ix,y : Px
ω2
→ Py

ω2 is the
canonical embedding). Similarly, we define for each α

P′α B {(x, p) : x ∈ G, α ∈ Mx and p ∈ Px
α}

with the same order.
To summarize:

Definition 4.10. For α ≤ ω2, the direct limit of the Px
α with x ∈ G is called P′α.

Formally, elements of P′ω2
are defined as pairs (x, p). However, the x does not really contribute any

information. In particular:

Fact 4.11. (1) Assume that (x, px) and (y, py) are in P′ω2
, that y ≤ x, and that the canonical embedding

ix,y witnessing y ≤ x maps px to py. Then (x, px) =∗ (y, py).
(2) (y, q) is in P′ω2

stronger than (x, p) iff for some (or equivalently: for any) z ≤ x, y in G the canoni-
cally embedded q is in Pz

ω2
stronger than the canonically embedded p. The same holds if “stronger

than” is replaced by “compatible with” or by “incompatible with”.
(3) If (x, p) ∈ P′α, and if y is such that My = Mx and P̄y�α = P̄x�α, then (y, p) =∗ (x, p).

In the following, we will therefore often abuse notation and just write p instead of (x, p) for an element
of P′α.

We can define a natural restriction map from P′ω2
to P′α, by mapping (x, p) to (x, p�α). Note that by the

fact above, we can assume without loss of generality that α ∈ Mx. More exactly: There is a y ≤ x in G
such that α ∈ My (according to Corollary ??). Then in P′ω2

we have (x, p) =∗ (y, p).

Fact 4.12. The following is forced by R:
• P′β is completely embedded into P′α for β < α ≤ ω2 (witnessed by the natural restriction map).
• If x ∈ G, then Px

α is Mx-completely embedded into P′α for α ≤ ω2 (by the identity map p 7→ (x, p)).
• If cf(α) > ω, then P′α is the union of the P′β for β < α.
• By definition, P′ω2

is a subset of V .

G will always denote an R-generic filter, while the P′ω2
-generic filter over V[G] will be denoted by H′ω2

(and the induced P′α-generic by H′α). Recall that for each x ∈ G, the map p 7→ (x, p) is an Mx-complete
embedding of Px

ω2
into P′ω2

(and of Px
α into P′α). This way H′α ⊆ P′α induces an Mx-generic filter Hx

α ⊆ Px
α.

So x ∈ R forces that P′α is approximated by Px
α. In particular we get:

41constructed in Lemma ??
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Lemma 4.13. Assume that x ∈ R, that α ≤ ω2 in Mx, that p ∈ Px
α, that ϕ(x) is a first order formula

of the language {∈} with one free variable x and that τ̇ is a Px
α-name in Mx. Then Mx |= p 
Px

α
ϕ(τ̇) iff

x 
R (x, p) 
P′α Mx[Hx
α] |= ϕ(τ̇[Hx

α]).

Proof. “⇒” is clear. So assume that ϕ(τ̇) is not forced in Mx. Then some q ≤Px
α

p forces the negation. Now
x forces that (x, q) ≤ (x, p) in P′α; but the conditions (x, p) and (x, q) force contradictory statements. �

4.C. The inductive proof of ccc. We will now prove by induction on α that P′α is (forced to be) ccc and
(equivalent to) an alternating iteration. Once we know this, we can prove Lemma ??, which easily implies
all the lemmas in this section. So in particular these lemmas will only be needed to prove ccc and not for
anything else (and they will probably not aid the understanding of the construction).

In this section, we try to stick to the following notation: R-names are denoted with a tilde underneath
(e.g.,

˜
τ), while Px

α-names or P′α-names (for any α ≤ ω2) are denoted with a dot accent (e.g., τ̇). We use
both accents when we deal with R-names for P′α-names (e.g.,

˜
τ̇).

We first prove a few lemmas that are easy generalizations of the following straightforward observation:
Assume that x 
R (

˜
z,

˜
p) ∈ P′α. In particular, x 


˜
z ∈ G. We first strengthen x to some x1 that decides

˜
z and

˜
p to be z∗ and p∗. Then x1 ≤

∗ z∗ (the order ≤∗ is defined on page ??), so we can further strengthen
x1 to some y ≤ z∗. By definition, this means that z∗ is canonically embedded into P̄y; so (by Fact ??)
the Pz∗

α -condition p∗ can be interpreted as a Py
α-condition as well. So we end up with some y ≤ x and a

Py
α-condition p∗ such that y 
R (

˜
z,

˜
p) =∗ (y, p∗).

SinceR isσ-closed, we can immediately generalize this to countably many (R-names for) P′α-conditions:

Fact 4.14. Assume that x 
R
˜
pn ∈ P′α for all n ∈ ω. Then there is a y ≤ x and there are p∗n ∈ Py

α such that
y 
R

˜
pn =∗ p∗n for all n ∈ ω.

Recall that more formally we should write: x 
R (
˜
zn,

˜
pn) ∈ P′α; and y 
R (

˜
zn,

˜
pn) =∗ (y, p∗n).

We will need a variant of the previous fact:

Lemma 4.15. Assume that P′β is forced to be ccc, and assume that x forces (in R) that
˜
ṙn is a P′β-name for

a real (or an HCON object) for every n ∈ ω. Then there is a y ≤ x and there are Py
β-names ṙ∗n in My such

that y 
R (
P′β ˜
ṙn = ṙ∗n) for all n.

(Of course, we mean:
˜
ṙn is evaluated by G ∗ H′β, while ṙ∗n is evaluated by Hy

β.)

Proof. The proof is an obvious consequence of the previous fact, since names of reals in a ccc forcing can
be viewed as a countable sequence of conditions.

In more detail: For notational simplicity assume all
˜
ṙn are names for elements of 2ω. Working in V , we

can find for each n,m ∈ ω names for a maximal antichain
˜
An,m and for a function

˜
fn,m :

˜
An,m → 2 such that

x forces that (P′β forces that)
˜
ṙn(m) =

˜
fn,m(a) for the unique a ∈

˜
An,m ∩ H′β. Since P′β is ccc, each

˜
An,m is

countable, and since R is σ-closed, it is forced that the sequence
˜
Ξ = (

˜
An,m,

˜
fn,m)n,m∈ω is in V .

In V , we strengthen x to x1 to decide
˜
Ξ to be some Ξ∗. We can also assume that Ξ∗ ∈ Mx1 (see

Corollary ??). Each A∗n,m consists of countably many a such that x1 forces a ∈ P′β. Using Fact ?? iteratively
(and again the fact that R is σ-closed) we get some y ≤ x1 such that each such a is actually an element of
Py
β. So in My, we can use (A∗n,m, f ∗n,m)n,m∈ω to construct Py

β-names ṙ∗n in the obvious way.
Now assume that y ∈ G and that H′β is P′β-generic over V[G]. Fix any a ∈ A∗n,m =

˜
An,m. Since a ∈ Py

β, we
get a ∈ Hy

β iff a ∈ H′β. So there is a unique element a of A∗n,m∩Hy
β, and ṙ∗n(m) = f ∗n,m(a) =

˜
fn,m(a) =

˜
ṙn(m). �

We will also need the following modification:

Lemma 4.16. (Same assumptions as in the previous lemma.) In V[G][H′β], let Qβ be the union of Qz
β[H

z
β]

for all z ∈ G. In V, assume that x forces that each
˜
ṙn is a name for an element of Qβ. Then there is a y ≤ x

and there is in My a sequence (ṙ∗n)n∈ω of Py
β-names for elements of Qy

β such that y forces
˜
ṙn = ṙ∗n for all n.

So the difference to the previous lemma is: We additionally assume that
˜
ṙn is in

⋃
z∈G Qz

β, and we
additionally get that ṙ∗n is a name for an element of Qy

β.

Proof. Assume x ∈ G and work in V[G]. Fix n. P′β forces that there is some yn ∈ G and some Pyn
β -name

τn ∈ Myn of an element of Qyn
β such that

˜
ṙn (evaluated by H′β) is the same as τn (evaluated by Hyn

β ). Since
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we assume that P′β is ccc, we can find a countable set Yn ⊆ G of the possible yn, i.e., the empty condition
of P′β forces yn ∈ Yn. (As R is σ-closed and Yn ⊆ R ⊆ V , we must have Yn ∈ V .)

So in V , there is (for each n) an R-name
˜
Yn for this countable set. Since R is σ-closed, we can find

some z0 ≤ x deciding each
˜
Yn to be some countable set Y∗n ⊆ R. In particular, for each y ∈ Y∗n we know

that z0 
R y ∈ G, i.e., z0 ≤
∗ y; so using once again that R is σ-closed we can find some z stronger than z0

and all the y ∈
⋃

n∈ω Y∗n . Let X contain all τ ∈ My such that for some y ∈
⋃

n∈ω Y∗n , τ is a Py
β-name for a

Qy
β-element. Since z ≤ y, each τ ∈ X is actually42 a Pz

β-name for an element of Qz
β.

So X is a set of Pz
β-names for Qz

β-elements; we can assume that X ∈ Mz. Also, z forces that
˜
ṙn ∈ X for

all n. Using Lemma ??, we can additionally assume that there are names Pz
β-name ṙ∗n in Mz such that z

forces that
˜
ṙn = ṙ∗n is forced for each n. By Lemma ??, we know that Mz thinks that Pz

β forces that ṙ∗n ∈ X.
Therefore ṙ∗n is a Pz

β-name for a Qz
β-element. �

We now prove by induction on α that P′α is equivalent to a ccc alternating iteration:

Lemma 4.17. The following holds in V[G] for α < ω2:
(1) P′α is equivalent to an alternating iteration. More formally: There is an iteration (Pβ,Qβ)β<α

with limit Pα that satisfies the definition of alternating iteration (up to α), and there is a naturally
defined dense embedding jα : P′α → Pα, such that for β < α we have jβ ⊆ jα, and the embeddings
commute with the restrictions.43 Each Qα is the union of all Qx

α with x ∈ G. For x ∈ G with α ∈ Mx,
the function ix,α : Px

α → Pα that maps p to jα(x, p) is the canonical Mx-complete embedding.
(2) In particular, a P′α-generic filter H′α can be translated into a Pα-generic filter which we call Hα

(and vice versa).
(3) Pα has a dense subset of size ℵ1.
(4) Pα is ccc.
(5) Pα forces CH.

Proof. α = 0 is trivial (since P0 and P′0 both are trivial: P0 is a singleton, and P′0 consists of pairwise
compatible elements).

So assume that all items hold for all β < α.
Proof of (??).

Ultralaver successor case: Let α = β+ 1 with β an ultralaver position. Let Hβ be Pβ-generic over V[G].
Work in V[G][Hβ]. By induction, for every x ∈ G the canonical embedding jβ defines a Px

β-generic filter
over Mx called Hx

β .
Definition of Qβ (and thus of Pα): In Mx[Hx

β], the forcing notion Qx
β is defined as LD̄x for some system

of ultrafilters D̄x in Mx[Hx
β]. Fix some s ∈ ω<ω. If y ≤ x in G, then Dy

s extends Dx
s . Let Ds be the union

of all Dx
s with x ∈ G. So Ds is a proper filter. It is even an ultrafilter: Let r be a Pβ-name for a real. Using

Lemma ??, we know that there is some y ∈ G and some Py
β-name

˜
ry ∈ My such that (in V[G][Hβ]) we have

˜
ry[Hy

β] = r. So r ∈ My[Hy
β], hence either r or its complement is in Dy

s and therefore in Ds. So all filters in
the family D̄ = (Ds)s∈ω<ω are ultrafilters.

Now work again in V[G]. We set Qβ to be the Pβ-name for LD̄. (Note that Pβ forces that Qβ literally is
the union of the Qx

β[H
x
β] for x ∈ G, again by Lemma ??.)

Definition of jα: Let (x, p) be in P′α. If p ∈ Px
β, then we set jα(x, p) = jβ(x, p), i.e., jα will extend jβ. If

p = (p�β, p(β)) is in Px
α but not in Px

β, we set jα(x, p) = (r, s) ∈ Pβ ∗ Qβ where r = jβ(x, p�β) and s is the
(Pα-name for) p(β) as evaluated in Mx[Hx

β]. From Qβ =
⋃

x∈G Qx
β[H

x
β] we conclude that this embedding is

dense.
The canonical embedding: By induction we know that ix,β which maps p ∈ Px

β to jβ(x, p) is (the restric-
tion to Px

β of) the canonical embedding of x into Pω2 . So we have to extend the canonical embedding to
ix,α : Px

α → Pα. By definition of “canonical embedding”, ix,α maps p ∈ Px
α to the pair (ix,β(p�β), p(β)). This

is the same as jα(x, p). We already know that Dx
s is (forced to be) an Mx[Hx

β]-ultrafilter that is extended
by Ds.

42Here we use two consequences of z ≤ y: Every Py
β-name in My can be canonically interpreted as a Pz

β-name in Mz, and Qy
β is

(forced to be) a subset of Qz
β.

43I.e., jβ(x, p�β) = jα(x, p�β) = jα(x, p)�β.
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Janus successor case: This is similar, but simpler than the previous case: Here, Qβ is just defined as
the union of all Qx

β[H
x
β] for x ∈ G. We will show below that this union satisfies the ccc; just as in Fact ??,

it is then easy to see that this union is again a Janus forcing.
In particular, Qβ consists of hereditarily countable objects (since it is the union of Janus forcings, which

by definition consist of hereditarily countable objects). So since Pβ forces CH, Qβ is forced to have size ℵ1.
Also note that since all Janus forcings involved are separative, the union (which is a limit of an incom-
patibility-preserving directed system) is trivially separative as well.

Limit case: Let α be a limit ordinal.
Definition of Pα and jα: First we define jα : P′α → PCS

α : For each (x, p) ∈ P′α, let jα(x, p) ∈ PCS
α be

the union of all jβ(x, p�β) (for β ∈ α ∩ Mx). (Note that β1 < β2 implies that jβ1 (x, p�β1) is a restriction of
jβ2 (x, p�β2), so this union is indeed an element of PCS

α .)
Pα is the set of all q ∧ p, where p ∈ jα[P′α], q ∈ Pβ for some β < α, and q ≤ p�β.
It is easy to check that Pα actually is a partial countable support limit, and that jα is dense. We will

show below that Pα satisfies the ccc, so in particular it is proper.
The canonical embedding: To see that ix,α is the (restriction of the) canonical embedding, we just have

to check that ix,α is Mx-complete. This is the case since P′α is the direct limit of all Py
α for y ∈ G (without

loss of generality y ≤ x), and each ix,y is Mx-complete (see Fact ??).

Proof of (??).
Recall that we assume CH in the ground model.
The successor case, α = β + 1, follows easily from (??)–(??) for Pβ (since Pβ forces that Qβ has size

2ℵ0 = ℵ1 = ℵV
1 ).

If cf(α) > ω, then Pα =
⋃
β<α Pβ, so the proof is easy.

So let cf(α) = ω. The following straightforward argument works for any ccc partial CS iteration where
all iterands Qβ are of size ≤ ℵ1.

For notational simplicity we assume 
Pβ Qβ ⊆ ω1 for all β < α (this is justified by inductive assump-
tion (??)). By induction, we can assume that for all β < α there is a dense P∗β ⊆ Pβ of size ℵ1 and that every
P∗β is ccc. For each p ∈ Pα and all β ∈ dom(p) we can find a maximal antichain Ap

β ⊆ P∗β such that each
element a ∈ Ap

β decides the value of p(β), say a 
Pβ p(β) = γ
p
β (a). Writing44 p ∼ q if p ≤ q and q ≤ p, the

map p 7→ (Ap
β , γ

p
β )β∈dom(p) is 1-1 modulo ∼. Since each Ap

β is countable, there are only ℵ1 many possible
values, therefore there are only ℵ1 many ∼-equivalence classes. Any set of representatives will be dense.

Alternatively, we can prove (??) directly for P′α. I.e., we can find a ≤∗-dense subset P′′ ⊆ P′α of
cardinality ℵ1. Note that a conditions (x, p) ∈ P′α essentially depends only on p (cf. Fact ??). More
specifically, given (x, p) we can “transitively45 collapse x above α”, resulting in a =∗-equivalent condition
(x′, p′). Since |α| = ℵ1, there are only ℵ1

ℵ0 = 2ℵ0 many such candidates x′ and since each x′ is countable
and p′ ∈ x′, there are only 2ℵ0 many pairs (x′, p′).

Proof of (??).
Ultralaver successor case: Let α = β + 1 with β an ultralaver position. We already know that Pα =

Pβ ∗Qβ where Qβ is an ultralaver forcing, which in particular is ccc, so by induction Pα is ccc.
Janus successor case: As above it suffices to show that Qβ, the union of the Janus forcings Qx

β[H
x
β] for

x ∈ G, is (forced to be) ccc.
Assume towards a contradiction that this is not the case, i.e., that we have an uncountable antichain

in Qβ. We already know that Qβ has size ℵ1 and therefore the uncountable antichain has size ℵ1. So,
working in V , we assume towards a contradiction that

(4.18) x0 
R p0 
Pβ {˜
ȧi : i ∈ ω1} is a maximal (uncountable) antichain in Qβ.

44Since ≤ is separative, p ∼ q iff p =∗ q, but this fact is not used here.
45In more detail: We define a function f : Mx → V by induction as follows: If β ∈ Mx ∩ α + 1 or if β = ω2, then f (β) = β.

Otherwise, if β ∈ Mx ∩ Ord, then f (β) is the smallest ordinal above f [β]. If a ∈ Mx \ Ord, then f (a) = { f (b) : b ∈ a ∩ Mx}. It is
easy to see that f is an isomorphism from Mx to Mx′ B f [Mx] and that Mx′ is a candidate. Moreover, the ordinals that occur in Mx′

are subsets of α + ω1 together with the interval [ω2, ω2 + ω1]; i.e., there are ℵ1 many ordinals that can possibly occur in Mx′ , and
therefore there are 2ℵ0 many possible such candidates. Moreover, setting p′ B f (p), it is easy to check that (x, p) =∗ (x, p) (similarly
to Fact ??).
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We construct by induction on n ∈ ω a decreasing sequence of conditions such that xn+1 satisfies the
following:

(i) For all i ∈ ω1 ∩ Mxn there is (in Mxn+1 ) a Pxn+1
β -name ȧ∗i for a Qxn+1

β -condition such that

xn+1 
R p0 
Pβ ˜
ȧi = ȧ∗i .

Why can we get that? Just use Lemma ??.
(ii) If τ is in Mxn a Pxn

β -name for an element of Qxn
β , then there is k∗(τ) ∈ ω1 such that

xn+1 
R p0 
Pβ (∃i < k∗(τ))
˜
ȧi ‖Pβ τ.

Also, all these k∗(τ) are in Mxn+1 .
Why can we get that? First note that xn 
 p0 
 (∃i ∈ ω1)

˜
ȧi ‖ τ. Since Pβ is ccc, xn forces that there

is some bound
˜
k(τ) for i. So it suffices that xn+1 determines

˜
k(τ) to be k∗(τ) (for all the countably

many τ).
Set δ∗ B ω1 ∩

⋃
n∈ω Mxn . By Corollary ??(??), there is some y such that

• y ≤ xn for all n ∈ ω,
• (xn)n∈ω and (ȧ∗i )i∈δ∗ are in My,
• (My thinks that) Py

β forces that Qy
β is the union of Qxn

β , i.e., as a formula: My |= Py
β 
 Qy

β =⋃
n∈ω Qxn

β .
Let G be R-generic (over V) containing y, and let Hβ be Pβ-generic (over V[G]) containing p0.

Set A∗ B {ȧ∗i [Hy
β] : i < δ∗}. Note that A∗ is in My[Hy

β]. We claim

(4.19) A∗ ⊆ Qy
β[H

y
β] is predense.

Pick any q0 ∈ Qy
β. So there is some n ∈ ω and some τ which is in Mxn a Pxn

β -name of a Qxn
β -condition, such

that q0 = τ[Hxn
β ]. By (ii) above, xn+1 and therefore y forces (in R) that for some i < k∗(τ) (and therefore

some i < δ∗) the condition p0 forces the following (in Pβ):
The conditions

˜
ȧi and τ are compatible in Qβ. Also,

˜
ȧi = ȧ∗i and τ both are in Qy

β, and Qy
β

is an incompatibility-preserving subforcing of Qβ. Therefore My[Hy
β] thinks that ȧ∗i and τ

are compatible.
This proves (??).

Since Qy
β[H

y
β] is My[Hy

β]-complete in Qβ[Hβ], and since A∗ ∈ My[Hy], this implies (as ȧ∗i [Hy
β] =

˜
ȧi[G ∗

Hβ] for all i < δ∗) that {
˜
ȧi[G ∗ Hβ] : i < δ∗} already is predense, a contradiction to (??).

Limit case: We work with P′α, which by definition only contains HCON objects.
Assume towards a contradiction that P′α has an uncountable antichain. We already know that P′α has a

dense subset of size ℵ1 (modulo =∗), so the antichain has size ℵ1.
Again, work in V . We assume towards a contradiction that

(4.20) x0 
R {˜
ai : i ∈ ω1} is a maximal (uncountable) antichain in P′α.

So each
˜
ai is an R-name for an HCON object (x, p) in V .

To lighten the notation we will abbreviate elements (x, p) ∈ P′α by p; this is justified by Fact ??.
Fix any HCON object p and β < α. We will now define the (R ∗ P′β)-names

˜
ι̇(β, p) and

˜
ṙ(β, p): Let G

be R-generic and containing x0, and H′β be P′β-generic. Let R be the quotient P′α/H′β. If p is not in R, set

˜
ι̇(β, p) =

˜
ṙ(β, p) = 0. Otherwise, let

˜
ι̇(β, p) be the minimal i such that

˜
ai ∈ R and

˜
ai and p are compatible

(in R), and set
˜
ṙ(β, p) ∈ R to be a witness of this compatibility. Since P′β is (forced to be) ccc, we can

find (in V[G]) a countable set
˜
Xι(β, p) ⊆ ω1 containing all possibilities for

˜
ι̇(β, p) and similarly

˜
Xr(β, p)

consisting of HCON objects for
˜
ṙ(β, p).

To summarize: For every β < α and every HCON object p, we can define (in V) the R-names
˜
Xι(β, p)

and
˜
Xr(β, p) such that

(4.21) x0 
R 
P′β

(
p ∈ P′α/H

′
β → (∃i ∈

˜
Xι(β, p)) (∃r ∈

˜
Xr(β, p)) r ≤P′α/H′β p,

˜
ai

)
.

Similarly to the Janus successor case, we define by induction on n ∈ ω a decreasing sequence of con-
ditions such that xn+1 satisfies the following: For all β ∈ α ∩ Mxn and p ∈ Pxn

α , xn+1 decides
˜
Xι(β, p) and

˜
Xr(β, p) to be some Xι∗(β, p) and Xr∗(β, p). For all i ∈ ω1 ∩ Mxn , xn+1 decides

˜
ai to be some a∗i ∈ Pxn+1

α .
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Moreover, each such Xι∗ and Xr∗ is in Mxn+1 , and every r ∈ Xr∗(β, p) is in Pxn+1
α . (For this, we just use

Fact ?? and Lemma ??.)
Set δ∗ B ω1 ∩

⋃
n∈ω Mxn , and set A∗ B {a∗i : i ∈ δ∗}. By Corollary ??(??), there is some y such that

y ≤ xn for all n ∈ ω,(4.22)

x̄ B (xn)n∈ω and A∗ are in My,(4.23)

(My thinks that) Py
α is defined as the almost FS limit over x̄.(4.24)

We claim that y forces

(4.25) A∗ is predense in Py
α.

Then Py
α is My-completely embedded into P′α, and since A∗ ∈ My (and since

˜
ai = a∗i for all i ∈ δ∗) we get

that {
˜
ai : i ∈ δ∗} is predense, a contradiction to (??).

So it remains to show (??). Let G be R-generic containing y. Let r be a condition in Py
α; we will find

i < δ∗ such that r is compatible with a∗i . Since Py
α is the almost FS limit over x̄, there is some n ∈ ω and

β ∈ α ∩ Mxn such that r has the form q ∧ p with p in Pxn
α , q ∈ Py

β and q ≤ p�β.
Now let H′β be P′β-generic containing q. Work in V[G][H′β]. Since q ≤ p�β, we get p ∈ P′α/H′β. Let ι∗

be the evaluation by G ∗ H′β of
˜
ι̇(β, p), and let r∗ be the evaluation of

˜
ṙ(β, p). Note that ι∗ < δ∗ and r∗ ∈ Py

α.
So we know that a∗ι∗ and p are compatible in P′α/H′β witnessed by r∗. Find q′ ∈ H′β forcing r∗ ≤P′α/H′β p, a∗ι∗ .
We may find q′ ≤ q. Now q′ ∧ r∗ witnesses that q ∧ p and a∗ι∗ are compatible in Py

α.
To summarize: The crucial point in proving the ccc is that “densely” we choose (a variant of) a finite

support iteration, see (??). Still, it is a bit surprising that we get the ccc, since we can also argue that densely
we use (a variant of) a countable support iteration. But this does not prevent the ccc, it only prevents the
generic iteration from having direct limits in stages of countable cofinality.46

Proof of (??).
This follows from (??) and (??). �

4.D. The generic alternating iteration P̄. In Lemma ?? we have seen:

Corollary 4.26. Let G be R-generic. Then we can construct47 (in V[G]) an alternating iteration P̄ such
that the following holds:

• P̄ is ccc.
• If x ∈ G, then x canonically embeds into P̄. (In particular, a Pω2 -generic filter Hω2 induces a

Px
ω2

-generic filter over Mx, called Hx
ω2

.)
• Each Qα is the union of all Qx

α[Hx
α] with x ∈ G.

• Pω2 is equivalent to the direct limit P′ω2
of G: There is a dense embedding j : P′ω2

→ Pω2 , and for
each x ∈ G the function p 7→ j(x, p) is the canonical embedding.

Lemma 4.27. Let x ∈ R. Then R forces the following: x ∈ G iff x canonically embeds into P̄.

Proof. If x ∈ G, then we already know that x canonically embeds into P̄.
So assume (towards a contradiction) that y forces that x embeds, but y 
 x < G. Work in V[G] where

y ∈ G. Both x (by assumption) and y ∈ G canonically embed into P̄. Let N be an elementary submodel
of HV[G](χ∗) containing x, y, P̄; let z = (Mz, P̄z) be the ord-collapse of (N, P̄). Then z ∈ V (as R is σ-
closed) and z ∈ R, and (by elementarity) z ≤ x, y. This shows that x ‖R y, i.e., y cannot force x < G, a
contradiction. �

Using ccc, we can now prove a lemma that is in fact stronger than the lemmas in the previous section ??:

Lemma 4.28. The following is forced by R: Let N ≺ HV[G](χ∗) be countable, and let y be the ord-collapse
of (N, P̄). Then y ∈ G. Moreover, if x ∈ G ∩ N, then y ≤ x.

46Assume that x forces that P′α is the union of the P′β for β < α; then we can find a stronger y that uses an almost CS iteration
over x. This almost CS iteration contains a condition p with unbounded support. (Take any condition in the generic part of the almost
CS limit; if this condition has bounded domain, we can extend it to have unbounded domain, see Definition ??.) Now p will be in P′α
and have unbounded domain.

47in an “absolute way”: Given G, we first define P′ω2
to be the direct limit of G, and then inductively construct the Pα’s from P′ω2

.
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Proof. Work in V[G] with x ∈ G. Pick an elementary submodel N containing x and P̄. Let y be the ord-
collapse of (N, P̄) via a collapsing map k. As above, it is clear that y ∈ R and y ≤ x. To show y ∈ G, it
is (by the previous lemma) enough to show that y canonically embeds. We claim that k−1 is the canonical
embedding of y into P̄. The crucial point is to show My-completeness. Let B ∈ My be a maximal antichain
of Py

ω2 , say B = k(A) where A ∈ N is a maximal antichain of Pω2 . So (by ccc) A is countable, hence A ⊆ N.
So not only A = k−1(B) but even A = k−1[B]. Hence k−1 is an My-complete embedding. �

Remark 4.29. We used the ccc of Pω2 to prove Lemma ??; this use was essential in the sense that we can
in turn easily prove the ccc of Pω2 if we assume that Lemma ?? holds. In fact Lemma ?? easily implies all
other lemmas in section ?? as well.

5. The proof of BC+dBC

We first48 prove that no uncountable X in V will be smz or sm in the final extension V[G ∗ H]. Then we
show how to modify the argument to work for all uncountable sets in V[G ∗ H].

5.A. BC+dBC for ground model sets.
Lemma 5.1. Let X ∈ V be an uncountable set of reals. Then R ∗ Pω2 forces that X is not smz.

Proof.
(1) Fix any even α < ω2 (i.e., an ultralaver position) in our iteration. The ultralaver forcing Qα adds a

(canonically defined code for a) closed null set Ḟ constructed from the ultralaver real ¯̀
α. (Recall

Corollary ??.) In the following, when we consider various ultralaver forcings Qα, Qα, Qx
α, we treat

Ḟ not as an actual name, but rather as a definition which depends on the forcing used.
(2) According to Theorem ??, it is enough to show that X + Ḟ is non-null in the R ∗ Pω2 -extension, or

equivalently, in every R ∗Pβ-extension (α < β < ω2). So assume towards a contradiction that there
is a β > α and an R ∗ Pβ-name

˜
Ż of a (code for a) Borel null set such that some (x, p) ∈ R ∗ Pω2

forces that X + Ḟ ⊆
˜
Ż.

(3) Using the dense embedding jω2 : P′ω2
→ Pω2 , we may replace (x, p) by a condition (x, p′) ∈ R∗P′ω2

.
According to Fact ?? (recall that we now know that Pω2 satisfies ccc) and Lemma ?? we can assume
that p′ is already a Px

β-condition px and that
˜
Ż is (forced by x to be the same as) a Px

β-name Żx in
Mx.

(4) We construct (in V) an iteration P̄ in the following way:
(a) Up to α, we take an arbitrary alternating iteration into which x embeds. In particular, Pα will

be proper and hence force that X is still uncountable.
(b) Let Qα be any ultralaver forcing (over Qx

α in case α ∈ Mx). So according to Corollary ??, we
know that Qα forces that X + Ḟ is not null.
Therefore we can pick (in V[Hα+1]) some ṙ in X + Ḟ which is random over (the countable
model) Mx[Hx

α+1], where Hx
α+1 is induced by Hα+1.

(c) In the rest of the construction, we preserve randomness of ṙ over Mx[Hx
ζ ] for each ζ ≤ ω2. We

can do this using an almost CS iteration over x where at each Janus position we use a random
version of Janus forcing and at each ultralaver position we use a suitable ultralaver forcing;
this is possible by Lemma ??. By Lemma ??, this iteration will preserve the randomness of ṙ.

(d) So we get P̄ over x (with canonical embedding ix) and q ≤Pω2
ix(px) such that q�β forces (in

Pβ) that ṙ is random over Mx[Hx
β], in particular that ṙ < Żx.

We now pick a countable N ≺ H(χ∗) containing everything and ord-collapse (N, P̄) to y ≤ x. (See
Fact ??.) Set Xy B X ∩ My (the image of X under the collapse). By elementarity, My thinks that
(a)–(d) above holds for P̄y and that Xy is uncountable. Note that Xy ⊆ X.

(5) This gives a contradiction in the obvious way: Let G be R-generic over V and contain y, and let Hβ

be Pβ-generic over V[G] and contain q�β. So My[Hy
β] thinks that r < Żx (which is absolute) and

that r = x + f for some x ∈ Xy ⊆ X and f ∈ F (actually even in F as evaluated in My[Hy
α+1]). So

in V[G][Hβ], r is the sum of an element of X and an element of F. So (y, q) ≤ (x, p′) forces that
r ∈ X + Ḟ \ Ż, a contradiction to (2). �

48Note that for this weak version, it would be enough to produce a generic iteration of length 2 only, i.e., Q0 ∗Q1, where Q0 is an
ultralaver forcing and Q1 a corresponding Janus forcing.
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Of course, we need this result not just for ground model sets X, but for R ∗ Pω2 -names
˜
Ẋ = (

˜
ẋi : i ∈ ω1)

of uncountable sets. It is easy to see that it is enough to deal with R ∗ Pβ-names for (all) β < ω2. So given

˜
Ẋ, we can (in the proof) pick α such that

˜
Ẋ is actually an R∗Pα-name. We can try to repeat the same proof;

however, the problem is the following: When constructing P̄ in (4), it is not clear how to simultaneously
make all the uncountably many names (

˜
ẋi) into P̄-names in a sufficiently “absolute” way. In other words:

It is not clear how to end up with some My and Ẋy uncountable in My such that it is guaranteed that Ẋy

(evaluated in My[Hy
α]) will be a subset of

˜
Ẋ (evaluated in V[G][Hα]). We will solve this problem in the

next section by factoring R.
Let us now give the proof of the corresponding weak version of dBC:

Lemma 5.2. Let X ∈ V be an uncountable set of reals. Then R ∗ Pω2 forces that X is not strongly meager.

Proof. The proof is parallel to the previous one:

(1) Fix any even α < ω2 (i.e., an ultralaver position) in our iteration. The Janus forcing Qα+1 adds a
(canonically defined code for a) null set Ż∇. (See Definition ?? and Fact ??.)

(2) According to (??), it is enough to show that X + Ż∇ = 2ω in the R ∗ Pω2 -extension, or equivalently,
in every R ∗ Pβ-extension (α < β < ω2). (For every real r, the statement r ∈ X + Ż∇, i.e.,
(∃x ∈ X) x + r ∈ Ż∇, is absolute.) So assume towards a contradiction that there is a β > α and an
R ∗ Pβ-name

˜
ṙ of a real such that some (x, p) ∈ R ∗ Pω2 forces that

˜
ṙ < X + Ż∇.

(3) Again, we can assume that
˜
ṙ is a Px

β-name ṙx in Mx.
(4) We construct (in V) an iteration P̄ in the following way:

(a) Up to α, we take an arbitrary alternating iteration into which x embeds. In particular, Pα again
forces that X is still uncountable.

(b1) Let Qα be any ultralaver forcing (over Qx
α). Then Qα forces that X is not thin (see Corol-

lary ??).
(b2) Let Qα+1 be a countable Janus forcing. So Qα+1 forces X + Ż∇ = 2ω. (See Lemma ??.)

(c) We continue the iteration in a σ-centered way. I.e., we use an almost FS iteration over x of ul-
tralaver forcings and countable Janus forcings, using trivial Qζ for all ζ < Mx; see Lemma ??.

(d) So Pβ still forces that X + Ż∇ = 2ω, and in particular that ṙx ∈ X + Ż∇. (Again by Lemma ??.)
Again, by collapsing some N as in the previous proof, we get y ≤ x and Xy ⊆ X.

(5) This again gives the obvious contradiction: Let G be R-generic over V and contain y, and let Hβ

be Pβ-generic over V[G] and contain p. So My[Hy
β] thinks that r = x + z for some x ∈ Xy ⊆ X and

z ∈ Z∇ (this time, Ż∇ is evaluated in My[Hy
β]), contradicting (2). �

5.B. A factor lemma. We can restrict R to any α∗ < ω2 in the obvious way: Conditions are pairs x =

(Mx, P̄x) of nice candidates Mx (containing α∗) and alternating iterations P̄x, but now Mx thinks that P̄x has
length α∗ (and not ω2). We call this variant R�α∗.

Note that all results of Section ?? about R are still true for R�α∗. In particular, whenever G ⊆ R�α∗ is
generic, it will define a direct limit (which we call P′∗), and an alternating iteration of length α∗ (called P∗);
again we will have that x ∈ G iff x canonically embeds into P̄∗.

There is a natural projection map from R (more exactly: from the dense subset of those x which satisfy
α∗ ∈ Mx) into R�α∗, mapping x = (Mx, P̄x) to x�α∗ B (Mx, P̄x�α∗). (It is obvious that this projection is
dense and preserves ≤.)

There is also a natural embedding ϕ from R�α∗ to R: We can just continue an alternating iteration of
length α∗ by appending trivial forcings.
ϕ is complete: It preserves ≤ and⊥. (Assume that z ≤ ϕ(x), ϕ(y). Then z�α∗ ≤ x, y.) Also, the projection

is a reduction: If y ≤ x�α∗ in R�α∗, then let Mz be a model containg both x and y. In Mz, we can first
construct an alternating iteration of length α∗ over y (using almost FS over y, or almost CS — this does
not matter here). We then continue this iteration P̄z using almost FS or almost CS over x. So x and y both
embed into P̄z, hence z = (Mz, P̄z) ≤ x, y.

So according to the general factor lemma of forcing theory, we know that R is forcing equivalent to
R�α∗ ∗ (R/R�α∗), where R/R�α∗ is the quotient of R and R�α∗, i.e., the (R�α∗-name for the) set of x ∈ R
which are compatible (in R) with all ϕ(y) for y ∈ G�α∗ (the generic filter for R�α∗), or equivalently, the set
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of x ∈ R such that x�α∗ ∈ G�α∗. So Lemma ?? (relativized to R�α∗) implies:

(5.3) R/R�α∗ is the set of x ∈ R that canonically embed (up to α∗) into Pα∗ .

Setup. Fix some α∗ < ω2 of uncountable cofinality.49 Let G�α∗ be R�α∗-generic over V and work in
V∗ B V[G�α∗]. Set P̄∗ = (Pβ)β<α∗ , the generic alternating iteration added by R�α∗. Let R∗ be the quotient
R/R�α∗.

We claim that R∗ satisfies (in V∗) all the properties that we proved in Section ?? for R (in V), with the
obvious modifications. In particular:
(A)α∗ R∗ is ℵ2-cc, since it is the quotient of an ℵ2-cc forcing.
(B)α∗ R∗ does not add new reals (and more generally, no new HCON objects), since it is the quotient of a

σ-closed forcing.50

(C)α∗ Let G∗ be R∗-generic over V∗. Then G∗ is R-generic over V , and therefore Corollary ?? holds for G∗.
(Note that P′ω2

and then Pω2 is constructed from G∗.) Moreover, it is easy to see51 that P̄ starts with
P̄∗.

(D)α∗ In particular, we get a variant of Lemma ??: The following is forced by R∗: Let N ≺ HV[G∗](χ∗) be
countable, and let y be the ord-collapse of (N, P̄). Then y ∈ G∗. Moreover: If x ∈ G∗ ∩N, then y ≤ x.

We can use the last item to prove the R∗-version of Fact ??:

Corollary 5.4. In V∗, the following holds:
(1) Assume that x ∈ R∗ forces that p ∈ Pω2 . Then there is a y ≤ x and a py ∈ Py

ω2 such that y forces
py =∗ p.

(2) Assume that x ∈ R∗ forces that
˜
ṙ is a Pω2 -name of a real. Then there is a y ≤ x and a Py

ω2 -name ṙy

such that y forces that ṙy and
˜
ṙ are equivalent as Pω2 -names.

Proof. We only prove (??), the proof of (??) is similar.
Let G∗ contain x. In V[G∗], pick an elementary submodel N containing x, p, P̄ and let (Mz, P̄z, pz) be

the ord-collapse of (N, P̄, p). Then z ∈ G∗. This whole situation is forced by some y ≤ z ≤ x ∈ G∗. So y
and py is as required, where py ∈ Py

ω2 is the canonical image of pz. �

We also get the following analogue of Fact ??:

(5.5)
In V∗ we have: Let x ∈ R∗. Assume that P̄ is an alternating iteration that extends P̄�α∗
and that x = (Mx, P̄x) ∈ R canonically embeds into P̄, and that N ≺ H(χ∗) contains x
and P̄. Let y = (My, P̄y) be the ord-collapse of (N, P̄). Then y ∈ R∗ and y ≤ x.

We now claim thatR∗Pω2 forces BC+dBC. We know thatR is forcing equivalent toR�α∗∗R∗. Obviously
we have

R ∗ Pω2 = R�α∗ ∗ R∗ ∗ Pα∗ ∗ Pα∗, ω2

(where Pα∗, ω2 is the quotient of Pω2 and Pα∗ ). Note that Pα∗ is already determined by R�α∗, so R∗ ∗ Pα∗ is
(forced by R�α∗ to be) a product R∗ × Pα∗ = Pα∗ × R

∗.
But note that this is not the same as Pα∗ ∗R

∗, where we evaluate the definition of R∗ in the Pα∗ -extension
of V[G�α∗]: We would get new candidates and therefore new conditions in R∗ after forcing with Pα∗ . In
other words, we can not just argue as follows:

Wrong argument. R ∗ Pω2 is the same as (R�α∗ ∗ Pα∗ ) ∗ (R∗ ∗ Pα∗,ω2 ); so given an R ∗ Pω2 -name X of a
set of reals of size ℵ1, we can choose α∗ large enough so that X is an (R�α∗ ∗ Pα∗ )-name. Then, working in
the (R�α∗ ∗ Pα∗ )-extension, we just apply Lemmas ?? and ??.

So what do we do instead? Assume that
˜
Ẋ = {

˜
ξ̇i : i ∈ ω1} is an R ∗ Pω2 -name for a set of reals of

size ℵ1. So there is a β < ω2 such that
˜
Ẋ is added by R ∗ Pβ (using ℵ2-cc of R). In the R-extension,

Pβ is ccc, therefore we can assume that each
˜
ξ̇i is a system of countably many countable antichains

˜
Am

i

49Probably the cofinality is completely irrelevant, but the picture is clearer this way.
50It is easy to see that R∗ is even σ-closed, by “relativizing” the proof for R, but we will not need this.
51Let P′∗β be the direct limit of G�α∗ (for β ≤ α∗), and P′β the direct limit of G∗. The function kβ : P′∗β → P′β that maps (x, p) to

(ϕ(x), p) preserves ≤ and ⊥ and is surjective modulo =∗, see Fact ??(??). So it is clear that defining P̄∗ by induction from P′∗ω2
yields

the same result as defining P̄ from P′ω2
.
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of Pβ, together with functions
˜
f m
i :

˜
Am

i → {0, 1}. For the following argument, we prefer to work with the
equivalent P′β instead of Pβ. We can assume that each of the sequences Bi B (

˜
Am

i ,
˜
f m
i )m∈ω is an element

of V (since P′β is a subset of V and since R is σ-closed). So each Bi is decided by a maximal antichain Zi

of R. Since R is ℵ2-cc, these ℵ1 many antichains all are contained in some R�α∗ with α∗ ≥ β.
So in the R�α∗-extension V∗ we have the following situation: Each ξi is a very “absolute52” R∗ ∗ Pα∗ -

name (or equivalently, R∗×Pα∗ -name), in fact they are already determined by antichains that are in Pα∗ and
do not depend on R∗. So we can interpret them as Pα∗ -names.

Note that:

(5.6) The ξi are forced (by R∗ ∗ Pα∗ ) to be pairwise different, and therefore already by Pα∗ .

Now we are finally ready to prove that R ∗Pω2 forces that every uncountable X is neither smz nor sm. It
is enough to show that for every name

˜
Ẋ of an uncountable set of reals of size ℵ1 the forcing R ∗Pω2 forces

that
˜
Ẋ is neither smz nor sm. For the rest of the proof we fix such a name

˜
Ẋ, the corresponding

˜
ξ̇i’s, i ∈ ω1,

and the appropriate α∗ as above. From now on, we work in the R�α∗ extension V∗.
So we have to show that R∗ ∗ Pω2 forces that

˜
Ẋ is neither smz nor sm.

After all our preparations, we can just repeat the proofs of BC (Lemma ??) and dBC (Lemma ??) of
Section ??, with the following modifications. The modifications are the same for both proofs; for better
readability we concentrate on the proof of dBC.

(1) Change: Instead of an arbitrary ultralaver position α < ω2, we obviously have to choose α ≥ α∗.
For the dBC: we choose α > α∗ an arbitrary Laver position. The Janus forcing Qα+1 adds a
(canonically defined code for a) null set Ż∇.

(2) Change: No change here. (Of course we now have an R∗ ∗ Pα∗ -name
˜
Ẋ instead of a ground model

set.)
For the dBC: It is enough to show that

˜
Ẋ + Ż∇ = 2ω in the R∗ ∗Pω2 -extension of V∗, or equivalently,

in every R∗ ∗ Pβ-extension (α < β < ω2). So assume towards a contradiction that there is a β > α

and an R∗ ∗ Pβ-name
˜
ṙ of a real such that some (x, p) ∈ R∗ ∗ Pω2 forces that

˜
ṙ <

˜
Ẋ + Ż∇.

(3) Change: no change. (But we use Corollary ?? instead of Lemma ??.)
For dBC: Using Corollary ??(??), without loss of generality x forces px =∗ p and there is a
R∗ ∗ Px

β-name
˜
ṙx in Mx such that ṙx =

˜
ṙ is forced.

(4) Change: The iteration obviously has to start with the R�α∗-generic iteration which we call P̄∗
(which is ccc), the rest is the same.
For dBC: In V∗ we construct an iteration P̄ in the following way:
(a1) Up to α∗, we use the iteration P̄∗ (which already lives in our current universe V∗). As explained

above in the paragraph preceding (??),
˜
Ẋ can be interpreted as a Pα∗ -name Ẋ, and by (??), Ẋ

is forced to be uncountable.
(a2) We continue the iteration from α∗ to α in way that embeds x and such that Pα is proper. So

Pα will force that Ẋ is still uncountable.
(b1) Let Qα be any ultralaver forcing (over Qx

α). Then Qα forces that Ẋ is not thin.
(b2) Let Qα+1 be a countable Janus forcing. So Qα+1 forces Ẋ + Ż∇ = 2ω.

(c) We continue the iteration in a σ-centered way. I.e., we use an almost FS iteration over x of
ultralaver forcings and countable Janus forcings, using trivial Qζ for all ζ < Mx.

(d) So Pβ still forces that Ẋ + Ż∇ = 2ω, and in particular that ṙx ∈ Ẋ + Ż∇.
We now pick (in V∗) a countable N ≺ H(χ∗) containing everything and ord-collapse (N, P̄) to
y ≤ x, by (??). The HCON object y is of course in V (and even in R), but we can say more: Since
the iteration P̄ starts with the (R�α∗)-generic iteration P̄∗, the condition y will be in the quotient
forcing R∗.
Set Ẋy B Ẋ ∩My (which is the image of Ẋ under the collapse, since we view Ẋ as a set of HCON-
names). By elementarity, My thinks that (a)–(d) above holds for P̄y and that Ẋy is forced to be
uncountable by Py. Note that Ẋy ⊆ Ẋ in the following sense: Whenever G∗ ∗H is R∗ ∗Pω2 -generic
over V∗, and y ∈ G∗, then the evaluation of Ẋy in My[Hy] is a subset of the evaluation of Ẋ in
V∗[G∗ ∗ H].

52or: “nice” in the sense of [?, 5.11]
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(5) Change: No change here.
For dBC: We get our desired contradiction as follows:
Let G∗ be R∗-generic over V∗ and contain y. Let Hβ be P∗β-generic over V∗[G∗] and contain p. So
My[Hy

β] thinks that ṙ = x + z for some x ∈ Ẋy ⊆ Ẋ and 53 z ∈ Ż∇, contradicting (2).

6. A word on variants of the definitions

The following is not needed for understanding the paper, we just briefly comment on alternative ways
some notions could be defined.

6.A. Regarding “alternating iterations”. We call the set of α ∈ ω2 such that Qα is (forced to be) nontriv-
ial the “true domain” of P̄ (we use this notation in this remark only). Obviously P̄ is naturally isomorphic
to an iteration whose length is the order type of its true domain. In Definitions ?? and ??, we could have
imposed the following additional requirements. All these variants lead to equivalent forcing notions.

(1) Mx is (an ord-collapse of) an elementary submodel of H(χ∗).
This is equivalent, as conditions coming from elementary submodels are dense in ourR, by Fact ??.
While this definition looks much simpler and therefore nicer (we could replace ord-transitive mod-
els by the better understood elementary models), it would not make things easier and just “hides”
the point of the construction: For example, we use models Mx that are (an ord-collapse of) an
elementary submodel of HV ′ (χ∗) for some forcing extension V ′ of V .

(2) Require that (Mx thinks that) the true domain of P̄x is ω2.
This is equivalent for the same reason as (1) (and this requirement is compatible with (1)).
This definition would allow to drop the “trivial” option from the definition. The whole proof would
still work with minor modifications — in particular, because of the following fact: 54

(6.1) The finite support iteration of σ-centered forcing notions of length < (2ℵ0 )+ is again
σ-centered.

We chose our version for two reasons: first, it seems more flexible, and second, we were initially
not aware of (??).

(3) Alternatively, require that (Mx thinks that) the true domain of P̄x is countable.
Again, equivalence can be seen as in (1), again (3) is compatible with (1) but obviously not with (2).
This requirement would not make the definition easier, so there is no reason to adopt it. It would
have the slight inconvenience that instead of using ord-collapses as in Fact ??, we would have to
put another model on top to make the iteration countable. Also, it would have the (purely aesthetic)
disadvantage that the generic iteration itself does not satisfy this requirement.

(4) Also, we could have dropped the requirement that the iteration is proper. It is never directly used,
and “densely” P̄ is proper anyway. (E.g., in Lemma ??(4)(a), we would just construct P̄ up to α to
be proper or even ccc, so that X remains uncountable.)

6.B. Regarding “almost CS iterations and separative iterands”. Recall that in Definition ?? we required
that each iterand Qα in a partial CS iteration is separative. This implies the property (actually: the three
equivalent properties) from Fact ??. Let us call this property “suitability” for now. Suitability is a property
of the limit Pε of P̄. Suitability always holds for finite support iterations and for countable support iter-
ations. However, if we do not assume that each Qα is separative, then suitability may fail for partial CS
iterations. We could drop the separativity assumption, and instead add suitability as an additional natural
requirement to the definition of partial CS limit.

The disadvantage of this approach is that we would have to check in all constructions of partial CS
iterations that suitability is indeed satisfied (which we found to be straightforward but rather cumbersome,
in particular in the case of the almost CS iteration).

In contrast, the disadvantage of assuming that Qα is separative is minimal and purely cosmetic: It is
well known that every quasiorder Q can be made into a separative one which is forcing equivalent to the
original Q (e.g., by just redefining the order to be ≤∗Q).

53Note that we get the same Borel code, whether we evaluate Ż∇ in My[Hy
β] or in V∗[G∗ ∗ Hβ]. Accordingly, the actual Borel set

of reals coded by Z∇ in the smaller universe is a subset of the corresponding Borel set in the larger universe.
54We are grateful to Stefan Geschke and Andreas Blass for pointing out this fact. The only reference we are aware of is [?].
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6.C. Regarding “preservation of random and quick sequences”. Recall Definition ?? of local preserva-
tion of random reals and Lemma ??.

In some respect the dense sets Dn are unnecessary. For ultralaver forcing LD̄, the notion of a “quick”
sequence refers to the sets Dn of conditions with stem of length at least n.

We could define a new partial order on LD̄ as follows:

q ≤′ p ⇔ (q = p) or (q ≤ p and the stem of q is strictly longer than the stem of p).

Then (LD̄,≤) and (LD̄,≤
′) are forcing equivalent, and any ≤′-interpretation of a new real will automatically

be quick.
Note however that (LD̄,≤

′) is now not separative any more. Therefore we chose not to take this approach,
since losing separativity causes technical inconvenience, as described in ??.
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