
CREATURE FORCING AND LARGE CONTINUUM: THE JOY OF HALVING

JAKOB KELLNER AND SAHARON SHELAH

Abstract. For f , g ∈ ωω let c∀f ,g be the minimal number of uniform g-splitting trees needed to cover the

uniform f -splitting tree, i.e., for every branch ν of the f -tree, one of the g-trees contains ν. Let c∃f ,g be the dual
notion: For every branch ν, one of the g-trees guesses ν(m) infinitely often. We show that it is consistent that
c∃fε ,gε = c∀fε ,gε = κε for continuum many pairwise different cardinals κε and suitable pairs (fε , gε). For the proof
we introduce a new mixed-limit creature forcing construction.

Introduction

We continue the investigation in [4] of the following cardinals invariants:
Let f , g be functions from ω to ω such that f (n) > g(n) for all n and furthermore lim(f (n)/g(n)) = ∞.

An (f , g)-slalom is a sequence Y = (Y(n))n∈ω such that Y(n) ⊆ f (n) and |Y(n)| ≤ g(n) for all n ∈ ω. A family
Y of (f , g)-slaloms is a (∀, f , g)-cover, if for all r ∈

∏
n∈ω f (n) there is an Y ∈ Y such that r(n) ∈ Y(n) for

all n ∈ ω. The cardinal characteristic c∀f ,g is defined as the minimal size of a (∀, f , g)-cover.
There is also a dual notion: A family Y of (f , g)-slaloms is an (∃, f , g)-cover, if for all r ∈

∏
n∈ω f (n)

there is an Y ∈ Y such that r(n) ∈ Y(n) for infinitely many n ∈ ω. We define c∃f ,g to be the minimal size of
an (∃, f , g)-cover

It is easy to see that ℵ0 < c∃f ,g ≤ c∀f ,g ≤ 2ℵ0 .
Answering a question of Blass related to [1], Goldstern and the second author [2] showed how to force

ℵ1 many different values to c∀f ,g. More specifically, assuming CH and given a sequence (fε , gε , κε)ε∈ℵ1 of

natural functions fε , gε with “sufficiently different growth rate” and cardinals κε satisfying κℵ0
ε = κε , there

is a cardinality preserving forcing notion that forces c∀fε ,gε = κε for all ε ∈ ℵ1. In [4] we additionally forced
c∃fε ,gε = c∀fε ,gε = κε .

In this paper, we improve1 this result to continumm many characteristics c∃fε ,gε = c∀fε ,gε in the extension
(something which is a lot easier for c∀ only; this was done in [3]).

So the main theorem is:

Main Theorem. Assume that CH holds, that µ = µℵ0 , and that κε < µ satisfies κℵ0
ε = κε for all ε ∈ µ. Then

there is an ωω-bounding, cardinality preserving forcing notion P that forces the following: 2ℵ0 = µ, and
there are functions fε , gε for ε ∈ µ such that c∃fε ,gε = c∀fε ,gε = κε .

(We can find such µ and (κε)ε∈µ such that the κε are pairwise different. Then we get continuum many
pairwise different invariants in the extension.)

The construction builds on the theory of creature forcing, which is described in the monograph [5] by
Rosłanowski and the second author. However, this paper should (at least formally) be quite self contained
concerning creature forcing theory; we do however (in 2.1) cite a result of [4].

This paper has two parts: In the first part, we introduce a new creature forcing construction (to give some
“creature keywords”: somewhat in between a restricted product and an iteration, with countable support,

Date: 2010-02-04.
2000 Mathematics Subject Classification. 03E17;03E40.
The authors gratefully acknowledge partial support from the following grants: European Union Marie Curie FP7 project PERG02-

GA-2207-224747 and Austrian science funds FWF project P21651-N13 (first author), US National Science Foundation grant No.
NSF-DMS 0600940 (both authors) United States-Israel Binational Science Foundation Grant no. 2006108 (second author). This is
publication 961 of the second author.

1Note that once we have ℵ1 many different cardinals between ℵ0 and the continumm, then the continumm has to be much bigger
than ℵ1.

1

Paper Sh:961, version 2011-04-19 10. See https://shelah.logic.at/papers/961/ for possible updates.

2 JAKOB KELLNER AND SAHARON SHELAH

basically a lim-inf construction but allowing for lim-sup conditions as well). Using this construction, we
get a much nicer and more general proof of properness compared to the construction in [4].

This construction (actually a simple case, in particular a pure lim-inf case without downwards memory)
is used the second part to construct the required forcing. It turn out that we can use very similar proofs to
the ones in [4] to show that the forcing notion constructed this way actually does what we want.

1. The creature forcing construction

1.1. The basic definitions.

Definition 1.1. Let I∗ be some (index) set, and for each i ∈ I∗ and n ∈ ω fix a finite set POSS∗=n,{i}.
For u ⊆ I∗ and n ∈ ω we set

POSSn,u = {η : η is a function, dom(η) = n × u, and η(m, i) ∈ POSS∗=m,{i} for all m ∈ n and i ∈ u}.

The name POSS is chosen because this is the set of possibile trunks of conditions, see below.
We will use the following notation for restrictions of η ∈ POSSn,u: For 0 ≤ m ≤ n and for w ⊆ u we

use η � m ∈ POSSm,u, η � w ∈ POSSn,w and η � (m × w) ∈ POSSm,w (with the obvious meaning). We will
sometimes identify an η ∈ POSSn,{i}, i.e., a function with domain n × {i}, with the according function with
domain n.

Definition 1.2. VALn,u is the set of functions f : POSSn,u → POSSn+1,u satisfying f(η) � n = η for all
η ∈ POSSn,u.

(This is the set of possible elements of the value-set val(c) of an n-ml-creature, see below.)

Definition 1.3. Fix n ∈ ω. An n-ml-creature parameter pn consists of

• K(n), the set of n-ml-creatures,
• the functions supp, suppls, nor, norls, val and Σ, all with domain K(n),

satisfying the following (for c ∈ K(n)):

(1) suppls(c) ⊆ supp(c) are finite2 subsets of I∗. We call supp(c) the support of c.
(2) nor(c) (called norm) and norls(c) are nonnegative reals.3

(3) val(c) is a nonempty subset of VALn,supp(c).
For η ∈ POSSn,supp(c), we set c[η] B {f(η) : f ∈ val(c)}. So c[η] is a nonempty subset of
POSSn+1,supp(c), and every ν ∈ c[η] extends η.

(4) Σ(c), the set of ml-creatures that are stronger than (or: successors of) c, is a subset of K(n) such
that for all d ∈ Σ(c) the following holds:
(a) if d′ ∈ Σ(d), then d′ ∈ Σ(c) (i.e., Σ is transitive).
(b) c ∈ Σ(c) (i.e., Σ is reflexive).
(c) supp(d) ⊇ supp(c) and suppls(d) ∩ supp(c) ⊆ suppls(c).
(d) d[η] � supp(c) ⊆ c[η � supp(c)] for every η ∈ POSS(n, supp(d)).

Of course, with d[η] � supp(c) we mean {ν � supp(c) : ν ∈ d[η]}.

Remarks 1.4. • “ml” stands for “mixed limit” (the construction mixes lim-sup and lim-inf aspects).
“ls” stands for lim sup; suppls and norls will correspont to the part of the forcing that corresponds
to a lim-sup sequence. The objects supp and nor will correspond to the lim-inf part.

• Our application will be a “pure lim-inf” forcing: We can completely ignore suppls and norls, or,
more formally, we can set suppls(c) = supp(c) and norls(c) = n for all n-ml-creatures c.

• Usually we will also have: if d ∈ Σ(c) then nor(d) ≤ nor(c) and norls(d) ≤ norls(c), but this is not
required for the following proofs.

2We will later even require: There is a functions maxsupp : ω → ω such that every n-ml-creature c satisfies |supp(c)| <
maxsupp(n).

3More particularly, elements of some countable set containing Q and closed under the functions we need, such as ln etc. We can
even restrict nor and norls to values in N. However, this sometimes leads to slightly cumbersome and less natural definitions.

Paper Sh:961, version 2011-04-19 10. See https://shelah.logic.at/papers/961/ for possible updates.

CREATURE FORCING AND LARGE CONTINUUM: THE JOY OF HALVING 3

• In our application (as well as in other potential applications) we will not really use val(c) (i.e., a
set of functions f each mapping every possible trunk η af height n to one of height n + 1). Instead,
we will only need (c[η])η∈POSSn,supp(c) (i.e., the function that assigns to each η the (nonempty, finite)
set of possible extensions c[η]).

We can formalize this simplification in our framework as the following additional requirement:
Assume that f ∈ VALn,supp(c) is such that for all η ∈ POSSn,supp(c) there is a g ∈ val(c) such that

f(η) = g(η). Then f ∈ val(c). Or, in other words: f ∈ VALn,supp(c) is in val(c) iff f(η) ∈ c[η] for all
η ∈ POSSn,uc .

• We could have required the following, stronger property instead of 1.3.(4d) (however, in the case
referred to in the previous item, the two versions are equivalent anyway):

For all f ∈ val(d) there is some g ∈ val(c) such that for each η ∈ POSSn,supp(d)

f(η) � supp(c) = g(η � supp(c)).

• Our application will even have the following property: c[η] is essentially independent of η; there
is no “downwards memory”, the creature does not look at what is going on below.

More exactly: We will define pn in a way so that for all η, η′ in POSSn,supp(c) and ν ∈ c[η] the
possibility η′ ∪ (ν ∩ ({n} × I)) is in c[η′].

• So while the application in this paper only uses a simpler setting, we give the proof of properness
for the more general setting. The reason is that this properness-proof is not more complicated for
the general case, and we hope that the general case can be used for other applications.

Definition 1.5. A forcing parameter p is a sequence (pn)n∈ω such that each pn is an n-ml-creature parameter.
Given such a p, we define the forcing notion Qp: A condition p consists of trnklg(p) ∈ ω, the n-ml-creatures
p(n) for n ≥ trnklg(p) (i.e., p(n) is in the K(n) defined by pn), and an object trunk(p) such that:

• supp(p(n)) ⊆ supp(p(n + 1)) for all n ≥ trnklg(p).
• We set dom(p) B

⋃
n∈ω supp(p(n)), and for i ∈ dom(p) we set trnklg(p, i) = min{n ≥ trnklg(p) :

i ∈ supp(p(n))}.
• trunk(p) is a function with domain {(m, i) : i ∈ dom(p),m < trnklg(p, i)} such that trunk(p)(m, i)

is in POSS∗=m,{i}. For i ∈ dom(p), we set trunk(p, i) = trunk(p) � {i} (which we identify with a
function with domain trnklg(p, i)).

• lim infn→∞ nor(p(n)) = ∞.
• For each i ∈ dom(p) the set X = {norls(p(n)) : i ∈ suppls(p(n))} is unbounded, in other words:

lim sup(X) = ∞. In particular there are infinitely many n with i ∈ suppls(p(n)).

For better readability, we will write supp(p, n) instead of supp(p(n)), and the same for nor etc.
Note that Qp could be empty (for example, if all norms of ml-creatures are bounded by a universal

constant). In the following we will always assume that Qp is nonempty.
We still have to define the order on Qp. Before we can do this, we need another notion: poss(p, n), the

sets of elements of POSSn,dom(p) that are “compatible with p”:

Definition 1.6. For a condition p (or just an according finite sequence of creatures together with a sufficient
part of the trunk), we define poss(p, n) as a subset of POSSn,dom(p) by induction on n. If n ≤ trnklg(p),
then poss(p, n) contains the singleton trunk(p) � (n × dom(p)). Otherwise poss(p, n) consists of those
ν ∈ POSSn,dom(p) such that ν is compatible4 with trunk(p) and such that ν � n× supp(p, n−1) ∈ p(n−1)[η �
(n − 1) × supp(p, n − 1)] for some η ∈ poss(p, n − 1).

Definition 1.7. For p, q ∈ Qp, we set q ≤ p if the following holds:
• trnklg(q) ≥ trnklg(p).
• If n ≥ trnklg(q) then

– q(n) ∈ Σ(p, n),
– supp(q, n) ∩ dom(p) = supp(p, n), (This implies: trnklg(q, i) is the maximum of trnklg(p, i)

and trnklg(q) for all i ∈ dom(p).)
– suppls(q, n) ∩ dom(p) ⊆ suppls(p, n).

4I.e., ν(m, i) = trunk(p)(m, i) for all m < min(n, trnklg(p, i)).

Paper Sh:961, version 2011-04-19 10. See https://shelah.logic.at/papers/961/ for possible updates.

4 JAKOB KELLNER AND SAHARON SHELAH

• trunk(q) extends trunk(p) (as function), i.e., trunk(q)(m, i) = trunk(p)(m, i) whenever i ∈ dom(p)
and m < trnklg(p, i).

• trunk(q) � (trnklg(q) × dom(p)) ∈ poss(p, trnklg(q)).

Remark 1.8. Note that our ml-creatures have an “answer” c[η] to all η ∈ POSSn,supp(c); so in particular
p(n) has answers to all η < poss(p, n). In this respect, our creatures carry a lot of seemingly irrelevant
information. This is neccessary, however, to allow simple proofs of properness and rapid reading: this
way we can, e.g., start with a condition p, then increase the trunk to some height h, strengthen this new
condition to some q, and then “merge” p and q, by setting r(n) = p(n) for n < h and r(n) = q(n) otherwise.
This would not be possible if we dropped the information about “impossible” η ∈ POSSn,supp(c) from the
creatures.

Facts 1.9. • Assume that p is a Qp condition, n > trnklg(p), choose u such that supp(p, n−1) ⊆ u ⊆
dom(p) and η ∈ POSSn,u. Then we can modify p by enlarging the trunk-length to n and replacing
part of the trunk by η. Let us call the resulting creature p∧ η. (More formally: trunk(p∧ η)(m, i) =

η(m, i) if m < n and i ∈ u, and trunk(p)(m, i) otherwise.)
• p ∧ η ≤ p if η ∈ poss(p, n).
• {p ∧ η : η ∈ poss(p, n)} is predense below p.
• We set

˜
νgen to be the name for

⋃
p∈G trunk(p). So Qp forces that

˜
νgen is a function with domain

ω × J for some J ⊆ I∗. Note that it is not guaranteed that J = I∗. (But p forces that dom(p) ⊆ J
and that

˜
νgen � (n × dom(p)) ∈ poss(p, n) for all n ∈ ω.)

• If η ∈ poss(p, n), then p ∧ η ϕ iff p η ⊂
˜
νgen → ϕ.

One simple way to guarantee that J = I∗ is the following: Given i ∈ I∗ and a creature c, we can strengthen
c by increasing the support by (not much more than) {i} while not decreasing the norm too much:

Lemma 1.10. Assume that for all i ∈ I∗ there is an M ∈ ω and a u ∈ [I∗]<ℵ0 containing i sucht that for all
n > M and all c ∈ K(n) with nor(c) > M there is a d ∈ Σ(c) such that

• nor(d) > nor(c) − M and norls(d) > norls(c) − M,
• supp(d) = supp(c) ∪ u and suppls(d) = suppls(c) ∪ u.

Then the domain of
˜
νgen is forced to be ω × I∗.

Proof. Given p ∈ Qp and i ∈ I∗ we can find a q ≤ p such that i ∈ supp(q): For sufficiently large n we get
nor(p, n) > M and dom(p) ∩ u ⊆ supp(p, n). So we can set set q(n) = d ∈ Σ(p(n)) as above. �

1.2. Properness: Bigness and halving.

Definition 1.11. • For c in K(n) and x > 0 we write d ∈ Σx
+(c) if d ∈ Σ(c), supp(d) = supp(c),

suppls(d) = suppls(c), nor(d) ≥ nor(c) − x and norls(d) ≥ norls(c) − x.
• The n-ml-creature c is (B, x)-big, if for all functions G : POSSn+1,supp(c) → B there is a d ∈ Σx

+(c)
and a G′ : POSSn,supp(c) → B such that G(η) = G′(ν) for all η ∈ d[ν]. I.e., modulo d the value of
G(η) only depends on η � n.

• K(n) is (B, x)-big, if all c ∈ K(n) with norm bigger than 1 are (B, x)-big. (Note that we do not
require that c has large norls.)5

Definition 1.12. • A condition p decides a name
˜
τ, if there is an element x ∈ V such that p forces

˜
τ = x̌.

•
˜
τ is n-decided by p, if p ∧ η decides

˜
τ for each η ∈ poss(p, n).

• p essentially decides
˜
τ, if

˜
τ is n-decided by p for some n.

5Of course there are some other natural definitions for bigness. We briefly mention two of them, however the reader can safely
skip this. In our setting, all these notions are more or less equivalent: Firstly, we will assume that k B |POSSn,supp(c) | is “very small”
compared to the bigness B. Secondly, val(c) will be determined by the sequence (c[η]).

– The n-ml-creature c is weakly-(B, x)-big, if for all η ∈ POSSn,supp(c) and all G : c[η]→ B there is a d ∈ Σx
+(c) such that G � d[η]

is constant.
– The n-ml-creature c is (B, x)-big∗, if for all G : val(c)→ B there is a d ∈ Σx

+(c) such that G restricted to val(d) is constant.
We obviously get: (B, x)-big implies weakly-(B, x)-big.
Weakly-(B, x/k)-big implies (B, x)-big: We just iterate bigness for all η ∈ POSSn,supp(c), i.e., at most k times.
(Bk , x)-big∗ implies (B, x)-big: Apply big∗ to the function that maps f ∈ val(c) to the sequence (f(η))η∈POSSn,supp(c) .

Paper Sh:961, version 2011-04-19 10. See https://shelah.logic.at/papers/961/ for possible updates.

CREATURE FORCING AND LARGE CONTINUUM: THE JOY OF HALVING 5

• Let
˜
r : ω→ ω be a Qp-name. p reads

˜
r continuously, if p essentially decides

˜
r(n) for all n.

• p rapidly reads
˜
r (above M), if

˜
r � n is n-decided by p for all n (bigger than M).

Sufficient bigness gets us from continuous to rapid reading:

Lemma 1.13. Fix B : ω→ ω. Assume that
• K(n) is (

∏
m<n B(m), 1)-big for all n ∈ ω.

• p continuously reads6

˜
r ∈

∏
B.

• M ≥ trnklg(p), and nor(p,m) > 1 for all m ≥ M.
Then there is a q ≤ p such that

• trnklg(q) = trnklg(p), trunk(q) = trunk(p), and q(n) = p(n) for trnklg(p) ≤ n < M,
• q(n) ∈ Σ1

+(p(n)) for n ≥ M,
• q rapidly reads

˜
r. I.e.,

˜
r � n is n-decided by q for all n > M.

Proof. For n ∈ ω, let h(n) ≥ 0 be maximal such that
˜
r � h(n) is n-decided by p. So h(n) is a weakly

increasing, unbounded function. Set
xn,l =

˜
r � min(h(n), l).

Note that xn,n is n-decided by p, and that there are at most
∏

m<l B(m) many possibilities for xn,l.
For all n ≥ M, we define by downward induction for l = n, n − 1, . . . ,M + 1,M the creatures dn,l ∈

Σ1
+(p(l)) and the function ψn,l with domain poss(p, n):
• dn,n = p(n), ψn,n(η) is the value of xn,n as forced by p ∧ η.
• For l < n and η ∈ poss(p, l + 1) we know by induction that ψn,l+1(η) is a potential value for xn,l+1.

Let ψ−n,l+1(η) be the corresponding value of xn,l. Using bigness, we get a dn,l ∈ Σ1
+(p(l)) such that

ψ−n,l+1(η) only depends on η � l ∈ poss(p, l). We set ψn,l(η � l) to be this value ψ−n,l+1(η).
For every n ∈ ω, set yn = (val(dn,l), ψn,l)M≤l≤n. For all l there are only finitely many values for val(dn,l)
and for ψn,l. So the set of the sequences yn together with their initial sequences form a finite splitting tree.
Using König’s Lemma, we get an infinite branch: A sequence (d∗l , ψ

∗
l)l≥M such that d∗l ∈ Σ

1
+(p(l)) and such

that for all n the sequence y∗n = (val(d∗l), ψ∗l)M≤l<n is initial sequence of ym for some m > n.
We define q ≤ p by q(l) = p(l) for n < M and q(l) = d∗l otherwise (and, of course, trunk(q) = trunk(p)).
Fix n > M. We claim that

˜
r � n is n-decided by q.

Pick some m such that h(m) > n and some k such that y∗m is initial sequence of yk. Recall the inductive
construction of dk,l:

(1.1) Modulo p and dk,n, dk,n−1, . . . , dk,k any η ∈ poss(p, n) already decides xk,n.

Also, xk,n contains
˜
r � n (since h(k) > n). In fact even h(m) > n, so

˜
r � n is decided by p ∧ ν for all

ν ∈ poss(p,m). Therefore we can improve the previous equation:

(1.2) Modulo p and dk,m−1, . . . , dk,k any η ∈ poss(p, n) already decides xk,n.

Now recall that dk,m−1, . . . , dk,k are conditions in q, so xk,n (and therefore
˜
r � n) is n-decided by q. �

To get properness, we need another well established creature forcing concept:

Definition 1.14. The n-ml-creature c is x-halving, if there is a half(c) ∈ Σx
+(c) satisfying the following: If

d ∈ Σ(half(c)) has non-zero norm, then there is a d′ (called the un-halved version of d) satisfying:
• d′ ∈ Σ(c),
• supp(d′) = supp(d), and suppls(d′) = suppls(d),
• nor(d′) ≥ nor(c) − x and norls(d′) ≥ norls(c) − x,
• d′[η] ⊆ d[η] for all η ∈ POSSn,supp(d).7

K(n) is x-halving, if all c ∈ K(n) with nor(c) > 1 are x-halving. (Note that we do not require norls(c) > 1.)

Definition 1.15. A forcing parameter p has sufficient bigness and halving, if there is an increasing function
maxposs : ω→ ω such that for all n ∈ ω

6I.e.,
˜
r is a name, p forces that

˜
r(m) < B(m) for all m ∈ ω, and p continuously reads

˜
r.

7An alternative, stronger definition would be: val(d′) ⊆ val(d). In the special case mentioned in Remark 1.4 these versions are
equivalent.

Paper Sh:961, version 2011-04-19 10. See https://shelah.logic.at/papers/961/ for possible updates.

6 JAKOB KELLNER AND SAHARON SHELAH

(1) | poss(p, n)| < maxposs(n) for all p ∈ Qp.
(2) K(n) is (2, 1)-big.
(3) K(n) is 1/maxposs(n)-halving.

Remark 1.16. The natural way to guarantee (1) is the following: There is an increasing function maxsupp :
ω→ ω such that for every n ∈ ω

• every n-ml-creature c satisfies |supp(c)| < maxsupp(n),
• There is an M(n) ∈ ω such that |POSS∗=m,{i} | < M(n) for all i ∈ I∗ and m < n, and
• maxposs(n) ≥ M(n)(n·maxsupp(n−1)).

A bit of care will be required to construct such creatures, since on the other hand we will also need
• the norm of a creature does not decrease by, say, more than 1 if we “make the support twice as

big” (we need this to prove ℵ2-cc, cf. Definition 1.20), and
• there is an n-ml-creature c with nor(c) ≥ n (this guarantees that Qp is nonempty).

Lemma 1.17. Assume that p has sufficient bigness and halving, that
˜
τ is the name for an element of V, that

p0 ∈ Qp, that M0 ≥ trnklg(p0), n0 ≥ 1 and nor(p0,m) ≥ n0 + 2 for all m ≥ M0. Then there is a q ≤ p0 such
that8

• q essentially decides
˜
τ,

• q(m) = p0(m) for trnklg(p0) ≤ m < M0,
• nor(q,m) ≥ n0 for all m ≥ M0.

Then the usual standard argument gives us properness and ωω-boundedness, and Lemma 1.13 gives us
rapid reading:

Corollary 1.18. Assume that p has sufficient bigness and halfing.
• Qp is proper and ωω-bounding. Moreover, for each condition p0 and name

˜
r : ω → ω there is a

q ≤ p0 continuously reading
˜
r.

• If additionally every K(n) is (
∏

m<n B(m), 1)-big, we get rapid reading: If
˜
r is a name for an element

of
∏

B then for every p there is a q ≤ p such that
˜
r � m is m-decided by q for all m ∈ ω.

Let us first give a sketch of the (standard) argument of the Corollary:

Proof. • ωω-bounding: Assume that
˜
r is a name for a function from ω to ω and that p0 is in Qp.

Using the previous lemma, we iteratively construct Mn ∈ ω and pn+1 ≤ pn such that
– Mn is big enough to satisfy the following: for some i ∈ dom(pn, n) (chosen by suitable

bookkeeping) there is an m < Mn such that i ∈ suppls(pn,m) and norls(pn,m) > n. Also,
Mn > trnklg(p0) = trnklg(pn) and nor(pn, k) > n + 2 for all k ≥ Mn.

– pn+1(m) = pn(m) for all m < Mn,
– nor(pn+1,m) > n for all m ≥ Mn.
– pn+1 essentially decides

˜
r(n),

This guarantees that the sequence of the pn’s has a limit q, which essentially decides each
˜
r(n).

This in turn implies that (modulo q) there are only finitely many possibilities for each
˜
r(n), which

gives us ωω-boundedness.
• Properness: Fix N ≺ H(χ) and p0 ∈ N. We need a q ≤ p which is N-generic, i.e., which forces that

˜
τ[G] ∈ N for all names for ordinals that are in N. Enumerate all these names as {

˜
τ0,

˜
τ1 . . . }. Now

do the same as above, but instead of
˜
r(n) use τn; and construct each pn inside of N. (The whole

sequence of the pn’s cannot be in N, of course.) Then q leaves only finitely many possibilities for
each

˜
τn, each possibility being element of N, which gives properness. �

Proof of Lemma 1.17. (a) Halving, the single step S e(p,M, n):
Assume that
• p ∈ P,
• M ≥ trnklg(p),
• n ≥ 1, nor(p,m) > n for all m ≥ M.

8note that in contrast to the previous lemma, the supports of q(n) will generally be bigger than those of p(n).

Paper Sh:961, version 2011-04-19 10. See https://shelah.logic.at/papers/961/ for possible updates.

CREATURE FORCING AND LARGE CONTINUUM: THE JOY OF HALVING 7

We now define S e(p,M, n) ≤ p. Enumerate poss(p,M) as η1, . . . , ηl. So l ≤ maxposs(M). Set p0 = p. For
1 ≤ k ≤ l, pick pk such that

• trnklg(pk) = M and pk ≤ pk−1 ∧ ηk. (So in particular, trunk(pk) � dom(p) = ηk.)
• For all m ≥ M, nor(pk,m) > n − k/maxposs(M).
• One of the following cases holds:

dec: pk essentially decides
˜
τ, or

half: it is not possible to satisfy case dec, then pk(m) = half(pk−1(m)) for all m > M.
So in case half, we get dom(pk) = dom(pk−1), but in case dec the domain will generally increase.

We now define q = S e(p,M, n) by q(m) = p(m) for m < M and q(m) = pl(m) otherwise.9 Note that
nor(q,m) > n − 1 for all m ≥ M.

(b) Iterating the single step:
Given p0, M0 and n0 as in the Lemma, we inductively construct pk and Mk for k ≥ 1:
• Choose by some bookkeeping an α ∈ dom(pk−1).
• Choose

(1.3) Mk > k + M0

big enough such that
– there is an l < Mk with α ∈ suppls(pk−1, l) and norls(pk−1, l) > k,
– nor(pk−1(m)) > k + n0 + 2 for all m > Mk.

• Let pk be S e(pk−1,Mk, k + n0 + 2).
Assuming adequate bookkeeping, the sequence pk has a limit q0 ≤ p0, and nor(q0,m) > n0 + 1 for all
m ≥ M0.

(c) Bigness, thinning out q0
We now thin out q0, using bigness in a way similar to the proof of Lemma 1.13.
For all n ∈ ω, we define by downward induction for l = n, n − 1, . . . ,M0 + 1,M0, a subset Λn,l of

poss(q0, l) and ml-creatures dn,l ∈ Σ1
+(q0(l)):

• dn,n = q0(n); and η ∈ Λn,n iff q0 ∧ η essentially decides
˜
τ.

• For l < n, we use bigness to get dn,l ∈ Σ1
+(q0(l)) such that for all η ∈ poss(q0, l) either dn,l[η] ⊆ Λn,l+1

or dn,l[η] ∩ Λn,l+1 = 0. We set Λn,l to be the set of those η ∈ poss(q0, l) such that dn,l[η] ⊆ Λn,l+1.
So by this construction we get: If η ∈ poss(q0,M0) ∩ Λn,M0 then every ν ∈ poss(q0, n) that extends η and is
compatible with (dn,l)M0≤l<n satisfies q0 ∧ ν essentially decides

˜
τ.

If on the other hand
• η ∈ poss(q0,M0) \ Λn,M0 ,
• ν is in poss(q0,M) for some M0 ≤ M ≤ n,
• ν extends η, and
• ν is compatible with (dn,l)M0≤l<M , then

(1.4) q0 ∧ ν does not essentially decide
˜
τ.

We claim that there is some n0 ≥ M0 such that

(1.5) poss(q0,M0) ⊆ Λn0,M0 .

Then we define q ≤ q0 by q(m) = dn0,m for M0 ≤ m ≤ n0 and q(m) = q0(m) for m > n0. According to
the definition of Λn0,M0 , we know that q0 ∧ ν essentially decides

˜
τ for all ν ∈ poss(q, n0), so q essentially

decides
˜
τ. This finishes the proof of the Lemma, since q satisfies the other requirements as well.

So it remains to show (1.5). For every n ∈ ω, we define the finite sequence

xn = (val(dn,l),Λn,l)M0≤l≤n.

For each l, there are only finitely many possibilities for val(dn,l) and for Λn,l, so the set of the sequences xn

together with their initial sequences form a finite splitting tree. Using König’s Lemma, we get an infinite
branch. So we get a sequence (d∗l ,Λ

∗
l)M0≤l≤ω such that d∗l ∈ Σ

1
+(q0(l)) and for all n there is an m > n such

that the sequence
x∗n = (val(d∗l),Λ∗l)M0≤l≤n

9And, of course, we set trunk(q, i) = trunk(p, i) if i ∈ dom(p) and trunk(q, i) = trunk(pl, i) otherwise.

Paper Sh:961, version 2011-04-19 10. See https://shelah.logic.at/papers/961/ for possible updates.

8 JAKOB KELLNER AND SAHARON SHELAH

is an inital sequence of xm.
We claim

(1.6) poss(q0,M0) ⊆ Λ∗M0
.

Then we get (1.5) by picking any n0 such that Λn0,M0 = Λ∗M0
.

To show (1.6), assume towards a contradiction that there is some η0 ∈ poss(q0,M0) \ Λ∗M0
. Define

q1 ≤ q0 by q1(l) = q0(l) if l < M0 and q1(l) = d∗l otherwise. Find an s ≤ q1 ∧ η0 deciding
˜
τ. Without

loss of generality, trnklg(s) = Mk > M0 for some k, where Mk was chosen in (1.3). Also we can assume
nor(s,m) > 2 for all m > trnklg(s). Let trunk(s) extend some ν ∈ poss(q1,Mk) ⊆ poss(q0,Mk). In particular,
ν extends η0. We claim:

(1.7) q0 ∧ ν does not essentially decide
˜
τ

Pick m such that xm extends x∗Mk
. In particular, Λm,M0 = Λ∗M0

, so η0 < Λm,M0 . Since ν ∈ poss(q1,Mk), ν is
compatible with the sequence val(d∗l)M0≤l<Mk and val(d∗l) = val(dm,l). So by (1.4) we get that q0 ∧ ν does not
essentially decide

˜
τ. This proves (1.7).

By (1.7) we know: when we were dealing with ν in stage k, we were in the half-case. In particular, s is
stronger than some pl

k−1 that resulted from halving pl−1
k−1. Let M′ be such that nor(s,m) > k + n0 + 2 for all

m ≥ M′. We can now un-halve s(m) for all Mk ≤ m < M′ (and leave it unchanged above M′), resulting in
a condition s′ that is stronger than pl−1

k−1 and essentially decides
˜
τ, a contradiction to the fact that pl

k−1 was
constructed using the half-case. So we have shown (1.6). �

Remark 1.19. The proof actually shows that it is not required that all n-ml-creatures are 1/maxposs(n)-
halving. It is enough to have an infinite set w ⊆ ω such that for all M ∈ w and n ≥ M every n-ml-creature
is 1/maxposs(M)-halving. (Just choose all the Mk in the proof to be in w.)

1.3. ℵ2-cc. To preserve all cofinalities, we will use ℵ2-cc in addition to properness. To guarantee that Qp
is ℵ2-cc, we need additional properties of p and we have to assume CH in the ground model.

We will argue as follows: Assume towards a contradiction that A is an antichain of size ℵ2. By a standard
∆-system argument we can assume that any two conditions in A have (more or less) disjoint domain; we
assume that there are only continuum many different conditions “modulo isomorphism of the domain”; and
then we have to argue that two identical (modulo domain) conditions with disjoint domain are compatible.

There are many ways to achieve this, one sufficient conditions is the following:

Definition 1.20. Fix n ∈ ω. The n-creature-parameter p(n) has the local ∆-property, if we can assign one
of continuum many10 “local types” to each pair (c, ī), where c is an n-ml-creatue and ī : |supp(c)| → supp(c)
is bijective, such that the following holds:
If

• (c1, ī1) and (c2, ī2) are as above and have the same local type,
• nor(c1) = nor(c2) > 1 and norls(c1) = norls(c2),
• the enumerations ī1 and ī2 agree on supp(c1) ∩ supp(c2).

More formally: if i ∈ supp(c1) ∩ supp(c2), then there is an m such that ī1(m) = ī2(m) = i,
then there is a d ∈ Σ(c1) ∩ Σ(c2) such that

• supp(d) = supp(c1) ∪ supp(c2) and suppls(d) = suppls(c1) ∪ suppls(c2),
• nor(d) ≥ nor(c1) − 1 and norls(d) ≥ norls(c1) − 1.

Lemma 1.21. Assume CH and that p(n) has the local ∆-property for all n. Then Qp is ℵ2-cc.

Proof. Assume towards a contradiction that A is an antichain of size ℵ2. We can assume that there is a
∆ ⊆ I∗ such that dom(p) ∩ dom(q) = ∆ for all p , q in A, and that | dom(p)| = M ≤ ω for all p ∈ A. Pick
for all p ∈ A a bijection īp : M → dom(p).

We can also assume that the following objects and statements do not depend on the choice of p ∈ A for
i∆ ∈ ∆,m < M and n ∈ ω:

• The trunk of p “modulo the enumeration of the domain”, i.e., trnklg(p), trnklg(p, īp(m)) and
trunk(p, īp(m)).

• The norms, nor(p, n), norls(p, n).

10In practise, we can get finitely many.

Paper Sh:961, version 2011-04-19 10. See https://shelah.logic.at/papers/961/ for possible updates.

CREATURE FORCING AND LARGE CONTINUUM: THE JOY OF HALVING 9

• The local type of (p(n), j̄p
n), where j̄p

n is īp restricted to supp(p, n).11

• Whether īp(m) ∈ supp(p, n).
• Whether īp(m) = i∆.

Now pick p , q in A. We show towards a contradiction that p and q are compatible: Pick h such that
nor(p, n) > 1 for all n ≥ h. The local types of (p(n), j̄p

n) and (q(n), j̄qn) are the same. If i∆ ∈ supp(p, n) ∩
supp(q, n), then i∆ = īp(m) = īq(m) for some m < M, and īp(k) ∈ supp(p, n) iff īq(k) ∈ supp(q, n) for
all k ≤ m, therefore i∆ = j̄p

n (l) = j̄qn(l) for some l. So we can apply the local ∆ property and get d ∈
Σ(p(n)) ∩ Σ(q(n)). The sequence of these creatures, together with the union of the stems of p and q, form
a condition r ≤ p, q. �

2. Continuum many invariants

We now apply this creature forcing construction (actually, only the pure lim-sup case and the simplified
setting described in Remark 1.4) to improve the result of Decisive Creatures [4]. We have to make sure to
define the ml-creatures and the norms in a way to satisfy sufficient bigness and halfing (see Definition 1.15
and the Remark following it). Once we have done this, it turns out that the rest of the proof of the Main
Theorem is a rather straightforward modification of the proof in [4].

2.1. Atomic creatures, decisiveness. We will build the ml-creatures from simpler creatures, which we
call atomic creatures. An atomic parameter is a tuple a = (A,K, val, nor,Σ) such that

• A is a finite set.
• K is a finite set (the set of a-atomic creatures),
• val, nor and Σ are functions with domain K

such that for all a-atomic creatures w ∈ K the following holds:
• nor(w) ≥ 0,
• val(w) ⊆ A is nonempty,
• Σ(w) is a subset of K,
• w ∈ Σ(w); and if w2 ∈ Σ(w1) and w3 ∈ Σ(w2) then w3 ∈ Σ(w1),
• if v ∈ Σ(w) then val(v) ⊆ val(w) and nor(v) ≤ nor(w),
• if | val(w)| = 1 then nor(w) < 1.

As usual we get notions of bigness and halving, as well as decisiveness as introduced in [4]:
• v ∈ Σx

+(w) means v ∈ Σ(w) and nor(v) > nor(w) − x.
• w ∈ K is (B, x)-big, if for all F : val(w)→ B there is a v ∈ Σx

+(w) such that F � val(v) is constant.
• w is hereditary (B, x)-big, if every v ∈ Σ(w) with norm at least 1 is (B, x)-big.
• The atomic parameter a is (B, x)-big, if every w ∈ K with norm at least 1 is (B, x)-big.
• w ∈ K is x-halving, if there is a half(w) ∈ Σx

+(w) such that for all v ∈ Σ(half(w)) with norm bigger
than 0 there is a v′ ∈ Σx

+(w) with val(v′) ⊆ val(v). We call this v′ “unhalved version of v”, or we
say that we “unhalve v” to get v′.

• The atomic parameter a is x-halving, if every w ∈ K with norm bigger than 1 is x-halving.
• w ∈ K is (K,m, x)-decisive, if there are v−, v+ ∈ Σx

+(w) such that

(2.1) | val(v−)| ≤ K and v+ is hereditarily (2Km
, x)-big.

v− is called a K-small successor, and v+ a K-big successor of w.
• w is (m, x)-decisive if w is (K,m, x)-decisive for some K.
• K is (m, x)-decisive if every w ∈ K with nor(w) > 1 is (m, x)-decisive.
• An atomic-parameter is M-nice with maximal norm m, if it is (2M , 1/M2)-big, 1/M-halving and

(M, 1/M2)-decisive and m = max(nor(w) : w ∈ K).

Facts 2.1. (1) Given M,m ∈ ω there is an M-nice atomic-parameter with maximal norm m.
Another way to formulate this:
For all M,m ∈ ω there is a K(M, n) ∈ ω such that for all k > K(M, n) there is an atomic-parameter
a = (A,K, val, nor,Σ) which is M-nice with maximal norm m such that A = k.

11More formally, j̄p
n : |supp(p, n)| → supp(p, n) is defined by j̄p

n (l) = īp(k) for the minimal k such that īp(k) ∈ supp(p, n) \ j̄p
n ”l.

Paper Sh:961, version 2011-04-19 10. See https://shelah.logic.at/papers/961/ for possible updates.

10 JAKOB KELLNER AND SAHARON SHELAH

(2) Assume that an atomic paramter is M-nice, that nor(wi) > 2 for all i ∈ M, and that F :
∏

i∈M val(wi)→
2M . Then there are vi ∈ Σ

1/M
+ (wi) such that F �

∏
i∈m val(vi) is constant.

Proof. This is shown in [4]: (1) is Lemma 6.1, (2) is Corollary 4.4. �

2.2. The forcing.

Definition 2.2. We define by induction on n ∈ ω the natural numbers maxposs(n), maxnor(n), maxsupp(n),
Bmin(n), k∗(n), gmin(n) and f max(n); as well as fn,m and gn,m for m ∈ k∗(n):

(1) Set f max(−1) = maxsupp(−1) = 1.
(2) Set maxposs(n) = 1 + (f max(n − 1))n maxsupp(n−1).

(By induction, we will see that | poss(p, n)| < maxposs(n) for every condition p.)
(3) Set maxnor(n) = 1 + 2n·maxposs(n).

(This will later be used to guarantee there is an n-ml-creature with norm n, i.e., that Qp is nonempty.)
(4) Set maxsupp(n) = 1 + 2maxnor(n).

(We will later define the n-ml-creatures so that |supp(c)| ≤ maxsupp(n) for all c ∈ K(n).)
(5) Pick Bmin(n) large with respect to maxsupp(n).

More specifically: larger than f max(n − 1)n f max(n−1)1+(n maxsupp(n))
and larger than 2 maxsupp(n)2.

(6) Pick k∗(n) large with respect to Bmin(n), which means that we can fix a Bmin(n)-nice atomic
paramter an,∗ = (k∗n,Kn,∗, valn,∗, norn,∗,Σn,∗) with maximal norm maxnor(n). (Use 2.1(1).)

(7) Pick gmin(n) = gn,0 large with respect to k∗(n).
More specifically, we will need: larger than f max(n − 1)n maxsupp(n) ·maxposs(n) · k∗(n)maxsupp(n) and
than f max(n − 1)n f max(n−1).

(8) Pick fn,m large with respect to gn,m, which means that we can fix an gn,m-nice atomic parameter
an,m = (fn,m,Kn,m, valn,m, norn,m,Σn,m) with maximal norm maxnor(n). (Again, use 2.1(1).)

(9) Pick gn,m+1 large with respect to fn,m.
More specifically, we need: larger than (fn,m) fn,mk∗ (n)

.
(10) Set f max(n) = fn,k∗(n)−1.

We choose an index set I∗ containing µ and sets Iε for all ε ∈ µ:
• For every ε in µ, pick some Iε of size κε such that µ and all the Iε are pairwise disjoint. Set

I∗ = µ ∪
⋃
ε∈µ Iε .

• We define ε : I∗ \ µ→ I∗ by ε(α) = ε for α ∈ Iε . A subset u of I∗ is ε-closed, if for all ε(α) ∈ u for
all α ∈ u \ µ.

For ε ∈ µ we set POSS=m,{ε} to be k∗(m), and for α ∈ I∗ \ µ we set POSS=m,{α} to be f max(m).

Definition 2.3. We define the ml-parameter p(n): An n-ml-creature c is a triple (uc, w̄c, dc) satisfying the
following:

• uc ⊂ I∗ is nonempty, ε-closed, and of size at most maxsupp(n).
• w̄c consists of the sequences (wcε)ε∈uc∩µ and (wcα,k)α∈uc∩Iε ,k∈val(wcε) such that wcε is an an,∗-atomic-

creature and wcα,k is an an,k-atomic-creature. We will write Acε (or Acα,k) for val(wcε) (or val(wcα,k),
respectively).

• dc ∈ R≥0.12

Given such an ml-creature c, we define the creature-properties of c as follows:
• supp(c) B uc.
• val(c) is the set of those f ∈ VALn,uc that satisfy the following for all η ∈ POSSn,uc : If ε ∈ uc ∩ µ,

then f(η)(n, ε) ∈ Acε , and if α ∈ uc ∩ Iε and f(η)(n, ε) = k then f(η)(n, α) ∈ Acα,k.
• nor(c) B (1/maxposs(n)) · log2

[
minnor(c) − log2(|supp(c)|) − d

]
, where we set minnor to be the

minimum of the norms of all atomic creatures used, i.e.,

(2.2) minnor(c) B min
(
{norn,∗(wcε) : ε ∈ u ∩ µ} ∪ {norn,k(wcα,k) : α ∈ u ∩ Iε , k ∈ Acε}

)
.

(If nor(c) would be negative or undefined when calculated this way, we set it 0.)
• suppls(c) B supp(c) and norls(c) B n (so here we have the pure lim-inf case).

12We could restrict this to a countable set; moreover given w̄c we can even restrict dc to a finite set.

Paper Sh:961, version 2011-04-19 10. See https://shelah.logic.at/papers/961/ for possible updates.

CREATURE FORCING AND LARGE CONTINUUM: THE JOY OF HALVING 11

So our ml-creatures have rather “restricted memory”, they do not “look down” at all, and horizontally
only “look from α to ε(α)”. More exactly:

Fact. η ∈ poss(p, n) iff
• η is compatible with trunk(p),
• for all m with trnklg(p) ≤ m < n, c := p(m), and α ∈ Iε ∩ supp(c) we have: η(m, ε) ∈ Acε and
η(m, α) ∈ Acα,η(m,ε .

Lemma 2.4. • K(n) is (f max(n − 1)n f max(n−1), 1)-big.
• K(n) is 1/maxposs(n)-halving.
• p satisfies the local ∆-property.
• The generic element lives on all of I∗ (i.e., the domain of the generic sequence is ω × I∗).

So we can use Lemma 1.21 and Corollary 1.18 (since maxposs(n) witnesses that p has sufficient bigness
and halving, as defined in 1.15), and get:

Corollary 2.5. Qp is proper, ωω-bounding and ℵ2-cc. If p ∈ Qp forces that r(n) < f max(n) f max(n) for all n,
then there is a q ≤ p that n-decides r � n for all n.

Proof of Lemma 2.4. First note a few obvious facts: For all n-ml-creatures c, we have

(2.3)
∣∣∣POSSn,supp(c)

∣∣∣ ≤ f max(n − 1)n maxsupp(n)

and for a condition p we get, according to 2.2(2),

(2.4)
∣∣∣poss(p, n)

∣∣∣ ≤ f max(n − 1)n maxsupp(n−1) < maxposs(n),

According to 2.2(4), we get: If |supp(c)| ≥ maxsupp(n)/2, then

(2.5) nor(c) ≤ 1/maxposs(n) log2
(
maxnor(n) − log2(maxsupp(n)) + 1

)
= 0.

The local ∆ property: We only have to check that “taking the union of identical creatures with disjoint
domains” decreases the norm by at most one, the rest is just notation:

Given an n-ml creature (uc, w̄c, dc) and an enumeration ī : |uc| → uc, we define the local type to contain
the following information for m,m′ < |uc|: dc, |uc|, whether ī(m) ∈ µ, whether ε(ī(m)) = ī(m′), and the
sequence of the atomic creatures (enumerated by ī).13 Take c1 and c2 as in the Definition 1.20 of the local
∆ property. Since nor(c1) > 1, we know by (2.5) that |supp(c)| < maxsupp(n)/2. So we can define the
n-ml-creature d by dd = dc1 = dc2 ; ud = uc1 ∪ uc2 ; and for ε ∈ µ we set wdε to be wc1ε or wc2ε , whichever is
defined (if both are defined, they have to be equal, since the type is the same); and in the same way we
define wdα,k for α ∈ Iε and k ∈ Adε .

As already mentioned, the only thing we have to check is that nor(d) ≥ nor(c) − 1 (for c = c1 or
c = c2, which does not make any difference). Since d consists of the same atomic creatures as c, we get
minnor(d) = minnor(c), and therefore

nor(d) ≥ 1/maxposs(n) log2
(
minnor(d) − log2(2|supp(c)|) − d

)
≥ 1/maxposs(n) log2

((
minnor(c) − log2(|supp(c)|) − d

)
/2

)
= nor(c) − 1/maxposs(n).

The domain of the generic: Given α ∈ I∗, we can just enlarge any n-ml-creature creature c = (uc, w̄c, dc)
in the following way: Increase the domain by α and (if α < µ) additionally by ε(α), and pick for the new
positions atomic creatures with norm maxnor(n). The same argument as for the local ∆-property shows
that the norm of the new creature decreases by at most 1/maxposs(n). So we can modify any condition to
a stronger condition with a domain containing α (as in Lemma 1.10).

Halving: Halving follows directly from the definition of the norm: Given c = (uc, w̄c, dc), set half(c) =

(uc, w̄c, d′) with
d′ = dc + 1/2

[
minnor(c) − log2(supp(c)) − dc

]
.

Fix d = (ud, w̄d, dd) ∈ Σ(half(c)) (so in particular, dd ≥ d′). We can unhalve d to d̃ = (ud, w̄d, dc). Straight-
forward calculations show that the halving properties are satisfied. In particular: If nor(d) > 0, then

minnor(d) − log2(supp(d)) − dd > 1.

13More formally: the sequences (wc
ī(m)

)m<|u|,ī(m)∈µ and (wc
ī(m),k

)m<|u|,ī(m)<µ,k∈Ac
ε(ī(m))

.

Paper Sh:961, version 2011-04-19 10. See https://shelah.logic.at/papers/961/ for possible updates.

12 JAKOB KELLNER AND SAHARON SHELAH

To calculate nor(d̃), we use

minnor(d) − log2(supp(d)) − dc > 1 + dd − dc ≥ 1 + d′ − dc >

> 1/2
[
minnor(c) − log2(supp(c)) − dc

]
.

So nor(d̃) ≥ nor(c) − 1/maxposs(n).
Bigness: Let c be an n-ml-creature. Set B B f max(n − 1)n f max(n−1). To show (B, 1)-bigness, we pick

some G : POSSn+1,supp(c) → B, and we have to find a d ∈ Σ1
+(c) such that G only depends on η � n. (More

formally: there is a G′ : POSSn,supp(c) → B such that G(η) = G′0(ν) for all η ∈ d[ν].)
Set S = POSSn,supp(c) and M =

∏
ε∈supp(c)∩µ Ac(ε). (S and M stand for “small” and “medium”, respec-

tively.) Note that according to (2.3) and 2.2(7),

(2.6) |S × M| ≤ f max(n − 1)n maxsupp(n) · k∗(n)maxsupp(n) < gmin(n).

If we fix η ∈ S and x ∈ M, then G can be written as a function from
∏

α∈supp(c)\µ Acα,x(ε(α)) to B.
We get:
• All the atomic creatures involved are gmin(n)-nice.
• |supp(c) \ µ| < maxsupp(n) < gmin(n).
• B < 2gmin(n).

So we can apply Fact 2.1(2) and get successors vα ∈ Σ
1/gmin(n)
+ (wcα,x(ε(α))) such that G is constant (with respect

to the new creatures).
We can iterate this for all (η, x) ∈ S ×M, each time decreasing the norm of some of the atomic creatures

on supp(c) \ µ by at most 1/gmin(n). By (2.6), in the end we get vα,k ∈ Σ1
+(wcα,k) for all α ∈ uc \ µ and

k ∈ Acε(α) such that (modulo these new creatures) G only depends on (η, x) ∈ S × M; or, in other words, G
can be written as function fomr M to BS .

It remains to get rid of the dependence on M. For this, just note that all the atomic creatures wcε (for
ε ∈ uc ∩ µ) are Bmin(n)-nice, maxsupp(n) < Bmin(n) and Bmin(n) > BS , so we can find successors on which
G is constant. �

2.3. Proof of the main theorem.

Definition 2.6. • νi B
˜
νgen � {i} for all i ∈ I∗. (We interpret νi as a function from ω to ω.)

• fε(n) B fn,νε (n) for ε ∈ µ, and analogously for gε .
• c∀ε B c∀fε ,gε for ε ∈ µ, and analogously for c∃ε .

So Qp forces that νε(n) < k∗(n) for all n ∈ ω, and that να(n) < fε(n) for all but finitely many n. (There
might be finitely many exceptions, since the initial trunk at α might not fit to the initial trunk at ε(α).)

To prove the main theorem, it is enough to show the following:
Qp forces 2ℵ0 = µ and c∃ε = c∀ε = κε for all ε ∈ µ.

This will be done in Lemmas 2.7, 2.3 and 2.12.

Lemma 2.7. Qp forces 2ℵ0 = µ.

Proof. First note that trivially all νi are different: Fix p ∈ Qp and i , j in I∗. We already know that Qp
forces that the domain of the generic is ω × I∗, in particular we can assume that i, j ∈ dom(p). Choose n
so that nor(p, n) > 1. In particular, all the atomic creatures involved have norm bigger than 1 and therefore
more than one possible value. So we can choose an η ∈ poss(p, n + 1) such that η(n, i) , η(n, j). Then p∧η
forces νi , ν j.

This shows that the continuum has size at least µ in the extension.
Due to continuous reading of names, every real r in the extension corresponds to a condition p in Qp

together with a continuous way to read r off p.
More formally: For each n ∈ ω there are h(n) ∈ ω and a function eval(n) : poss(p, h(n)) → ω such that

p ∧ η forces
˜
r(n) = eval(n)(η) for all η ∈ poss(p, h(n)).

Since there are only µℵ0 = µ many such pairs of conditions and continuous readings, there can be at
most µ many reals in the extension. �

We now mention a simple but useful property of the atomic creatures:

Paper Sh:961, version 2011-04-19 10. See https://shelah.logic.at/papers/961/ for possible updates.

CREATURE FORCING AND LARGE CONTINUUM: THE JOY OF HALVING 13

Lemma 2.8. Assume w0 and w1 are two atomic creatures that appear in some n-ml-creature c. Then there
are vi ∈ Σ

2/Bmin(n)
+ (wi) (for i ∈ {0, 1}) such that val(v0) ∩ val(v1) = ∅.

Proof. Apply decisiveness to get successors ws of w0 and wb of w1 (or the other way round) such that the
norms decrease by at most 1/Bmin(n) and | val(ws)| < K and wb is hereditarily K + 1-big for some K ∈ ω.

[In more detail: Since w0 is decisive, there is a natural number K such that there is a K-small successor
ws

0 as well as a K-big successor wb
0 of w0. On the other hand, again using decisiveness, w1 has a successor

w′1 that is either K-small (then we set ws = w′1 and wb = wb
0) or K-big (then we set wb = w′1 and ws = ws

0).]
Enumerate val(ws) as {x0, . . . , xK−1}, and define G from val(wb) to K + 1 as follows: If l ∈ val(wb) is

equal to xk (for some k ∈ K), then set G(l) = k + 1. Otherwise, set G(l) = 0.
Using K + 1-bigness, we get a G-homogeneous successor v of wb, i.e., G � val(v) is constant m for some

m ∈ K + 1. Of course m has to be 0. (Otherwise val(v) = {xm+1} is a singleton and therefore nor(v) = 0.)
Therefore val(v) ∩ val(ws) = ∅, so v and ws are the required successors w0 and w1. �

A simple application of this Lemma gives us “separated support”:

Lemma 2.9. For p ∈ Qp there is a q ≤ p such that q(n) ∈ Σ1
+(p(n)) for all n ≥ trnklg(q) and Aq(n)

ε0 ∩Aq(n)
ε1 = ∅

for all n and ε0 , ε1 in supp(q, n) ∩ µ.

Proof. Fix n and a pair ε0 , ε1 in supp(p, n) ∩ µ. According to Lemma 2.8, we can find vεi ∈ Σ
2/B(n)
+ (wp(n)

εi)
for i ∈ {0, 1} with disjoint values. Iterate this for all pairs in supp(p, n) ∩ µ (note that there are less than
maxsupp(n)2 < Bmin(n)/2 many, according to 2.2(5)). �

Lemma 2.10. Fix ε0 ∈ µ. Then Qp forces that c∀ε0
≤ κε0 .

Proof. Set I′ = {ε0} ∪ Iε0 . We will show that in the Qp extension of V the family of those (fε0 , gε0)-slaloms
that can (in V) be read continuously from I′ alone form a ∀-cover. This proves the Lemma, since there are
only κℵ0

ε0 = κε0 many continuous readings on I′.
Assume that r is a name for an element of

∏
fε0 . Fix p ∈ Qp. Using Corollary 2.5, without loss of

generality we can assume that p rapidly reads r (i.e., r � n is n-decided by p) and that it satisfies separated
support as in the previous Lemma.

We will construct a q ≤ p and a name for an (fε0 , gε0)-slalom Y that can be continuously read from q � I′

such that q forces r(n) ∈ Y(n) for all but finitely many n ∈ ω. (This proves the Lemma.)
Fix n0 such that nor(p, n) > 2 for all n ≥ n0 and set q(n) = p(n) for n < n0. We construct Y(n) and q(n)

by induction on n ≥ n0. We set supp(q, n) B supp(p, n) and trunk(q) B trunk(p). I.e., the supports and
trunks do not change at all. So by induction poss(q, n) ⊆ poss(p, n).

Let us denote the n-ml-creature p(n) by c. We have to define the n-ml-creature q(n) (let us call it d) with
ud = uc (call it u). We set dd B dc. On µ, we do not change anything: For ε ∈ u ∩ µ we set wdε B wcε (call
it wε , and set Aε B val(wε) = Acε = Adε). It remains to define wdα,k ∈ Σ

1
+(wcα,k) for α ∈ u ∩ Iε and k ∈ wε .

Then, since the norms of all the atomic creatures only decrease by 1, we know that nor(d) will definitely be
bigger than nor(c) − 1, as required.

Let T (for “trunk”) be the set of pairs (η, x) such that η ∈ poss(q, n) and x ∈
∏

ε∈u∩µ Aε .

(2.7) |T | ≤ gmin(n).

We now partition supp(c) \ µ into sets called S , M, L (small, medium, large): Set M = supp(c) ∩ Iε0 .
Using separated support, we know that every ε , ε0 in u ∩ µ satisfies either x(ε) < x(ε0) (then we put all
elements of Iε ∩ u into S) or x(ε) > x(ε0) (then we put them into L).

Rapid reading implies that (modulo the pair (η, x)) the natural number r(n) can be interpreted as a
function

r(n) :
∏

S

×
∏

M

×
∏

L

→ fn,x(ε0).

where we set (for X ∈ {S ,M, L}) ∏
X

B
∏
α∈X

Aα,x(ε(α)).

Our goal is to get a name Y(n) for a small subset of fn,x(ε0) that only depends on M and and contains r(n).

Paper Sh:961, version 2011-04-19 10. See https://shelah.logic.at/papers/961/ for possible updates.

14 JAKOB KELLNER AND SAHARON SHELAH

First note that we can rewrite r(n) as a function

r(n) :
∏

L

→ f ΠS×ΠM
n,x(ε0) .

Using the fact that the atomic creatures in L are nice enough,14 we can find successors of these creatures
that evaluate r(n) to a constant value, and such that the norms decrease by less than 1/gmin(n). We define
w′α,x(ε) to be these successors for ε ∈ L; and leave the other atomic creatures unchanged. Now for every
y ∈ ΠM there are only |ΠS | many possible values for r(n), call this sets of possible values Y(η, x, y).

Iterate this procedure for all pairs (η, x) ∈ T . The same atomic creature may be decreased more than
once, but at most gmin(n) many times, according to (2.7). So in the end, the norms of the resulting atomic
creatures decrease by less than 1. This finishes the definition of q(n).

We still have to define Y(n) as a function from the possible values (k0, y0) on {ε0} ∪ Iε0 , i.e., as a function
with domain {(k0, y0) : k0 ∈ Aε0 , y0 ∈

∏
α∈Iε0

Adα,k0
}. We set Y(n) to be

⋃
(η,x)∈T, x(ε0)=k0

Ỹ(η, x, y0). This set
has size less than gn,k0 , as required.15 �

Lemma 2.11. Fix |J| ≤ maxsupp(n) and for each i ∈ J an atomic creature wi that is (maxsupp(n), 1/gmin(n))-
decisive. Then there are w′i ∈ Σ

1/k∗(n)
+ (wi) for all i ∈ J and a linear order ≤J on J such that each w′i is

hereditarily
∏

j<J i | val(wi)| big.

Proof. For any i ∈ J, apply decisiveness to the atomic creature wi. This gives some Ki and a Ki-big as well
as a Ki-small successor of wi. Pick the i with a minimal Ki, let this i be the first element of the <J-order,
set w′i to be the Ki-small successor, and pick for all other j the K j-big successor. Repeat this construction
for J \ {i}.

So in the end we order the whole set J, decreasing each creature at most maxsupp(n) many times by at
most 1/gmin(n). �

It remains to be shown:

Lemma 2.12. Qp forces that c∃ε0
≥ κε0 .

Proof. Note that it is forced that fε0 (n)/gε0 (n) converges to infinity, therefore (by the usual diagonalization)
it is forced that c∃ε0

> ℵ0. So if κε0 = ℵ1 there is nothing to do.
So assume that ℵ1 ≤ λ < κε0 and assume towards a contradiction that some p0 forces {Yζ : ζ ∈ λ} is an

∃-cover.
For each ζ ∈ λ we can find a maximal antichain Aζ below p0 such that every condition in Aζ rapidly

reads Yζ . Let D be the union of the domains of all elements of any of the Aζ for ζ ∈ λ. Due to ℵ2-cc, D has
size |ℵ0 ×ℵ1 × λ| = λ which is less than κε0 . So we can pick a β ∈ Iε0 \D and a p1 ≤ p0 deciding the Yζ that
∃-covers νβ. From now an, we will call Yζ just Y . Pick some p ≤ p1 that is stronger than some element of
Aζ . To summarize:

p restricted to dom(p) \ {β} rapidly reads Y . (I.e., Y does not depend on the values at β.)
p forces that Y(n) is a subset of fε0 (n) of size less than gε0 (n) for all n,

p forces that there are infinitely many n such that νβ(n) ∈ Y(n)

We will now derive the desired contradiction: We will find an n0 ∈ ω and a q ≤ p forcing that νβ(n) <
Y(n) for all n ≥ n0.

Pick n0 such that nor(p, n) > 2 for all n ≥ n0. We will construct q(n) =: d by induction on n ≥ n0.
Denote p(n) by c. We set trunk(q) B trunk(p) and ud B uc (call it u), so the supports and the trunks do not
change at all, and by induction poss(q, n) ⊆ poss(p, n). We also set dd B dc. On µ, nothing changes: For
ε ∈ u ∩ µ set wdε B wcε (call it wε , and set Aε = val(wε) = Acε = Adε).

It remains to construct wdα,k ∈ Σ
1
+(wcα,k) for α ∈ u ∩ Iε and k ∈ Aε .

Let T (for “trunk”) consist of all pairs (η, x) such that η ∈ poss(q, n) and η ∈
∏

ε∈u∩µ Aε . Note that |T | is
smaller than gmin(n), as already stated in (2.7).

14they all satisfy gn,x(ε0)+1 niceness, and in 2.2(9) we assumed that gn,x(ε0)+1 is bigger than f
∏

S ×
∏

M
n,x(ε0) , since

∏
S ×

∏
M has size

less than f k∗(n)
n,x(ε0). Now use Fact 2.1(2). So the norms decrease at most by 1/gn,x(ε0)+1 < 1/gmin(n).

15|Y(η, x, y)| ≤ |ΠS |, so |Y(n)| ≤ |T ×ΠS | ≤ maxposs(n) ·k∗(n)maxsupp(n) · f maxsupp(n)
n,k0−1 , which is smaller than gn,k0 according to 2.2(9).

Paper Sh:961, version 2011-04-19 10. See https://shelah.logic.at/papers/961/ for possible updates.

CREATURE FORCING AND LARGE CONTINUUM: THE JOY OF HALVING 15

Given (η, x) in T , we apply the previous Lemma to J B u \ µ and the sequence (wcα,x(ε(α)))α∈J . This
gives us successor creatures (w′α)α∈J as well as an order <J of J. Partition J into S = {i <J β}, {β}, and
L = {i >J β}.

So (given η and x), we can write Y(n) (which does not depend on β) as a function from
∏

α∈L val(w′α) ×∏
α∈S val(w′α) to the family of subsets of fn,x(ε0) of size less than gn,x(ε0). Therefore we can use bigness

to once more strenghen the atomic creatures indexed by L and thus remove the dependence of Y(n) from
L. We now take the union Ỹ of all the remaining possibilities for Y(n) and get a set of size less than
gn,x(ε0) · |

∏
α∈S val(w′α)|, which is smaller than the bigness of w′β. So (just as in the proof of Lemma 2.8) we

can strengthen this creature w′β to be disjoint to Ỹ .
As usual, we now iterate this construction for all pairs (η, x) ∈ T . The resulting n-ml-creature q(n)

guarantees that νβ(n) is not in Y(n), as required. �

References

[1] Andreas Blass. Simple cardinal characteristics of the continuum. In Set theory of the reals (Ramat Gan, 1991), volume 6 of Israel
Math. Conf. Proc., pages 63–90. Bar-Ilan Univ., Ramat Gan, 1993.

[2] Martin Goldstern and Saharon Shelah. Many simple cardinal invariants. Arch. Math. Logic, 32(3):203–221, 1993.
[3] Jakob Kellner. Even more simple cardinal invariants. Arch. Math. Logic, 47(5):503–515, 2008.
[4] Jakob Kellner and Saharon Shelah. Decisive creatures and large continuum. J. Symbolic Logic, 74(1):73–104, 2009.
[5] Andrzej Rosłanowski and Saharon Shelah. Norms on possibilities. I. Forcing with trees and creatures. Mem. Amer. Math. Soc.,

141(671):xii+167, 1999.

Kurt Gödel Research Center for Mathematical Logic, Universität Wien, Währinger Straße 25, 1090 Wien, Austria

Email address: kellner@fsmat.at
URL: http://www.logic.univie.ac.at/∼kellner

Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem,
91904, Israel, and Department of Mathematics, Rutgers University, New Brunswick, NJ 08854, USA

Email address: shelah@math.huji.ac.il
URL: http://www.math.rutgers.edu/∼shelah

Paper Sh:961, version 2011-04-19 10. See https://shelah.logic.at/papers/961/ for possible updates.

	Introduction
	1. The creature forcing construction
	1.1. The basic definitions
	1.2. Properness: Bigness and halving
	1.3. 2-cc

	2. Continuum many invariants
	2.1. Atomic creatures, decisiveness
	2.2. The forcing
	2.3. Proof of the main theorem

	References

