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Abstract

This paper investigates a connection between the semantic notion
provided by the ordering C∗ among theories in model theory and the
syntactic (N)SOPn hierarchy of Shelah. It introduces two proper-
ties which are natural extensions of this hierarchy, called SOP2 and
SOP1. It is shown here that SOP3 implies SOP2 implies SOP1. In
[Sh 500] it was shown that SOP3 implies C∗-maximality and we prove
here that C∗-maximality in a model of GCH implies a property called
SOP′′2. It has been subsequently shown by Shelah and Usvyatsov that
SOP′′2 and SOP2 are equivalent, so obtaining an implication between
C∗-maximality and SOP2. It is not known if SOP2 and SOP3 are
equivalent.
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Together with the known results about the connection between
the (N)SOPn hierarchy and the existence of universal models in the
absence of GCH, the paper provides a step toward the classification
of unstable theories without the strict order property. 1

Changes from the published version:
In the published version of this paper it is claimed that witnesses

to being SOP1 can be chosen to be highly indiscernible, and this is
justified by a certain notion of 1-fbti. The definition of this notion
(Definition 2.10) has a typo in a crucial place, and in addition Claim
2.11 for t = 2 is incorrect and for t = 1 the proof is incomplete. In
this version we clarify these statements and proofs by introducting a
new notion of indescernibility 3-fbti. The corrected statement is that
witnesses to being SOP1 can be chosen to be 3-fbti.

That there are inconsistencies in the notions we used in the original
paper was first observed by Lynn Scowl (September 2008), Byunghan
Kim (May 2009) and Enrique Casanovas and Martin Ziegler (July
2010). Whilst a Ph.D. student at UEA in 2008, Mark Wong also
observed some incosistencies and made partial progress in rectifying
them. There is a paper by Kim and Kim (to appear in APAL as of
March 2011) which gives a different notion of 1-fbti and shows that
witnesses can be chosen with that kind of indiscernibility.

0 Introduction

This paper investigates a connection between the ordering C∗ among theories

in model theory and the (N)SOPn hierarchy of Shelah and as such provides

a step toward the classification of unstable theories without the strict order

property. The thesis we pursue is that the syntactic property SOP2 is closely

1 This publication is numbered 692 in the list of publications of Saharon Shelah. The
authors thank the United States-Israel Binational Science Foundation for a grant support-
ing this research and the NSF USA for their grant numbered NSF-DMS97-04477. Mirna
Džamonja thanks EPSRC for their support through grant number GR/M71121, as well as
the Royal Society for their support through grant number SV/ISR/NVB. We would also
like to acknowledge the support of the Erdös Research Center in Budapest, during the
Workshop on Set-theoretic Topology, July 1999, and support of the Hebrew University of
Jerusalem and the Academic Study Group during July 1999. Finally, warm thanks are
due to Alex Usvyatsov for his comments and improvements to the manuscript.

Keywords: classification theory, unstable theories, SOP hierarchy, oak property.
AMS 2000 Classification: 03C45, 03C55.
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related to the semantic property of being maximal in the C∗-order. We

shall now give the relevant definitions and explain the motivation behind the

paper as well as noting our main results. For the purpose of this introductory

discussion we shall limit ourselves to countable (complete first order) theories.

The following order among theories was introduced and investigated by

Keisler in [Ke].

Definition 0.1 (1) For any cardinal λ, the Keisler order lλ among theories

is defined as follows: T0 lλ T1 if whenever Ml(l < 2) is a model of T0, T1

respectively and D is a regular ultrafilter over λ, then the λ+-compactness

of Mλ
1 /D implies the λ+-compactness of Mλ

0 /D.

(2) We say T0 l T1 if for all λ we have T0 lλ T1.

The relevance of this order to the project of classifying unstable theories

without strict order property lies in the two following theorems of Shelah

(note that the second one implies the first).

Theorem 0.2 (Shelah [Sh c], VI4.3) Any (countable) theory with the strict

order property is l-maximal.

As stated in [Sh c], pg xiv, Ch VI of [Sh c] gives a rather complete picture

of Keisler’s order and to complete it we should know more about unstable

theories without the strict order property. Paper [Sh 500] started a classifi-

cation of such theories by introducing the hierarchy SOPn for n ≥ 3 and in

particular it is stated there that being maximal in the Keisler order is not a

characterisation of theories with the strict order property,

Theorem 0.3 (Shelah [Sh 500], see also [ShUs 844]) Any theory with SOP3

is l-maximal.

Details of the proof are given in [ShUs 844]. Precise definitions of prop-

erties SOPn for n ≥ 3 will be repeated below in §2 but for the moment we

note that it was proved in [Sh 500] that for n ≥ 3

strict order property =⇒ SOPn+1 =⇒ SOPn =⇒ not simple

and that all the implications are irreversible. One may now wonder if having

SOP3 is a characterisation of theories that are maximal in the Keisler order,
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giving us a semantic equivalent to the syntactic notion of SOP3. This would

be consistent with what is known about this order, see the Introduction to

Ch VI of [Sh c]. This question remains open but instead one may attempt

to give a characterisation of SOP3 or SOPn in terms of some other similarly

defined order. This is suggested by [Sh 500] which in fact gives a theorem

stronger than 0.3, namely

Theorem 0.4 (Shelah [Sh 500], see also [ShUs 844]) Any theory with SOP3

is C∗-maximal.

The definition of this order will be recalled in §1 where we shall also prove

that being C∗-maximal implies being maximal in the Keisler order. Given

this fact one may now ask if being C∗-maximal characterises theories with

SOP3. To test this claim it is natural to investigate a prototypical example of

an NSOP3 theory that is still not simple, which is T ∗feq. In §1 we shall recall

the definition of this theory and show that in fact it is not C∗-maximal, as it

is consistently strictly below the theory of a dense linear order with no first

or last element (all we need for the consistency is a partial GCH assumption).

This naturally leads to the question of the possibility of refining the dis-

tinction between simplicity and SOP3. Definition of the SOPn hierarchy

from [Sh 500] does not immediately give way to such a refinement as SOPn

is roughly speaking, defined in terms of omitting loops of size n. However in

§2 we introduce two properties SOP2 and SOP1 that in fact satisfy

SOP3 =⇒ SOP2 =⇒ SOP1 =⇒ not simple.

We then ask if these properties in any way characterise the maximality in C∗.
To this end in §3 we prove that any theory that is C∗-maximal in a model of a

sufficient amount of GCH must satisfy a syntactic property SOP′′2. Together

with a subsequent result of Shelah and Usvyatsov in [ShUs 844] that proved

that SOP′′2 is equivalent to SOP2 we hence obtain that C∗-maximality in any

model of a sufficiently rich fragment of GCH implies SOP2. (See §3 for the

definition of SOP′′2 and the exact reference from [ShUs 844]). To summarise,

our main result, appearing as Corollary 3.9(1) below is
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Theorem 0.5 Suppose that T is a theory that is C∗-maximal in some uni-

verse of set theory in which 2λ = λ+ holds for all large enough regular λ.

Then T has SOP2.

Several questions remain open. The main one of course is if SOP2 is

actually equivalent to C∗-maximality. Recall from the discussion above that

we know that SOP3 impliesC∗-maximality. It is not known if SOP3 and SOP2

are actually equivalent. We also note that Shelah and Usvyatsov have proved

in [ShUs 844] a local version of the implication SOP2 =⇒ C∗ −maximality,

see §3 for a more detailed discussion.

A burning question also is that we in fact do not know almost anything

about the reverse of other implications in the (consistent) diagram

SOP3 =⇒ C∗ −maximality =⇒ SOP2 =⇒ SOP1 =⇒ not simple,

apart that not all of them may be equivalences, as T ∗feq is not simple but is

NSOP3. In fact [ShUs 844] proves that T ∗feq is not even SOP1.

Before laying down the organisation of the paper let us also mention the

connection of the SOPn hierarchy with another semantic property, which is

the possibility of having a universal model at λ in some universe of set the-

ory where a sufficient amount of GCH fails (under GCH every countable first

order theory has a universal model in every uncountable cardinal). The con-

nection between this property and unstable theories without the strict order

property has been investigated in a series of papers, notably in [KjSh 409]

where it is proved that if GCH fails sufficiently then there are no universal

dense linear orders. It was proved in [Sh 500] that SOP4 is already sufficient

for such a negative universality result. The question of universality is inter-

esting also for classes that are not elementary classes of models of a first order

theory, for example for classes without amalgamation the most interesting

case is the strong limit singular µ of cofinality ℵ0. In [GrSh 174] it is proved

that for such µ and λ < µ a strongly compact cardinal the class of models

of any Lλ,µ-theory of cardinality < µ admits a universal model of cardinal-

ity µ. A rather detailed description of what is known about the connection

of unstable theories without the strict order property and the universality

problem may be found in the introduction to [DjSh 710].
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The paper is organised as follows. In the first section we investigate the

theory T ∗feq. This is simply the model completion of the theory of infinitely

many parametrised equivalence relations. We show that under a partial GCH

assumption, this theory is not maximal with respect to C∗λ, as it is strictly

below the theory of a dense linear order. In the second section of the paper

we extend Shelah’s NSOPn hierarchy by introducing two further properties

SOP1 and SOP2, and we show that their names are justified by their position

in the hierarchy. Namely SOP3 =⇒ SOP2 =⇒ SOP1. Furthermore, SOP1

theories are not simple. The last section of the paper contains the main

result showing that C∗-maximality in a model of a sufficiently rich fragment

of GCH implies SOP′′2, and hence SOP2 by Shelah-Usvyatsov.

The following conventions will be used in the paper.

Convention 0.6 Unless specified otherwise, a “theory” stands for a first

order complete theory. An unattributed T stands for a theory. We use

τ(T ) to denote the vocabulary of a theory T , and L(T ) to denote the set of

formulae of T .

By C = CT we denote a κ̄-saturated model of T , for a large enough

regular cardinal κ̄ and we assume that any models of T that we mention are

elementary submodels of C.

λ, µ, κ stand for infinite cardinals.

1 On the order C∗λ
Definition 1.1 (1) For (first order complete) theories T0 and T we say that

ϕ̄ = 〈ϕR(x̄R) : R a predicate of τ(T0) or a function symbol of τ(T0) or =〉,

(where we have x̄R = (x0, . . . xn(R)−1)), interprets T0 in T , or that ϕ̄ is an

interpretation of T0 in T , or that

T ` “ϕ̄ is a model of T0”,

if each ϕR(x̄R) ∈ L(T ), and for any M |= T , the model M [ϕ̄] described below

is a model of T0. Here, N = M [ϕ̄] is a τ(T0) model, whose set of elements
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is {a : M |= ϕ=(a, a)} (so M [ϕ̄] ⊆ M) and RN = {ā : M |= ϕR[ā]} for a

predicate R of T0.

For any function symbol f of τ(T0) we have that N |= “f(ā) = b” iff

M |= ϕf (ā, b), while

M |= “ϕf (ā, b) = ϕf (ā, c) =⇒ b = c”

for all ā, b, c.

(2) We say that the interpretation ϕ̄ is trivial if ϕR(x̄R) = R(x̄R) for all

R ∈ τ(T0), so M [ϕ̄] = M � τ(T0), for any model M of T .

(The last clause in Definition 1.1(1) shows that we can in fact restrict

ourselves to vocabularies without function or constant symbols.)

We use the notion of interpretations to define a certain relation among

theories. This relation was introduced by S. Shelah in [Sh 500], section §2
and one can see [ShUs 844] for a more detailed exposition. The reason we are

interested in this ordering is Shelah’s Theorem 0.3 quoted in the Introduction

and we shall now start developing methods for the proof of our main result

3.9.

Definition 1.2 For (complete first order) theories T0, T1 we define:

(1) A triple (T, ϕ̄0, ϕ̄1) is called a (T0, T1)-superior iff T is a theory and ϕ̄l
is an interpretation of Tl in T , for l < 2.

(2) For a cardinal κ, a (T0, T1)-superior (T, ϕ̄0, ϕ̄1) is called κ-relevant iff

|T | < κ.

(3) For regular cardinals λ, µ we say T0 C∗λ,µ T1 if there is a min(µ, λ)-

relevant (T0, T1)-superior triple (T, ϕ̄0, ϕ̄1) such that in every model M

of T in which M [ϕ̄1] is µ-saturated, the model M [ϕ̄0] is λ-saturated. If

this happens, we call the triple a witness for T0 C∗λ,µ T1.

(4) We say that T0 C∗λ,µ T1 over θ if θ ≤ λ, θ ≤ µ and T0 C∗λ,µ T1 as witnessed

by a (T, ϕ̄0, ϕ̄1) with |T | < θ.

(5) If λ = µ, we write C∗λ in place of C∗λ,µ.
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(6) We say that T1 C∗ T2 iff T1 C∗λ T2 holds for all large enough regular λ.

(6) T ∗ is C∗λ-maximal iff T C∗λ T ∗ holds for all T . The notion of C∗-
maximality is defined analogously.

(7) We say T0 C∗λ, 6= T1 iff T0 C∗λ T1 but ¬(T1 C∗λ T0).

Although in this paper we do not consider this in its own right, it is

natural to define the local versions of the C∗-relation. This is used by Shelah

and Usvyatsov in [ShUs 844] to obtain their local converse to the implication

C∗-maximality =⇒ SOP2, see §3 for more discussion on this.

Definition 1.3 Relations C∗,lλ,µ and C∗,lλ are the local versions of C∗λ,µ and

C∗λ respectively, where by a local version we mean that in the definition of

the relations, only types of the form

p ⊆ {±ϑ(x, ā) : ā ∈ lg(ȳ)M}

for some fixed ϑ(x, ȳ) are considered.

Observation 1.4 (0) If T0 C∗λ,µ T1 and l < 2, then there is a witness

(T, ϕ̄0, ϕ̄1) such that ϕ̄l is trivial, hence Tl ⊆ T .

(1) C∗λ is a partial order among theories (note that T C∗λ T for every complete

T of size < λ, and that the strict inequality is written as T1 C∗λ, 6= T2).

(2) If T0 C∗λ,µ T1 over θ and T1 C∗µ,κ T2 over θ, then T0 C∗λ,κ T2 over θ.

[Why? (0) Trivial.

(1) Suppose that Tl C∗λ Tl+1 for l < 2 over θ, as exemplified by (T ∗, ϕ̄0, ϕ̄1)

and (T ∗∗, ψ̄1, ψ̄2) respectively. Without loss of generality, ϕ̄1 is trivial (apply

part (0)), so as T ∗ is complete we have T1 ⊆ T ∗. Similarly, without loss of

generality, ψ̄1 is trivial and so, as T ∗∗ is complete, we have T1 ⊆ T ∗∗. As

T1 is complete, without loss of generality, T ∗ and T ∗∗ agree on the common

part of their vocabularies, and hence by Robinson Consistency Criterion,

T
def
= T ∗ ∪ T ∗∗ is consistent. Also |T ∗| + |T ∗∗| < θ, hence |T | < θ. Clearly

T interprets T0, T1, T2 by ϕ̄0, ϕ̄1 = ψ̄1 and ψ̄2 respectively and T is com-

plete. We now show that the triple (T, ϕ̄0, ψ̄2) is a (T0, T2)-superior which

witnesses T0 C∗λ T2 over θ. So suppose that M is a model of T in which
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M [ψ̄2] is λ-saturated. As (T ∗∗, ψ̄1, ψ̄2) witnesses T1 C∗λ T2, we can conclude

that M [ϕ̄1] = M [ψ̄1] is λ-saturated. We can argue similarly that M [ϕ̄0] is

λ-saturated.

(2) is proved similarly to (1).]

In this section we consider an example of a theory which is a prototypical

example of an NSOP3 theory that is not simple (see [Sh 457]). It is the model

completion of the theory of infinitely many (independent) parametrised equiv-

alence relations, formally defined below. We shall prove that for λ such that

λ = λ<λ and 2λ = λ+, this theory is strictly C∗λ+-below the theory of a dense

linear order with no first or last element.

Definition 1.5 (1) Tfeq is the following theory in {P,Q,E,R, F}

(a) Predicates P and Q are unary and disjoint, and (∀x) [P (x) ∨Q(x)],

(b) E is an equivalence relation on Q,

(c) R is a binary relation on Q× P such that

[xR z & y R z & xE y] =⇒ x = y.

(so R picks for each z ∈ P (at most one) representative of any E-equivalence class).

(d) F is a (partial) binary function from Q× P to Q, which satisfies

F (x, z) ∈ Q & F (x, z)Rz & xE F (x, z).

(so for x ∈ Q and z ∈ P , the function F picks the representative of the E-equivalence class of x

which is in the relation R with z).

(2) T+
feq is Tfeq with the requirement that F is total.

(3) For n < ω, we let T nfeq be T+
feq enriched by the sentence saying that over

any n elements, any (not necessarily complete) quantifier free type consist-

ing of basic (atomic and negations of the atomic) formulae with no direct

contradictions, is realised.
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Note 1.6 One may easily check that every model of Tfeq can be extended to

a model of T+
feq and that T+

feq has the amalgamation property and the joint

embedding property. This theory also has a model completion, which can be

constructed directly, and which we denote by T ∗feq. It follows that T ∗feq is a

complete theory with infinite models, in which F is a full function.

Remark 1.7 Notice that Tfeq has been defined somewhat differently than

in [Sh 457, §1], but the difference is non-essential, as the following Claim 1.8

shows that the two theories have the same model completion. This claim

also shows the origin of the name “infinitely many independent equivalence

relations” for T ∗feq.

Claim 1.8 Let T be the theory defined (in [Sh457, 1]) by

(a) T has unary predicates P and Q and a three place relation E writen as

y Exz,

(b) the universe of any model of T is a disjoint union of P and Q,

(c) y Exz =⇒ P (x) & Q(y), Q(z),

(d) for any fixed x ∈ P the relation Ex is an equivalence relation on Q.

Then T ∗feq is the model completion of T .

Proof of the Claim. Let M be a model of Tfeq, we shall extend M to a

model of T as follows. Each E-equivalence class e = a/E gives rise to an

equivalence relation Ee on P given by:

z1Eez2 iff z1, z2 ∈ P and F (a, z1) = F (a, z2).

This definition does not depend on a, just on a/E. Let PN and QN be QM

and PM respectively. Define y EN
x z iff y Eez where e = x/EM . Clearly N is

a model of T .

Now suppose that we have a model M of T and we shall extend it to

a model N of Tfeq. Let PN and QN be QM and PM respectively. Define

xENx′ iff for every y, z we have y Exz iff y Ex′z. Choose a representative of

each E-equivalence class and for any z ∈ QN and such a representative x let
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F (x, z) = x. Then for x′ ∈ QN which has not been chosen as a representative

of any equivalence class, find x which has been chosen as its representative

and define F (x′, z) = F (x, z) for all z ∈ PN .

This shows that Tfeq and T are cotheories ([ChKe], 3.5.6(2)). Being the

model completion of Tfeq, T ∗feq is its cotheory, and hence a cotheory of T .

Hence T ∗feq is a model companion of T . In order to prove that it is the model

completion of T it suffices to show that T has the amalgamation property

([ChKe], 3.5.18) which is easily seen directly. F1.8

Observation 1.9 T ∗feq has elimination of quantifiers and for any n, any

model of T ∗feq is a model of T nfeq.

Notation 1.10 Tord stands for the theory of a dense linear order with no

first or last element.

The following convention will make the notation used in this section sim-

pler.

Convention 1.11 Whenever considering (Tord, T
∗
feq)-superiors (T, ϕ̄, ψ̄) we

shall abuse the notation and assume ϕ̄ = (I,<0) and ψ̄ = (P,Q,E,R, F ). In

such a case we may also write PM in place of PM [ψ̄]
etc., and we may simply

say that T is a (Tord, T
∗
feq)-superior.

We intend to prove that for λ satisfying λ<λ and 2λ = λ+ the theory

T ∗feq is strictly C∗λ+-below Tord (Theorem 1.17 below). This will be done by

a diagonalisation argument where for a given λ-relevant (Tord, T
∗
feq)-superior

T we inductively construct a model of T that is saturated for T ∗feq but not

for Tord. Main Claim 1.13 provides one step in the required induction. In

Stage A of its proof we use the elimination of quantifiers in T ∗feq to reduce

the situation to Tfeq-types of four prescribed kinds, and then we show that

we may in fact work only with three of them. Stage B contains the main

point of the proof, which is the construction of a certain tree of models and

embeddings. Once this is done in Stage C we use the analysis from Stage A to

show that the T ∗feq-type defined by the union of the embeddings is consistent.

In Stage D we take N ≺ C of size λ that realises this type and show that
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N must omit most of the Dedekind cuts induced by the tree of embeddings,

and that most of these cuts are not definable over N . After an application of

an appropriate automorphism of C this finishes the proof of the Main Claim.

The proof of the theorem then follows by induction. The cardinal arithmetic

assumptions are used in Stage D and in the inductive proof of the theorem.

Definition 1.12 For a λ-relevant (Tord, T
∗
feq)- superior T , the statement

∗[M, ā, b̄] = ∗[M, ā, b̄, T, λ]

means:

(i) M is a model of T of size λ,

(ii) ā = 〈ai : i < λ〉, b̄ = 〈bi : i < λ〉, are sequences of elements of IM
[ϕ̄]

such that

i < j < λ =⇒ ai <0 aj <0 bj <0 bi,

(iii) there is no x ∈M [ϕ̄] such that for all i we have ai <0 x <0 bi,

(iv) the Dedekind cut {x :
∨
i<λ x <0 ai} is not definable by any formula of

L(M) with parameters in M .

Main Claim 1.13 Assume λ<λ = λ and (T, ϕ̄, ψ̄) is a λ-relevant (Tord, T
∗
feq)-

superior. Further assume that ∗[M, ā, b̄] holds, and p = p(z) is a (consistent)

T ∗feq-type over M [ψ̄]. Then there is N |= T with M ≺ N , such that p(z) is

realised in N [ψ̄] and ∗[N, ā, b̄] holds.

Proof of the Main Claim.

Stage A. Without loss of generality, p is complete in the T ∗feq-language

over M [ψ̄]. (By Convention 1.11, we can consider p to be a type over M

(rather than M [ψ̄]). We shall use this Convention throughout the proof). If

p is realised in M , our conclusion follows by taking N = M , so let us assume

that this is not the case. Using the elimination of quantifiers for T ∗feq, we

can without loss of generality assume that p(z) consists of quantifier free

formulae with parameters in M . This means that one of the following four

cases must happen:
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Case 1. (This will be the main case) p(z) implies that z ∈ P and it

determines which elements of QM are R-connected to z. Hence for some

function f : QM → QM which respects E, i.e.

aE b =⇒ f(a) = f(b),

and

f(a) ∈ a/EM ;

we have

p(z) = {P (z)} ∪ { bR z : b ∈ Rang(f)}

and no a ∈ PM satisfies p.

Case 1A. Like Case 1, but f is a partial function and

p(z) = {P (z)} ∪ { f(b)Rz : b ∈ Dom(f)}
∪ {¬(bR z) : (b/EM ∩ Rang(f)) = ∅}.

(This Case will be reduced to Cases 1-3 in Subclaim 1.15).

Case 2. p(z) determines that z ∈ Q and that it is E-equivalent to some

a∗ ∈ QM , but not equal to any “old” element. Note that in this case if

b∗ realises p(z), we cannot have b∗Rc for any c ∈ PM , as this would imply

F (a∗, c) = b∗ ∈ M [ψ̄] (and we have assumed that p is not realised in M [ψ̄]).

Hence, the complete M -information is given by

p(z) = {Q(z)} ∪ {a∗E z} ∪ {a 6= z : a ∈ a∗/EM}.

Case 3. p(z) determines that z ∈ Q, but it has a different E-equivalence

class than any of the elements of QM . As p is complete, it must deter-

mine for which c ∈ PM we have z R c, and for which c, d ∈ PM we have

F (z, c) = F (z, d). Hence, for some f : PM → {yes, no} and some E , an

equivalence relation on PM such that cEd =⇒ f(c) = f(d), we have

p = {Q(z)} ∪ {¬(a E z) : a ∈ QM} ∪ {(z R b)f(b) : b ∈ PM}
∪{(F (z, c) = F (z, d))ifcEd : c, d ∈ PM}.

In the above description, we have used

Notation 1.14 For a formula ϑ we let ϑyes ≡ ϑ and ϑno ≡ ¬ϑ.
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Subclaim 1.15 It suffices to deal with Cases 1,2,3, ignoring the Case 1A.

Proof of the Subclaim. Suppose that we are in the Case 1A. Let

{di/EM : i < i∗ ≤ λ}

list the d/EM for d ∈ QM such that d′ ∈ d/EM =⇒ ¬(d′Rz) ∈ p(z). We

choose by induction on i ≤ i∗ a pair (Mi, ci) such that

(a) M0 = M , ||Mi|| = λ,

(b) 〈Mi : i ≤ i∗〉 is an increasing continuous elementary chain,

(c) ∗[Mi, ā, b̄]

(d) ci ∈ (di/E
Mi+1) \Mi, for i < i∗.

For i limit or i = 0, the choice is trivial. For the situation when i is a

successor, we use Case 2.

Let 〈ci/EMi∗ : i ∈ [i∗, i∗∗)〉 list without repetitions the c/EMi∗ which are

disjoint to M . Note that |i∗∗| ≤ λ. Let

p+(z)
def
= p(z) ∪ {ciRz : i < i∗∗}.

Then p+(z) is a complete type (for M
[ψ̄]
i∗ ), and ∗[Mi∗ , ā, b̄] holds by (c). If

p+(z) is realised in Mi∗ , we can let N = Mi∗ and we are done. Otherwise,

p+(z) is not realised in Mi∗ and is a type of the form required in Case 1, so

we can proceed to deal with it using the assumptions on Case 1. F1.15

Stage B. Let us assume that p is a type as in one of the Cases 1,2 or 3,

which we can do by Subclaim 1.15. We shall define 〈Mα : α < λ〉, an ≺-

increasing continuous sequence of elementary submodels of M , each of size

< λ, and with union M , such that:

(a) In Case 1, each Mα is closed under f ,

(b) In Case 2, a∗ ∈M0,

(c) For every α < λ,

(Mα, {(aj, bj) : j < λ} ∩Mα) ≺ (M, {(aj, bj) : j < λ}),

14
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Hence, for some club C of λ consisting of limit ordinals δ, we have that

for all δ ∈ C,

aj ∈Mδ ⇐⇒ bj ∈Mδ ⇐⇒ j < δ,

(∀c ∈ IMδ)(∃j < δ) [c <0 aj ∨ bj <0 c].

Let C = {δi : i < λ} be an increasing continuous enumeration.

Now we come to the main point of the proof.

By induction on i = lg(η) < λ we shall choose h̄ = 〈hη : η ∈ λ>2〉, a

sequence such that

(α) hη is an elementary embedding of Mδlg(η)
into CT , whose range will be

denoted by Nη.

(β) ν C η =⇒ hν ⊆ hη.

(γ) If ηl ∈ λ>2 for l = 0, 1 and η0 ∩ η1 = η, then:

(i) Nη0 ∩Nη1 = Nη.

(ii) In addition, if al ∈ QNηl for l = 0, 1 and a0E
CT a1, then for some

a ∈ QNη we have alE
CT a for l = 0, 1. (Equivalently, if al ∈ QNηl

and ¬(∃a ∈ Nη)(∧l<2alE a), then ¬(a0E a1)).

(δ) |= “hη_〈0〉(bδlg(η)
) <0 hη_〈1〉(aδlg(η)

)” (see Convention 1.11 on <0).

Note that the requirement of hη being elementary and onto Nη in partic-

ular implies that

(δ′) If for some l < 2 and η ∈ λ>2 we have a ∈ Nη_〈l〉 \Nη and b ∈ Nη, then

aECT b iff a = hη_〈l〉(a
′) for some a′ such that a′ECTh−1

η (b).

We now describe the inductive choice of hη for η ∈ λ>2, the induction

being on i = lg(η). Let h〈〉 = idM0 . If i is a limit ordinal, we just let

hη
def
=
⋃
j<lg(η) hη�j. Hence, the point is to handle the successor case.

Fixing i < λ, let 〈ηi,α : α < α∗ ≤ λ〉 list i+12, in such a manner that

ηi,2α � i = ηi,2α+1 � i and ηi,2α+l(i) = l for l < 2 (we are using the assumption

λ<λ = λ). Now we choose hηi,2α+l
by induction on α. Hence, coming to α, let

us denote by ηl the sequence ηi,2α+l, and let η0∩η1 = η (so η0 � i = η1 � i = η).

Let Mδi+1
\Mδi = {dij : j < j∗i }, so that di0 = aδi and di1 = bδi . We consider

the type Γ, which is the union of
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(a)

Γ0
def
=

{
ϕ(x0

j0
, . . . , x0

jn−1
;hη(c̄)) :n < ω & c̄ ⊆Mδi & j0, . . . jn−1 < j∗i &

Mδi+1
|= ϕ(dij0 , . . . , d

i
jn−1

; c̄)

}
,

(taking care of one “side” (for η0 or η1) of the part (α) above)

(b) Γ1, defined analogously to Γ0, but with x0
j0
, . . . , x0

jn−1
replaced every-

where by x1
j0
, . . . , x1

jn−1
,

(taking care of the remaining “side” of (α) above, interchanging η0 and η1)

(c) Γ2 = {(x0
0, x

0
1)I ∩ (x1

0, x
1
1)I = ∅},

(this says that the above intervals in <0 are disjoint, which after the right choice of hη0 (dij) = a

realisation of x0
j or hη0 (dij) = a realisation of x1

j (j < 2), and similarly for hη1 , will take care of

the part (δ) above.)

(d) Γ3 = Γ0
3 ∪ Γ1

3, where for l < 2

Γl3 =
{
xlj 6= c : j < j∗i , c ∈ ∪{Rang(hρ) : hρ already defined}

}
.

(e)

Γ4 = {x0
j1
6= x1

j2
: j0, j1 < j∗i }

((d)+ (e) are taking care of (γ) above, part (i)).

(f)

Γ5 =

{
¬(x0

j0
Ex1

j1
) : if j0, j1 < j∗i

but there is no a ∈Mδi with [dij0Ea ∨ dij1Ea]

}
.

(together with Γ6 below, taking care of part (γ)(ii), see below. Note that the type is defined using

∨ rather than ∧, but this will turn out to be sufficient.)

(g) Γ6 = Γ0
6 ∪ Γ1

6, where

Γl6 =

{
¬(xljEb) : j < j∗i and b is an element of the set

∪ {Rang(hρ) : hρ already defined and ¬(∃c ∈ Nη)[bE c]}

}
.

16

Paper Sh:692, version 2011-03-22 10. See https://shelah.logic.at/papers/692/ for possible updates.



First note that requiring Γ5∪Γ6 throughout the construction indeed guaran-

tees that (γ)(ii) can be satisfied. Namely, suppose that the realisations of x0
j0

and x1
j1

are E-equivalent. Then by Γ5 we must have that for some l < 2 and

a ∈ Mδi we have that dijlEa. By transitivity then the realisation of x1−l
j1−l

would have to be E-equivalent to hη(a), which might only be precluded by

dij1−l being E equivalent to some c such that a and c are not E-equivalent.

This cannot happen by Γ6.

We conclude that, if Γ is consistent, as C is κ̄-saturated, the functions hηl
can be defined. Namely, for a realisation {clj : j < j∗i , l < 2} of Γ, we can

define gl(d
i
j) = clj, and then we let hη0 = g0 if c0

1 <0 c
1
0, and g1 otherwise. We

let hη1 = g1−l if hη0 = gl. This guarantees that (δ) above is satisfied.

Let us then show that Γ is consistent. Suppose for contradiction that

this is not so, so we can find a finite Γ′ ⊆ Γ which is inconsistent. Let

{j0, . . . , jn−1} be an increasing enumeration of a set including all j < j∗i such

that xlj is mentioned in Γ′ for some l < 2 and let d̄ = 〈dij0 , . . . d
i
jn−1
〉. Without

loss of generality, 0 and 1 appear in the list {j0, . . . , jn−1} and hence j0 = 0

while j1 = 1. By closing under conjunctions and increasing Γ′ (retaining

that Γ′ ⊆ Γ is finite) if necessary, we may assume that for some formula

σ(x0, . . . xn−1; c̄) ∈ tp(d̄/Mδi), we have

Γ′ ∩ Γl = {ϑl(xlj0 , . . . x
l
jn−1

;hη(c̄))}

for l < 2, where ϑl(x
l
j0
, . . . xljn−1

;hη(c̄)) is the formula obtained from σ by

replacing xk by xljk and c̄ by hη(c̄).

Let ϑ2 be the formula comprising Γ2 and ϑl3(x̄l; c̄l3) =
∧

(Γl3 ∩ Γ′), while

ϑ4 =
∧

(Γ4∩Γ′) and ϑ5 =
∧

(Γ5∩Γ′). Let ϑ3 = ϑ0
3∧ϑ1

3 and ϑ =
∧
k<6,k 6=2,3 ϑk.

Without loss of generality, ϑ includes statements xl0 6= . . . 6= xln−1 and

xl0 <0 x
l
1 for l < 2. We may also assume that (x0

0, x
0
1)I ∩ (x1

0, x
1
1)I = ∅ is

included in Γ′. The choice of n may be assumed to have been such that for

some cl0, . . . c
l
n−1 (for l < 2) from

⋃
{Rang(hρ) : hρ already defined}, we have

Γ′ ∩ Γ3 = {xljm 6= clk : l < 2, k < n,m < n},

and finally that

Γ′ ∩ Γ5 = {¬(x0
jk
Ex1

jm) : k,m < n &

¬(∃a ∈Mδi)[d
i
jk
Ea ∨ dijmEa]}.
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By extending hη to an automorphism ĥη of C, and applying (ĥη)
−1, we may

assume that hη = idMδi
. We can also assume that no clk is an element of Mδi ,

as otherwise the relevant inequalities can be absorbed by σ.

We shall use the following general

Fact 1.16 Suppose that N ≺ C and ē ∈ mC is disjoint from N , while N ⊆ A.

Then

r(x̄)
def
=tp(ē, N) ∪ {xk 6= d : d ∈ A \N, k < m}
∪ {¬(xkEd) : d ∈ A & (d/E) ∩N = ∅, k < m},

is consistent (and in fact, every finite subset of it is realised in N).

Proof of the Fact. Otherwise, there is a finite r′(x̄) ⊆ r(x̄) which is

inconsistent. Without loss of generality, r′(x̄) is the union of sets of the

following form (we have a representative type of the sets for each clause)

• {%(x̄, c̄)} for some c̄ ⊆ N and % such that |= %[ē, c̄].

• {xk 6= ĉsk : k < m} for some ĉs0, . . . ĉ
s
m−1 ∈ A \N and s < s∗ < ω,

• {¬(xk E d̂
t
k) : k < m} for some d̂t0, . . . d̂

t
m−1 ∈ A \ N and t < t∗ < ω

such that (d̂tk/E) ∩N = ∅.

By the elementarity of N , there is ē′ ∈ N with N |= %[ē′, c̄]. By the choice of

the rest of the formulae in r̄′(x̄), we see that ē′ satisfies them as well, which

is a contradiction. F1.16

Let x̄l = (xl0, . . . , x
l
n−1) for l < 2. Let

Φ0
def
= {ϕ(x̄0) : ϕ(x0

j0
, . . . , x0

jn−1
) ∈ Γ′ ∩ (Γ0 ∪ Γ0

3 ∪ Γ0
6)}.

Applying the last phrase in the above Fact to Φ0(x̄0), the model Mδi and

d̄, we obtain a sequence ē0 = (e0
0, . . . e

0
n−1) ∈ Mδi which realises Φ0(x̄0). For

k,m such that ¬(x0
jk
Ex1

jm) ∈ Γ5 we have ¬(∃a ∈Mδi)(aEd
i
jk
∨ aEdijm). So

¬(xkEe
0
m) ∧ ¬(e0

mE xm) ∈ tp(d̄/Mδi).
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Let now

Φ1(x̄1) = {¬(x1
k E e

0
m) ∧ ¬(e0

k E x
1
m) : ¬(x0

jk
E x1

jm) ∈ Γ5}
∪{x1

k 6= e0
m : k,m < n} ∪ {ϕ(x̄1) : ϕ(x1

j0
, . . . , x1

jn−1
) ∈ Γ′ ∩ (Γ1 ∪ Γ1

3 ∪ Γ1
6)}.

Φ1(x̄1) is a finite set to which we can apply the last phrase of Fact 1.16.

In this way we find ē1 = (e1
0, . . . e

1
n−1) ∈ Mδi realising Φ1(x̄1). Now we

show that ē0 _ ē1 realises Γ′ \ Γ2. So suppose ¬(x0
jk
Ex1

jm) ∈ Γ′ ∩ Γ5, then

¬(x1
k E e

0
m) ∈ Φ1, hence ¬(e1

kEe
0
m). Also ∧k,m<n(e1

k 6= e0
m) holds, by the

choice of Φ1, so ē0 _ ē1 realises Γ′ ∩ Γ4. Now we need to deal with Γ2. Let

D def
= {(ū0, ū1) : (ū0, ū1) satisfies ϑ}.

So D is first order definable with parameters in Mδi and we have just shown

that D ∩Mδi 6= ∅. Also if ē0 _ ē1 ⊆ Mδi satisfies ϑ, it necessarily realises

Γ′ \ Γ2 (as no clk ∈ Mδi , see the definition). As Γ′ is presumed to be incon-

sistent, no (ū0, ū1) ∈ D ∩Mδi can realise Γ′, i.e. satisfy ϑ2, and hence for no

(ū0, ū1) ∈ D ∩Mδi are the intervals (u0
0, u

0
1)I and (u1

0, u
1
1)I disjoint. Now we

claim that if (ū0, ū1) ∈Mδi ∩ D, then (u0
0, u

0
1)I ∩ (aδi , bδi)I 6= ∅.

Indeed, suppose otherwise, say u0
1 <0 d

i
0 = aδi , so u0

1 <0 x0 ∈ tp(d̄/Mδi).

Arguing as above, with ū0 in place of ē0 and Φ1(x̄) ∪ {u0
1 <0 x

1
0} in place

of Φ1(x̄1), we can find ū ∈ Mδi satisfying (u0
1 <0 u0) and such that (ū0, ū)

satisfies ϑ. So (ū0, ū) ∈ D ∩Mδi and the intervals (u0
0, u

0
1)I and (u0, u1)I are

disjoint, a contradiction. A similar contradiction can be derived from the

assumption bδi = dδi1 <0 u
0
0. Now note that (ū0, ū1) ∈ D =⇒ (ū1, ū0) ∈ D,

so if (ū0, ū1) ∈ D ∩Mδi we also have (u1
0, u

1
1)I ∩ (aδi , bδi)I 6= ∅.

By the choice of C, there is no x ∈Mδi with dδi0 ≤0 x ≤0 d
δi
1 , hence

if (ū0, ū1) ∈Mδi ∩ D and l < 2, we have ul0 <0 d
δi
0 <0 d

δi
1 <0 u

l
1. (∗)

Let σ∗(ȳ) be ∃x̄((x̄, ȳ) ∈ D). Hence if

%0(z) = (∃ȳ)[σ∗(ȳ) ∧ z ≤0 y0]

and

%1(z) = (∃ȳ)[σ∗(ȳ) ∧ y1 ≤0 z],

then

Mδi |= (∀z0, z1)[%0(z0) ∧ %1(z1) =⇒ z0 <0 z1].

Of course, this holds in C as well, so
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(a) %0(z) defines an initial segment of I,

(b) %1(z) defines an end segment of I,

(c) the segments defined by %0(z) and %1(z) are disjoint,

(d) %0(Mδi) ∪ %1(Mδi) = I ∩Mδi .

[Why? Note that (ē0, d̄) ∈ D. Hence σ∗(d̄) holds. As for every

a ∈ I ∩Mδi we have a <I aδi or a >I bδi , the conclusions follows.]

(e) %0(aδi) and %1(bδi) hold.

[Why? Again because σ∗(d̄) holds.]

The above arguments show that {x : (∃ȳ)[(σ∗(ȳ)∧ x <0 y0)]} defines the

Dedekind cut {x : x <0 aδi} over Mδi , which contradicts the choice of C and

the fact that the Dedekind cut induced by (ā, b̄) is not definable (which is a

part of the definition of ∗[M, ā, b̄]).

Stage C. Now we have shown that the trees 〈Nη : η ∈ λ>2〉, 〈hη : η ∈ λ>2〉
of models and embeddings can be defined as required, and we consider

p∗
def
= ∪η∈λ>2hη(p �Mδlg(η)

).

We shall show that p∗ is finitely satisfiable, hence satisfiable. Let Γ′ ⊆ p∗

be finite. Recalling the analysis of p from Stage A, we consider each of the

cases by which p could have been defined (ignoring Case 1A, as justified by

Subclaim 1.15.)

Case 1. In this case there is a function f : QM → QM respecting E,

with aEf(a) for all a ∈ QM , and without loss of generality there are some

η0, . . . ηm−1 ∈ λ>2 and {bji : j < m, i < nj} ⊆ Rang(f) such that

Γ′ = {P (z)} ∪
⋃
j<m

{hηj(b
j
i )Rz : i < nj},

and for each j we have {bji : i < nj} ⊆Mδlg(ηj)
. Let n

def
= Σj<mnj, hence Γ′ is

a quantifier free (partial) type over n variables in C[ψ̄]. By Observation 1.9,

we only need to check that in Γ′ there are no direct contradictions with the

axioms of T+
feq.
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The only possibility for such a contradiction is that for some j0, j1 and

bj0i , bj1k we have

hηj0 (bj0i ) 6= hηj1 (bj1k ) ∧ hηj0 (bj0i )E hηj1 (bj1k )

and hj0(bj0i )Rz, hj1(bj1k )Rz ∈ Γ′. In such a case, any c which would realise Γ′

would contradict part (c) of the definition of T+
feq. Suppose that bj0i , b

j1
k and

η0, η1 are as above. Let ηl
def
= ηjl for l < 2 and let η = η0 ∩ η1. By part (γ)(ii)

in the definition of h̄, there is b̂ ∈ Nη such that hη0(bj0i )E b̂ and hη1(bj1k )E b̂.

For some b ∈Mδlg(η)
we have

hη0(b) = hη1(b) = hη(b) = b̂,

so applying the elementarity of the maps, we obtain

bj0i E bE b
j1
k .

On the other hand, by the definition of p∗ we have bj0i Rz ∈ p(z) and

bj1k Rz ∈ p(z). By the the demands on p this implies that bj0i = bj1k /∈ Mδlg(η)

and f(b) = bj0i , contradicting the fact that Mδlg(η)
is closed under f .

Case 2. For a fixed a∗ ∈M0 we have

p(z) = {Q(z)} ∪ {a∗Ez} ∪ {z 6= c : c ∈ a∗/EM},

so without loss of generality

Γ′ = {Q(z)} ∪ {a∗E z} ∪ {z 6= hηj(cj) : j < m}

for some c0, . . . , cm−1 ∈ a∗/EM and η0, . . . , ηm−1 ∈ λ>2, as h〈〉 = idM0 . As

a∗/E is infinite in any model of T ∗feq, the set Γ′ is consistent.

Case 3. We may assume that for some equivalence relation E on PM ,

a function f from PM into {yes, no}, sequences η0, . . . ηn−1 ∈ λ>2, and

{aki : i < m, k < n} ⊆ QM and {bki , cki , dki : i < m, k < n} ⊆ PM we

have e1 E e2 =⇒ f(e1) = f(e2) and

Γ′(z) ={Q(z)} ∪
⋃
k<n

{¬(hηk(a
k
i )Ez) : i < m} ∪

⋃
k<n

{(zRhηk(bki ))f(bki ) : i < m}

∪
⋃
k<n

{[F (z, hηk(c
k
i )) = F (z, hηk(d

k
i ))]

ifcki Edki : i < m}.
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We could have a contradiction if for some k1, k2, i1, i2 we had f(bk1
i1

) =yes,

f(bk2
i2

) =no, but hηk1
(bk1
i1

) = hηk2
(bk2
i2

), which cannot happen by γ(i) and the

fact that each hη is 1-1. Another possibility is that for some bk1
i1
, bk2
i2

we have

f(bk1
i1

) = f(bk2
i2

)=yes, but hηk1
(bk1
i1

) 6= hηk2
(bk2
i2

) while hηk1
(bk1
i1

)E hηk2
(bk2
i2

). To

see that this cannot happen, we distinguish various possibilities for bk1
i1
, bk2
i2

and use part (γ)(ii) in the choice of h̄.

Yet another possible source of contradiction could come from a similar

consideration involving the last clause in the definition of Γ′(z), which cannot

happen for similar reasons.

Stage D. Now we can conclude, using λ = λ<λ and |T | < λ, that there is

a model N∗ ≺ C of size λ with
⋃
η∈λ>2Nη ⊆ N∗, such that p∗ is realised in N∗.

For ν ∈ λ2, let hν
def
= ∪i<λhν�i, and let Nν

def
= Rang(hν), while pν

def
= hν(p).

For such ν, let

qν(x)
def
= {I(x)} ∪ {hν(ai) <0 x <0 hν(bi) : i < λ}.

Hence we have that for ν 6= ρ from λ2, the types qν and qρ are contradictory,

by (δ) above. As ||N∗||+ |L(T )| ≤ λ, there are only ≤ λ definable Dedekind

cuts of <0 over N∗, and only ≤ λ types qν are realised in N∗. Hence there is

ν ∈ λ2 (actually 2λ many) such that the Dedekind cut {x : ∨i<λx <0 hν(ai)}
is not definable over N∗ and qν is not realised in N∗. So N∗ omits qν and

realises pν . We let N = h(N∗), where h is an automorphism of C extending

h−1
ν . F1.13

Theorem 1.17 Assume that λ<λ = λ and 2λ = λ+.

(1) For any λ-relevant (Tord, T
∗
feq) -superior (T, ϕ̄, ψ̄), the theory T has a

model M∗ of cardinality λ+ such that

(i) ϕ̄M
∗

is not λ+-saturated,

(ii) ψ̄M
∗

is λ+-saturated.

(2) We can strengthen the claims in (i) and (ii) to include any interpretations

of a dense linear order and T ∗feq-respectively in M∗, even with parameters.
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Proof. We prove (1), and (2) is proved similarly. Using the Main Claim

1.13, we can construct M∗ of size λ+, by an ≺-increasing continuous sequence

〈M∗
i : i ≤ λ+〉, with ||M∗

i || = λ satisfying ∗[Mi, ā, b̄] for each i ≤ λ+, and

letting M∗ = Mλ+ . The Main Claim 1.13 is used in the successor steps. To

assure that M∗ is λ+-saturated for T ∗feq, we use the assumption 2λ = λ+, to

do the bookkeeping of all T ∗feq-types involved. F1.17

Conclusion 1.18 Under the assumptions of Theorem 1.17, the theory T ∗feq

is C∗λ+ strictly below the theory of a dense linear order with no first or last

elements.

[Why? It is below by Shelah’s Theorem 0.4 above.]

We recall that our motivation for studying C∗ is to try to characterise

SOP3 (or SOP2) theories by the C∗-maximality. As we explained in the

Introduction this has origins in the connection between the maximality in

the Keisler order and having the strict order property, so we should show

here what is the connection between the maximality in Keisler’s order and

the maximality in the order C∗. The following Claim 1.19 does that for

countable theories.

Claim 1.19 Suppose that T is a countable theory that is C∗λ∗-maximal.

Then it is maximal in the Keisler order lλ.

Proof of the Claim. Suppose otherwise and let T1 be a theory that is

C∗-maximal but not maximal in the Keisler order lλ. In particular we

have Tord C∗λ T1, so there is a λ-relevant (Tord, T1)-superior triple (T, ϕ̄0, ϕ̄1)-

exemplifying this. By Observation 1.4(0) we may assume that the interpre-

tation ϕ̄1 is trivial, so T1 ⊆ T - for simplicity.

Since T is not maximal in the Keisler order lλ, by [Sh c] 4.2 (1) there

is a regular ultrafilter D which is not good and a model M of T such that

Mλ/D is nevertheless λ+-compact. We can extend M to a model N of T

and consider N∗ = Nλ/D. This is a model of T and by the Extension

Theorem for ultrafilters we have that [N∗]ϕ̄1 = Mλ/D, so it is λ+-compact

and hence it is λ+-saturated. Again by the Extension Theorem we have that

[N∗]ϕ̄1 = (N ϕ̄1)λ/D. Now on the one hand we have by the C∗λ∗-maximality of

23

Paper Sh:692, version 2011-03-22 10. See https://shelah.logic.at/papers/692/ for possible updates.



T1 that (N ϕ̄1)λ/D must be λ+-saturated, hence λ+-compact. But on the other

hand (N ϕ̄1)λ/D cannot be λ+-compact because D is not a good ultrafilter

and Tord is maximal in the Keisler order, contradicting [Sh c] 4.2 (1). F1.19

2 On the properties SOP2 and SOP1

In his paper [Sh 500], S. Shelah investigated a hierarchy of properties un-

stable theories without strong order property may have. This hierarchy is

named NSOPn for 3 ≤ n < ω, where the acronym NSOP stands for “not

strong order property”. The negation of NSOPn is denoted by SOPn. It was

shown in [Sh 500] that SOPn+1 =⇒ SOPn, that the implication is strict

and that SOP3 theories are not simple. In this section we investigate two

further notions, which with the intention of furthering the above hierarchy,

we name SOP2 and SOP1. The original definitions of SOPn for n ≥ 3 do not

immediately lend themselves to extending the hierarchy for n = 1, 2, but the

properties we define nevertheless fulfill that role. In section 3, a connection

between this hierarchy and C∗λ-maximality will be established.

Recall from [Sh 500] one of the equivalent definitions of SOP3. (The

equivalence is established in Claim 2.19 of [Sh 500]).

Definition 2.1 (1) A (complete) theory T has SOP3 iff there is an indis-

cernible sequence 〈āi : i < ω〉 and formulae ϕ(x̄, ȳ), ψ(x̄, ȳ) such that

(a) {ϕ(x̄, ȳ), ψ(x̄, ȳ)} is contradictory,

(b) for some sequence 〈b̄j : j < ω〉 we have

i ≤ j =⇒ |= ϕ[b̄j, āi] and i > j =⇒ |= ψ[b̄j, āi],

(c) for i < j, the set {ϕ(x̄, āj), ψ(x̄, āi)} is contradictory.

(2) NSOP3 stands for the negation of SOP3.

Definition 2.2 (1) T has SOP2 if there is a formula ϕ(x̄, ȳ) which exempli-

fies this property in C = CT , which means:

There are āη ∈ C for η ∈ ω>2 such that
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(a) for every ρ ∈ ω2, the set {ϕ(x̄, āρ�n) : n < ω} is consistent,

(b) if η, ν ∈ ω>2 are incomparable, {ϕ(x̄, āη), ϕ(x̄, āν)} is inconsistent.

(2) T has SOP1 if there is a formula ϕ(x̄, ȳ) which exemplifies this in C, which

means:

There are āη ∈ C, for η ∈ ω>2 such that:

(a) for ρ ∈ ω2 the set {ϕ(x̄, āρ�n) : n < ω} is consistent.

(b) if ν _ 〈0〉 E η ∈ ω>2, then {ϕ(x̄, āη), ϕ(x̄, āν_〈1〉)} is inconsistent.

(3) NSOP2 and NSOP1 are the negations of SOP2 and SOP1 respectively.

The following Claim establishes the relative position of the properties

introduced in Definition 2.2 within the (N)SOP hierarchy.

Claim 2.3 For any complete first order theory T , we have

SOP3 =⇒ SOP2 =⇒ SOP1.

Proof of the Claim. Suppose that T is SOP3, as exemplified by 〈āi : i < ω〉,
〈b̄j : j < ω〉 and formulae ϕ(x̄, ȳ) and ψ(x̄, ȳ) (see Definition 2.1), and we

shall show that T satisfies SOP2. We define

ϑ(x̄, ȳ0 _ ȳ1) ≡ ϕ(x̄, ȳ0) ∧ ψ(x̄, ȳ1), where lg(ȳ0) = lg(ȳ1).

Let us first prove the consistency of

Γ
def
=

T ∪ {¬(∃x̄)[ϑ(x̄, ȳη) ∧ ϑ(x̄, ȳν)] : η ⊥ ν in ω>2}∪

∪
⋃
n<ω

{(∃x̄)[
∧
k≤n

ϑ(x̄, ȳη�k)] : η ∈ n2}.

Suppose for contradiction that Γ is not consistent, then for some n < ω, the

following set is inconsistent:

Γ′
def
=

T ∪ {¬(∃x̄)[ϑ(x̄, ȳη) ∧ ϑ(x̄, ȳν)] : η, ν incomparable in n≥2}

∪ {(∃x̄)[
∧
k≤n

ϑ(x̄, ȳη�k)] : η ∈ n2}.

Fix such n. We pick ordinals αη, βη < ω for η ∈ n≥2 so that
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(i) ν C η =⇒ αν < αη < αη + 1 < βη < βν ,

(ii) βη_〈0〉 < αη_ 〈1〉.

For η ∈ n≥2 let ā∗η
def
= āαη _ āβη . We show that C and {ā∗η : η ∈ n≥2} ex-

emplify that Γ′ is consistent. So, if η ∈ n≥2 then we have
∧
k≤n ϑ[b̄αη+1, ā

∗
η�k]

as for every k ≤ n we have αη�k < αη + 1, so ϕ[b̄αη+1, āαη�k ] holds, but

also for all k ≤ n, as η � k E η, we have βη�k > αη + 1, so ψ[b̄αη+1, āβη�k ]

holds. Hence (∃x̄)[
∧
k≤n ϑ(x̄, ā∗η�k)]. On the other hand, if ν _ 〈l〉 E ηl for

l < 2, then {ϑ(x̄, ā∗η0
), ϑ(x̄, ā∗η1

)} is contradictory as the conjunction implies

ψ(x̄, āβη0 )∧ϕ(x̄, āαη1 ), which is contradictory by βη0 < αη1 and (c) of Defini-

tion 2.1. This shows that Γ′ is consistent, hence we have also shown that Γ

is consistent.

Having shown that Γ is consistent, we can find witnesses {ā∗η : η ∈ ω>2}
in C realising Γ. Now we just need to show that {ϑ(x̄, ā∗η�n) : n < ω} is

consistent for every η ∈ ω2. This follows by the compactness theorem and

the definition of Γ. Hence we have shown that SOP3 =⇒ SOP2.

The second part of the claim is obvious (and the witnesses for SOP2 can

be used for SOP1 as well). F2.3

Question 2.4 Are the implications from Claim 2.3 reversible?

Claim 2.5 If T satisfies SOP1, then T is not simple. In fact, if ϕ(x̄, ȳ)

exemplifies SOP1 of T , then the same formula exemplifies that T has the

tree property.

Proof of the Claim. Let ϕ(x̄, ȳ) and {āη : η ∈ ω>2} exemplify SOP1.

Then

Γη
def
= {ϕ(x̄, āη_〈0〉n_〈1〉) : n < ω}

for η ∈ ω>2 consists of pairwise contradictory formulae. (Here 〈0〉n denotes

a sequence consisting of n zeroes.) For n < ω and ν ∈ nω let

ρν
def
= 〈0〉ν(0)+1 _ 〈1〉_ 〈0〉ν(1)+1 . . . _ 〈0〉ν(n−1)+1 _ 〈1〉,

so ρν ∈ ω>2 and ν E η =⇒ ρν E ρη. For ν ∈ nω let b̄ν = āρν . We observe

first that {ϕ(x̄, b̄ν 〈̂k〉) : k < ω} is a set of pairwise contradictory formulae,
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for ν ∈ nω; namely, if k0 6= k1, then ϕ(x̄, b̄ν_〈kl〉) for l < 2 are two different

elements of Γρν . On the other hand, {ϕ(x̄, b̄ν�n) : n < ω} is consistent for

every ν ∈ ωω. Hence ϕ(x̄, ȳ) and {b̄ν : ν ∈ ω>ω} exemplify that T has the

tree property, and so T is not simple. F2.5

This ends the discussion of the properties of SOP1 and SOP2 that are

directly relevant to the main thesis of the paper-the reader only interested

in the connection with the order C∗ can now turn directly to §3. The rest of

this section however contains some further syntactic developments of these

properties which are of interest if one wishes to understand the type theory

induced by them. The indescernibility results we have here were recently

used by Shelah and Usvyatsov [ShUs 844] to define a rank function on NSOP1

theories (see Theorem 2.22)).

The definition of when a theory has SOP1 can be made in another equiv-

alent fashion.

Definition 2.6 Let ϕ(x̄, ȳ) be a formula of L(T ). We say ϕ(x̄, ȳ) has SOP′1
iff there is 〈āη : η ∈ ω>2〉 in CT such that

(a) {ϕ(x̄, āρ�n)ρ(n) : n < ω} is consistent for every ρ ∈ ω2, where we use the

notation

ϕl =

{
ϕ if l = 1,
¬ϕ if l = 0

for l < 2.

(b) If ν _ 〈0〉 E η ∈ ω>2, then {ϕ(x̄, āη), ϕ(x̄, āν)} is inconsistent.

We say that T has property SOP′1 iff some formula of L(T ) has it.

Claim 2.7 (1) If ϕ(x̄, ȳ) exemplifies SOP1 of T then ϕ(x̄, ȳ) (hence T ) has

property SOP′1.

(2) If T has property SOP′1 then T has SOP1.

Proof of the Claim. (1) Let {āη : η ∈ ω>2} and ϕ(x̄, ȳ) exemplify that T

has SOP1. For η ∈ ω>2 we define b̄η
def
= āη_〈1〉. We shall show that ϕ(x̄, ȳ)

and {b̄η : η ∈ ω>2} exemplify SOP′1.
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Given η̂ ∈ ω2. Let c̄ exemplify that item (a) from Definition 2.2(2)

holds for η̂. Given n < ω, we consider ϕ[c̄, b̄η̂�n]η̂(n). If η̂(n) = 1, then,

as b̄η̂�n = āη̂�n_〈1〉 = āη̂�(n+1), we have that ϕ[c̄, b̄η̂�n]η̂(n) = ϕ[c̄, āη̂�(n+1)] holds.

If η̂(n) = 0, then

(η̂ � n) _ 〈0〉 = η̂ � (n+ 1).

As ϕ[c̄, āη̂�(n+1)] holds, by (b) of Definition 2.2(2), we have that ϕ[c̄, āη̂�n_〈1〉]

cannot hold, showing again that, ϕ[c̄, b̄η̂�n]η̂(n) = ¬ϕ[c̄, āη̂�n_〈1〉] holds. This

shows that {ϕ(x̄, b̄η̂�n)η̂(n) : n < ω} is consistent, as exemplified by c̄.

Suppose ν _ 〈0〉 E η ∈ ω>2 and that ϕ[d̄, b̄η] ∧ ϕ[d̄, b̄ν ] holds. So both

ϕ[d̄, āη_〈1〉] and ϕ[d̄, āν_〈1〉] hold. On the other hand, as ν _ 〈0〉 E η,

clearly ν _ 〈0〉 E η _ 〈1〉, and so (b) of Definition 2.2(2) implies that

{ϕ(x̄, āη_〈1〉), ϕ(x̄, āν_〈1〉)} is contradictory, a contradiction. Hence the set

{ϕ(x̄, b̄η), ϕ(x̄, b̄ν)} is contradictory

(2) Define first for η ∈ ω≥2 an element ρη ∈ ω≥2 by letting

ρη(3k) = η(k),

ρη(3k + 1) = 0,

ρη(3k + 2) = 1,

and if lg(η) = m < ω, then lg(ρη) = 3m. Note that for η ∈ ω2 and k < ω we

have ρη�k = ρη � (3k).

Let ϕ(x̄, ȳ) and {āη : η ∈ ω>2} exemplify property SOP′1. We pick c0 6= c1

and define for η ∈ ω>2

b̄η_〈1〉
def
= āρη _ āρη_〈1〉 _ 〈c0, c1〉,

b̄η_〈0〉
def
= āρη_〈0,0〉 _ āρη _ 〈c0, c1〉,

b̄〈〉
def
= 〈c0〉2n+2,

where 〈c〉k stands for the sequence of k entries, each of which is c, and

n = lg(ȳ) in ϕ(x̄, ȳ). We define

ψ(x̄, z̄) ≡ ψ(x̄, z̄0 _ z̄1 _ w0 _ w1) ≡
[w0 = w1] ∨ [ϕ(x̄, z̄0) ∧ ¬ϕ(x̄, z̄1)],
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where z̄ = z̄0 _ z̄1 _ 〈w0, w1〉 and lg(z̄0) = lg(z̄1) = lg(ȳ). We now claim

that ψ(x̄, z̄) and {b̄η : η ∈ ω>2} exemplify that SOP1 holds for T . Before we

start checking this, note that for η ∈ ω>2 we have:

•1 ψ(d̄, b̄〈〉) holds for any d̄,

•2 ψ(d̄, b̄η_〈0〉) holds iff ϕ(d̄, āρη_〈0,0〉) ∧ ¬ϕ(d̄, āρη) holds,

•3 ψ(d̄, b̄η_〈1〉) holds iff ¬ϕ(d̄, āρη_〈1〉) ∧ ϕ(d̄, āρη) holds.

Let us verify 2.2(2)(a), so let η ∈ ω2. Pick c̄ such that ϕ[c̄, āρη�n]ρη(n) holds

for all n < ω. We claim that

ψ[c̄, b̄η�n] holds for all n. (∗)

The proof is by a case analysis of n.

If n = 0, this is trivially true. If n = k + 1 and η(k) = 0, then we need to

verify that ϕ[c̄, āρη�k_〈0,0〉] holds and ¬ϕ[c̄, āρη�k ] holds. We have

ρη�k _ 〈0, 0〉 = ρη � (3k + 2),

and ρη(3k + 2) = 1. Hence ϕ[c̄, āρη�k_〈0,0〉] holds by the choice of c̄. On

the other hand, we have ρη�k = ρη � (3k), and ρη(3k) = η(k) = 0, hence

¬ϕ[c̄, āρη�k ] holds.

If n = k + 1 and η(k) = 1, then we need to verify that ϕ[c̄, āρη�k ] holds

while ϕ[c̄, āρη�(3k)_〈1〉] does not. As ρη�k = ρη � (3k), and ρη(3k) = η(k) = 1,

we have that ϕ[c̄, āρη�k] holds. Note that ϕ[c̄, āρη�(3k+2)] holds as ρη(3k+2) = 1.

We also have (ρη � (3k + 1)) _ 〈0〉 E ρη � (3k + 2). Hence ¬ϕ[c̄, āρη�(3k+1)]

by part (b) in Definition 2.6. But

¬ϕ[c̄, āρη�(3k+1)] ≡ ¬ϕ[c̄, āρη�(3k)_〈1〉] ≡ ¬ϕ[c̄, āρη�k_〈1〉]

holds, so we are done proving (∗).
Let us now verify 2.2(2)(b). So suppose ν _ 〈0〉 E η and consider

{ψ(x̄, b̄ν_〈1〉), ψ(x̄, b̄η)}. Let σ and l be such that η = σ _ 〈l〉.
Case 1. ν = σ.

Hence l = 0. So ψ(x̄, b̄η) =⇒ ¬ϕ(x̄, āρν ) and ψ(x̄, b̄ν_〈1〉) =⇒ ϕ(x̄, āρν ),

by •2 and •3 respectively, showing that {ψ(x̄, b̄η), ψ(x̄, b̄ν_〈1〉)} is inconsistent.
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Case 2. ν C σ and l = 0.

Hence ν _ 〈0〉 E σ. Clearly ρν _ 〈0〉 E ρσ _ 〈0, 0〉, as

ρσ(lg(ρν)) = σ(lg(ν)) = 0.

We have ψ(x̄, b̄ν_〈1〉) =⇒ ϕ(x̄, āρν ) by •3 and ψ(x̄, b̄η) = ψ(x̄, b̄σ _ 〈0〉)
implies ϕ(x̄, āρσ_〈0,0〉) by •2, while the two formulae being implied are con-

tradictory, by (b) in the definition of SOP′1.

Case 3. ν C σ and l = 1.

Observe that ψ(x̄, b̄η) =⇒ ϕ(x̄, āρσ) by •3 and ψ(x̄, b̄ν_〈1〉) =⇒ ϕ(x̄, āρν ).

As above, using ν _ 〈0〉 E σ, we show that the set {ϕ(x̄, āρν ), ϕ(x̄, āρσ)} is

inconsistent. F2.7

Conclusion 2.8 T has SOP1 iff T has property SOP′1 from Claim 2.7.

Question 2.9 Is the conclusion of 2.8 true when the theory T is replaced

by a formula ϕ?

Start changes

It turns out that witnesses to being SOP1 can be chosen to be highly

indiscernible.

Definition 2.10 (1) Given an ordinal α and sequences η̄l = 〈ηl0, ηl1, . . . , ηlnl〉
for l = 0, 1 of members of α>2, we say that η̄0 ≈1 η̄1 iff

(a) n0 = n1,

(b) the truth values of

• ηlk = 〈〉,

• ηlk1
∩ ηlk2

E ηlk3
∩ ηlk4

do not depend on l,

(c) ηlk1
5 ηlk2

=⇒ η0
k1

(lg(η0
k1
∩ η0

k2
)) = η1

k1
(lg(η1

k1
∩ η1

k2
))
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for k1, k2, k3, k4 ≤ n0.

(2) We say that the sequence 〈āη : η ∈ α>2〉 of elements of C (for an ordinal α)

is 1-fully binary tree indiscernible (1-fbti) iff whenever η̄0 ≈1 η̄1 are sequences

of elements of α>2, then

āη̄0

def
= āη0

0
_ . . . _ āη0

n0

and the similarly defined āη̄1 , realise the same type in C.

(3) Suppose that δ is a limit ordinal > 0. Define h∗ = h∗δ : δ>2 → δ>2 by

letting for η ∈ δ>2

• lg(h∗(η)) = 2lg(η) + 1,

• i < lg(h∗(η)) =⇒ h∗(η)(2i) = 0, h∗(η)(2i+ 1) = η(i),

• h∗(η)(2lg(η)) = 1.

For n < ω and η̄ ∈ n(δ>2) we define h∗(η̄) = 〈h∗(ηl) : l < n〉.
We say η̄ ≈2 ν̄ iff h∗(η̄) ≈1 h

∗(ν̄). We define 2-fbti like 1-fbti but using

≈2 in place of ≈1.

Observation 2.10 A The following can be easily checked:

(1) Let η̄, ν̄ ∈ n(α>2) and let η̄′ and ν̄ ′ be the closures of η̄, ν̄, respectively,

under intersections. Then η̄ ≈1 ν̄ iff η̄′ ≈1 ν̄
′.

(2) If 〈āη̄ : η ∈ δ>2〉 is 1-fbti then 〈āh∗(η̄) : η ∈ δ>2〉 is 2-fbti.

(3) h∗(η) is never 〈, 〉 and h∗(η0) is never a strict initial segment of h∗(η1).

Claim 2.11 If t ∈ {1, 2} and 〈b̄η : η ∈ ω>2〉 are of given constant length,

and δ ≥ ω is a (limit for t = 2) ordinal, then we can find 〈āη : η ∈ δ>2〉 such

that

(a) 〈āη : η ∈ δ>2〉 is t-fbti,

(b) if η̄ = 〈ηm : m < n〉, where each ηm ∈ δ>2, is given, then we can find

νm ∈ ω>2 (m < n) such that with ν̄
def
= 〈νm : m < n〉, we have ν̄ ≈t η̄

and sequences āη̄ and b̄ν̄ realise the same type in C.
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Proof of the Claim.2 Let us first deal with t = 1. By Observation 2.10 A

(1) above, we may reduce to checking clause (b) only for tuples b̄η where η

is closed under intersections. By Compactness Theorem it suffices to assume

δ = ω. The proof goes through a series of steps through which we obtain in-

creasing degrees of indiscernibility. We shall need some auxiliary definitions.

Let α be an infinite ordinal.

Definition 2.12 (1) Given η̄ = 〈η0, . . . , ηk−1〉, a sequence of elements of α>2,

and an ordinal γ. We define η̄′ = clγ(η̄) as follows:

η̄′ = 〈〈〉, η0, η0 � γ, η1, η1 � γ, η0 ∩ η1, η2, η2 � γ, η0 ∩ η2, η1 ∩ η2 . . .〉.

We also define uγ[η̄] = {ηl ∈ η̄ : lg(ηl) > γ}.
(2) We say that η̄ ≈γ,n ν̄ iff η̄′

def
= clγ(η̄) and ν̄ ′

def
= clγ(ν̄) satisfy

(i) η̄′ = 〈η′l : l < m〉 and ν̄ ′ = 〈ν ′l : l < m〉 are both in m(α>2) for some m,

(ii) for l < m we have η′l ∈ γ≥2 ⇐⇒ ν ′l ∈ γ≥2, and for such l we have

η′l = ν ′l ,

(iii) n ≥ |uγ[η̄]|,

(iv) η′l, η
′
k ∈ uγ[η̄] =⇒ [lg(η′l) < lg(η′k) ⇐⇒ lg(ν ′l) < lg(ν ′k)],

(v) η′l1 E η′l2 ⇐⇒ ν ′l1 E ν ′l2 , and the same holds for the equality,

(vi) if η′l1 is not an initial segment of η′l2 , then η′l1(lg(η′l1∩η
′
l2

)) = ν ′l1(lg(ν ′l1∩ν
′
l2

)).

(3) 〈āη : η ∈ α>2〉 is (γ, n)-indiscernible iff for every k, for every η̄, ν̄ ∈ k(α>2)

with η̄ ≈γ,n ν̄, the tuples āη̄ and āν̄ realise the same type.

(4) (≤ γ, n)-indiscernibility is the conjunction of (β, n)-indiscernibility for all

β ≤ γ.

(5) We say that 〈āη : η ∈ α>2〉 is 0-fbti iff it is (γ, n)-indiscernible for all γ

and n.

2Note that the definition of ≈1,≈2 has changed from the one given in the published
version of this paper, but the following proof is basically the same as the one there.
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Note 2.12 A (1) cl0(η̄) is simply the closure of η̄ under intersections,

joined with 〈〉 in appropriate places.

(2) η̄ ≈γ,n ν̄ iff clγ(η̄) ≈γ,n clγ(ν̄).

Subclaim 2.13 If āη ∈ kC for η ∈ ω>2 are tuples of constant length and

closed under intersections, then

for any α ≥ ω we can find ā′ = 〈ā′η : η ∈ α>2〉 such that

(x) ā′ is 0-fbti,

(xx) for every m and a finite set ∆ of formulae, we can find h : m≥2→ ω>2

such that

(α) 〈ā′η : η ∈ m≥2〉 and 〈āh(η) : η ∈ m≥2〉 realise the same ∆-type,

(β) h satisfies h(η)̂ 〈l〉 E h(η 〈̂l〉) for η ∈ m>2 and l < 2, and

lg(η1) = lg(η2) =⇒ lg(h(η1)) = lg(h(η2)).

Proof of the Subclaim. By Compactness Theorem it suffices to work with

α = ω.

Let (∗)γ,n be the conjunction of the statement (x)γ,n given by

ā′ is (≤ γ, n)-indiscernible,

and (xx) above. We prove by induction on n and then γ that for any γ ≤ ω

we can find ā′ for which (∗)γ,n holds.

n = 0. We use ā′η = āη.

n+ 1. By induction on γ ≤ ω, we prove that there is ā′ for which

(∗)γ,n+1 + (∗)ω,n + (xx) holds.

γ < ω.

Without loss of generality, the sequence 〈āη : η ∈ ω>2〉 is (≤ ω, n)-indiscernible,

as (xx) as a relation between 〈āη : η ∈ ω>2〉 and 〈ā′η : η ∈ ω>2〉 is transitive.

Suppose we are given η̄∗, ν̄∗ satisfying η̄∗ ≈γ,n+1 ν̄
∗. By Note 2.1.2 A, we may

assume η̄∗, ν̄∗ to be the same as their clγ closures and the same will hold for

any η̄, ν̄ that we mention in this context.
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If |uγ[η̄∗]| ≤ n, the conclusion follows by the assumptions. We shall as-

sume |uγ[η̄∗]| > n, so |uγ[η̄∗]| = n+1. Moreover, if min(uγ[η̄∗]) = min(uγ[ν̄∗])

and for any l with lg(η∗l ) = min(uγ[η̄∗]) we have η∗l = ν∗l , then using

(x)min(uγ [η̄∗]),n, we get that āη̄∗ and āν̄∗ realise the same type. By the same ar-

gument, fixing a finite set ∆ of formulae, for every η̄, we get that the tp∆(āη̄)

depends just on the

η̄/ ≈γ,n+1
def
= Υ and {ηl : l < lg(η̄)} ∩ min(uγ [η̄])2 = {ηl : l ∈ vΥ}

for some vΥ ⊆ lg(η̄). Let us define F 0
Υ,∆ by F 0

Υ,∆(〈ηl : l ∈ vΥ〉) = tp∆(āη̄).

By the closure properties of η̄ and the definition of ≈γ,n+1, we get that for

l1 6= l2 ∈ vΥ the truth value of ηl1 � (γ + 1) = ηl2 � (γ + 1) depends only on

Υ. We can hence replace vΥ by a set vΥ
∗ ⊆ vΥ such that 〈ηl : l ∈ vΥ

∗ 〉 are the

representatives under the equality of the restrictions to γ + 1.

As we have fixed ∆, there is a finite set A of Υs that can be used as

representatives for the values of F 0
Υ,∆. Let r be the size of the range of F 0

Υ,∆.

Let k∗ = 2γ+1 (so finite) and let {µ∗k : k < k∗} list γ+12. We define a function

FΥ,∆ on k∗(ω>2) by letting

FΥ,∆(x0, . . . , xk, . . .)k<k∗
def
=F 0

Υ,∆(〈ηl : l ∈ vΥ
∗ 〉),

where ηl � (γ + 1) = µ∗k =⇒ ηl = µ∗k _ xk.

Define a function F with arity k∗ so that F ((. . . , xk, . . .)k<k∗) is defined iff

for some m < ω we have {xk : k < k∗} ⊆ m2 and then

F ((. . . , xk, . . .)k<k∗) = 〈FΥ,∆((. . . , xk, . . .)k<k∗) : Υ ∈ A〉.

Therefore F is a function from
⋃
m<ω

∏
k<k∗ levm(ω>2) into a set of size r.

We recall the following definition and restatement of the Halpern-Lauchli

theorem [HaLa], due to Laver and Pincus and presented in [PiHa].

Definition 2.13 A (1) A tree S is strongly embedded in a tree T if there

is a strictly increasing embedding f ∗ of S as a suborder of T such that

• any nonmaximal node in f(S) has the same number of immediate suc-

cessors in T and in f(S), and
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• all nodes on any common level of S are mapped by f to a common

level of T .

(2) A nonempty subtree of ω>ω is well-behaved if it is finitely branching

and has no maximal nodes (hence it has ω levels).

Halpern-Lauchli theorem Let r, d < ω. Suppose that 〈Ti : i < d〉
are well-behaved trees and that c is a colouring of

⋃
n<ω

∏
i<d levn(Ti) into r

colours. Then there are f ∗, 〈Si : i < d〉 and 〈hi : i < d〉 such that

• f ∗ : ω → ω is a strictly increasing function,

• each Si is a well-behaved tree,

• hi is a strong embedding of Si → Ti,

• for each n < ω and i < d, the common height in Ti of elements of

hi“levn(Si) is f ∗(n), and

•
⋃
n∈u
∏

i<d hi“levn(Si) is c-monochromatic.

Moreover, in the case that all Ti are the same tree, we can assume that all

hi are contained in a common function h.

Therefore we can apply the Halpern-Lauchli theorem to F . We get a

sequence 〈Sk : k < k∗〉 of well-behaved trees exemplify the conclusion of

the Halpern-Lauchli theorem with hk = h � Sk and f ∗(n) = ht[h“levn(Sk)].

Since the only well-behaved subtree of ω>2 is ω>2 itself, we can conclude that

there is h : ω>2→ ω>2 such that

• h � γ≥2 is the identity,

• lg(h(η)) depends just on lg(η) (not on η),

• h(η) _ 〈l〉 C h(η _ 〈l〉) for l = 0, 1,

• for some c we have that for all m < ω

{ηk : k < k∗} ⊆ m2 =⇒ F ((h(η0), h(η1), . . . , h(ηk), . . .)k<k∗) = c.
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Let ā′η for η ∈ ω>2 be defined to be āη if η ∈ γ>2, and otherwise āh(ν) for the

unique ν such that η � (γ + 1) = µ∗k and η = µ∗k _ ν.

We have obtained the desired conclusion, but localized to ∆. The induc-

tion step ends by an application of the compactness theorem.

γ = ω This is vacuously true.

Having carried the induction, the conclusion of the Subclaim follows from∧
n(∗)0,n. F2.13

Now we go back to the proof of the Claim. Given 〈b̄η : η ∈ ω>2〉 as in the

assumptions, by the Subclaim we can assume that they are 0-fbti. We choose

by induction on n a function hn : n≥2 → ω>2 as follows. Let h0(〈〉) = 〈〉. If

hn is defined, let

kn
def
= max{lg(hn(η)) + 1 : η ∈ n≥2}

and let

hn+1(〈〉) = 〈〉, hn+1(〈1〉̂ ν) = 〈1〉̂ hn(ν), hn+1(〈0〉̂ ν) = 〈0, . . . , 0〉̂hn(ν),

where the sequence of 0s in the last part of the definition has length kn. The

point of the definition of hn is that if η̄l = 〈ηl0, . . . , ηlnl〉 for l = 0, 1 are given

and n∗ = lg(cl0(η̄0)), then

η̄0 ≈1 η̄
1 =⇒ 〈hn∗(η0

0), . . . , hn∗(η
0
n0

)〉 ≈0,n∗ 〈hn∗(η1
0), . . . , hn∗(η

1
n1

)〉.

To check this, we verify the six relevant items of the definition of ≈0,n∗ .

(i) Follows because n0 = n1 by the definition of ≈1.

(ii) If hn∗(η
0
i )∩hn∗(η0

j ) = 〈〉 then η0
i ∩η0

j = 〈〉 so η1
i ∩η1

j = 〈〉 by the definition

of ≈1, and hence hn∗(η
1
i )∩hn∗(η1

j ) = 〈〉. The opposite implication holds

by symmetry.

(iii) Follows by the definition of n∗.
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(iv) Suppose

0 < lg(hn∗(η
0
i ) ∩ hn∗(η0

j )) < lg(hn∗(η
0
k) ∩ hn∗(η0

s)).

Let m ≤ n∗ be the first such that

0 < lg(hn∗(η
0
i � m) ∩ hn∗(η0

j � m)) < lg(hn∗(η
0
k � m) ∩ hn∗(η0

s � m)).

Clearly, m > 0. To simplify the notation, let us assume that m = n∗.

Let η0
t = 〈lt〉 _ ν0

t for t ∈ {i, j, k, s} and for some lt ∈ {0, 1} depend-

ing on t. The situation we describe can happen iff li = lj = 1 and

lk = ls = 0, by the definition of hn. By the definition of ≈1 this can be

recognised by the ≈1-type of η̄0.

(v), (vi) Follow because the corresponding properties are preserved by hn.

Fix an n < ω and define āη = b̄hn(η) for η ∈ n≥2. By the above argument

it follows that 〈āη : η ∈ n≥2〉 are 1-fbti. As n was arbitrary, we can finish by

compactness.

For t = 2, we use exactly the same proof. F2.11

The following Theorem 2.15 will finally tell us that witnesses for SOP1

can be chosen with a certain degree of indiscernability. We need to introduce

a new notion of indiscernability:

Definition 2.14 (1) Given an ordinal α and sequences η̄l = 〈ηl0, ηl1, . . . , ηlnl〉
for l = 0, 1 of members of α>2, we say that η̄0 ≈3 η̄1 iff

(a) n0 = n1,

(b) the truth values of

• ηlk = 〈〉,

• ηlk1
∩ ηlk2

E ηlk3
∩ ηlk4

do not depend on l,

(c) ηlk1
5 ηlk2

=⇒ η0
k1

(lg(η0
k1
∩ η0

k2
)) = η1

k1
(lg(η1

k1
∩ η1

k2
)),
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(d) ηlk1
5 ηlk2

=⇒ η0
k1

= (η0
k1
∩ η0

k2
) _ 〈1〉 iff η1

k1
= (η1

k1
∩ η1

k2
) _ 〈1〉.

for k1, k2, k3, k4 ≤ n0.

(2) We say that the sequence 〈āη : η ∈ α>2〉 of elements of C (for an ordinal α)

is 3-fully binary tree indiscernible (3-fbti) iff whenever η̄0 ≈1 η̄1 are sequences

of elements of α>2, then

āη̄0

def
= āη0

0
_ . . . _ āη0

n0

and the similarly defined āη̄1 , realise the same type in C.

Theorem 2.15 Suppose that T has SOP1 as witnessed by ϕ(x̄, ȳ) and a

sequence ā = 〈āη : η ∈ ω>2〉. Then there is d̄ = 〈d̄η : η ∈ ω>2〉 exemplifying

that ϕ(x̄, ȳ) has SOP1 and 〈d̄η : η ∈ ω>2 \ {〈〉}〉 is 3-fbti.

Proof. Let k∗ = lg(ȳ). First define b̄η for η ∈ ω>2 by b̄η = āη_〈0〉 _ āη_〈1〉.

Let for any z̄0, z̄1 of length k∗ and l ∈ {0, 1}, ψl(x̄, z̄0 _ z̄1) ≡ ϕ(x̄, z̄l).

Now we use Claim 2.11 applied to 〈b̄η : η ∈ ω>2〉. Therefore we can find

c̄ = 〈c̄η : η ∈ ω>2〉 such that

(a) c̄ is 1-fbti,

(b) for any finite n and η̄ ∈ n(ω>2) there is ν̄ ∈ n(ω>2) such that ν̄ ≈1 η̄ and

b̄η and c̄ν realise the same type in C.

Let d̄η for η ∈ k∗(ω>2) be defined by induction on the length of η so that

d̄η_〈0〉 _ d̄η_〈1〉 = c̄η and d̄〈〉 = c̄〈〉. This is possible by the choice of b̄ and c̄.

Claim 2.16 If ν _ 〈0〉 E η then ϕ(x̄, d̄η) and ϕ(x̄, d̄ν_〈1〉) are incompatible.

Proof of the Claim. Let η = ρ _ 〈l〉 for some l ∈ {0, 1}. Consider

{ψl(x̄, c̄ρ), ψ1(x̄, c̄ν)}, we claim that this set is inconsistent. We know that

ψl(x̄, c̄ρ) ≡ ϕ(x̄, d̄ρ_〈l〉) ≡ ϕ(x̄, d̄η), ψ1(x̄, c̄ν) ≡ ϕ(x̄, d̄ν_〈1〉).

By the 1-fbti property of c̄ and the choice of c̄ with respect to b̄ it suf-

fices to check that {ψl(x̄, b̄ρ), ψ1(x̄, b̄ν)} is inconsistent. This means that

{ϕ(x̄, āη), ϕ(x̄, āν_〈1〉} is inconsistent, which is true by the choice of ā. F2.16
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Claim 2.17 For any ρ ∈ ω2, {ϕ(x̄, ¯dρ�n) : n < ω} is consistent.

Proof of the Claim. It suffices to show that for any

〈〉 C η0 C η1 C . . . ηk

the set {ϕ(x̄, d̄ηl+1�lg(ηl)_ηl+1(lg(ηl)) : l > k} ∪ {ϕ(x̄, d̄〈〉)} is consistent. This

means {ψηl+1(lg(ηl))(x̄, c̄ηl+1�lg(ηl)) : l < k} ∪ {ϕ(x̄, c̄〈〉)} is consistent. By the

choice of b̄ and c̄ this is to say {ψηl+1(lg(ηl))(x̄, b̄ηl+1�lg(ηl)) : l < k}∪{ϕ(x̄, ā〈〉)}
or {ϕ(x̄, āηl+1�lg(ηl)) : l < k}∪{ϕ(x̄, ā〈〉)} is consistent, but this is true by the

choice of ā. F2.17

Claim 2.18 〈dη : η ∈ ω2 \ {0}〉 is 3-fbti.

Proof of the Claim. Suppose that η̄0 ≈3 η̄1 and consider d̄η̄0 and d̄η̄1 . For

each ηkl let νlk be such that ηlk = νlk _ 〈ml
k〉 for some ml

k ∈ {0, 1} and let ν̄0, ν̄1

be defined from νlk(l ∈ {0, 1}, k < lg(η̄0)). Then η̄0 ≈3 η̄1 =⇒ ν̄0 ≈3 ν̄1,

hence c̄ν̄0 and c̄ν̄1 realise the same type, which implies that d̄η̄0 and d̄η̄1 do.

F2.18

F2.15

End changes.

As we mentioned before, it would be really interesting to know if SOP2

and SOP1 are equivalent. A step towards understanding this question is

provided by the next claim which shows that in the case of theories which

are SOP1 and NSOP2, the witnesses to being SOP1 can be chosen to be

particularly nice. note a change here to 3-fbti from the old version

Claim 2.19 Suppose that ϕ(x̄, ȳ) satisfies SOP1, but for no n does the for-

mula ϕn(x̄, ȳ0, . . . , ȳn−1) ≡ ∧k<nϕ(x̄, ȳk) satisfy SOP2. Then there are wit-

nesses 〈āη : η ∈ ω>2〉 for ϕ(x̄, ȳ) satisfying SOP1 which in addition satisfy:

(c) if X ⊆ ω>2, and there are no η, ν ∈ X such that η _ 〈0〉 E ν, then

{ϕ(x̄, āη) : η ∈ X} is consistent.

(d) 〈āη : η ∈ ω>2〉 is 3-fbti.
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(In particular, such a formula and witnesses can be found for any theory

satisfying SOP1 and NSOP2.)

Proof of the Claim. We shall be using the following colouring theorem,

for which we could not find a specific reference and so we include a proof of

it.

Lemma 2.20 Suppose cf(κ) = κ and we colour κ>2 by θ < κ colours. Then

there is an embedding h : ω>2 → κ>2 such that h(η)̂〈l〉 E h(η̂〈l〉) and

Rang(h) is monochromatic.

Proof of the Lemma. Let c be a colouring as in the assumptions and let

{ai : i < θ} list Rang(c). We claim that there is ν∗ ∈ κ>2 and j < θ such

that for every ν ∈ κ>2 satisfying ν∗ E ν there is ρ ∈ κ>2 with ν E ρ and

c(ρ) = j. For otherwise, we can choose by induction on i ≤ θ a member

ηi ∈ κ>2 with i < j =⇒ ηi E ηj such that for no ρ ∈ κ2 do we have ηi+1 E ρ

and c(ρ) = i, using θ < cf(κ). As θ < κ, we obtain a contradiction.

Having found such ν∗, j we define h(η) for η ∈ n2 by induction on n < ω.

For n = 0 we choose h(〈〉) to satisfy ν∗ E h(〈〉) and c(h(〈〉) = j, which is

possible by the choice of ν∗ and j. For n+ 1, for any η ∈ n+12 we choose for

l = 0, 1 a member h(η _ 〈l〉) of κ>2 which is above h(η) _ 〈l〉 and on which

c is j, which again is possible by the choice of ν∗ and j. F2.20

Let ϕ(x̄, ȳ) be a SOP1 formula which is not SOP2, and moreover assume

that for no n does the formula ϕn defined as above satisfy SOP2. By Theorem

2.15, we can find witnesses 〈āη : η ∈ ω>2〉 which are 3-fbti. By the compact-

ness theorem, we can assume that we have a 1-fbti sequence 〈āη : η ∈ ω1>2〉
with the properties corresponding to (a) and (b) of Definition 2.2(2), namely

(a) for every η ∈ ω12, the set {ϕ(x̄, āη�α) : α < ω1} is consistent,

(b) if ν _ 〈0〉 E η ∈ ω1>2, then {ϕ(x̄, āν_〈1〉), ϕ(x̄, āη)} is inconsistent.

We shall now attempt to choose νη and wη for η ∈ ω1>2, by induction on

lg(η) = α < ω1 so that:

(i) νη ∈ ω1>2,
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(ii) β < α =⇒ νη�β C νη,

(iii) β < α =⇒ νη(lg(νη�β)) = η(β),

(iv) wη ⊆ ω1>2 is finite and ν ∈ wη =⇒ lg(ν) < lg(νη),

(v) if lg(η) is a limit ordinal > 0, then wη = ∅,

(vi) if η ∈ β2 and l < 2, then wη_〈l〉 ⊆ {ρ ∈ ω1>2 : νη _ 〈l〉 E ρ} and

max{lg(ρ) : ρ ∈ wη_〈l〉} < lg(νη_〈l〉),

(vii) for each η there is ρ∗ = ρ∗η such that

(α) νη C ρ∗ ∈ ω12,

(β) |{α < ω1 : ρ∗(α) = 1}| = ℵ1,

(γ) letting

pη(x̄)
def
= {ϕ(x̄, āΥ) : Υ ∈ wη�γ for some γ ≤ lg(η)},

we have that for all large enough β∗, the set

pη(x̄) ∪ {ϕ(x̄, āρ∗�β) : β > β∗ ∧ ρ∗(β) = 1}

is consistent,

(viii) pη(x̄) ∪ {ϕ(x̄, āρ) : ρ ∈ wη_〈0〉 ∪ wη_〈1〉} is inconsistent.

Before proceeding, we make several remarks about this definition. Firstly,

requirements (vii) and (viii) taken together imply that for each η ∈ ω1>2 we

have that wη_〈0〉∪wη_〈1〉 6= ∅. Secondly, the definition of wη_〈l〉 for l ∈ {0, 1}
implies that

∧l=0,1ρl ∈ wη_〈l〉 =⇒ ρ0 ⊥ ρ1.

Thirdly, in (vii), any ρ∗ which satisfies that νη C ρ∗ and |{γ : ρ∗(γ) = 1}| = ℵ1

can be chosen as ρ∗η, by indiscernibility.

Now let us assume that a choice as above is possible, and we have made

it. Hence for each η ∈ ω1>2 there is a finite qη ⊆ pη such that

qη(x̄) ∪ {ϕ(x̄, āρ) : ρ ∈ wη_〈0〉 ∪ wη_〈1〉} (∗)
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is inconsistent. Notice that there are q and η∗ ∈ ω12 such that

(∀η1)[η∗ E η1 ∈ ω1>2 =⇒ (∃η2 ∈ ω1>2)(η1 E η2 ∧ qη2 = q)].

Namely, otherwise, we would have the following: each pη is countable, hence

for every η there is g(η) with η C g(η) ∈ ω1>2 and

g(η) E η1 =⇒ qη1 * pη.

Let η0
def
= 〈〉, and for n < ω let ηn+1 = g(ηn). Let η

def
= ∪n<ωηn, hence

pη = ∪n<ωpηn (as wη = ∅), and so qη ⊆ pηn for some n, a contradiction.

Having found such q, η∗, by renaming and using Lemma 2.20, we can

assume that η∗
def
= 〈〉 and that for all η ∈ ω2 we have qη = p〈〉 = q (as

η E ν =⇒ pη ⊆ pν). For η ∈ ω>2 let τ̄η list wη. Without loss of generality,

by thinning and renaming, we have that for all η1, η2,

〈νη1〉_ τ̄η1_〈0〉 _ τ̄η1_〈1〉 ≈1 〈νη2〉_ τ̄η2_〈0〉 _ τ̄η2_〈1〉.

Similarly to the proof of Claim 2.7, we can define a formula ψ(x̄, ȳ) and

{b̄η : η ∈ ω>2} such that

ψ(x̄, b̄η) ≡
∧

q ∧
∧
{ϕ(x̄, āρ) : ρ ∈ wη}.

We claim that ψ(x̄, ȳ) and 〈b̄η : η ∈ ω>2〉 exemplify SOP2 of T , which

is then a contradiction (noting that ψ is a formula of the form ϕn for some

n, where ϕn was defined in the statement of the Claim). We check the two

properties from Definition 2.2(1).

To see (a), let η ∈ ω2 be given. We have that pη is consistent, and q ⊆ pη.

For n < ω, we have

ψ(x̄, b̄η�n) ≡
∧

q ∧
∧
{ϕ(x̄, āρ) : ρ ∈ wη�n}.

As this is a conjunction of a set of formulae each of which is from pη, we have

that {ψ(x̄, b̄η�n) : n < ω} is consistent. To check (b), suppose η ⊥ ν ∈ ω>2.

Let n be such that η � n = ν � n but η(n) 6= ν(n). Hence

ψ(x̄, b̄η) ≡
∧

q ∧
∧
{ϕ(x̄, āρ) : ρ ∈ wη�n_η(n)}
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and

ψ(x̄, b̄ν) ≡
∧

q ∧
∧
{ϕ(x̄, āρ) : ρ ∈ wη�n_ν(n)},

so taken together, the two are contradictory by the choice of q.

We conclude that the choice of νη and wη cannot be carried throughout

η ∈ ω1>2. So, there is α < ω1 and η ∈ α2 such that νη, wη_〈l〉, νη_〈l〉 for l < 2

cannot be chosen, and α is the first ordinal for which there is such η. Let

ν0
η ∈ ω1>2 . ∪β<ανη�β _ 〈η(α− 1)〉 if the latter part is defined, otherwise let

ν0
η . ∪β<ανη�β. This choice of νη = ρ for any ρ D ν0

η with ρ ∈ ω12 satisfies

items (i)-(iii) above. We conclude that wη_〈l〉 for l < 2 using any ρD ν0
η with

ρ ∈ ω1>2 for νη could not have been chosen, and examine why this is so. Note

that pη is already defined. Let

Θ
def
=



(ρ, γ, w) : ν0
η C ρ ∈ ω12,

lg(ν0
η) ≤ γ < ω1,

(∃ℵ1β < ω1)(ρ(β) = 1),

w ⊆ {Υ ∈ ω1>2 : ρ � γ E Υ} is finite and

for some βρ < ω1 the set

pη ∪ {ϕ(x̄, āρ�β) : ρ(β) = 1 & β ∈ [βρ, ω1)}∪
∪ {ϕ(x̄, āΥ) : Υ ∈ w}
is consistent



.

We make several observations:

(0) If (ρ, γ, w) ∈ Θ and w ⊆ w′ with w′ finite and w′ \ w is contained in

{ρ � β : βρ ≤ β ∧ ρ(β) = 1}, then (ρ, γ, w′) ∈ Θ.

[This is obvious.]

(1) If (ρl, γ, wl) ∈ Θ and for some σ ∈ ω1>2 with ν0
η E σ we have σ _ 〈l〉 C ρl � γ

for l < 2, while ρ0 and ρ1 are eventually equal, then (ρl, lg(σ), w0 ∪w1) ∈ Θ.

[Why? We have wl ⊆ {Υ ∈ ω1>2 : ρl � γ E Υ} is finite, so clearly

w0 ∪ w1 ⊆ {Υ ∈ ω1>2 : σ E Υ} is finite. By the assumption, we have that

for some βl < ω1 for l < 2

pη ∪ {ϕ(x̄, āρl�β) : β > βl ∧ ρl(β) = 1} ∪ {ϕ(x̄, āΥ) : Υ ∈ wl}

is consistent. Suppose that (1) is not true with l = 0 and let β∗ ≥ max{β0, β1}
be such that β∗ < ω1 and for β > β∗ the equality ρ0(β) = ρ1(β) holds. Hence

43

Paper Sh:692, version 2011-03-22 10. See https://shelah.logic.at/papers/692/ for possible updates.



we have that

pη ∪ {ϕ(x̄, āρ0�β) : β > β∗ ∧ ρ0(β) = 1} ∪ {ϕ(x̄, āΥ) : Υ ∈ w0 ∪ w1}

is inconsistent. By increasing w0 if necessary, (0) implies that

pη ∪ {ϕ(x̄, āΥ) : Υ ∈ w0 ∪ w1}

is inconsistent. Let νη
def
= σ, for l < 2 let wη_〈l〉 = wl, and let νη_〈l〉

def
= ρl � β∗l

for a large enough β∗l so that β∗ < β∗l and max({lg(Υ) : Υ ∈ wη_〈l〉}) < β∗l .

This choice shows that we could have chosen νη, wη_〈l〉 as required, contra-

dicting the choice of η.]

(2) If ν0
η C ρ ∈ ω12 for some ρ such that there are ℵ1 many β < ω1 with

ρ(β) = 1, and lg(ν0
η) ≤ γ < ω1, then (ρ, γ, ∅) ∈ Θ.

[Why? By the choice of pη and the remark about the freedom in the

choice of ρ∗ that we made earlier.]

Now we use the choice of η to define witnesses to T being SOP1 which

also satisfy the requirements of the Claim. For τ ∈ ω>2, let b̄τ
def
= āν0

η_τ . Let

us check the required properties. Properties (a),(b) and (d) follow from the

choice of {āσ : σ ∈ ω1>2}. Let X∗ ⊆ ω>2 be such that there are no σ, ν ∈ X∗
with σ _ 〈0〉 E ν, we need to show that {ϕ(x̄, b̄τ ) : τ ∈ X∗} is consistent.

It suffices to show the same holds when X∗ replaced by an arbitrary finite

X ⊆ X∗. Fix such an X. Clearly, it suffices to show that for some ρ, γ,

letting w = {ν0
η _ τ : τ ∈ X}, we have (ρ, γ, w) ∈ Θ.

Let ρ∗ ∈ ω12 be such that ν0
η C ρ∗ and ρ∗(β) = 1 for ℵ1 many β. By

induction on n
def
= |X| we show:

there is ρ ∈ ω12 such that for some γ ≥ max{lg(σ) : σ ∈ w}, we have

(ρ, γ, w) ∈ Θ and β > γ =⇒ ρ(β) = ρ∗(β), while ρ(γ) = 1.

n = 0. Follows by observation (2) above.

n = 1. Let X = {τ} and γ = lg(τ) + lg(ν0
τ ). Let ρ ∈ ω12 be such that

ρ � γ = ν0
η _ τ , ρ(γ) = 1 and β > γ =⇒ ρ(β) = ρ∗(β). By observation

(2) above, we have that (ρ, γ, ∅) ∈ Θ. Then, by observation (0), we have

(ρ, γ, w) ∈ Θ.

n = k + 1 ≥ 2. Case 1. w is linearly ordered by C.
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Let τ ∈ w be of maximal length, so clearly σ ∈ w\{τ} =⇒ σ _ 〈1〉 E τ .

Let ρ ∈ ω12 be such that τ _ 〈1〉 C ρ and β > lg(τ), while ρ(β) = ρ∗(β).

Now continue as in the case n = 1.

Case 2. Not Case 1.

Let σ ∈ ω1>2 be C-maximal such that (∀τ)(τ ∈ w =⇒ σ E τ). This

is well defined, as w 6= ∅ is finite. Let wl
def
= {τ ∈ w : σ _ 〈l〉 E τ}, so

w0 ∩ w1 = ∅ but neither of w0, w1 is empty. Now we have that σ /∈ w, as

otherwise we could choose τ ∈ w0 such that σ _ 〈0〉 E τ , obtaining an easy

contradiction with our assumptions on X. Hence w = w0 ∪w1. We can now

use observation (1) and the inductive hypothesis. F2.19

To complete this discussion of the syntactic properties (N)SOP1, 2 we

shall quote a result from [ShUs 844] in which the understanding of SOP′1
and the witnesses for SOP1 developed here was used to show that NSOP1

theories admit a rank function.

Definition 2.21 Given (partial) types p(x̄), q(ȳ) and a formula ϕ(x̄, ȳ). By

induction on n < ω we define when

rk1
ϕ(x̄,ȳ)(p(x̄), q(ȳ)) ≥ n.

n = 0. This happens iff both p(x̄) and q(ȳ) are consistent.

n+ 1. The rank is ≥ n+ 1 iff for some c̄ realising q(ȳ) both

rk1
ϕ(x̄,ȳ)(p(x̄) ∪ {ϕ(x̄, c̄)}, q(ȳ)) ≥ n

and

rk1
ϕ(x̄,ȳ)(p(x̄), q(ȳ) ∪ {¬(∃x̄)(ϕ(x̄, ȳ) ∧ ϕ(x̄, c̄))}) ≥ n.

If the rank is ≥ n for all n then we say it is inifinite, otherwise we say it is

finite.

Theorem 2.22 (Shelah-Usvyatsov [ShUs 844]) A theory T is NSOP1 iff

rk1
ϕ(x̄,ȳ)(x̄ = x̄, ȳ = ȳ) <∞

for every formula ϕ(x̄, ȳ).
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3 C∗-maximality revisited

In this section we come back to our main thesis, which is that properties

SOP2 and the maximality in the C∗-order are closely connected.

Our main proof will use two auxiliary notions. The first is the order C∗∗λ ,

which is a version of the C∗λ-order.

Definition 3.1 (1) For (complete first order theories) T1, T2 and a regular

cardinal λ > |T1|, |T2|, let T1 C∗∗λ T2 mean:

There is a λ-relevant (T1, T2)-superior (T ∗, ϕ̄, ψ̄) (see Definition 1.2) such

that T ∗ has Skolem functions and if T ∗∗ ⊇ T ∗ is complete with |T ∗∗| < λ

then

(⊕) there is a model M of T ∗∗ of size λ and an M [ψ̄]-type p omitted by

M such that for every elementary extension N of M of size λ which omits p

and a type q (in one variable) over N [ϕ̄], there is an elementary extension of

N of size λ which realises q and omits p.

(2) Let T1 C∗∗ T2 mean that T1 C∗∗λ T2 holds for all large enough regular λ.

(3) T1 is said to be C∗∗λ -maximal iff there is no T2 such that T1 C∗∗λ T2.

Similarly for C∗∗.

The connection between this notion and C∗ is given by the following

claim:

Claim 3.2 Suppose that T1, T2 are theories and λ > |T1|, |T2| satisfies 2λ = λ+.

Then

T1 C
∗
λ+ T2 =⇒ ¬(T2 C

∗∗
λ T1).

Proof. This statement is just a reformulation of the beginning of the proof

of Theorem 1.17. In other words, let (T, ϕ̄1, ϕ̄2) show that T1 C∗λ+ T2. This

means that |T | < λ+ but since λ<λ = λ and λ > |T1|, |T2| we may assume

that |T ∗| < λ. Namely since there is a consistent theory T ⊇ ϕ̄1 ∪ ϕ̄2 in

which ϕ̄l interprets Tl, and each Tl has size < λ, there is a consistent theory

T ′ of size < λ which does the same. Without loss of generality T ′ ⊆ T . In

particular |τ(T ′)| < λ so by extending T ′ to a complete subtheory of T and

renaming we may assume T ′ is complete. Any model M of T has a reduct

N that is a model of T ′ and that satisfies M [ϕ̄] = N [ϕ̄] and similarly for ψ̄.
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Hence (T ′, ϕ̄, ψ̄) is a λ-relevant (T1, T2)-superior that exemplifies T1 C∗λ+ T2,

so by renaming we may assume |T | < λ.

Suppose for contradiction that T2 C∗∗λ T1 and let (T ∗, ϕ̄, ψ̄) exemplify this.

Without loss of generality, ϕ̄1 = ψ̄ and ϕ̄1 = ϕ̄ and the common vocabulary

of T and T ∗ is τ(ϕ̄1)∪ τ(ϕ̄2). Hence T ∗∗ = T ∪ T ∗ is consistent by Robinson

Consistency Criterium. Without loss of generality T ∗∗ is complete. Hence

let M be a model of T ∗∗ of size λ and p be a M [ψ̄] type omitted by M

exemplifying the definition of C∗∗λ . Using the assumption 2λ = λ+ we can

build by induction an elementary extension N of M with |N | = λ+, with N

omitting p and being ϕ̄-saturated. This is a contradiction with the choice of

T . F3.2

Corollary 3.3 Suppose that for all large enough regular λ we have 2λ = λ+.

Then any C∗-maximal theory is also C∗∗-maximal.

Proof. Suppose otherwise and let T exemplify this. Hence for every κ there

is regular λ > κ such that T is not C∗∗-maximal and 2λ = λ+. Hence T is

not C∗λ+-maximal by Claim 3.2, a contradiction. F3.3

The next notion we need is a syntactic property.

Definition 3.4 Let T be a theory.

(1) For a formula σ(x, ȳ) we say that σ(x, ȳ) has SOP′′2 iff for some [by

compactness equivalently all] regular λ > |T | there is a sequence〈
ēη̄ : η̄ = 〈η0, . . . ηn∗−1〉, η0 C η1 C . . . C ηn∗−1 ∈ λ>λ and lg(ηi) a successor

〉
such that

(α) for each η ∈ λλ, the set{
σ(x, ēη̄) : η̄ = 〈η � (α0 + 1), η � (α1 + 1), . . . η � (αn∗−1 + 1)〉

and α0 < α1 < . . . αn∗−1 < λ

}

is consistent
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(β) for every large enough m, if g : n∗≥m→ λ>λ satisfies

ρ C ν =⇒ g(ρ) C g(ν)

and

ρ ∈ n≥m =⇒ lg(g(ρ)) is a successor,

while for l < n∗ − 1

(g(ρ)) _ 〈l〉 E g(ρ _ 〈l〉),

then

{σ(x, ē〈g(ρ�1),g(ρ�2),...g(ρ)〉) : ρ ∈ n∗m}

is inconsistent. Here n∗ = lg(ȳ) in σ(x, ȳ).

(2) T is said to have SOP′′2 iff some σ(x, ȳ) exemplifies it.

Our theorem 3.6 is phrased in terms of SOP′′2. Answering a question from

an earlier version of this paper Shelah and Usvyatsov proved in [ShUs 844]

the following Theorem 3.5, which then can be used together with theorem

3.6 to prove Corollary 3.9 which states that C∗-maximality implies SOP2.

Theorem 3.5 (Shelah-Usvyatsov [ShUs 844]) For any theory T , T has SOP2

iff it has SOP′′2.

Main Theorem 3.6 For any theory T and regular cardinal λ > |T |, if T is

C∗∗λ -maximal then T has SOP′′2.

Proof. Let T be a given theory and let λ = cf(λ) > |T |. We shall assume

that T is C∗∗λ -maximal and prove that T has SOP′′2. To make the reading of

the proof easier we shall break it into stages.

Stage A. Let T ntree
def
= Th(n≥2, <tr) for n < ω, where <=<tr stands for

the relation of “being an initial segment of”, and let Ttree
def
= lim〈T ntree : n < ω〉,

that is to say the set of all ψ which are in T ntree for all large enough n. In

order to use our assumptions at a later point, let us fix a theory T ∗ which

is a λ-relevant (Ttree, T )-superior with Skolem functions (such a T ∗ is easily

48

Paper Sh:692, version 2011-03-22 10. See https://shelah.logic.at/papers/692/ for possible updates.



seen to exist), and let ϕ̄, ψ̄ be the interpretations of Ttree and T in T ∗, respec-

tively. We can without loss of generality, by renaming if necessary, assume

that L(T ) ⊆ L(T ∗), so the interpretation ψ̄ is trivial.

As |T |, |T ∗| < λ, we can find A ⊆ λ which codes T and T ∗. Working in

L[A], we shall define a model M of T ∗ of size λ as follows. Let

Γ
def
= T ∗ ∪ {ϕ=(xη, xη) : η ∈ λ>λ}

∪ {xη <ϕ xν : η C ν ∈ λ>λ}
{¬(xη <ϕ xν) : ¬(η C ν) for η, ν ∈ λ>λ)}.

By a compactness argument and the fact that ϕ̄ interprets Ttree in T ∗, we see

that Γ is consistent. Let M be a model of Γ of size λ = λ<λ (as we are in

L[A]). For η ∈ λ>λ let aη be the realisation of xη in M . For η ∈ λλ, let

pη(x)
def
= {aη�α <ϕ x : α < λ}

By the choice of M and the compactness argument it follows that each pη
is a (consistent) type. Note that for η0 6= η1 ∈ λλ, types pη0 and pη1 are

contradictory. Let

p′η(x) = {a <ϕ x : for some α < λ, a <ϕ aη�α}.

By the axioms of Ttree, we have that pη and p′η are equivalent. Now we observe

that by the size of M there is η∗ ∈ λλ such that the type p′η∗ is omitted in

M , and p′η∗ is not definable in M , i.e. for no formula ϑ(y, z̄) and c̄ ⊆ M

do we have: for a ∈ M , the following are equivalent: [a <ϕ x] ∈ p′η∗ and

M |= ϑ[a, c̄]. Let p
def
= p′η∗ for such a fixed η∗. For α < λ, let aα

def
= aη∗�α. We

now go back to V and make an observation about M .

Subclaim 3.7 Ttree satisfies the following property:

for any formula ϑ(x, ȳ) we have that Ttree ` σ = σ(ϑ), where

σ ≡ (∀ȳ)[[(∀x1, x2))ϑ(x1, ȳ) ∧ ϑ(x2, ȳ) =⇒ x1 ≤tr x2 ∨ x2 ≤tr x1)]

=⇒ (∃z)(∀x)(ϑ(x, ȳ) =⇒ x ≤tr z)].

Proof of the Subclaim. Let ϑ(x, ȳ) be given. By the definition of Ttree we

only need to show that T ntree ` σ for all large enough n, which is obvious as

for every n the tree n≥2 has the top level. F3.7
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Hence the interpretation ϕ̄ of Ttree in T ∗ satisfies the same statement

claimed about Ttree. We conclude:

⊗ if M ≺ N and p is not realised in N , then there is no ϑ(x, c̄) with

c̄ ⊆ N such that ϑ(aη∗�α, c̄) for all α < λ holds and every two elements of N

satisfying ϑ(x, c̄) are <ϕ-comparable.

Stage B. We shall choose a filtration M̄ = 〈Mi : i < λ〉 of M , and an

increasing sequence 〈αi : i < λ〉, requiring:

(a) Mi ≺M and Mi are ≺-increasing continuous of size < λ, with M being

the
⋃
i<λMi,

(b) aαi ∈Mi+1 \Mi.

We may note that the branch induced by {aαi : i < λ} is the same as the

one induced by {aα : α < λ}. Hence p is realised in any model in which

p′(x)
def
= {aαi <ϕ x : i < λ} is realised (or even the similarly defined type

using any unbounded subset of {αi : i < λ}). Hence, by renaming, without

loss of generality we have αi = i for all i < λ.

Stage C. At this point we shall use the C∗∗λ -maximality of T , which

implies that it is not true that T C∗∗λ Ttree. In particular, our T ∗, M and p

do not exemplify this, hence there is N with M ≺ N and ||N || = λ, such

that N omits p, but for some N [ψ̄]-type q over N , whenever N ≺ N+ and N+

realises q, also N+ realises p. By ⊗, the branch induced by {aη∗ � α : α < λ}
is not definable in N , so without loss of generality N = M . We can also

assume that q is a complete type over M [ψ̄]. Let us now use the choice of q

to define for each club E of λ a family of formulae associated with it, and

to show that each of these families is inconsistent. We use the abbreviation

c.d. for “the complete diagram of”.

For any club E of λ we define

ΓE
def
= c. d.(M) ∪ q(x) ∪ {¬(ai <ϕ τ(x, b̄)) : i ∈ E, τ a term of T ∗, b̄ ⊆Mi}.

Clearly, for any club E, if ΓE is consistent then there is a model N in which

ΓE is realised. Identifying any b ∈M with its interpretation in N and letting

a∗ be the interpretation of x from ΓE, we can assume that N is an elementary
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extension of M in which q is realised by a∗. As T ∗ has Skolem functions, we

have M ≺ N . Let N1 be the submodel of N with universe

A∗
def
= M ∪

⋃
i∈E

{τ(a∗, b̄) : b̄ ⊆Mi and τ a term of T ∗}.

Note that the size of N1 is λ. Clearly, N1 is closed under the functions of T ∗,

so M ⊆ N1 ⊆ N . As T ∗ has Skolem functions, we get that M ≺ N1 ≺ N .

By the third part of the definition of ΓE, p is omitted in N1. This is in

contradiction with our assumptions, as a∗ ∈ N1 realises q(x).

Hence we can conclude

for every club E of λ, the set ΓE is inconsistent.

Stage D. Now we start our search for a formula that exemplifies that T

has SOP′′2. In the following definitions, we shall use the expression “an almost

branch” or the abbreviation a.b. to stand for a set linearly ordered by <ϕ

(but not necessarily closed under <ϕ-initial segments and not necessarily

unbounded). Let

Θ0
T ∗

def
=


ϑ(x, y, z̄) : there is l = lϑ < ω such that

for every M∗ |= T ∗, a ∈M∗, c̄ ⊆M∗, the set

ϑ(a, y, c̄)M
∗

is the union of ≤ l a.b. in M∗[ϕ̄]

 ,

and let ΘT ∗ be the set of all ϑ(x, ȳ, z̄) of the form
∨
j<n ϑj(x, yj, z̄j) for some

ϑ0, . . . ϑn−1 ∈ Θ0
T ∗ (where ȳ = 〈yj : j < n〉 and z̄ = _

j<nz̄j). The formulae in

ΘT ∗ will be called candidates. For every candidate

ϑ(x, ȳ, z̄) ≡
∨
j<n

ϑj(x, yj, z̄j)

and a ψ̄-formula σ(x, t̄), we consider the following game an,σ,ϑ (whose defini-

tion also depends on our fixed p, q and M̄), played by two players ∃ and ∀.
The game starts by ∃ playing b̄0 from lg(z̄0)M , then ∀ playing α0 < λ. After

that ∃ chooses β0 ∈ (α0, λ) and b̄1 ∈ lg(z̄1)M such that b̄0 ∈ lg(z̄0)Mβ0 , after

which ∀ chooses α1 < λ etc., finishing by ∃ choosing b̄n−1 ∈ lg(z̄n−1)M and ∀
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choosing αn−1, while ∃ chooses βn−1 ∈ (αn−1, λ) such that b̄n−1 ∈ lg(z̄n−1)Mβn−1 .

Player ∃ wins this game iff for some ē ∈ lg(t̄)M we have

σ(x, ē) ∈ q and M |= (∀x)[σ(x, ē) =⇒ ϑ(x, 〈aβ0 , . . . , aβn−1〉,_k<nb̄k)]. (⊗1)

(Note: the constants aβk are from the set {ai : i < λ} we chose above.)

Observe that every sequence 〈α0, . . . αn−1〉 ∈ nλ is an admissible sequence of

moves for ∀.
We shall show that for some n ≥ 1 and σ, ϑ, player ∃ has a winning

strategy in the game an,σ,ϑ, where ϑ =
∨
j<n ϑj as above. As these are

determined games, it suffices to show that for some n ≥ 1 and σ, ϑ, player ∀
does not have a winning strategy. Suppose that this is not the case, arguing in

(H(χ),∈, <∗χ, M̄ , p, q), where χ is large enough and <∗χ is a fixed well ordering

ofH(χ). Fix for a moment (n, σ, ϑ). Player ∀ has a winning strategy in an,σ,ϑ,

which, replacing the ordinals αl by constants aαl , can be represented by a

sequence of functions Gl
n,σ,ϑ for l < n (in (H(χ),∈, <∗χ, M̄ , p, q)), where for

l < n, if the play up to time l has been b̄0, α0, β0, . . . , αl−1, βl−1, b̄
l, then

Gl
n,σ,ϑ applied to this play is aαl for the αl in the choice of player ∀. We shall

assume that these functions are the <∗-first which can act in this manner.

Using this and elementarity, we notice that for every n, σ, ϑ the values of

Gl
n,σ,ϑ take place in M , and that

E0
def
= {δ < λ : (∀σ, ϑ)(∀n)(∀l < n)[M ∩ Skolem(H(χ),∈,M̄ ,Gln,σ,ϑ)(Mδ) = Mδ]}

is a club of λ (as |T ∗|, ||Mi|| < λ for all i and M̄ is increasing continuous).

Let E
def
= acc(E0). Consider now the set ΓE. It is contradictory, so there is a

finite subset of it which is contradictory. Hence for some n0, n1, n2 < ω and

formulae %l(z̄l) (l < n0) from the c.d.(M), formulae σk(x, ēk) (k < n1) ∈ q(x),

ordinals δ0 < . . . < δn2−1 ∈ E, a sequence 〈b̄j,l : j < n2, l < lj〉 with b̄j,l ⊆Mδj

and terms 〈τj,l : j < n2, l < lj〉 of T ∗, the following is inconsistent:∧
l<n0

%l(z̄l) ∧
∧
k<n1

σk(x, ēk) ∧
∧

j<n2,l<lj

¬
(
aδj <ϕ τj,l(x, b̄j,l)

)
.

As %l come from the c.d.(M) and q(x) is a complete type over M [ψ̄], we may

assume that n0 = 1 and n1 = 1. Note that we must have n2 ≥ 1 and that
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there is no loss of generality in assuming that b̄j,l = b̄j for all l < lj for j < n.

We shall omit the subscript 0 from %, σ, ē. Let n = n2 and let us define

ϑj(x, yj, z̄j) for j < n by

ϑj(x, yj, z̄j) ≡
∨
l<lj

yj <ϕ τj,l(x, z̄j),

and let ϑ =
∨
j<n ϑj. Note that for each j we have that ϑj ∈ Θ0

T ∗ , as <ϕ is

a tree order. Hence ϑ is a candidate, σ(x, ē) ∈ q(x), and since M |= %[d̄] for

some d̄ we have

M |= (∀x)[σ(x, ē) =⇒
∨
j<n

ϑj(x, aδj , b̄j)]. (∗)

Now we consider the following play of an,σ,ϑ. Let ∃ choose b̄0. Recall that

b̄0 ⊆ Mδ0 . The strategy G0
n,σ,ϑ of ∀ yields an ordinal α0. By the choice of

E0 we have α0 < δ0 and b̄0 ∈ Mδ0 , so we can let ∃ choose β0 = δ0. Let ∃
choose b̄1 and then let ∀ choose α1 according to the strategy, etc. At the end

of the play, player ∀ should have won (as he/she used the supposed winning

strategy), but clearly (∗) implies that ∃ won, a contradiction.

Stage E. We conclude that (for our λ, M̄, p, q), for some σ, ϑ and n ≥ 1

the player ∃ has a winning strategy in the game an,σ,ϑ, call it St. Let us fix

n = n∗, σ, ϑ, and St and use them to get SOP′′2.

For any ᾱ = 〈α0, . . . , αn−1〉 ∈ nλ, we can let 〈b̄ᾱ�k, βᾱ�(k+1) : k < n〉 be the

sequence of moves that ∃ plays by following the winning strategy St in a play

in which ∀ plays ᾱ, as the dependence is as marked. Let E be a club of λ

such that if k ≤ n and α0 < . . . < αk−1 < δ ∈ E, then b̄〈α0,...,αk−1〉 ∈ lg(z̄j)Mδ.

(Such a club can be found by a method similar to the one used in Stage D).

Renaming the Mi and ai’s, we can without loss of generality assume that

E = λ. For ᾱ ∈ nλ let ēᾱ be such that:

M |= ∀x[σ(x, ēᾱ) =⇒
∨
j<n

ϑj(x, aβᾱ�(j+1) , b̄
ᾱ�(j+1)
j )].

Notice that σ is a formula in the language of T . We shall show that σ,

together with a conveniently chosen sequence of ēη̄’s, exemplifies SOP′′2. The

proof now proceeds similarly to the proof of Main Claim 1.13. Namely
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Lemma 3.8 There are sequences

〈Nη : η ∈ λ>λ〉, 〈hη : η ∈ λ>λ〉

such that

(i) hη is an elementary embedding of Mlg(η) into CT ∗ with range Nη,

(ii) ν E η =⇒ hν ⊆ hη,

(iii) for α 6= β < λ and η ∈ λ>λ we have

hη_〈α〉(alg(η)) ⊥ϕ hη_〈β〉(alg(η)),

(iv) Nη0 ∩Nη1 = Nη0∩η1 for all η0, η1.

Proof of the Lemma. This Lemma has the same proof as that of Main

Claim 1.13 Stage B. In the notation of that proof, ignore bδi . When defining

Γ use

Γ = ∪α<λΓα0 ∪ ∪α<λΓα3 ∪ Γ4 ∪ Γ+
2 ,

where Γ+
2 = {xα0 ⊥ϕ x

β
0 : α 6= β < λ} and Γα0 ,Γ

α
3 and Γ4 are defined as in

the proof of Main Claim 1.13, allowing for the replacement of λ>2 by λ>λ by

using {x̄α : α < λ} in place of {x̄0, x̄1}. Assumptions on Γα0 ,Γ
+
2 and Γα3 are

analogous to the ones we made in that proof. Fact 1.16 still holds, except

that we drop the last set from the definition of r(x̄). The rest of the proof

is the same, recalling that the branch induced by {ai : i < λ} is undefinable

in M . F3.8

Stage F. For η ∈ λλ, let hη
def
= ∪α<λhη�α. Let qη

def
= hη(q), hence each

qη is a consistent type. For η̄ = 〈η0, . . . , ηn−1〉 and η0 C . . . C ηn−1 with

lg(ηi) = αi + 1, let ēη̄
def
= hηn−1(ē〈α0,...αn−1〉).

Suppose now that η ∈ λλ is given, and consider the set

{σ(x, ēη̄) : η̄ = 〈η � (α0 + 1), . . . η � (αn−1 + 1)〉 for some α0 < . . . αn−1 < λ}.

This set is a subset of qη, and is hence consistent. This proves property (α)

from the definition of SOP′′2. For (β), letm be large enough and g : n≥m→ λ>λ
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be as in the statement of (β). For ρ ∈ nm let ēgρ
def
= ē〈g(ρ�1),...g(ρ)〉 (note that

this is always defined). We shall now show that the set

{σ(x, ēgρ) : ρ ∈ nm}

is inconsistent. Suppose otherwise, so let d ∈ CT ∗ realise it. For each ρ ∈ nm,

let ηρ ∈ λλ ⊇ g(ρ) and let ᾱρ
def
= 〈αρ0, . . . , α

ρ
n−1〉 satisfy lg(g(ρ � k)) = αρk + 1

for k ≤ n, so for each k < n we have g(ρ � (k + 1)) = ηρ � (αρk + 1). Now we

have that for each ρ ∈ nm

(i) σ(x, ēgρ) ≡ σ(x, hηρ�(αρn−1+1)(ē
ᾱρ)) ∈ qηρ � σηρ(x)

(ii) Nηρ |= (∀x)[σ(x, ēgρ) =⇒ ϑ(x, 〈hηρ(aβᾱρ�1 ), . . . hηρ(aβᾱρ )〉,_j<nhηρ(b̄ᾱ
ρ
j ))]

(hence the same holds in CT ∗),

(iii)

ϑ(x, 〈hηρ(aβᾱρ�1 ), . . . hηρ(aβᾱρ )〉,_j<nhηρ(b̄ᾱ
ρ
j )) =⇒∨

j<n

ϑj(x, hηρ(aβᾱρ�(j+1) ), hηρ(b̄
ᾱρ�(j+1)

j ))

for our ϑ0, . . . ϑn−1.

For each ρ ∈ nm let j(ρ) < n be the first such that

ϑj(d, hηρ(aβᾱρ�(j+1) ), hηρ(b̄
ᾱρ�(j+1)

j ))

holds. Let l∗ = max{lϑ0 , . . . , lϑn−1}.
As m is large enough, there are ρ0, . . . , ρl∗ ∈ nm such that j(ρs) = j∗ for

all s ∈ {0, . . . , l∗}, while ρs � j∗ is fixed and ρs(j
∗) 6= ρt(j

∗) for s 6= t ≤ l∗.

(We use that there is a full l∗+1≥n subtree t∗ of n≥m such that for all

ρ ∈ t∗ ∩ nm we have j(ρ) = j∗. Choose ρs belonging to t∗ and splitting

at the level j∗). In particular, αρs0 = α0, . . . , α
ρs
j∗−1 = αj∗−1 is fixed, and so is

hηρs �Mα∗j−1+1, but

g(ρs) � (αj∗−1 + 2) for s ≤ l∗ are incomparable in λλ. (∗∗)

Let ᾱ
def
= ᾱρ0 .
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For each ρ ∈ nm and k < n we have that b̄ᾱ
ρ�(k+1) ∈ Mαρk+1

(by the

choice of E), so in particular b̄ᾱ
ρ�j∗ ∈ Mαρ

j∗−1
+1, and hence hηρs (b̄

ᾱρ�j
∗
) is

a fixed b̄∗. By the choice of d and definitions of j∗, l∗ and ΘT ∗ , there are

s 6= t < lϑj∗ ≤ l∗ such that hηρs (aβᾱρs�(j
∗+1) ) and hηρt (aβᾱρt�(j

∗+1) ) are on the

same almost branch. Now note that for all ρ we have

a
βᾱ

ρ�(j∗+1) ∈M
βᾱ

ρ�(j∗+1)
+1
\M

βᾱ
ρ�(j∗+1)

and βᾱ
ρ�(j∗+1)

> αρj∗ . Hence hηρs (aβᾱρs�(j
∗+1) ) and hηρt (aβᾱρt�(j

∗+1) ) are incom-

parable, by property (iii) in Lemma 3.8, a contradiction. This shows (β)

from the definition of SOP′′2, so finishing the proof. F3.6

Putting this together with Corollary 3.3 and Shelah-Usvyatsov theorem

3.5 above we get the following corollary 3.9.

Corollary 3.9 (1) Suppose that T is a theory that is C∗-maximal in some

universe of set theory in which 2λ = λ+ holds for all large enough regular λ.

Then T has SOP2.

(2) Suppose that T is a theory that is C∗λ+-maximal in some universe of set

theory in which λ is regular and 2λ = λ+. Then T has SOP2.

Proof. (1) Let W be a universe of set theory in which 2λ = λ+ holds for all

large enough regular λ and in which T is C∗-maximal. Hence by Corollary

3.3 T is C∗∗-maximal in W and hence by Main Theorem 3.6 in W it satisfies

SOP′′2. By Shelah-Usvyatsov Theorem 3.5 above T satisfies SOP2 in W .

An application of the Compactness Theorem shows that satisfying SOP2 is

absolute, hence T satisfies SOP2 in V .

(2) This follows similarly, but more directly, from Main Theorem 3.6 and the

Shelah-Usvyatsov Theorem 3.5. F3.9

This section hence provides us with the proof of one side of our thesis that

SOP2 and C∗-maximality are closely connected. Recall that Shelah proved in

[Sh 500] that SOP3 implies C∗-maximality. So an important open question

(provided that SOP3 are not actually equivalent, which we still do not know)

is
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Question 3.10 Does SOP2 imply C∗-maximality?

In a partial answer to this question posed in an earlier version of the

paper Shelan and Usvyatsov in Theorem 3.12 of [ShUs 844] provided a local

positive answer to this question, where by “local” we mean that they proved

that any theory with SOP2 is C∗ above Ttree when only types localised by a

certain formula are considered (see Definition 1.3).
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