
MORE ON THE PRESSING DOWN GAME.

JAKOB KELLNER∗ AND SAHARON SHELAH†

Abstract. We investigate the pressing down game and its relation to the

Banach Mazur game. In particular we show: Consistently relative to a super-

compact, there is a nowhere precipitous normal ideal I on ℵ2 such that player
nonempty wins the pressing down game of length ℵ1 on I even if player empty

starts. For the proof, we construct a forcing notion to force the following:

There is normal, nowhere precipitous ideal I on a supercompact κ such that
for every I-positive A there is a normal ultrafilter containing A and extending

the dual of I.

We investigate the pressing down game and its relation to the Banach Mazur
game. Definitions (and some well known or obvious properties) are given in Sec-
tion 1. The results are summarized in Section 2. This paper continues (and sim-
plifies, see 2.2) the investigation of Pauna and the authors in [14].

1. Definitions

We use the following notation:

• For forcing conditions q ≤ p, the smaller condition q is the stronger one. We
stick to Goldstern’s alphabetic convention and use lexicographically bigger
symbols for stronger conditions.
• Eκλ = {α ∈ κ : cf(α) = λ}.
• NSκ is the nonstationary ideal on κ.
• The dual of an ideal I is the filter {A ⊆ κ : κ \A ∈ I} and vice versa.
• For an ideal I on κ and a positive set A (i.e., A /∈ I), we set I � A to be

the ideal generated by I ∪ {κ \A}.
We always assume that κ is a regular uncountable cardinal and that I is a <κ-

complete ideal on κ. Unless noted otherwise, we will also assume that I is normal.
We now recall the definitions of several games of length ω, played by the players

empty and nonempty. We abbreviate “having a winning strategy for G” with
“winning G” (as opposed to: “winning a specific run of G”).

First we define four variants of the pressing down game (this game has been
used, e.g., in [16]).

Definition 1.1. • PD(I) is played as follows: Set S−1 = κ. At stage n,
empty chooses a regressive function fn : κ→ κ, and nonempty chooses Sn,
an fn-homogeneous subset of Sn−1. Empty wins the run of the game if⋂
n∈ω Sn ∈ I.

Date: 2006-09-14.

2000 Mathematics Subject Classification. 03E35;03E55.
∗ supported by European Union FP7 grant PERG02-GA-2207-224747 and the Austrian FWF

project P21651-N13.
† supported by the United States-Israel Binational Science Foundation (Grant no. 2002323),

publication 939.
1

Paper Sh:939, version 2009-08-24 10. See https://shelah.logic.at/papers/939/ for possible updates.



2 JAKOB KELLNER AND SAHARON SHELAH

• PD∅(I) is played like PD(I), but empty wins the run if
⋂
n∈ω Sn = ∅.

• PDe(I) is played like PD(I), but empty can first choose S−1 to be an
arbitrary I-positive set.

• PD∅e is defined analogously.

So we have four variants of the pressing down game, depending on two param-
eters: whether the winning condition for player nonempty is “6=∅” or “/∈I”, and
whether empty has the first move or not.

We now analogously define four variants of the Banach Mazur game:

Definition 1.2. • BM(I) is played as follows: Set S−1 = κ. At stage n,
empty chooses an I-positive subset X of Sn−1, and nonempty chooses an
I-positive subset Sn of X. Empty wins the run if

⋂
n∈ω Sn ∈ I.

• The ideal game Id(I) is played just like BM(I), but empty wins the run if⋂
n∈ω Sn = ∅.

• BMne(I) is played just like BM(I), but nonempty has the first move.
• Idne(I) is defined analogously.

More generally, we can define the Banach Mazur game BM(B) on a Boolean
algebra B: The players choose decreasing (nonzero) elements an ∈ B, nonempty
wins if there is some (nonzero) b ∈ B smaller than all an. Then BM(I) is equivalent
to the corresponding game BM(BI) on the Boolean algebra BI = P(κ)/I (since I
is σ-closed), the same holds for BMne(I) and BMne(BI); we could equivalently use
the completion ro(BI) instead of BI . Also the /∈I versions of the pressing down
game can be played modulo null sets, i.e., on the Boolean algebra BI , in the obvious
way. For the 6=∅ versions of the games, the version played on BI does not make
sense.

In the /∈I version, the pressing down and Banach Mazur games have natural
generalizations to other lengths δ: At a limit stages γ, we use

⋂
α<γ Sα instead of

Sγ−1, and empty wins a run iff this set is in I for any γ < δ. (I.e., nonempty wins
a run iff the run has length δ. So in this setting, the games defined above are the
ones of length ω + 1.) For the 6=∅ versions of the games, lengths other than ω + 1
seem less natural.

These games are also closely related to the cut and choose game introduced by
Jech [11] (and its ancestor, the Ulam game):

Definition 1.3. The cut and choose game c&c(B, λ) on a Boolean algebra B
is played as follows: First empty chooses a nonzero element a0 of B. At stage n,
empty chooses a maximal antichain An below an of size at most λ, and nonempty
chooses an element an+1 from An. Nonempty wins the run if there is some nonzero
b below all an.
c&c(B,∞) is played without restriction on the size of the antichains.

We can also define a set-partition version c&cset(I, λ) of the game: Again, first
empty chooses a positive set a0; at stage n player empty partitions an into at most
λ many I-positive pieces, and nonempty chooses a piece an+1. Empty wins the run
if
⋂
n∈ω an ∈ I. However, this does not bring anything new:

• There can be at most κ many pieces, so c&cset(I,∞) = c&cset(I, κ).
• For λ < κ, c&cset(I, λ) is equivalent to c&c(BI , λ).
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MORE ON THE PRESSING DOWN GAME. 3

• If I is nowhere κ-saturated,1 then c&cset(I, κ) is equivalent2 to BM(I) (and
therefore to c&c(BI ,∞), cf. 1.10).
• If I is κ+-saturated, then c&cset(I, κ), c&c(BI , κ), PDe(I) and BM(I) are

all equivalent, cf. 3.2 and 3.3.

We also consider the variant of c&cset(I, λ) where empty wins if the intersection
is empty (as opposed to null). However, then we have to allow empty to cut into
arbitrary pieces, not just into I-positive ones, while empty still has to choose a
positive piece. (Otherwise nonempty always wins, by fixing some α and picking the
sets containing α.)

Definition 1.4. • c&cmin(I, 2) is played as follows: First, empty chooses
some positive S−1. At stage n, empty cuts Sn−1 into two arbitrary pieces,
and nonempty chooses an I-positive piece Sn.

• In c&cmin(I,<κ) empty cuts into less than κ many arbitrary pieces.

• c&cmin
ne is defined as usual, i.e., S−1 = κ

We are interested in the existence of winning strategies:

Definition 1.5. • We write b(G) for “nonempty winsG” and a(G) for “empty
does not win G”.

• The games G and H are equivalent, if b(G)↔ b(H) and a(G)↔ a(H).
• G is stronger than H, if b(G)→ b(H) and a(G)→ a(H).

We trivially get the following implications, see Figure 1:

Facts 1.6. • b(G)→ a(G) for all games.
• The Banach-Mazur game is stronger than the according pressing down

game. E.g., BMne(I) is stronger than PD(I) etc.
• The /∈I version is stronger than the 6=∅ one. E.g., BM(I) is stronger than

Id(I) etc.
• The version with empty choosing first is stronger. E.g., BM(I) is stronger

than BMne(I) etc.

• PD∅e(I) is stronger than c&cmin(I,<κ), and c&cmin(I,<κ) is stronger than

c&cmin(I, 2).

In the rest of the section, we list some well known (or otherwise obvious) facts.
About BM and precipitous ideals3 [10, 5, 8, 8]:

Facts 1.7. • a(Id(I)) is equivalent to “I is precipitous”.
• a(Idne(I)) is sometimes called “I is somewhere precipitous”, and its failure

“I is nowhere precipitous”.
• A precipitous ideal implies that κ is measurable in an inner model.
• b(BM(NSℵ2 � E

ℵ2
ℵ1 )) is equiconsistent to a measurable.

• “NSℵ1 is precipitous” is also equiconsistent to a measurable.
• b(Id(I)) implies κ > 2ℵ0 and Eκℵ0 ∈ I.
• a(BM(I)) implies Eκℵ0 ∈ I, and in particular κ > ℵ1.

Some notes on PD (for normal ideals I, J):

1which is always the case if κ is a successor [9, 22.24]
2Instead of choosing a subset set X of Y in the Banach Mazur game, empty can partition X

into κ many pieces and add a single point to each piece so that the result is a partition of all of

Y .
3these facts do not require that I is normal
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b(BM)
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Figure 1. The trivial implications (for empty moving first)

Facts 1.8. • In the pressing down games, we can assume without loss of gen-
erality that nonempty chooses at stage n a set of the form Sn = f−1n (αn)∩
Sn−1 for some αn.4

• PD is monotone in the following sense: if J ⊇ I, then PD(J) is stronger

than PD(I). The same holds for PD∅, but not for PDe or PD∅e or for any
of the Banach Mazur games.
• In particular, PD(I) is stronger than PD(NSκ) for all normal I.

• Just as in the case of BM, b(PD∅) cannot hold for κ = ℵ1 (cf. 5.2).
• Other than in the case of Id, the property a(PDe) has no consistency

strength (cf. 2.1).

What is the effect of empty moving first?

Facts 1.9. • For the Banach-Mazur games, the distinction whether empty
has the first move or nonempty is a simple density effect: For example,
nonempty wins BMne(I) iff there is some S ∈ I+ such that nonempty
wins BM(I � S); similarly simple equivalences hold for empty winning; for
characterizing BM in terms of BMne; and for the 6=∅ version.
• We will see in Lemma 2.6 that this is not the case for the pressing down

game.

The cut and choose game is related to the pressing down and Banach Mazur
games [12, 4, 18, 19]. As usual, ro(B) denotes the completion of the Boolean
algebra B, and BI = P(κ)/I.

Facts 1.10. • c&c(B,∞) is equivalent to c&c(ro(B),∞); but c&c(B, λ) will
generally not be equivalent to c&c(ro(B), λ).
• c&c(B,∞) is equivalent to the Banach Mazur game on B.
• So in our case, c&c(BI ,∞) is equivalent to BM(I).
• c&c(BI , κ) is equivalent to PD(I), cf. 3.2. (However c&c(ro(BI), κ) might

be a stronger game.)

The set-partition version of the cut and choose game is also related to the pressing
down and Banach Mazur games: If we assume that I is nowhere κ-saturated, then

4This of course means: PD is equivalent to the game where nonempty is restricted to moves
of this form.
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b(BM) b(PDe) b(PD)

a(BM)

b(Id) b(PD∅e) b(PD∅)

a(Id) ≡ precip. ∞-semi precipitous
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Figure 2. Some properties stronger than ∞-semi precipitous

BM(I) is equivalent to c&c(BI , κ), i.e., to the game where nonempty partitions the
current set into ≤κ many positive pieces. In contrast, PDe(I) is equivalent to the
game where nonempty partitions the current set into ≤κ many positive pieces with
the additional requirement that the partition is maximal in the family of I-positive
sets (i.e., for every positive set S there is an A in the partition such that S ∩ A is
positive).

Winning strategies for games on a Boolean algebra B have close connections to
the properties of B as Boolean algebra and as forcing notions, again see [12, 4, 18,
19]:

Facts 1.11. • B having a σ-closed positive subset implies b(BM(B)).
• b(BM(B)) is also denoted by “B is strategically σ-closed” and implies that
B is proper.
• a(BM(B)) is equivalent to “B is σ-distributive”.

It is not surprising that we will get stronger connections if we assume that the B
has the form BI = P(κ)/I for a normal ideal I. We will mention only one example:

Fact 1.12. If BI is proper, then a(BM(I)) holds.

For a proof, see 3.5.

2. The results

2.1. Some Observations. Some of the facts for precipitous ideals can be shown
(with similar proofs) for PD, but there are of course strong differences as well:

Lemma 2.1. (1) b(c&cmin
ne (I, 2)) implies that κ is measurable in an inner model.

(2) So in particular, b(PD∅(I)) implies that as well.
(3) However, a(PDe(I)) has no consistency strength. In particular, for κ = ℵ2,

a(PDe(I)) is implied by CH for every I concentrated on Eℵ2ℵ1 .

(4) b(PD∅(I)) implies κ > 2ℵ0 and that I is not concentrated on Eκℵ0 .

The proofs can be found in 5.5, 5.2 and 5.3.
In this paper, we are not interested in the property “empty does not win the

pressing down game”, since it has no consistency strength. Also, the effect of who
moves first in Banach Mazur games is trivial. The remaining properties are pictured
in Figure 2. All these properties are equiconsistent to a measurable (e.g., for I =

NSℵ2 � E
ℵ2
ℵ1 ). In fact, they imply that I is ∞-semi precipitous, see Definition 4.1,

which in turn implies that κ is measurable in an inner model. We claim that none of
the implications can be reversed. In this paper, we will prove some strong instances
of this claim by assuming larger cardinals: We show
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6 JAKOB KELLNER AND SAHARON SHELAH

• b(PDe) doe not imply precipitous, and

• a(BM) does not imply b(PD∅).

We also claim that (consistently relative to a measurable)

• b(Id) does not imply b(PD),

but we do not give a proof here. With these claims (for which we assume cardinals
larger than a measurable) it is then easy to check that no implication of Figure 2
can be reversed.

In [14], Pauna and the authors showed that, assuming the consistency of a mea-

surable, b(PD(I)) does not imply b(BMne(I)) for I = NSℵ2 � E
ℵ2
ℵ1 . In fact, a slightly

stronger statement holds (with a simpler proof):

Lemma 2.2. It is equiconsistent with a measurable that b(PD(I)) holds (even for

length ω1) but a(Idne(I))) fails for I = NSℵ2 � E
ℵ2
ℵ1 .

(For a proof, see 5.8.) Note that “a(Idne(I))) fails” just means that I is nowhere
precipitous.

Of course, precipitous cannot generally imply a winning strategy for nonempty
in any game, since precipitous is consistent with κ ≤ 2ℵ0 . However, we can get
counterexamples for κ > 2ℵ0 as well: Just adding Cohens destroys any winning
strategy for nonempty (for any ideal on ℵ2), but preserves precipitous. So we get:

Lemma 2.3. It is equiconsistent with a measurable that CH holds, NSℵ2 � E
ℵ2
ℵ1 is

precipitous but b(PD∅(J)) fails for any normal ideals J on ℵ2.

2.2. Large cardinals. To see that not even a(BM(I)) implies any winning strategy

for nonempty, we assume CH and a ℵ3-saturated ideal I on ℵ2 concentrated on Eℵ2ℵ1 .
Saturation is preserved by small forcings, in particular by adding some Cohens, and
saturation (together with CH) implies a(BM(I)). So we get:

Lemma 2.4. The following is consistent with CH plus an ℵ3-saturated ideal on ℵ2:

CH holds, a(Id(I)) holds for some I on ℵ2, but b(PD∅(J)) fails for any normal J
on ℵ2.

See 5.11 and 5.12. (It seems very likely that saturation is not needed for this,
but the construction might get considerably more complicated without it.)

As mentioned in Lemma 2.2 it is possible that b(PD(I)) holds for a nowhere
precipitous ideal, i.e., for an ideal such that a(Idne(I)) fails. It seems harder to
even get b(PDe(I)) for a nowhere precipitous ideal. Here we use a supercompact:

Theorem 2.5. It is consistent with a supercompact that for κ = ℵ2 there is a
nowhere precipitous I such that b(PDe(I)) holds (even for length ω1).

(See 6.1.)
Note that (as opposed to 2.3, 2.4) we just make a specific ideal non-precipitous,

and we do not destroy all precipitous ideals. It seems very hard (and maybe im-
possible) to do better, and it is not clear whether we can avoid cardinals larger
than a measurable. It is not known how to kill all precipitous ideals5 on, e.g., ℵ1

5Since we are only interested in normal ideals, it would be enough to kill all normal precipitous

ideals. This doesn’t help much, though; it is not known whether the existence of a precipitous
ideal does imply the existence of a normal precipitous one. Recently Gitik [7, 6, 3] proved some

interesting results in this direction.
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MORE ON THE PRESSING DOWN GAME. 7

with “reasonable” forcings.6 And it might be even harder to do so while addition-
ally preserving b(PDe(I)) for some ideals: By recent results by Gitik [6] (and later
Ferber and Gitik [3]) a ∞-semi precipitous ideal does imply a normal precipitous
ideal under in the absence of larger cardinals and under some cardinal arithmetic
assumptions.

2.3. Moving first. Let us now investigate the effect of whether empty moves first.
If we compare Ge and Hne for any games G and H, then these variants will be dif-

ferent for trivial reasons: For example, b(BMne(NSℵ2)) does not imply b(PD∅e(NSℵ2)):
Let U be a normal ultrafilter on κ, Levy-collapse κ to ℵ2, and let I1 be the ideal
generated by the dual of U (which is concentrated on Eℵ2ℵ1 ). Then nonempty

wins BM(I1) and therefore BMne(I1 + Eℵ2ℵ0 ) as well. But nonempty can never

win PD∅e(I1 + Eℵ2ℵ0 ), since nonempty cannot win PD∅(Eℵ2ℵ0 ).

So the games are very different (for trivial reasons) when we change who has the
first move. However, for the Banach Mazur game, the effect of who moves first is
a simple density effect, 7 as we have mentioned in 1.9. For example, b(BMne(I))
holds iff b(BM(I � S)) holds for some positive S.

This is not the case for the pressing down games. Of course we still get:

• b(PDe(I)) holds iff b(PD(I � S)) holds for all S ∈ I+.

• The same holds for PD∅e .

But unlike the Banach Mazur case, we can have the following:

Lemma 2.6. It is equiconsistent with a measurable that b(PD(I)) holds but b(PDe(I �
S)) fails for all positive S, e.g., for I = NSℵ2 .

(See 5.8.) So in other words, b(PD(I)) can hold but for all positive S there is a
positive S′ ⊆ S such that b(PD(I � S′)) fails.

3. Empty not winning

Lemma 3.1. • CH implies a(PD(I)) for every I on ℵ2 that is not concen-

trated on Eℵ2ℵ0 .

• More generally, if λℵ0 < κ for all λ < κ and κℵ0 = κ, then empty wins
PD(I) iff Eκ>ω ∈ I.

• So if I is concentrated on Eκ>ω (and the same cardinal assumptions hold)
then a(PDe(I)) holds.

Proof. Assume that I is concentrated on Eκℵ0 . Just as in [5], it is easy to see that
empty wins PD(I): For every α ∈ Eκℵ0 , let (seq(α, n))n∈ω be a cofinal sequence in
α. Let Fn map α to seq(α, n). If empty plays Fn at stage n, then the intersection
can contain at most one element.

So assume towards a contradiction that Eκ>ω /∈ I and that empty has a winning
strategy for PD(I). The strategy assigns sets Xt and regressive function ft to nodes
t in the tree T = κ<ω in the following way:

For t = 〈〉, set X〈〉 = κ and let f〈〉 be empty’s first move. For α ∈ κ, set

X(α) = f−1t (α). Note that α is a valid response for nonempty iff X(α) is positive.

6More specifically, it is not known whether large cardinals imply a precipitous ideal on ℵ1,

although Woodins are not enough, cf. [17].
7In games of length bigger than ω+1 however it does make a substantial difference who moves

first at limits.
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Generally, fix t ∈ T . We can assume by induction that one of the following cases
hold:

• t corresponds to a partial run rt with (positive) partial result Xt; then we
set ft to be empty’s response to rt.
• Xt ∈ I; then we set ft ≡ 0.

In both cases we set Xt_α = Xt ∩ f−1t (α).
Let b be a branch of T (i.e., b ∈ κω). We set Xb =

⋂
n∈ωX

b�n.
Assume that b corresponds to a run of the game; this is the case iff Xb�n is

I-positive for all n. Then Xb ∈ I, since empty uses the winning strategy. If b does
not correspond to a run, then Xb ∈ I as well. So

(1) Xb ∈ I for all branches b

Xb and Xc are disjoint for different branches b, c; and for all γ ∈ κ there is exactly
one branch bγ such that γ ∈ Xbγ . We assume γ 6= 0 from now on. By definition,
for all n

fbγ�n(γ) = bγ(n)

Since fbγ�n is regressive, bγ(n) < γ for all n ∈ ω. In other words, bγ ∈ γω.

Fix an injective function φ : κω → κ. Since γℵ0 < κ for γ < κ, we can find a
club C such that

φ′′γω ⊆ γ for all γ ∈ C ∩ Eκ>ω.
This defines a regressive function g : C ∩ Eκ>ω → κ by g(γ) = φ(bγ). Since I
is normal and does not contain Eκ>ω, there is a positive set S and a ζ ∈ κ (or
equivalently a branch b of T ) such that g(γ) = ζ, i.e., bγ = b for all γ ∈ S. This
implies that S ⊆ Xb is positive, a contradiction to (1). �

Lemma 3.2. If I is normal, then PDe is equivalent to c&c(BI , κ).

Proof. A regressive function defines a maximal antichain in BI of size at most κ.
On the other hand, let A be a maximal antichain of size λ ≤ κ. We can choose
pairwise disjoint representatives (Si)i∈λ for the elements of A, and define

f(α) =

{
1 + i if α ∈ Si and 1 + i < α,

0 otherwise.

f−1(0) ∈ I. (Otherwise there is an Si in A such that T = Si ∩ f−1(0) ∈ I+, pick
α ∈ T \ (1 + i+ 1), contradiction.) So the partition A is equivalent to the regressive
function f . �

Together with 1.10 we get:

Corollary 3.3. If I is normal and κ+-saturated, then BM(I) and PDe(I) are
equivalent. The same holds for BMne(I) and PD(I).

If I is κ+-saturated, then it is precipitous, i.e., a(Id(I)) holds [9, 22.22]. However,
I can be concentrated on Eκℵ0 (for example, κ could be ℵ1), which negates a(BM(I)).
However, with Lemma 3.1 we get:

Corollary 3.4. If I is κ+-saturated, κℵ0 = κ, λℵ0 < κ for all λ < κ, and I is
normal and concentrated on Eκ>ℵ0 , then a(BM(I)) holds.
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In the rest of the section, we show that properness implies a(BM(I)). This is
not needed for the rest of the paper.

For any Boolean algebra B, b(BM(B)) implies that B is proper (as a forcing
notion), cf. e.g. [11, Thm. 7]. For Boolean algebras of the form BI = P(κ)/I we
also get:

Lemma 3.5. Assume κ > 2ℵ0 . If BI is proper then a(BM(I)) holds.

Normality of I is not needed, just <κ-completeness.

Proof. Assume towards a contradiction that τ is a winning strategy for empty. Let
p0 ∈ I+ be empty’s first move according to τ . Pick N ≺ H(χ) countable containing
I and τ (and therefore p0), and let q ≤ p0 be N -generic. In other words, if D ∈ N
is a predense subset of I+, then q is (mod I) a subset of

⋃
(D ∩N). Therefore

X = q ∩
⋂
{
⋃

(D ∩N) : D ⊆ I+ is predense and D ∈ N},

is positive. We set

Y =
⋃
{
⋂
n∈ω

An : (∀n ∈ ω)An ∈ N ∩ I+,
⋂
n∈ω

An ∈ I}

Y ∈ I, since |[N ]ℵ0 | < κ. So we can pick some

δ∗ ∈ X \ Y.

We now construct a run of the game such that every initial segment is in N . Assume
that we already know the initial segment of the first n − 1 stages, and that this
segment is in N . Then empty’s move An given by τ is in N as well. We further
assume that δ∗ ∈ An. (This is true for n = 0, since δ∗ ∈ q ≤ p0.) For any I-positive
B ⊆ An let empty’s response be f(B). The set

D = {κ \An} ∪ {f(B) : B ⊆ An positive}

is dense in I+ and is in N . Since δ∗ ∈ X , δ∗ ∈
⋃

(D ∩N), i.e. there is some B ∈ N
such that δ∗ ∈ f(B). Let B be nonempty’s move.

So δ∗ will be in the intersection Z =
⋂
An, and since empty wins the run, Z ∈ I.

Since each An is in N , we get Z ⊆ Y. This contradicts δ∗ ∈ Z. �

4. ∞-semi precipitous ideals

Definition 4.1. A κ-complete ideal I on κ is called (normally)∞-semi precipitous,
if there is some partial order P which forces that there is a (normal) wellfounded,
nonprincipal, κ-complete V -ultrafilter containing the dual of I.

Donder, Levinski [2] introduced the notion of λ-semi precipitous, and Ferber and
Gitik [3] extended the notation to ∞-semi precipitous. Another name, “weakly
precipitous”, is used for this notion in [1]. However, Jech uses the term “weakly
precipitous” for another concept, cf. [12, 2].

We will see in Lemma 5.5 that b(PD∅(I)) implies that I is normally ∞-semi

precipitous. This will establish the consistency strength of b(PD∅(I)):

Lemma 4.2. If there is an ∞-semi precipitous ideal on κ, then κ is measurable in
an inner model.
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This is of course no surprise: the proof is a simple generalization of the proof [8,
Theorem 2] for precipitous; Jech and others have used in fact very similar gener-
alizations. (E.g., in [12] it is shown more or less that pseudo-precipitous ideals are
∞-semi precipitous.)

Proof. We assume that there is a forcing P and a name
˜
D for the V -generic filter.

In particular:

(2)
P forces that in V [G] there is an elementary embedding j : V →M
for some transitive class M in V [G].

If we are only interested in consistency strength, we can use Dodd-Jensen core
model theory as a black-box: (2) is equiconsistent to a measurable cardinal, which
follows immediately, e.g., from [9, 35.6] and the remark after [9, 35.14]: KV =
KV [G], and there is a measurable iff there is an elementary embedding j : K →M
(which also implies M = K). However, this only tells us that there is some ordinal
which is measurable in an inner model, and not that this ordinal is indeed κ.

To see this, we can either use more elaborate core model theory (as pointed out
by Gitik, cf. [20, 7.4.8,7.4.11]). Alternatively, we can just slightly modify the proof
of [8, Theorem 2] (which can also be found in [9, 22.33]). We will do that in the
following: Let K be the class of strong limit cardinals µ such that cf(µ) > κ. Let
(γn)n∈ω be an increasing sequence in K such that |K ∩ γn| = γn. Set A = {γn >
n ∈ ω} and λ = sup(A).

By a result of Kunen, it is enough to show the following:

(3)
There is (in V ) an iterable, normal, fine L[A]-ultrafilter W such
that every iterated ultrapower is wellfounded.

We have a name
˜
D for the V -generic filter.

˜
D does not have to be normal, but

there is some p0 ∈ P and α0 ≥ κ such that p0 forces that [Id] = α0. We set

J = {x ⊆ κ : p0  x /∈
˜
D}, and

U = {x ∈ P(κ) ∩ L[A] : x /∈ J }.

U is generally not normal, but the normalized version of U will be as required.
U is an L[A] ultrafilter: Let x ⊆ κ be in L[A]. We have to show: x or κ \ x are

in J .

• There is a formula ϕ and a finite E ⊆ κ ∪K such that (in L[A]) α ∈ x iff
α < κ and ϕ(α,E,A).
• Assume G is P -generic over V and contains p0. [Id] = α0, so x ∈

˜
D[G] iff

α0 ∈ j(x).
• By elementarity (in V [G]) α0 ∈ j(x) iff j(L[A]) thinks that ϕ(α0, j(E), j(A)).

But j(µ) = µ for every µ ∈ K.
• So we get x ∈

˜
D[G] iff (in L[A]) ϕ(α0, E,A) holds, independently of G

(provided G contains p0). In other words, if there is some generic G such
that x ∈

˜
D[G], then x ∈

˜
D[G] for all generic G (containing p0); i.e. p0

forces that x ∈
˜
D[G]; i.e. κ \ x ∈ J .

• Assume that x is not in J . Then there is some q ≤ p forcing that x ∈
˜
D.

So κ \ x ∈ J .

U is <κ-complete, fine and wellfounded: Pick λ < κ and (xα)α∈λ in L[A] such
that each xα ∈ U . Then p0 forces that κ \xα /∈

˜
D, and therefore that

⋃
κ \xα /∈

˜
D

(since
˜
D is a <κ-complete ultrafilter).
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This also shows that (in V ) the intersection of ℵ0 many U -elements is nonempty;
which implies that every iterated ultrapower is wellfounded (provided iterability).
U is iterable: Let (in L[A]) (xα)α∈κ be a sequence of subsets of κ. Let G be

P -generic over V and contain p0. In V [G], xα ∈
˜
D[G] iff α0 ∈ j(xα). The sequence

(j(xα))α∈κ is in L[j(A)], and therefore also the set {α ∈ κ : α0 ∈ jG(xα)}. But
L[j(A)] = L[A].

normalizing: Since we now know that U is wellfounded, we know that there is
some f : κ→ κ in L[A] representing κ. Set W = f∗(U). Then W is as required. �

The following follows easily from Kunen’s method of iterated ultrapowers (see,
e.g., [14, 4.3] for a proof):

Lemma 4.3. Assume V = L[U ], where U is a normal ultrafilter on κ. Let V ′ be a
forcing extension of V and D ∈ V ′ a normal, wellfounded V -ultrafilter on κ. Then
D = U .

This implies:

Corollary 4.4. In L[U ], the dual of U is the only normal precipitous ideal on κ;
and every ideal on κ that is normally ∞-semi precipitous is a subideal of the dual
of U .

We will also need the following:

Lemma 4.5. If I is a <κ-complete ideal, P a κ-cc forcing notion, and cl(I) the
P -name for the closure of I in V [G], then P preserves the following properties: I
is precipitous, I is not precipitous, and I is nowhere precipitous.

Proof. This has been known for a long time, cf. e.g. [13]: “not precipitous” is
equivalent to the existence of a decreasing sequence of functionals starting at some
positive set S0 (this corresponds to: S forces that there is an infinite decreasing
sequence in the ultrapower, the sequence of functionals witnesses this). A κ-cc
forcing preserves maximality (below S0) of an antichain in BI , and therefore the
decreasing sequence of functionals. “Nowhere precipitous” is equivalent to the
existence of a decreasing sequence of functionals starting with κ, which again is
preserved by P . �

5. Nonempty winning

Let us assume that nonempty has a winning strategy in PD∅(I) (or a similar
game such as PD(I)). A valid sequence is a finite initial sequence of a run of the

game PD∅, where nonempty uses his strategy. So a valid sequence w has the form
(f0, α0, f1, α1, . . . , fn−1, αn−1), where fi is a regressive function and αi the value
chosen by the strategy. In particular Si =

⋂
j≤i f

−1
j (αj) is I-positive for each i < n.

We set
A(w) = Sn−1 =

⋂
j<n

f−1j (αj).

Definition 5.1. P ∗ is the set of valid sequences ordered by extension. (A longer
sequence is stronger, i.e., smaller in the P ∗-order.)

So if w < v, then A(w) ⊆ A(v). If w0 > w1 > w2 > . . . is an infinite decreasing
sequence in P ∗, then

⋃
i∈ω wi represents a run of the game, so the result

⋂
i∈ω A(wi)

has to be nonempty (or even positive in the case of a PD-strategy).
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12 JAKOB KELLNER AND SAHARON SHELAH

Lemma 5.2. b(PD∅) implies κ > 2ℵ0 .

Actually, we can even restrict nonempty to play functions f : κ → {0, 1}. In

other words, it is enough to assume b(c&cmin(I, 2)), cf. Definition 1.4.

Proof. The proof is the same as [5, §1]: We assume otherwise and identify κ with
a subset X of [0, 1] without a perfect subset. We claim:

(4)
For all w ∈ P ∗ and n ∈ ω there are disjoint open intervals I1
and I2 of length ≤1/n and w1, w2 < w such that A(w1) ⊆ I1 and
A(w2) ⊆ I2.

Assume that (4) fails for some v0 and n0. Given v < v0 and n > n0, we fix a
partition of [0, 1] into n many open intervals of length 1/n and the (finite) set of
endpoints. By splitting A(v) n + 1 many times, empty can guarantee that A(w)
has to be subset of one of the intervals for some w < v. Since (4) fails, there has
to be for each n a fixed element I(n) of the partition such that for all v < v0 there
is a w < v with A(w) ⊆ I(n).

⋂
I(n) can contain at most one point x, so the

empty player can continue v0 by first splitting into {x} and A(v0) \ {x}; and then
extending each vn−1 to vn such that A(vn) ⊆ I(n). Then the intersection is empty.
This shows (4).

So we can fix an order preserving function ψ from 2<ω to P ∗ such that A(ψ(s_0))
and A(ψ(s_1)) are separated by intervals of length ≤1/|s| for all s ∈ 2<ω. Then
every η ∈ 2ω is mapped to a run of the game, and since nonempty wins, there is
some rη ∈

⋂
n∈ω A(ψ(η � n)). This defines a continuous, injective mapping from 2ω

into X and there fore a perfect subset of X. �

Clearly a(PD) fails if I is concentrated on Eκℵ0 , and this was used in [5] to show
that in this case b(Idne(I)) fails as well. A similarly easy proof gives:

Lemma 5.3. b(PD∅(I)) fails if I is concentrated on Eκℵ0 .

Proof. Assume otherwise. Fix for each α ∈ Eκℵ0 a normal cofinal sequence (seq(α, n))n∈ω,
and let gi : κ→ κ map α to seq(α, i). We first show a variant of (4):

(5) For all w there are v1, v2 ≤ w in P ∗ such that A(v1) ∩A(v2) = ∅.

Assume otherwise. Then for each i there is a fixed βi such that nonempty responds
with βi whenever empty plays gi in any v ≤ w. Set δ = sup{βi : i ∈ ω}, and let
empty play the following response to w:

f(α) =

{
0 if α ≤ δ,
min{n : seq(α, n) > δ} otherwise.

If nonempty responds to f with m, then empty can play gm as next move, nonempty
has to respond with βm < δ, but

g−1m (βm) = {α : seq(α,m) = βm}

is disjoint to f−1(m), a contradiction. This shows (5).
Now fix N ≺ H(χ) of size less than κ containing the strategy as well as all gn

and such that N ∩ κ = δ ∈ Eκℵ0 . We define a sequence w0 > w1 > · · · in P ∗ such
that each wi is in N : Using (5) in N , we get a w0 ∈ N ∩ P ∗ such that δ /∈ A(w0).
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Given wn−1, let wn ∈ N be the continuation where empty played the regressive
function

fn(α) =

{
0 if α < seq(δ, n)

gn(α) otherwise.

(Note that seq(δ, n) < δ is in N for all n.) Assume that ν ∈
⋂
n∈ω A(wn). Then

ν ≥ seq(δ, n) for all n, so ν ≥ δ. On the other hand, gn(ν) ∈ N for all n, so ν ≤ δ.
But δ /∈ A(w0), a contradiction. �

Of course this shows the following: b(PD∅(I)) implies b(PD∅(I � Eκ>ℵ0)) (since
empty can just cut κ into Eκℵ0 and Eκ>ℵ0 as a first move).

Recall that b(PD∅(I)) for any I implies b(PD∅(NS)) (due to monotonicity). So
the last lemma gives:

Corollary 5.4. b(PD∅(I)) is equivalent to b(PD∅(I � Eκ>ℵ0)) and implies b(PD∅(NS))

and b(PD∅(NS � Eκ>ℵ0)).

Lemma 5.5. b(PD∅(I)) implies that I is normally ∞-semi precipitous.

b(c&cmin(I,<κ)) implies that I is ∞-semi precipitous.

Proof. We define the P ∗-name
˜
U by X ∈

˜
U iff X ⊇ A(w) for some w ∈ GP∗ .

• P ∗ forces that
˜
U is a V -ultrafilter: Given any w ∈ P ∗ and X ∈ V , player

empty can respond to w by cutting into X and A(w) \X.

• In the c&cmin case, P ∗ forces that
˜
U is <κ-complete: Assume that (in V )

X is the disjoint union of (Xi)i∈λ, λ < κ. Then empty can responds to w
by cutting into {Xi : i ∈ λ} ∪ {A(w) \X}.
• In the case of PD, P ∗ forces that

˜
U is V -normal: If f ∈ V is regressive,

then empty can play f as response to any w.
• P ∗ forces that

˜
U is wellfounded: Assume towards a contradiction that w

forces that (
˜
fn)n∈ω are functions (in V ) from κ to the ordinals such that

˜
An = {α :

˜
fn+1(α) <

˜
fn(α)}

is in
˜
U for all n ∈ ω. Set w−1 = w. Assume that we already have wn

(for n ≥ −1). Pick some w′n+1 < wn deciding
˜
fn+1 to be some f ′n+1 ∈

V . So w′n+1 forces that Xn+1 :=
⋂
l≤n+1 ˜

Al =
⋂
l≤n+1A

′
l (a set in V )

is in
˜
U . In particular, there is some wn+1 stronger than w′n+1 such that

A(wn+1) ⊆ Xn+1. The sequence (wn)n∈ω corresponds to a run of the game.
Since nonempty follows the strategy, there is some α ∈

⋂
n∈ω A(wn). wn+1

forces α ∈ Xn+1, i.e., f ′n+1(α) < f ′n(α). This gives an infinite decreasing
sequence, a contradiction. �

Together with 4.4, we get:

Corollary 5.6. In L[U ], nonempty does not win PD∅(NSκ � S) for any S /∈ U . In

particular, b(PD(NSκ)) holds (even for the game of length κ), but b(PD∅e(NSκ � S))
fails for every stationary S. Also, and a(Id(NSκ � S)) fails, i.e., NSκ is nowhere
precipitous.

We can use a Levy Collapse to reflect this situation down to, e.g., ℵ2. We first list
some properties of the Levy collapse. Assume that κ is inaccessible, θ < κ regular,
and let Q = Levy(θ,< κ) be the Levy collapse of κ to θ+: A condition q ∈ Q is
a function defined on a subset of κ × θ, such that |dom(q)| < θ and q(α, ξ) < α
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14 JAKOB KELLNER AND SAHARON SHELAH

for α > 1, (α, ξ) ∈ dom(q) and q(α, ξ) = 0 for α ∈ {0, 1}. Given α < κ, define
Qα = {q : dom(q) ⊆ α× θ} and πα : Q→ Qα by q 7→ q � (α× θ). The following is
well known:

• If q  p ∈ G, then q ≤ p (i.e. ≤∗ is the same as ≤).
• Q is κ-cc and < θ-closed.
• In particular, if p forces that C ⊆ κ is club, then there is a club C0 ∈ V

such that p forces C0 ⊆ C. The ideal generated by NSVκ in V [G] is NS
V [G]
κ .

We also need the following simple fact (see, e.g., [14, 6.2] for a proof):

(6)

Let I be a normal ideal concentrated on Eκ≥θ, let T be I-positive,

p ∈ Q and pα ≤ p for all α ∈ T . Then there is an I-positive T ′ ⊆ T
and a q ≤ p such that πα(pα) = q for all α ∈ T ′.

So in particular, every q′ ≤ q is compatible with pα for all but boundedly many
α ∈ T ′.

We will also use:

Lemma 5.7. Let κ be inaccessible and T ⊂ κ be stationary. The Levy collapse

preserves ¬b(PD∅(NSκ � T )). The same holds for PD.

Proof. Assume towards a contradiction that q forces that nonempty does have a
winning strategy in V [G]. We describe a winning strategy in V : Assume empty
plays f0 (in [V ]). Let q0 ≤ q decide that in V [G] nonempty chooses α0 as response
to f0 according to the winning strategy in V [G]. So q0 forces that f−10 (α0) ∩ T
is stationary, therefore f−10 (α0) ∩ T is stationary in V . Generally, let qn ≤ qn−1
decide that nonempty plays αn as response to fn. Since Q is σ-closed, there is a
qω < qn for all n. So qω forces that

⋂
f−1n (αn) ∩ T is stationary. �

Starting with L[U ] and using a Levy collapse we get:

Corollary 5.8. Consistently relative to a measurable, b(PD(NSℵ2)) holds (even for

length ℵ1) but b(PD∅e(NSℵ2 � S)) fails for every stationary S, and NSℵ2 is nowhere
precipitous.

Proof. Assume V = L[U ] and let Q = Levy(ℵ1, <κ) be the Levy collapse of κ to
ℵ2.

To see that NSℵ2 is forced to be nowhere precipitous, note that <κ-cc implies

clV [G](NSVκ ) = NSV [G]
κ and use 4.5.

In V [G], clV [G](U) is a normal filter such that the family of positive sets has a
σ-closed dense subset [5]. Let I be the dual ideal. So nonempty wins BM(I), and
therefore PDe(I) and PD(NSκ) (even of length ℵ1).

It remains to be shown that b(PD∅e(NSℵ2 � S)) fails in V [G] for all stationary
S. Assume towards a contradiction that some p forces that

˜
S is stationary and

b(PD∅(NSκ � S′)) holds for all stationary S′ ⊆
˜
S. According to 5.4 we can assume

˜
S ⊆ Eℵ2ℵ1 . Set

T0 = {α ∈ κ : p 6 α /∈
˜
S}

T0 ⊆ Eκ≥ℵ1 is stationary. Fix some stationary T ⊆ T0 not in U ; and for α ∈ T fix

some pα ≤ p forcing α ∈
˜
S. Apply (6) to T , the nonstationary ideal and (pα)α∈T .

This results in q ≤ p and T ′ ⊆ T stationary.

(7) q  S′ := T ′ ∩
˜
S is stationary.

Paper Sh:939, version 2009-08-24 10. See https://shelah.logic.at/papers/939/ for possible updates.



MORE ON THE PRESSING DOWN GAME. 15

Otherwise some q1 ≤ q forces that S′ is nonstationary. Then there is in V a club
C and a q2 ≤ q1 forcing that S′ ∩ C = ∅. Pick α ∈ T ′ ∩ C such that pα and q2
are compatible. Then q3 ≤ pα, q2 forces that α ∈ T ′ ∩C ∩

˜
S, a contradiction. This

shows (7).

By our assumption, p forces that nonempty wins PD∅(NS � S′). But b(PD∅(NSκ �
T ′)) fails in V (since T ′ ⊂ T and T /∈ U), therefore b(PD∅(NSℵ2 � T

′)) fails in V [G]

according to 5.7, and by monotonicity b(PD∅(NSℵ2 � S
′)) fails as well, a contradic-

tion. �

We will now force nonempty not to win PD. For simplicity we will assume CH
and look at κ = ℵ2. It turns out that it is enough to add ℵ1 many Cohen reals
(actually, many similar forcings also work). First we need another variant of (4)
or (5):

Lemma 5.9. Assume CH and b(PD∅(NSℵ2)). For each v ∈ P ∗ there are F ′(v) ≤ v
and F ′′(v) ≤ v such that A(F ′(v)) and A(F ′′(v)) are disjoint.

(We can choose F ′(v) and F ′′(v) to be immediate successors of v, i.e. we just
have to choose two regressive functions f ′ and f ′′ as empty’s moves.)

Proof. We fix an injection φ : [ℵ2]ℵ0 → ℵ2. Let S = C ∩ Eℵ2ω1
(for some clubset C)

consist of ordinals α such that φ′′[α]ℵ0 ⊆ α. For each α ∈ S, pick a normal cofinal
sequence γα : ω1 → α. For i ∈ ω1 set gi(α) = φ({γα(j) : j ≤ i}) for α ∈ S; and
set gi(α) = 0 for α /∈ S. So for all i ∈ ω1, gi is a regressive function. If α 6= β then
gi(α) 6= gi(β) for some i; and gi(α) 6= gi(β) implies gj(α) 6= gj(β) for all j > i.

Let x(i) be the strategy’s response to v_gi, We can identify x(i) with the se-
quence φ−1x(i) = (γi,k)k≤i. So for all α with gi(α) = x(i) we get γα(k) = γi,k for
k ≤ i.

Case A: There are k < i < j < ω1 such that γi,k 6= γj,k. Then set F ′ = gi and

F ′′ = gj . If α ∈ g−1i (x(i)) and β ∈ g−1j (x(j)), then γα(k) 6= γβ(k), so in particular
α 6= β.

Case B: Otherwise, all the sequences (γi,k)i≤k cohere for all i ∈ ω1, so let (γ̃k)k∈ω1

be the union of these sequences, with supremum α̃ < ω2. So for all α 6= α̃ in S there
is some k(α) ∈ ω1 such that γα(k(α)) 6= γ̃k(α)). Set h(α) = 0 for α ∈ ω1∪{α̃}∪ω2\S.
So h is a regressive function. Let l be the strategy’s response to v_h. Set F ′ = h
and F ′′ = gl. If α ∈ h−1(l) and β ∈ g−1l x(l), then γβ(l) = γ̃l which is different to
γα(l). �

Lemma 5.10. Assume CH. Let Pω1
be the forcing notion adding ℵ1 many Cohen

reals. Then Pω1
forces ¬b(PD∅(NSℵ2)).

(The same holds for any other CH preserving ω1-iteration of absolute ccc forcing

notions.) Note that since PD∅ is monotone, b(PD∅(I)) fails for all ideals I on ℵ2.

Proof. Assume that p ∈ P forces that
˜
τ is a winning strategy for nonempty for the

game PD∅(I).
Let Pα be the complete subforcing of the first α Cohen reals. Pω1 forces that

Lemma 5.9 holds. We fix the according Pω1 -names
˜
F ′ and

˜
F ′′. Let N ≺ H(χ)

contain p,
˜
τ ,

˜
F ′ and

˜
F ′′. Set ε = N ∩ ω1. If Gω1

is Pω1
-generic over V , then

Gε = Gω1
∩ Pε is Pω1

-generic over N (and Pε-generic over V ).
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16 JAKOB KELLNER AND SAHARON SHELAH

So in Nε = N [Gε] = N [Gω1
], we can evaluate the correct values of

˜
τ ,

˜
F ′ and

˜
F ′′

for all valid sequences v in Nε (i.e., the resulting values are the same as the ones
calculated in Vω1 = V [Gω1 ]).

In Vω1
, pick any real r /∈ Vε. Using r, we now define by induction a run b of the

game such that each initial segment is in Nε: Assume we already have the valid
sequence u ∈ Nε. Extend u with

˜
F ′(u) if r(n) = 0, and to F ′′(u) otherwise.

So b ∈ Vω1
is a run of the game according to τ ; nonempty wins the run; so

there is some δ ∈
⋂
n∈ω A(b � n). But we can in Vε use this δ to reconstruct (by

induction) the run b and therefore the real r: Assume we already know r � n and
the corresponding valid sequence u = b � n. Then δ is element of exactly one of
A(F ′(u)) or A(F ′′(u)), which determines r(n) as well as the sequence corresponding
to b � (n+ 1). �

On the other hand, adding Cohens, as any κ-cc forcing, preserves precipitousness
(and non-precipitousness) of an ideal, cf. 4.5. So we get:

Corollary 5.11. a(Id(I)) does not imply b(PD∅(NS)).

If we assume CH and an ℵ3-saturated normal ideal on ℵ2 saturated on Eℵ2ℵ1 , we
get the following:

Corollary 5.12. (Saturated ideal.) a(BM(I)) does not imply b(PD∅(NS)).

Proof. Since Pω1
has size ℵ1 < ℵ2, cl(I) remains ℵ3-saturated. So in V [G], we can

use 3.4 to see that a(BM(cl(I))) holds. �

6. A supercompact

We have seen that b(PD(I)) can hold for a nowhere precipitous ideal I. It
seems harder to show that there could be a nowhere precipitous ideal I satisfying
b(PDe(I)):

Theorem 6.1. The following is consistent relative to κ supercompact: I0 is nowhere
precipitous, i.e., a(Idne(I0)) fails, and for every I0-positive set S the dual to I0 � S
can be extended to a normal ultrafilter.

Note that this implies b(PDe(I0)), even for the game of length κ.
We will split the proof into several lemmas: First we define the forcing S(κ)

as limit of Pα. We also define dense subsets P ′α of the Pα. Then we define the
forcing notion Rκ+1, by doing the usual Silver-style preparation with reverse Easton
support. This forcing notion is as required: In the extension, we define 6.5 the ideal
I0 and show that the theorem holds (6.8 and 6.9).

6.1. The basic forcing. So let us assume that κ is an inaccessible cardinal, and
define S(κ) as the limit of the <κ-support iteration (Pa, Qa)a∈κ+ of length κ+

defined the following way: By induction on a, we define Qa together with the
Pa-names Ba ⊆ κ, ga : κ→ κ+ 1 and the Pa+1-names Aa ⊆ κ, fa : κ→ κ:

We identify the tree T = (κ+)<ω of finite κ+-sequences with κ+ such that the
root is identified with 0. We can assume that a <T b implies a < b (as ordinals in
κ+). We write aCT b or bBT a to denote that b is immediate T -successor of a. So
for all a ∈ κ+ there are κ+ many b with aCT b. For b 6= 0 we also write prec(b) to
denote the (unique) a such that aCT b.

Assume we already have defined Pa, and the Pb+1-names Ab, fb for all b < a.
Then in V [GPa ], we define Ba, ga, Qa and the Qa-names fa, Aa:
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• If a = 0, we set ga(α) = κ for all α ∈ κ, and Ba = κ.
• Otherwise, we use some bookkeeping8 to find a B0

a ⊆ Aprec(a), and we set:

(8) Ba = B0
a \ ∇b<a: prec(b)=prec(a)Ab, and we set ga = fprec(a).

• A condition p of Qa is a function fp : βp → κ such that βp ∈ κ and for all
α ∈ βp:

– if α /∈ Ba or ga(α) = 0 then fp(α) = 0,
– otherwise fp(α) < ga(α).
– Additionally, if a = 0 we require fa(α) > 0.

• We define the order on Qa by q ≤ p if fq ⊇ fp.
• We set fa to be the canonical Qa-generic, i.e.,

⋃
q∈G f

q.

• We set Aa = {α ∈ κ : f(α) > 0}. (So A0 = κ, and Aa ⊆ Ba ⊆ B0
a.)

Note that to write the diagonal union in (8), we have to identify the index set
with κ. Different identifications lead to the same result modulo club. In particular,
we get:

(9) If b < a and prec(b) = prec(a) then Ba \Ab is nonstationary.

Obviously Qa is <κ-closed. We now define P ′a by induction on a ∈ κ+ and show
(in the same induction) that P ′a is <κ-closed and can be interpreted to be a dense
subset of Pa. A condition p ∈ P ′a is a function from u× β to κ such that:

• β ∈ κ.
• u is a subset of a of size <κ.
• aCT b implies max(1, p(a, α)) > p(b, α).
• p(b, α) > 0 implies that p � b forces (as element of Pβ)9 that α ∈ Bb.
• If 0 ∈ u, then p(0, α) > 0 for all α < β.

We can interpret p ∈ P ′a to be a condition in Pa in the obvious way; in particular
we can define the order on P ′a to be the one inherited from Pa.

Lemma 6.2. • P ′a is a dense subset of Pa.
• The order on P ′a (as inherited from Pa) is the extension relation.
• P ′a is <κ-closed.
• Pa is strategically <κ-closed.

Proof. By induction on a (formally, the definition of P ′a has to be done in the same
induction as well). It is clear that P ′a is closed and that the order is extension. We
have to show that P ′a is dense in Pa. We do that by case distinction on cf(a): The
case cf(a) ≥ κ is trivial. Assume b = a + 1 and p ∈ Pb. Then by induction we
know that Pa is strategically κ closed, so we can strengthen p � a to some p′ ∈ P ′a
deciding p(a) to be some fp. We can assume that the height of p′ is at least the
height of fp, and we can extend fp up to the height of p′ by adding zeros on top.
Then p′ together with fp is a condition of P ′b stronger than p. So assume that a is
a limit with cf(a) < κ, i.e., a = sup(bi : i ∈ λ) for some bi < a and λ < κ. Then
we can define by induction on i ∈ λ an increasing sequence p′i ∈ P ′i such that p′i is
stronger than

⋃
l<i p

′
l as well as p � i. �

8 We just need to guarantee that Pκ+ forces: For every a ∈ T and every subset B of Aa there

is a b BT a such that B0
t = B. Note that Ab ⊆ B ⊆ Aa.

9by induction, we already know that P ′β is dense in Pβ
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6.2. The Silver style iteration. We now use the basic forcing S(κ) in a reverse
Easton iteration, the first part acting as preparation to allow the preservation of
measurability. This method was developed by Silver to violate GCH at a measur-
able, and has since been established as one of the basic tools in forcing with large
cardinals. We do not repeat all the details here, a more detailed account can be
found in [9, 21.4]. Note that here we do not just need to preserve measurability or
supercompactness (for this, we could just use Laver’s general result [15]), we need
specific properties of the Silver iteration.

Fix a j : V →M such that

(10) M is closed under κ++-sequences.

In particular, cf(j(κ)) > κ+.
We will use the reverse Easton iteration (Ra, S(a))a≤κ, for S(a) defined as above.

Rκ is the preparation that allows us to preserve measurability (and we will not
need it for anything else); we will look at Rκ ∗ Pa for a ≤ κ+, and in particular at
Rκ+1 = Rκ ∗ Pκ+ (recall that S(κ) = Pκ+). We claim that Rκ+1 forces what we
want. We will also use j(Rκ ∗ Pa) ∈M . We get the usual properties:

• The definition of R is sufficiently absolute. In particular, we can (in M)
factorize j(Rκ+1) = Rj(κ)+1 as Rκ+1 ∗R′, where R′ is the quotient forcing

Rκ+1
j(κ)+1. Note that R′ is <κ+++-closed (in M and therefore in V as well).

• Assume that G is Rκ+1-generic over V (and M). M [G] is closed (as subset
of V [G]) under κ+-sequences. In particular, κ+ is the same (and also equal
to 2κ) in V , V [G] and M [G].
• For p ∈ Rκ+1, the domain of j(p) is in κ∪{j(κ)}, moreover j(p) � κ = p � κ

and j(p)(j(κ)) is isomorphic to p(κ) such that a ∈ dom(p(κ)) is mapped to
j(a). The image of G under j is element of V [G] and subset of M of size
κ+, therefore element of M [G]. For p ∈ G we can split in M the condition
j(p) into p � κ (which is in G anyway) and j(p(κ)). We can assume that G
actually is Rκ ∗ P ′κ+ -generic (since P ′κ+ is dense in Pκ+). Then j(p(κ)) is a
P ′j(κ+)-condition. So in M [G], the set {j(p(κ)) : p ∈ G} is a directed subset

of P ′j(κ+) of size κ+, therefore the union is a P ′j(κ+)-condition qG, a matrix

of height κ (which is less than j(κ), so no contradiction to the definition
of P ′a) and with domain j′′κ+ (which has size κ+ < (j(κ)+)M [G]). We call
this condition qG.

• In M [G], we call q ∈ R′ a G-master condition if it is stronger than qG.
• If H contains some G-master condition and is R′-generic over M [G] (and

therefore V [G] as well), then we can extend in V [G][H] the embedding j to
V [G]→M [G][H] by setting j(τ [G]) = j(τ)[G][H]. This defines in V [G][H]
a normal ultrafilter U = {A[G] : κ ∈ j(A)[G][H]} over V [G]. Since R′ is
sufficiently closed, U is already element of V [G].

Definition 6.3. In V [G], a ∈ κ+ is called a positive index, if

(11) (∀ζ < j(κ)) (∃q G-master condition) q  (κ ∈ j(Ba) & j(ga) > ζ).

Otherwise, a is called a null-index.

Here we interpret Ba and ga as Rκ ∗ Pa-names in the canonical way, so the j-
images are Rj(κ)∗Pj(a)-names. In particular we can assume that q is in Rj(κ)∗Pj(a)
(or just in Pj(a), since we start from V [G] anyway).

Paper Sh:939, version 2009-08-24 10. See https://shelah.logic.at/papers/939/ for possible updates.



MORE ON THE PRESSING DOWN GAME. 19

Lemma 6.4. If a is null and b >T a, then b is null as well. Also, 0 is a positive
index.

Proof. Pick ζ < j(κ) such that every master condition forces j(ga) < ζ or κ /∈ j(Ba).
But the empty condition forces j(gb)(κ) ≤ j(ga)κ and j(Bb) ⊆ j(Ba). �

Definition 6.5. In V [G], we define the ideal I0 by A ∈ I0 iff there is an X ⊆ κ+

of size κ consisting of null-indices such that

(12) A ⊆ ∇i∈XBi modulo a club set.10

Lemma 6.6. I0 is a normal ideal on κ

Proof. Assume that Ai ∩ Ci ⊆ ∇l∈XiBl for all i ∈ κ. Then (
⋃
Ai) ∪ ∇Ci ⊆

∇l∈⋃XiBl modulo a club set. �

By elementarity, if q is a G-master condition and if ϕ(c,Bα[G], gα[G]) holds in
V [G] for some c ∈ V , then for all H containing q we get in M [G][H]

(13) ϕ(j(c), j(Bα)[G][H], j(gα)[G][H]).

Lemma 6.7. In V [G] the following holds: If a is a positive index, then Aa is
I0-positive.

Note that this implies: a is a positive index iff Ba is a I0-positive set; and I0 is
nontrivial (since 0 is a positive index).

Proof. Assume otherwise, and fix an appropriate X and a club set C, i.e.,

(14) A ∩ C ⊆ ∇i∈XBi.

Since X consists of null-indices, there is for each b ∈ X a ζb < j(κ) such that every
master condition forces κ /∈ j(Bb) or j(gb)(κ) < ζb. Since cf(j(κ)) > κ, we can find
an upper bound ξ for all ζb. So every master condition forces

(15) κ ∈ j(Bb) implies j(gb)(κ) < ξ for all b ∈ X.

Since a is a positive index, we can find a master condition q forcing κ ∈ Ba and
j(ga)(κ) > ξ + 1. Without loss of generality, q is in Pj(a). So we can extend q to q′

such that

(16) κ ∈ j(A) and j(fi)(κ) > ξ

Since C is club, κ is forced to be in j(C). So q′ forces κ ∈ j(Aa)∩ j(C). According
to (14), Aa∩C ⊂ ∇b∈XBv holds in V [G], so q′ forces κ ∈ j(Aa)∩j(C) ⊂ j(∇b∈XBb).
Let Z be the sequence (Bb)b∈X . Recall that we fixed (in V [G]) some bijection i
of κ to X, to make ∇Z well defined. So j(∇Z) uses j(i), a bijection from j(κ) to
j(X); and κ ∈ j(∇Z) means: There is an α < κ such that κ ∈ j(Z)j(i)(α). Note
that j(Z)j(i)(α) = j(Bi(α)) and set b = i(α) ∈ X. So

(17) κ ∈ j(Bb) for some b ∈ X (in particular, b is null-index).

10As mentioned above, ∇i∈XBi is only defined modulo a club set, since X is not canonically

isomorphic to κ (it is just a subset of κ+ of size κ). To avoid ambiguity, we just fix from now on
for each such X a bijection to κ and make ∇i∈XBi well defined; still we use “subset modulo club

set” in the definition on I0.
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We further extend q′ to some q′′ such that q′′(j(c), κ) = 0 for all c ∈ κ+ that are (as
ordinals) bigger than α. We further extend q′′ to some q′′′ deciding the b of (17).
So q′′′ forces

(18) κ ∈ j(Aa ∩Bb) for the null-index b.

We will get a contradiction by case distinction on the position of b relative to a in
the tree T :

• b <T a: This contradicts the fact that b is a null-index and a not.
• a CT b: Then gb = fa, and q′′′ forces that κ ∈ j(Bb) and j(gb)(κ) ≥
j(fb)(κ) > ξ > ζb, contradicting (15) and (16).
• aCT c and c <T b: Then c is (as an ordinal) bigger than a, and q′′′ forces
κ /∈ Ac. So κ /∈ Bb ⊆ Ac.
• So a and b have to be incomparable in T , and there is some node c where
a and b split. Let a′ and b′ the according immediate T -successors of c. So
a′ CT c, b′ CT c, a′ ≤T a, b′ ≤T b and a′ 6= b′. Let m be the minimum
of a′, b′ (as ordinals) and m the maximum. According to (9) Am ∩ Bm
is nonstationary, so κ /∈ j(Am ∩ Bm). So (18) implies that b′ = b =
m. Also j(gb)(κ) = j(fc)(κ) ≥ j(fa)(κ) > ξ according to (16) which
contradicts (15).

�

Lemma 6.8. In V [G], empty has a winning strategy for Idne(I0).

Proof. Assume that we have a partial run of the game of length n, corresponding
to the node a in T , and empty has played Xn as last move, which is a subset of
Aa. Assume that nonempty plays the I0-positive set B0 ⊆ Aa. Let bBT a be such
that Xn+1 := Ab ∩ B0 is I0-positive, and let Xn+1 be empty’s answer (and b be
the new T -node corresponding to the new partial run). This is a winning strategy
since fi(α) decreases along every branch of T . It remains to be shown that we can
find a bBT a as above: B0 itself is enumerated as B0

c by the bookkeeping at some
stage c BT a. Recall that Bc = B0

c \ ∇d<c,dBT aAd. If Bc is positive, then we can
set b = c. Otherwise, since B0

c is positive, some B0
c ∩Ad has to be positive for some

d < c, dBT a (since I0 is normal); and we can set b = d. �

It remains to be shown:

Lemma 6.9. In V [G], for every I0-positive X there is a normal ultrafilter D1

extending the dual of I0 and containing X.

Proof. It is enough to show: If Y is I0-positive, then there is a master condition q
forcing

(19) κ ∈ j(Y ) and κ /∈ j(Bb) for all null-indices b.

Let X be the set of indices a such that Y ∩ Aa is I0-positive. Assume a ∈ X. We
will use Y ∩Aa as B0

b for some bBT a. We have to distinguish two cases:

Case 1: There is a positive cBT a such that Bc ⊆ Y . In particular, this will
be the case if b itself is positive, i.e. if Bb = B0

b \∇c<b,cBT aAc is I0-positive.
Case 2: There is no such c. In particular, in this case b is a null-index, so
Y ∩Aa is covered (modulo I0) by ∇c<b,cBT aAc. Then c /∈ X for any c ≥ b
such that c BT a. So at most κ many immediate T -successors of a are in
X; and Y ∩Aa is covered (modulo I0) by ∇cBT a,c∈XAc as well.
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We claim that Case 1 has to occur for some a. Otherwise, X is a subtree of T such
that every node has at most κ many successors, i.e., there are only κ many branches
through X. By induction on n, X is covered (module I0) by ∇c∈X, T -height(c)=nAc.
But for any branch b, the set

⋂
n∈ω Ab(n) is empty (witnessed by the decreasing

sequence fb(n)), a contradiction.

So we can pick a T -minimal b such that Case 1 holds. Note that j′′κ+ < cf(j(κ)).
For every null-index c there is a witness ξc < j(κ), so there is a universal bound ξ.
Since b is a positive index, we can find a master condition q forcing j(gb)(κ) > ξ and
κ ∈ j(Bb). Recall that Bb ⊆ Y (mod I0), so q forces that κ ∈ j(Y ). We now extend
q to q′ so that it forces κ /∈ j(Ac) for all c > a. Then q′ is as required: κ /∈ j(Bc)
for any null-index c, by a similar case distinction as in the proof of Lemma 6.7. �

This ends the proof of Theorem 6.1.

6.3. The Levy collapse. As usual, we can use a Levy collapse to reflect these
properties to ℵ2:

Lemma 6.10. Start with the universe V as in Theorem 6.1. After collapsing κ to
ℵ2, we get: cl(I) is nowhere precipitous and satisfies b(PDe(cl(I))) (even for the
game of length ℵ1).

Proof. Nowhere precipitous follows from 4.5. Let S be a P -name for a cl(I)-positive
set and p ∈ P . Will show:

(20)
In V there is a normal ultrafilter U and a q ≤ p forcing that S is
cl(U)-positive.

Then according to the usual argument, the cl(U)-positive sets have a σ-closed
dense subset, so nonempty wins BM(cl(U) � S), and — since cl(U) extends cl(I)
— nonempty wins PD(I � S) (even for length ℵ1).

To prove (20), set T = {α ∈ Eκ≥ℵ1 : p 6 α /∈ S}. T is I-positive. For each

α ∈ T pick a witness pα ≤ p. Let q, T ′′ be as in 6 and pick a normal ultrafilter
U containing T ′′. We have to show that q forces S to be cl(U)-positive. Assume
otherwise, and pick q′ ≤ q and A ∈ U such that q′ forces A ∩ S = ∅. Then q′ ∈ Qα
for some α < κ. Pick β ∈ T ′′∩A\α. Then pβ and q′ are compatible, a contradiction
to pβ  β ∈ S. �
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