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Abstract

We use κ-free but not Whitehead Abelian groups to construct Abstract
Elementary Classes (AEC) which satisfy the amalgamation property but
fail various conditions on the locality of Galois-types. We introduce the
notion that an AEC admits intersections. We conclude that for AEC
which admit intersections, the amalgamation property can have no pos-
itive effect on locality: there is a transformation of AEC’s which pre-
serves non-locality but takes any AEC which admits intersections to one
with amalgamation. More specifically we have: Theorem 5.3. There is
an AEC with amalgamation which is not (ℵ0,ℵ1)-tame but is (2ℵ0 ,∞)-
tame; Theorem 3.3. It is consistent with ZFC that there is an AEC with
amalgamation which is not (≤ ℵ2,≤ ℵ2)-compact.

A primary object of study in first order model theory is a syntactic type:
the type of a over B in a model N is the collection of formulas φ(x,b) which are
true of a in N . Usually the N is suppressed because a preliminary construction
has established a universal domain for the investigation. In such a homogeneous
universal domain one can identify the type of a over B as the orbit of a under
automorphisms which fix B pointwise.

An abstract elementary class is a pair (K,≺K ), a collection of structures of
a fixed similarity type and a partial order on K which refines substructure and
satisfies natural axioms which are enumerated in many places such as ([She87,
Bal00, She99, Gro02, GV06b]. In this case, ‘Galois’ types (introduced in [She87]
and named in [Gro02]) are defined as equivalence classes of triples (M,a,N)
where a ∈ N −M under the equivalence relation generated by (M1, a1, N1) ∼
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(M2, a2, N2) if M1 = M2 and there is an amalgam of N1 and N2 over M1

where a1 and a2 have the same image. If K has the amalgamation property
the equivalence classes, i.e. the Galois types, of this equivalence relation can
again be identified as orbits of automorphisms of a universal domain which
fix the domain of the type. The notions and definitions which appear in this
paper stem from a long series of papers by Shelah ([She87, She99, She01] etc.)
They occur in the form used here in [Bal00]. Grossberg and Vandieren [GV06b]
isolated the notion of tame as a fruitful object of study. Recent work by such
authors Grossberg, Kolesnikov, VanDieren, Villaveces [BKV06, GV06b, GV06a,
GV06c, GK] either assume or derive tameness. In particular, a number of results
on the stability spectrum and transfer of categoricity have been proved for tame
AEC.

Unless we specifically add hypotheses, K denotes an arbitrary AEC. The
Löwenheim-Skolem number of an AEC K is denoted LS(K). We introduce in
this paper two new notions: admitting intersections and model completeness.
As explained in Section 1, in an AEC which admits intersections the notion of
Galois type is better behaved. Model completeness is the natural analog of the
first order notion in this context.

Syntactic types have certain natural locality properties. Any increasing chain
of types has at most one upper bound; two distinct types differ on a finite
set; an increasing chain of types has a realization. The translations of these
conditions to Galois types do not hold in general. But there have been few
specific examples of their failure. In the first section, we first give precise names
to these three notions (in order): locality, tameness, and compactness and attach
certain cardinal parameters to them. Precise statements of the results depend on
these definitions and occur with the proofs. But vaguely speaking, in Section 2
we show there is an AEC with the amalgamation property which is not ℵ0-tame
and does not attain tameness at any small cardinal. In Section 3 we find a K
which is not compact at one of ℵ1,ℵ2. These results were proved before Baldwin
and Kolesnikov [BK] generated a number of examples of tameness failing at
different low cardinalities. These two papers seem to represent different kinds of
failures of tameness. Here, we code non-continuity of ‘freeness’. The key to [BK]
is requiring a number of parameters before structure imposed by affine maps
becomes apparent; this appearance manifests itself in failures of k-goodness for
larger k and failure of tameness at larger ℵk. In Section 4 we introduce a general
construction which shows that one can transform a failure of locality in an AEC
which admits intersections to a failure in an AEC with amalgamation. And in
Section 5, we combine Sections 2 and 4 and answer a question of [GV06b] by
providing an example which is not ℵ0-tame but is 2ℵ0-tame.

In the presence of amalgamation, the subject of this paper can be considered
as a study of the automorphism group of the monster model. For example,
compactness is the assertion: if Mi is an increasing sequence of strong submodels
ofM, Gi = autMi

(M), and Xi is a decreasing sequence of orbits under Gi, then
the intersection of the Xi is nonempty. The cardinal parameters of the formal
definition fix the cardinality of the Mi and the length of the chain.
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1 Some notions of locality

We work throughout in an abstract elementary class (K,≺K ). A strong em-
bedding is an injective homomorphism f from M into N such that fM ≺K N .
A chain 〈Ai : i < δ〉 is a sequence of members ofK such that if i < j,Ai ≺K Aj ;
the chain is continuous if for each limit ordinal α, Aα =

⋃
β<αAβ .

Although we compare the properties of Galois types and syntactic types,
the types that actually occur in this paper are all Galois-types. So we fix the
following notation.

Definition 1.1 1. For M ≺K N1 ∈ K, M ≺K N2 ∈ K and a ∈ N1 −
M , b ∈ N2 − M , write (M,a,N1) ∼AT (M, b,N2) if there exist strong
embeddings f1, f2 of N1, N2 into some N∗ which agree on M and with
f1(a) = f2(b).

2. Let ∼ be the transitive closure of ∼AT (as a binary relation on triples).

3. We say the Galois type of a over M in N1 is the same as the Galois type
a over M in N2 if (M,a,N1) ∼ (M, b,N2) and write

tp(a/M,N1) = tp(b/M,N2)

.

We define the notions below with two cardinal parameters: the first is the size
of a certain submodel or the length of a sequence of types; the second is the size
of the models under consideration. In a rough sense, the first parameter is the
important one; ideally the second can be replaced by∞. But the main theorem
which derives locality from categoricity (without identifying Galois types with
syntactic types of some sort) [She99], chapter 12 of [Bal00]) does so only for
models of fixed size. So we use the fastidious notation. Replacing (λ, κ) by e.g.
(< λ, κ) has the obvious meaning. The following property holds of all AEC
considered in this paper.

Definition 1.2 We say the AEC (K,≺K ) admits intersections if for every
X ⊆ M ∈ K, there is a minimal closure of X in M . That is, clM (X) ≺K M
is the substructure of M with universe

⋂
{N : X ⊆ N ≺K M}.

Any relation defined by such an intersection will have the monotonicity,
finite character, and transitivity properties of a closure relation. Note that this
property is nontrivial even if one restricts to first order theories with elementary
submodel. In that case it applies to strongly minimal or o-minimal theories;
the first order case was characterized by Rabin [Rab62]. And of course the
condition is satisfied when one has Skolem functions. But we work in a more
general situation. If an AEC admits intersections we have a natural way to
check equality of Galois types.

Lemma 1.3 Let (K,≺K ) admit intersections.
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1. Suppose M0 ≺K M1,M2 with ai ∈ Mi for i = 1, 2. Then
tp(a1/M0,M1) = tp(a2/M0,M2) if and only if there is an isomorphism
over M0 from M1�clM1

(M0a1) onto M2�clM2
(M0a2) which maps a1 to a2.

2. (M1, a1, N1) and (M2, a2, N2) represent the same Galois type over M1 iff
M1 = M2 and there is an amalgam of N1 and N2 over M1 where a1 and
a2 have the same image.

Proof. Immediate. �1.3

That is, while in general Galois equivalence may result from a finite com-
position of maps, in this context only one step is required. If M ≺K N ,
p ∈ ga− S(M), q ∈ ga− S(M), the notion that q extends p is similarly compli-
cated in an arbitrary AEC. Lemma 1.3 yields a simpler characterization.

Fact 1.4 Suppose K admits intersections or has the amalgamation property.
If M ≺K N , p ∈ ga− S(M), q ∈ ga− S(M), then q extends p if and only if for
each (N, b,N ′) realizing p there is a K-map fixing M and taking (N, b,N ′) to
an (M,a,M ′) realizing q.

We illustrate in this article that unions of increasing chains of Galois types
do not behave as increasing chains of syntactic types. The problem is that to
guarantee an increasing chain of types has an upper bound we need that it is
coherent in the following sense.

Definition 1.5 Let 〈Mi : i < γ〉 be an increasing ≺K -chain of submodels of
M. A coherent chain of Galois types of length γ is an increasing chain of types
pi ∈ ga − S(Mi) equipped with realizations ai of pi and for i < j < γ functions
fij ∈ aut(M) such that fij fixes Mi, fij(aj) = ai and for i < j < k < γ,
fij ◦ fjk = fik.

Here is a characterization of realizing the union of a chain of types in terms
of maps. The straightforward justification is in [Bal00] in the chapter on locality
and tameness.

Fact 1.6 1. If pi ∈ ga− S(Mi) for i < δ is a coherent chain of Galois types,
there is a pδ ∈ ga − S(Mδ) that extends each pi so that 〈pi : i ≤ δ〉 is a
coherent sequence.

2. Conversely, pδ ∈ ga− S(Mδ) extends each pi, there is a choice of fi,j for
i ≤ j ≤ δ that witness 〈pi : i ≤ δ〉 is a coherent sequence.

Definition 1.7 Galois types are (κ, λ)-compact in K if for every continuous
increasing chain M =

⋃
i<κMi of members of K with |M | = λ and every

increasing chain {pi : i < κ} of members ga − S(Mi) there is a p ∈ ga − S(M)
with p�Mi = pi for every i.

Definition 1.8 K has (κ, λ)-local galois types if for every continuous in-
creasing chain M =

⋃
i<κMi of members of K with |M | = λ and for any

p, q ∈ ga− S(M): if p�Mi = q�Mi for every i then p = q.
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The following results were stated by Shelah in e.g. [She99]; a full proof
appears in [Bal00].

Lemma 1.9 For any λ, if K has (< κ,≤ λ)-local Galois types, then Galois
types are (≤ κ,≤ λ)-compact in K.

Now we turn to the notion of tameness. The property was first isolated
in [She99] in the midst of a proof. Grossberg and VanDieren [GV06b] focused
attention on the notion as a general property of AEC’s. We introduce a parame-
terized version in hopes of deriving tameness from categoricity by an induction.
And weakly tame is the version that can actually be proved. That is, the best
result now known [She99, Bal00] is that if K is categorical in some regular λ
greater than H1 = H(K) (the Hanf number for K), then for each µ < λ, K is
(χ, µ)-weakly tame for some χ < H1.

Definition 1.10 1. We say K is (χ, µ)-weakly tame if for any saturated
N ∈ K with |N | ≤ µ if p, q,∈ ga − S(N) and for every N0 ≤ N with
|N0| ≤ χ, p�N0 = q�N0 then q = p.

2. We say K is (χ, µ)-tame if the previous condition holds for all N with
cardinality µ.

3. (χ, µ)-weakly compact and (χ, µ)-weakly local are defined analogously.

Thus the vague notion of κ-tame in the introduction is formally (κ,∞)-
tame. Finally, we say K is κ (weakly)-tame or (κ,∞) (weakly)-tame if it (κ, λ)-
(weakly)-tame for every λ ≥ κ. There are a few relations between tameness and
locality. The second was observed in conversation by Olivier Lessmann.

Lemma 1.11 If λ ≥ κ and cf(κ) > χ, then (χ, λ)-tame implies (κ, λ)-local. In
particular, (ℵ0,ℵ1)-tame implies (ℵ1,ℵ1)-local.

Proof. Suppose 〈Mi, pi : i < κ〉 is an increasing chain with
⋃
iMi = M and

|M | ≤ λ. If both p, q ∈ ga− S(M) extend each pi, by (χ, λ)-tameness, there is a
model N of cardinality χ on which they differ. Since cf(κ) > χ, N is contained
in some Mi. �1.11

Lemma 1.12 If K is (< µ,< µ)-local and µ ≥ LS(K) then K is (LS(K), µ)-
tame.

Proof. We prove the result by induction on µ and it is clear for µ = LS(K).
Suppose it holds for all κ < µ. Let p, q be distinct types in ga−S(M) where |M | =
µ and write M as an increasing chain 〈Mi : i < µ〉 with |Mi| ≤ |i|+ LS(K). Let
pi, respectively qi denote the restriction to Mi. Since p 6= q, locality gives an
Mj with pj 6= qj and |Mj | < µ. By induction there exists an N ≺K Mj with
|N | = LS(K) and pj |N 6= qj |N . But then, p|N 6= q|N and we finish. �1.12
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2 A Concrete Example of Non-tameness

In this section we find a concrete example of a class which is not (ℵ1,ℵ1)-
local and so not (ℵ0,ℵ1)-tame. We encode some well-known ‘incompactness’
phenomena for Abelian groups. Recall again that all types are Galois types.

Definition 2.1 We say A is a Whitehead group if Ext(A,Z) = 0. That is,
every short exact sequence

0→ Z→ H → A→ 0,

splits or in still another formulation, H is the direct sum of A and Z.

Every free group is Whitehead and a Whitehead group of power ℵ1 is ℵ1-free,
i.e., every countable subgroup is free. Recall that J.H.C. Whitehead conjectured
that every Whitehead group of cardinality ℵ1 is free. We do not rely in this
section on Shelah’s argument that the Whitehead conjecture is independent of
ZFC. But we use some of the techniques of the argument and more appear in
the next section. Now we contradict locality. We rely on Shelah’s construction,
reported on page 228 of [EM90] of a group with the following properties. The
moreover clause is not used in this section but is crucial for Section 5.

Fact 2.2 There is an ℵ1-free group G of cardinality ℵ1 which is not Whitehead.
Moreover, there is a countable subgroup R of G such that G/R is p-divisible for
each prime p.

Example 2.3 Let K be the class of structures M = 〈G,Z, I,H〉, where each
of the listed sets is the solution set of one of the unary predicates (G,Z, I,H).
G is a torsion-free Abelian Group. Z is a copy of (Z,+). I is an index set and
H is a family of infinite Abelian groups. The vocabulary also includes function
symbols F ,k and π, naming functions F, k, and π. F maps H onto I and for
s ∈ I, +( , , s) is a group operation on Hs = F−1(s). Finally, π maps H onto
G so that πs = π�Hs is a projection from Hs onto G. The kernel of each πs is
isomorphic to Z via a map k( , s) where k : Z × I 7→ H.

Further, we write M0 ≺K M1 if M0 is a substructure of M , but ZM0 = ZM1

and GM0 is a pure subgroup of GM1 .

Since eachGM is torsion-free, it follows that ifM0 ≺K M1, for each t ∈ IM0 ,

HM0
t is pure in HM1

t . (Recall that if the abelian group G is elementarily
equivalent to G1 and G is pure in G1 then G is an elementary submodel of G1.)
The class K is almost first order definable; we require some infinitary logic
to keep Z standard. But the notion of ≺K is much weaker than elementary
submodel. The models are essentially many exact sequences. They all have the
same kernel Z; and there may be many with the same image G, but the middle
terms H are all disjoint. It is fruitful (see Section 5) to restrict the class of
image groups. But it is delicate to do so while keeping K closed under unions
and amalgamation.

It is easy to check that under these definitions
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Lemma 2.4 The class (K,≺K ) defined in Example 2.3 is an abstract elemen-
tary class.

We defined the notion of an AEC admitting intersections in Definition 1.2

Lemma 2.5 The class (K,≺K ) defined in Definition 2.3 admits intersections.

Proof. To find the the required closure of a subset A of M , first close A under
the functions of the language: FM ,πM and the group operation in G and in
each fiber of HM to form a set X ′. Then take the pure closure of X ′ ∩GM in
GM as X ′′. Finally add those y ∈ HM which satisfy both πM (y) ∈ X ′′ and
FM (y) ∈ X ′′. If N is the substructure of M with this universe it is easy to
check that N ≺K M and N is contained in any N ′ with A ⊂ N ′ ≺K M . �2.5

The next easy lemma provides a nice characterization for this example of
equality for certain Galois types.

Lemma 2.6 Suppose M0 ≺K M1,M2 and the group G = GM0 is the same in

each of the three structures. Let t1, t2 be in IM1 − IM0 , IM2 − IM0 respectively.
The following are equivalent.

1. tp(t1/M0,M1) = tp(t2/M0,M2).

2. There is an isomorphism h from HM1
t1 onto HM2

t2 such that

(a) For z ∈ ZM0 , h(kM1(z, t1)) = kM2(z, t2) and

(b) for y ∈HM1
t1 , h(πM1(y, t1)) = πM1(h(y), t2).

Recall that the class of torsion-free abelian groups has the amalgamation
property for pure embeddings. Specifically, to amalgamate G1 and G2 over G0

just form G1 ×G2 and factor out the subgroup of elements {(x,−x) : x ∈ G0}.
The purity of G0 in G1 and G2 guarantees the amalgam is torsion free. Note
that if H0 ⊂ H1, H2 and we have maps from H1 onto G1 and from H2 onto
G2 with common kernel contained in H0, these maps extend coordinate-wise to
maps from the amalgam of the H’s to the amalgam of the G’s.

Lemma 2.7 (K,≺K ) has the amalgamation property.

Proof. We want to amalgamate M1 and M2 over M0 to construct M3.
Without loss of generality we can assume M1 and M2 intersect in M0. So
just take disjoint union on I, the group amalgams on G and also the group
amalgam of each H1

t and H2
t if t ∈ IM0 and extend the functions naturally.

If t ∈ I1 − I2, H1
t = H3

t . (The case I1 − I2 6= ∅ is similar.) In particular,
πM3(y1, y2) is only defined if FM1(y1) = FM2(y2) and in that case, the value is
((πM1(y1), (πM2(y2))/GM0 . There is no interaction between the problems for
Hs and Ht if s 6= t ∈ IM1 ∪ IM2 .

�2.7
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Lemma 2.8 Let (K,≺K ) be as in Example 2.3. (K,≺K ) is not (ℵ1,ℵ1)-
local. That is, there is an M0 ∈ K of cardinality ℵ1, a continuous increasing
chain of models M0

i for i < ℵ1, and two distinct types p, q ∈ ga − S(M0) with
p�M0

i = q�Mi for each i.

Proof. We define p and q, show they are distinct, and then show their
restrictions are the same.

Let G be the Abelian group from Fact 2.2 of cardinality ℵ1 which is ℵ1-free
but not a Whitehead group. Then, there is an H such that,

0→ Z→ H → G→ 0

is exact but does not split. Say g1 : H → G. But, we can write G as a continuous
increasing chain G =

⋃
i<ℵ1 Gi of countable free groups such that each exact

sequence:

0→ Z→ Hi → Gi → 0,

splits, where Hi = g−11 (Gi), because Gi is free.

Let M0 have GM0

= G, ZM
0

= Z, IM
0

= {a}, and HM0

a copy of G⊕ Z.
Now define M1,M2 which have one additional point ti ∈ IMi . The key point is

that HM1

is H and HM2

is G⊕Z. For ease of reading let πM1( , t1) be g1 and
πM2( , t2) be the projection map g2 from G⊕Z onto G. Let p = tp(t1/M

0,M1)

and q = tp(t2/M
0,M2). Since the exact sequence for HM2

splits and that for

HM1

does not, it is immediate from Lemma 2.6 that p 6= q.
Now we define the models M `

i for i < ℵ1 and ` = 0, 1, 2. Then M0
i is

naturally obtained by letting GM0
i = Gi and leaving the other components as

in M0. For ` = 1, 2, let M `
i be the restriction of M ` to

〈Gi,Z, {t`}, {y ∈HM`

: g`(y) ∈ Gi}〉.

By Lemma 1.3, tp(t`/M
`
i ,M

`) = tp(t`/M
`
i ,M

`) for each i and ` = 1, 2. By
the choice of H, for ` = 1 and by the restriction of g2 for ` = 2 each of the exact
sequences:

0→ Z→ H`
i → G`i → 0

splits. This implies there is an isomorphism h from M1
i onto M2

i over M0
i

mapping t1 to t2. That is, tp(t1/M
0
i ,M

1
i ) = tp(t2/M

0
i ,M

2
i ). Thus, p�M0

i =
q�M0

i . We have the required counterexample. �2.8

Remark 2.9 While the existence of an ℵ1-free group which is not Whitehead
can be done in ZFC, κ-free but not Whitehead groups for larger regular κ become
sensitive to set theory. But if, for example V = L (much weaker conditions
suffice), the class K is not (κ, κ)-local for arbitrary regular κ.
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3 Incompactness

In this section we construct an increasing sequence of Galois types which has
no upper bound. The model theoretic example is the same as Section 2 but the
choice of groups for the counterexample is different. In contrast to nonlocality
we obtain only a consistency result. The set theoretic hypotheses, � and the
various diamonds, used below follow from V = L.

Definition 3.1 � holds if there exists 〈Cα : α < ω2, α limit〉 such that:

1. Cα is a club of α;

2. |Cα| ≤ ℵ0 when cf(α) = ℵ0;

3. and if β ∈ Cα is a limit ordinal, Cβ = Cα ∩ β.

Notation 3.2 Assuming �, we fix this notation for subsets of ℵ2.

1. For each α, let
C ′α = {β ∈ Cα : β = sup(Cα ∩ β)}

and
S = {α ∈ ω2 : α = sup(C ′α)}.

2. S0 is the elements of S with cofinality ω and S1 is the elements of S with
cofinality ω1. (Note that, in fact, S1 contains all ordinals less than ℵ2 of
cofinality ω1; i.e. S1 = S2

1 .)

3. Choose a ladder system {ηδ : δ ∈ S0} from the C ′δ. That is, each ηδ is an
increasing ω sequence with limit δ of elements of C ′δ.

We will use the �-principle in the proof of Lemma 3.9.

Theorem 3.3 Assume 2ℵ0 = ℵ1, and ♦ℵ1 ,�ℵ2 , and ♦S2
1
, where

S2
1 = {δ < ℵ2 : cf(δ) = ℵ1}.

If the K from Section 2 is (ℵ1,ℵ1)-compact then it is not (ℵ2,ℵ2)-compact.

Note that this is a more precise version of the statement in the abstract that
K is not (≤ ℵ2,≤ ℵ2)-compact.

We will use several times the following fact, which is one of the equivalent
conditions in Lemma IV.2.3 of [EM90].

Fact 3.4 (Pontryagin’s criterion) G is an ℵ1-free Abelian group if and only
G is torsion free and every finite subset of G is contained in a finitely generated
pure subgroup of G.

The set theoretic hypotheses of Theorem 3.3 allow us to define subsets of ℵ2
satisfying the following conditions. From them we will define a family of groups
to establish the result. Note that � implies every Whitehead group of power ℵ1
is free [EM90, She74].
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Definition 3.5 For α ≤ ℵ2, let Gα be the Abelian group generated by

{xβ : β < α} ∪ {yδ,n : δ ∈ S0 ∩ α, n < ω}

subject only to the relations n!yδ,n+1 = yδ,n−xηδ(n), where n! is the factorial of
n.

We use interval notation in the ordinals, writing {γ : α + 1 ≤ γ < β} as
[α+ 1, β).

Lemma 3.6 With the notation above,

1. The Gα form an increasing continuous sequence (under pure embedding)
of ℵ1-free abelian groups.

2. For α < β ≤ ℵ2, Gα+1 is a direct summand of Gβ.

Proof. Check 1) using Pontryagin’s criteria. We now prove 2. For δ ∈
S0 ∩ [α + 1, β), choose b(δ) = b < ω so that ηδ(b) > α + 1. Let Gα+1,β be the
group generated by

{xγ : α+ 1 ≤ γ < β} ∪ {yδ,m : δ ∈ S0 ∩ [α+ 1, β), b(δ) ≤ m}.

Then Gβ = Gα+1⊕Gα+1,β as required, since there are no relations between
the generators of Gα+1 and Gα+1,β and each yδ,n with ηδ(n) < b(δ) can be
written as a sum of elements from Gα+1 and Gα+1,β . �3.6

Notation 3.7 (�S2
1
) Let 〈Fδ : δ ∈ S1〉 be a diamond sequence, i.e.,

1. Fδ is a two-place function with domain δ, Fδ(γ1, γ2) is a permutation of
some βδ,γ1,γ2 < δ for γ1 < γ2 < δ.

2. If f = 〈fγ1,γ2 : γ1 < γ2 < ℵ2〉, fγ1,γ2 is a permutation of some βγ1,γ2 < ℵ2
then {δ ∈ S1 : (∀γ1γ2)(γ1 < γ2 < δ)fγ1,γ2 = Fδ(γ1, γ2)} is stationary.

We can assume the universe of Gα is an ordinal δα < ℵ2, since the Gα are a
continuous increasing sequence.

Now we construct by induction on α an array of Abelian groups indexed by
the pairs below the diagonal in ℵ2 × ℵ2: 〈< Hβ,α, gβ,α >: β ≤ α < ℵ2〉 and
〈πβ,α : β ≤ α < ℵ2〉 which satisfy the following pair of conditions:

• Aα:

1. Hα,α is an abelian group with universe δα.

2. gα,α = gα is a homomorphism from Hα,α onto Gα with kernel Z.

3. For β < α, Hβ,α = Hα,α�{x ∈ Hα,α : gα,α(x) ∈ Gβ}; Hβ denotes
Hβ,β .

4. gβ,α = gα,α�Hβ,α.
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5. If β ≤ α < ℵ2, πβ,α is an isomorphism from Hβ onto Hβ,α such that
gβ,β = gβ,α ◦ πβ,α. (Each πβ,β is the identity map).

• Bα: If α ∈ S1, the sequence of maps Fα (given by the diamond on S1)
does not satisfy B(α, Fα) (Definition 3.8).

Definition 3.8 [B(α, Fα)] Suppose α ∈ S1, and for each β1 ≤ β2 < α,
Fα(β1, β2) is a permutation of Hβ1

. B(α, Fα) holds if
〈Hβ ;πβ2,β1

◦Fα(β1, β2) : β1 ≤ β2 ≤ α〉 form a sequence of commuting maps.
That is, for β1 ≤ β2 ≤ β3 ≤ α and any x ∈ Hβ1 :

(πβ3,β1 ◦ Fα(β1, β3))(x) = (πβ3,β2 ◦ Fα(β2, β3)((πβ2,β1 ◦ Fα(β1, β2))(x)).

These automorphisms and projections are a slightly different formalism for
describing the realization of unions of types than that described in Fact 1.6. We
work directly with the groups; in Section 2 we represented the extension groups
by a single element using the map π.

We need one more lemma concerning the structure of the Gα; it is here that
we invoke �.

Lemma 3.9 If α ∈ S1 then Gα can be decomposed as Gα = G′α ⊕ G′′α where
G′α is countable and free.

Proof. Let

G′α =: 〈{xβ : β ∈ C ′α} ∪ 〈yβ,n : β ∈ S0 ∩ C ′α, n < ω}〉Gα

and

G′′α = 〈{xβ : β ∈ α\C ′α} ∪ {yδ,n : δ ∈ α∩S0\C ′α and ηδ(n) > sup(C ′α ∩C ′δ)}〉Gα .

Now if δ ∈ α∩S0\C ′α then {n : ηδ(n) ∈ C ′α} is finite (otherwise δ = sup(C ′δ∩C ′α),
whence δ ∈ C ′α). And the yδ,n with ηδ(n) ≤ sup(C ′α ∩ C ′δ) are represented as
sums of elements in G′α and G′′α. Since C ′α is countable, G′α is countable and
free since Gα is ℵ1-free. �3.9

Construction 3.10 We construct groups Hβ,α and functions gα,β , πα,β for
β ≤ α ≤ ℵ2 by induction to satisfy conditions Aα and Bα.

Let H0 be Z⊕G0; g0 is the projection of H0 onto G0; π0,0 is the identity.

To satisfy Aα in limit stages of cofinality ω: (One is tempted to just take
unions; the πβ,α have not been constructed to commute so this may fail.) For
δ 6∈ S0, choose a sequence ηδ(n) with limit δ; for δ ∈ S0, we already have one.
For the moment, we consider only the structures Hηδ(m),ηδ(k) with m, k < ω. We
form new maps π∗ηδ(m),ηδ(k)

by the composition of πηδ(r),ηδ(r+1) for m ≤ r ≤ k.

Now for each k < ω the 〈Hηδ(s), π
∗
ηδ(s),ηδ(t)

: s ≤ t < ω〉 form a direct system
and we can choose Hδ as the direct limit of this system with limit maps π∗ηδ(s),δ
from Hηδ(s) into Hδ. Denote the range of π∗ηδ(s),δ as Hηδ(s),δ. Now define gηδ(r),δ

11

Paper Sh:862, version 2007-11-22 10. See https://shelah.logic.at/papers/862/ for possible updates.



from Hηδ(r),δ onto Gηδ(r) as gηδ(r),ηδ(r) ◦ (π∗)−1ηδ(r),δ. This gives 1) through 3) of

Aδ. Now we satisfy 4) and 5) by defining Hβ,δ and gβ,δ in the natural manner.
It remains to define π∗δ,γ when γ is not in the range of ηδ. Choose m such that
ηδ(m) > γ and let

π∗δ,γ = π∗δ,ηδ(m) ◦ πηδ(m),γ .

To satisfy Aα+1 in a successor stage: given 0 → Z → Hα → Gα → 0, we
proceed as follows. Let α = β+1. If β is not in S0, Gα = Gβ⊕〈xβ〉 and we just
extend Hβ freely by a single generator. If β ∈ S0, choose elements x′β,n ∈ Hβ

with gβ(x′β,n) = xηβ(n). Now form Hα by adding to Hβ elements x′β and y′β,n
subject only to the relations:

n!y′β,n = y′β,n−1 − x′β,n.

Now if we map Hα to Gα by gβ on Hβ and just dropping the primes on the
generators of Hβ over Gβ , we have the required homomorphism.

We now consider α of cofinality ℵ1. Let C ′α = {γε : ε < ℵ1}, γε increasing
continuous with ε. We choose by induction objects 〈H0

β,α, g
0
β,α, π

0
β,α : β ≤ γε〉

to satisfy the relevant parts of Aα. Let H0
α,α = ∪{H0

β,α : β < α}, π0
α,α =

idH0
α,α
, g0β,α = ∪{g0β,α : β < α}. Consider an M ∈ K with GM = Gα and

for some t ∈ I, HM
t = H0

α,α. We are assuming that K is (ℵ1,ℵ1)-compact so
Condition Aα holds. If Bα holds for this choice, i.e. Fα(α) 6= idH0

α,α
, we are

done. If not, recall the decomposition of Gα in Lemma 3.9.
Let

H ′α = {x ∈ H0
α,α : g0α,α(x) ∈ G′α}

H ′′α = {x ∈ H0
α,α : g0α,α(x) ∈ G′′α}

(so their intersection is the copy of Z).
Since we have assumed �ℵ1 , every Whitehead group of power ℵ1 is free.

Ext(G′α,Z) 6= 0 as G′α is not free. Hence, we can find (H∗α, g
∗
α) such that

• (a) H∗α is an abelian group;

• (b) g∗α is a homomorphism from H∗α onto G′α, which does not split;

• (c) Ker(g∗α) = Ker(g0α,α) ⊆ Hα,α;

• (d) H∗α ∩H ′′α = Ker(g∗α);

Now we have a new candidate for Hα,α:

H1
α,α = H∗α

⊕
Ker(g0α,α)

H ′′α

where we define g1α,α ∈ Hom(H1
α,α, Gα) by extending g0α,α on H ′′α and g∗α on H∗α.
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It remains to construct π1
β,α for β < α. Note that

Gβ = (G′α ∩Gβ)⊕ (G′′α ∩Gβ).

On those x ∈ Hβ with gβ(x) ∈ G′′α ∩ Gβ , let π1
β,α(x) = π0

β,α(x). We need to

define π1
β,α(x) on Ĥβ = {x ∈ Hβ : gβ(x) ∈ Ĝ = G′′α ∩Gβ}. Let H∗β = {x ∈ H∗α :

g1α(x) ∈ Ĝ}. Since Ĝ is free, 0 → Z → H∗β → Ĝ → 0 splits; g∗α has an inverse

fβ . Let π1
β,α = fβ ◦ gβ .

This shows Bα is satisfied since Fα(α) cannot commute with both the
π0
β,α and π1

β,α. Thus we choose (Hα,α, gβ,α, πβ,α) from (H0
α,α, g

0
β,α, π

0
β,α) and

(H1
α,α, g

1
β,α, π

1
β,α) as the sequence that satisfies Bα.

Since we assumed that K is (ℵ1,ℵ1) compact, able to carry out the con-
struction for ℵ2 steps to obtain a sequence 〈Hβ,ℵ2 , gℵ2,β ◦ πβ,ℵ2 : β ≤ ℵ2〉. We
finish as follows:

Claim 3.11 It is not possible to define πβ,ℵ2 : β ≤ ℵ2 so that:

• The sequence 〈Hβ,ℵ2 , gℵ2,β ◦ πβ,ℵ2 : β ≤ ℵ2〉 satisfies:

– (a) Hℵ2,ℵ2 an abelian group;

– (b) gℵ2,ℵ2 maps Hℵ2,ℵ2 onto Gℵ2 ;

– (c) Hβ,ℵ2 = {x ∈ Hℵ2,ℵ2 : gℵ2,ℵ2(x) ∈ Gβ};
– (d) gβ,ℵ2 = gℵ2,ℵ2�Hβ,ℵ2 ;

– (e) πβ,ℵ2 is an isomorphism from Hβ,ℵ2 onto Hβ,β;

– (f) if x ∈ Hβ,ℵ2 then gβ,ℵ2(x) = gβ,β(πℵ2,β(x)) ∈ Gβ.

Proof. Suppose for contradiction that we have constructed such a sequence.
Then letting,

ρβ2,β1
= π−1β2,β1

◦ π−1ℵ2,β2
◦ πℵ2,β1

we have a system 〈Hβ,β , (πβ2,β1
◦ ρβ2,β1

) : β < ℵ2, β1 ≤ β2 < ℵ2〉 of commuting
maps. But by the choice of 〈Fδ : δ ∈ S1〉 and since, by �S2

1
and S1 = S2

1 , S1 is
stationary in ℵ2 for some δ∗ we have:

(∀γ1 ≤ γ2 < δ∗)Fδ∗(γ1, γ2) = ργ2,γ2 .

This contradicts Bδ∗ in the construction and we finish. �3.11

Now we have a counterexample to (ℵ2,ℵ2)-compactness. The Hβ,ℵ2 from
Claim 3.11 give rise to a sequence of Galois types (of singletons via the coding
spelled out in Section 2) over the Gβ which have no common extension over
Gℵ2 . �3.3

Fact 1.9 implies that if K were (ℵ0,ℵ1)-local then it would be (ℵ1,ℵ1)-
compact and we would have an example of non-(ℵ1,ℵ1)-compactness. But this
route is not open to us. We now show that K even fails (ℵ0,ℵ0)-locality (and
failure of (ℵ0,ℵ1)-locality is an easy consequence in this case).
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Lemma 3.12 K is not (ℵ0,ℵ0)-local.

Proof. We construct a sequence of pairs of Abelian group (Hα, Gα) such
that for α < ω, Hα = Z ⊕ Gα, but Hω is not a split extension of Gω. Since
Z ⊕Gω is another limit of this chain, we contradict locality.

Let H+ be the Q-vector space generated by elements x, z, yn for n < ω. Fix
distinct odd primes pn and qn,k for n, k < ω. We denote (pn − 1)/2 by rn.

For each n < ω, Hn is the subgroup of H+ generated by x, z, yn for n < ω
and the elements pnyn+x−rnz

qn,k
for k < ω.

Clearly Hn is a pure subgroup of Hn+1; let Hω = ∪nHn

Claim 3.13 Zz = {nz : n ∈ Z} is a direct summand of Hn.

Proof. Since Z is free every projection onto Zz splits. So we need only
construct a homomorphism hn from Hn onto Zz. Choose, by the Chinese
remainder theorem r′n such that r′n ≡ r` mod p` for all ` < n. Now let hn(z) =

z, hn(x) = r′nz, hn(y`) = − (r′n−rn)z
p`

, and hn(pnyn+x−rnzqn,k
) = 0.

The choice of r′n guarantees that each hn(y`) ∈ Zz (the coefficient is an inte-
ger). Clearly hn maps onto Zz; the danger is that it is not well defined. It suffices
to show that from the values of hn on z, x and the yl, hn(pnyn + x− rnz) = 0
since that makes our definition consistent. For this, we compute:

hn(p`y` + x− r`z) = −p`
(r′n − rn)z

p`
+ r′nz − r`z = 0.

�3.13

Claim 3.14 Zz = {nz : n ∈ Z} is not a direct summand of Hω.

Proof: Suppose for contradiction that h retracts Hω onto Zz (i.e. h(z) = z).
Now, for any n, h(pnyn+x−rnz) ∈ Zz is divisible by qk,n for all k. This implies
that

h(pnyn + x− rnz) = 0.

That is, h(x − rnz) ∈ pnZz. Since h(x) = rz some z ∈ Z, this implies
r ≡ rn ≡ (pn−1)/2 mod pn. But it impossible for this to happen for infinitely
many n so Zz is not a direct summand of Hω. �3.14

With these two claims we complete the proof of Lemma 3.12. �3.12

4 A General Construction for Amalgamation

Let (K,≺K ) be an aec in a relational language τ which admits intersections
and is model complete. In this section we construct from (K,≺K ) an AEC
(K ′,≺K ′) which satisfies the amalgamation property and has the same non-
locality properties as K. The construction will apply to all AEC which admit
intersections. We proceed in three steps; we first make a cosmetic change in
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K to guarantee that it has quantifier free closures (Definition 4.1). Then we
establish some important properties of AEC with quantifier free closures and
finally make the main construction.

Throughout this section we assume that K admits intersections (Definition
1.2); this simplifies the notions of Galois type and extension of Galois type
(Lemma 1.3).

We require some preliminary definitions and a lemma for our main construc-
tion. Note that throughout we write boldface a for a finite sequence of elements
of a model and a for a single element.

Definition 4.1 Suppose (K,≺K ) admits intersections.

1. K is said to have quantifier-free closure if the satisfaction of ‘b ∈ clM (b)’
depends only on the quantifier free (syntactic) type of bb.

2. K is model complete if N ⊂M and N ∈K, implies N ≺K M .

Lemma 4.2 For any AEC (K,≺K ) which admits intersections there is an
associated AEC (K ′,≺K ′) with exactly the same spectrum of models which has
quantifier-free closure.

Proof. Add to the language τ of K, n + 1-ary relation symbols for each n
and expand M ∈K to M ′ ∈K ′ by making Rn(a, a) hold just if a ∈ clM (a); a
has length n. Let K ′ be exactly the models of this form and define M ′ ≺K ′ N ′

if and only if M ′�τ ≺K N ′�τ . The isomorphism of K and K ′ is immediate and
we have introduced quantifier-free closure by fiat. �4.2

We now introduce a property that will be key in establishing amalgamation
and show that it follows from either model completeness or having quantifier-free
closure.

Definition 4.3 A class (K,≺K ), which admits intersections, is said to be
nice for unions if whenever 〈Mi : i ≤ δ〉 is a continuous increasing chain of
K-extensions and A is a finite subset of N ⊆ Mδ with N ∈ K, there is an N ′

and an i < δ such that A ⊆ N ′ ≺K N and N ′ ≺K Mi.

Note that for A ⊂M1 ≺K M2, clM1
(A) = clM2

(A). Moreover, if K admits
intersections for any A ⊆ N ∈ K, clN (A) is defined: take direct limits of the
closures of finite sets.

Lemma 4.4 Let (K,≺K ) be an AEC which admits intersections. If K

1. is model complete or

2. has quantifier free closure

then it is nice for unions.

Proof. As A is finite clMδ
(A) = clMi

(A) when i = min{j < δ : A ⊆ Mj}.
Thus, clMδ

(A) ≺K Mi.
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Case 1: model complete

So as N,Mδ ∈K, N ⊆Mδ we have N ≺K Mδ so

clN (A) = clMδ
(A) ≺K Mi.

Case 2: has quantifier free closure

Clearly clN (A) = clMδ
(A) and as we observed to start the proof

clMδ
(A) ≺K Mi.

�4.4

Now we pass to the main construction.

Definition 4.5 Let K be an AEC with a relational vocabulary τ . The vocab-
ulary τ ′ of K ′ is obtained by adding one additional binary relation R. We say
the domain of a τ ′-structure A is an R-set if R induces a complete graph on A.

1. The class K ′ is those τ ′-structures M such that:

(a) If the finite subset A of M is an R-set there is a τ ′-structure MA

such that A ⊆ MA ⊆ M with |MA| ≤ LS(K), MA is an R-set, and
MA�τ ∈K.

(b) If N ⊂ M satisfies the conditions on MA in requirement 1), then
MA�τ ≺K N�τ .

(c) For each M and A, we denote MA by cl′M (A).

2. If M1 ⊆ M2 are each in K ′, then M1 ≺K ′ M2 if for each finite R-set A

in M1, cl′M1
(A) = cl′M2

(A).

If M ⊂ N are τ ′-structures in K ′ and M ≺K ′ N then for any finite A ⊂M ,

cl′M (A) = cl′N (A). M ≺K ′ N does not imply M � τ ≺K N � τ ; indeed N � τ
is not necessarily in K.

Lemma 4.6 Let (K,≺K ) be an aec in a relational language which admits
intersections and is nice for unions. Then, (K ′,≺K ′) is an AEC with amalga-
mation.

Proof. The axioms for an AEC which do not involve unions are easy. For
example, we show ‘coherence’ in K ′. Suppose M ⊂ N ≺K ′ N ′ are τ ′-structure

and also M ≺K ′ N ′. Fix any finite A ⊂ M . Since N ≺K ′ N ′, cl′N (A) =

cl′N ′(A). Since M ≺K ′ N ′, cl′M (A) = cl′N ′(A). Thus, cl′M (A) = cl′N (A) and
M ≺K ′ N .

Suppose 〈Mi : i ≤ δ〉 is a continuous increasing chain of K ′-extensions. Let
A be a finite R-set contained in Mδ. Fix the least j < δ with A ⊂ Mj . Then,
each i ≥ j, clMi

(A) = clMj
(A); call this set MA; it satisfies the conditions of

Definition 4.5 1) a). Consider any other N ⊂Mδ which satisfies the conditions
of Definition 4.5 1) a); that is, N is an R-set containing A and N�τ ∈ K. To

16

Paper Sh:862, version 2007-11-22 10. See https://shelah.logic.at/papers/862/ for possible updates.



show Mδ ∈K ′, we must show MA�τ ≺K N�τ . Since K is nice for unions there
is a k < δ and a τ -structure N ′ with N ′ ≺K Mk�τ , A ⊂ N ′ and N ′ ≺K N�τ .
We don’t know whether the τ ′ structure with universe N ′ is in K ′. But MA is
an R-set; MA�τ ≺K Mk, MA ⊆ N ′ and N ′ ≺K Mk�τ . So, by coherence in
K, MA�τ ≺K N ′ and we know N ′ ≺K N�τ . By transitivity of ≺K , this is
exactly what is needed.

Now we show the second union axiom. Suppose 〈Mi : i < δ〉 is a continuous
increasing K ′-chain with each Mi ≺K ′ M . Then Mδ ≺K ′ M , since we have

shown for any finite A ⊂Mδ there is an i with cl′Mδ
(A) = cl′Mi

(A).
To show amalgamation suppose M0 ≺K ′ M1,M2. Without loss of generality

M1∩M2 = M1. Now, form the no-edges amalgamation of the underlying graphs
of M1 and M2 over M0. The structure with this domain is in K ′, as each finite
R-subset A of it is in either M1 or M2; the closure of each such A to satisfy
Definition 4.5 is easily found.

�4.6

Since that it is easy to obtain the hypothesis in Lemma 4.6 that K is nice
for unions by the transformation in Lemma 4.2, we have shown the first part of
the following theorem.

Theorem 4.7 To any AEC (K,≺K ) which admits intersections, we can as-
sign a (K ′,≺K ′) which has the amalgamation property but so that if K is not

(δ, λ)-local then K ′ is not (δ, λ)-local.

Proof. We now show the ‘but’. Let |M | = λ and suppose p, q ∈ ga− S(M),
M =

⋃
i<δMi, p 6= q and M,Mi ∈ K. Let M1,M2 be K-extensions of M

and let a ∈ M1 realize p and b ∈ M2 realize q. Now consider the models
M,M1,M2 in K ′ obtained by adding a complete R-graph to M,M1,M2. Then

for each i < δ, tp(a/M i,M
1
) = tp(b/M i,M

2
). (Witness with the same maps

just adding a complete R-graph.) But tp(a/M,M
1
) 6= tp(b/M,M

2
) since any

τ ′-isomorphism taking a and b to the same point would restrict to a similar
τ -isomorphism. �4.7

As opposed to Lemma 4.2, this second transformation, although preserving
non-tameness, plays havoc with the spectrum function. We spelled out the
result for locality but non-tameness is preserved in the same way.

Recall that we use the adjective ‘weakly’ for locality phenomena where the
larger model is required to be saturated. This is an intriguing issue as in [She99]
only weak tameness rather than tameness is deduced from categoricity. The
construction at hand does not appear to distinguish ‘weak’. More precisely,
we now show that at least for regular λ, if K ′ is not (λ, λ)-local then it is not
weakly (λ, λ)-local.

Definition 4.8 For any property P which can hold of models, we say that
(κ, λ)-almost all models of K satisfy P if Player II has a winning strategy for
the following game. The game lasts κ moves. At each stage each player must
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choose a model of cardinality λ extending all the preceding models in the chain.
Player II wins if the union satisfies P .

Note that if two properties are satisfied by (κ, λ)-almost all M , then (κ, λ)-
almost all M satisfy both of them. Also when λ is regular, if there is a saturated
model in power λ, (λ, λ)-almost all M are saturated.

We say a model is, e.g. (κ, λ)-compact if every union of types over a decom-
position of the model has a limit.

Lemma 4.9 Let K and K ′ be as in Definition 4.5.

1. If K is not (κ, λ)-compact then (κ, λ)-almost all models of K ′ are not
(κ, λ)-compact.

2. If K is not (κ, λ)-local then (κ, λ)-almost all models of K ′ are not (κ, λ)-
local.

Proof. First we consider compactness. Let 〈Mi, pi〉 for i < κ be a continuous
increasing sequence of τ -structures that witnesses the incompactness. Expand
Mκ to a τ ′ structure by making it an R-set. Let 〈Ni〉 for i < κ, be player I’s
moves. At stage α, let player II choose for his move M ′α so that Nα ≺K ′ M ′α
and Mα ≺K M ′α�τ . Let pα = tp(aα/Mα, Lα). Let L′α be an amalgam of the
expansion of Lα to an R-set with M ′α (over M ′α−1 at successors; take unions
at limits.); let p′α = tp(aα/M

′
α, L

′
α). Now there is no realization of

⋃
p′α since

it would reduct to a realization of
⋃
pα. So Player II wins the game that

asks each model to be extended to one which witnesses incompactness. For
locality, do the same argument but choose L so that there are a, b ∈ L such
that tp(a/Mi, L) = tp(b/Mi, L) for each i < κ but tp(a/M,L) 6= tp(b/M,L) and
finish as in Theorem 4.7. �4.9

It is immediate from Lemma 4.9 and the remark before it that

Corollary 4.10 If K is not (κ, λ)-compact then K ′ is not weakly-(κ, λ)-
compact.

5 Gaining tameness

We gave in Section 2 an example of an AEC with the amalgamation property and
Lowenheim-Skolem number ℵ0 which is not ℵ0-tame. But at least consistently
there are arbitrarily large κ for which it is not (κ,∞)-tame. Here, we respond
to a question of Grossberg and VanDieren [GV06b] and provide an example of
an AEC with the amalgamation property and Lowenheim-Skolem number ℵ0
which is not ℵ0-tame but is (2ℵ0 ,∞)-tame. The example is very close to that
in Section 2 but we bound the size of the image group G.

Now we use the moreover clause from Fact 2.2: There is a countable subgroup
R of G such that every element of G/R is divisible by every prime. See [EM90].
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Example 5.1 Let Ks be the class of structures M = 〈G,Z, I,H,R〉, where
each of the listed sets is the solution set of one of the unary predicates
(G,Z, I,H,R). The first four predicates are interpreted exactly as in Exam-
ple 2.3 but R is interpreted as the subgroup R described above. Crucially, we
require that the group G be not merely torsion-free but ℵ1-free. The notion of
strong submodel is as before except in addition M ≺Ks N implies RM = RN .

Lemma 5.2 The class (Ks,≺Ks) defined in Definition 5.1 is an AEC which
admits intersections.

Proof. To show that (Ks,≺Ks) is closed under unions of chains (the inter-
esting case is countable unions) apply Pontryagin’s criterion. We can construct
closures exactly as in Lemma 2.5. �5.2

Since we have required that G is ℵ1-free, the amalgamation property is no
longer true. (The amalgamation of torsion-free groups is torsion-free. But,
Shelah had observed long ago that even under pure embedding the class of
ℵ1-free groups does not have the amalgamation property. The argument will
appear in [BCG+00].) But we are saved by Section 4.

Theorem 5.3 There is an AEC with the amalgamation property in a countable
language with Lowenheim-Skolem number ℵ0 which is not (ℵ0,ℵ1)-tame but is
(2ℵ0 ,∞)-tame.

Proof. Since Ks (Example 5.1) admits intersections we can get the desired
example with the amalgamation property from Corollary 4.7, provided we show
Example 5.1 is (2ℵ0 ,∞)-tame. Since the source of non-tameness is types over
the target group G, it suffices to show the cardinality of GM is at most the
continuum for any M ∈ Ks. But if G is torsion free and for some countable
subgroup R, G/R is p-divisible for all p, then |G| ≤ 2ℵ0 . For, if G is larger there
exist x, y ∈ G which realize the same first order type over R. Thus for each p
there is an x1 such that px1 − x = r ∈ R and a y1 such that py1 − y = r ∈ R.
But then x− y is a non-zero element of G which is divisible by every prime. By
Pontryagin’s criterion, there is no such element in an ℵ1-free group. �5.3

6 Conclusion

This paper has several messages. The notion of an AEC admitting intersections
is rather natural; it has come up without being named in investigations of the
Hrushovski construction. It simplifies the treatment of Galois-types while being
much weaker than the amalgamation property; we think it deserves further
investigation.

We have shown that ‘locality’ has several facets. There has been consider-
able work on categoricity transfer for tame AEC [GV06a, GV06c, Les05]; under
further locality assumptions [HK06] begins a ‘geometric stability’ theory. This
paper shows that in general these are real assumptions. But could (LS(K),∞)-
tameness be a consequence of categoricity? Let κ be the Löwenheim-Skolem
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number of K and let H1 denote i(2κ))+ . Analysis of the Hart-Shelah examples
[BK] (done after this paper) gave examples of an AEC K with the amalga-
mation property which is categorical in small cardinals and fails tameness in a
cardinality. In contrast, the next question should be quite hard. Shelah proved
(see [Bal00] for a short account):

Theorem 6.1 [She99] Suppose K has the amalgamation property and arbitrar-
ily large models. Suppose K is λ+-categorical with λ > H1. For each µ ≤ λ, K
is (χ, µ)-weakly tame for some χ < H1.

Question 6.2 Suppose K has the amalgamation property and arbitrarily large
models. Suppose K is λ+ categorical with λ > H1.

Is there any way to reduce the upper bound on χ in Theorem 6.1?
Can one prove K is (χ, µ)-weakly tame for some χ < H1?

Here are questions which naturally arise in extending this work.

Problem 6.3 Find an example of non-compactness in ZFC.

Question 6.4 Are the examples in Section 3 (Section 5), (ℵ1,ℵ1)-compact?

Question 6.5 Find examples of K with the amalgamation property which gain
tameness as in Section 5 but for inherent algebraic reasons rather than through
the transformation of Section 4.
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