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Abstract. A space X is κ-resolvable (resp. almost κ-resolvable)
if it contains κ dense sets that are pairwise disjoint (resp. almost
disjoint over the ideal of nowhere dense subsets of X).

Answering a problem raised by Juhász, Soukup, and Szentmik-
lóssy, and improving a consistency result of Comfort and Hu, we
prove, in ZFC, that for every infinite cardinal κ there is an almost
2κ-resolvable but not ω1-resolvable space of dispersion character κ.

A space X is said to be κ-resolvable if it contains κ dense sets that
are pairwise disjoint. X is called maximally resolvable iff it is ∆(X)-
resolvable, where ∆(X) = min{|G| : G 6= ∅ open} is the dispersion
character of X.

V. Malychin, in [4], was the first to suggest studying families of dense
sets of a space X that, rather than disjoint, are merely almost disjoint
with respect to the ideal N (X), where N (X) denotes the family of all
nowhere dense subsets of the space X. He called a space X extraresolv-
able if it has ∆(X)+ many dense sets such that any two of them have
nowhere dense intersection. This idea was generalized in [3], where
the natural notion of almost κ-resolvability was introduced: A space X
is called almost κ-resolvable if it contains κ dense sets that are pair-
wise almost disjoint over the ideal N (X) of nowhere dense subsets of
X. (Actually, this concept was given a different name in [3], namely:
“κ-extraresolvable ”, but we think the terminology given here is much
better.)

Note that this makes good sense for κ ≤ ∆(X) as well. But while
“almost ω-resolvable” is clearly equivalent to “ω-resolvable”, the anal-
ogous question for higher cardinals remained open. In particular, the
following natural problem was formulated in [3]:

Problem 1. Let X be an extraresolvable (T2, T3, or Tychonov) space
with ∆(X) ≥ ω1. Is X then ω1- resolvable?
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(The assumption ∆(X) ≥ ω1 is clearly necessary to make this prob-
lem non-trivial.)

Comfort and Hu, see [2, Corollary 3.6], gave a negative answer to
this problem, assuming the failure of the continuum hypothesis, CH.
More precisely they got the following result:

Theorem . If κ is an infinite cardinal such that GCH first fails at κ
then there is a 0-dimensional T2 space X with |X| = ∆(X) = κ+ such
that X is κ-resolvable, extraresolvable but not κ+-resolvable, hence not
maximally resolvable and if κ = ω then not ω1- resolvable.

Our aim in this note is to give the following “final” answer to the
above problem, in ZFC.

Theorem 2. For every cardinal κ there is a 0-dimensional T2 space of
dispersion character κ that is extraresolvable but not ω1-resolvable.

We shall actually prove a bit more. Note that no space X can be
almost (2∆(X))

+-resolvable, moreover “almost 2∆(X)-resolvable” can be
strictly stronger than “extraresolvable ≡ almost ∆(X)+-resolvable”.

Theorem 3. For every cardinal κ there is an almost 2κ-resolvable (and
so extraresolvable) but not ω1-resolvable 0-dimensional T2 space of car-
dinality and dispersion character κ. In fact, our example is a κ-dense
subspace of the Cantor cube of weight 2κ.

To prove this theorem we shall make use of the method of construct-
ing D-forced spaces that was introduced in [3]. Therefore, we first recall
some definitions and results from [3].

Let D be a family of dense subsets of a space X. A subset M ⊂ X
is called a D-mosaic iff there is a maximal disjoint family V of open
subsets of X and for each V ∈ V there is DV ∈ D such that

M = ∪{V ∩DV : V ∈ V}.

Clearly, every D-mosaic is dense. We say that the space X (or its
topology) is D-forced iff every dense subset of X includes a D-mosaic.

Let S be any set and B =
{〈
B0
ζ , B

1
ζ

〉
: ζ < µ

}
be a family of 2-

partitions of S. We denote by τB the (obviously zero-dimensional)
topology on S generated by the subbase {Bi

ζ : ζ < µ, i < 2}, moreover
we set XB = 〈S, τB〉.

Given a cardinal κ, we have ∆(XB) ≥ κ iff B is κ-independent, i.e.,

B[ε]
def
=
⋂
{Bε(ζ)

ζ : ζ ∈ dom ε}

has cardinality at least κ whenever ε ∈ Fn(µ, 2).
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Note that XB is Hausdorff iff B is separating, i.e. for each pair
{α, β} ∈

[
S
]2 there are ζ < µ and i < 2 such that α ∈ Bi

ζ and
β ∈ B1−i

ζ .
A set D ⊂ X is said to be κ-dense in the space X iff |D∩U | ≥ κ for

each nonempty open set U ⊂ X. Thus D is dense iff it is 1-dense. Also,
it is obvious that the existence of a κ-dense set in X implies ∆(X) ≥ κ.

Theorem ([3, Main Theorem 3.3]). Assume that κ is an infinite cardi-
nal and we are given B =

{〈
B0
ξ , B

1
ξ

〉
: ξ < 2κ

}
, a κ-independent family

of 2-partitions of κ, moreover a non-empty family D of κ-dense sub-
sets of the space XB. Then there is a separating κ-independent family
C = {

〈
C0
ξ , C

1
ξ

〉
: ξ < 2κ} of 2-partitions of κ such that

(1) every D ∈ D is also κ-dense in XC (and so ∆(XC) = κ),
(2) XC is D-forced.

Actually, the space XC has other interesting properties as well but
we shall note make use of those here. We are now ready to prove our
promised result.

Proof of Theorem 3. Let κ be an arbitrary infinite cardinal. It is well-
known, see e. g. [3, Fact 3.2], that we can find two disjoint families
B =

{
〈B0

i , B
1
i 〉 : i < 2κ

}
and D =

{
〈D1

i , D
1
i 〉 : i < 2κ

}
of 2-partitions

of κ such that their union B ∪ D is κ-independent, that is, for any
η, ε ∈ Fn(2κ, 2) we have ∣∣ D[η] ∩ B[ε]

∣∣ = κ.

In other words, this means that

D = {D[η] : η ∈ Fn(2κ, 2)}
is a family of κ-dense subsets of XB, hence we may apply Theorem 4
to this B and D to get a family C of 2κ many 2-partitions of κ that
satisfies conditions (1) and (2) above.

The space that we need will be a further refinement of XC. To
obtain that, we next fix a 2-partition 〈I, J〉 of the index set 2κ such
that |I| = |J | = 2κ. For every unordered pair a ∈

[
I
]2 we shall write

a+ = max a and a− = min a, so that a = {a−, a+}.
Let {j(a,m) : a ∈

[
I
]2
,m < ω} be pairwise distinct elements of J .

For any a ∈
[
I
]2 and m < ω we then define the sets

E0
a,m = D0

j(a,m) \ (D0
a− ∩D0

a+) and E1
a,m = κ \ E0

a,m.

Clearly, then we have

E1
a,m = D1

j(a,m) ∪ (D0
a− ∩D0

a+).
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In this way we obtained a new family

E =
{〈
E0
a,m, E

1
a,m

〉
: a ∈

[
I
]2
,m < ω

}
of 2-partitions of κ. We shall show that the space XC∪E satisfies all the
requirements of theorem 3.

Claim 3.1. For any finite function η ∈ Fn(
[
I
]2×ω, 2) and any ordinal

α ∈ I there is a finite function ϕ ∈ Fn(2κ, 2) such that α /∈ domϕ and
E[η] ⊃ D[ϕ].

Proof of the Claim. For each a ∈
[
I
]2 let us pick a∗ ∈ a with a∗ 6= α.

Then we have

E[η] =
⋂

η(a,m)=0

E0
a,m ∩

⋂
η(a,m)=1

E1
a,m ⊃

⊃
⋂

η(a,m)=0

(D0
j(a,m) \ (D0

a− ∩D0
a+) ∩

⋂
η(a,m)=1

D1
j(a,m) ⊃

⊃
⋂

η(a,m)=0

(D0
j(a,m) ∩D1

a∗) ∩
⋂

η(a,m)=1

D1
j(a,m) =

=
⋂

η(a,m)=0

D1
a∗ ∩

⋂
〈a,m〉∈dom η

D
η(a,m)
j(a,m) .

The expression in the last line above is, however, equal to D[ϕ] for a
suitable ϕ ∈ Fn(2κ, 2) because j is an injective map of [I] × ω into J
and a∗ 6= α belongs to I = κ \ J for all a ∈ [I]2. �

Claim 3.2. C ∪ E is κ-independent, hence ∆(XC∪E) = κ.

Proof of the Claim. Let ε ∈ Fn(2κ, 2) and η ∈ Fn(
[
I
]2×ω, 2) be picked

arbitrarily. By Claim 3.1 there is ϕ ∈ Fn(2κ, 2) such that E[η] ⊃ D[ϕ].
Since D[ϕ] ∈ D we have |C[ε]∩D[ϕ]| = κ because C satisfies condition
(1). Consequently, we have |C[ε] ∩ E[η]| = κ as well. �

Claim 3.3. The family {D0
α : α ∈ I} witnesses that XC∪E is almost

2κ-resolvable.

Proof of the Claim. First we show that D0
α is dense in XC∪E whenever

α ∈ I. So fix α ∈ I, moreover let ε ∈ Fn(2κ, 2) and η ∈ Fn(
[
I
]2×ω, 2).

By Claim 3.1 there is ϕ ∈ Fn(2κ, 2) such that α /∈ domϕ and E[η] ⊃
D[ϕ]. Since α /∈ domϕ we have D0

α ∩ D[ϕ] ∈ D. Hence, as C has
property (1),

∅ 6= (D0
α ∩ D[ϕ]) ∩ C[ε] ⊂ D0

α ∩ (E[η] ∩ C[ε])
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as well. So D0
α intersects every basic open subset of XC∪E, i. e. D0

α is
dense in XC∪E.

Next we show that Dα ∩ Dβ is nowhere dense in the space XC∪E

whenever a = {α, β} ∈
[
I
]2. Indeed, let C[ε] ∩ E[η] be again a basic

open set with ε ∈ Fn(2κ, 2) and η ∈ Fn(
[
I
]2 × ω, 2) and let us pick

m < ω such that 〈a,m〉 /∈ dom η. Then

η′ = η ∪ {〈〈a,m〉 , 0〉} ∈ Fn(
[
I
]2 × ω, 2),

hence C[ε] ∩ E[η′] ⊂ C[ε] ∩ E[η] is a (non-empty) basic open set in the
space XC∪E. Moreover, E0

a,m = D0
j(a,m) \ (D0

α ∩D0
β) implies

(Dα ∩Dβ) ∩C[ε] ∩ E[η′] ⊂ (Dα ∩Dβ) ∩ (D0
j(a,m) \ (Dα ∩Dβ)) = ∅,

consequently, Dα ∩Dβ is not dense in C[ε] ∩ E[η]. �

Finally, the following simple claim will complete the proof of our
theorem.

Claim 3.4. The space XC is ω1-irresolvable, that is, not ω1-resolvable.

Proof of the Claim. Assume that {Fζ : ζ < ω1} is a family of dense
subsets of XC. By condition (2) the topology of XC is D-forced, so
every Fζ includes a D-mosaic in XC, consequently for all ζ < ω1 there
are εζ ∈ Fn(2κ, 2) and φζ ∈ Fn(2κ, 2) such that D[φζ ]∩C[εζ ] ⊂ Fζ . By
the well-known ∆-system lemma we may then find ζ < ξ < ω1 such
that ε = εζ ∪ εξ ∈ Fn(2κ, 2) and φ = φζ ∪ φξ ∈ Fn(2κ, 2). (Actually,
much more is true: there is an uncountable set S ∈ [ω1]ω1 such that
the members of both {εζ : ζ ∈ S} and {φζ : ζ ∈ S} are pairwise
compatible.) But then we have

Fζ ∩ Fξ ⊃ D[φζ ] ∩ C[εζ ] ∩ D[φξ] ∩ C[εξ] = D[φ] ∩ C[φ] 6= ∅.

�

To conclude our proof, it suffices to recall the obvious fact that if a
topology on a set is λ-resolvable then so is any coarser topology. Hence
the ω1-irresolvability of XC implies that of XC∪E. �

Let us point out that as extraresolvability implies almost ω-resolvability
that is equivalent to ω-resolvability, any counterexample to problem 1
is automatically an example of an ω-resolvable but not maximally re-
solvable space, hence it is a solution to the celebrated problem of Ceder
and Pearson from [1]. The first Tychonov ZFC examples of such spaces
were given in [3] and the spaces constructed in theorem 3 extend the
supply of such examples.
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