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Abstract. We consider the notion of bounded m-ary patch-width defined in

[4], and its very close relative m-constructibility defined below. We show that
the notions of m-constructibility all coincide for m ≥ 3, while 1-constructibility

is a weaker notion. The same holds for bounded m-ary patch-width. The case

m = 2 is left open.

1. Introduction

1.1. Background. Our interest in this subject started from investigating spectra
of monadic sentences, so let us begin with a short description of spectra. Let φ be a
sentence in (a fragment of) second order logic (SOL). The spectrum of φ is the set
{n ∈ N : φ has a model of size n}. In 1952 Scholz defined the notion of spectrum
and asked for a characterization of all spectra of first order (FO) sentences. In [1]
Asser asked if the complement of a FO spectrum is itself a FO spectrum.

Definition 1.1. A set A ⊆ N is eventually periodic if for some n, p ∈ N, for all
m > n, m ∈ A iff m+ p ∈ A.

In [3] Durand, Fagin and Loescher showed that the spectrum of a FO sentence
in a vocabulary with finitely many unary relation symbols and one function symbol
is eventually periodic. In [5] Gurevich and Shelah generalized this for spectrum
of monadic second order (MSO) sentence in the same vocabulary. Inspired by
[5] Fisher and Makowsky in [4] showed that the spectrum of a CMSO sentence (a
monadic sentence with counting quantifiers) is eventually periodic provided that all
its models have bounded patch-width. The notion of patch-width of structures (usu-
ally graphs) is a complexity measure on structures, generalizing clique-width. Their
proof remains valid if we consider m-ary patch-width, i.e. we allow m-ary relations
as auxiliary relations. In [6] Shelah generalized the proof of [5] and showed eventual
periodicity for a MSO sentence provided that all its models are constructible by
recursion using operations that preserve monadic theory (see definitions below).

1.2. summation of results. The above results on eventual periodicity led us to
ask: What are the relations between the different notions for which we have eventual
periodicity of MSO spectra? In other words do we have three different results, or
are they all equivalent? We give an answer here. In [2] Courcelle proved (using
somewhat different notations) that a class of structures is constructible iff it is
monadicly interpretable in trees, thus implying that two of the results coincide. We
give a proof of Courcelle’s result more coherent with our definition, which we use
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2 SAHARON SHELAH AND MOR DORON

later on. We prove that the notions of bounded m-ary patch-width is very close
to m-constructibility (constructibility where we allow m-ary relations as auxiliary
relations) (see lemmas 2.9 and 2.10). Next we show that for m ≥ 3 a class of
modes is contained in a m-constructible class iff it is contained in a 3-constructible
class (see Theorem 3.7). The same holds for classes of bounded m-ary patch-width.
Finally we show that in the above theorem we can not replace 3-constructible by
1-constructible. That is there exists a 3-constructible class which is not contained
in any 1-constructible class. We give a specific example (see 4.1). The case m = 2
is left open.

2. Preliminary definitions and previous results

Notation 2.1.

(1) Let τ be a finite relational vocabulary.
(2) For R ∈ τ let n(R) be the number of places of R. We say that R is n(R)-ary

or n(R) place. We allow n(R) = 0 i.e. the interpretation of R is in {T,F}.
We call τ nice if R ∈ τ ⇒ n(R) > 0.

(3) For k ∈ ω, let τk be τ∪· {P1, ..., Pk} with P1, ..., Pk unary predicates.
(4) A k-colored τ -structure is a τk-structure in which the interpretation of the

Pi’s is a partition of the set of elements of the model (but some Pi’s may
be empty).

(5) A k-const τ -structure is a τk-structure in which every predicate Pi is inter-
preted by a singleton. We denote such a structure by (M,a1, ..., ak) where
M is a τ -structure and a1, ..., ak ∈M .

Definition 2.2.

(1) A monadic second order (MSO) formula in vocabulary τ is a second order
formula in which every second order quantifier quantifies an unary relation
symbol. The notion of quantifier depth extends, naturally to MSO formulas.

(2) Let M be a τ -structure, and q a natural number. The monadic q-theory of
M , ThMSO

q (M), is the set of all sentences of quantifier depth ≤ q that hold
in M .

(3) Let M be a τ -structure, and n, q natural numbers. Let ā = (a1, ..., an) ∈
n|M |. The q-type of ā in M , tpq(ā,M), is the set of all τ formulas
φ, of quantifier depth ≤ q in free variables x1, ..., xn, such that: M |=
φ[a1, ..., an]. If q = 0 we sometimes write tpqf (ā.M).

(4) The notion of a q-type extends to MSO logic. We write tpMSO
q (ā,M) for the

set of MSO formulas φ, of quantifier depth ≤ q in free variables x1, ..., xn,
such that: M |= φ[a1, ..., an].

(5) The set of all formally possible q-types in a vocabulary τ and in variables
〈x1, ..., xn〉, will be denoted be TPq(〈x1, ..., xn〉, τ), and similarly TPMSO

q (〈x1, ..., xn〉, τ).

We may write TPMSO
q (n, τ) instead of TPMSO

q (〈x1, ..., xn〉, τ).

Definition 2.3 (Patch-width).

(1) Let τ be a nice vocabulary, M a τ -structure, k a natural number, and P
a finite set of k-colored τ -structures. We say that M have patch-width at
most k (with respect to P) and denote pwdP(M) ≤ k, if M is the τ -redact
of a k-colored τ -structure which is in the closer of P under the operations:
(i) disjoint union - t,
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BOUNDED m-ARY PATCH-WIDTH ARE EQUIVALENT FOR m ≥ 3 3

(ii) recoloring - ρi→j (change all the elements with color Pi to color Pj)
and

(iii) modifications - δR,B (redefine the relation R ∈ τ by the quantifier free
formula B in vocabulary τk).

A class K of τ -structures is a PW (k)-class, if for some finite set of k-
colored τ -structures P the elements of K are all the τ -redacts of structures
of patch-width at most k with respect to P. We say K is of bounded patch-
width (BPW) if it is a PW (k)-class for some k ∈ N.

(2) In the definition above we may instead of k-colored τ -structures, talk about
τ+ structures where τ+ ⊇ τ , |τ+ \ τ | = k and every relation in τ+ \ τ is
at most m-ary. We then talk about m-ary patch-width, where the rest of
the definition remains unchanged. Note that the notions of patch-width and
unary patch- width are close but not identical as in the former we demand
that the colors are disjoint.

In [4] it is proved that:

Theorem 2.4. Let φ be a MSO(τ) sentence, and suppose Mod(φ) is contained in
some class of bounded m-ary patch-width. Then spec(φ) is eventually periodic.

Definition 2.5 (Addition operations).

(1) For k, k1, k2 ∈ N, let Sτ,k,k1,k2 be the set of all addition operations of a
k1-const τ -structure with a k2-const τ -structure, resulting in a k-const τ -
structure. Formally each s ∈ Sτ,k,k1,k2 consists of:

(i) Sets Al = As
l ⊆ {1, ..., kl} for l ∈ {1, 2}.

(ii) For l ∈ {1, 2}, a 1-1 function gl = gsl from Al to {1, ..., k} such that:
Im(g1)∪· Im(g2) = {1, ..., k}.

(iii) For l ∈ {1, 2} a set Bl ⊆ {1, ..., kl}2, and a set B ⊆ {1, ..., k1} ×
{1, ..., k2}.

(iv) For each R ∈ τ with n(R) = n and each wl ⊆ {1, ..., n} for l ∈ {1, 2},
a function fR,w1,w2 = f sR,w1,w2

with range {T,F}, and domain: triplets

of the form (p, q1, q2) where:
– p ∈ TP0(〈x1, ..., xn〉, σ) were σ is a vocabulary with k1 + k2 in-

dividual constants and two unary predicates,
– For l ∈ {1, 2}, ql ∈ TP0(〈xi : i ∈ wl〉, τ).

(2) Let k, k1, k2 ∈ N and s ∈ Sτ,k,k1,k2 . Let (Ml, a
l
1, ..., a

l
kl

) be kl-const τ -

structure for l ∈ {1, 2}. The addition (M1, a
1
1, ..., a

1
k1

)~s (M2, a
2
1, ..., a

2
k2

) is
defined whenever:
• (|M1| ∩ |M2|) ⊆ ({a11, ..., a1k1} ∩ {a

2
1, ..., a

2
k2
}) and

• For l ∈ {1, 2}: ali = alj ⇔ (i, j) ∈ Bl and a1i = a2j ⇔ (i, j) ∈ B,
to be the k-const τ -structure (M, b1, ..., bk) defined by:

(i) |M | = (|M1| \ {a11, ..., a1k1})∪ (|M2| \ {a21, ..., a2k2})∪ {a
l
i : l ∈ {1, 2}, i ∈

Al}).
(ii) For each l ∈ {1, 2} and i ∈ Al, ali = bgl(i).
(iii) For all R ∈ τ with n(R) = n and x̄ = (x1, ..., xn) ∈ n|M |, let wl = {i :

xi ∈ |Ml|} for l ∈ {1, 2}. Let p be the quantifier free type of x̄ in the
model with {a11, ..., a1k1} ∪ {a

2
1, ..., a

2
k2
} as constants, and |M1|, |M2| as

unary predicates. For l ∈ {1, 2} let ql = tpqf (〈xi : i ∈ wl〉,Ml). Now
the value of RM (x̄) is defined to be f sR,w1,w2

(p, q1, q2).
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4 SAHARON SHELAH AND MOR DORON

(3) For technical reasons we would like to allow empty structures. i.e. let
τ ′ := {R ∈ τ : n(R) = 0}, and X ⊆ τ ′. Now NullX is the τ ′-structure
with |NullX | = ∅ and RNullX = True ⇔ R ∈ X. Then if s ∈ Sτ,k,k1,0,
and M is a τk1- structure then M ~s NullX is a well defined τk-structure.
Furthermore for any τ -structure M , M tNull∅ is defined and equal to M .

The important attributes of the addition operations are the following:

Theorem 2.6. Let k, k1, k2 ∈ N. Then:

(1) Sτ,k,k1,k2 is finite.
(2) The addition theorem:

Let M,M ′ be k1-const τ -structures such that ThqMSO(M) = ThqMSO(M ′),
and N,N ′ be k2-const τ -structures such that ThqMSO(N) = ThqMSO(N ′),
and s ∈ Sτ,k,k1,k2 . Assume that the additions M ~s N and M ′ ~s N

′ are
defined. Then

ThqMSO(M ~s N) = ThqMSO(M ′ ~s N
′).

Definition 2.7 (Constructibility). A class K of τ -structures is (m∗, k∗)-constructible,
if there exists: A finite relational vocabulary τ+ ⊇ τ , a finite set of structures P,
and a finite set of addition operations S such that:

(i) Every relation in τ+ \ τ is at most m∗-ary.
(ii) Every structure in P is a k-const τ+-structure for some k ≤ k∗.
(iii) Every operation in S is in Sτ+,k,k1,k2 for some k, k1, k2 ≤ k∗.
(iv) The elements of K are all the τ -redacts of structures in the closer of P

under the operations in S.

We say that K is m∗-constructible if it is (m∗, k∗)- constructible for some k∗, and
that it is constructible if it is m∗-constructible for some m∗.

In [6] it is proved that:

Theorem 2.8. Let φ be a MSO(τ) sentence, and suppose Mod(φ) is contained in
some m-constructible class. Then spec(φ) is eventually periodic.

This is a generalization of 2.4 as we have:

Lemma 2.9. Let τ be a nice vocabulary, and K be a m-ary PW (k)-class of τ -
structures. Then K is a (m, 0)-constructible class.

Proof. First note that the disjoint union operation of τ+-structures is in Sτ+,0,0,0.
As for the recoloring and the modification operations, those are unary operations,
so we look at the operation s ∈ Sτ+,0,0,0 that acts as recoloring or modification on
its left operand. So M ~sNull∅ is the desired recoloring or modification of M . �

In the addition operations we allow omitting marked elements, and the universe
of the the two operands is not necessarily disjoint. This is not allowed in the
operations of patch-width. It turns out though that these are the only essential
differences between the two types of operations as suggested by the following:

Lemma 2.10. Let K be a (m, 0)-constructible class such that the vocabulary τ+

associated with K is nice. Then K is of bounded m-ary patch-width.

Proof. K is (m, 0)-constructible so we have a vocabulary τ+ and sets S and P.
Now the set of atomic structures for the patch-width definition will be the same P.
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The vocabulary of the patch-width definition will be: τ+∪· {R′ : R ∈ τ+}∪· {P1, P2}.
P1, P2 are new unary relation symbols. We now have to show for each operation
in S how to simulate it by operations of patch-width. Let s ∈ S and let M1,M2

be τ+-structures. Denote by M ′1,M
′
2 the trivial extensions to the new vocabulary.

We will now describe a series of patch-width operations on M ′1,M
′
2 resulting in a

structure M∗ such that M∗|τ+
∼= M1 ~s M2, this will complete the proof. First

color all the elements of M ′l by Pl for l ∈ {1, 2}. Next for each R ∈ τ+ redefine R′

to be the same as R, do this for both M ′1,M
′
2. Now take the disjoint union of the

to resulting structures. Finally we have to redefine the relations of τ+ of the our
disjoint union to be as in M1~sM2. Let R ∈ τ+ be n-ary and let w1, w2 ⊆ {1, ..., n}
satisfy w1∪·w2 = {1, ..., n}. Let p be the quantifier free type in the vocabulary with
two unary relations S1, S2 ”saying” that for i ≤ n and l ∈ {1, 2}, xi ∈ Sl iff i ∈ wl.
Now define:

ϕR,w1,w2
(x1, ...xn) :=

∧
i∈w1

P1(xi)
∧
i∈w2

P2(xi) ∧ [
∨

ql∈TP0(〈xi:i∈wl〉,τ+)
fs
R,w1,w2

(p,q1,q2)=T

∧q′1 ∧ q′2].

Where ∧q′l is the disjunction of all the formulas in ql where we replace every relation
R ∈ τ+ be R′. Now redefine the relation R using the modification δR,B for the
formula:

B(x1, ..., xn) :=
∧

w1,w2⊆{1,...,n}
w1∪·w2={1,...,n}

ϕR,w1,w2
(x1, ..., xn).

Do this for all R ∈ τ+ and we are done. �

Notation 2.11 (Trees).

(1) The vocabulary of trees, τtrees, is {≤, crt}.
(2) The vocabulary of k-trees, τk−trees, is {≤, crt}∪· {P1, ..., Pk} i.e (τtrees)k.
(3) A tree T is a τtrees-structure in which:

• For every t ∈ |T| the set {s ∈ |T| : s ≤T t} is linearly ordered by ≤T.
• For all x ∈ |T|, crtT ≤T x.

(4) A k-tree T is a τk−trees-structure, such that T|τtrees is a tree.
(5) A 2-tree T is directed binary (DB) if (cTrt, P

T
1 , P

T
2 ) is a partition of |T|,

and each non maximal element of T has exactly two immediate successors
one in PT

1 and the other in PT
2 . For k ≥ 2, a k-tree T is DB if (|T|;≤T

, cTrt, P
T
1 , P

T
2 ) is.

Definition 2.12 (Monadic interpretation).

(1) We call c a monadic k-interpretation scheme for a vocabulary τ if c consists
of:
• Natural numbers k1 = kc1 and k1 = kc2 both less then or equal to k.
• For every l ≤ k1 a monadic τk2−trees-formula ϕc

=,l(x).

• For every R ∈ τ n-place relation, and every η ∈ {1,...,n}{0, ..., k1} a
monadic τk2−trees-formula: ϕ = ϕc

R,η(x1, ..., xn).

(2) Let c be a monadic k-interpretation scheme for a vocabulary τ , and T a
kc2-tree. The interpretation of T by c denoted by T[c] is the τ -model M
defined by:
• |M | = {(t, l) ∈ |T| × {0, ..., k1} : T |= ϕ=,l(t)}
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• For every R ∈ τ n-place relation:

RM = {((ti, li) : i ≤ n) ∈ n|M | : T |= ϕR,(li:i≤n)(t1, ..., tn)}
(3) A τ -model M is monadicly k-interpretable in trees if for some c a monadic

k-interpretation scheme for τ , and some kc2-tree, T, we have: T[c] ∼= M .
We denote the class of all the τ -structures monadicly k-interpretable in
trees by Kmoτ,k.

(4) For c a monadic k-interpretation scheme for τ we denote by Kmoc the class
of all τ -structures M such that for some kc2-tree, T, we have: T[c] ∼= M .
Kmo,dbc is the same as Kmoc only we demand that T is directed binary.

(5) We say that c has the leaf property if kc1 = 0 and for every kc2-tree T, and
every t ∈ |T|: T |= ϕc

0,=[t] implies that t is a maximal element in T.

Without loss of generality we may assume that kc1 = 0. This is because of the
following:

Lemma 2.13. For every c a monadic k-interpretation scheme for a vocabulary τ ,
there exists c′ be a monadic (k + 2)-interpretation scheme for τ , such that:

• kc′1 = 0.

• kc′2 = kc2 + 2.

• For every kc2-tree T, there exists a kc
′

2 -tree T′, such that: T[c] ∼= T′[c
′].

Hence Kmoc ⊆ Kmoc′ .

Proof. Let s1 and s2 be the two ”new” unary predicates, and let T be a kc2-tree.

Define T′ as follows: |T′| = |T|∪· (|T| × {0, ..., kc1}), sT
′

1 = |T|, sT′2 = |T| × {0, ..., kc1},
and if t1 is the immediate successor of t2 in T then define, t1 <T′ (t1, 0) <T′

(t1, 1) <T′ ...(t1, k
c
1) <T′ t2. Now define:

ϕc′

=,0(x) := s2(x) ∧
∧
l<kc1

(∀y)[s1(y) ∧ (ψl(x, y)]→ (ϕc
=,l(y))s1

Where ψl(x, y) is a formula stating that there are exactly l elements between x
and y and all of them are in s2, and (ϕc

=,l(y))s1 is the formula ϕc
=,l(y) relativized

to s1 i.e we replace every quantifier of the form ∃x or ∀x by ∃x ∈ s1 or ∀x ∈ s1
respectively. It should be clear that T |= ϕc

=,l[t] iff T′ |= ϕc′

=,0[(t, l)]. The relations
are dealt with in a similar way. �

Lemma 2.14. Let K be a (m∗, k∗)-constructible class of τ -models. Then there
exists a natural number k∗∗ such that K ⊆ Kmoτ,k∗∗ . Moreover for some monadic

k∗∗-interpretation scheme c with the leaf property, we have K ⊆ Kmo,dbc .

We will not go into detail here especially as a similar result was proved by
Courcelle in [2]. We do however give a sketch of a proof containing some definitions
that will be useful later.

Sketch. Suppose P and S are the finite sets of structures and operations generating
K, and τ+ the vocabulary associated with K (see 2.7). Now with every M ∈ K we
can associate a tree which represents the construction of M from the structures in
P. Formally we define:

Definition 2.15. We say that the pair (T,M) with T = 〈T ;≤T, cTrt, S
T
1 , S

T
2 〉 a DB

tree and M = 〈Mt : t ∈ T 〉, is a full representation of M ∈ K when:
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(1) Every Mt is a kt-const τ+-structure for some kt ≤ k∗.
(2) For every t ∈ T ≤T-maximal, Mt ∈ P.
(3) The τ -redact of McTrt

is M .

(4) For every t, a non-maximal element of T , let s1, s2 be its immediate succes-
sors with sl ∈ ST

l . Then Mt = Ms1 ~sMs2 for some s ∈ Sτ+,ks1 ,ks2 ,kt
∩S.

Definition 2.16.

(1) Let τ∗ be the vocabulary τk2−trees with the following unary predicates:
(a) S1 and S2.
(b) Pk for k ≤ k∗.
(c) Qs for s ∈ S.
(d) RN for N ∈ P.
k2 is the total number of unary predicates in τ∗, i.e k2 = |P|+ |S|+k∗+2.

(2) A τ∗-structure T is a representation of M ∈ K, if we can find M = 〈Mt :
t ∈ |T|〉 such that:
(a) ((|T|,≤T, cTrt, S

T
1 , S

T
2 ),M) is a full representation of M .

(b) 〈PT
k : k ≤ k∗〉 is a partition of |T|. If t ∈ PT

k , then kt = k i.e. Mt is a
k-const τ+-structure. We write kT(t) = k iff t ∈ PT

k .
(c) 〈QT

s : s ∈ S〉 ∪ 〈RT
N : N ∈ P〉 is a partition of |T|.

(d) For every t ∈ T ≤T-maximal, t ∈ RT
Mt

.
(e) For every t ∈ T non-maximal, let s1, s2 be its immediate successors

with sl ∈ ST
l . Suppose Mt = Ms1 ~sMs2 for some s ∈ Sτ+,ks1 ,ks2 ,kt

∩
S. Then t ∈ QT

s .

Note that:

Observation 2.17.

(1) Every M ∈ K has a full representation, and hence a representation.
(2) If Ml ∈ K are represented by Tl for l ∈ {1, 2}, and T1

∼= T2. Then M1
∼=

M2.

Now define: k1 = max{|N | : N ∈ P}, k2 is the number of unary predicates in
τ∗ (see 2.16(1)), and let k∗∗ = max{k1, k2}. We can define a k∗∗-interpretation
scheme c with kc1 = k1 and kc2 = k2 such that for all M ∈ K, and T a representation
of M we have M ∼= T[c]. Note that indeed T is a DB kc2-tree. We will not specify
all the formulas of c as they tend to be very long and complicated, but do note
that all the information about M can be decoded from the representation of M
using monadic formulas. Finally by an argument very close to that of 2.13 we may
assume that c has the leaf property. �

3. Equivalence of m-ary patch-width for m ≥ 3

We come now to the main part of our result. Basically what we do here is
proving the reverse inclusion of 2.14. It turns out that in our constructible class we
only need 3-ary relations as auxiliary relations, thus we can replace constructible
by 3-constructible. It follows that a class K is contained in a constructible class, iff
it is contained in a 3-constructible class, and similarly for m-ary path-width. We
start with an investigation of directed binary trees that will be useful later.

Notation 3.1. Let T be a DB k-tree. Let n ∈ N and x1, ..., xn ∈ T be fixed maximal
elements of T.
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(1) For x, y ∈ T denote by x ∧ y the minimal element z with z ≥ x, y.
(2) For x, y ∈ T with x ≤ y denote [x, y) := {z ∈ Tx ≤ z < y} and similarly

(x, y), (x, y] and [x, y].
(3) Define Y := {x1, ..., xn} ∪ {xi ∧ xj : i, j ≤ n} ∪ {cTrt}. Note that |Y | ≤ 2n.
(4) For any non-maximal x ∈ T let FR(x) ∈ T (resp. FL(x) ∈ T ) be the unique

immediate successor of x which is in PT
1 (resp. PT

2 ).
(5) For y, y′ ∈ Y with y < y′ define,

T 3
y,y′ := [y, y′]∪

{z ∈ T : (∃s ∈ (y, y′))FR(s) ≤ y′ ∧ FL(s) ≤ z}∪
{z ∈ T : (∃s ∈ (y, y′))FL(s) ≤ y′ ∧ FR(s) ≤ z}

(6) Let TR = {cTrt} ∪ {t ∈ T : FR(cTrt) ≤ t}, and similarly TL.

Lemma 3.2. Let RR(y, y′) and RL(y, y′) be binary relations meaning FR(y) ≤ y′

and FL(y) ≤ y′ respectively. The type tpMSO
q ((x1, ..., xn),T) is computable from

the structure 〈Y ;≤T, RR, RL〉, the types {tpMSO
q ((y, y′),T|T 3

y,y′
) : y, y′ ∈ Y, y <

y′, (y, y′) ∩ Y = ∅}, and the types tpMSO
q (cTrt,T|TL

), tpMSO
q (cTrt,T|TR

).

Proof. Without going into detail note that from the sets T 3
y,y′ with y, y′ as above,

TL and TR, we can choose a decomposition of |T|, in which only the elements of Y
belong to more then one set. Hence we can reconstruct the structure T with the
elements of Y as marked elements from the reduced structures: T|T 3

y,y′
with y, y′

as marked elements, T|TL
and T|TL

with CT
rt as marked element, in a way that the

q theory of the resulting structure depends only on the q theory of the operands.
The structure 〈Y ;≤T, RR, RL〉 determines the order of the construction. �

Claim 3.3. Let k∗ be a natural number, and c a monadic k∗-interpretation scheme
with the leaf property for a vocabulary τ . Then there exists a natural number k∗∗,
and a (3, k∗∗)-constructible class of τ structures, K, such that: Kmo,dbc ⊆ K.

Proof. Let q∗ be the maximal quantifier rank of the formulas {ϕQ,0 : Q ∈ τ}.
Define the vocabulary τ+ to consist of:

• τ .
• τk2−trees.
• Two 3-place relations RR and RL.
• For each t ∈ TPMSO

q∗ (2, τk2−trees), a 3-place relation R3
t .

• For each t ∈ TPMSO
q∗ (2, τk2−trees), a 2-place relation R2

t .

• For each t ∈ TPMSO
q∗ (1, τk2−trees) two 0-place relations RRt and RLt .

Before we define the set of addition operations S, and the set P, let us define:

Definition 3.4. A τ+-structure, T, is called a ”correct” k2-tree if:

• For each Q ∈ τ , QT = ∅.
• T|τk2−trees is a DB k2-tree.
• For each x1, x2, x3 maximal elements of |T|, let y = x1∧x2 and y′ = y∧x3

then we have, RT
R(x1, x2, x3)⇔ FR(y) ≤ y′, and similarly for RL.

• For each t ∈ TPMSO
q∗ (2, τk2−trees), and x1, x2, x3 maximal elements of

|T|, let y = x1 ∧ x2 and y′ = y ∧ x3 then we have, (R3
t )T(x1, x2, x3) ⇔

tpMSO
q∗ ((y, y′),T|T 3

y,y′
) = t.
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• For each t ∈ TPMSO
q∗ (2, τk2−trees), and x1, x2 maximal elements of |T|, let

y = x1 ∧ x2 then we have, (R2
t )T(x1, x2)⇔ tpMSO

q∗ ((cTrt, y),T|T 3

cTrt,y

) = t.

• For each t ∈ TPMSO
q∗ (1, τk2−trees), (RRt )T = T iff tpMSO

q∗ (cTrt,T|TR
) = t,

and similarly for RLt .

Note that every DB k2-tree can be uniquely extended to a correct DB k2-tree.
Now define Our P to consist of all singleton correct models (models with one
element) of the vocabulary τ+, plus all the Null τ+-structures (see definition 2.5(5))
.

We now turn to the definition of the operations in S. Let u be a possible ”color”
of a singleton k2-tree. Formally u ⊆ {P3, ..., Pk2}. We define the operation ⊕u on
DB k2-trees as the addition of two trees with root of color u. Formally Let T1,T2

be DB k2-trees define T = T1 ⊕u T2 by:

• |T| = |T1|∪· |T2|∪· {c}.
• c is the root of T i.e. cTrt = {c} and ∀t ∈ |T|, c <T x.
• c has color u i.e. for all i ≥ 3, c ∈ PT

i iff i ∈ u.

• cT1
rt ∈ PT

1 and cT2
rt ∈ PT

2 .
• The rest of the relations on T1 and T2 remain unchanged.

Note that indeed T1 ⊕u T2 is a DB k2-tree whenever T1 and T2 are, and hence ⊕u
extends uniquely to an operation on correct k2-trees.

Now for l ∈ {1, 2} let Al be a τ+ structure such that there exists a correct k2-tree
with |Al| ⊆ |Tl|, Tl||Al| = Al, and every element of Al is maximal in Tl. Define an
operation su on such structures by: A1 ~su A2 = (T1 ⊕u T2)||A1|∪|A2|. It is easy to
verify that ~su is well defined and indeed belongs to Sτ+,0,0,0. We now have:

Lemma 3.5. For every correct k2-tree, T and every set A ⊆ |T| of maximal el-
ements, the restriction T|A is in the closer of P under the operations {su : u ⊆
{1, ..., k2}}.

Proof. First it is obvious that we can construct T from P using the operations
{⊕u : u ⊆ {3, ..., k2}}. Now use the same construction only replace in each step the
operation T1 ⊕u T2 by the operation T1|A ~u T2|A. �

The last thing we need now is to ”decode” the relations in the correct structure
into the relations in our vocabulary τ . For this we use:

Lemma 3.6. There exist s∗ ∈ Sτ+,0,0,0 such that For every correct k2-tree, T and
every set A ⊆ |T| of maximal elements, the structure A′ = T|A ~s∗ Null∅ satisfies
for each Q ∈ τ with n(Q) = n,

(∗) QA′ = {(x1, ..., xn) ∈ nA : T |= ϕQ,0(x1, ..., xn)}.

Proof. Let Q ∈ τ be an n-place relation symbol, and w1, w2 ⊆ {1, ..., n}. We should
define f s3Q,w1,w2

in such a way that (∗) will hold. As we have ks
∗

1 = ks
∗

2 = ks
∗

= 0
and we are only interested in Null∅ as the right operand, the only relevant case is
w1 = {1, ..., n} and w2 = ∅. In order to have (∗) We need to define a function:

f s
∗

Q : {p : p is a quantifier free type of n variables in vocabulary τ+} → {T,F}

such that for all (x1, ..., xn) ∈ nA, fQ(tpqf ((x1, ..., xn),A′)) = T iff T |= ϕQ,0(x1, ..., xn).
Recall that by lemma 3.2 the value of T |= ϕQ,0(x1, ..., xn), is determined by 〈Y ;≤T
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, RR, RL〉, the types {tpMSO
q ((y, y′),T|T 3

y,y′
) : y, y′ ∈ Y, y < y′, (y, y′) ∩ Y = ∅}, and

the types tpMSO
q (cTrt,T|TL

), tpMSO
q (cTrt,T|TR

) (see 3.2 and notation 3.1). But as T
is correct these all are determined by p so we are done. �

We can now conclude the proof of lemma 3.3. Define S = {su : u ⊆ {1, ..., k2}}∪
{s∗}, and let K be the constructible class of τ -structures defined by P and S. Let

M be a τ -structure in Kmo,dbc . So we have M ∼= T
[c]
1 for some DB k2-tree T1.

Let T2 be the correct extension of T1. Let A = {x ∈ |T2| : T1 |= ϕ=,0(x)}, and
A = T2|A~s∗ Null∅. From lemma 3.5 we have that T2|A is in the closer of P under

the operations in S and hence so is A. From lemma 3.6 and the definition of T
[c]
1 ,

we have that A|τ = T
[c]
1
∼= M , so M ∈ K as desired.

�

From lemmas 3.3 and 2.14 we conclude our main:

Theorem 3.7. Let K be a class of τ -structures. Then K is contained in a m-
constructible class for some m ∈ N iff K is contained in a 3-constructible class.

The same holds for patch-width:

Corollary 3.8. Let τ be a nice vocabulary and K a class of τ -structures. Then
K is contained in a class of bounded m-ary patch-width for some m ∈ N iff K is
contained in a class of bounded 3-ary patch-width.

Proof. Assume K ⊆ K′ for some K′ of bounded m-ary patch-width. By lemma 2.9 K′

is (m, 0)-constructible. By theorem 3.7 K′ is contained in some 3-constructible K′′.
Notice that that the set S defined in the proof of 3.3 satisfies that S ⊆ Sτ+,0,0,0

so K′′ is in fact (3, 0)-constructible. Notice further that in the proof of 3.3 as we
do not need null structures in the construction, hence we may replace τ+ by a
nice vocabulary. So by lemma 2.10 K′′ is a bounded 3-ary patch-width class as
desired. �

4. A counter example for the unary case

It turns out that we can not replace the number 3 in theorem 3.7 by 1. This is
because of the following:

Theorem 4.1. There exists a nice vocabulary τ , and a class of τ -structures K,
contained in some 3-constructible class, that is not contained in any 1-constructible
class.

Proof. Let τ = {R} with n(R) = 4. Set p ∈ N be large enough (to be defined later).
Let T be a tree. For x, y ∈ T Define:

• x ∧T y = x ∧ y = the <T minimal z ∈ T such that z ≥T x and z ≥T x.
• dT(x, y) = d(x, y) = min{|S| : S ⊆ T, x, x ∧ y ∈ S, S is dense in (T,<T)}.
• dTp (x, y) = dp(x, y) = d(x, y) (mod p).

Let q : {0, ..., p − 1}2 → {0, 1} be some function that will be defined later. We
now define c a 0-interpretation scheme for τ :

• kc1 = kc2 = 0.
• ϕc

=,0(x) = ¬∃yy > x i.e. the elements of the interpreted structure are the
leafs of the tree.

• ϕc
R,0(x1, x2, x3, x4) = ”q(dp(x1, x2), dp(x3, x4)) = 0”.
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We have to show that ϕR,0 is indeed a monadic formula in τtrees. Note that there
exists a monadic formula ϕdp=0(x, y) such that for any tree T, T |= ϕdp=0(x, y) iff

dTl (x, y) = 0. ϕdp=0(x, y) will ”say” that there exists a set X such that:

• x, x ∧ y ∈ X,
• if z, z′ ∈ X and z < z′′ < z′ then z′′ ∈ X,
• if z′ is the immediate successor in X of z ∈ X, then there exist exactly
p− 1 elements (of T ) between them.

similarly we have formulas ϕdp=i(x, y) for 0 < i < p. Now define:

ϕR,0(x1, x2, x3, x4) =
∨

n1,n2∈{0,...,p−1}
n1≡n2 (mod p)

ϕdp=n1
(x1, x2) ∧ ϕdp=n2

(x3, x4).

This gives us c as desired. Define K = Kmo,dbc . By 3.3 K is contained in a 3-
constructible class (in fact in a 3-ary BPW class).
For each n ∈ N let Mn = (n≥2, /) i.e. Mn is the complete binary tree of depth

n, and Nn = M
[c]
n . Let K′ be a constructible class of τ -structures, so τ+ = τk for

some k ∈ N. Towards contradiction assume that Nn ∈ K′ for all n ∈ N. Let P be
the set of ”atomic” structures associates with K′. w.l.o.g. we may assume that P
consists of singleton structures only. Otherwise increase k by max{|M | : M ∈ P}
and construct each M ∈ P from singletons of distinct colors. Now let K ∈ K′, and
let (T,M) be a full representation of K (see 2.15). Assume K ∼= Nn for some n. So
we have a 1-1 function f , from n2 to the leafs of T, as every η ∈ n2 corresponds to
a unique element a ∈ K under the isomorphisms, and for every element of a ∈ K
there exist a unique t a leaf of T such that a = |Mt|. Define f(η) = t. Note
that f is not onto, as some of the leafs of T may be omitted during the creation
process. For each t ∈ T let At = {f−1(s) : s ≤T ∧s ∈ range(f)}. So At ⊆ n2.
For each η ∈ At let a = aη = |Mf(η)|. aη is an element of Mt, so At is divided

into 2k parts according to the color of aη in Mt, (more formally according to the

type tp
τ+\τ
qf (aη,Mt). We therefore have Bt ⊆ At such that |Bt| ≥ |At|

2k
, and all the

elements of f−1(Bt) have the same color. Now define:

Ct = {dNn
p (η, η ∧ ν) : η, ν ∈ Bt} ⊆ {0, ..., p− 1}.

We have |At|
2k
≤ |Bt| ≤ 2|Ct|. For the right-hand inequality use induction on |Ct|.

Hence we conclude
|At| ≤ |Bt| · 2k ≤ 2|Ct|+k.

Now note that if Ct 6= {0, ..., p−1}, then Ct ≤ n−bnp c and hence |At| ≤ 2|Ct|+k ≤
2n−b

n
p c+k. We now consider two cases:

Case 1 There exist s ∈ T with two immediate successors t1, t2 ∈ T such that:

|At1 |, |At2 | > 2n−b
n
p c+k.

According to what we saw above we have C1 = C2 = {0, ..., p − 1}. So for
l ∈ {1, 2} we have 〈(ρtl,i, νtl,i : i ∈ {0, ..., p− 1}〉 such that:

(α) {ρtl,i, νtl,i : i ∈ {0, ..., p− 1}} all have the same color in Mtl .
(β) dNn

p (ρtl,i, νtl,i) = i for all i < p.

Denote by m the number of quantifier free types of couples in the vocabulary

τ (actually in our case m = 2(2
4)). Note that m does not depend on p. So

for each l ∈ {1, 2}, {0, ..., p − 1} is deviled into m parts according to the type
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tpqf ((ρtl,i, νtl,i),Mtl). We claim that we can (a priori) choose p (large enough)
and q in such a way that we can find i1, i2, j1, j2 such that for each l ∈ {1, 2}:
(ρtl,il , νtl,il) and (ρtl,jl , νtl,jl) have the same quantifier free type in vocabulary τ in
Mtl , and on the other hand: q(i1, j1) 6= q(i2, j2). This is of course a contradiction
as the quantifier free type of (ρtl,il , νtl,il) and (ρtl,jl , νtl,jl) in vocabulary τk in Mtl

determines the value of R(ρtl,il , νtl,il , ρtl,jl , νtl,jl) in Ms and hance in McTrt
. But this

value is true iff q(il, jl) = 0 in contradiction with q(i1, j1) 6= q(i2, j2). Why can we
choose p and q as desired? For a given p the number of functions from {0, ..., p−1}2
to {0, 1} such that we can not choose as above (i.e. functions that ”respects” some
partition of {0, ..., p− 1} into m parts is the number of partitions mp ·mp, time the

number of functions that ”respect” that partition 2m·m, or 22p log(m)+m2

. The total

number of functions is 2p
2

. So if we choose (a priori) p such that p2 > 2p log(m)+m2

we can choose a function q as desired.

Assume now that the assumption of Case 1 does not hold. Assume also that

we have chosen n large enough such that 2b
n
p c−k > 4. In this case we can find

t0, t1, ..., td ∈ T such that :

• d ≥ 5.
• t0 = cTrt.
• td is a leaf of T.
• For 0 ≤ i < d, ti+1 is an immediate successor in T, of t1.
• For 0 ≤ i < d, denote by si+1 the immediate successor of ti different from

ti+1, then |Asi+1
| ≤ 2b

n
p c−k.

Note that for any 0 < i ≤ d:
⋃

0<j≤iAsj and Ati is a partition of AcTrt , and that

|AcTrt | = 2n. So we can find 0 < i∗ ≤ d such that |
⋃

0<j≤i∗ Asj |, |Ati∗ | > 2b
n
p c−k.

We proceed similarly to Case 1. As there we can find 〈(ρti∗ ,i, νti∗ ,i ∈ Ati∗ :
i ∈ {0, ..., p − 1}〉 that satisfy (α) and (β) above, and the same for 〈(ρi, νi : i ∈
{0, ..., p − 1}〉 where ρi, νi ∈

⋃
0<j≤i∗ Asj . Again let m denote the number of

quantifier free types of couples in the vocabulary τ . This time we want to choose
p and q in such a way that we can find: i, j1, j2 such that: (ρti∗ ,j1 , νti∗ ,j1) and
(ρti∗ ,j2 , νti∗ ,j2) have the same quantifier free type in vocabulary τ in Mti∗ , and on
the other hand: q(i, j1) 6= q(i, j2). Again this is a contradiction as the quantifier free
type of (ρti∗ ,jl , νti∗ ,jl) for l ∈ {1, 2} determines the value of R(ρti∗ ,jl , νti∗ ,jl , ρi, νi) in
McTrt

. Again this value is true iff q(i, jl) = 0 in contradiction with q(i, j1) 6= q(i, j2).
Why can we choose p and q as desired? For a given p the number of functions
from {0, ..., p − 1}2 to {0, 1} such that we can not choose as above is the number
of partitions mp, times the number of functions that ”respect” that partition 2m·p,
or 2p log(m)+m·p. So if we choose p such that p2 > p log(m) +m · p we can choose a
function q as desired. Note that the function we used for the second case will also
work for the first case so we can use one definition of q. In both cases we get a
contradiction and the proof is complete.

�
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