
DECISIVE CREATURES AND LARGE CONTINUUM

JAKOB KELLNER† AND SAHARON SHELAH‡

Abstract. For f > g ∈ ωω let c∀f ,g be the minimal number of uniform trees with g-splitting

needed to ∀∞-cover the uniform tree with f -splitting. c∃f ,g is the dual notion for the ∃∞-
cover.

Assuming CH and given ℵ1 many (sufficiently different) pairs (fε , gε) and cardinals κε
such that κℵ0

ε = κε , we construct a partial order forcing that c∃fε ,gε = c∀fε ,gε = κε .
For this, we introduce a countable support semiproduct of decisive creatures with big-

ness and halving. This semiproduct satisfies fusion, pure decision and continuous reading
of names.

1. Introduction

While there is extensive literature on separating various cardinal characteristics with
forcing, much less is known about forcing different values to many cardinal characteristics
simultaneously. In the paper Many simple cardinal invariants [?], Goldstern and the second
author construct a partial order P that forces pairwise different values to ℵ1 many instances
of the cardinal characteristic c∀f ,g, defined as follows:

Let f , g ∈ ωω (usually we have f (n) > g(n) for all n). An (f , g)-slalom is a sequence
S = (S (n))n∈ω such that S (n) ⊆ f (n) and |S (n)| ≤ g(n). A family S of (f , g)-slaloms is a
(∀, f , g)-cover, if for all r ∈

∏
n∈ω f (n) there is an S ∈ S such that r(n) ∈ S (n) for all but

finitely many n ∈ ω. c∀f ,g is the smallest size of a (∀, f , g)-cover.
In [?], plans to investigate the dual notion were announced as well (this investigation

was promised in a paper called 448a): A Family S of (f , g)-slaloms is an (∃, f , g)-cover, if
for all r ∈

∏
f there is an S ∈ S such that r(n) ∈ S (n) for infinitely many n ∈ ω. c∃f ,g is the

smallest size of an (∃, f , g)-cover.
In this paper, we assume that we have a sequence of ℵ1 many (sufficiently different)

pairs (fα, gα)α∈ω1 and cardinals (κα)α∈ω1 such that κℵ0
α = κα. We also assume CH. We then

construct a partial order preserving cardinals that forces c∃fα,gα = c∀fα,gα = κα for all α ∈ ω1.
So in particular, in the extension there are ω1 many different cardinals below the con-

tinuum, i.e. 2ℵ0 ≥ ℵω1 . Therefore we cannot use countable support iterations. When we
try to keep any c∀f ,g small during the iteration, we also have to avoid Cohen reals, so we
cannot use finite support iterations either. Instead, we use a subset of the countable support
product of lim-inf creature forcings Q∗∞.

Creature forcing in general is introduced in the monograph Norms on possibilities I:
forcing with trees and creatures [?] by Rosłanovski and the second author. We use the
same notation, but we do not assume that the reader is familiar with creature forcing and

Date: September 26, 2020.
2000 Mathematics Subject Classification. 03E17;03E40.
† partially supported by FWF grant P17627-N12.
‡ supported by the United States-Israel Binational Science Foundation (Grant no. 2002323), publication 872.

1

Paper Sh:872, version 2006-07-07 10. See https://shelah.logic.at/papers/872/ for possible updates.

2 JAKOB KELLNER AND SAHARON SHELAH

recall all the definitions that we use. The forcing of the proof in [?] can be interpreted as
creature forcing as well, more specifically as a lim-sup creature forcing.

The constructions for lim-inf creature forcing are generally more complicated than for
lim-sup, and [?] shows that such forcings can collapse ω1. We introduce the notion of
decisiveness. This additional assumption (in connection with bigness and halving) makes
the lim-inf forcing similar to Q∗f of [?], and in particular proper and ωω-bounding. It also
allows us to construct a countable support semiproduct of such lim-inf forcings, satisfying
fusion and pure decision and therefore properness, continuous reading of names and the
ωω-bounding property.

The theorems in this paper are due to the second author. The first authors contribution
was to fill in some details, to ask the second author to fill in other details, and to write the
paper.

2. lim-inf creature forcings

We will use lim-inf forcings made up of simple, forgetful, decisive creatures with big-
ness and halving.

Such forcings are defined by a parameter, the creating pair (K,Σ). (We will usually only
write K and assume that Σ is clear from the context.)

We have the following:

• a function H : ω→ ω \ {0},
• a strictly increasing function F : ω→ ω such that F(0) = 0,
• for every n ∈ ω a set K(n) such that each c ∈ K(n) has the form (val(c), nor(c), dist(c)),

where
– val(c) is a nonempty subset of

∏
F(n)≤i<F(n+1) H(i),

– nor(c) is a non-negative real number, and
– dist(c) ∈ ω.

• If | val(c)| = 1, then nor(c) = 0.

A c ∈ K(n) is called n-creature. The intended meaning of the n-creature c is the fol-
lowing: the set of possible values for the generic object

˜
η ∈

∏
i∈ω H(i) restricted to the

interval [F(n),F(n + 1) − 1] is the set val(c). nor(c) measures the amount of “freedom” the
creature c leaves on its interval. If c determines its part of the generic real (i.e. if val(c) is a
singleton) then nor(c) = 0 (i.e. c leaves no freedom).

We set K B
⋃

n∈ω K(n).
By some simple coding we could assume without much loss of generality that either

H(n) = 2 for all n ∈ ω or that F(n) = n for all n. In our application F(n) = n, i.e. an
n-creature lives on the singleton {n}.

We also have a function Σ : K→ P(K) satisfying:

• If c ∈ K(n) and d ∈ Σ(c) then d ∈ K(n).
• Σ is reflexive, i.e. c ∈ Σ(c).
• Σ is transitive, i.e. d ∈ Σ(c) and d′ ∈ Σ(d) implies d′ ∈ Σ(c).
• If d ∈ Σ(c) then val(d) ⊆ val(c) and nor(d) ≤ nor(c).
• Σ(c) is finite.

The intended meaning is that Σ(c) is the set of creatures that are stronger than c.
We say “K contains trunk-creatures” if for all c ∈ K and v ∈ val(c) there is a d ∈ Σ(c)

such that val(d) = {v}. It doesn’t make a real difference whether we assume this or not.
Even if we do not have trunk-creatures, we extend the definitions of nor, val and Σ to

Paper Sh:872, version 2006-07-07 10. See https://shelah.logic.at/papers/872/ for possible updates.

DECISIVE CREATURES AND LARGE CONTINUUM 3

q

val(p(2)) 3 q(2)

Σ(p(2)) 3 q(3)

>

Id

Id

F(2)

F(3)

F(4)

p

F(1)

Figure 1. q ≤ p, trnklg(p) = 2, trnklg(q) = 3.

sequences t ∈
∏

F(n)≤i<F(n+1) H(n) (to simplify notation later on): We set
nor(t) B 0, val(t) B {t}, t ∈ Σ(c) iff t ∈ val(c), s ∈ Σ(t) iff s = t.

A pair (K,Σ) as above is a creating pair as defined in [?, 1.2]. It satisfies the following
additional properties:

• finitary [?, 1.1.3]: H(n) and Σ(c) are always finite.
• simple [?, 2.1.7]: Σ is defined on single creatures only.1

• forgetful [?, 1.2.5]: val(c) does not depend on values of the generic real outside of
the interval of c.2

• nice and smooth [?, 1.2.5]: A technical requirement that is trivial in the case of
forgetful simple creating pairs.

In [?] two main cases of forcings are examined: creature forcings [?, 1.2.6] (defined by
a creating pair [?, 1.2.2]) and tree creature forcings [?, 1.3.5] (defined via a tree-creating
pair [?, 1.3.3]). So in this paper we deal with creature forcings.3

We now define the lim-inf forcing Q∗∞(K,Σ):

Definition 2.1. • A condition p ∈ Q∗∞(K,Σ) consists of a trunk t ∈
∏

i<F(n) H(i) for
some n and a sequence (ci)i≥n such that ci ∈ K(i) and lim(nor(ci)) = ∞.

We set trunk(p) B t, trnklg(p) B n, and

p(i) B

ci if i ≥ n,
t � [F(i),F(i + 1) − 1] otherwise.

• q ≤ p if trnklg(q) ≥ trnklg(p) and q(i) ∈ Σ(p(i)) for all i.

So in particular q ≤ p implies that trunk(q) extends trunk(p), see Figure 2.

1In non-simple creating pairs we can have something like d ∈ Σ({c1, c2}), e.g. c1 could live on the interval I1,
c2 on I2, and d is c1 and c2 “glued together”.

2In the general case, val(c) is defined as a set of pairs (u, v) where v ∈
∏

i<F(n+1) H(i) and u = v � F(n). The
intended meaning is that c implies: If the generic object

˜
η restricted to F(n) is u, then the possible values v for

˜
η � F(n + 1) are those v such that (u, v) ∈ val(c).
Then “c is forgetful” is defined as: If (u, v) ∈ val(c) and u′ ∈

∏
i<F(n) H(i) then (u′, v) ∈ val(c).

In the forgetful case val(c) and {v : (∃u) (u, v) ∈ val(c)} carry the same information. So for simplicity of notation
in this paper we call the latter set val(c).

3Actually every simple forgetful creating pair can be interpreted as tree-creating pair as well. The resulting
tree-forcing however is very different to the creature forcing: the creature forcing corresponds to the “homoge-
neous” trees only.

Paper Sh:872, version 2006-07-07 10. See https://shelah.logic.at/papers/872/ for possible updates.

4 JAKOB KELLNER AND SAHARON SHELAH

Remarks. • The requirement that |val(c)|= 1 implies nor(c) = 0 is not really needed,
we do however need nor(c) < M for some M (i.e. a uniform bound for all n-
creatures).

• If K contains trunk-creatures, then we could omit the trunks in the definitions
of Q∗∞. In contrast, in the definition of the product in section 5, the distinction
between the trunk and just a very small creature is essential.

• In [?] lim-sup creature forcings are used, defined as Q∗w∞ in [?, 1.2.6]. The lim-inf
case Q∗∞ is generally harder to handle, and [?] does not deal with them in a general
way.4 We will introduce additional assumptions to guarantee that Q∗∞ is proper
and ωω-bounding. (These assumptions we use will actually make Q∗∞ similar to
Q∗f of [?].)

Note that in general the generic filter G is not determined by the generic real
˜
η B⋃

p∈G trunk(p). This would be true in some special cases, e.g. if c is determined by val(c).5

But we will be interested in creating pairs with halving. In this case, dist(c) is relevant and
G is not determined by

˜
η.

3. bigness and halving, properness of Q∗∞

We will now introduce the properties that guarantee that Q∗∞ is proper.

Definition 3.1. Let 0 < r ≤ 1, k ∈ ω.
• c is (k, r)-big if for all F : val(c)→ k there is a d ∈ Σ(c) such that nor(d) ≥ nor(c)−r

and F � val(d) is constant.6

• K(n) is (k, r)-big if every c ∈ K(n) with nor(c) > 1 is (k, r)-big.
• c is r-halving,7 if there is a half(c) ∈ Σ(c) such that

– nor(half(c)) ≥ nor(c) − r, and
– if d ∈ Σ(half(c)) and nor(d) > 0, then there is a c′ ∈ Σ(c) such that

nor(c′) ≥ nor(c) − r and val(c′) ⊆ val(d).
(Note: this c′ generally is not in Σ(half(c)).)

• K(n) is r-halving, if all c ∈ K(n) with nor(c) > 1 have r-halving.

Facts. • If r′ is smaller than r, then (k, r′)-bigness implies (k, r)-bigness, and r′-
halving implies r-halving.

• c cannot be (| val(c)|, r)-big for any 0 < r < nor(c).

Theorem 3.2. Set ϕ(<n) B |
∏

i<F(n) H(i)| and r(n) B 1/(nϕ(<n)). If K(n) has (2, r(n))–
bigness and r(n)-halving, then Q∗∞(K,Σ) is ωω-bounding and proper.

The proof is similar to (but simpler than) the proof of Theorem 5.4, so we will not give
it here. We just mention the basic concept:

Definition 3.3. • q ≤n p means: q ≤ p, and there is an h ≥ n such that q � h = p � h
and nor(q(i)) ≥ n for all i ≥ h.

4There are good reasons for this: [?, 1.4.5] proofs that generally Q∗∞ can collapse ω1. In the rest of [?] Q∗∞
is only considered in a special case (incompatible with simple) where Q∗∞ is actually equivalent to other forcings
that are better behaved (cf. [?, p23 and 2.1.3]).

5To be more exact: If dist(c) is 0 for all c and nor(c) is a function of val(c) and val(d) ⊆ val(c) implies d ∈ Σ(c),
then the generic filter is determined by

˜
η.

6This is a variant of, but technically not quite the same as, [?, 2.2.1].
7Cf. [?, 2.2.7]. The original definition used nor(half(c)) ≥ nor(c)/2 instead of nor(c) − r, therefore the name

halving.

Paper Sh:872, version 2006-07-07 10. See https://shelah.logic.at/papers/872/ for possible updates.

DECISIVE CREATURES AND LARGE CONTINUUM 5

• If s ∈
∏

i<n F(p(i)), then q = s ∧ q is defined by trnklg(q) = max(n, trnklg(p)) and

q(i) B

s(i) if i < n
p(i) otherwise.

• Let
˜
τ be a name of an ordinal. q essentially decides

˜
τ, if there is an n such that

s ∧ q decides
˜
τ for all s ∈

∏
i<n val(q(i)).

It is clear that Q∗∞ satisfies fusion: If (pn)n∈ω satisfy pn+1 ≤n pn, then there is a pω such
that pω ≤n pn.

It also can be shown (as in the proof of Lemma 5.7) that Q∗∞ satisfies pure decision:
If p ∈ Q∗∞, n ∈ ω and

˜
τ is a Q∗∞-name for an ordinal, then there is a q ≤n p essentially

deciding
˜
τ.

Then properness and ωω-bounding follows as in the proof of Theorem 5.4 on page 5.

Remarks. The notions bigness and halving are not canonical in the sense that we could
modify many parameters and still get very similar properties (which still imply properness).
For example instead of subtracting r from the norm, we could multiply the norm with a
factor r < 1. We could always use ≤ instead of <. Instead of requiring halving (or bigness)
for all creatures with norm > 1, we could require it for all creatures with norm > r. (If K
contains trunk-creatures, we can require it for all creatures, since then creatures with norm
≤ r always have bigness and halving). Instead of requiring that we can un-halve every d
that has norm > 0, we could require it for creatures with norm at least 1.

4. decisiveness, properness of finite products

In this section, we fix a finite set I and for every i ∈ I a creating pair (Ki,Σi).
The product forcing

∏
i∈I Q

∗
∞(Ki,Σi) is equivalent to Q∗∞(KI ,ΣI), where the creating

pair is defined as follows: An n-creature c ∈ KI(n) corresponds to a sequence (ci)i∈I , where
ci ∈ Ki(n). val(c) B

∏
i∈I val(ci), nor(c) B min({nor(ci) : i ∈ I}), dist(c) B (dist(ci))i∈I , and

Σ(c) B {(di)i∈I : di ∈ Σ(ci)}.8

If each Ki(n) is r-halving, then KI(n) is r-halving as well: Set half(c) B (half(ci))i∈I . (If
d ∈ Σ(half(c)) and nor(d) > 0, then d = (di)i∈I)) and nor(di > 0), so we can un-halve every
di.)

However, to handle bigness we have to introduce a new notion:

Definition 4.1. Let 0 < r ≤ 1, k,K, n > 0.
• c is hereditarily (k, r)-big, if every d ∈ Σ(c) with nor(c) > 1 is (k, r)-big.
• c is (K, n, r)-decisive, if there are d−, d+ ∈ Σ(c) such that

nor(d−), nor(d+) ≥ nor(c) − r, | val(d−)| ≤ K and d+ is hereditarily (2Kn
, r)-big.

d− is called a “small successor”, d+ a “big successor” of c.
• c is (n, r)-decisive if c is (K, n, r)-decisive for some K.
• c is hereditarily (n, r)-decisive if every d ∈ Σ(c) with nor(c) > 1 is (n, r)-decisive.
• K(n) is (n, r)-decisive if every c ∈ K(n) with nor(c) > 1 is (n, r)-decisive.

8So an n-creature “lives” on the product
∏

i∈I [Fi(n),Fi(n+1)−1]. This does not fit our restrictive framework,
so we should just “linearize” the product. Assume I ∈ ω, i.e. I = {0, . . . , I − 1}. Set FI (n) B

∑
i∈I Fi(n) and write

it in the following way:

FI (0)
︸ ︷︷ ︸

F0(1)
︸ ︷︷ ︸

F1(1)
. . . ︸ ︷︷ ︸

FI−1(1) FI (1)
︸ ︷︷ ︸

F0(2)
. . .

Now it should be clear how to formally define HI , KI , ΣI etc. If we use the more general framework of [?], this
linearization is not necessary.

Paper Sh:872, version 2006-07-07 10. See https://shelah.logic.at/papers/872/ for possible updates.

6 JAKOB KELLNER AND SAHARON SHELAH

Facts. • If c is (K, n, r)-decisive, hereditarily (k, r)-big and nor(c) > 1 + r, then
k < K.

• If c is (n, r)-decisive (i.e. c is (K, n, r)-decisive for some K), then for every K ∈ ω
there is a d ∈ Σ(c) such that nor(d) ≥ nor(d) − r and either | val(d)| ≤ K or d is
hereditarily (2Kn

, r)-big.
• If c is hereditarily (n, r)-decisive and nor(c) > 1 + k · r, then there are d−, d+ ∈ Σ(c)

and K such that nor(d−) ≥ nor(c)− r, nor(d+) ≥ nor(c)− k · r, | val(d−)| ≤ K and d+

is hereditarily (L(k), r)-big, where L(1) = K and L(m + 1) = 2L(m)n
.

The last fact implies that decisiveness can be used to increase bigness:

Lemma 4.2. Assume c is hereditarily (n, r)-decisive and hereditarily (B, r)-big, and nor(c) >
1 + k · r. Then there is a hereditarily (L(k), r)-big d ∈ Σ(c) such that nor(d) ≥ nor(c) − k · r,
where L(0) = B and L(m + 1) = 2L(m)n

.

Lemma 4.3. Assume that k,m, t ≥ 1, 0 < r ≤ 1, c0, . . . , ck−1 ∈ K, and F satisfy the
following:

• nor(ci) > 1 + r · (k − 1),
• ci is hereditarily (k, r)-decisive and hereditarily (2mt

, r)-big, and
• F is a function from

∏
i∈k val(ci) to 2mt

.
Then there are d0, . . . , dk−1 ∈ K such that

• di ∈ Σ(ci),
• nor(di) ≥ nor(ci) − r · k, and
• F �

∏
i∈k val(di) is constant.

Proof. The case k = 1 is just the definition of (2mt
, r)-big (decisive is not needed). So

assume the lemma holds for k, and let us investigate the case k + 1.
ck is (k + 1, r)-decisive, i.e. there is an M such that ck is (M, k + 1, r)-decisive. This

implies that M > 2mt
. We call a creature d “small” if | val(d)| ≤ M, and “big” if d is

hereditarily (2M(k+1)
, r)-big (d cannot be both if nor(d) > 1).

We choose a sequence (di)i∈k+1 satisfying di ∈ Σ(ci) and nor(di) ≥ nor(ci)− r the follow-
ing way: For i < k let di be either small or big. If d0 is small, then choose dk to be big,
otherwise choose dk to be small. Set S B {i ∈ k + 1 : di is small}, and L B (k + 1) \ S .
(We have the freedom to choose, since ck is (M, k +1, r)-decisive.) So {L, S } is a non-trivial
partition of k + 1.

Set Y B
∏

i∈S val(di). |Y | ≤ M|S |. So we can write Y as {ȳ1, . . . , ȳM|S | }.
Define F∗ on

∏
i∈L val(di) by

F∗(x̄) B (F(x̄_ȳ1), . . . , F(x̄_ȳM|S |)).

So
| image(F∗)| ≤ | image(F)|M

|S |
≤ 2mt M|S | < 2M|S |+1

.

So we can apply the induction hypothesis to k′ B |L| < k + 1, m′ B M, t′ B |S | + 1 ≤
k + 1, F′ B F∗ and c′i B di for i ∈ L. This gives us (d′i)i∈L such that

• d′i ∈ Σ(di) ⊆ Σ(ci),
• nor(d′i) ≥ nor(di) − r · k′ ≥ nor(ci) − r(k + 1), and
• F∗ �

∏
i∈L val(d′i) is constant, say (F∗∗(ȳ1), . . . , F∗∗(ȳM|S |)).

So F∗∗ is a function from Y =
∏

i∈S val(di) into 2mt
. Now we apply the induction hypothesis

again, this time to k′′ B |S | < k + 1, m′′ B m, t′′ = t, F′′ B F∗∗, and c′′i B di for i ∈ S .
This gives us (d′i)i∈S such that

• d′i ∈ Σ(di) ⊆ Σ(ci),

Paper Sh:872, version 2006-07-07 10. See https://shelah.logic.at/papers/872/ for possible updates.

DECISIVE CREATURES AND LARGE CONTINUUM 7

• nor(d′i) ≥ nor(di) − r · k′′ ≥ nor(ci) − r(k + 1), and
• F∗∗ �

∏
i∈S val(d′i) is constant.

Then (d′i)i≤k is as required. �

Corollary 4.4. If every Ki(n) is (2, r)-big and (|I|, r)-decisive for all i ∈ I, then every
c ∈ KI(n) with nor(c) > 1 + r · |I| is (2, r · |I|)-big.

Proof. Assume F : val(c) → 2. val(c) =
∏

i∈I val(ci). Apply Lemma 4.3 for k = I, m = 1
and t = 1. �

Corollary 4.5. Set ϕ(<n) B max(|
∏

m<Fi(n) Hi(m)| : i ∈ I), and r(n) B 1/(nϕ(<n)).
Assume that for all i ∈ I and n ∈ ω, Ki(n) is (2, r(n)/|I|)-big, (|I|, r(n)/|I|)-decisive and
r(n)-halving. Then

∏
i∈I Q

∗
∞(Ki,Σi) is ωω-bounding and proper.

Proof.
∏

i∈I Q
∗
∞(Ki,Σi) = Q∗∞(KI ,ΣI). KI(n) is r(n)-halving and (2, r(n))-big according to

the last corollary. Now use Theorem 3.2. (Actually we have bigness only for creatures
with norm least 1 + r ≤ 2 and not 1, but this does not make any difference.) �

Remarks. • As usual, these notions are not canonical. One version of decisive (for
which Lemma 4.3 holds as well) requires d+ to be (2Kdnor(c)/re

, r)-big (this notion
does not use the parameter n). And of course we can e.g. substitute > 1 by > 0, or
≤ by < etc.

• Decisiveness is quite costly: The n-th level will generally have to be very large
compared to the levels before to achieve decisiveness as in the last corollary, i.e.
|
∏

i<Fi(n+1) H(i)| � |
∏

i<Fi(n) H(i)|. In our application this will have the effect that
we can separate (f , g) and (f ′, g′) only if their growth rate is considerably different.
It is very likely that with a more careful and technically more complicated analysis
one can construct forcings that can separate cardinal invariants for pairs that are
not so far apart, but this will have to use other concepts than decisiveness.

5. A semicountable support product

Fix a set I and for every α ∈ I a creating pair (Kα,Σα). Also, fix a natural num-
ber ndist(α, β) for every α , β ∈ I. We assume that ϕ(=n) is an upper bound for all
|
∏

Fα(n)≤m<Fα(n+1) Hα(n)|, and set ϕ(≤n) B
∏

m≤n ϕ(=m) and ϕ(<n) B
∏

m<n ϕ(=m).
We define a forcing P which is between the finite and the countable support product:

Definition 5.1. • P consists of conditions of the form p = (pα)α∈u for some count-
able u ⊆ I such that

– pα ∈ Q∗∞(Kα),
– if n > trnklg(pα), then nor(pα(n)) > 0,
– | supp(p, n)| < n for all n > 0, where we set

supp(p, n) B {α ∈ dom(p) : trnklg(pα) < n},

– moreover, limn→∞(| supp(p, n)|/n) = 0,
– limn→∞(normin(p, n)) = ∞, where we set

normin(p, n) B min({nor(pα(n)) : α ∈ supp(p, n)}),

– α , β ∈ supp(p,m) implies m ≥ ndist(α, β).
• q ≤ p if

– dom(q) ⊇ dom(p),
– if α ∈ dom(p), then trnklg(qα) ≥ trnklg(pα),
– trnklg(qα) = trnklg(pα) for all but finitely many α ∈ dom(p),

Paper Sh:872, version 2006-07-07 10. See https://shelah.logic.at/papers/872/ for possible updates.

8 JAKOB KELLNER AND SAHARON SHELAH

ωω ω

II I

ω

I
p q rs

supp

trunk

= q

= p

trunk trunk

supp

supp

nor>M

nor>Mnor>M

⊆ supp(p)

h

=

=
= q

Figure 2. q ≤ p, s ≤+
M p, r ≤new

M p as in 5.6(1)

– if α ∈ dom(p), then qα(n) ∈ Σ(pα(n)) for all n.

Note that q ≤ p implies nor(qα(n)) ≤ nor(pα(n)) but not normin(q, n) ≤ normin(p, n).
Figure 5 shows one way to visualize q ≤ p.

If I is finite and ndist ≡ 0, then P is just the product of Q∗∞(Kα). If I is countable, then P
can be partitioned according to the function α 7→ trnklg(pα) (modulo finite).

If ndist . 0, then conditions p and q with disjoint domains do not have to be compatible.
If ndist ≡ 0 , then such conditions are compatible (take the union and enlarge some stems
so that the | supp(p ∪ q, n)| < n requirement is satisfied).

Lemma 5.2. If J ⊆ I, then PJ = {p ∈ P : dom(p) ⊆ J} is a complete subforcing of P.

Proof. If p ∈ P, then p � J ∈ PJ . So if p ⊥ q ∈ PJ , then p ⊥ q ∈ P. Also, p � J is a
reduction of p: If q ≤ p, then q and p � J are compatible. �

Definition 5.3. • valΠ(p,≤n) B
∏

α∈dom(p)
∏

m≤n val(pα(m)), a set of size at most
ϕ(≤n)n.

• If w ⊆ dom(p) and t ∈
∏

α∈w
∏

0≤i<Fα(m+1) Hα(i), then t ∧ p is defined by

(t ∧ p)α(m) =

tα if m ≤ n and α ∈ w,
pα(m) otherwise.

So t ∧ p ∈ P, and if t ∈ valΠ(p,≤n), then t ∧ p ≤ p.
• If

˜
τ is a name of an ordinal, then p essentially decides

˜
τ, if for some m and every

t ∈ valΠ(p,≤m) the condition t ∧ p decides
˜
τ.

The following should be clear:

Facts. • If p ∈ P and n ∈ ω, then {t ∧ p : t ∈ valΠ(p,≤ n)} is predense under p.
• If q, q′ ∈ P such that dom(q′) = dom(q), val(q′α(h)) ⊆ val(qα(h)) for all α and h,

and q′α(h) = qα(h) for all α and all h larger than some n, then q′ ≤∗ q (i.e. q′

forces that q ∈ G. Note that in general q′ � q.) If q essentially decides
˜
τ, then q′

essentially decides
˜
τ.

Theorem 5.4. If K(n) is (n, r(n))-decisive, (2, r(n))-big and r(n)-halving, where

r(n) =
1

n · ϕ(<n)n ,

then P is proper and ωω-bounding.

Paper Sh:872, version 2006-07-07 10. See https://shelah.logic.at/papers/872/ for possible updates.

DECISIVE CREATURES AND LARGE CONTINUUM 9

The following notions and simple facts are used in the proof:

Definition 5.5. • r ≤old
M p, if there is an h ≥ M such that

– r ≤ p,
– if α ∈ dom(p), then trnklg(rα) = trnklg(pα),
– if α ∈ dom(p) and n < h, then pα(n) = rα(n),
– if α ∈ supp(p, n) and n ≥ h, then nor(rα(n)) ≥ M.

(We chose the name “old” because this property refers to dom(p) only.)
• r ≤new

M p, if
– r ≤ p,
– if n ∈ ω and α ∈ supp(r, n) \ dom(p), then nor(rα(n)) > M

and | supp(r,m)|/m ≤ 1/(M + 1).
• r ≤+

M p, if r ≤new
M p and r ≤old

M p.

The following shows that the “new” part of ≤+ is not really important.

Lemma 5.6. (1) If M ∈ ω and q ≤ p, then there is an r ≤ q such that r ≤new
M p and

rα(n) = qα(n) for α ∈ dom(p).
(2) If q ≤old

M p, then there is an r ≤ q such that r ≤+
M p.

(3) (Fusion) If (pm)m∈ω satisfies pm+1 <+
m pm then there is a (canonical) pω such that

pω ≤+
m pm for all m.

Proof. (1) r is constructed from q by extending the trunks at positions α < dom(p) to
sufficient length, see Figure 5.

(2) follows from (1).
(3) Set dom(pω) =

⋃
dom(pn). pωα (n) = pM

α (n), where M ≥ n is minimal such that
α ∈ dom(pM). pω ∈ P: Fix some k. Since pk ∈ P, there is an l such that normin(pk, n) > k
and | supp(pk, n)|/n < 1/k for all n > l. Since pk+1 ≤+

k pk, the same holds for pk+1, etc. So
normin(pω, n) > k and | supp(pω, n)|/n < 1/k for all n > l. The rest of the requirements for
being a condition of P are “local” and therefore satisfied by pω as well. �

All we need to prove Theorem 5.4 is

Lemma 5.7. If
˜
τ is a name of an ordinal, p ∈ P and M ∈ N, then there is a q ≤+

M p
essentially deciding

˜
τ.

Then the rest is the following standard argument:

Proof of Theorem 5.4. ωω-bounding: Let
˜
f be the name for a function fromω into ordinals

and p = p0 ∈ P. If pn is already constructed, choose pn+1 ≤+
n+1 pn essentially deciding

˜
f (n). In particular there is a finite set Fn of possibilities of

˜
f (n). So the fusion of the

sequence, pω, forces that
˜
f (n) ∈ Fn for all n ∈ ω.

This phenomenon is called “continuous reading of names for ω-sequences.”
In particular, if the image of f is a subset of ω, then g defined by g(n) = sup(Fn) is an

upper bound of
˜
f .

proper: Let N ≺ H(χ) contain p0, P. Let (
˜
τn)n∈ω be a list of the P-names of ordinals that

are in N. Choose (in N) pn+1 ≤+
n pn such that pn+1 essentially decides

˜
τn. Then pω ≤ p0 is

N-generic. (More specifically P satisfies Axiom A, which implies proper.) �

Proof of Lemma 5.7. Let
˜
τ be a name of an ordinal, p ∈ P, m ∈ ω. We have to show that

there is a q ≤+
m p essentially deciding

˜
τ.

Step 1: Assume we have a p ∈ P such that nor(pα(m)) > 2 for all m, α ∈ supp(p,m). In
this step we will define S (p,M) ≤ p for such a p and any M ∈ ω.

Paper Sh:872, version 2006-07-07 10. See https://shelah.logic.at/papers/872/ for possible updates.

10 JAKOB KELLNER AND SAHARON SHELAH

Set n B min({trnklg(pα) : α ∈ dom(p)}). Find the minimal h such that normin(p,m) >
M + 2 for all m ≥ h.

Enumerate valΠ(p,≤n) as s1, . . . , sN . Note that N ≤ ϕ(=n)n. Set p0 B p and M0 B
M + 2. Given pl−1 and Ml−1, we set Ml B Ml−1 − r(h) and find a pl ≤ pl−1 satisfying the
following for all α ∈ dom(p):

• trnklg(pl
α) = trnklg(pα).

• If m ≤ n then pl
α(m) = pα(m).

• If n < m < h, then nor(pl
α(m)) ≥ nor(pl−1

α (m)) − r(m).
• If m ≥ h, then nor(pl

α(m)) ≥ Ml.
• One of the following two cases hold:

dec: sl ∧ pl essentially decides
˜
τ, or

half: it is no possible to satisfy dec, then pl
α(m) = half(pl−1

α (m)) for all m > n
and α ∈ supp(pl−1,m).

So we first try to find a pl satisfying dec, only if this is not possible we halve pl−1
α .

We can construct such pl for all l ≤ N, since 2 − r(m) · N > 1 for all m > n. (Since
1 = r(m) · ϕ(<m)m · m > r(m) · N.)

In case “half” there is is no q ≤ sl ∧ pl essentially deciding
˜
τ such that trnklg(qα) =

min(n + 1, trnklg(p)) for all α ∈ dom(p):
Otherwise, pick an h′ such that normin(q,m) > Ml for m ≥ h′. We can “un-halve”

qα(m) for α ∈ supp(p,m), n < m < h′ to get q′α(m) ∈ Σ(pl−1
α (m)) such that nor(q′α(m)) >

nor(pl−1
α (m)) − r(m) and val(q′α(m)) ⊆ val(qα(m)). Define q′′ by

q′′α (m) B

q′α(m) if α ∈ dom(p) and n < m < h′,
qα(m) otherwise.

This q′′ essentially decides
˜
τ, which is a contradiction to the fact that we chose case “half”.

This construction defines an F :
∏

α∈supp(p,n) val(pα(n)) → {dec, half}. Each Kα(n) is
(n, r(n))-decisive and (2, r(n))-big, and | supp(p, n)| ≤ n. According to Lemma 4.3 there
are dα ∈ Σ(pα(n)) such that F �

∏
val(dα) is constant and nor(d) ≥ nor(pα(n)) − n · r(n).

Let h′ ≥ h + M be such that nor(pN
α (m)) > M + 1 and | supp(pN ,m)| < 1/M for all

m ≥ h′. Define S (p,M) by dom(S (p,M)) = dom(pN) and for α ∈ dom(S (p,N))

S (p,M)α(m) =


pα(m) if m < n and α ∈ dom(p),
dα if m = n and α ∈ dom(p),
pN
α (m) if α ∈ dom(p) or m > h′,

some s ∈ pN
α (m) otherwise.

If the constant value of F is “dec”, then we call S (p,M) deciding, otherwise we call
S (p,M) halving. We get

• If α ∈ supp(S (p,M),m) \ supp(p), then m > h, nor(S (p,M)α(m)) > M + 1, and
| supp(S (p,M),m)| < 1/M.

• If α ∈ dom(p), then trnklg(S (p,M)α) = trnklg(pα).
• If α ∈ dom(S (p,M)), then

nor(S (p,M)α(m)) ≥


nor(pα(n)) − n · r(n) if n = m and α ∈ dom(p),
nor(pα(m)) − ϕ(=n)nr(m) if α ∈ dom(p) and n < m < h,
M + 1 otherwise.

(For the last line, note that MN = M + 2 − ϕ(=n)n · r(h) > M + 1.)
• If S (p,M) is deciding then S (p,M) essentially decides τ.

Paper Sh:872, version 2006-07-07 10. See https://shelah.logic.at/papers/872/ for possible updates.

DECISIVE CREATURES AND LARGE CONTINUUM 11

• If S (p,M) is halving, then there is no q ≤ S (p,M) essentially deciding
˜
τ such that

trnklg(qα) ≤ min(n + 1, trnklg(pα)) for all α ∈ dom(p).
To see the last item, assume q is a counterexample. Since q ≤ S (p,M), there is an l ≤ N
such that sl ∈ valΠ(q,≤n). So sl ∧ q ≤ sl ∧ pl essentially decides

˜
τ, a contradiction.

Step 2: Now we show that S (p,M) is deciding (for any M). Assume towards a contra-
diction that S (p,M) is halving.

Recall that we set n = min(trnklg(pα)). Set pn = S (p,M). Assume that for some
l ≥ n we already defined pl such that there is no q ≤ pl essentially deciding

˜
τ such that

trnklg(qα) ≤ min(l + 1, trnklg(pα)) for all α ∈ dom(p).
We define pl+1 the following way: Enumerate valΠ(pl,≤l) as s1, . . . , sN . Note that N ≤

ϕ(≤l)l. Set pl,0 = pl. Given pl,k, set pl,k+1 B S (sk ∧ pl,k, l). pl,k+1 is halving (otherwise
pl,k+1 ≤ pl would essentially decide τ). Define pl+1 the following way: dom(pl+1) =

dom(pl,N), and

pl+1
α (m) =

pl
α(m) if m ≤ l and α ∈ dom(pl)

pl,N
α (m) otherwise.

Note that on level m > l we decrease the norms at most N times by ϕ(=l + 1)l+1r(m) or to
some value ≥ l + 1, so for α ∈ supp(pl+1,m) and some k we get:

nor(pl+1
α (m)) ≥


nor(pl

α(m)) if m ≤ l
nor(pl

α(m)) − ϕ(≤l)lr(m) if m = l + 1
nor(pl

α(m)) − ϕ(≤l + 1)l+1r(m) if l + 1 < m < k
l if m ≥ k.

(The last line holds because ϕ(≤ l + 1)l+1 · r(k) < 1.)
So no q ≤ pl+1 with trnklg(qα) ≥ min(l + 2, trnklg(pα)) for α ∈ dom(p) can essentially

decide
˜
τ.

Define q by dom(q) B
⋃

dom(pl) and qα(l) = pm
α (l) for α ∈ dom(pm) and l ≤ m. Let

q′ ≤ q ≤ p decide
˜
τ. Pick m such that trnklg(q′α) = trnklg(pα) for all α ∈ dom(p) with

trnklg(pα) ≥ m. Then q′ ≤ pm is a contradiction to the property of pm.
Step 3: Given p and M, we find an h > M such that normin(p,m) > 2 + M for all m ≥ h.

Enumerate valΠ(p,≤h − 1) as {s1, . . . , sN}. Set p0 = p, pm+1 B S (sm ∧ pm, n), and define q
by q(i) = p(i) for i < h and q(i) = pN(i) otherwise. Then q ≤+

M p essentially decides
˜
τ. �

Theorem 5.8. If g : ω→ ω is monotone and K(n) is (n, r(n))-decisive, (g(n) + 1, r(n))-big
and r(n)-halving (again, we set r(n) B 1/(n · ϕ(<n)n)), if p ∈ P, and

˜
r is a name of a real

such that
˜
r(n) < g(n), then there is a q ≤ p rapidly deciding

˜
r, i.e.: t ∧ q decides

˜
r(n) for

every t ∈ valΠ(q,≤n − 1).

Proof. The same proof as above works, with the following modification: Instead of q ≤ pi

essentially deciding
˜
τ, we look for q ≤ pi deciding

˜
s(n), so we get g(n) + 1 colors: g(n)

many possible decisions and half if a decision is not possible.
This gives a q ≤+

M p such that t ∧ q decides
˜
s(n) for every t ∈ valΠ(q,≤n − 1). �

Actually, each g(n) + 1 should be of the form 2mt
to be able to apply Lemma 4.3. How-

ever, this is not important: On the contrary, we can decide even more rapidly. Recall that
according to 4.2 we can increase bigness from e.g. B(n) to 2B(n)n

, assuming that the norm
of the creatures is not just > 1 but > 1 + r(n). For any m we can strengthen a condition (by
enlarging finitely many stems) such that nor(pα(n)) > m for all α ∈ supp(p, n).

Therefore we get:

Paper Sh:872, version 2006-07-07 10. See https://shelah.logic.at/papers/872/ for possible updates.

12 JAKOB KELLNER AND SAHARON SHELAH

Corollary 5.9. Set L(m) = mm and Lk(m) = L(Lk−1(m)). Fix k ∈ ω. If K(n) is (n, r(n))-
decisive, (g(n), r(n))-big and r(n)-halving , if p ∈ P, and

˜
r is a name of a real such that

˜
r(n) < Lk(g(n)), then there is a q ≤ p rapidly deciding

˜
r, i.e.: t ∧ q decides

˜
r(n) for every

t ∈ valΠ(q,≤n − 1).

Remarks. • Of course the assumptions here are once again not canonical. Instead
of
| supp(p, n)| < n we can require that | supp(p, n)| < k(n) for some function k : N→
N (usually we would want lim sup(k(n)) = ∞, otherwise we get “semi-atoms”).

• If this If k is a slow growing function, then r(n) can be chosen accordingly bigger
(so the bigness etc. is easier to satisfy). But such modifications would not help us
much to separate c∃f ,g for f , g that are closer together: As already mentioned, the
really wasteful part is decisiveness, which cannot be eliminated from this kind of
construction.

• Instead of lim(| supp(p, n)|/n) = 0 we could require e.g. lim(| supp(p, n)|2/n) = 0;
or lim(n−| supp(p, n)|) = ∞ (however then we cannot take the union of two condi-
tions with disjoint domains); or just have no additional condition to | supp(p, n)| <
n, then we again get “semi-atoms”.

• However, the proof for properness does not work any more if we change the
requirement that there is a bound on | supp(p,m)| or that q ≤ p implies that
trnklg(qα) = trnklg(pα) for all but finitely many α ∈ dom(p).

• Also, the parameters in the definition of halving and P have to be compatible in
the sense that we have to be able to un-halve everything not in the trunk.

6. A decisive creature with bigness and halving

Let us construct a concrete example of a suitable K(n) and Σ. We set F(n) B n for all
n, i.e. the n-creatures live on the singleton {n}. We fix natural numbers n, B and ϕ(<n).

Lemma 6.1. Set r B 1/(nϕ(<n)n). There are K(n) and Σ which are r-halving, (B, r)-big
and (n, r)-decisive such that nor(c) > n for some n ∈ K(n).

Without the last requirement the Lemma is trivial, just assume that nor(c) = 0 for all
c ∈ K, and read the definitions of halving, big and decisive. On the other hand, the last
requirement guarantees that we get a nontrivial Q∗∞ when we put together K(n) obtained
inductively by the Lemma.

Proof. Set Ψ(m) = 22m2

and a B 2
1
r = 2n·ϕ(<n)n

. So loga(2) = r.
The pre-pre-norm:

There is an J ∈ ω and a function preprenor on the powerset of J such that the following
holds:

(1) preprenor is monotone, i.e. if u1 ⊆ u2 then preprenor(u1) ≤ preprenor(u2).
(2) preprenor(∅) = 0, and preprenor(J) = an+1.
(3) If preprenor(u) = k + 1 then there is an M ∈ N and a sequence 0 = j0 < j1 < · · · <

jM such that M ≥ min(B,Ψ(j1 + n)) and preprenor(u ∩ [ji, ji+1 − 1]) ≥ k for all
i ∈ M.

Proof: For finite subsets u of ω define preprenor(u) ≥ k by induction on k: For all u set
preprenor(u) ≥ 0, and preprenor(u) ≥ 1 iff u is nonempty. preprenor(u) ≥ k + 1 iff (3) as
above holds. Then for every k there is an m such that preprenor(m) > k. Pick J such that
preprenor(J) = an+1.

Paper Sh:872, version 2006-07-07 10. See https://shelah.logic.at/papers/872/ for possible updates.

DECISIVE CREATURES AND LARGE CONTINUUM 13

The pre-norm:
For a subset c of 2J , we set

prenor(c) B max{preprenor(u) : u ⊆ J, c � u = 2u}.

(where c � u is {b � u : b ∈ c}). So d ⊆ c implies prenor(d) ≤ prenor(c). We will use the
following simple

Fact: Assume that M ∈ N, J a set, u ⊆ J, c ⊆ 2J , c � u = 2u, c =
⋃

i∈M ci, and that ui

(i ∈ M) are pairwise disjoint subsets of u. Then 2ui = ci � ui for some i ∈ M.
Proof: Otherwise, for all i ∈ M there is an ai ∈ 2ui \ (ci � ui). Let b ∈ 2u contain the

concatenation of these ai. Then b ∈ c � u, so b ∈ ci � u for some i ∈ M, and ai ∈ ci � ui, a
contradiction.

The creating pair:
We set H(m) = 2J . An n-creature c is a pair (c, k) such that c ⊆ 2J , k ∈ ω and k ≤
prenor(c)− 1. (More formally, we set val(c) = c and dist(c) = k.) nor(c) is determined from
(c, k) by nor(c) B loga(prenor(c) − k). For n-creatures c � (c, k) and d � (d, k′) we define
d ∈ Σ(c) by d ⊆ c and k′ ≥ k, or in other notation:

Σ(c) = {d ∈ K(n) : val(d) ⊆ val(c) and dist(d) ≥ dist(c)}.

(So this K(n) does not contain trunk creatures: for every n-creature (c, k), prenor(c) ≥
k + 1 ≥ 1, so |c| > 1.)

Halving:
Assume nor(c) > 1, i.e. prenor(c) − k > a > 2. We define

half(c, k) B (c, k + b(prenor(c) − k)/2c).

Note that loga(d(prenor(c) − k)/2e) ≥ nor(c, k) − loga(2) = nor(c, k) − r. Then

nor(half(c, k)) = loga(prenor(c) − k − b(prenor(c) − k)/2c) ≥ nor(c, k) − r.

If (d, k′) ∈ Σ(half(c, k)) and nor(d, k′) > 0, then

prenor(d) ≥ k′ + 1 ≥ k + b(prenor(c) − k)/2c + 1,

and we can un-halve (d, k′) to (d, k) ∈ Σ(c, k):

nor(d, k) = loga(prenor(d) − k) ≥ loga(b(prenor(c) − k)/2c + 1) ≥ nor(c, k) − r,

and val(d, k) = val(d, k′) = d.
Bigness:

Let (c, l) be an n-creature and nor(c, l) = x+ r ≥ r. Let u ⊆ J witness prenor(c) = ax+r + l =

2ax + l. So there is an increasing sequence (ji)i∈M+1 such that M ≥ min(B,Ψ(j1 + n)) and

preprenor(u ∩ [ji, ji+1 − 1]) ≥ 2ax + l − 1 ≥ ax + l

for all i ∈ M (if x > 0, the last inequality is strict).
Take any F : c → M. Then c =

⋃
i∈M F−1{i}. According to the Fact above there is an

i ∈ M such that F−1{i} � ui = 2ui for ui B u ∩ [ji, ji+1 − 1]. We set d B F−1{i} ⊆ c. Then
nor(d, l) ≥ loga(ax) = x = nor(c, l) − r (and if x > 0, then nor(d, l) > nor(c, l) − r). This
shows that (c, l) is (M, r)-big.

Decisiveness:
Pick (c, l) ∈ K(n) such that nor(c, l) = x + r ≥ r. As above there is a witness u ⊆ J, M and
(ji)i∈M+1. Set u− B u ∩ [j0, j1 − 1]. Let d− ⊆ c contain for every a ∈ 2u− exactly one b ∈ c
such that b � u− = a. Then |d| ≤ 2 j1 C K and (as above) nor(d−, l) ≥ nor(c, l) − r (and >,
if x > 0).

It is enough to show that there is a hereditarily (2Kn
, r)-big d+ ∈ Σ(c).

Paper Sh:872, version 2006-07-07 10. See https://shelah.logic.at/papers/872/ for possible updates.

14 JAKOB KELLNER AND SAHARON SHELAH

Let F : c → 2 j1 < M map b to b � j1. So as above there is an i < M such that
F−1{i} � ui = 2ui for u′ B u ∩ [ji, ji+1 − 1]. Obviously i , 0. Set d+ B F−1{i}, and
d+ = (d+, l). Pick any (d′, l′) ∈ Σ(d+, l). Let prenor(d′) be witnessed by u′,M′, (j′i)i≤M′ .
Then u′ ∩ j1 = ∅ (since every b ∈ d′ has the same b � j1). So j′1 > j1, and (by the same
argument as above) d′ is (Ψ(j1 + n), r)-big. This finishes the proof, since

Ψ(j1 + n) = 22(j1+n)2

≥ 22 j1 ·n
= 2(2 j1)n

= 2Kn
. �

If we use this construction to iteratively build a creating pair (K(n))n∈ω with bigness
etc., then H will be a very fast growing function: The J of this construction is a quite large
number (in dependence on the triple (n, ϕ(<n), B). (An upper bound can be given as nested
iterations of Ψ.) H(n) = 2J .

Of course we can find creatures K(n) with the same bigness etc. for any larger H(n) as
well: Just map 2J into H(n), and ignore all the elements of val(c) that are not in the image.

7. Many cardinal invariants

Definition 7.1. • Let f , g ∈ (ω\1)ω. A function S with domain ω is an (f , g)-slalom
if S (n) ⊆ f (n) and |S (n)| ≤ g(n) for all n ∈ ω.

• Let S be a family of (f , g)-slaloms.
S is an (∃, f , g)-cover, if for all η ∈

∏
n∈ω f (n) there is a S ∈ S such that

η(n) ∈ S (n) for infinitely many n.
S is a (∀, f , g)-cover, when the same is true when “infinitely many” is replaced

by “all but finitely many”.
• c∃f ,g B min{|S| : S is an (∃, f , g)-cover};

c∀f ,g B min{|S| : S is a (∀, f , g)-cover}.

For example, if f ≡ 2 and g ≡ 1, then c∀f ,g = 2ℵ0 and c∃f ,g = 2. However, if (∀n)(∃m) f (m) >
n · g(m), then simple diagonalization shows that 2ℵ0 ≥ c∀f ,g ≥ c∃f ,g ≥ ℵ1.

Let (fn,l)n∈ω,−1≤l≤n, and (gn,l)n∈ω,0≤l≤n be natural numbers such that 0 = f0,−1 and (for
n ∈ ω) fn+1,−1 = fn,n and fn,l−1 < gn,l < fn,l. I.e. we have:

0 = f0,−1
g0,0 f0,0

g1,0 f1,0 g1,1 f1,1
. . .

Moreover we require that gn,l+1 ≥ f 3n
n,l , and that fn,l is larger than 2J , where J is calculated

from (n, f n−1
n−1 (n − 1), gn,l) as described in the last paragraph of the last section. (So fn,l is

much larger than gn,l.)
Let J be of size ℵ1, and choose (hε)ε∈J such that hε(m) ≤ m and for all ε , ε′ there is

an n such that hε(m) , hε′ (m) for all m ≥ n.9

For ε ∈ J , set fε(n) B fn,hε (n) and gε(n) B gn,hε (n). We set fmax(m) B fm,m.

Theorem 7.2. Assume CH. Let J be of size ℵ1 and choose for all ε ∈ J a cardinal κε
such that κε = κℵ0

ε . Let (fε , gε) be as above. Then there is a proper, ℵ2-cc partial order P
which forces that c∃fε ,gε = c∀fε ,gε = κε for all ε ∈ J .

Set I =
∑
ε∈J κε , and call the κε-part Iε (i.e. I is the disjoint union

⋃
Iε and |Iε | = κε). We

will always use ε, ε′, ε1, . . . for the elements of J (corresponding to the ℵ1 many cardinal
invariants), and α, β, . . . for elements of I (the index set of the product).

9 This is possible, since for all k : ω→ ω with limn→∞ k(ω) = ∞ and all countable F ⊆
∏

n∈ω k(n) there is a
g ∈

∏
n∈ω k(n) such that for all f ∈ F there is an m ∈ ω such that f (n) , g(n) for all n > m.

Paper Sh:872, version 2006-07-07 10. See https://shelah.logic.at/papers/872/ for possible updates.

DECISIVE CREATURES AND LARGE CONTINUUM 15

Definition 7.3. • ε(α) is the (unique) ε ∈ J such that α ∈ Iε .
• For ε1 , ε2 ∈ J we set ndist(ε1, ε2) to be the least n such that fε1 (m) , fε2 (m) for

all m ≥ n; and we set ndist(ε, ε) = 0 for all ε ∈ J .
For α, β ∈ I we set ndist(α, β) B ndist(ε(α), ε(β)).
Similarly for ε′ ∈ J , α ∈ I we set ndist(α, ε′) = ndist(ε′, α) = ndist(ε(α), ε′).

By induction on first n ∈ ω and then the finitely many values fε(n) (ε ∈ J) we choose
creating pairs (Kε(n),Σε) satisfying the following:

Lemma 7.4. (1) Fε(n) = n,
(2) Hε(n) = fε(n),
(3) Kε(n) is (gε(n), r(n))-big, r(n)-halving and (n, r(n))-decisive, where

r(n) B
1

n · (ϕ(<n)n ϕ(<n) B
∏
m<n

ϕ(=m) and ϕ(=m) B {max fε(m) : ε ∈ J}.

For every α ∈ I, we set Kα B Kε(α), fα B fε(α) and gα B gε(α). So ϕ(<n) and r(n)
satisfy the definitions of Theorems 5.4 and 5.8.

Lemma 7.5. (CH)
(1) P is ωω-bounding, proper and has continuous reading of names.
(2) P is ℵ2-cc.

So in particular (1) and (2) imply that P does not change any cardinality or cofinality.

Proof. (1) is just Theorem 5.4. For (2) assume towards a contradiction that A is an an-
tichain of size ℵ2. Note that when we fix enumerations {α0, α1, . . . } of all dom(p), then
there are only ℵ1 many possibilities for the sequence (ε(αn), trnklg(pαn))n∈ω (lets call this
sequence “type of p” for now). Without loss of generality {dom(p) : p ∈ A} forms a ∆-
system with root u (by the ∆-system lemma and CH). Also we can assume that all p � u
are the same and that the types of all p � (I \ u) are the same. So pick p , q ∈ A.
Let n be such that | supp(p,m) ∪ supp(q,m)| < m for all m ≥ n. Extend the stems
in p up to n and call the result p′. Then p′ ∪ q ≤ p, q: lim(| supp(p′ ∪ q, n)|/n) ≤
lim(| supp(p, n)|/n)+ lim(| supp(q, n)|/n) = 0. Assume that α , β ∈ supp(p′∪q, n), and that
α ∈ dom(p) \ u and β ∈ dom(q) \ u. Then there is a β′ ∈ supp(p, n) such that ε(β′) = ε(β)
and trnklg(pβ′) = trnklg(qβ) (since the type of p � (I \ u) is the same as of q � (I \ u)). So
ndist(α, β) = ndist(α, β′) < n. �

We note some trivial consequences of Lemma 7.4:

Corollary 7.6. (1) If fε′ (n) > fε(n), then Kε′ (n) is (fε(n), r(n))-big.
(2) Kε′ (n + 1) is (fε(n), r(n))-big for all ε, ε′ ∈ J .
(3) If fε′ (n) > fε(n), then gε′ (n) ≥ ϕ(<n)n · f n

ε (n).
(4) fε(n + 1) ≥ ϕ(=n).
(5) If fε′ (n) > fε(n), and c ∈ Kε′ (n) such that nor(c) > 1 + 3 · r(n), then there is a

hereditarily (fε(n)ϕ(<n)n fε (n), r(n))-big d ∈ Σ(c) with nor(d) > nor(c) − 3 · r(n).

Proof. (1) and (2) Kε′ (n) is gε′ (n)-big, and gε′ (n) > fε(n) and gε′ (n) > fε′′ (n − 1).
(3) and (4) follow from the initial construction of the fi, j and the fact that gi,l+1 ≥ f 3i

i,l .
For (5), use 4.2. �

Corollary 7.7. We can rapidly read (fε , gε)-slaloms
˜
S : If ε ∈ J , if

˜
S is a P-name for an

(fε , gε)-slalom, and if p ∈ P, then there is a q ≤ p such that s ∧ q decides
˜
S (n) for all

s ∈ valΠ(q,≤ n). The analog holds for names
˜
r such that

˜
r(n) ≤ fε(n).

Paper Sh:872, version 2006-07-07 10. See https://shelah.logic.at/papers/872/ for possible updates.

16 JAKOB KELLNER AND SAHARON SHELAH

Proof. This follows from 5.9, noting that there are less than fε(n) fε (n) many possibilities
for

˜
S (n), and that each Kα(n + 1) is (fε(n), r(n))-big. �

Now we will show that P forces

κε ≤ c∃fε ,gε ≤ c∀fε ,gε ≤ κε .

Lemma 7.8. P forces c∀fε ,gε ≤ κε .

Proof. Recall that Iε B {α ∈ I : ε(α) = ε} and set Pε B {p ∈ P : dom(p) ⊂ Jε}. Pε is a
complete subforcing of P. Since every Pε-name of a real can be read continuously, every
real in the Pε-extension corresponds to a condition in Pε . There at most κℵ0

ε = κε many
such conditions.

We will show that in a P-extension V[G], the set of slaloms that are in the Pε-extension
V[G ∩ Pε] are a (∀, fε , gε)-cover.

Let p0 ∈ P and
˜
r be a P-name for a real such that

˜
r(n) < fε(n). So there is an p ≤ p0

rapidly reading
˜
r, i.e. c ∧ p decides

˜
r(n) for all s ∈ valΠ(p,≤n). We can assume that

nor(pα(n)) > 3 for all α ∈ supp(p, n). It is sufficient to find a q ≤ p and to define a
Pε-name

˜
S of an (fε , gε)-slalom such that q forces:

˜
r(n) ∈

˜
S (n) for all but finitely many

n ∈ ω.
Fix m ∈ ω. Set M B supp(p,m) ∩ Iε . (M stands for “medium”.) If α ∈ supp(p,m) \ M,

then m > ndist(α, ε), i.e. either fα(m) < fε(m) (in this case we set α ∈ S for “small”) or
fα(m) > fε(m) (then we set α ∈ L for “large”). So supp(p,m) is partitioned into S , M and
L.

The name
˜
r defines a function

F : valΠ(p, <m) ×

 ∏
α∈S∪M∪L

val(pα(m))

→ fε(m).

Assume L is nonempty. |
∏

α∈S∪M val(pα(m))| ≤ Hε(m)m = fε(m)m. So we can rewrite
F as

F′ :
∏
α∈L

val(pα(m))→ fε(m)ϕ(<m)m fε (m)m
.

According to 7.6(5), there are sufficiently large qα(m) ∈ Σ(pα)(m) such that F′ restricted
to

∏
α∈L val(qα(m)) is constant. This defines a q ≤ p (set qα(m) = pα(m) if α < L).

So given t̄ ∈
∏

α∈M val(qα(m)), t ∧ q has at most

ϕ(<m)m ·
∏
α∈S

val(pα(m)) ≤ ϕ(<m)m · f m
ε′ < fε(m)

possibilities for
˜
r (for a suitable ε′). We call this set of possibilities

˜
S (m). Since M ⊆ Iε ,

˜
S

can be interpreted as Pε-name of an (fε , gε)-slalom, and q forces that
˜
r ∈

˜
S (n). �

Lemma 7.9. κε ≤ c∃fε ,gε .

Proof. Assume towards a contradiction that p forces that
˜
S is an (∃, fε , gε)-cover, ℵ1 ≤

λ < κε and
˜
S = {

˜
S α : α ∈ λ}.

For every α, the set of p′ ≤ p which continuously (and even rapidly) reads
˜
S α is pre-

dense under p. Because of ℵ2-cc, we can find a set Dα of such p′ which is predense under
p and has size ℵ1. So the union of all Dα for α ∈ λ has size λ, and J =

⋃
α∈λ,p′∈Dα

dom(p′)
has size λ as well. Since |Iε | = κε > λ, there is a β ∈ Iε \ J. Fix this β.

Let q0 ≤ p decide the α such that
˜
ηβ(n) ∈

˜
S α(n) for infinitely many n. We set

˜
S B

˜
S α.

Let q ≤ q0 be stronger than some p′ ∈ Dα, and let nor(qα(m)) > 10 for all α ∈ supp(q,m).

Paper Sh:872, version 2006-07-07 10. See https://shelah.logic.at/papers/872/ for possible updates.

DECISIVE CREATURES AND LARGE CONTINUUM 17

c0α0

S K0
��

c0α1

B ≥K0��

. . . c0αm
= c0β

B ≥K0��

. . . c0α|A|−2

B ≥K0��

c0α|A|−1

B ≥K0��
dα0 c1α1

S K1
��

. . . c1αm

B ≥K1��

. . . c1α|A|−2

B ≥K1��

c1α|A|−1

B ≥K1��

dα1

...

B ≥Km−1

��

...
...

cmαm

S Km=K
��

. . .
...

...

dαm = dβ . . .
...

S K|A|−2

��

...

B ≥K|A|−2

��
dα|A|−2 dα|A|−1

Figure 3.

We will show that we can strengthen q to a q′ such that for all n > trnklg(qβ) the generic

˜
ηβ(n) < fη(n) (determined by q′β(n)) runs away from every possibility of

˜
S (n) (determined

by q′α(m) for m ≤ n and α , β). So we get a contradiction.
Fix an n > trnklg(qβ). Set A B supp(q, n). Without loss of generality, β ∈ A and |A| ≥ 2.

According to the definition of P, |A| ≤ n.
Set c0α B qα(n) for α ∈ A. Assume we already have (clα)α∈A and a list (αk)k<l of elements

of A. clα is (Kl
α, n, r(n))-decisive for some Kl

α. Set Kl B min({Kl
α : α ∈ A \ {α0, . . . , αl−1}}),

and choose αl such that Kl
αl

= Kl. Pick a Kl-small successor of clαl
and call it dα. For

α ∈ A \ {α0, . . . , αl}, pick a Kl-big successor of clα and call it cl+1
α . Cf. Figure 7. Iterate

this construction |A| − 1 times. So there remains one α that has not been listed as an αl, set
α = α|A|−1 and dα = c

|A|−1
α .

Let m be such that β = αm, and set K B Km, S B {αl : l < m} and L B {αl : l > m}. So
A is partitioned into the three parts {β}, S and L. (S or L could be empty), and we get:

• dα ∈ Σ(qα(n)).
• nor(dα) ≥ nor(qα(n)) − n · r(n).
• Kl+1 > 2Kl

n
, since cl+1

αl+1
is hereditarily 2Kl

n
-big and | val(dαl+1)| ≤ Kl+1.

• dβ is 2Km−1
n
-big (and gε(n)-big), and | val(d)| ≤ K.

•
∏

α∈S | val(dα)| ≤ Km−1
n ≤ log2(K).

• If α ∈ L, then dα is 2Kn
-big.

˜
S (n) is determined by valΠ(q, <n)

∏
α∈S∪L val(qα(l)), since q ≤ p′ ∈ Dα and β < dom(p′).

We actually are only interested in the part of
˜
S (n) that is compatible with q′, i.e.

˜
S (n)∩ dβ.

This part has size ≤ K. So we get a function

F : valΠ(q, <n) ×

∏
α∈S

val(dα)

 × ∏
α∈L

val(dα)

→ (
K

gε(n)

)
.

Paper Sh:872, version 2006-07-07 10. See https://shelah.logic.at/papers/872/ for possible updates.

18 JAKOB KELLNER AND SAHARON SHELAH

Step 1: Assume L is non-empty (otherwise continue at step 2). Note that
(

K
gε (n)

)
≤ Kgε (n)

and ϕ(<n) < gε(n) < K. So we can rewrite F as

F′ :
∏
α∈L

val(dα)→ KK·log2 K

Since dα is decisive and (hereditarily) 2Kn
-big for α ∈ L, we can assume without loss of

generality that F′ is constant (cf. 4.2).
Step 2: So we can rewrite F as

F′′ : valΠ(q, <n) ×

∏
α∈S

val(dα)

→ (
K

gε(n)

)
The image of F′′ has size at most ϕ(<n)n ·Km−1

n. Since d is 2Km−1
n
-big as well as gε(n)-big,

and since gε(n) ≥ ϕ(<n)n we can assume that val dβ is disjoint to the image of F′′ (again,
use 4.2). This gives a contradiction. �

Remarks. • The proofs above show the simultaneous independence of c∃f ,g for a
certain families of f , g with very different growth behavior. On the other hand,
simple ZFC results show that c∃f ,g cannot be separated from c∃f ′,g′ if (f , g) and
(f ′, g′) are too similar, cf. e.g. [?].

• Our proofs leave some freedom and could be “optimized” to get the independence
result for slightly more families. However, the methods of this paper will not
yield “sharp” results like the following: Either (f , g) and (f ′, g′) are in a relation
provable in ZFC, or can be separated. The reason is that decisiveness is waste-
ful, i.e. we have to assume that f (n) is much bigger than g(n). There are other
methods that seem promising for obtaining sharper results. Good candidates seem
“products with memory” (i.e. mixtures between products and iterations).

References

Kurt Gödel Research Center for Mathematical Logic, Universität Wien, Währinger Straße 25, 1090
Wien, Austria

Email address: kellner@fsmat.at
URL: http://www.logic.univie.ac.at/∼kellner

Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem,
Jerusalem, 91904, Israel, and Department of Mathematics, Rutgers University, New Brunswick, NJ 08854,
USA

Email address: shelah@math.huji.ac.il
URL: http://shelah.logic.at/

Paper Sh:872, version 2006-07-07 10. See https://shelah.logic.at/papers/872/ for possible updates.

	1. Introduction
	2. lim-inf creature forcings
	3. bigness and halving, properness of Q*
	4. decisiveness, properness of finite products
	5. A semicountable support product
	6. A decisive creature with bigness and halving
	7. Many cardinal invariants
	References

