
PRESERVING PRESERVATION

JAKOB KELLNER† AND SAHARON SHELAH‡

Abstract. We prove that the property “P doesn’t make the old reals Lebesgue null” is preserved under
countable support iterations of proper forcings, under the additional assumption that the forcings are nep (a
generalization of Suslin proper) in an absolute way. We also give some results for general Suslin ccc ideals.

§1. Introduction. Let us consider the following

Hypothesis 1: Let (Pβ,
˜
Qβ)β<ε be a countable support iteration of proper

forcings (ε a limit) such that each Pβ (β < ε) forces that the set of old reals
X B V ∩ 2ω remains Lebesgue positive. Then Pε forces this as well.

The main result of this paper (9.4) is that hypothesis 1 is true under some additional
(relatively mild) requirements on the Pβ. It seems that such requirements are needed
(this is argued in section 4).

Preservation theorems of this kind have proven to be extremely useful in indepen-
dence proofs. Hypothesis 1 specifically is used in the proof of the following two theo-
rems of [9]:

It cannot be decided in ZFC whether every superposition-measurable func-
tion is measurable. (A function f : R2 → R is superposition-measurable,
if for every measurable g : R → R the superposition function fg : R → R,
x 7→ f (x, g(x)) is measurable.)

and (von Weizsäcker’s problem):

It cannot be decided in ZFC whether for every f : R→ R there is a contin-
uous function g : R→ R such that {x ∈ R : f (x) = g(x)} is of positive outer
measure.

Forcing is a very general method for proving independence results, i.e., results of
the form “formula ϕ is neither provable nor refutable in ZFC”. Forcing gives a method
for modifying a given set-theoretical universe V to a new universe V ′ in which some
formula ψ is guaranteed to hold. In a forcing argument (for example, to violate CH) one
typically has to
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• change the universe (by adding generic objects, in the ¬CH example ℵ2 many
reals), and

• preserve certain properties of the universe (e.g. we have to guarantee that ω1 and
ω2 remain cardinals).

In the ¬CH example, preservation can be guaranteed by the countable chain condition
(ccc). If a forcing P is ccc, then it is very “well behaved” in the sense that it preserves
many properties of the universe. In particular all cardinalities are preserved.

In a (transfinite) forcing iteration (e.g. to create a world without Suslin trees) one
typically has to

• change the universe in successor stages (pick a tree and kill it),
• preserve properties of the universe in successor stages (use a ccc forcing),
• make sure that preservation still works in limit stages, and
• use some bookkeeping (make sure that in stage ω2 all trees are dead).

In the Suslin tree example, preservation at limits is guaranteed by the following iteration
(or: preservation) theorem:

The finite support iteration of ccc forcings is ccc.
Historically [14] this was the first theorem of its kind, and it still is of central importance
in forcing applications.

However, in many cases finite support iterations are not the right tool. For example,
they always add Cohen reals at steps of countable cofinality. While Cohen reals are
“harmless” in some respects (Cohen forcing is ccc, and in this sense well behaved),
they do change the universe dramatically in some other respects. For example, a Cohen
real makes the set of old reals (i.e. 2ω ∩ V) Lebesgue null. So if we want to preserve
positivity of the old reals we cannot use finite support iterations.

The most popular alternative to finite support iterations of ccc forcings are countable
support iterations of proper forcings. A forcing P is proper if (for some large regular χ)

for all countable elementary submodels N of H(χ) and all p ∈ P ∩ N
there is a condition q ≤ p forcing that GP is N-generic.

(GP is N-generic if for all dense P-subsets D ∈ N, GP ∩ D ∩ N is nonempty.)
Again, properness implies that P is well behaved in some respects (in particular, ω1 is
not collapsed). Also, we have the following central preservation theorem:

Properness is preserved under countable support iterations.
In addition to this basic theorem, there are numerous additional properties that are pre-
served in limit steps as well. For example, countable support iterations of proper forc-
ings that are ωω-bounding (or that satisfy the Laver or Sacks property) are ωω-bounding
again (or satisfy the Laver or Sacks property, respectively). Actually, these three prop-
erties are instances of a class which we call tools-preserving (see 7.1). All these prop-
erties are preserved under countable support iterations of proper forcings (see section 7
for details).

In this paper, we ask: Is the property

Forcing with P leaves the set of old reals Lebesgue positive(P1)

preserved under countable support iterations of proper forcings? (I.e. is Hypothesis
1 true)? It seems that the answer is (consistently) no, but a full counterexample is
difficult. Instead we give in section 4 a counterexample to the following more general
(i.e. stronger) iteration theorem:
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Hypothesis 2: Assume X has positive outer measure. Then the following property is
preserved by countable support iterations of proper forcings:

Forcing with P leaves the set X positive.
So P1 does not seem to be iterable. The Lebesgue version of tools-preserving (9.2)

is an iterable property that implies P1. In this paper we show (in sections 6 and 9) that
the following property P2 implies Lebesgue-tools-preservation:

ZFC proves that P is nep and satisfies P1.(P2)

So the iteration of forcings satisfying P2 satisfies Lebesgue-tools-preservation and there-
fore P1.

Non-elementary proper forcing (nep) has been introduced in [13]. It is a generaliza-
tion of Suslin+ (introduced in [2]), which in turn is a generalization of Suslin proper. For
example, Cohen, random, amoeba and Hechler forcing are Suslin ccc, Mathias forcing
is Suslin proper, Laver, Miller and Sacks forcing are Suslin+. An introduction to transi-
tive nep forcing and Suslin ccc ideals can be found in [7].

We will investigate not only the Lebesgue ideal, but general Suslin ccc ideals (such
as the meager ideal) as well. The case of the meager ideal has already been solved by
Goldstern and Shelah in [12, Lem XVIII.3.11, p.920].

Annotated contents.
Section 2, p. 3: We recall the definition and basic properties of Suslin ccc ideals,

the corresponding notions of positivity and outer measure, and the Cohen and
random algebras on 2κ.

Section 3, p. 8: We define preservation of positivity and of outer measure, and list
some basic properties.

Section 4, p. 11: We give a “partial counterexample” to hypothesis 1. To be more
exact: We show that Hypothesis 2 is consistently false.

Section 5, p. 13: We introduce true preservation (of positivity and of outer measure),
a notion using the stationary ideal on [κ]ℵ0 . We show that these notions are re-
lated to (strong) preservation of generics. Apart from definition 5.9, this section
is not required for the main result 9.4.

Section 6, p. 18: We prove that under certain assumptions, preservation of positivity
implies strong preservation.

Section 7, p. 24: We recall the “Case A” or “tools” preservation theorem for count-
able support iterations of proper forcings.

Section 8, p. 25: We review the case of the meager ideal.
Section 9, p. 26: We deal with the case of the Lebesgue ideal and show that strong

preservation is equivalent to Lebesgue-tools-preservation, and that therefore
strong preservation is preserved in countable support iterations.

Diagrams of implications (for the general case, as well as for meager and Lebesgue
null) can be found on pages 29 and 30.

§2. Notation and Basic Results. In this paper, the notion N ≺ H(χ) always means
that N is a countable elementary submodel.

Forcings are written downwards, i.e. q < p means q is a stronger condition than p.
Usually, the symbols for stronger conditions will be chosen lexicographically bigger
than those for weaker conditions.
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Names for objects in the forcing extension are usually written with a tilde below, such
as

˜
τ. The standard name for an object x ∈ V is denoted by x̌. The name of the generic

filter however (as well as a generic filter itself) will usually be called G (or e.g. GP if we
want to stress the forcing P).

ro(Q) denotes the complete Boolean algebra of regular open sets of Q.
We will fix a Suslin ccc ideal I (Suslin ccc ideals are defined in 2.2). We will use the

phrases “null”, “measure 1” or “outer measure 1” for every such I, even if I is not related
to a measure. This seems more intuitive than terminology such as “having outer Borel
approximation 2ω”. Note that our notation does not mention the ideal I as parameter:
we will say “null” instead of e.g. “I-null” (although the notion does of course depend
on the ideal I used).

We will mainly be interested in the case that I is the set of Lebesgue null sets.
C denotes the Cohen algebra and B the random algebra.

Suslin ccc Ideals. We assume that QI is a Suslin ccc forcing:

Definition 2.1. A (definition for a) forcing Q is Suslin ccc, if Q ⊆ 2ω, “x ∈ Q” and
“x ≤Q y” are

˜
Σ1

1 statements, “x and y are compatible” is Borel, and Q is ccc.

So QI is defined using a real parameter rQ. A candidate is a countable transitive model
of some ZFC∗ ⊆ ZFC containing rQ (see definition 6.3 for more details on ZFC∗).

In addition, we assume that
˜
ηI is a hereditarily countable name for a new real (i.e. 
QI

˜
ηI ∈ ωω \ V)

such that in all candidates {~
˜
ηI(n) = m�, n,m ∈ ω} generates ro(QI). (Such a real is

sometimes called “generic real”.) Note that e.g. for Cohen forcing the canonical name
for the Cohen real has this property; analogously for random forcing.

A Suslin ccc ideal I is an ideal defined from a pair (QI ,
˜
ηI) as above in the following

way:

Definition 2.2. • A ∈ BC means A is a Borel code.
• For A ∈ BC, AV denotes the evaluation of A in V

(i.e. AV is the Borel set corresponding to the code A).
• A Borel code A is null, or: A ∈ IBC, if 
QI

˜
ηI < AV[GQI ].

A is positive, or: A ∈ I+
BC, if A is not null.

A has measure 1 if the code for 2ω \ A is null.
• A subset X of 2ω is null, or: X ∈ I, if for some A ∈ IBC, X ⊆ AV .

X ⊆ 2ω is positive, or: X ∈ I+, if it is not null.
X is of measure 1 if 2ω \ X is null.

• For an arbitrary set N and a real r ∈ 2ω, r is called I-generic over N,
or: r ∈ Gen(N), if r < AV for all A ∈ IBC ∩ N.
So Gen(N) = 2ω \

⋃
{AV : A ∈ IBC ∩ N}.

For example, if QI is the random algebra B, then I is the ideal of Lebesgue null sets,
and if QI is Cohen forcing C, then I is the ideal of meager sets.

Note that the notation we use assumes that the ideal I is understood, e.g. we say
“positive” instead of “positive with respect to I”.

The following can be found e.g. in [7]:

Lemma 2.3. • I is a σ-complete ccc ideal containing all singletons, and
ro(QI) � Borel/I (as a complete Boolean algebra).
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• For a Borel code A, the sentences “q 
QI

˜
ηI ∈ AV[GQI ]” and “A ∈ IBC” are

˜
∆1

2.
(So in particular they are absolute.)

• If N is countable, then Gen(N) is a Borel set of measure 1.
• If N is a countable elementary submodel of H(χ) and M the transitive collapse of

N, then r is I-generic over N iff r is I-generic over M.
• Let M be a candidate. r is I-generic over M iff there is (in V) a QI-generic filter G

over M such that
˜
ηI[G] = r.

• If M is a candidate and q ∈ QI ∩ M, then there is a positive Borel code Bq ∈ M
such that M � “~

˜
ηI ∈ BM[G]

q �ro(QI ) = q”. Such a Bq satisfies
{
˜
ηI[G] : G ∈ V is Q-generic over M and contains q} =

= ωω \
⋃
{AV : A ∈ M, q 


˜
ηI < A} = Gen(M) ∩ BV

q .

For example, if we we chose QI to be Cohen forcing, then we get the following
well known facts: The meager ideal is a σ-complete ccc ideal, ro(QI) is Borel modulo
meager, for a Borel code A the statement “A is meager” is absolute, a real c is QI-generic
over a model M iff it is I-generic (i.e. if it avoids all meager Borel sets of M), etc.

For any Suslin ccc ideal I there is a notion analogous to the Lebesgue outer measure.
Note however that this generalized outer measure will be a Borel set, not a real number:

Definition 2.4. Let X be a subset of 2ω.
• A Borel set B is (a representant of) the outer measure of X if B is (modulo I) the

smallest Borel superset of X. I.e. B ⊃ X, and for every other Borel set B′ ⊃ X,
B \ B′ is null.

• X has outer measure 1, if 2ω is outer measure of X.

Instead of “B ⊃ X” we could use “X \ B ∈ I” in the definition of outer measure.1

Clearly, every X has an outer measure (unique modulo I); the outer measure of a
Borel set A is A itself; the outer measure of a countable union is the union of the outer
measures; etc.

If I is the Lebesgue ideal, then the outer measure of X (according to our definition) is
a Borel set B containing X such that Leb(B) = Leb∗(X), where Leb∗(X) ∈ R is the outer
measure according to the usual definition.

If I is the ideal of meager sets, then the outer measure of a set X is 2ω minus the union
of all clopen sets C such that C ∩ X is meager. (This follows from the fact that every
positive Borel set contains (modulo I) a clopen set and that there are only countable
many clopen sets).

The Random and Cohen Algebras on 2κ. We can add κ many Cohen (or random)
reals “simultaneously” using the Cohen algebra Cκ (or random algebra Bκ) on 2κ. We
will need these forcings only for the counterexamples 3.3 and 4.1. We briefly recall
some well known facts.

Let J be any set. For i ∈ J and a ∈ {0, 1} define [i 7→ a] B {x ∈ 2J : x(i) = a}. A
basic clopen set is a finite intersection of such sets [i 7→ a]. These sets form a basis of
the topology, and the clopen subsets of 2J are exactly the finite unions of basic clopen
sets.

Lemma 2.5. Let BJ be the σ-algebra on 2J generated by the (basic) clopen sets.

1That makes no difference modulo I, since every null set is contained in a Borel null set.
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• Every A ∈ BJ depends only on a countable J′ ⊆ J
(i.e. if x, y ∈ 2J is such that x(i) = y(i) for all i ∈ J′, then x is in A iff y is in A).

• (2J ,BJ ,LebJ) is a measure space, where LebJ is the product measure.
• For A ∈ BJ and ε > 0 there is a B ⊇ A such that LebJ(B) ≤ LebJ(A) + ε and B is a

countable disjoint union of (basic) clopen sets.

Let BJ (the random algebra on 2J) beBJ factorized by the LebJ-null sets. The generic
filter G on BJ is determined by the random sequence

˜
r ∈ 2J defined by

˜
r(i) = 0 iff

[i 7→ 0] ∈ G.

Lemma 2.6. • BJ is a complete ccc Boolean algebra.
• If J and K are disjoint, then BJ∪K is equivalent to BJ ∗ BK .
• If J is infinite, then

˜
r codes a sequence of |J| many random reals.

• If J is uncountable, then BJ forces that the set
˜
X of these random reals is a nowhere

Lebesgue-null Sierpinski set.2

• If X is not Lebesgue null then BJ forces that X̌ remains positive, and if J is infinite
then BJ forces that V ∩ 2ω is meager.

Note that Bκ is not equivalent to either the
product — countable support iteration — finite support iteration

of κ many random forcings, since Bκ does not
add an unbounded real — make the continuum small — add a Cohen real.

A set X in a topological space is called nowhere dense if X̄◦ = ∅, and meager if it
is the countable union of nowhere dense sets. CJ (the Cohen algebra on 2J) is defined
as the Borel algebra on 2J factorized by the ideal of meager sets. Again, the generic
filter G on CJ is determined by the Cohen sequence

˜
c ∈ 2J , defined by

˜
c(i) = 0 iff

[i 7→ 0] ∈ G.

Lemma 2.7. • Every Borel set B is equivalent (modulo meager) to an open set
(i.e. there is an open set O such that B∆O is meager).

• CJ is a complete ccc Boolean algebra.
• If J and K are disjoint, then CJ∪K is equivalent to CJ ∗ CK and CJ × CK .
• If J is infinite, then

˜
c codes a sequence of |J| many Cohen reals.

• If J is uncountable, then the CJ forces that the set
˜
X of these Cohen reals is a

nowhere meager Luzin set.3

• If X is non-meager, then CJ forces that X̌ remains non-meager, and if J is infinite
then CJ makes V ∩ 2ω Lebesgue null.

We can represent BJ as well as CJ in a very absolute way. To be able to refer to this
property in section 4, we introduce the following definition:

Definition 2.8. (The definition of) a forcing Q is strongly absolute, if the following
formulas are upwards absolute between V and every forcing extension of V:

“p ∈ Q”, “q ≤ p” and “A is a maximal antichain”.

2A set of reals is nowhere Lebesgue-null if it has nonempty intersection with every Lebesgue-positive
Borel set, and it is a Sierpinski set if it is uncountable and has a countable intersection with any Borel
Lebesgue-null set (such a set cannot be measurable).

3A set of reals is nowhere meager if it has nonempty intersection with every non-meager Borel set, and it
is Luzin if it is uncountable and has countable intersection with every meager Borel set.
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The requirement that “A is a maximal antichain” is upwards absolute is very strong
and will usually only be satisfied by ccc forcings. For example every Suslin ccc forcing
is strongly absolute, but Mathias forcing is not (although it is nicely definable and in
particular Suslin proper). Note that for strongly absolute forcings “p and q are compat-
ible” is absolute.

Lemma 2.9. For any J (suitable definitions of forcings equivalent to) BJ and CJ are
strongly absolute.

Quotient forcings. The following is a basic fact of forcing theory: If f : P→ Q is a
complete embedding, then
• Q is equivalent to P ∗

˜
R, where

˜
R contains all q ∈ Q that are compatible with f (p)

for all p ∈ GP. So in particular
• for every Q-generic filter GQ over V there is a P-generic filter GP over V and an

˜
R[GP]-generic filter GR over V[GP] such that V[GQ] = V[GP][GR], and

• for every P-generic filter GP over V and every
˜
R[GP]-generic filter GR over V[GP]

there is a Q-generic filter GQ over V such that V[GQ] = V[GP][GR].
Sometimes it is more convenient to use the following analogon that doesn’t mention

complete embeddings (which is folklore, but we do not have a reference):

Lemma 2.10. Let P and Q be arbitrary partial orders.
1. If GQ is Q-generic over V , and

if in V[GQ] there is a P-generic filter GP over V ,
then there is a forcing R ∈ V[GP] and an R-generic filter GR over V[GP] such that
V[GQ] = V[GP][GR].
R can be chosen to be a subset of ro(Q)V (and GR is essentially the same as GQ).

2. Assume that Q forces that for all p ∈ P there is a P-generic filter over V containing
p. Then there is a P-name

˜
R for a subset of ro(Q)V such that the following holds:

If GP is P-generic over V and GR is
˜
R[GP]-generic over V[GP], then GR is ro(Q)-

generic over V and V[GP][GR]
˜
R[GP] = V[GR]ro(Q).

3. Q forces: If (2P)V is countable, then for all p ∈ P there is a P-generic filter GP

over V containing p.

Proof. (1) Assume towards a contradiction that q ∈ ro(Q) forces that
˜
G is P-generic

but there is no such R in V[
˜
G]P. There is a p0 ∈ P such that q 6
 (p <

˜
G) for all p ≤ p0.

(Otherwise the set D B {p ∈ P : q 
 (p <
˜
G)} is dense, so q forces that there is a

p ∈
˜
G ∩ D.) In particular the truth value q0 B ~p0 ∈

˜
G� ∧ q is positive. There is a

complete embedding f from P≤p0 to ro(Q)≤q0 (just set f (p) B ~p ∈
˜
G�).

So ro(Q)≤q0 can be factorized as P≤p0 ∗ ˜
R, where

˜
R is the P-name for the set of all

q ∈ ro(Q)≤q0 such that ~p ∈
˜
G� ∧ q , 0 for all p ∈ GP. If GP is P≤p0 -generic over V

and GR is
˜
R[GP]-generic over V[GP], then GR is ro(Q)≤q0 -generic over V , and therefore

V[GR]Q is a Q-generic extension by a filter containing q.
In V[GR],

˜
G[GR] = GP:

GR ⊆ ˜
R[GP], so ~p ∈

˜
G� ∧ q , 0 for every q ∈ GR.

If p <
˜
G[GR] then ~p ∈

˜
G� ∧ q = 0 for some q ∈ GR, so p < GP.

If p ∈
˜
G[GR] then p′ <

˜
G[GR] for all p′ ⊥ p, so p′ < GP for all p′ ⊥ p, and p ∈ GP.

So in V[
˜
G] there is an R as required after all and we get a contradiction.

(2) For p ∈ P pick a ro(Q)-name
˜
G for a P-generic filter containing p. Then there is

a p′ ≤ p such that 6
 (p′′ <
˜
G) for all p′′ ≤ p′ (as in the proof of (1)). Choose a maximal
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antichain A ⊆ P of such p′ and call the associated names for filters
˜
Gp′ . For a ∈ A set

qa B ~a ∈
˜
Ga�. So qa 6
 (p′′ <

˜
Ga) for all p′′ ≤ a.

Let
˜
R be the following P-name: If GP∩A = {a} then let

˜
R consist of those q ∈ ro(Q)≤qa

such that ~p ∈
˜
Ga� ∧ q , 0 for all p ∈ GP.

Assume that GP is P-generic and that GP ∩ A = {a}. Then V[GP] is an extension
by P≤a, and

˜
R[GP] is the quotient of the complete embedding f : P≤a → ro(Q)≤qa . So

every
˜
R[GP]-generic GR over V[GP] is ro(Q)≤qa -generic (and therefore Q-generic) over

V .
(3) If only countably many subsets of P are in V , then we can start with any p and

can construct a decreasing sequence of length ω meeting all these dense sets. a

§3. Preservation. Recall that we have fixed a Suslin ccc ideal I and the correspond-
ing notions of positivity.

Definition 3.1. Let X ⊆ 2ω be positive with outer measure B, and P a forcing.
• P preserves positivity of X if 
P X̌ ∈ I+.
• P preserves Borel positivity if P preserves the positivity of AV for all positive

Borel codes A (i.e. 
P AV ∈ I+).
• P preserves positivity if P preserves the positivity of X for all positive X.
• P preserves outer measure of X if 
P (BV[G] is outer measure of X).
• P preserves Borel outer measure if P preserves the outer measure of AV for all

Borel codes A (i.e. 
P AV[G] is outer measure of AV ).
• P preserves outer measure if P preserves the outer measure of X for all X.

Of special interest is preservation of positivity (or outer measure) of 2ω (we will also
say: “of V”), i.e. of the set of all old reals.

We have already mentioned the following: If I is the ideal of Lebesgue null sets, then
the random algebra B preserves positivity, and the Cohen algebra C does not preserve
positivity. Dually, if I is the ideal of meager sets, then the Cohen algebra C preserves
positivity, and the random algebra B does not preserve positivity.

It is clear that preserving outer measure of X implies preserving positivity of X (since
being null is absolute for Borel codes, and the outer measure of X is a null set iff X is
null).

Preserving the outer measure of V is equivalent to preserving Borel outer measure:
Let A be a Borel set in V . Then in V[G], the outer measure of X B 2ω∩V is the disjoint
union of the outer measure of X ∩ AV[G] = AV and the outer measure of X \ AV[G] =

(2ω \ A)V . So if the outer measure of A decreases, then the outer measure of V decreases.
So another way to characterize Borel outer measure preserving is:

“No positive Borel set disjoint to V is added”.
If in every forcing extension of V the set of old reals 2ω ∩ V has either outer measure

0 or 1 then clearly preservation of positivity of V implies preservation of Borel outer
measure. Note that this is the case (for any P) if I is either the Lebesgue null or the
meager ideal.

Other than for outer measure, positivity preservation of V and of all Borel sets is not
equivalent. A trivial counterexample is the following:
Set B0 B {x ∈ 2ω : x(0) = 0}, B1 B 2ω \ B0. Let QI add a

˜
ηI ∈ 2ω such that either

˜
ηI ∈ B0 and

˜
ηI is random or

˜
ηI ∈ B1 and

˜
ηI is Cohen. 
QI

˜
ηI < B iff 
QI

˜
ηI < B∩ B0 and


QI

˜
ηI < B ∩ B1, i.e. iff B ∩ B0 is Lebesgue null and B ∩ B1 is meager. In particular, B0
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PRESERVING PRESERVATION 9

and B1 are positive Borel sets. So C forces that BV
0 is null and that BV

1 remains positive.
Therefore C preserves positivity of V , but not of Borel sets.

However, preservation of positivity of V does imply Borel positivity preservation if
additional requirements are satisfied, for example once again if we know that the outer
measure of V in V[GP] is either 0 or 1. Another sufficient condition is the following
(which also is satisfied in case that I is Lebesgue null or meager, for any P):

Lemma 3.2. Assume that P preserves positivity of V , and that
for every A, B ∈ I+

BC there is
an A′ ∈ I+

BC and a Borel (definition of a) function f : A′ → B
such that

A′ ⊆ A and P forces that for all null sets X ⊂ B, f −1(X) is null.
Then P preserves positivity of Borel sets.

Proof. (from [13]) Assume that GP is P-generic over V and that in V[GP], BV is null.
In V , let X be a maximal family of positive Borel sets such that for every A′ ∈ X there
is a fA′ : A′ → B as in the assumption and such that for A′ , A′′ ∈ X, A′ ∩ A′′ ∈ I. X
is countable and its union is 2ω (modulo I). In V[GP], A′ ∩ V ⊆ f −1

A′ (B ∩ V) is null for
each A′ ∈ X. So 2ω ∩ V =

⋃
A′∈X(A′ ∩ V) is null. a

Borel positivity (or outer measure) preserving generally (consistently) does not imply
positivity preserving, not even for Cohen or random.

The standard counterexample is the following:

Example 3.3. Assume I is the Lebesgue null ideal and R is Bω1 .
(Or I is the meager ideal and R is Cω1 .)
Let GR be R-generic over V . Then in V[GR], X B V ∩ 2ω is positive and there is a ccc
forcing P that preserves Borel outer measure but destroys the positivity of X.

Proof. We assume that I is meager (the Lebesgue case is analog). Note that in both
cases, it is enough to show that P preserves positivity of (2ω)V[GR] (this implies preser-
vation of Borel outer measure).
Assume r is B-generic over V , and (ci)i∈ω1

is CV[r]
ω1 -generic over V[r]. Then (ci)i∈ω1

is
CV
ω1

-generic over V as well. So B∗Cω1 can be factored as Cω1 ∗ ˜
P, where P is a Cω1 -name

for a ccc forcing. Set V ′ B V[(ci)i∈ω1
], and let GP be the corresponding P-generic filter

over V ′.
In V ′, X = V ∩ 2ω is not meager, but in V ′[GP] = V[r][(ci)i∈ω1

] it clearly is (cf. 2.6 and
2.7). So in V ′, P does not preserve positivity.
On the other hand, in V ′[GP] = V[r][(ci)i∈ω1

] the set Y B {ci : i ∈ ω1} ⊆ V ′ is a Luzin
set, in particular non-meager (cf. 2.7). So in V ′, P preserves positivity of (2ω)V ′ . a

However, if P is (absolutely) Borel positivity preserving and nep (for example Suslin
proper), then positivity preserving does follow, see theorem 6.1.

Note that in any case, preservation of positivity (or outer measure) is trivially pre-
served by composition of forcings (or equivalently: in successor steps of iterations). In
this paper we investigate what happens at limit stages.

We will restrict ourselves to countable support iterations. Note that for example for
finite support iterations, in all limit steps of countable cofinalities Cohen reals are added,
so preservation of Lebesgue positivity is never preserved in finite support iterations.

Preservation of positivity is connected to preservation of generics (e.g. random reals)
over models:
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Lemma 3.4. If P is proper and X is positive, then the following are equivalent:

1. P preserves the positivity of X.
2. for all N ≺ H(χ) and p ∈ P ∩ N there is an η ∈ X and an N-generic q ≤ p forcing

that η is I-generic over N[G].
3. for all p ∈ P there are unbounded (in 2ω) many N ≺ H(χ) containing p such that

there is an η ∈ X and an N-generic q ≤ p forcing that η is I-generic over N[G].

Here, A ⊆ {N ≺ H(χ)} is called unbounded in 2ω, if for every x ∈ 2ω there is a N ∈ A
such that x ∈ N (or equivalently, if for all y ⊆ 2ω countable there is an N ∈ A such that
y ⊆ N).

Proof. (1) → (2): Assume that N ≺ H(χ), that q0 ≤ p is N-generic, and that GP is
P-generic over V and contains q0. In V[GP], Gen(N[GP]) is a measure 1 set, and X is
positive, so Gen(N[GP]) ∩ X is nonempty. This is forced by some q ≤ q0 in GP.

(2)→ (3) is clear.
(3) → (1): Assume p forces that X is null, i.e. that X ⊆

˜
AV[GP] for some Borel null

code
˜
A. According to (3), there is an N ≺ H(χ) containing p and

˜
A, and there are η ∈ X

and an N-generic q ≤ p forcing that η is I-generic over N[G].
If GP is P-generic over V and contains q, then GP is P-generic over N as well, and

˜
A[GP]

is a Borel null code in N[GP]. In V[GP], η is I-generic over N[GP], so η <
˜

A[GP]V[GP] ⊇

X, a contradiction. a

Lemma 3.5. If P is proper, then the following are equivalent:

1. P preserves positivity.
2. For all N ≺ H(χ), there is a set A of measure 1 such that for all p ∈ N and η ∈ A

there is an N-generic q ≤ p forcing that η is I-generic over N[G].
3. For all p there are unbounded (in 2ω) many N ≺ H(χ) containing p such that for

some measure 1 set A and for all η ∈ A there is an N-generic q ≤ p forcing that η
is I-generic over N[G].

Proof. (1)→ (2): Since there are only countable many p’s in N, it is enough to show
that for all N ≺ H(χ) and all p ∈ P ∩ N there is a set A as in (2). Let X be the set of
exceptions, i.e. η ∈ X iff every N-generic q ≤ p forces that η is not I-generic over N[G].
We have to show that X is a null set. Otherwise (according to lemma 3.4) there is an
η ∈ X and an N-generic q ≤ p forcing that η ∈ Gen(N[G]), a contradiction.

(2)→ (3) is clear, and (3)→ (1) follows from lemma 3.4. a

Why are we interested in preservation of I-generics over models instead of preserva-
tion of positivity? It is not clear how the iterability of preservation of positivity can be
shown directly. On the other hand, in some important cases it turns out that preservation
of generics is iterable (e.g. if I is meager, see section 8, or if I is Lebesgue null under
additional assumptions, see section 9). However, to be able to apply the according it-
eration theorems, we will generally need that all I-generics are preserved, not just a
measure 1 set of them (as in lemma 3.5).

It seems that preservation of all I-generics really is necessary, more specifically that
the statement
“preservation of Lebesgue positivity is preserved in proper countable support iterations”
(and the analog statement for meager) is (consistently) false. A counterexample seems
to be difficult, but we can give a counterexample to the following (stronger) statement:
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Let X be a positive set. Then
“preservation of positivity of X is preserved under proper countable support iterations”

§4. A Counterexample.

Example 4.1. Assume that I is the Lebesgue null ideal and that R is Bω1 .
(Or I is the meager ideal and R is Cω1 .)
Then R forces the following: There is a positive set X and a forcing iteration (Pn,

˜
Qn)n<ω

of ccc forcings such that Pn forces that X remains positive for each n ∈ ω, but Pω makes
X null (regardless of the kind of limit we use for Pω).4

So if I is the Lebesgue ideal, and we let (Pn,
˜
Qn)n<ω be a countable support iteration

(i.e. Pω is the full or inverse limit), then we get the counterexample to
“preservation of positivity of X is preserved under proper countable support iterations”
If we take the direct limit (i.e. if we interpret (Pn,

˜
Qn)n<ω as finite support iteration),

then we get nothing new, since we already know that Pω adds a Cohen real and there-
fore destroys Lebesgue positivity.
If I is the meager ideal, then the counterexample is interesting for both finite and count-
able support iteration.

The simplest idea for a counterexample of this kind is the following: Let P be the
countable support iteration Bω1 ∗ C ∗ Bω1 ∗ C ∗ . . . .
So the set X of the ω × ω1 many random reals added by P is null (since the first n × ω1
many are made null by the n-th Cohen).
Now factor P the following way: First add all the randoms, then the first (former)
Cohen, the second, the third etc (these reals are not Cohen anymore, of course). One
would expect that the first former Cohen will make only the first ω1 many randoms null,
the second only the next ω1 many, etc. So the set of all randoms will become null only
in the limit.
However, it is not clear how to show that this idea actually works, and we will use a
slightly different construction:

Proof of 4.1. Let I be the ideal of Lebesgue null sets, let J be a set of size ℵ1, and
let R = P0 be BJ , the random algebra on 2J . (Again, the proof for the meager case is
analog.)

So we have to construct a directed system (Pn)n<ω with commuting complete embed-
dings fn,m : Pn → Pm satisfying the following:

• P0 B BJ adds a set X of ℵ1 many random reals.
• Pn is ccc and forces that X is Lebesgue positive (for any n).
• Any limit Pω makes X null.

Write J as the disjoint countable union of sets Jn of size ℵ1, i.e. J =
⋃

n∈ω Jn, |Jn| =

ω1. Set J≥n B
⋃

m≥n Jm, and let
˜
r0 ∈ 2J be the random sequence added by P0.

P1 is the forcing that adds a Cohen real between the first ω1 random reals and the
rest, i.e.

P1 B BJ0 ∗ C ∗ BJ≥1 .

4This means that X will be null in any forcing extension V′ of V[GR] that contains Pn-generic filters Gn
(over V[GR]) for all n.
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Generally, we define

Pn B BJ0 ∗ C ∗ · · · ∗ BJn−1 ∗ C ∗ BJ≥n .

We define the Pn-name
˜
rn ∈ 2J to be the concatenation of the random sequences for all

the random algebras used in Pn.

Lemma 4.2. There is a complete embedding fn,n+1 from Pn to Pn+1 which leaves the
random sequence invariant.5

Assuming this lemma, the rest of the proof is straightforward:
As usual, we interpret

˜
r � Jn as a sequence of (ℵ1 many) random reals. Let

˜
Xn be the

set of these reals. Set
˜
X B

⋃
n∈ω ˜

Xn;
˜
X<n B ˜

X1 ∪ ˜
X2 ∪ · · · ∪ ˜

Xn−1; and
˜
X≥n B ˜

X \
˜
X<n.

Pn forces that
˜
X≥n is a Sierpinski set (in particular positive), and that

˜
X<n is null, and we

are done. a

For the proof of lemma 4.2, we will need the following fact:

Lemma 4.3. Assume that f0 : P → Q is a complete embedding and that P forces

˜
S to be strongly absolute. Then f0 can be extended to a complete embedding f1 :
P ∗

˜
S V[GP] → Q ∗

˜
S V[GQ] defined by f1((p,

˜
τ)) = ( f0(p), f ∗0 ˜

τ).6

For the definition of strongly absolute, see 2.8. In particular
˜
S is a forcing definition

using arbitrary P-names as parameters, and
˜
S V is its “evaluation” in the universe V .

Note that BJ and CJ are strongly absolute (see 2.9).7

Proof of lemma 4.3. Assume (p′,
˜
τ′) ≤ (p,

˜
τ). Then f0(p′) ≤ f0(p), and f0(p′) forces

that p′ ∈ GP (by definition of GP). So if GQ is Q-generic over V and contains f0(p′),
then in V[GP] we have

˜
τ′[GP] ≤

˜
τ[GP] (since this is forced by p′). Since “q ∈

˜
S ” and

“q′ ≤ q” are upwards absolute between V[GP] and V[GQ], in V[GQ]

f ∗0 ˜
τ′[GQ] =

˜
τ′[GP] ≤

˜
τ[GP] = f ∗0 ˜

τ[GQ].

This is forced by f0(p′), so ( f0(p′), f ∗0 ˜
τ′) ≤ ( f0(p), f ∗0 ˜

τ).
A similar argument shows that f1 preserves incompatibility.
Finally assume towards a contradiction that Ã ⊆ P ∗

˜
S V[GP] is predense, and that there is

a (q, σ) ∈ Q ∗
˜
S V[GQ] incompatible to all f1((p,

˜
τ)) for (p,

˜
τ) ∈ Ã. Let GQ be a Q-generic

filter over V containing q. Since GP is P-generic, the set

A B {
˜
τ[GP] : (p,

˜
τ) ∈ Ã, p ∈ GP}

is (in V[GP]) a predense subset of S V[GP]. Since
˜
S is strongly absolute, A is (in V[GQ])

a predense subset of S V[GQ]. So there is a (p,
˜
τ) ∈ Ã with p ∈ GP such that

˜
σ[GQ]

5This means the following: Let Gn+1 be Pn+1-generic over V , and set Gn B f −1
n,n+1(Gn+1) (which is Pn-

generic over V , since fn,n+1 is complete). Then
˜
rn[Gn]Pn =

˜
rn+1[Gn+1]Pn+1 .

6 f ∗0 is the following mapping from P-names onto Q-names: f0 : P→ Q is complete. So if GQ is Q-generic
over V , then GP B f −1

0 [GQ] is P-generic over V . So for every P-name
˜
τ there is a Q-name f ∗0 ˜

τ such that
f ∗0 ˜
τ[GQ]Q =

˜
τ[GP]P. ( f ∗0 can also be defined recursively over the rank of the names.)

7You should not be confused by the following fact: If f0 is a complete embedding of P into Q and GQ is
a Q-generic filter over V and GP the corresponding P-generic filter, then in V[GQ] the partial order S V[GP]

generally can not be completely embedded into S V[GQ]. For example B × B adds an unbounded real. So if P
is the trivial partial order and Q and

˜
S are both B, then in V[GQ] there cannot be a complete embedding of

˜
S V[GP] = BV into

˜
S V[GQ] = BV[GQ]. However the f1 defined in the lemma clearly is a complete embedding

from P ∗
˜
S V[GP] = BV into Q ∗ S V[GQ] = B ∗ BV[GQ] (since a random real over V[GQ] is random over V as

well).
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is compatible with
˜
τ[GP] = f ∗0 ˜

τ[GQ]. Now pick a q′ ≤ q ∈ Q forcing that
˜
σ′[GQ] ∈

S V[GQ] is a witness for this compatibility. Then (q′,
˜
σ′) ≤ f1((p,

˜
τ)), (q,

˜
σ), and we get a

contradiction. a

Proof of lemma 4.2. First note that BJ≥n is equivalent to BJn ∗ BJ≥n+1 . So we have to
find a complete embedding

from Pn =

P︷                                             ︸︸                                             ︷
BJ0 ∗ C ∗ · · · ∗ C ∗ BJn−1 ∗ C ∗ BJn ∗ BJ≥n+1

to Pn+1 = BJ0 ∗ C ∗ · · · ∗ C ∗ BJn−1 ∗ C ∗ BJn ∗ C∗︸                                             ︷︷                                             ︸
Q

BJ≥n+1

It is clear that the identity (lets call it f0) is a complete embedding between P and Q (the
two blocks marked above). (Generally, for all R,

˜
S the identity is a complete embedding

from R into R ∗
˜
S .) Therefore we can apply lemma 4.3 to get a complete embedding

f1 : Pn → Pn+1. It is clear that f1 leaves the random J-sequence invariant. a

§5. True Preservation. Preservation of all generics (not just a measure-1-set of
them) is closely related to preserving “true positivity”, a notion using the stationary
ideal on [κ]ℵ0 .

From this section only definition 5.9 is needed for the proof of main result 9.4.8

Definition 5.1. Let I be arbitrary and C ⊆ [I]ℵ0 a family of countable subsets of I.
• C is called unbounded, if for all A ∈ [I]ℵ0 there is a B ∈ C such that B ⊇ A.
• C is a club set (or: club), if C is unbounded and closed under increasing countable

unions.
• The club filter is the family of subsets of [I]ℵ0 containing a club set.
• A set S ⊆ [I]ℵ0 is stationary if every club set C meets S , i.e. C ∩ S , ∅.

(Or equivalently, if the complement of S , [I]ℵ0 \ S , is not in the club filter.)

First we recall some basic facts:

Lemma 5.2. Let I andH1 ⊆ H2 be arbitrary.
1. (Jech) The club filter on [I]ℵ0 is closed under countable intersections.
2. (Menas) C ⊆ [I]ℵ0 contains a club iff there is an f : [I]2 → [I]ℵ0 such that

C( f ) ⊆ C, where C( f ) B {x ∈ [I]ℵ0 : (∀i , j ∈ x) f ({i, j}) ⊆ x}.
3. If C ⊆ [H1]ℵ0 is club, then CH2 B {B ∈ [H2]ℵ0 : B ∩H1 ∈ C} is club.
4. If C ⊆ [H2]ℵ0 is club, then CH1 B {B ∩H1 : B ∈ C} contains a club.
5. If C0 ⊆ [I]ℵ0 is club and P an arbitrary forcing, then there is a C1 ⊆ C0 club and

a name
˜
C′ such that P forces that

˜
C′ ⊆ [I]ℵ0 is club and that

˜
C ∩ V = C1.

6. (Shelah) A forcing P is proper iff for arbitrary I and S ⊆ [I]ℵ0 stationary, P forces
that S remains stationary.

7. The set of countable elementary submodels of H(χ) contains a club of [H(χ)]ℵ0 .
8. Assume [I]ℵ0 ∈ H(χ). Then the following are equivalent:

• C ⊆ [I]ℵ0 contains a club.
• For all N ≺ H(χ) containing I and C, N ∩ I ∈ C.
• For club many N ≺ H(χ), N ∩ I ∈ C.

8This proof only needs implication (3)→ (1) of lemma 9.3, i.e. the fact that a strongly preserving forcing
is tools-preserving. However we do use the notion of true preservation to show implication (3)→ (1) of 5.11,
which in turn is used in the proof that Lebesgue-tools-preservation is equivalent to strong preservation.
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9. Assume [I]ℵ0 ∈ H(χ). Then the following are equivalent:
• S ⊆ [I]ℵ0 is stationary.
• There is an N ≺ H(χ) containing I and S such that N ∩ I ∈ S .
• For stationary many N ≺ H(χ), N ∩ I ∈ S .

Note that if C is club in V , then generally C will not be club any more in a forcing
extension V[GP], even if P is proper.

Proof. We refer to Kanamori’s Higher Infinite [6] or Jech’s Millennium Edition [5].
The proof of (1) is straightforward (see 25.2 or 8.22). (2) is proven in [6, 25.3] or
[5, 8.26]. (3) is trivial. (4) and (5) follow from (2) (for the latter, set C1 B C( f )V and

˜
C B C( f )V[GP]).
For (6) see e.g. Proper and improper forcing [12].
For (7), consider the family of countable subsets of H(χ) closed under some fixed
Skolem function.
(8): If C ∈ N is club, then clearly I ∩ N ∈ C. If C̃ ⊆ {N ≺ H(χ)} ⊂ [H(χ)]ℵ0 is club,
then C̃I = {N ∩ I : N ∈ C̃} ⊆ [I]ℵ0 contains a club according to (4).
(9) follows directly from (8), since S is stationary iff [I]ℵ0\S does not contain a club. a
Assume that I is an arbitrary index-set, S ⊆ [I]ℵ0 is stationary and η̄ = (ηs : s ∈ S ) is a
sequence of reals. Pick anyH ⊃ I ∪ 2ω (think ofH to be a H(χ)). For C ⊆ [H]ℵ0 , we
define9

S (C) B {s ∈ S : ∃N ∈ C : N ∩ I = s & ηs ∈ Gen(N)}, and
η̄(C) B {ηs : s ∈ S (C)}.

So we get S (C) the following way: Take an N ∈ C (which will be a countable elemen-
tary submodel of H(χ)), and let s be the intersection of N with I (so s is a countable
subset of I). If s is an element of S , and if ηs is I-generic over N, then put s into S (C).

Definition 5.3. AssumeH ⊃ I ∪ 2ω.
• η̄ is truly positive, if η̄(C) is positive for every club set C ⊆ [H]ℵ0 .
• B is the true outer measure of η̄, if it is the smallest Borel set containing any of the
η̄(C), i.e. if the following holds: B is Borel, there is a C ⊆ [H]ℵ0 club such that
η̄(C) ⊆ B, and for no club C′ ⊆ [H]ℵ0 there is a Borel B′ such that η̄(C′) ⊆ B′ and
B \ B′ < I.

Lemma 5.4. 1. The above notions do not depend onH (provided thatH ⊃ I∪2ω).
2. The true outer measure always exists.
3. The following are equivalent:

• η̄ is truly positive.
• η̄(C) , ∅ for every club set C ⊆ [H]ℵ0 .
• for all x ∈ H(χ) there is an N ≺ H(χ) containing x,I, S and η̄ such that

N ∩ I = s ∈ S and ηs ∈ Gen(N).

Proof. (1) Assume that I ∪ 2ω ⊆ H1 ⊆ H2 and that C ⊆ [H1]ℵ0 is club.
By definition s ∈ S (C) iff for some N ∈ C, s = N ∩ I ∈ S and ηs ∈ Gen(N).
In particular s ∈ S (CH2 ) iff for some N′ ∈ [H2]ℵ0 , N B N′ ∩H1 is in C,

s = N′ ∩ I is in S and ηs ∈ Gen(N′).
So since N and N′ contain the same elements of I and 2ω, S (C) = S (CH2 ).

9Gen(N) was defined in 2.2.
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The same argument works with C ⊆ [H2]ℵ0 and CH1 .
For generalH1,H2, apply the argument to the pairsH1,H1 ∪H2 andH2,H1 ∪H2.
(2) The family {η̄(C) : C club} is semi-closed under countable intersections:
If (Ci)i∈ω is a countable sequence of club sets, and C′ B

⋂
Ci its intersection, then C′

is club, and η̄(C′) ⊆
⋂
η̄(Ci).

Let X be the family of Borel sets B such that for some club set C, B ⊃ η̄(C). So X is
closed under countable intersections. Therefore X contains a minimal element (modulo
I), since I is a ccc-ideal.
(3) Without loss of generalityH = H(χ). Assume η̄ is not truly positive. Then for some
club set C and Borel null set B, η̄(C) ⊆ B. Set

C′ B {N ≺ H(χ) : N ∈ C, B ∈ N}.

C′ is club. For any N ∈ C′ and any I-generic η over N, η is not in B. So η̄(C′) ⊆ 2ω \ B.
But η̄(C′) ⊆ η̄(C) ⊆ B, so η̄(C′) = ∅. The rest is similar. a

Definition 5.5. Let P be a forcing.

• P preserves true positivity if for all η̄ truly positive, P forces that η̄ remains truly
positive.

• P preserves true outer measure, if for any η̄ with true outer measure AV , P forces
that AV[GP] remains the true outer measure of η̄.

Lemma 5.6. 1. If P is true outer measure preserving, then it is true positivity pre-
serving.

2. If P is true positivity preserving, then it is proper and positivity preserving.
3. If P is true outer measure preserving, then it is outer measure preserving.

It seems that true positivity preserving generally does not imply true outer measure
preserving. (But the equivalence holds if I is the ideal of meager sets, see lemma 8.1;
or if I is the ideal of Lebesgue null sets and P is weakly homogeneous, see lemma 9.1).

Proof. (1) is clear since a sequence η̄ is truly positive iff its true outer measure is not
0.
True positivity preservation implies properness because of 5.2(6).
So for (2) and (3) it is enough to show the following: If X is positive (or: has true outer
measure B) then there is a truly positive η̄ (or: an η̄ with true outer measure B) such that
{ηs : s ∈ S } ⊆ X. Let I be 2ω.
For (2), pick for each N ≺ H(χ) an η ∈ X ∩ Gen(N). (Recall that Gen(N) is a measure
1 set.) Then η̄ is truly nonempty (cf. 5.4(3)).
For (3), set β B 2ℵ0 . As cited in Kanamori [6, 25.6(a)] or Jech [5, 38.10(i)], [I]ℵ0 can be
partitioned into 2ℵ0 many stationary sets, i.e. [I]ℵ0 =

⋃
α∈β S α. Enumerate all positive

Borel subsets of B as (Bα : α ∈ β). For each N ≺ H(χ) let α be such that N ∈ S α and
pick an η ∈ Bα ∩ Gen(N). Assume towards a contradiction that the true outer measure
of η̄ is B′ ⊂ B and that Bα = B \ B′ is positive. Since C is club and S α stationary, there
is an N ∈ C ∩ S α. So ηN ∈ Bα ∩ η̄(C), a contradiction. a

As announced, the “true” notions are closely related to preservation of generics:

Definition 5.7. P preserves generics, if
for all N ≺ H(χ), p ∈ N and η ∈ Gen(N)
there is a q ≤ p N-generic forcing that η ∈ Gen(N[GP]).
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Notes. • Instead of “for all N”, we can equivalently say “for club many N”. (This
follows from the proof of lemma 5.8.)

• Of course the notion does not depend on χ, provided χ is regular and large enough
(in relation to |P|).

• It is clear that preservation of generics is preserved under composition and implies
properness.

Lemma 5.8. P preserves generics iff P is true positivity preserving.

Proof. →: Assume otherwise, i.e. assume that η̄ is truly positive, and p 
 η̄(
˜
C) = ∅

for some name
˜
C of a club set in H(χ)V[G].

In V , the set

S ∗ B {N ≺ H(χ) : N ∩ I = s ∈ S , ηs ∈ Gen(N)}

is stationary. (Otherwise, the complement of S ∗ would witness that η̄ is truly empty.)
Pick some χ′ � χ. According to 5.2(9), there is an N′ ≺ H(χ′) containing η̄, S ∗, χ, p, P,

˜
C

such that N B N′ ∩H(χ) ∈ S ∗ (and such that P preserves generics for N′, if we assume
preservation for club many N only). So N′ ∩ I = N ∩ I = s ∈ S , and there is an N′-
generic q ≤ p forcing that ηs ∈ Gen(N′[G]) (since N and N′ contain the same subsets of
P). Let G be a P-generic filter over V containing q. In V[G], N′[G]∩I = N′[G]∩I = s
(since G is N′[G]-generic), and N′ ∩

˜
H[G] ∈

˜
C[G] (since

˜
C ∈ N′[G] is club). So

ηs ∈ η̄(
˜
C), a contradiction.

←: Assume towards a contradiction that N′ ≺ H(χ′), p, η is a counterexample.
Without loss of generality there is a χ ∈ N′ such that |P| � χ � χ′. Set

S B {N ≺ H(χ) : N is counterexample for p and some η}.

This set is stationary, since S ∈ N′ and N′ ∩ H(χ) ∈ S .
For each N ∈ S , pick an ηN witnessing the counterexample. Then η̄ is truly positive:

If N ∈ C ∩ S , then ηN ∈ η̄(C).
Let G be a P-generic filter over V containing p. In V[G], set

Cgen B {N ≺ HV (χ) : G is N-generic}.

(Note that the elements of Cgen are generally not in V , only subsets of V .)
Cgen contains a club:
N ≺ HV (χ) is guaranteed if N is closed under a Skolem functions of HV (χ).
G is N-generic means that for every dense subset D ⊆ P in N, G ∩ N ∩ D is nonempty.
So Cgen contains the set of N closed under countably many operations.
Therefore (still in V[G])

C1 B CHV[GP ](χ)
gen = {Ñ ⊆ HV[GP](χ) countable : Ñ ∩ V ∈ Cgen}

contains a club as well, as does the set

C B {Ñ ≺ HV[GP](χ) : G ∈ Ñ and Ñ ∈ C1}.

By the assumption η̄(C) , ∅, i.e. for some Ñ ≺ H(χ), we get: N B Ñ ∩V ∈ S (note that
S ⊂ V), and ηN ∈ Gen(Ñ), and G is N-generic and element of Ñ. Therefore N[G] ⊆ Ñ,
and ηN ∈ Gen(N[G]). G contains some q ≤ p forcing this all. But we assumed that ηN

is a counterexample, therefore no N-generic q ≤ p can force that ηN ∈ Gen(N). a

For the analog equivalence to true outer measure preservation we need the notion of
interpretation:
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Definition 5.9. Let p be a condition in P.
• T is an interpretation of

˜
T ′ with respect to p, if:

– T is a positive Borel set,
–

˜
T ′ a P-name for a positive Borel set, and

– for all positive Borel sets AV ⊂ T , p does not force that AV[G] ∩
˜
T ′ is null.

• P strongly preserves generics if the following holds:
For all N ≺ H(χ), p,T,

˜
T ′ ∈ N and η ∈ 2ω such that

T is an interpretation of
˜
T ′ with respect to p and

η ∈ T ∩ Gen(N)
there is an N-generic q ≤ p forcing that η ∈

˜
T ′ ∩ Gen(N[GP]).

Notes. • If T is an interpretation of
˜
T ′ with respect to p, p 


˜
T ′′ ⊃

˜
T ′, and

T ∗ ⊆ T is positive, then then T ∗ is an interpretation of
˜
T ′′.

• Again, instead of “for all N”, we can equivalently say “for club many N”, and the
notion does not depend on χ.

Lemma 5.10. For every p ∈ P and every name
˜
T ′ for a positive Borel set there is an

interpretation T of
˜
T ′ with respect to p.

Proof. Set

X B {B ∈ I+
BC : p 
 BV[G] ∩

˜
T ′ ∈ I}.

Let Y be a maximal family of pairwise disjoint members of X. Then Y is countable
(since I is a ccc ideal) and

⋃
Y is not of measure 1 (since p forces that

˜
T ′ is positive

and that
⋃

YV[G] ∩
˜
T ′ ∈ I). Set T B ωω \

⋃
Y . Then T is an interpretation of

˜
T ′ with

respect to p. a

Lemma 5.11. The following are equivalent:
1. P preserves true outer measure.
2. P strongly preserves generics.
3. If p 


˜
T ′ ∈ I+

BC, then there is a T ∈ I+
BC and a p′ ≤ p such that:

T is an interpretation of
˜
T ′ with respect to p′, and

if N ≺ H(χ), p′,T,
˜
T ′ ∈ N, and η ∈ T ∩ Gen(N),

then there is an N-generic q ≤ p′ forcing that η ∈
˜
T ′ ∩ Gen(N[G]).

Proof. This is similar to the proof of 5.8.
(1) → (2) Assume that N′ ≺ H(χ′), p, T ,

˜
T ′, η is a counterexample. Without loss of

generality there is a χ ∈ N′ such that |P| � χ � χ′. Set

S B {N ≺ H(χ) : N is counterexample for p,T,
˜
T ′ and some η}

This set is stationary, since S ∈ N′ and N′ ∩ H(χ) ∈ S .
For each N ∈ S , pick an ηN witnessing the counterexample. So in particular

ηN ∈ T ∩ Gen(N).

Let B ⊆ T be a true outer measure of η̄. B is positive (which just means that η̄ is truly
positive). So there is a p′ ≤ p forcing that B∩

˜
T ′ is positive (since T is an interpretation

of
˜
T ′ with respect to p).
Let G be a P-generic filter over V containing p′. In V[G], set

C B {Ñ ≺ HV[GP](χ) : G, p,T,
˜
T ′ ∈ Ñ and G is Ñ ∩ V-generic}.
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B

˜
B′

˜
T ′

T

η̄(
˜
C′)

η̄(C)

Figure 1. T is an interpretation of
˜
T ′ with respect to p′.

C contains a club (as in the proof of 5.8). Assume ηN ∈ η̄(C). Then for some Ñ ∈ C
N B Ñ ∩ HV (χ) ∈ S , G is N-generic, and ηN is I-generic over Ñ.

Note that N[G] ⊆ Ñ (since G ∈ Ñ). So ηN is I-generic over N[G] as well. Since N ∈ S
and N, p, T , T ′, ηN is a counterexample, we know that ηN cannot be in

˜
T ′[G]. Therefore

η̄(C) ⊆ B \
˜
T ′[G], i.e. the true outer measure of η̄ decreases (p′ forces that B ∩

˜
T ′ is

positive).
(2) → (3) This follows from fact 5.10 (for every p,

˜
T ′ there is an interpretation T of

˜
T ′ with respect to p).

(3)→ (1) Assume that B ⊃ η̄(C) is an outer measure of η̄, and p ∈ P forces that
there is a Borel code

˜
B′ and a club set

˜
C′ of H(χ)V[G]

such that η̄(
˜
C′) ⊂ η̄(

˜
C),

˜
B′ ⊂

˜
B,

˜
T ′ B B \

˜
B′ ∈ I+ and

˜
B′ ⊃ η̄(

˜
C′).

Without loss of generality, ηs ∈ B for every s ∈ S . Now choose a p′ ≤ p and an
interpretation T of

˜
T ′ with respect to p′ according to (3). Without loss of generality

T ⊆ B (cf. figure 1). In V , the set

S ∗ B {N ≺ H(χ) : p′, P,T,
˜
T ′ ∈ N,N ∩ I = s ∈ S , ηs ∈ Gen(N) ∩ T }

is stationary. (Otherwise, the complement of S ∗ contains a club C∗. If η ∈ η̄(C∗), then
η < T . So η̄(C∗) ⊆ B \ T , and B cannot be true outer measure of η̄.)

Pick some χ′ � χ. There is an N′ ≺ H(χ′) containing η̄, S ∗, p′,T,
˜
T ′,

˜
C′ etc such that

N B N′ ∩ H(χ) ∈ S ∗. So N′ ∩ I = s ∈ S , and there is an N′-generic q ≤ p′ forcing
that ηs ∈ Gen(N′[G]) ∩

˜
T ′. Let G be a P-generic filter over V containing q. In V[G],

N′[G] ∩ I = N′ ∩ I = s (since G is N′-generic), and N′ ∩ H(χ)V[G] ∈
˜
C′[G] (since

˜
C′[G] ∈ N′[G] is club). So ηs ∈ ˜

T ′[G] ∩ η̄(
˜
C[G]), a contradiction to η̄(

˜
C[G]) ⊆

˜
B[G]

and
˜
B[G] ∩

˜
T ′[G] = ∅. a

§6. Strong Preservation of Generics for nep Forcings. We already know that preser-
vation of Borel outer measure generally does not imply preservation of positivity. An
example was presented in 3.3. Note that the P of this example is very “undefinable”.
In this section we will show that under some additional assumptions on P, we even get
strong preservation:

Theorem 6.1. If in all forcing extensions of V , P is nep and Borel outer measure
preserving then P strongly preserves generics.

In particular this requirement will be satisfied if there is a proof in ZFC that (a def-
inition of the forcing) P is nep and Borel outer measure preserving. We formulate this
as a corollary:
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Corollary 6.2. If P is provably nep and provably Borel outer measure preserving
then P strongly preserves generics.

The notion of nep forcing (a generalization of Suslin proper) was introduced in [13].
The most important instances of nep forcings are

1. nicely definable, proper (but not necessarily Suslin proper) forcings P that are
coded as set of reals. We will call such forcings “transitive nep”.

2. nicely definable (long) iterations of forcings as in (1).

Examples for transitive nep forcings are Sacks and Laver. Such forcings typically are
Suslin+. In this paper, we will not define the general notion of nep — which would allow
us to deal with (2) — since the definition requires technicalities such as non-transitive
candidates.10 Instead, in the following section we will recall the definition of transitive
nep.11

About transitive nep forcing. In the definition of nep (or Suslin proper) we use
candidates, i.e. models of some fixed ∈-theory ZFC∗. Intuitively, we would like to use
ZFC (just as we would like to use N ≺ V in the definition of proper forcing), but
for obvious technical reasons this is not possible. So we will restrict ourselves to a
reasonable choice of ZFC∗:

Definition 6.3. A recursive theory ZFC∗ ⊆ ZFC is called strongly normal, if the
following is provable in ZFC:

H(χ) � ZFC∗ for all sufficiently large regular χ.

You can think of ZFC∗ as ZFC minus the power set axiom plus something like “iω
exists”.12

We assume that the forcing P is defined by formulas ϕ∈(x) and ϕ≤(x, y), using a real
parameter rP. Fixing a strongly normal ZFC∗, we call M a candidate if it is a countable
transitive ZFC∗ model and rP ∈ M. So in any candidate (PM ,≤M) is defined (but this
forcing is generally not equal to P∩M, since the definitions do not have to be absolute).
It is important that the transitive collapse of an N ≺ H(χ) (containing rP) is a candidate
(for sufficiently large regular χ).

If M is a candidate, then G is P-generic over M if for all A ∈ M such that

M � “A ⊆ P is a maximal antichain”,

|G ∩ A| = 1. (Note that in this case it is not enough that G meets all dense sets, since
incompatibility is generally not absolute).
q is called M-generic is q forces that G is P-generic over M.

10Note that including forcings of type (2) is not needed for the main result 9.4 of this paper: We will show
that forcings of type (1) satisfy a strong, iterable condition, therefore this condition is satisfied by forcings of
type (2) anyway.

11Usually transitive nep forcings are in fact Suslin+. Nevertheless we define transitive nep here instead
of Suslin+ since the definition is actually simpler and better isolates the property needed for the proof. Also,
there are examples of transitive nep forcings P that are not Suslin+, to be more exact: whose natural definitions
are not Suslin+, e.g. because “p ∈ P” is

˜
Π1

1 and not
˜
Σ1

1. (It is a different question whether for these examples
there are equivalent forcings P′ that do have (possibly less natural) Suslin+ definitions.)

12For the usual transitive nep forcings we could actually fix this ZFC∗. Generally however we should —
for technical reasons — not do that, just as we should not fix e.g. H(χ) = H(i+

ω) in the definition of proper
forcing.
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Definition 6.4. A (definition of a) forcing P is transitive nep (with respect to ZFC∗),
if
• “p ∈ P” and “q ≤ p” are upwards absolute between candidates and between

candidates and V as well.13

• P ⊆ H(ℵ1) (in V and all candidates), and “p ∈ P” and “q ≤ p” are absolute
between the universe and H(χ) (for large regular χ).

• If M is a candidate and p ∈ PM then there is an M-generic q ≤ p.

So transitive nep is a direct generalization of Suslin proper. Since (transitive collapses
of) elementary submodels (containing rP) are candidates, every transitive nep forcing
is proper. There are popular forcings that are transitive nep and not Suslin proper,
for example Laver, Miller or Sacks (all these forcings are Suslin+ and even satisfy an
effective version of Axiom A, see [7] for a proof).

If P is nep and M a candidate, then
M � “p 
 ϕ(

˜
τ)” iff

M[G] � “ϕ(
˜
τ[G])” for every filter G containing p which is P-generic over M and V .14

When we say “P is nep” we mean
(a suitable definition of) P is nep with respect to some strongly normal ZFC∗.

In practice the choice of ZFC∗ is immaterial (similar to the choice of χ in the definition
of proper forcing). If you believe this you can skip the following explanation, continue
at the proof of theorem 6.1, let S (κ) be some regular κ′ � κ and ignore the arguments
why certain models are in fact candidates.

Why do we use strongly normal here, and not just normal, i.e.
H(χ) � ZFC∗ for large regular χ?

Normal would definitely be enough to imply proper. The point in using strongly normal
is that we can assume without loss of generality that not only the candidate M satisfies
ZFC∗, but also e.g. all forcing extensions M[G] (for forcings that are small in M). (This
is of course not possible with a ZFC∗ that is just normal. For example if V = L then
there is a normal ZFC∗ containing V = L, but ZFC∗ fails to be normal in any nontrivial
forcing extension.)15

Lets explain that in more detail:
First note that we are dealing with two forcings, QI and P. QI is Suslin ccc. This

implies that Q is Suslin proper (and therefore transitive nep) with respect to any ZFC∗

that contains a certain strongly normal sentence ϕ.16 Each two strongly normal theories
are compatible (i.e. the union is strongly normal as well), and a forcing remains nep if
we strengthen ZFC∗ (since then there are fewer candidates). So we can assume without
loss of generality that Q and P are nep with respect to the same ZFC∗.

13I.e. if M2,M1 are candidates, M2 � “M1 is a candidate”, and M1 � p ∈ P, then M2 � p ∈ P and
V � p ∈ P, and the same for ≤.

14More formally this reads: p forces: If G is M-generic, then M[G] � “ϕ(
˜
τ[G])”.

15 We can still formulate the theorem for forcings that are nep with respect to not necessarily strongly
normal theories, but then we have to use two theories ZFC∗∗ and ZFC∗ and have to assume something like
the following:
A forcing extension of a ZFC∗∗-candidate is a ZFC∗-candidate; P is nep with respect to ZFC∗; ZFC∗∗ implies
that every small forcing R forces that P is nep with respect to ZFC∗.
So the formulation of the theorem gets messy, while there is no gain in practice, where ZFC∗ is strongly
normal anyway.

16ϕ is the completeness theorem for Keisler logic. This follows from the proof that Suslin ccc implies
Suslin proper in [4], see [7] for a discussion.
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If 2R ∈ H(κ) then 
R HV (κ)[G] = HV[G](κ) and r 
 (HV[G](κ) � ϕ) iff H(κ) � (r 
 ϕ).
So if P is nep (or Borel outer measure preserving) in V , then it is nep (or preserving) in
H(χ) (for sufficiently large regular χ).
Let R be any forcing notion. We assumed that R forces that P is nep and preserving.
Also ZFC∗ is strongly normal, so R forces that HV[GR](χ) satisfies

ZFC∗ plus P is nep and Borel outer measure preserving(×)

for every regular χ ≥
˜
χR. Clearly we can find a χ′R such that R forces that

˜
χR < χ′R, and

we can do that for all R ⊆ H(κ). So for all κ there is a regular S (κ) � κ such that

H(χ) thinks that R forces (×) for all regular χ ≥ S (κ) and R ⊂ H(κ).(×2)

Proof of theorem 6.1. The proof is very similar to the proof of “preserving a little
implies preserving much” in [13] (or its version in [7]). The point of the proof is that
we mix “internal” forcing extensions (i.e. by M-generic filters in V) for QI and R (a
collapse) with external forcing extensions for P, and use absoluteness to compare what
P forces in the different internal models.

We will prove the theorem for the case that P is transitive nep. If you know the
general definition of nep, you will see that the same proof works for general nep as
well.17

Recall that the Suslin ccc ideal I was defined by a Suslin ccc forcing QI and a generic
real

˜
ηI (see 2.2).

We have to show the following: if T is an interpretation of
˜
T ′′ with respect to p,

then for all (or just: cofinally many) N ≺ H(χ) containing p,T,
˜
T ′′ and for all η∗ ∈

Gen(N) ∩ T the following holds:

there is an N-generic q ≤ p forcing that η∗ ∈
˜
T ′′ ∩ Gen(N[GP]).(∗)

P is nep with respect to a strongly normal ZFC∗. Set χ′0 B ω1, χ′1 B S (χ′0), χ′2 B
S (χ′1), and χ′3 B S (χ′2).

There are cofinally many such N0 ≺ H(χ3) containing P, p,T,
˜
T ′′. We fix such an

N0. So it is enough to show (∗) for N0. Let i : N0 → M0 be the transitive collapse.
For i ∈ {1, 2}, set χi B i(χ′i), and set

˜
T ′ B i(

˜
T ′′). Note that i doesn’t change p, T or

˜
ηI , since these objects are hereditarily countable (T is a Borel code, i.e. a real number).
Not surprisingly, (∗) for N0 is equivalent to the following:

there is an M0-generic q ≤ p forcing that η∗ ∈
˜
T ′ ∩ Gen(M0[GP]).(∗2)

This is straightforward: A filter G is M0-generic iff it is N0-generic (since i doesn’t
change the elements of P). Also, the evaluation of a name

˜
s of a real number is absolute:

If G is M0-generic, then
˜
s[G] = i(

˜
s)[G]. To see this, pick in N0 maximal antichains An

deciding
˜
s(n). Fix n. If G is N0-generic, then G chooses an element of p ∈ An ∩ N0

forcing that
˜
s[G](n) = m. M0 thinks that pn forces that i(

˜
s)(n) = m, so i(

˜
s)[G](n) = m.

So in particular
˜
T ′′[G] =

˜
T ′[G], and N0[G] and M0[G] see the same Borel null sets, i.e.

Gen(N0[G]) = Gen(M0[G]).
From now on for the rest of the proof we fix the above M0, p, T ,

˜
T ′.

We formulate (∗2) as a property of η∗:

17You just have to use the ord-collapse instead of the transitive collapse, and keep in mind that the evalu-
ation of names

˜
τ[G] has to be redefined for non-transitive candidates. And you have to formulate awkward

requirements on ZFC∗ if you allow ZFC∗ to be a (∈, κP)-theory.
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Definition 6.5. Let M be a candidate containing p, T and
˜
T ′. η∗ is absolutely generic

over M, or: η∗ ∈ Genabs(M), if η∗ ∈ T and there is an M-generic q ≤P p forcing that
η∗ ∈

˜
T ′ ∩ Gen(M[GP]).

(Note that the definition of absolutely generic does not only depend on M, but on p,
T and

˜
T ′ as well. However, these parameters are fixed.)

Using this notion, (∗2) reads as follows:
Gen(M0) ∩ T = Genabs(M0).

For any candidate M, Gen(M) is a measure 1 set. So if Gen(M)∩T = Genabs(M) then
Genabs(M) is a measure 1 set in T . As the first step in our proof we show that Genabs(M)
is at least nonempty:

Lemma 6.6. Assume that P is Borel outer measure preserving, M is a candidate, and
M thinks that

T is an interpretation of
˜
T ′ with respect to p, and

A is a positive Borel (code for a) subset of T .
Then Genabs(M) ∩ A ∈ I+.

Proof. In M, A is an interpretation of
˜
T ′ with respect to p, since A ⊆ T is positive.

So without loss of generality A = T , i.e. we just have to show that Genabs(M) is positive.
Pick (in M) a p′ ≤ p forcing that T ∩

˜
T ′ is positive. Let q ≤ p′ be M-generic, and

G a P-generic filter over V containing q. So in M[G] (and therefore by absoluteness in
V[G]) T V[G] ∩

˜
T ′[G] is positive. T V[G] is the outer measure of T V (since P preserves

outer measure). So T V ∩
˜
T ′[G] is positive. Also, Gen(M[G]) is of measure 1. Therefore

X B Gen(M[G]) ∩ T V ∩
˜
T ′[G]

is positive in V[G]. Clearly X ⊆ Genabs(M)V . So in V , Genabs(M) has to be positive. a
Let (in M0, for i ∈ {1, 2}) Ri be the collapse of HM0 (χi) to ℵ0, i.e. the set of finite

partial functions from ω to HM0 (χi). Fix an η∗ ∈ Gen(M0) ∩ T . We have to show that
η∗ ∈ Genabs(M0). η∗ ∈ Gen(M0) means that there is (in V) a QI-generic filter GQ over
M0 such that

˜
ηI[GQ] = η∗. Pick (again in V) an R2-generic filter GR2 over M0[GQ]. Set

M′ B M0[GQ][GR2 ]. So we get (in V) the following forcing extensions:

M0 → M0[GQ]→ M′ B M0[GQ][GR2 ]

M′ sees all relevant information about H1 B H(χ1)M0 (in particular M′ knows that H1
is a candidate). So it is enough to show that M′ thinks that η∗ is absolutely generic for
H1:

Lemma 6.7. M′ � η∗ ∈ Genabs(H1)

If we assume this, theorem 6.1 follows immediately: QI ∗ R2 ⊆ HM0 (χ2). M0 is the
transitive collapse of N0 ≺ H(S (χ′2)), so according to (×2) M′ is a candidate and P is
transitive nep in M′. Clearly M′ knows that H1 is a candidate. So according to the
lemma there is a p′ ∈ M′ such that

M′ � “p′ ≤ p is H1-generic, and p′ 
P η
∗ ∈

˜
T ′ ∩ Gen(H1[GP])”.

Let (in V) q ≤P p′ be M′-generic. We claim that q witnesses (∗2), i.e. that
q is M0-generic and forces that η∗ ∈ Gen(M0[GP]) ∩

˜
T ′.

So let GP be a P-generic filter over V containing q. Then GP is M′-generic.
M′[GP] thinks that GP (i.e. GP ∩ PM′ ) is H1-generic, since this is forced by p′ ∈ GP.
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M0
R1 //

Q

G⊗Q ��

M1 � η
⊗ ∈ Genabs(H1) ∩ BM1

q

R′

G̃2

��
M0[η⊗]

R1/Q

G̃1

??

M2 � η
⊗ < Genabs(H1)

R2

G̃1∗G̃2

//

Figure 2. The models used in the proof of lemma 6.7.

Being H1-generic is absolute (it just says that |GP ∩ A| = 1 for all maximal antichains
in H1). So GP really is H1-generic. Analogously η∗ is I-generic over H1[GP].
Recall that H1 = H(χ1)M0 , the definition of P is absolute between the universe and
H(χ) and χ1 is sufficiently large. Therefore PH1 = PM0 and H1 contains exactly the
same subsets of P as M0 does. So GP is M0-generic as well. Also, H1[GP] contains
exactly the same reals (in particular Borel codes) as M0[GP]. (This can again be seen
by deciding

˜
r(n) by a maximal antichain.) Therefore η∗ is I-generic over M0[GP]. This

is all forced by some q ≤ p, so we are finished.

Proof of lemma 6.7. We already know that η∗ is I-generic over M0. Using the facts
that H1 and M0 see the same subsets of P and that H1 is countable in M′ we get
M′ � η∗ ∈ Gen(H1) ∩ T .

Assume towards a contradiction that M′ � “η∗ < Genabs(H1)”. Since M′ = M0[GQ][GR]
this is forced by some q ∈ GQ and r ∈ R2. However since R2 is homogeneous and the
sentence η∗ < Genabs(H1) only contains parameters in M0[GQ] we can assume that
r = 1, i.e.

M0 � “q 
Q (
˜
ηI ∈ T, 
R2

˜
ηI ∈ Gen(H1) \ Genabs(H1))”.(�)

Fix a positive Borel code Bq ∈ M0 such that

{
˜
ηI[G] : G ∈ V is an M0-generic filter containing q} = Gen(M0) ∩ BV

q

(see 2.3). Without loss of generality Bq ⊆ T , since (in M0) q 

˜
ηI ∈ T .

Choose in V an R1-generic filter GR1 over M0, and set M1 B M0[GR1 ]. M1 knows
that H1 is a candidate, and that BM1

q ⊆ T is positive. M1 knows that P preserves Borel
outer measure (because of (×2)), and H1 thinks that T is an interpretation of

˜
T ′ with

respect to p (since H1 is the collapse of HV (χ1)). So we can apply lemma 6.6 in M1 (i.e.
M1 is the universe V and H1 the candidate M) and find a η⊗ ∈ Genabs(H1) ∩ BM1

q . In
particular η⊗ is I-generic over H1 and therefore over M0. So in M1 there is a M0-generic
filter G⊗Q such that η∗[G⊗Q] = η⊗ ∈ BV

q . Therefore q ∈ GQ, and we can factorize R1 as
R1 = Q ∗ R1/Q such that GR1 = G⊗Q ∗ G̃1. (See figure 2 for a diagram of the forcing
extensions we are going to construct).

In M0[G⊗Q] = M0[η⊗] we look at the forcing R2 = RM0
2 (the finite partial functions

from ω to HM0 (χ1) = H1). χ2 � χ1 and R1/Q is a subforcing of ro(R1), where R1 ⊂ H1.
So according to 2.10 (2) and (3), R2 can be factorized as R2 = (R1/Q) ∗ R′. We already
have the (R1/Q)-generic filter G̃1 (over M0[G⊗Q]), now choose (as always in V) a R′-
generic filter G̃2 over M1. Set GR2 = G̃1 ∗ G̃2. So GR2 is R2-generic over M0[G⊗Q]. Set
M2 B M0[η⊗][GR2 ].
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Now set H2 B H(χ2)M1 . H2 thinks that P is nep and that η⊗ ∈ Genabs(H1) (by
absoluteness in M1). Also, H2 is a candidate (by (×2), since H2 = HM0 [GR1 ]). So for
some p1 ∈ H2,

H2 � “p1 ≤ p is H1-generic, p1 
 η
⊗ ∈ Gen(H1[GP]) ∩

˜
T ′”.

In M2, there is an H2-generic p2 ≤ p1 (since M2 thinks that P is nep and that H2
is a candidate.) Let GP be a P-generic filter over M2 containing p2. From now on,
we work in M2[GP]. GP is H2-generic and contains p1, so by absoluteness GP is H1-
generic as well and η⊗ ∈ Gen(H1[GP]) ∩

˜
T ′. On the other hand, according to (�),

η⊗ < Gen(H1[GP]) ∩
˜
T ′, a contradiction. a

Note that if we set T =
˜
T ′ = 2ω this proof gives us “preserving a little implies

preserving much” of [13]:

Theorem 6.8. If in all forcing extensions of V , P is nep and preserves Borel positiv-
ity, then P preserves generics.
In particular, if P is provably nep and provably preserves Borel positivity, then P pre-
serves generics.

§7. A general preservation theorem. For proving the main result 9.4 we will use a
general iteration theorem for countable support iterations of proper forcings. It appeared
as “Case A” in Proper and improper forcing [12, XVIII,§3]. The proof there is not easily
digestible, though. A simplified version appeared in Section 5 of Goldstern’s Tools [2].
This version uses the additional requirement that every forcing of the iteration adds a
new real. Note that this requirement is met in many applications anyway (e.g. in the
forcings of [9] cited in the introduction).

A proof of the iteration theorem without this additional requirement appeared in [8]
and was copied into Set Theory of the Reals [1] (as “first preservation theorem” 6.1.B),
but Schlindwein pointed out a problem in this proof.18 Another proof (building on the
one in [2]) will appear in [3].

The general preservation theorem uses the following setting: Fix a sequence of in-
creasing arithmetical two-place relations Rn on ωω. Let R be the union of the Rn. As-
sume
• C B { f ∈ ωω : f R η for some η ∈ ωω} is closed,
• { f ∈ ωω : f Rn η} is closed for all n ∈ ω, η ∈ ωω, and
• for every countable N there is an η such that f R η for all f ∈ N ∩ C

(in this case we say “η covers N”).

Definition 7.1. Let P be a forcing notion, p ∈ P.
• f̄ ∗ B f ∗1 . . . f ∗k is a tools-interpretation of ¯

˜
f B

˜
f1, . . . ,

˜
fk under p, if each

˜
fi is a

P-name for an element of C, and there is an decreasing chain p = p0 ≥ p1 ≥ . . .
of conditions in P such that pi 
 (

˜
f1 � i = f ∗1 � i & . . .&

˜
fk � i = f ∗k � i).

• A forcing notion P is tools-preserving, if for all
N ≺ H(χ),
η covering N,

18See [11]. In this paper Schlindwein wrote a simple proof for the special case of ωω-bounding, however
he later found a problem in his own proof [C. Schlindwein, personal commuinication, April 2005]. He is
preparing a new version [10].
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p, ni, f̄ ∗, ¯
˜
f ∈ N such that f̄ ∗ is a tools-interpretation of ¯

˜
f under p and f ∗i Rni η

there is an N-generic q ≤ p, forcing that
η covers N[GP], and

˜
fi Rni η for all i ≤ k.

Note that if f̄ is a tools-interpretation, then f ∗l ∈ C.
Tools-interpretations differ from the interpretations of definition 5.9. They obviously

deal with functions from ω to ω instead of Borel sets modulo I. But there is another
technical difference: For tools-interpretations, we require that there is a decreasing se-
quence of conditions p ≥ p1 ≥ p2 ≥ . . . , not just that for all n, the truth value of
(∀m ≤ n)

˜
f (m) = f ∗(m) is positive.19

Now we can formulate the “first preservation theorem” [1, 6.1.B] already mentioned:

Theorem 7.2. Assume (Pi,
˜
Qi)i<α is a countable support iteration of proper, tools-

preserving forcings. Then Pα is tools-preserving.20

§8. Preservation of non-meager. In this section I is the ideal of meager sets.
This is the easiest (and already well known) case: strong preservation is equivalent

to preservation of generics and is iterable.
We already know that preservation of Borel positivity is equivalent to preservation of

Borel outer measure. The same holds for the non-Borel notions as well:

Lemma 8.1. Preservation of positivity implies preservation of outer measure, and the
same holds for the true version.

Proof. Assume towards a contradiction that A is outer measure of X, and that p forces
that

˜
B is outer measure of X̌ and A\

˜
B is positive. Then A\

˜
B contains a nonempty clopen

set D ∈ V . So p forces that DV[GP] ∩ X̌ = DV ∩ X̌ is null. By positivity preservation
D ∩ X has to be null, a contradiction.

To show the lemma for the true notion, the same argument works: Assume towards
a contradiction that A is true outer measure of η̄ and that p forces η̄(

˜
C′) ∩ D is null for

some clopen D ⊆ A. Then define

S ∗ B {s ∈ S : ηs ∈ D}, and
η̄∗ B η̄ � S ∗.

The usual argument shows that η̄∗ is truly positive: Otherwise, let C be club such that
η̄∗(C) = ∅. Then C witnesses that A is not true outer measure of η̄. On the other hand, p
forces that η̄∗(

˜
C′) is null, a contradiction to true positivity preservation. a

It is well known that “preservation of Cohens” is iterable:

Theorem 8.2. If (Pi,
˜
Qi)i<α is a countable support iteration of proper forcings such

that 
Pi (
˜
Qi preserves Cohens) for all i ∈ α, then Pα preserves Cohens.

19Given a forcing P and a tools-interpretation f ∗ of a function
˜
f < V under p, we can find a dense subforc-

ing P′ ⊂ P such that for every condition p′ of P′ there is a n(p′) such that p′ forces that f ∗(n(p′)) ,
˜
f (n(p′)).

So with respect to P′, f ∗ cannot be a tools-interpretation of
˜
f any more. Definition 5.9 of interpretation on

the other hand is invariant under equivalent forcings.
20Let us call P densely preserving, if there is a dense subforcing Q of P that is tools-preserving. Since

tools-interpretations are not absolute, densely preserving does not seem to imply tools-preserving. When
iterating forcings that do not neccessarily add reals, it actually seems that densely preserving is the property
that is preserved and not tools-preserving, see [3]. In practice this distinction is of course not important.
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Proof. This is proven as application 3 in [2] or as theorem 6.3.20 of Set theory of the
reals [1]. It is an easy application of tools-preservation (7.2):

Let Ω be the set of clopen sets of 2ω. Set

C = { f ∈ ΩΩ : (∀U ∈ Ω) f (U) ⊆ U}.

We define f Rn η by

f ∈ C and η ∈ 2ω and for some k ≤ n, η ∈ f (Uk).

Then for any N ≺ H(χ), η covers N iff η is Cohen over N. Also { f : f Rn η} is clopen, so

˜
fi Rni η can be forced by determining

˜
fi � m for some m. Therefore P preserves Cohens

iff P is tools-preserving. This finishes the proof of 8.2.
Note that in this simple case tools-preservation isn’t really needed. It is enough to

trivially modify the proof that a countable support iteration of proper forcings is proper
(see e.g. [1, 6.1.3]). In the following we point out the changes that have to be made to
this specific proof:

The lemma now reads:
Suppose (Pα,

˜
Qα)α<δ is a countable support iteration such that for all α < δ, 
α “

˜
Qα is proper and preserves Cohens”.

Suppose that N ≺ H(χ) contains (Pα,
˜
Qα). Then for all β ∈ N ∩ δ, for all α ∈ N ∩ β

and for all p ∈ Pβ ∩ N, whenever q ≤α p � β is (N, Pα)-generic and forces that
η∗ ∈ Gen(N[Gα]), there is an (N, Pα)-generic condition r ≤α p � β such that r � α = q
and r 
 η∗ ∈ Gen(N[Gβ]).

The successor step is trivial. In the limit step we enumerate (just like the the
˜
τn)

a list
˜
Tn of the Pβ-names in N of nowhere dense trees. Then we add the following

requirement: pn+1 determines
˜
Tn up to a level m, and η∗ <

˜
Tn � m.

Why can we do this? By induction we already know that there is a Pαn -generic
qn ≤ pn over N that forces η∗ ∈ Gen(N[Gαn ]). Assume Gαn is Pαn -generic over V and
contains q. In N[Gαn ], construct T ∗m and an decreasing sequence pm

n < pn such that
pm

n 
 T ∗m =
˜
Tn � m and

⋃
m∈ω T ∗m is a nowhere dense tree. So η∗ < T ∗m for some m. T ∗m

lives in V (since it is finite). So there is an m, T ∗m and a pm
n ≤ pn ∈ N such that η∗ < T ∗m.

Now choose pn+1 ≤ pm
n .

So in this case the additional preservation property can be satisfied “locally” (we can
once and for all deal with

˜
Mn in step n). a

Applying theorem 6.1 gives the following result due to Goldstern and Shelah [12,
Lem XVIII.3.11]:

Corollary 8.3. If (Pi,
˜
Qi)i<α is a countable support iteration such that

˜
Qi is provably

nep and provably doesn’t make V meager, then Pα doesn’t make any old set meager.

§9. Preservation of Lebesgue-positive. In this section, I is the ideal of Lebesgue
null sets.

The outer measure of X as defined in this paper is equivalent to the outer measure in
the usual sense, called Leb∗(X). In particular, preservation of outer measure is equiva-
lent to the preservation of the value of Leb∗(X), more formally: Assume Leb∗(X) = r.
Then P preserves outer measure of X iff P forces that Leb∗(X̌) = ř.

Also the true outer measure is fully described by the true outer measure as a real,
defined by T-Leb∗(η̄) B min{Leb∗(η̄(C)) : C club} (note that T-Leb∗ really is a mini-
mum). Then P is true outer measure preserving iff P preserves T-Leb∗. (This follows
from the proof of the next lemma).
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Lemma 9.1. If P is weakly homogeneous21 and preserves (true) positivity then P pre-
serves (true) outer measure.

Proof. For the “untrue” version, this is [1, Lem 6.3.10]. The same proof works for
true outer measure as well: Assume that B is a true outer measure of η̄, that Leb(B) = r1
and that p forces that

˜
B′ ⊇ η̄(

˜
C′) and Leb(

˜
B′) < r2 < r1, r2 rational. We have to show

that there is a truly positive η̄∗ that fails to be truly positive after forcing with P.
So p forces that there is a sequence

˜
In of clopen sets such that

⋃
˜
In ⊇ η̄(

˜
C′) and

Σ Leb(
˜
In) < r2. Let pn, h(n), I∗n be such that for all m ≤ h(n),

pn 
 Leb(
⋃

m>h(n) ˜
Im) < 1/n & (∀k < m)

˜
Ik = I∗k .

So Leb(
⋃

I∗m) ≤ r2, and B \
⋃

I∗m is not null. Therefore

S ∗ B {s ∈ S : ηs <
⋃

I∗m}

is is stationary (otherwise, the complement of S ∗ would witness that B is not the true
outer measure or η̄). Define η̄∗ B η̄ � S ∗. So η̄∗ is truly positive.

pn 
 Leb(
⋃

˜
Im \
⋃

I∗m) < 1/n, and

pn 
 η̄
∗(

˜
C′) ⊆

⋃
˜
Im \
⋃

I∗m, i.e.

pn 
 Leb∗(η̄∗(
˜
C′)) < 1/n. So

pn 
 T-Leb∗(η̄∗) ≤ 1/n.

Since the last statement does not contain any names except standard-names, and since P
is weakly homogeneous, we get 1P 
 T-Leb∗(η̄∗) ≤ 1/n for all n, i.e. 
 T-Leb∗(η̄∗) = 0.
So the truly positive η̄∗ becomes null after forcing with P. a

Now we are going to show that strong preservation is equivalent to the Lebesgue
version of tools-preservation (see definition 7.1).

We list the clopen subsets of 2ω as (Ii)i∈ω, and interpret a function f ∈ ωω as a
sequence of clopen sets. We set

CB { f : ∀i Leb(I f (i)) < 2−i}, and
f Rn η iff f ∈ C, η ∈ 2ω, and for all l > n, η < I f (l).

For f ∈ C, the set N f B
⋂

n∈ω
⋃

i>n I f (i) is a null set. In fact, every null set is contained
in a N f for some f ∈ C (see e.g. [1, 2.3.10] or [2]). f R η just means η < N f .
η is random over a model N iff η is not element of any null set coded by a real in N.

So η is random over N iff η covers N.
For reference we baptize this version of tools-preservation:

Definition 9.2. P is called Lebesgue-tools-preserving if it is tools-preserving for the
Rn defined as above.

It is clear that Lebesgue-tools-preserving implies preservation of generics and there-
fore preservation of positivity. Lebesgue-tools-preservation is preservation of generics
plus “side functions”. It turns out that this is equivalent to strong preservation:

Lemma 9.3. The following are equivalent:
1. P is Lebesgue-tools-preserving.

21So if ϕ only contains standard-names, then (p 
P ϕ) implies (1P 
P ϕ).
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2. P is Lebesgue-tools-preserving for k = 1 and n1 = 0.
3. P strongly preserves randoms.

Proof. (2) → (1): Assume N ≺ H(χ), p, η, f ∗1 , . . . , f ∗k ,
˜
f1, . . . ,

˜
fk and n1, . . . , nk are

as in the definition of Lebesgue-tools-preserving.
Set n∗ B max(k, n1, . . . , nk). pn∗ ≤ p forces that f ∗i � n∗ =

˜
fi � n∗. Let g∗ ∈ ωω be such

that Ig∗(m) =
⋃

i=1...k I f ∗i (n∗+m), and
˜
g the name of a function in ωω such that p forces that

I
˜
g(m) =

⋃
i=1...k I

˜
fi(n∗+m). So for all m, p 
 Leb(Ig∗(m)) < k2−(n∗+m) < 2−m, i.e. p 


˜
g ∈ C.

g∗ is a tools-interpretation of
˜
g under pn∗ (this is clear if we assume that the list Im

contains no repetitions; otherwise we just have to choose
˜
g(m) accordingly).

η < Ig∗(m) for all m; i.e. g∗ R0 η.
Since we assume (2) we can find an N-generic q ≤ pn∗ forcing that η is random over
N[G] and that

˜
g R0 η.

This means that q forces that η < I
˜
fi(m) for all i ≤ k and m > n∗. And for ni ≤ m ≤ n∗,

pn∗ forces that I
˜
fi(m) = I f ∗i (m) and therefore that η < I

˜
fi(m). So q forces that

˜
fi Rni η.

(2) → (3): We show the equivalent property (3) of lemma 5.11. So fix p and N and
assume p 


˜
T ′ ∈ I+

BC. We want to show that there is a T and a p′ ≤ p such that T is an
interpretation of

˜
T ′ with respect to p′, and for every η∗ ∈ T ∩ N there is an N-generic

q ≤ p forcing that η∗ ∈ Gen(N[G]) ∩
˜
T ′.

Since every positive set contains a positive closed set we can assume without loss
of generality that p forces that

˜
T ′ is closed and that the measure of

˜
T ′ is at least some

rational number r.
Any measurable A ⊆ 2ω can be approximated from the outside by countable unions

of clopen sets. If A is closed (i.e. compact), then any open cover of A has a finite sub-
cover. So for any ε > 0 there is a clopen set C ⊇ A such that Leb(C \ A) < ε. In
particular there is a sequence of clopen sets

2ω = A0 ⊇ A1 ⊇ · · · ⊇ A

such that Leb(An \ A) = Leb(An) − Leb(A) < 2−n and A =
⋂

An. Set Bn := An \ An+1.
Then the Bn are a disjoint sequence of clopen sets, A = 2ω \

⋃
Bn and

Leb(Bn) = Leb(An) − Leb(An+1) ≤ Leb(An) − Leb(A) < 2−n.

So the sequence (Bn) is coded by an f ∈ C. Also Σ Leb(Bn) = 1 − Leb(A).
Applying this to

˜
T ′ we get that p forces that there is the according

˜
f for

˜
T ′. Pick an

N′ ≺ H(χ′) containing p and
˜
f , and let G ∈ V be an N′-generic filter. Then f ∗ B

˜
f [G]

is a tools-interpretation of
˜
f , witnessed by a decreasing sequence pn of elements of G.

Let (B∗n)n∈ω be the sequence of clopen sets corresponding to f ∗. B∗n is disjoint to B∗m
for m , n (since p forces this for

˜
B). Also p forces that Σ Leb(

˜
Bn) ≤ 1−Leb(

˜
T ′) < 1−r,

and therefore Σ Leb(B∗n) ≤ 1 − r. So T B 2ω \
⋃

B∗n is positive. T is an interpretation
of

˜
T ′ with respect to p: Assume A ⊆ T has measure s > 2−n. Then pn ≤ p forces that

Leb(
˜
T ′ \
⋃

m<n ˜
Bm) =< 2−n and that

⋃
m<n ˜

Bm =
⋃

m<n B∗m. A is disjoint to
⋃

n<m B∗m, so
A ∩

˜
T ′ has to be positive.

Assume N ≺ H(χ) contains p, P,T,
˜
T ′ and η ∈ T ∩ Gen(N). η ∈ T means η < B∗n for

all n, i.e. f ∗ R0 η. So by (2) there is a q ≤ p N-generic forcing that η ∈ Gen(N[G]) and
that ηR0

˜
f . That again means that η ∈

˜
T ′, and we are finished.

(3) → (2): Fix an N ≺ H(χ), a tools-approximation f ∗ of
˜
f under p such that

˜
f , f ∗,

and p are in N, and an η ∈ Gen(N) such that f ∗ R0 η.
So the appropriate p2 ≤ p forces that f ∗(0) =

˜
f (0) and f ∗(1) =

˜
f (1).

Paper Sh:828, version 2005-06-09 10. See https://shelah.logic.at/papers/828/ for possible updates.



PRESERVING PRESERVATION 29

Set T B 2ω \
⋃

m>1 I f ∗(m) and
˜
T ′ B 2ω \

⋃
m>1 I

˜
f (m).

Then T is an interpretation of
˜
T ′ with respect to p2:

Assume A ⊆ T is a positive Borel set. Pick N ∈ ω such that Σn≥N2−n < Leb(A). pN ≤ p2
forces that f ∗(i) =

˜
f (i) for all i < N. So pN forces that A∩

⋃
m<N I

˜
f (m) is empty, and that

Leb(
⋃

m≥N I
˜
f (m)) < Leb(A), and therefore that A ∩

˜
T ′ is positive.

So by (3) we know that there is an N-generic q ≤ p2 forcing that η is random over N[G]
and that η ∈

˜
T ′. η ∈

˜
T ′ means that for all m > 1, η < I

˜
f (m). Since q ≤ p2, q forces that η

is not in I
˜
f (0) = I f ∗(0) or I

˜
f (1) = I f ∗(1) either. So q forces that

˜
f R0 η. a

Using this lemma, theorem 6.1 and the fact that strong preservation implies preserva-
tion we get:22

Corollary 9.4. Assume that (Pi,
˜
Qi)i<α is a countable support iteration such that for

all i,
˜
Qi is provably nep and provably preserves Lebesgue positivity of V . Then Pα

preserves Lebesgue positivity (of all old positive sets).

The Diagram of Implications. So in the cases of the Lebesgue null and the mea-
ger ideal we have implications of preservation of the following notions:

I is the Lebesgue null ideal:

Lebesgue-tools
(iterable)
↔

true outer measure

��

//

P weakly
hom. (9.1)oo randoms

↔
true positivity

��

outer measure //

P weakly
hom. (9.1)oo positivity

positivity of V
↔

Borel outer measure

��
P nep: 6.1

YY

For the definition of Lebesgue-tools-preserving,
see 9.2. For nep see section 6.

I is the meager ideal:

Cohens
(iterable)
↔

true outer measure

��

outer measure
↔

positivity

��

positivity of V
↔

Borel outer measure

P nep: 6.1

BB

For general Suslin ccc ideals we get:

22Compare that to Zapletal [15, Cor 5.4.10]: Assume that there is a proper class of measurable Woodin
cardinals. If P is a forcing adding a single real which has a definition satisfying a (very general) syntax and
preserves Lebesgue positivity of V (or in fact positivity with respect to similar ideals), then the countable
support iteration of P (or arbitrary length) preserves positivity as well.
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preserving true
outer measure

OO

5.11
��

// preserving true
positivity
OO

5.8
��

strongly
preserving generics

//

5.6

��

preserving
generics

��

preserving many
generics
OO

3.5
��

preserving
outer measure

��

// preserving
positivity

��

preserving Borel
outer measure

OO

��

//

P nep: 6.1

BB

preserving
Borel positivity

��

P is Borel
homogeneous: 3.2

OO

P nep: 6.8

\\

preserving outer
measure of V

preserving
positivity of V

V has outer measure
0 or 1oo

Preservation of (Borel) positivity and outer measure is defined in 3.1, the true no-
tions in 5.5, and (strong) preservation of generics in 5.7 and 5.9. For “P nep” see
section 6.
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[15] Jindřich Zapletal, Descriptive set theory and definable forcing, Memoirs of the American Mathe-
matical Society, vol. 167,3 (2004), no. 793, pp. vii+141.

JAKOB KELLNER
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