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CELLULARITY OF FREE PRODUCTS OF BOOLEAN
ALGEBRAS (OR TOPOLOGIES)

SAHARON SHELAH

ABSTRACT. The aim of this paper is to present an answer to Problem 1
of Monk [?], [?]. We do this by proving in particular that
if u is a strong limit singular cardinal, § = (2°f)+ 20 = 4+
then there are Boolean algebras Bq, By such that
cBy)=p, c(By)<® but c(B*xBy)=pu".

Further we improve this result, deal with the method and the necessity
of the assumptions.

0. INTRODUCTION

Notation 0.1. (1) In the present paper all cardinals are infinite so we will
not repeat this additional demand. Cardinals will be denoted by A,
i, O (with possible indexes) while ordinal numbers will be called «,
B, ¢, &, €, 4, j. Usually ¢ will stand for a limit ordinal (we may forget
to repeat this assumption).

(2) Sequences of ordinals will be called 7, v, p (with possible indexes).
For sequences 7y, 7y their longest common initial segment is denoted
by m1 A n2. The length of the sequence 7 is 1g(n).

(3) Ideals are supposed to be proper and contain all singletons. For a
limit ordinal § the ideal of bounded subsets of § is denoted by JPd.
If I is an ideal on a set X then I is the family of I-large sets, i.e.

ael™ ifandonlyif aCX&ad¢l
and ¢ is the dual filter of sets with the complements in 1.

Notation 0.2. (1) In a Boolean algebra we denote the Boolean opera-
tions by N (and (), U (and (J), —. The distinguished elements are
0 and 1. In the cases which may be confusing we will add indexes
to underline in which Boolean algebra the operation (the element)
is considered, but generally we will not do it.

The research was partially supported by the Israel Science Foundation. Publication
575. We thank Andrzej Rostanowski for writing sections 1 - 5 from lectures, 6 - 7 from
notes.
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(2) For a Boolean algebra B and an element x € B we denote:

2=z and 2'=-—uz.

(3) The free product of Boolean algebras By, B, is denoted by B; * Bs.
We will use % to denote the free product of a family of Boolean
algebras.

Definition 0.3. (1) A Boolean algebra B satisfies the A-cc if there is no
family F C BT &' B \ {0} such that |F| = A and any two members
of F are disjoint (i.e., their meet in B is 0).
(2) The cellularity of the algebra B is
c(B) =sup{|F|: FCB" & (Vo,y e F)(x £y = xNy=0)},
c"(B) =sup{|F|" : FCB" & (Ve,ye F)(zx £y =xzNy=0)}.
(3) For a topological space (X, 7):
c(X,7) =sup{|U| : U is a family of pairwise disjoint
nonempty open sets}.

The problem can be posed in each of the three ways (A-cc is the way
of forcing, the cellularity of Boolean algebras is the approach of Boolean
algebraists, and the cellularity of a topological space is the way of general
topologists). It is well known that the three are equivalent, though (1)
makes the attainment problem more explicit. We use the second approach.

A stronger property then A-cc is the A-Knaster property. This property
behaves nicely in free products — it is productive. We will use it in our
construction.

Definition 0.4. A Boolean algebra B has the A-Knaster property if for
every sequence (z. : € < A\) C BT there is A € [)\])‘ such that
£1,69 € A = Zey M Zey %0

We are interested in the behaviour of the cellularity of Boolean algebras
when the free product of them is considered.

Thema 0.5. When, for Boolean algebras By, By
cPBy) <A\ &ct(By) <Xy = (B *By) < A\p + Ao?
There are a lot of results about it, particularly if A\; = Ay (see [?] or [?],
more [?]). It is well know that if
(A +A3) — (AL A)?

then the answer is “yes”. These are exactly the cases for which “yes” answer
is known. Under GCH the only problem which remained open was the one
presented below:
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The Problem We Address 0.6.

(Posed by D. Monk as Problem 1 in [?], [?] under GCH))

Are there Boolean algebras B, B, and cardinals pu, 6 such that
(1) Ay = p is singular, g > Ay = 6 > cf(p) and
(2) ¢(By) = p, c(By) < 6 but ¢(By * By) > p?

We will answer this question proving in particular the following result (see

4.4):

If ;1 is a strong limit singular cardinal, § = (2¢fW)+, 21 = 4+
then there are Boolean algebras By, B, such that

c(By) =pu, c(By) <6 but c(B; xBy) =pu’.

Later we deal with better results by refining the method.

Remark 0.7. On products of many Boolean algebras and square bracket
arrows see |7, 1.2A, 1.3B].

If A\ — [u]?, [r <o = 27 < 4], the cardinals 0, o are possibly finite, B;
(for i < #) are Boolean algebras such that for each j < 6 the free product

% B; satisfies the u-cc then the algebra B = % B; satisfies the A-cc.
1€0\{j} i<6

[Why? Assume (a$ : i < 6) € [[ Bf (for ¢ < \) such that for every { < £ <
i<
A, for some i = i(¢,€), B; =“aS Na$ = 07. We can find A € [A]* and j < 0
such that i(¢,€) = j for ¢ < € from A. Then (as : i < 0,1 # i*) for ( € A
exemplifies Y B; fails the p—cc. We can deal also with ultraproducts
ieo\{i*}
and other products similarly.]

1. PRELIMINARIES: PRODUCTS OF IDEALS

Notation 1.1. For an ideal J on ¢ the quantifier (V/i < §) means “for all
1 < 0 except a set from the ideal”, i.e.,

(Vi< 8)p(i) = {i<d:=p@i)} € J
The dual quantifier (377 < §) means “for a J-positive set of i < §”.

Proposition 1.2. Assume that \° > \' > ... > A"~ are cardinals, I* are
ideals on \¢ (for £ < n) and B C [] A\*. Further suppose that
<n
(@) 3) ... 3" Yu)) (e : £ < n) € B)
(B) the ideal I' is (2)" )T -complete (for £ +1 < n).
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Then there are sets X, C N, X, & I° such that [] X, C B.
{<n
[Note that this translates the situation to arity 1; it is a kind of polarized

(1,...,1)-partitions with ideals.]
Proof. We show it by induction on n. Define
Ey = {(,7"): 77" <A° and

for all v < AL ..., Y1 < A" we have
(<7,7717~-77n—1> €B <~ </7”;'717---7’Yn—1> €B>}
Clearly Ej is an equivalence relation on A° with < 2lo<m<n 2™ = 22" oquiv-

alence classes. Hence the set

Ay U{ A: Ais an Fy-equivalence class, A € I°}

is in the ideal I°. Let
5 def 1 n—1
AO = {/70<)\0: (El[ 71)(31 Vn—l)(</707717'”77n—1> EB)

The assumption («) implies that A% ¢ I° and hence we may choose 7 €
AS \ Ao. Let

n—1
def _ k\ —~—
B, = {ye[[X: () veB}
k=1
Since 5 € A we are sure that

(3 ) - 3" ) (5 01) € Ba).
Hence we may apply the inductive hypothesis for n — 1 and B; and we find

n—1
sets X7 € (IN)*, ..., X1 € (I"!)T such that [ X, C By, so then
=1
(V11 € X1) .. (Vo1 € X ) (Ve Y1, -+ -y Yae1) € B).
Take Xy to be the Eg-equivalence class of ¢ (so Xo € (I°)" as 75 ¢ Ao).
By the definition of the relation E, and the choice of the sets X, we have
that for each 79 € Xy

(Ve X1). .. (VY1 € Xos1)((V0:715 -+ Y1) € B)

what means that [[ X, C B. The proposition is proved. O
I<n

n—1

Proposition 1.3. Assume that \g > A\ > ... > \,_1 > 0 are cardinals, I,
are ideals on Ny (for £ < n) and B C [] \¢. Further suppose that
I<n
(@) (3°%) ... @ y1)({ye: £ <n) € B),
(B) for each ¢ < n — 1 the ideal Iy is ((Ae1)?)T-complete, [N,_1]<7 C
I,_1.
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Then there are sets X, € [A\e]” such that [ X, C B.
I<n
Proof. The proof is by induction on n. If n = 1 then there is nothing to do
as I,—1 contains all subsets of \,,_; of size < o0 and \,,, > o so every A € I:[l
has cardinality > o.
Let n > 1 and let
def
a = {y € Xo: (3 n) . G o) ((my - 1) € B}
By our assumptions we know that ag € (Iy)*. For each v € ag we may
apply the inductive hypothesis to the set

def
B’Y = {(717---7’Yn71> S H )\ﬁ : <7>’71>"'77n71> € B}
0<l<n
and we get sets X{ € [M]7,..., X € [\,_1]° such that
I] x7 cB.
0<t<n

1), and the ideal I, is
1) and a set a* C ao,

There is at most (A1)? possible sequences (X7, ..
((A1)7)T—complete, so for some sequence (X, ..
a* € ()" we have

(\V//}/ € Cl*)()(iy = X1 & ... & X,,Z_l = Xn—l)-

Choose Xy € [a*]? (remember that [, contains singletons and it is complete

LX)
X

enough to make sure that ¢ < |a*|). Clearly [[ X, C B. O
I<n

Remark 1.4. We can use oy > o1 > ... > 0,1, Ip is ()\Zﬁl)+-complete,

(A= C I,.

Proposition 1.5. Assume that n < w and A", x*, P;*, I;*, I"™ and B are
such that for £,m <n:

() I} is a x}*-complete ideal on N} (for £,m < n),

(B) P™ C P(A) is a family dense in (I)*)* in the sense that:

(VX € (£;")")(Fa € P")(a € X)
(1) I ={XCII AP : =3 y0) ... (3 9) ({0, - -, 1) € X)}

<n
[thus I™ is the ideal on [] AJ* such that the dual filter (I™)¢ is the
<n

Fubini product of filters (IJ*), ..., (IM)¢],
n n—{
() Xptm > 22 (1P +];0Aﬁ),

{=m+1
() BC [I II A is a set satisfying

m<n f<n

(3" ) (3" m) .. ") (o, ms - - m) € B).
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Then there are sets Xy, ..., X, such that for m <n:

(a) X C H AV

{<n—m
(b) if n,v € X,n, n # v then
(i) nl(n —m) =vi(n—m),
(i) 1(n — m) # v(n —m).
(C) {77(" o m) S Xm} S P:ln—m; and
(d) for each (ng,...,nn) € [ Xm there is (ng,...,n:) € B such that

m<n

(Ym < n)(nm Dy,

Remark 1.5.A:

(1) Note that the sets X, in the assertion of 1.5 may be thought of as

sets of the form X,, = {v,, (@) : a € a,,} for some v, € [[ A}
{<n—m

and a,, € P

(2) We will apply this proposition with \J* = Ay, I;* = I, and
Ao > Xe > D pes Mk

(3) In the assumption (J) of 1.5 we may have that the last sum on the
right hand side of the inequality ranges from £k =0ton—¢—1. We
did not formulate that assumption in this way as with n—/ there it is
easier to handle the induction step and this change is not important
for our applications.

(4) In the assertion (d) of 1.5 we can make 7; depending on (no, ..., 7)
only.

Proof. The proof is by induction on n. For n = 0 there is nothing to do.
Let us describe the induction step.

Suppose 0 < n < w and \}*, X7, PJ*, I;*, I'™ (for £,m < n) and B satisfy
the assumptions (a)—(g). Let

B & {mosmin, ... ;nuln) = N € [, AT (for m <n) and

<n077]17"'77]n> S B}7
and for no € T] A} let

I<n

n 1
x  def m *
Bn0§{<yl’,”’ EH )\f : 770,1/1,... >EB}
m=1 ¢=0

n—

n—1

Let J™ (for 1 < m < n) be the ideal on H A} coming from the ideals I},

ie.,aset X C [[ AJ*is in J™ if and only 1f
£<n

—|(E|I(§n’70) c.. (El]ﬁ:lr)/n—l)“/y()? B 77n—1> S X>
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Let us call the set By big if
3" n)... @) (- ) € BL).

We may write more explicitly what the bigness means: the above condition
is equivalent to

(Hjivé)---(Hf;;w%_l)--- 1 1
(F0g) .. @1y D)0 Ya1) - - Tnen)) € By

which means

(Fod)...... (F-ryny)
F) - G0 Vs 9m)s - (0 - - 1)) € B).

By the assumptions (y) and (¢) we know that

(3890). . (B (Bling) . (B5) -
(F99) - F )05 - ) Vos - Ynd -+ (V05 7)) €B).

Obviously any quantifier (3/¢"47") above may be replaced by (377") and then
“moved” right as much as we want. Consequently we get

(37{13) . (37271)(3(])372)(3?76) - (3”%11%171) ------ Fag) ... (3Fyny)
(Frn) - G0 ) s Ynds - s> m)) € B)

which means that

77777

Hence we find 7J,...,72_; and a set a € (I2)" such that

Note that the assumptions of the proposition are such that if we know that
B; s big then we may apply the inductive hypothesis to

N xdS P J™ (for 1<m <n, £ <n—1) and B} .

Consequently for each v € a we find sets X7, ..., X)) such that for 1 <m <

(@) X3 € II A7
{<n—m
(b)* if n,v € X, n # v then
(i) nl(n—m) =wv[(n—m), and
() 7 —m) # v(n — m),
() {n(n =m) :ne Xj}re b,  and
(d)* for all (no,...,nn) € [[ X}, we have

m<n

0
Yo
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Now we may ask how mane possibilities for X’ do we have: not too many.
If we fix the common initial segment (see (b)*) the only freedom we have is
in choosing an element of P = (see (c)*). Consequently there are at most

—m

|P™ |+ >, A} possible values for X)), and hence there are at most

I<n—m
YUBE+ > N <X

m=1 <n—m

possible values for the sequence (X7,...,X)). Since the ideal I? is x2-
complete we find a sequence (X7,...,X,) and a set b C a, b € (I°)" such
that

(Fy € BY((XT, .. XT) = (Xy, ..., X)),
Next choose b2 € P? such that b2 C b and put

Xo = {<78a s ’72—17'7> S b?z}

Now it is a routine to check that the sets Xy, X1,..., X, are as required
(i.e., they satisfy clauses (a)—(d)). O

2. COFINAL SEQUENCES IN TREES

Notation 2.1. (1) For a tree T' C °>u the set of §-branches through T is

lims(T) o {ne’u: Va<d)(nlacT)}
The i-th level (for ¢ < §) of the tree T is

def

T, = TN

and T; def UT]
IfneT gli;n the set of immediate successors of 1 in T is
sucer < {fveT:nav&lglv)=1g(n) +1}.
va shall not distinguish strictly between succer(n) and {a : n™(a) €
T}.

Definition 2.2. (1) K,.s is the family of all pairs (7}, ) such that T C
> 11 is a tree with & levels and A = (\, : n € T) is a sequence of
cardinals such that for each n € T we have succp(n) = A, (com-
pare the previous remark about not distinguishing succr(n) and

{a:na) € T}).
(2) For a limit ordinal ¢ and a cardinal p we let

Kids LT NI (TN €Kys, [=(I,:neT)

each I, is an ideal on A, = succy(n)}.
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Let (T, A, I) € Kids and let J be an ideal on § (including J3 if we
do not say otherwise). Further let 7 = (1, : @ < A) C limg(T") be a
sequence of d-branches through 7.

(3) We say that 7 is J-cofinal in (T, \, I) if
(a) n # np for distinct o, B < A, and
(b) for every sequence A=(A,:n € T) € [] I, there is a*<\ such

neT
that

aF<a<d = (Vi<d)malli+1) ¢ A

4) If I is an ideal on A then we say that (7, 1) is a J-cofinal pair for
S ]
(T, X\ 1) if
(a) Mo # np for distinct a, 8 < A,
(b) for every sequence A = (A, :n € T) € [] I, thereis A € I
neT
such that

aeIA = Vi<&)malli+1)¢ A, ).

5) The sequence 7 is strongly J-cofinal in (T, 5\, 1) if
n
(a) N # np for distinct o, B < A,
(b) for every n < w and functions Fy, ..., F, there is a* < X such
that
ifm<n, a<...<a, <A o <a,
then the set
1 <o (i) (VC<m)( N 10 < Ay pi) and
¥ Nay | Nom |
(1) Fru(ao TGE+1L), - o Dage o T(041), N 185 - - Ny [9) € Ly 1
(and well defined) but
77am T(H‘l) E Fm(nao r(2+1>7 s 77]0£m71 r<l+1)7 nam “7 st 777an fl)}

is in the ideal J.
[Note: in (b) above we may have a* < «ay, this causes no real change. |
(6) The sequence 7 is stronger J-cofinal in (T, \, I) if
(a) N # np for distinct o, B < A,
(b) for every n < w and functions Fy,..., F, there is a* < A such
that
ifm<n, a<..<a, <o <a,
then the set

{i <6 (ii) Fn(Maol(i41), - Doy TGEHL), a1, - o Moy 1) € Ty i
(and well defined) but

Ne, [ (141) € Fr(Nag [(GH1), -+ My T(@41), Doy, Ty < o3 M, [7) }
is in the ideal J. o
(7) The sequence 7 is strongest J-cofinal in (T, X, I) if
(a) N # np for distinct o, B < A,
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(b) for every n < w and functions Fy,..., F, there is a* < A such
that

ifm<n, a<...<a, <A o <a,
then the set
{i <0 (i’) (36 < m)()‘ﬁag 4 i [i) or
(i) Fn(nag [ (i41), - s Moy (1), T 12 -3 T, [2) € L
(and well defined) but
N [ (i41) € Fin(ao [(i41), - Ny 1(041), My 12, - - -5 N, 1) }
is in the ideal J.
(a) The sequence @ is big* J-cofinal in (T, \,I) if
(a) M # np for distinct a, f < A,
(b) for every n and functions Fy, ..., F, there is a* such that
ifag <...<aq, and o* < a,, then for m < n the set

Na, [(1+1) if Magli = Ao li OT
{i<d: ify = )\%1Z i = Mg, 1iand 14,(7) < Na,, (7)
Nay | 4 if not
then we have
Nan (1) € Fin(ve) € Iy, 1}
is in the ideal J.

(b) In almost the same way we define “strongly* J-cofinal”, “stronger*
J-cofinal” and “strongest* big J-cofinal” | replacing the require-
ment that a* < «,, in 5(b), 6(b), 7(b) above (respectively) by
o* < ag.

>\,

Remark 2.3. (a) Note that “strongest J-cofinal” implies “stronger .J-cofinal”
and this implies “strongly J-cofinal”. “Stronger J-cofinal” implies “J-
cofinal”. Also “bigger” = “big” = “cofinal”, “big” = “strongly”.

(b) The different notions of “strong J-cofinality” (the conditions (i) and
(i’)) are to allow us to carry some diagonalization arguments.

(c) The difference between “strongly J-cofinal” and “strongly* J-cofinal”
etc is, in our context, immaterial. we may in all places in this paper replace
the respective notion with its version with “x” and no harm will be done.

Remark 2.4. (1) Remind pcf:
An important case is when (\; : i < §) is an increasing sequence
of regular cardinals, \; > [[A;, Ay = Aoy, I, = Jf\’j and A =

7<t
tef ([T Ni/J).
i<s
(2) Moreover we are interested in more complicated I,,’s (as in [?, §5]),
connected to our problem, so “the existence of the true cofinality”

is less clear. But the assumption 2# = ™ will rescue us.



Paper Sh:575, version 2005-02-03_10. See https://shelah.logic.at/papers/575/ for possible updates.

10 SAHARON SHELAH

(3) There are natural stronger demands of cofinality since here we are
not interested just in x,’s but also in Boolean combinations. Thus
naturally we are interested in behaviours of large sets of n-tuples,

see 5.1.

Proposition 2.5. Suppose that (T, \,I) € Kls, 1= (na : a < X\) Clims(T)
and J is an ideal on 6, J DO J(E’d.
(1) Assume that
(©) if @ < B <A then (Vi < 8)(Apayi < Apgri)-
Then the following are equivalent

“ is strongly J-cofinal for (T, )\, I)”,
“5 is stronger J-cofinal for (T, \,I)”,
“n is strongest J-cofinal for (T, \,I)”,
“n is big J-cofinal for (T, \,1)”.
(2) If I, 2 J34 and A, = Ng() for each v € T and the sequence 7] is
stronger J-cofinal for (T, A\, I) then for some o < X\ the sequence

(Na = o < < N) is <j-increasing.
B)Ifn € T, = N\, = X\ and 77 <j-increasing in || then “big” is
1<d
equivalent to “stronger”.
Proposition 2.6. Suppose that
(1) (N 1 < 0) is an increasing sequence of reqular cardinals, § < X\g is
a limit ordinal,

2) T=UIIN, L= ILewm = Jf\)lcgl(n); An = Nign)»

i< j<i
(3) J is an ideal on 6, N = tctf([[ A\i/J) and it is exemplified by a se-
1<0
quence 7= (N - a < A) C [ A,
i<s

(4) for each i < o
H{nali s < AH < N\
(so, e.g., \i > [ A; suffices).
j<i
Then the sequence 1 is J-cofinal in (T, \, I).

Proof. First note that our assumptions imply that each ideal I, = Ly, Is
{nallg(n) : a < A}|[T-complete. Hence for each sequence A = (4, : n €
T) e [] I, and i < ¢ the set

neTl

A, Ao <A}
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is in the the ideal [;, i.e., it is bounded in \; (for ¢ < §). (We should remind
here our convention which says in this case that we do not distinguish \;
and succr(n) if lg(n) =, see 2.1.) Take n* € [ A; such that for each i < §

we have A; C n*(i). As the sequence 7 reahzesz?}sle true cofinality of [[ A\;/J

we find a* < A such that =
af<a< A = {i<di:n(i)<n()}eld

which allows us to finish the proof. O

It follows from the above proposition that the notion of J-cofinal se-
quences is not empty. Of course, it is better to have “strongly (or even:
stronger) J-cofinal” sequences 7. So it is nice to have that sometimes the
weaker notion implies the stronger one.

Proposition 2.7. Assume that § is a limit ordinal, ju is a cardinal, and
(T,\ 1) € K35, Let J be an ideal on & such that J 2 J3¢ (which is our
standard hypotheszs ). Further suppose that
(®) if n € T; then the ideal I, is (|T;| + > _{\ : veT; & A<\, })T—
complete.
Then each J-cofinal sequence 7j for (T, A, I) is strongly J-cofinal for (T, \, I).
If, in addition, n # v € T; = A\; # A, then 7 is big J-cofinal for
(T, N\, I). Also, if in addition
nel; =
G eTH(\ =N, V [(FZw e )\ =N\,) & I, normal |
then 1 1s big J-cofinal.
Proof. Let n < w and Fp, ..., F, be (n+ 1)-place functions. First we define
a sequence A = (A, :n € T). For m <n and a sequence (1,,...,n,) C T;
we put
77m» ) U{ F (1/0, e s Um—1,Mmy - - - 77]n) oy s VUm—1 c ﬂ+17
(o, -+ s Vi1 Ty - - - » Tl ) €dom (F),
>\l/0[i < )\777 A )\I/mfl[i < )\nm
and F(Vo, ..., Vm—1,Mm,---+7n) € Ly, }
and next for n € T; let

U{A"]nm+l M) mﬁn&nmﬂw--,??neﬂ}.

Note that the assumption (®) was set up so that A7} . € I, and the
sets A, are in [, (for n € T).

By the J-cofinality of 7, for some a* < A we have
af <a<h = (Vi<d)malli+1) & Ayp)
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We are going to prove that this a* is as required in the definition of strongly
J-cofinal sequences. So suppose that m < n, oy < ... < a, < X and
a* < aun. By the choice of a* we have that the set 4 & {i <6 : 14, [(i+1) €
A, 1i} is in the ideal J. But if 4 < § is such that

(Ve < m)()\nae i < Aga,.1i), and

F(T}ao T(H‘l)» s 77704m_1 T(H‘l)» Nov, r@, <o Nay, fl) € [nam [%9 bUt

Mo | (041) € F(1ag [(E41), -, Mgy 1(04+1), M 145+, M, 1)
then clearly n,,,[(i +1) € A} y and so i € A. This finishes the
proof.

The “big” version should be clear too. ([l

Hv"?nan [1

Proposition 2.8. Assume that p is a strong limit uncountable cardinal and
(i =i < 9) 1s an increasing sequence of cardinals with limit p. Further

suppose that (T, \,I) € Kﬁé, |T;| < i (fori <), Ny < p and each I,
18 ufg(n)—complete and contains all singletons (for n € T). Finally assume

2t = ut and let J be an ideal on §, J 2 JP9. o
Then there exists a stronger J-cofinal sequence 7 for (T, \,I) of the length
ut (even for J = Jb4).
We can get “big” if

pEneT &N, =X\, = (FweT)\ =\) & I, normal.
Proof. This is a straight diagonal argument. Put

y & {(Fo,..., F,): n <w and each Fj is a function with
dom(F) C 7" mg(F) C U I,}.
nerT

Since |Y| = p* = p* (remember that p is strong limit and A, < p for
n € T) we may choose an enumeration Y = {(F§, ..., F§§> & < pt}. For
each ¢ < pt choose an increasing sequence (AS : i < 6) such that |AS| < p
and ¢ = | Ag. Now we choose by induction on ( < u* branches 7 such

i<s
that for each ( the restriction n.[7 is defined by induction on ¢ as follows.
If : = 0 or ¢ is limit then there is nothing to do.
Suppose now that we have defined 7, [i and e for & < (. We find 7¢(4) such

that
(Oé) 77((2) € )\Wg k%)
(B) if e € Ag, m < Ne, Qgy.nny Qo1 € A§ (hence ay < ¢ so n,, are
defined already), V41, ...,v, € T; and
Fﬁz(nao f(l + 1)7 ceoy Nam—q f(l + 1)777C fi, V41, -+, Vn) € Ing[i
and well defined, then

77([(2 + 1) ¢ F;(T]ao f(l + ]-)7 <oy Nagy—q T(Z + 1)777( rlv Um+1y- 4, Vn)a
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(V) ncli+1) ¢ {0l +1) e € AT}

Why it is possible? Note that there is < Ro + |AS| + [AS|<Ro +|T3| < g4
negative demands and each of them says that n.[( + 1) is not in some
set from 1, ; (remember that we have assumed that the ideals i contain
singletons). Consequently using the completeness of the ideal we may satisfy
the requirements («)—(y) above.

Now of course 7 € lims(7"). Moreover if ¢ < ( < p* then (3i < J)(c €
AS) which implies (37 < 6)(n.(i + 1) # n¢[(i + 1)). Consequently

e<(<pt = me A

Checking the demand (b) of “stronger J-cofinal” is straightforward: for
functions Fy, ..., F, (and n € w) take € such that

(Fo, ..., ) = (F5,..., F) )

and put a* = e+ 1. Suppose now that m < n, ap < ... < a, < A\, a* < .
Let ¢* < 0 be such that for ¢+ > ¢* we have

€,y vy Oy € AT™.
Then by the choice of 7,, [(i + 1) we have that for each i > i*:
i E (g [+ 1), s Mgy 18+ 1), 01 Ny 19+ N, 18) € I 1

then 14,11 & F5,(Nao 10+ 1), .. 0oy 16+ 1), 14, Naye iy 125 -2 s N, [9).
This finishes the proof. ([l

Remark 2.9. The proof above can be carried out for functions F which
depend on (ag, - -+ May,_1s ey 185 - -+ s M, [7). This will be natural later.

Let us note that if the ideals I, are sufficiently complete then J-cofinal
sequences cannot be too short.

Proposition 2.10. Suppose that (T, \,I) € Kiﬁé is such that for each n €
T;, i < 0 the ideal I, is (r;)*—complete (enough if [\,)* C 1,). Let J 2 Jkd
be an ideal on 0 and let 7 = (n, : a < 6*) be a J-cofinal sequence for
(T,\,I). Then

0* > limsup k;
J

and consequently
cf(6*) > lim sup k;.
J
Proof. Fix an enumeration 0* = {a. : ¢ < |6*|} and for a < §* let ((«) be
the unique ¢ such that o = ag.
ForneT;, i < ¢ put

A, oo {v € sucer(n) : (Fe < k)(v <)}
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Clearly |A,| < k; and hence A, € I,. Apply the J-cofinality of i to the
sequence A = (A, : n € T). Thus there is a* < ¢* such that for each
a € [a*, %) we have

(Vi < 8)(nal(i+1) ¢ Ayoii)
and hence
(Vi < 8)(¢(a) > k)
and consequently
((a) > limsup k;.
J

Hence we conclude that [0*| > lim sup; k;.

For the part “consequently” of the proposition note that if (n, : a@ < §*)
is J-cofinal (in (T, \,I)) and A C §* is cofinal in 6* then (n, : a € A) is
J-cofinal too. O

Remark 2.11. (1) So if we have a J-cofinal sequence of the length 6*
then we also have one of the length cf(6*). Thus assuming regularity
of the length is natural.

(2) Moreover the assumption that the length of the sequence is above
|| + |T'| is very natural and in most cases it will follow from the
J-cofinality (and completeness assumptions). However we will try
to state this condition in the assumptions whenever it is used in the
proof (even if it can be concluded from the other assumptions).

3. GETTING (K, notA)-KNASTER ALGEBRAS

Proposition 3.1. Let A\, 0 be cardinals such that (Vo < 0)(21*1 < \), o is
reqular. Then there are a Boolean algebra B, a sequence (y, : a < \) C B
and an ideal I on A\ such that
(a) if X TN\, X &1 then (3o, € X)B = ya Nys =0)
(b) the ideal I is o-complete
(c) the algebra B satisfies the p-Knaster condition for any regular un-
countable p (really B is free).

Proof. Let B be the Boolean algebra freely generated by {z, : a < A}
(so the demand (c) is satisfied). Let A = {(a,) : @« < f < A} and
Y(a,8) = %a — 28(# 0) (for (a, B) € A). The ideal I of subsets of A defined
by

aset X C Aisin [ if and only if

there are ( < 0, X. € A (for € < () such that X C |J X.

e<(¢
and for every € < ¢ no tWo Y(a,,8,): Y(as,8.) € Xe are disjoint
in B.

First note that



Paper Sh:575, version 2005-02-03_10. See https://shelah.logic.at/papers/575/ for possible updates.

CELLULARITY OF FREE PRODUCTS OF BOOLEAN ALGEBRAS 15

Claim 3.1.1. A ¢ 1.

Proof of the claim. If not then we have witnesses ( < o and X, (for ¢ < ()
for it. So A = |J X. and hence for (o, 5) € A we have £(a, ) such that
e<C
Ya,8) € Xe(a,p)- S0 (-, ) is actually a function from [A]* to ¢ < 0. By the
Erdés-Rado theorem we find v < 8 < v < A such that e(a, 8) = €(8,7).
But
Y(ed) VY@ = (20 = 28) N (23 = 27) = 0,

so («, B), (8,7) cannot be in the same X, — a contradiction. O

To finish the proof note that I is o-complete (as o is regular), if X ¢ [
then, by the definition of I, there are two disjoint elements in {y..g) :
(a, B) € X}. Finally |A] = A.

Definition 3.2. (a) A pair (B,7y) is called a A\-marked Boolean algebra
if B is a Boolean algebra and § = (y, : @ < \) is a sequence of
non-zero elements of B.

(b) A triple (B,y,I) is called a (A, x)-well marked Boolean algebra if
(B, ) is a A-marked Boolean algebra, x is a regular cardinal and [/
is a (proper) y-complete ideal on A such that

{ACA: Vo, € A)BEY.Nys #0)} C 1.

By A-well marked Boolean algebra we will mean (A, Rg)-well marked
one. As in the above situation A can be read from g (as A = 1g(y)) we
may omit it and then we may speak just about well marked Boolean
algebras.

Remark 3.3. Thus proposition 3.1 says that if A\, o are regular cardinals and
(Vo < o)(24l <))

then there exists a (A, 0)-well marked Boolean algebra (B, 7, I) such that B
satisfies the k-Knaster property for every k.

Definition 3.4. (a) For cardinals p and A and a limit ordinal J, a
(0, pt, \)—constructor is a system

C= (T, A0, <(Bmgn) :n €T))

such that

(2) (T,2) € Ky,

(b) 7 = (n; : © € \) where n; € lims(T") (for i < X) are distinct
d-branches through 7" and

(c) for each n € T: (B, y,) is a A\,-marked Boolean algebra, i.e.,
Uy = (Yp~) : @ < ;) € B (usually this will be an enumera-
tion of BY).
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(b) Let C be a constructor (as above). We define Boolean algebras By =
Bred — Bred(c) and ]Bl — [R8reen — Bgreen(c) by:

B4 is the Boolean algebra freely generated by {x; : i < A} except

that
ifi()a"'yin—l < >\7 vV = /r]ZorC - 77741r< = .. = ninflrc
and B, = eﬂ Yniyic+1) = 0
<n
then () z;, =0

l<n
[Note: we may demand that the sequence (n;,(() : £ < n) is strictly

increasing, this will cause no difference.]

Bereen is the Boolean algebra freely generated by {z; : ¢ < \} except

that
if v=mn;1¢=n;I¢, m(¢) # n;(¢) and
By = Yniiccrn) N Ynyicen) # 0
then x; Nx; = 0.
Remark 3.5. (1) The equations for the green case can look strange but

they have to be dual to the ones of the red case.

(2) “Freely generated except ...” means that a Boolean combination is
non-zero except when some (finitely many) conditions implies it. For
this it is enough to look at elements of the form

to th—1
Ty MM

where t, € {0,1}.

(3) Working in the free product B¢xB&™® we will use the same notation
for elements (e.g., generators) of B™? as for elements of B&°®, Thus
x; may stay either for the respective generator in B¢ or B&™". We
hope that this will not be confusing, as one can easily decide in which
algebra the element is considered from the place of it (if z € B4,
y € B8 then (x,y) will stay for the element z Nprea,pareen Yy €
Bred x Bereen). In particular we may write (z;,7;) for an element
which could be denoted zi*d N 2",

Remark 3.6. If the pair (B™, B&™?) is a counterexample with the free prod-
uct Bred x« Bereen failing the A-cc but each of the algebras satisfying that con-
dition then each of the algebras fails the A-Knaster condition. But B¢ is
supposed to have k-cc (k smaller than \). This is known to restrict A.

Proposition 3.7. Assume thatC = (T, \, 77, ((B,,9,) : n € T)) is a (8, ju, \)~
constructor and J O J(';d 18 an ideal on & such that

(a) = (n;:i €T) is J-cofinal for (T, \,I),
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(b) if X € I,7 then

(Ba, 8 € X)(By = Y (o) N Yy~ = 0)-
Then the sequence (x7% : o < \) exemplifies that B (C) fails the A\-Knaster
condition.

Explanation: The above proposition is not just something in the di-
rection of Problem 0.6. The tuple (B™¢, z, J?9) is like (B,, 3y, I,,), but J&4
is nicer than ideals given by previous results. Using such objects makes
building examples for Problem 0.6 much easier.

Proof. 1t is enough to show that
for each Y € [/\]>‘ one can find ¢, € Y such that

Breti = Ynaiti41) O Yneiirn) = 0
where i = Ig(n. A ne).
For this, for each v € T we put

A,Y {a< A, :(FeeY)v{a) <n)}.

Claim 3.7.1. There isv € T such that A, ¢ I,,.

Proof of the claim. First note that by the definition of A,, for each ¢ € Y
we have

(Vi < 0)(n-"(i) € Apepi)-
Now, if we had that A, € I, for all v € T' then we could apply the assump-
tion that 7 is J-cofinal for (T, \, I) to the sequence (A, : v € T'). Thus we
would find a* < A such that

" <a< A = {i<d:ni) ¢ A, }teEJ

which contradicts our previous remark (remember |Y| = A). The claim is
proved. 0

Due to the claim we find v € T such that A, ¢ I,. By the part (b) of
our assumptions we find «, 5 € A, such that
B, ): Yo~a) N Yo~p) = 0.
Choose ¢,( € Y such that v{a) < 1., v(8) < n¢ (see the definition of
A,). Then v =n. An; and
By = Yneri+1) O Uneian) =0
(where i = lg(v)), finishing the proof of the proposition. O

Lemma 3.8. Let C = (T, \, 7, ((B,,9,) : 1 € T)) be a (3, u, \)—constructor
such that
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(%) the Boolean algebras B,, satisfy the (21°)* —Knaster condition.

Then the Boolean algebra B*(C) satisfies the (2°°)*~Knaster condition. In
fact we may replace (2°)F above by any reqular cardinal 6 such that

(Vo < 0)(|a|l?l < 6).

To get that B™(C) satisfies the (2°))* ~cc it is enough if instead of (¥) we
assume

(%) every free product of finitely many of the Boolean algebras B, satisfies
the (219)* —cc.

Remark: 1. Usually we will have § = cf(p).
2. Later we will get more (e.g., |0|T-Knaster if (T, 7) is hereditarily free, see
5.12, 5.13).

Proof. Let 6 = (2h* and assume (%) (the other cases have the same
proofs). Suppose that z. € B\ {0} (for ¢ < §). We start with a series of
reductions which we describe fully here but later, in similar situations, we
will state what is the result of the procedure only.

Standard cleaning;: Each z. is a Boolean combination of some gener-
ators x;,,...,x; _,. But, as we want to find a subsequence with non-zero
intersections, we may replace z. by any non-zero z < z.. Consequently we
may assume that each z. is an intersection of some generators or their com-
plements. Further, as cf(f) = 0 > Ny we may assume that the number of
generators needed for this representation does not depend on ¢ and is equal
to, say, n*. Thus we have two functions

1:0xn*— X and t:0xn*—2

such that for each ¢ < 6:
Ze = ﬂ (@ie,) "
f<n*
and there is no repetition in (i(e, £) : £ < n*). Moreover we may assume that
t(e, ) does not depend on ¢, i.e., t(g,f) = t(¢). By the A-system lemma for
finite sets we may assume that ((i(e,f) : £ < n*) : ¢ < 0) is a A-system of
sequences, 1.e.:

(#)1 ie, 1) = ife, la) = b1 =1lo and

(%)2 for some w C n* we have

(Je1 < g9 < 0)(i(e1,0) =i(eg,0)) iff  (Ver,e9 < 0)(i(e1,0) = i(e2,0))
ifft ¢ ew.

Now note that, by the definition of the algebra B,
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(%)3 2, N2e, =0 if and only if

(Wil o0 <n t(0) =0} N[22 )+ € < n", t(¢) = 0} = 0.
Consequently we may assume that

(Ve < n*)(Ve < 0)(t(£) = 0).

Explanation of what we are going to do now: We want to replace
the sequence (z. : ¢ < #) by a large subsequence such that the places of
splitting between two branches used in two different z.’s will be uniform.
Then we will be able to translate our 8—cc problem to the one on the algebras

B

0
Let

A E e (3 <e)(3 <n)v <o)}
and let B, be the closure of A.:

def

B. = {pe’2u: pe A, orlg(p) is a limit ordinal and

(V¢ <1g(p))(pI¢ € Ac)}

Note that |A.| < |¢| - |§] and hence |B.| < |A.|<° < . Next we define (for
e<0,l<n):
def
C(e,€) = sup{¢ < 0 : i, I¢ € B:}.

Thus ((e,0) <1g(Nie,) = 9. Let S ={e <0 :cf(e) > [6|}. Foreache € S
we necessarily have

NioC(e,0) € B. and  B.=|JB:
E<e

(remember that cf(e) > || and for limit ¢ we have A. = |J A¢) and hence
{<e

Ni(e,0) [C(€,0) € Bee,p), for some &(e,4) < €.

Let £(e) = max{&(e,?) : £ < n*}. By the Fodor lemma we find £* < 6 such

that the set
def

S ={ceS:&(e)=¢"}
is stationary. Thus 7. [((e,¢) € Bg- for each ¢ € Sy, ¢ < n*. Since
’B&* , ‘5| < 0 we find Vg, ..., Upr_1 € Bg* and Oé(gl,gg) <4 (fOI' 61 < 62 < n*)
such that the set

def

Sy = {8 €S (Vé < n*)(ni(€7g) [C(s,ﬁ) = l/g) &
& (Vb < by <n")(18(Mie,e0) A Mie ) = (1, £2)) }
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is stationary. Further, applying the A—system lemma we find a set S € [82]9

such that
{Mie(g(ve)) - £ <n™) 1 e € S3}
forms a A-system of sequences.
For € € S5 and v € T denote

def *
05 S [ Wmenitew+n 1 £ < 0" v <Umien} €B,.

Claim 3.8.1. For each € € S3, v € T the element b, (of the algebra B, ) is
non-zero.

Proof of the claim. It follows from the definition of B*? and the fact that
ze # 0, as:

b, =0 = ﬂ{xm(g,@ A< v <Anent =0 = 2z =0.
O
Since for each ¢ < n* the algebra B,, satisfies the 6-Knaster property we
find a set S, € [33]0 such that for each ¢ < n* and €, &5 € Sy we have
e1#£e = biNb:#0 inB,.
Now we may finish by proving the following claim.
Claim 3.8.2. For each 1,69 € S,
B = 2, Nz, #0.

Proof of the claim. Since z., N 2., is just the intersection of generators it is
enough to show that (remember the definition of B*?):

(®) for each e1,e9 € Sy and for every v € T

B, = m{ym[(lg(V)-H) ci € {i(er,0),i(e9,0) : L <n*} and v < 1;} # 0.
If v = v, £ <n” then the intersection is b;! N b7 which by the choice of the
set Sy is not zero. So suppose that v ¢ {v, : £ < n*}. Put
u, {i : v < m; and for some ¢ < n* either i = i(e1,¢) or i =i(e9,)}.
If
{n(lg(v)) 7 € wy} € {nier 0 (18(V)) : £ < 0" & v Qe 00}
then we are done as b2 # 0. So there is ; < n* such that v <1 5., ¢,) and
Nier.en 118(¥) + 1) € {Niern1(18(¥) + 1) : £ <n* & v <Qigern}-

Similarly we may assume that there is ¢, < n* such that v < 7, ) and

Nieastn) [18(V) + 1) & {Nier,0[(lg(v) + 1) £ <" & v < njiey 0 }-
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Because of the symmetry we may assume that £; < 5. Then

V = MNi(eq,02) “g(V) € A€1+1 g BEQ

and hence ((eq, l2) > 1g(v). By the choice of Sy (remember 1,69 € S; C S,),
we get v < vy,. But we have assumed that v # v, so v < v,. Hence (once
again due to 1,62 € S)

77i(az,€2) f(lg(V) + 1) = ni(el,fg) f(lg<’/) + 1) = Vi, f(lg@) + 1)7

which contradicts the choice of #5.
The claim, and so the lemma, are proved. ([l

O

Remark 3.9. We can strengthen “f-Knaster” in the assumption and conclu-
sion of 3.8 in various ways. For example we may have that “intersection of
any n members of the final set is non-zero”.

Definition 3.10. Let (B, y) be a A-marked Boolean algebra, x < A. We
say that

(1) (B,y) satisfies the k-Knaster property if B satisfies the definition of
the r-Knaster property (see 0.4) with restriction to subsequences of

7.
(2) (B,y) is (k, not\)-Knaster if
(a) the algebra B has the k-Knaster property, but
(b) the sequence y witnesses that the A-Knaster property fails for
B.

Conclusion 3.11. Assume that p is a strong limit singular cardinal, A =
24 =yt and 6 = (2°FW)+,

Then there exists a A-marked Boolean algebra (B, y) which is (0, not\)—
Knaster.

Proof. Choose cardinals p?, p; < p (for i < cf(u)) such that

(@) cf(p) < pg, 0
(8) T1 wy <4y = (29)7,
7<1
(7) the sequences (u; : 1 < cf(p)), (1) : i < cf(u)) are increasing cofinal
in u.
(Possible as p is strong limit singular). By proposition 3.1 we find p;-marked
Boolean algebras (B;, %) and (1) "—complete ideals I; on p; (for i < §) such
that
(a) if X C ps, X ¢ I; then (3o, f € X)(B; =y, Nyp = 0),
(b) the algebra B; has the (2°f(®))*-Knaster property.
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Let T= U [[pjandforveT; (i <cf(u)let I, =1;,B, =B, 4, =19
i<l () j<i
and X\, = ;. Now we may apply proposition 2.8 to u, (1) : i < cf(p)) and

(T, X\, I) to find a stronger J:}?M)—coﬁnal sequence 7] for (T, \, I) of the length

A. Consider the (cf(p), i, \)—constructor C = (T, A\, 7, {(B,,7,) : v € T)).
By (b) above we may apply lemma 3.8 to get that the algebra B™4(C)
satisfies the (2¢70W)* Knaster condition. Finally we use proposition 3.7
(and (a) above) to conclude that (B™4(C),(z'* : a < ))) is (6, not\)—

«

Knaster. [l

Proposition 3.12. Assume that:

K is a reqular cardinal such that (Vo < r)(Ja|?l < k), X = (\; 1 i < §) is

an increasing sequence of reqular cardinals such that k < Ao, [T \j < A (or
j<i

gust maxpcf{\; : j < i} < \;) fori < and X € pct{\; : i < d}. Further

suppose that for each i < § there exists a A\;-marked Boolean algebra which

is (k,not\;)—Knaster.

Then there exists a A-marked Boolean algebra which is (k,not\)-Knaster.

Proof. If A = \; for some ¢ < ¢ then there is nothing to do. If A < \;
for some ¢ < § then let @ < 0 be the maximal limit ordinal such that
(Vi < a)(A\; < A) (it necessarily exists) . Now we may replace (;: i < d) by
(A\i 11 < ). Thus we may assume that (Vi < §)(\; < A). Further we may
assume that
A = maxpcf{\; : i <}
(by [?, I, 1.8]). Now, due to [?, II, 3.5, p.65], we find a sequence 7 C [ \;
i<6

and an ideal J on ¢ such that

(1) J 2 J?d and A = tef(J] \i/J)

i<6
(naturally: J = {a C 0 : maxpcf{\; : i € a} < A}),
(2) 7= (n. : € < \) is < -increasing cofinal in [ A\;//J,
i<6
(3) for each i < §
H{neli:e <A} <\

Let T = {J [I A and for v € T; (i <6) let A, = N\, I, = J34

1< j<1t
It follows frz)m the choice of 7, J above and our assumptions that we may
apply proposition 2.6 and hence 7 is J-cofinal for (T, \,I). For v € T let
(B,,y,) be a A\,-marked (k,not\,)-Knaster Boolean algebra (exists by our
assumptions). Now we may finish using 3.8 and 3.7 for C = (T, \, 7}, (B, ) :
n € T)), I and J (note the assumption (b) of 3.7 is satisfied as I, = J}\’j;

remember the choice of (B, 4,)). O
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Remark 3.13. Note that from cardinal arithmetic hypothesis cf(u) = x,
XX < x < i, T = X < 2X alone we cannot hope to build a counterexample.
This is because of [?, §4], particularly lemma 4.13 there. It was shown in
that paper that if y<X < x; = X' then there is a xT-cc y-complete forcing
notion P of size y; such that

IFp “f [B| < x1,B = x-cc
then B* is the union of y ultrafilters”.

More on this see in section 8.
So the centrality of A € RegN(u, 2#], u strong limit singular, is very natural.

4. THE MAIN RESULT

Proposition 4.1. Suppose that C is a (0, u, A)—constructor. Then the free
product B (C) x B&(C) fails the A\-cc (so c(B™4(C) * Been(C)) > \).

Proof. Look at the elements (x;, ;) € B™ x Be™™ for i < \. It follows
directly from the definition of the algebras that for each i < j < A:

: red red red __ green green green
either B™ =z N2 =0 or B o™ nay™ = 0.

Consequently the sequence ((z;, ;) : i < \) witnesses the assertion of the
proposition. ([l

Proposition 4.2. Suppose that n < w and for { < n:

(1) xe, Ao are reqular cardinals, x¢ < e < Xei1,
(2) (By, G, Lr) is a (e, xe)—well marked Boolean algebra (see definition
3.2), Jo = (yi 11 < A,
(3) B is the Boolean algebra freely generated by {y, : n € [] Ae} except
<n

that
lf 771'0’ e 7772'1@71 - ZH /\g, ?71'0 r£ = 77i1 [f = ... = 77,L~TL71 ré
<n
and

B, ): ﬂ yfhm(ﬁ) =0
m<k
then () v, =0.

m<k

[Compare to the definition of the algebras B™4(C).]
4) I={BC ] X:=3%%)... 3 %) (Y0, ..., 7m) €

<n

B)}.

Then:
(a) if all the algebras B, (for £ < n) satisfy the 0-Knaster property, 0 is
a reqular uncountable cardinal then B has the 0-Knaster property;
(b) I is a xo-complete ideal on [] Ai;

£<n
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() if Y C(]] Ae)"™ is such that

I<n

(Fm0) - Fna) (o, -, 1a) €Y)
then there are (0, ...,n.), (NG, ...,n0) €Y such that for all ¢ <n

BE Yy NV Yy = 0.

Proof. (a) The proof that the algebra B satisfies §—Knaster condition is
exactly the same as that of 3.8 (actually it is a special case of that).

(b) Should be clear.
(c) For {;m <n put

X =xe N =N, I =1y, P/ ={{o, 8} C N : By = y,Ny; =0}, B=Y.

It is easy to check that the assumptions of proposition 1.5 are satisfied.
Applying it we find sets X, ..., X, satisfying the respective versions of
clauses (a)—(d) there. Note that our choice of the sets P;" and clauses (b),
(c) of 1.5 imply that

X = (vt} € TT Mo

<n—m
V[ (0 —m) = v [(n —m),
B | 4 oy D Uy = 0

Look at the sequences (1, ..., v.), (Vf,..., V). By the clause (d) of 1.5 we

find (ng,...,n,), (W0, ..., V) €Y such that for each m <n
I// <] 77/ V// <] 17//

Now, the properties of v/, v/ and the definition of the algebra B imply that

for each m < n:

B = Yny, Ny, = 0,
finishing the proof. U
Lemma 4.3. Assume that X is a regular cardinal, |§| < A, J is an ideal on
o extending Jpd, C = (T, N, 7,((B,,9y) : m € T)) is a (J, , \)-constructor
and I is such that (T, N\, I) € K. Suppose that 7 = (e : o < A) is a
stronger (or big) J-cofinal in (T, X\, I) sequence such that
(Vi <0)({nali:a < A} <A).
Further, assume that

(©) for every n < w for a J-positive set of i < § we have:
if ng,...,m, €T} are pairwise distinct and the set' Y C
IT Ay, is such that

I<n

(3"05%) ... @) (30, s m) €Y)
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then for some vy, v/ < \,, (for £ < n) we have
(p:0<n),{(v/:£<n)yeY andforall<n

B, = Ynetvp) VYme~tayy = 0.
Then the Boolean algebra B&*(C) satisfies \-cc.

Proof. Suppose that (z, : « < A) C B&™" \ {0}. By the standard cleaning
(compare the first part of the proof of 3.8) we may assume that there are
n* € w and a function € : A x n* — X such that

(1) 2o = () Ze(ae (in Beeen),
£<n*
(2) e(a,0) < e(a,1) < ... <e(a,n* —1),
(3) ({e(a,0) : £ < n*) : a < A) forms a A-system of sequences with the
kernel m*, i.e., (V¢ < m*)(e(a,l) = e({)) and
(Ve € [m*,n")) (Vo < M)(e(ev, ) & {e(B, k) - (B, k) # (e, £)}),
(4) there is ¢* < 0 such that for each oz < X there is no repetition in the
sequence (Ne(ap (1% : € < n*).
Since [{n.li : @ < A} < A (for i < §) and |§] < A we may additionally
require that

(;) for each i < 9, for every aw < \ we have

(I8 < NV < ") (Netap 1 (i + 1) = nap (i + 1)),
~and
(xx) for each a < f < A\, £ <n*

Ne(a,) 11 = Ne(p0) 17"

Remark: Note that the claim below is like an (n* — m*)-place version
of 3.7. Having an (n* —m*)—ary version is extra for the construction but it
also costs.

Claim 4.3.1. Assume that:

C=(T,\7,{(B,, 7, : n €T)is a(d,u\)-constructor, X a reqular cardinal,
§ < A\, I is such that (T, )\, 1) € ICS?W J is an ideal on § extending JP4 and
the sequence 7] is stronger J-cofinal in (T, X, I).

Further suppose that € : A X n* —, m*,n* and i* < § are as above (after

the reduction, but the property (*A*) is not needed).

Then
(X) for every large enough o < A the set:
Zo & 15 < 60 —(@Fetemling ) (@etemeinling )

L (@eme i N(FB)(VE € [, 1)) (e [(i+1) = Neta 1 (72))}
18 1n the ideal J.
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Proof of the claim. For ¢ < §, 1 > +* and distinct sequences v,,+, ..., Vp+_1 €
T; define

def _

B(Vg:ée[m*,n*» = {Py A <’Y€ RS [m*7n*>> and
for arbitrarily large a < A for all m* < /¢ < n*

VZ/\<’YZ> <17 a,Z)}-

We will call a sequence (v : £ € [m*,n*)) a success if

(30 )+ (30170 1) (e £ € [M7,07)) € Buyepme noyy)-
Using this notion we may reformulate (X) (which we have to prove) to
(X*) for every large enough o < A, for J-majority of i < 0, ¢ > i* the
sequence (Ne(ap i : L € [m*,n )> is a success.

To show (X*) note that if a sequence (v, : £ € [m*,n*)) is not a success then
there are functions f y (for m* <k < n*) such that

(vebelm* ,n*
k—1

k .

f(l/g:ﬁé[m*,n*)) : H )\W — IVk and

{=m*

if <’7£ le [m*, n*» € B(ngée[m*,n*))
then (3k € [m*,n*))(1 € fkw_ze me gy (Ymes o3 V1)
If (vy : £ € [m*,n*)) is a success then we declare that f

stantly equal to .
Now we may finish the proof of the claim applying clause (b) of definition
2.2(5) to n* — 1 and functions Fy, ..., F,,-_; such that for k € [m*,n*)

(ve:be[m*,n*)) 1S con-

Fk(V0A<70>7 R Vk—lf\<’yk—1>7 Viy .oy Vn*—l)) - f(lj/e:fe[m*,n*)) (ryﬂ‘L*a s 77k—1)'

This gives us a suitable o < A. Suppose e(o,m*) > «*. Then for J-
majority of i < § for each k € [m*,n*) we have

if
Fon(Ne(aoy 14 1), o Mok 1) T8+ 1), De(ap) 15 - - -5 Ne(an=—1) [1) € Ty,
then
Ne(ak) [(0H1) € Frn(Me(a,0) TEH1), - o Deank—1) T(EH1), Me(ak) [ - - - Nean—1) 7).

But the choice of the functions Fj implies that thus for J-majority of i < 9,
for each k € [m*,n*)

e ak)( ) ¢ fng(a IEEAS o )>(776(a m*)( ) cee 77]8(06,]4?—1)(7:))'



Paper Sh:575, version 2005-02-03_10. See https://shelah.logic.at/papers/575/ for possible updates.

CELLULARITY OF FREE PRODUCTS OF BOOLEAN ALGEBRAS 27
o . . k Lo
Now the definition of the function f(ugzée[m*,n*» works: if for some relevant

i < 0 above the sequence (Ne(a,0)[? : £ € [m*,n*)) is not a success then
(Ne(ap (@) - £ € [m*, ")) & By, o tistelm* n*))
and this contradicts (%) before. The claim is proved. O
Let a* be such that for each v > o* we have Z, € J. Choose i € 0 \ Z~
such that the clause (©) applies for n* —m* and i. Let
def * * . N~
Y= {lmes o emr) (FB)(VE[M,10%)) (08,01 (141) = (e(ar 0 17) () }-
The definition of Z,« (and the choice of ¢) imply that the assumption (©)

applies to the set Y, and we get 7,7/ < A for m* < ¢ < n*) such
that

Ne(ax,0) 4 (

(o -m*<Ll<n) (y/:m"<l<n*)eY and
:[an(u*,é) K ): yns(a*,f) fl’\<’Y2> ﬂ yns(a*,ﬂ) “A<’Yé/> = 0 for m* S g < n*'
Now, choose o < 8 < A such that for m* < /¢ < n*

Ne(ar,0) 11 (V0) = Nty [0+ 1), Do [77(00) = Ne(ap [ (3 + 1)
(possible by the choice of Y and 7,,7/). The definition of the algebra
Be&e?(C) and the choice of 7}, ~; imply that for m* < ¢ < n*

BEHC) [ oo N ep0) # 0.
If ¢ # m then
BE(C) | Te(a, N Te(am) # O
by the conditions (*A*) and 4) of the preliminary cleaning (and the definition

of Bg™**(C), remember z, # 0). Finally, remembering that e(«, {) = (5, )
for £ <m*, z, # 0 and z3 # 0, we may conclude that

Bgreen(c) ): ﬂ Te(a,e) M m Te(B,0) #£0

{<n* f<n*

finishing the proof. 0

Theorem 4.4. If p is a strong limit singular cardinal, X Lo — T

then there are Boolean algebras By, By such that the algebra By satisfies the
A-cc, the algebra By has the (2Cf(“))+—Kna5ter property but the free product
B1 x By does not satisfy the A-cc.

Proof. Let § = cf(u) and let h : 6 — w be a function such that
(Vn € w)(F%)(h(i) = n).

Choose an increasing sequence (u; : ¢ < 0) of regular cardinals such that

= > pi. Next, by induction on i < ¢ choose A;, x;, (B;,9;) and I; such
i<s

that
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i, X; are regular cardinals below p,
i >xi > T A+ s
j<i
I; is a x; -complete ideal on \; (containing all singletons),
(B;, y;) is a A;-marked Boolean algebra such that
if n = h(i) and the set Y C (\;)"*! is such that

(Fy0) ... (F) (Yo, -+ - Y) €Y)

then for some 7,7/ < \; (for £ <n) we have

(yp:l<m),{(y/:£<n)yeY andforalll<n
Bi =y, Nyl =0,
(5) each algebra B; satisfies the (2°)*~Knaster condition.
Arriving at the stage i of the construction first we put x; = ([ Aj +wi) ™
j<i
Next we define inductively x; , Aix for & < h(i) such that
Xio = Xi» Aie = (2997, Xiggr = (Mip) ™
By 3.1, for each k < h(i) we find a (A, x;,)-well marked Boolean algebra
(Bix, Uik Li k) such that B, ; has the (29)*—Knaster property (compare 3.3).
Let A\; = Xin@u). Proposition 4.2 applied to ((Bik, ¥ix, Lix) : & < h(i))
provides a \;-marked Boolean algebra (B, 7;) and a x; -complete ideal I; on
A; such that the requirements 4,5 above are satisfied.

Now put T'= (J [[ A\; and for n € T

Jj<8i<j
Bn = IBlg(r])a 'gn = glg(n)a 177 = ]183(77)‘

By 2.8 we find a stronger JPd-cofinal sequence 77 = (1, : a < \) for (T, \, ).
Take the (9, 1, u)-constructor C determined by these parameters. Look at
the algebras B, = B*4(C), B; = Be™**(C). Applying 4.1 we get that B, * B,
fails the A-cc. The choice of the function h and the requirement 4 above
allow us to apply 4.3 to conclude that the algebra Bs satisfies A-cc. Finally,
by 3.8, we have that B; has the (2%)T-Knaster property. O

Remark 4.5. (1) We shall later give results not using 2# = ™ but still

not in ZFC

(2) Applying the methods of [?] one can the consistency of: for some p
strong limit singular there is no example for A = pt.

(3) If we want “for no regular A € [u, 2#]” more is needed, we expect the
consistency, but it is harder (not speaking of “for all p”)

(4) Remark 1) above shows that 2# > p* is not enough for the negative
result.
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5. TOWARD IMPROVEMENTS

Definition 5.1. Let (T, A, ) € Ki!; and let J be an ideal on § (including
JP4 as usual). We say that a sequence 7 = (1, : a < \) of d-branches
through T is super J-cofinal for (T, ), I) if
(a) N # np for distinct o, B < A
(b) for every function F' there is a* < A such that
ifag < ...<a, <\ o <a,
then the set

{t<0: ()" F(ags---+Nan_1sMan 1) € Iy, 1i
(and well defined) but

Na, T(H_l) S F(naoa cs Nap—1) Nay, fl)}
is in the ideal J.

Remark 5.2. (1) The main difference between the definition of super J-
cofinal sequence and those in 2.2 is the fact that here the values of
the function F' depend on 7,, (for £ < n), not on the restrictions of
these sequences as it was in earlier notions.

(2) “super® J—cofinal” is defined by adding “a* < «y” (compare 2.2(10)).

Proposition 5.3. Suppose that (T, \,I) € ICL% is such that for each v € Tj,

i < & the ideal I, is |T;|*—complete. Let J 2 JP be an ideal on 6. Then
every super J—cofinal sequence is stronger* J-cofinal.

Proof. Assume that 7 = (n, : @ < A) C limg(7T) is super J-cofinal for
(T,\,I). Let n < w and let Fy,..., F,_; be functions. For each ¢ < n we
define an (¢ + 1)-place function F}; such that
ifag<ap<...<ap1<\peT;,i<é
then

FE*(nOcoa""na.e_pp): .
U{Ff<77040 [(Z_Fl)a ey Moy [(2+1)7P7 Vo, .. 7Vn) Ve, Vn € T‘z &
Fg(nao f(@+1), cos Nay 4 r(Z—l-l), Py Vet1y-- -, Vn) € [p (and well deﬁned)}.

As the ideals I, (for p € T;) are |T;|"-complete we know that

F} (Nags - -3 Nay_y P) € 1.
Applying 5.1(b) to the functions F; (¢ < n) we choose a; < A such that
ifag<...<a <\ o) <ay
then the set

s def . % .
B ={i<0: Ff(Nags--->Nayp_1sNag?) € Iy, but

nag r@ + 1) € FK*(naov e 777&@71777&@ TZ)}
is in the ideal J.
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Put o* = max{a; : ¢ < n}. We want to show that this a* works for
the condition 2.2(6)(b) (version for “stronger*”). So suppose that m < n,
<oy <ar<...<a, <A Let

def . . . . .
By = {1 <6 Fru(ao 1G+1), - o Nagey TEH1), 00 195 - - M0, 17) € Ly i

and 7, [(i4+1) € Fpu(Nag T(04+1), ..oy Napy TEH1), Da, 12y -« oy Ty 1) -
Note that if i € B,, then, as o, < a* < qyy,

nam r(2+1) e Fm(nao r(l+1)7 ttt 777am71 r(z+1>7 nam rZ7 A 77700,1 rZ) g
- F;L(naoa <oy Nagy—15 Mo, “) € L?am [
Hence we conclude that B,, C B} and therefore B,, € J, what finishes the
proof of the proposition. O

Proposition 5.4. Assume that (T, \,I) € ICZ{(;, each ideal I, (for n € T;,
i < d)is (|8] + |Ti|)"-complete and J D JPY is an ideal on 6. Further
suppose that a sequence 7 = (1 : a < \) is super J-cofinal for (T, X\, I), X is
a reqular cardinal greater than |T'| and a sequence (a.p: e < A\, { <n) C A
18 with no repetition and such that

e < 0en < ... < Ogpo forall e < .
Then for every € < A large enough there is a € J such that
(B) ifiged\a (fort <n), ig>iy > ...> i, then
(Frecalogg) .. (Freenilinciny, )
(FC<N(VE<n) (N, [(ieF+1) =, Tie™(ve))-

Proof. This is very similar to claim 4.3.1. First choose ¢y < A such that for
each € € [, A) and for every g, ...,i,_1 < 0 we have

(3¢ < NV < n)(Nag, [ (e + 1) = T, 1 + 1))
(possible as |T'| < cf(X) = A).
Now, for 7 = (iy : £ < n) C § and v = (v : £ < n) such that iy > i; >
... >ip_1, 1 € T;, and k < n we define a function f¥, : T] A, — 1, (with

1<k
a convention that % is supposed to be a 0-place function, i.e., a constant)
as follows.
Let
def A . —
Biy = {(e: < n) € [[ A : G < NV <) (0, [+ 1) = v (7))}
{<n

If

(#:0) =(F0r0) ... (I =190 1) ((Yos - - -, Yn1) € Bip)
then f25, ..., fi " are such that

(0) if (70, ..., Vn-1) € Bip then (Ik < n)(yx € f{”l;(%, e Vh—1))-
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Otherwise (i.e., if not (#z7)) the functions fJ, are constantly equal to (
(for £ < n). Next, for k < n, choose functions Fy such that if ng,...,n €
lims(7"), i < 0 then

Fr(nos -y k-1, Mk [1) =
U{fz]fl—,(ﬁo(io); cos i1 (k1)) s 1= (g L <n), = (v : L <n),
5>20222k2222k+1222n,1,

ve =ngliy for £ <k and
v €T, fork <l<n}.
Note that Fy(ng,...,Mk—1,M[?) is a union of at most |§| + |T;| sets from

the ideal 1,,); and hence Fy(no, ..., nk—1,Mk[?) € Iy (for each no,... 7, €
limg(7), i < ). Thus, using the super J-cofinality of 77 we find o* < A such

that
ifoa"<ac...<a, <A
then the set
{i <0: 3k <n)(0, (i) € Fr(Nags - Ny i) }
is in the ideal J.
Let €1 > €o be such that for every ¢ € [g1,A) we have a* < a9 < ... <
Qep—1.

Suppose now that £; < € < A. By the choice of a* we know that the set

0 {i <62 (30 <n) (s (1) € Filtlasys - Mawyos s 1)}

is in the ideal J. We are going to show that the assertion ([J) holds for &
and a.

Suppose that 7= (iy: £ <n) CI\a,ig >0 > ... > i, 1. Let v =(v: L <
n), Vg = Na.,li¢. If the condition (#;5) fails then we are done. So assume
that it holds true. By the choice of the set a (and a*) we have

(vg < n) (nae,l (7’6) ¢ FZ(TIQE@’ e ’77045,2717?7048,2 r”))’
what, by the definition of F}, implies that
(V0 < 1) (e, (i) & Fro(laeso (i0)s -+ 3 (i0-1)))-
By (¢) we conclude that
<77ae,0 (io), co Nae m—a (in—1)> g_ﬁ BZD’
and hence, by the definition of B; 5,
~(FO)(VE < n)(ag, (i + 1) = 1o, 1(ic)),

what contradicts the choice of gy (remember € > &1 > ). O

Definition 5.5. We say that a A-marked Boolean algebra (B, §) has char-
acter n if
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for every finite set u € [A\|<“ such that B = [ yo = O there
acu
exist a subset v C u of size |v| < n such that B = ) yo = 0.
acv
Proposition 5.6. If a A\-marked Boolean algebra (B, y) is (6, not\)-Knaster
(or other examples considered in the present paper) and (B, y) has character

2 then without loss of generality (B,y) is determined by a colouring on A:
if ¢ : [NJ* — 2 is such that

c({a,p}) =0 iff BlEy.Nys=0
then the algebra B is freely generated by {yo : a < A} except
that
if c{e,8}) =0 then y, Ny =0.

Remark 5.7. These are nice examples.

Proposition 5.8. In all our results (like: 3.1 or 3.8), the marked Boolean
algebra (B, y) which we get is actually of character 2 as long as any (B, y,)
appearing in the assumptions (if any) is like that.

Then automatically the 0—Knaster property of the marked Boolean algebra
(B, y) implies a stronger condition:

if Z € [lg(9)]° then there is a set Y € [Z]? such that {y; : i € Y} generates
a filter in B.

Proposition 5.9. Let (T, )\, I) € Kﬁé be such that for each n € T the filter
(I,,)¢ (dual to I,) is an ultrafilter on succr(n), and let J be an ideal on 6
(extending JP4). If:

(a) C = (T, N7, {(B,,7,) : n € T)) is a (5, u, \)—constructor, the se-
quence 1 is stronger J-cofinal for (T, \, 1), |T| < cf(\) = A,

(b) the sequence (aep:e < A\ € < n) C X is with no repetition,

(c) for each distinct n,v € T either the ideal I, is (2*)"~complete
(which, of course, implies \, > 2*) or the ideal I, is (2*)%~
complete (it is enough if this holds true for n,v such that 1g(n) =
lg(v),

then for every large enough € < X for J-almost all i < O there are sets
X € (I, 1)t (for ¢ <n) such that

77(167[ 7

(V70 € Xo) - .. (V1 € Xn1) 3N < A)(VE < 0) (M, Ti () < aey).
Remark 5.9.A We can replace stronger by big and then omit being an
ultrafilter.

Proof. First note that we may slightly re-enumerate are sequence (o, : € <
A, ¢ < n) and we may assume that for each e < A

Qe < Qg1 < ... < Qgp—1-
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Now, since |T'| < cf(A) = A we may apply claim 4.3.1 to
({(aep:l<mn):gg<e<N)

(we need to take gy large enough to get the condition (;) of the proof of
4.3). Consequently we may conclude that there is €; < A such that for every
€€ [en, A)

(X.) for J-majority of i < & we have

(Fe0ling) . (e iy ) (ENCN) (V<) (Mg, 1(i41) = o, T8 (10)).-

Now we would like to apply 1.2. We cannot do this directly as we do not
know if the cardinals \,_,}; are decreasing (with ¢). However the following
claim helps us.

Claim 5.9.1. Suppose that \g < A\, are cardinals and Iy, I; are maximal
ideals on Ao, A1 respectively. Assume that the ideal I is (Ao)T—complete and
o(x,y) is a formula. Then

(39) 3" n)e(0,m) = (3F")EF0)e(0,m).

Proof of the claim. First note that if I is a maximal ideal then the quanti-
fiers 37 and V! are equivalent. Suppose now that

(3°70) (3" 1) (%0, ).
This implies (as Iy, [; are maximal) that

(V90) (V"' 71) 0 (70, 71)-

Thus we have a set a € I, and for each v € A\g\ a we have a set b, € I; such
that
(V70 € Ao \ @) (Y71 € A1\ byy) (70, 71)-
Let b= U b,. As I is (A\g)"complete the set b is in I;. Clearly
’yE)\o\a

(V71 € AL\ b) (V0 € A\ a)e(70, 1)
which implies (3717)(39v)o (70, 71), finishing the proof of the claim. [

Now fix € > ¢; (e; as chosen earlier). Take i* < § such that the elements
of (1. ,[7: £ < n) are pairwise distinct. Suppose that i € [i*,d) is such that
the formula of (X.) holds true. Let {k; : £ < n} be an enumeration of n
such that

A N> A

77O‘E,ko

> . > )\no‘s,kn_l -

no‘e,kl
(Note that by the assumption (c) we know that all the A, }; are distinct,
e,kp

remember the choice of i*.) Applying claim 5.9.1 we conclude that

I"]a i [’7(1 k 1 N _ .
(3o ) - (350t Y@ () O 1 (0) = T 1(41).
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But now we are able to use 1.2 and we get that there are sets X, C A
X, & I,_, 1i (for £ < n) such that
& ke

[T Xe S {000 1) - BN <) (a1 (0) = Tl 1(i+1))}

<n

770457]% H’

what is exactly what we need. 0

If we assume less completeness of the ideals I, in 5.9 then still we may
say something.

Proposition 5.10. Let (0; : i < 0) be a sequence of cardinals. Suppose that
TN L7, N 0 and (oo : e < A\ 0 < n) are as in 5.9 but with condition
(c) replaced by
(©) gruicsyt Um v € Ti,m# v, i <0 then either the ideal I,y is ((A,)7) "~
complete or the ideal I, is ((A,)7) T —complete.

Then for every large enough € < X for J-almost all i < & there are sets
X € [Mo_,1il7" (for € <n) such that

(V’Yo S Xo) cee (V'Yn—an—l)(EIAC < )‘) (VE < n)(n%,e MA<’W> < 770@,@)-

Proof. The proof goes exactly as the one of 5.9, but instead of 1.2 we use
1.3. O

Remark 5.11. (1) Note that in the situation as in 5.9, we usually have
that “J-cofinal” implies “stronger J-cofinal” (see 2.7, 2.5).
(2) The first assumption of 5.9 (ultrafilters) coupled with our normal
completeness demands is a very heavy condition, but it has rewards.
(3) A natural context here is when (u; : i < k) is a strictly increasing
continues sequence of cardinals such that each p;,; is compact and
i = p. Then every p;,i-complete filter can be extended to an
i 1-complete ultrafilter. Moreover 2# = it follows by Solovay [?].
If for some function f from cardinals to cardinals, for each y there
is an algebra B, of cardinality f() which cannot be decomposed
into < p sets X; each with some property Pr(B,, X;) and if each p;
if f-inaccessible
then we can find T,I, X as in 5.9 and such that n € T, = j; <
Xy < Ay < pig1 and for n € T; there is an algebra B, with universe
An and the ideal I, is x,—complete,

if X C B, and Pr(B,, X) then X € I,

(compare 3.1) and A, <\, = (2")" < x,. Now choosing cofinal
71 we may proceed as in earlier arguments.

(4) Tt seems to be good for building nice examples, however we did not
find the right question yet.
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(5) Central to our proofs is an assumption that
“(oce: ¢ <Al <n) C \is asequence with no repetition”,

i.e., we deal with A\ disjoint n-tuples. This is natural as the examples
constructed here are generated from {z; : i« < A} by finitary func-
tions. One may ask what happens if we admit functions with, say,
Ny places? We can still try to get for u as above that:
(X) there is h : [uT]> — 2 such that
if (ue : € < \) are pairwise disjoint, u. = {azp : £ < (*} is
the increasing (with ¢) enumeration, ¢* < u (¢* infinite), for a
sequence (vy : £ < (*) C T
Biy0<er) o
{{a., (1) - £ <€) £ (< NV <) (O, [0+ 1) =1, [+ 1))},

for some 7* < 0 there are no repetitions in (n,_,[7* : £ < ¢*) and
h|[uc)? =1 (for each € < \)
then there are av < (3 (really a large set of these) such that

hlua Uug)? = 1.

The point is that we can deal with functions with infinitely many
variables. Looking at previous proofs, “in stronger” we can get (for
w strong limit singular etc):

for a large enough

for i < 6 = cf(u) large enough

I i *
(connn. (Ve i) oo (e < t*) € B, lise<er)

but the duality of quantifiers fails, so the conclusion is
only that

(Vi < 8)[=( .. (V™ ) L e (o, () £ < 07) ¢ B, tize<t)))-

no ultrafilters 2 , 0 18 a regular cardinal, = A and for
6 Itrafil Ifr Jsdé' 1 dinal, A, = Ajg(y)) and fi

each u € [T;]<I% i < § the free product % B, satisfies the A-cc then
new
we can show that the algebra ]B%rfi satisfies the A\-cc too, where for a

cardinal x the algebra IB%rji is the Boolean algebra freely generated
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by
(N 28 tiu—2,ue N hunt 12 =1 and

acu
lu] < x and
(Ji < ¢)(the mapping a — 1,(7) is one-to-one (for o € u))

(Fi < 6)(Fa € u)(Vj € (i,0))(VB € u)(fali) < f5(1))}-
[Note that if x < cf(d) it is simpler.]

* * * * Xx

Now we will deal with an additional demand that the algebra B¢ satisfies
|d|T-cc (or even has the |§|T—Knaster property). Note that the demand of
|§]-cc does not seem to be reasonable: if every ¥, has two disjoint members
(and every node ¢ € T is an initial segment of a branch through 7') then
we can find § branches which, if in {7, : @ < A}, give ¢ pairwise disjoint
elements. Moreover:

for each v € Ty let A, = {na(7) : Noli = v} and

o ={i <0 (30 € Api) Byai = Ynay) Nys = 0)}.
So if B k= g-cc then (Vo < \)(|as| < o).
Definition 5.12. Let (T, \) € K,,.s and let fj = (1, : a < \) C lims(T). W
b

say that 7 is hereditary -free if for every Y € [\’ there are Z € [Y] and
© < 0 such that

Vo,BeZ)a# B = [nali=mnsli & (i) # ns(i)]).

Proposition 5.13. Assume that C = (T, \,7,{(B,,5,) : n € T)) is a
(0, 1, \)—constructor. If 7 is hereditary 0-free, each algebra B, has the 6-
Knaster property and 0 is regular then the algebra B™4(C) has the 0-Knaster

property.
Proof. The same as for 3.8. Note that the proof there shows actually that,
if (Va < 0)(|af?l < @ =cf(d)), then 7 is O-hereditary free.
OJ

Proposition 5.14. Assume that (T, \) € K5, 1= (s : @ < A) C limgs(7T),
A s a reqular cardinal. Further suppose that

(a) (Va < 0)(Ja|<® < 0 = cf(#)), § < 0, J is an ideal on § extending
JP4 and

(b) the sequence 1 is <j-increasing and one of the following conditions
18 satisfied:
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(o) mis <j-cofinal in [] N\i/J, \i are regular cardinals above 0 (at
i<6
least for J-majority of i < §), {a < X\ : cf(a) = 0} € I[N and
Ap = Aig(n);
(B) there are a sequence (Cy : o < Ny of subsets of A\, a closed
unbounded subset E of A\ and i* < § such that
(i) Ca Ca, otp(Cy) <0,
(ii) if B € Cy then Cg = Cy N B and ngl[i*, ) < nal[i*,0),
(iii) if « € E and cf(a) = 0 then o = sup(Cy,).

Then there is A € [A\]* such that the restriction 7] A is O-hereditary free.

Proof. First let us assume that the case () of the clause (b) of the assump-
tions holds.

Claim 5.14.1. Suppose that Y € [E)°. Then
(1) (3Z € [Y)%)(3i®)(the sequence (f5.(i®) : € € Z) is strictly increasing).
(2) If additionally J = JP? then

(3Z € [Y]9)(3i® < 0)(the sequence (ns|[i®,8) : B € Z) is strictly increasing).

Proof of the claim. Suppose Y € [E]?. Without loss of generality we may
assume that otp(Y) = 6. Let « = sup(Y). So a € E, cf(a) = 6 and hence
C, is unbounded in a. Let C, = (a. : € < ) be the increasing enumeration.

Clearly the set

A (e <0 o, au)NY £ 0}

is unbounded in . For € € A choose f3. € [a.,a.11) NY. Then
(Fac € J)(Na. [0\ ac) <. 1(0\ ac) <oy, [(6\ az)).
Now choose i. € 6 \ ac, i. > i* and find B € [A]? such that
e€eB = i.=1i%

Easily, by the assumption (3)(2), this i® and Z = {f. : ¢ € B} are as
required in 5.14.1(1).
If additionally we know that J = JP4 then for some B € [A]? we have

(F3® e li*,o)(ee B = a.Ci%)

and hence the sequence (fg [[i® 0) : ¢ € B) is as required in 5.14.1(2)
(remember (3)(2)). O

But now, using i® given by 5.14.1 we may deal with the sequence (fs_[(1¥+
1) : ¢ € B) and using the old proof (see 3.8) on the tree |J T; (note that
i<i®
we may apply the assumption (a) to arguments like there) we may get the
desired conclusion. This finishes the case when () of (b) holds true.
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Now, assume that the case («) of the clause (b) of the assumptions holds.
We reduce this case to the previous one (using cofinality).
Take C', E witnessing that the set {ov < A : cf(a) = 0} is in I[\] and build
a <j-increasing sequence 77 = (1), : @ < A\) C [[ A; such that o/, > 7, and
_ i<
7' satisfies the clause (8) of (b) for C', E. [The construction of 7, is by
induction on @ < A. Suppose that we have defined nj for § < a. Now, at
the stage a of the construction, we first choose 70 € J] A; such that
i<0
(V8 < a)(ns <y ma)-
This is possible since the condition («) implies that A = tef([]
a < A. Now we put for ¢ < ¢:

1o () = max {7 (i), na (i) + 1,sup{n), (i) + 1 : v € Ca} }.

One can check that this 77’ is as required.]

AifJ),

<8

Now we use the fact that 7 is cofinal. The set

E={yeE:(Na<)3B<y)n, <sns)}
(%

is a club of \. Look at f[E’. Suppose that Y € [E']". Without loss
of generality we may assume that otp(Y) = 6 and let « = sup(Y). By
induction on € < # choose a. < 3. < 7. such that

Be €Y, a: € Co, ve € Co,y . <y Mp. <g 1, and
if ¢ < e then ¢ < ..
Next choose i, > ¢* such that
Mo (i) < . (ic) <l (ic).
We may assume that i, = i® for all ¢ < . Now, as 77/ obeys C, we have
(<e = 7,0 < (i)

and hence we conclude that the sequence (ns.(i®) : € < ) is strictly increas-
ing. Now we may finish the proof like earlier. ([l

Conclusion 5.15. If p is a strong limit singular cardinal, 2# = u™ = X and
—(30%) or at least

{6 < pt 1 cf(8) = (25 Y e I\

then there is a (cf(j), p, A)—constructor C such that the algebra B4 (C) has
the (2<<f(W)* Knaster property, its counterpart B&°*(C) is A-cc and the
free product is not A—cc.

[Note that if GCH holds then (2<¢f(*))* = (cf(u))* so the problem is closed
then. |

Proof. Like 4.4 using 5.14, 5.13 instead of 2.8, 3.8. 0J
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6. THE USE OF PCF

Assuming that 2<% is much larger than k = cf(k) (= cf(p) < p) we
may still want to have examples with the (k1 not\)-Knaster property and
the non-multiplicativity. Here 5.15 does not help if GCH holds on an end
segment of the cardinals (and —(30%)). We try to remedy this.

It is done inductively. So 6.3 uses cf(u) = Xg just to start the induction.
We can phrase (a part of) it without this assumption but in applications
we use it for c¢f(u) = Ro. Also 6.3(b) really needs this condition (otherwise
we would have to assume that (Vo < )(|a|<? < u)). This result says that,
if c¢f (1) = Ng, then we have gotten the 6—Knaster property for every regular
cardinal 0 € pu\ k™.

Definition 6.1. (1) Let Kymk denote the class of all tuples (6, A, x, J)
such that 8 < A, x are regular cardinals, J is a y—complete ideal on
A and there is a (A, x)—well marked Boolean algebra (B,y,.J) (see
3.2) such that the algebra B satisfies the #—Knaster property (wmk
stays for “well marked Knaster”).

When we write (0, \) € Kymx we really mean (0, A\, \, J?9) € Kymk
(what means just that there exists a (#, A\)-Knaster marked Boolean
algebra).

(2) By Kank (smk is for “sequence marked Knaster”) we will denote the
class of all triples (6, A, x) of cardinals such that § < A\ are regular
and there is a sequence ((B,,7*) : a < x) of A-marked Boolean
algebras such that (for o < x) the algebras B, have the #—Knaster
property, y* = (y¥ : i < A\) and

ifn<w,a<...<ap1 <yxand By < \fore <A,
¢ < n are such that (Ve; < g9 < N\)(V0 < n)(B,0 <
662,[)

then there are €1 < g9 < X such that

t<n = B,k “ygfl’[ N ygfﬂ =0".

Remark 6.2. (1) On some closure properties of K? o {N: (0, €

wmk
Kwmy } under pef see 3.12: if \; € K9, (for i < §), A\; > maxpef{), :
j < i} and A € pef{)\; : i < 8} and (Va < 0)(|a|?’ < 6) then
AeK? L

(2) We can replace 6 by a set © of such cardinals, no real difference.
And thus we may consider the class KX, of all tuples (0, A\, x, J)
such that there exists a (A, x)—well marked Boolean algebra (B, g, J)
with

(VO € ©)(B satisfies the 0—Knaster property).
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Proposition 6.3. Assume that u is a strong limit singular cardinal, Ry =
of(pu) < p and A =2+ = pt.
(a) If (Va < 0)(Jal* ™ < § = cf(0) < N),
then (0,\) € Kymk. Moreover (0, \,2*) € Kquk.
(b) Ifcf(u) <0 =ct(0) < p and {a < X : cf(a) = 0} € I[N,
then (0,\) € Kymx. Moreover (6,),2*) € Kani.

Proof. This is similar to previous proofs and the first parts of 6.3(a), (b)
follow from what we have done already: (a) is an obvious modification of
3.11; (b) is similar, but based on 5.13, 5.14 (and 2.8, 3.7) (see below). What
we actually have to prove are the “moreover” parts. We will sketch the proof
of it for clause (b) only, modifying the proof of 4.4.

As in 4.4 we choose a function h : cf(u) — w such that for each n € w
the preimage h~[{n}] is unbounded (in cf(u)). Next we take an increasing
sequence (p; : i < cf(p)) of regular cardinals such that g = > p;. Finally

<6
(like in 4.4) we construct A;, x;, (B;, 9;) and I; such that for i < cf(u):
(1) A\i, xi < p are regular cardinals,

j<i
(3) I; is a x; -complete ideal on \;,
(4) (B;,9;) is a A;-marked Boolean algebra such that
if n = h(i) and the set Y C ()\;)""! is such that

(Fiv) ... 3" (Y0, - - -, Ym) €Y),
then for some 7,7y, < A; (for £ < n) we have

(vp:l<n),{(y:£<n)eY andforall<n

Bi =yl Nyl =0,

(5) each algebra B, satisfies the #~Knaster condition,

(6) for £ < \; the set [£, ;) is not in the ideal ;.
Note that the last requirement is new here. Though we cannot demand that
the ideals I; extend [f\’f, the condition (6) above is satisfied in our standard
construction. Note that the ideal from 3.1 has this property if A there is
regular. Moreover it is preserved when the (finite) products of ideals (as in
4.2) are considered. Also, if I is an ideal on A\, Ay € I is such that |\ Ay
is minimal and A; € I'" is such that |A;| is minimal then we can use either
ITAg or ITA;. All relevant information is preserved then (in the first case
the condition (6) holds in the second J?4 C I — under suitable renaming).

Now we put 7' = U(; [T By = Bugn)s Un = Digm> Iy = g~ Applying
i<é j<i o

2.8 we find a stronger JPd-—cofinal sequence 7 = (n, : a < \) for (T, \, I).

Due to the requirement (6) above we may additionally demand that 7 is



Paper Sh:575, version 2005-02-03_10. See https://shelah.logic.at/papers/575/ for possible updates.

CELLULARITY OF FREE PRODUCTS OF BOOLEAN ALGEBRAS 41

< Jcbf(szincreasing cofinal in Kg[(u) Aif Jl'}‘g”). Let (Be : € < 2*) be a sequence
of pairwise almost disjoint elements of [A]* (i.e., |[B¢ N B¢| < A for distinct
£,¢ < 2%). For each £ < 2* we may apply 5.14 (the version of (b)(«)) to
the sequence (1, : a € Be) and we find A¢ € [Be]* such that each sequence
(Na : o € Ag) is O-hereditary free. Let

B =BT\, (na s a € Ag), (B, 5y) in €T)),  Te=(ai:a € Ag).

Of course, each B is a subalgebra of BY(T, X, 7, ((B,,7,) : n € T)) (gen-
erated by Z¢). By 5.13 and 3.7 we know that the marked Boolean algebras
(B, Z¢) are (6, notA)-Knaster. To show that they witness (6, X,2") € Kk
suppose that n < w, &, ..., &1 < 2*, By < A (for e < A\, £ < n) are such
that
(Vey <ea < ANVl <n)(Bey i < Pesit)s

and of course {f:¢ : ¢ < A} C Ag,. Since Ag, are almost disjoint we may
assume that

(Ver, &2 < A)(Vly < by <n)(Bey iy 7 Beats)-
Further we may assume that we have i* < cf(u) such that for each ¢ < A

the sequences ng_, [* for £ < n are pairwise distinct.

By the choice of 1, T, A etc we may apply 4.3.1 and conclude that for all
sufficiently large € < A the set

Ze = {i < cf(r) : ~(3"0"50) ... (30", ) (FO)(V < )
is in the ideal Jé’fc(l“). Take one such . Choosing i € cf(u) \ Z., i > i* such
that h(i) = n we may follow exactly as in the last part of the proof of 4.3
and we find g, 1 < A such that for each ¢ < n
77650,2 rl = nﬁsl,f rl7 but
Bnﬁgo,e i E Yns., (1(+1) N Yns,, ,1G+1) = 0,
what implies that

(V€ < n)(Bg, = xgidoye N xrﬁi‘je =0).
U

Proposition 6.4. Assume that

(a) (A; 1@ < ) is an increasing sequence of reqular cardinals such that
d < Ao, A; > maxpcf{\; : j < i} (the last is our natural assump-
tion,),

(b) Ng < 0 =cf(0) < U \i (naturally we assume just cf(0) =6 < Xo),

<6

(¢) A = maxpcf{\; :i <},
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(d) (0, \i,maxpct{); : j <i}) € Kk,
(e) for each T € {\} U J pct{\; : i < a} we have
a<é
{&<T:cf(§) =0} € I7],
or at least B
for some fT = (fI :e < T), <,_, —increasing cofinal in
[T Ai/J=r we have:
<o
y<t&ct(y)=0 = f] is good in f7

(see [?], [7, §1 and 1.6(1)], and then Magidor and Shelah [?]),
(f) |pct{N\; : i <} < @ or at least for each o < § we have |pcf{\; : i <
al| < 0.

Then (0,\) € Kymk. Moreover (6, A, x) € Ksmx provided there is an almost
disjoint family of size x in [N*. We may get algebras B, B&® qs in main

constructions such that

B = §-Knaster, B }= A-cc  and B™ % B&" |= = \-cc.
Remark 6.4.A: Continues also the proof of [?, 3.5].

Proof. The main difficulty of the proof will be to construct a hereditary
f—free <;_,-increasing sequence 7 = (1, : o« < A) € [[ A;. This is done in
<6
the claim below. For the notation used there let us note that if & < is a
limit ordinal, 7 € pcf{\; : i < a} then J_[{\; : i < a}] = J< is the ideal
on « generated by
Jor[{Ni i <a}]U{a\ b [{\ i <all}.
So in particular tef([] A\i/J) = 7.
i<a
Claim 6.4.1. There exists a tree T C |J [[ A; such that lims(T) is 6
<6 j<i
hereditary free (and <;_, —cofinal). Moreover for each a < § the size of T,
is < maxpcf{\; : i < a}.

Proof of the claim. For a limit ordinal a < § and 7 € pcf{)\; : i < o} (if
a = ¢ then 7 = \) choose a <j.-increasing sequence for = (fco"T (<
7) C J] Ai cofinal in [] A\;/J% and such that
i<a <o
(®) if ¢ < 7, cf(¢) =6, then for some unbounded set Y: C ¢ (for
simplicity consisting of successor ordinals) and a sequence §™ = <sg :
£ eY:) CJY we have

€, eYe &t < &ical\(siUsy) = fo7() < fo7 ().
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[Why we can demand (®)? If in the assumption (e) the first part is satisfied
then we follow similarly to the proof of 5.14, compare [?, 1.5A, 1.6, pp 51—
52]. If we are in the case of “at least” then this is exactly the meaning of
goodness.] Further we may demand that the sequence f®" is continuous:

(@) if |6] < cf(C) < Xo, C <7, then
aOES min{U fe7(@) : Cis a club of (}

el

[compare the proof of [?, 3.4, pp 25-26]].
For a limit ordinal o« < § we define
Tg={fellN: (a) f=max{fS™:¢<n} for some
<o
n<w, 7 € pcf{X\; 1 i < a}, and {; < 7,
(b) for every T € pcf{\; :i < a},
if 7= Xor a<J then
there is (f(7) < 7 such that

It & JETy = T mod J2 ).

(Note that if & = § then there is only one value of 7, 7 which we consider
here: X.) Let 7" C (J [[ A; be a tree such that for v < §:

i<8 j<i
T, ={f¢€ H)‘i . fla € T? for each limit o < 7}
1<y
Let
A={¢ < A\: thereis f € [[ A\ such that

i<s

F S F & = fmod I & (Wi < 6)(f1i € TN,
and for each ¢ € A let ff be a function witnessing it. Now, let 7" C |J [] A;

i<6 j<i

be a tree such that T5 = {ff : ( € A}.
By the definition, T is a tree, but maybe it does not have enough levels?
Let x be a large enough regular cardinal. Take an increasing continuous

sequence (N; : i < ) of elementary submodels of (H(x), €, <*) such that

|Nz| :T:9—|—|pcf{)\a:a<5}| < /\0, T+1C N 6Ni+17
and
all relevant things are in Nj.

We define f* € [] Ao by

a<d

F*(a) = sup({_J Ni N Aa).

<60
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Similarly as in [?, pp 63-65], one proves that f*[a € T2 for each limit o < 4.
Hence for some ( we have f* = fg”\ mod J¢ and thus ¢ € A. Consequently
A is unbounded in .
By induction on o < § we prove that
(®) of fc € T, (for ¢ < 6) are pairwise distinct,
then there are Z € [0]° and j < « such that

(V.G e2)(Q# G = [foli=Tali & o) # fa (DD

If a is a non-limit ordinal then this is trivial. So suppose that « is limit,
a < §. Then for some ¢, € pcf{\; 1 i < a}, & < T¢p, ne < w (for ¢ < 0,
¢ < n¢) we have
QLT s .
fo=max{f "+ € <nc}.

As 6 > |pcf{)g : f < a}| we may assume that n, = n*, 7., = 7 and for each
¢ < n* the sequence (¢, : ¢ < ) is either constant or strictly increasing.
Now, the second case has to occur for some ¢ and we may follow similarly
to 5.14.1 and then apply the inductive hypothesis. We are left with the case
a =0. Solet fe = fj_ for ¢ <0 and we continue as before (with A for 7).
This ends the proof of the claim (note that the arguments showing that
all the T2 are not empty prove actually that the tree 7" has enough branches
to satisfy our additional requirements). 0

Now let T" be a tree is in the claim above. Let 7 = (1, : @ < A) C limg(7T)
be the enumeration of {ff : ¢ € A} such that 77 is <,_,~increasing cofinal in
[1 Ai/J<x. By the assumption (d) for each n € T" we find a marked Boolean

1<d
algebra (B, y,) such that for every ¢ < § the sequence ((B,,7,) : n € T;)
witnesses that (0, \;, |T;|) € Ksuk. These parameters determine a (d, p, \)—
constructor C, so we have the respective Boolean algebra B™¢(C) (and its
counterpart Be"(C)). To show that they have the required properties we
follow exactly the proof that (6, A, x) € Kenk, so we will present this proof
only.

First note that by 5.13 the algebra B"¢(C) has the §-Knaster property.
Now, let (A : ¢ < x) C [A\]* be such that

G<G<x = |AgNA, <A\

Let o = (zf : € € A¢) and let B¢ be the subalgebra of B*!(C) generated
by Z,. We want to show that the sequence ((B¢,Z¢) : ( < x) witnesses
(0, X) € Kgmk. For this suppose that (5 < ... < (-1 < x, n < w and

Bes € A¢y are increasing with ¢ (for ¢ < A, £ < n) and without loss of
generality with no repetition. We may assume that

(Ve < n)(Ve < N)(Bee & | Ac)-

m#£L
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Further we may assume that for some ¢* < ¢ and pairwise distinct 7, € T}«
(for ¢ < n) we have

(Ve < N)(VE < n)(1p, 17" = ne).
Now we take i € [i*,6) such that
(Vy < \)(Fe < (V< n)(ng, (1) > 7)

(remember that each (ng_, : € < A) is <;_,~cofinal). Since |T;| < A; we can
find vy, ...,v,_1 € T} such that n, < vy, and

(Vy < X)(F'e < NV < n)(ns. i = vy & ng_, (i) > 7).

Consequently, we may choose a sequence ({yee: ¢ <mn):& < \;) C )\ such
that f < Ve and

(V€ < Xi)(Fe < (VL < n) (g, , 100+ 1) = v (1e.0))-

Now we use the choice of (B,,,¥,,) (witnessing (6, Ai, |1;]) € Ksmk) and we
find & < & < \; such that

(Ve <n)By, =y, N5, , = 0),

Véq L Veéo b

which allows us to find £; < €9 < A such that for each ¢ < n the intersection
rg., ,Nxg,, 15 0. U

Conclusion 6.5. If (u; : i < k) is a strictly increasing continuous sequence of
strong limit singular cardinals such that xk < pg, 2# = pf, k < 0 = cf() <
1o and

{o < pi « cf(a) = 0} € I[u]]
then (0, 11f) € Kymk and we may construct the respective Boolean algebras
Bred’ TRareen

Proposition 6.6. Suppose that we have Boolean algebras B¢, B such
that

o B4 satisfies the 0-Knaster condition,
e for each n < w the free product (B8*™)" satisfies the A\—cc,
o the free product B x Be fails the \-cc.

Then (0, X, X) € Kauk, where x = AT (or even if x is such that there is an
almost disjoint family A C [N\]* of size x).

Proof. We have y, € (B*")" and 2z, € (B&°™)* for a < A such that if
a < B < A then

either B Ey,Nys=0 or B |=z,Nz=0.

Let Ac € [A\]* (for ¢ < x) be pairwise almost disjoint sets. We want to show
that the sequence

(B, 71A¢) : € < x)
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is a witness for (6, \, x) € Kgnk. So we are given (o < (1 < ... < (1 < X
and sequences (a.,: € < A) C A;,. Then, for some €* < \ we have

ef<e<A = a, ¢ UAC,m-
m#£L

We should find £; < &9 such that for all £ < n

Bred IZ yaal,l’. N yasz,i = 0
For this it is enough to find £* < €; < &5 such that for £ < n

green
B }: Zasl,é ﬂ ZO‘EQ,Z 7é O

But this we easily get from the fact that the free product (B&™)" satisfies
the A-cc. O

Comment 6.7. (1) The proofs that the algebra B8 satisfies the A-cc
(see 4.3, 6.4) give that actually for each n < w the product (Bge)™
satisfies A-cc. So it is reasonable to add it (though not needed orig-
inally).

(2) The “7 is (strong-) J-cofinal for (T, A, I)” has easy consequences for
the existence of colourings.

Remark 6.8. For p strong limit singular we may sometimes get a cofinal
sequence of length A € (p, 2#] without 2 = u*. By [?, §5],
if:

(a) I; is a y;,—complete, |I;| = 7;, x; regular,

(b) xi <7 < (xi)™", 0" <w,

(¢) tef(TT (i) e/ J) = A for each £ < n*,

<9

then:

(a) there is a cofinal sequence in [[(P(\;)/I;)/J, because

i<s

(B) it has the true cofinality.
So if for arbitrarily large y, 2¥ = x*, 2" = y™* then we have the ideal
we want and maybe the pcf condition holds. Thus, combining this and 6.9
below, we get that there may be an example of our kind not because of GCH
reasons, but still requiring some cardinal arithmetic assumptions.

Proposition 6.9. Suppose that (\; : i < 0) is a strictly increasing sequence
of reqular cardinals, I; is a ([[ A\;)T—complete ideal on N\; (so [[A; < \;)
j<i J<i
and (B;, y;, I;) is a N\;—well marked Boolean algebra (for i < ¢ ).
(1) Assume that [](1;, €)/J has true cofinality A\. Then there exists a

i<d
(0, not\)—Knaster marked Boolean algebra.
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(2) Suppose in addition that h : § — w is a function such that
(Vn <w)(h™'[{n}] € J7)
and Ii[h(i)] (for i < d) are the product ideals on (X\;)":
1PN L BC(A)™ - =(Fq0) . . . (Fiqngey-1) (e : € < h(i)) € B).

Assume that A
A =tef([ ", <)1)
i<d
and that the (B;, y;, I;) satisfy the following requirement:
(F)ng) if B C (dom(y;))"® is such that

(370) - - (3 me) ({ye : € < (3)) € B),
then there are vy, v; < A; (for € < h(i)) such that for each ¢

Bi = Yiny NYiny = 0.

Then we can conclude that (221", A, A\*) € K and we have a pair
of algebras (B4, Be) as in main theorem 4.4.

Proof. The main point here is that with our assumptions in hands we may

construct a sequence (1, : a < A\) C [[ A; which is quite stronger J—cofinal:
i<d

it satisfies the requirement of 2.2(6)(b) weakened to the demand that the

set there is not in the dual filter J¢. Of course this is still enough to carry

out our proofs and we may use such a sequence to build the right examples.

1). Let ((A :i <) : a < \) witness the true cofinality. By induction on
a < A choose 7, < A and 1, € [] A; such that
i<a
° <{775(Z)} 1< 5) € 1_[5]“
i<

e if B < a then 5 < 7, and (V/i)(ns(:) € A7), and

° (1) ¢ A"
For = 0 or « limit, first choose 7, = sup{va, +1 : a1 < a} and then
choose 7,(i) by induction on 1.
For o = oy + 1 first note that

{Na (i)} i< 6) € [] I
<9
Hence for some 72 < A we have
(v74) (12, (1) € A7*).
Let v, = max{7a,,72}. Now choose 7,(i) by induction on 1.
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As I; is |T;|7—complete, clearly (1, : a < A) is J—cofinal for (7, .J, 1) and
3.7, 3.8 give the conclusion.

2).  The construction of 7 is in a sense similar to the one in the proof of
2.8, but we use our cofinality assumptions. We have a cofinal sequence in
[Los(1"", ©)/J:
((Af i< 0) ta < A).

For each Af we have “Skolem functions” f7 for £ < h(i) (like in the proofs
of 4.3.1, 5.4).

We define n, by induction on @ < A. In the exclusion list we put all
substitutions by 1., [4, ..., n,,_, [t for 7 < a to ff%: each time we obtain a
set in the ideal I; and a member A of [] I; such that if (V/i)(n(i) ¢ A;),

i<d
n € J] A then n satisfies the demand. Eventually we have |a|<“ such
i<é -
elements of [] I;. Let them be {B*¢ : £ < |a| + Ro}. Then for some 7,
1<6

(V€ < || + No) (Wi < 8)(B* C A7),
and similarly
(VB < a)(v/i < 8)(ns(i) € A7)
Choose 1, € TT (A \ A7). O
1<6
Remark 6.10. One of the main tools used in this section are (variants of)
the following observation:
if (B,y) is a A-marked Boolean algebra such that B is 60—
Knaster and if (o, ¢) < A (for a« < A\, £ < n) are pairwise
distinct then for some a < 8 < A, for each ¢ < n we have

B E Ye(a) NYepe =0
then (0, \, \7) € Ksmk-

Concluding Remarks 6.11. If p is a strong limit singular cardinal, cf(u) <
0 = cf(0) < u then, by the methods of [?], one may get consistency of

if an algebra B satisfies the 6—cc

then it satisfies the p*-Knaster condition.

One may formulate the following question now:

Question (mostly solved) 6.12. Suppose that B is a Boolean algebra
satisfying the #—cc and \ is a regular cardinal between put and (24)*.
Does B satisfy the \-Knaster condition?

There a reasonable amount of information on consistency of the negative
answer in the next section, though 6.12 is not fully answered there. But a
real problem is the following.
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Problem 6.13. Assume A = ", cf () = 0 and p is a strong limit cardinal.
Suppose that an algebra B satisfies the A—cc and an algebra B, satisfies the
0t -cc.

Does the free product By % By satisfy the A-cc? (Is this consistent? See
5.15).

Problem 6.14. Is it consistent that

each Boolean algebra with the N;—Knaster property has the
A-Knaster property for every regular (uncountable) cardinal
A?

7. SOME CONSISTENCY RESULTS

We had seen that without inner models with large cardinals we have a
complete picture, e.g.:
(V) if @ = cf(f) > Ny, B is a Boolean algebra satisfying the §-cc and A
is a regular cardinal such that

(VT < \)(7<% < 0),
then the algebra B satisfies the A-Knaster condition.
(3)if 0 =cf(0) >Np, 0 < p=pH < A=cf(\) < x = x>,
then there is a u™-cc p-complete forcing notion P of size y such that

IFp “the 6—cc implies the A-Knaster property”.

Moreover,
(D) if p=p<? < X = cf(\) < 2# then the #—cc implies the \-Knaster
property.
(3) if @ = cf(0) < p, p is a strong limit singular cardinal, cf (u) = 6,
then the 8T—cc does not imply the pt—Knaster property (and even
we have the product example).

In (J), if we allow (2%)-cc we may get even better conclusion. In this section
we want to show, under a large cardinals hypothesis, the consistency of
failure.

Proposition 7.1. Assume that K is a supercompact cardinal, k < A = cf(\).
Let B be a Boolean algebra which does not have the A—Knaster property.
Then

(F0)(Rg < 8 = cf(0) < k & B does not have the 0-Knaster property).

Proof. Since k is supercompact, for every second order formula :

if M =
then for some N < M, |[N| <k, N =
(see Kanamori and Magidor [?]). O
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Proposition 7.2. (1) If g < Ao < Ay are reqular cardinals such that
() a0, Jor every x € H(N]) there is N < (H()\)), €) such that x € N
and N = (H(\), €),
then if a Boolean algebra B has the A\g—Knaster property then it has
A1 —Knaster property (and B |= Ao—cc implies B = A\ —cc).
(2) The condition (x)x,, above holds if for some kg, K1, kKo < Ao, k1 <
A1 we have:
(@) there is an elementary embedding j : V — M with the critical
point kg and such that j(ko) = k1, 7(Xo) = A1 and M C M.
(3) If Ko is a 2-huge cardinal (or actually less) and, e.g., \g = xg“™!
then for some A\, = k{“" the condition (®) above holds (we can

assume GCH).
Proof. Just check. ([l

Proposition 7.3. Assume that
V = “ GCH+ there is 2-huge cardinal > 0 = cf(0) ”
(can think of 0 = Ny). Then there is a 6—complete forcing notion P such
that in V¥ :
(a) GCH holds,
(b) if a Boolean algebra B has the 6T —Knaster property then it has the

O+%+1 —Knaster property
(note that if Ny > 0 then 070+ =Ny, ).

Proof. Similar to Levinski, Magidor and Shelah [?]. O
Chasing arrows what we use is
Proposition 7.4. If V. =GCH (for simplicity), 0 = cf(0) = cf(p) < pu,

a Boolean algebra B does not satisfy the u*—Knaster condition and Q =

Levy(6, )
then V@ |=“B does not have the 0 —Knaster property”.

8. MORE ON GETTING THE KNASTER PROPERTY

Our aim here is to get a ZFC result (under reasonable cardinal arithmetic
assumptions) which implies that our looking for (x, notA)-Knaster marked
Boolean algebras near strong limit singular is natural. Bellow we discuss the
relevant background. The proof relays on pcf theory (but only by quoting a
simply stated theorem) and seems to be a good example of the applicability
of pcf.

Theorem 8.1. Assume p = pu<=.

(1) If a Boolean algebra B of cardinality < 2" satisfies the R;—cc then B
is p-linked (see below).
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(2) If B is a Boolean algebra satisfying the Wy—cc then B has the \-
Knaster property for every regular cardinal X € (u, 2*].

Where,

Definition 8.2. (1) A Boolean algebra B is p-linked if B \ {0} is the
union of <y sets of pairwise compatible elements.
(2) A Boolean algebra B is p-centered if B \ {0} is the union of <
filters.

Of course we can replace the Nj—cc, 3, by the xk—cc, J,(k) (see more
later). The proof is self contained except relayence on a theorem quoted
from [?].

Let us review some background. By [?, 3.1], if B is a s-cc Boolean algebra
of cardinality ™ and g = p=* then B is u-centered. The proof did not work
for B of cardinality p* even if 2 > p** by [?], point being we consider
three elements. But if u = u<* < A<, for some pu*—cc p-complete forcing
notion P of cardinality A, in V¥:

if B is a pu—cc Boolean algebra of cardinality < A then B is
p-centered

(follows from an appropriate axiom). Hajnal, Juhasz and Szentmiklossy [?]
continue this restricting themselves to u-linked. Then proof can be carried
for p**, and they continue by induction. However as in not few cases, the
problem was for AT, when cf(\) = Xy so they assume

(®)  if A€ (1, 24), cf(A) = Rg then A = AN and O,

(on the square see Jensen [?]). This implies that if we start with V = L
and force, then the assumption (®) holds, so it is a reasonable assumption.
Also they prove the consistency of the failure of the conclusion when ®
fails relaying on Hajnal, Juhasz and Shelah [?] (on a set system + graph
constructed there) and on colouring of graphs (see [?, §2]), possibly 2% = N,
2% = N,.q, B| = 2% B satisfies the R;—cc but is not R;-linked, only Ny-
linked.

This gives the impression of essentially closing the issue, and so I would
have certainly thought some years ago, but this is not the case, exemplifying
the danger of looking at specific cases. In fact, as we shall note in the end,
their consistency result is best possible under our knowledge of relevant
forcing methods. They use [?] to have “many very disjoint sets” (i.e., (X, :
aeS), S C{d< Ny :cf(d) =N}, Xy Ca=sup(X,), and a # § =
X N Xp finite).

On pcf see [?]. Now, [?] has half jokingly a strong claim of proving GCH
under reasonable reinterpretation. In particular [?] says there cannot be
many strongly almost disjoint quite large sets, so this blocks reasonable
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extensions of [?]. Now the main theorem of [?] enables us to carry the
induction on A € (i, 2#] as in [?, 3.1], [?, 3.x].

Proposition 8.3. Suppose that:

(a) A >0 =cf(f) > r=cf(k) >N,
(b) there are a club E* of X and a sequence P = (P, : a € E) (such
that |a| divides ov whenever o € E and \ = sup(acc(E))) such that
(1) P C [a]<", |Pal < |a| and P is increasing continuous,
(i) if X C X has order type 0, then for some increasing (7. : € < k)
we have 7. € X and for each € < K, for some £ € (g,K) and
a <min(E \ v¢) we have {y; : ( < e} € P,
(c) B is a Boolean algebra satisfying the k—cc, |B| = A.

Then we can find a Boolean algebra B' and a sequence (B, : o € E) (recall
that P, increases with o) of subalgebras of B such that

(o) B C B C B©™ (B™ is the completion of B),

(B) B'= U B, |B.| < |a|+ Xy and the sequence (B!, : o € E) increas-
ack
mg continuous in o,

(7) if « € acc(E), z € B\ {0} then for some Y C B/ \ {0}, |Y| < 6 we
have:
ifyeY thenyNax = 0p, and
if z € B!, is such that z Nz = Og then z < sup(Y’) € B!, for
some Y' € [Y]|<",
(0) if either (x); or (x)y (see below) holds then we can add
Y generates the ideal {z € B, : zNz = O0p },
where
(%)1 (Ve <O)(|e]=" < 0),
(%)2 in clause (b) of the assumption we add:
for every X C «a, | X| < || for some card T, <" < 0 and some
function h : X — 7 we have: if Y C X, h ['Y is constant then
Y € P..

Proof. Let x be a large enough regular cardinal. Let B = {z. : ¢ < A},
let B™ be the completion of B. We choose by induction on @ € E an
elementary submodel N, of (H(x), €, <}) of cardinality |a| including {3
B < a}, increasing continuous in «, such that B, (z. : ¢ < \), B®™ P, ),
6, k belong to Ny and (Ns: f € ENa) € N, for every a € nacc|E)|

Note: if o € nacc(E) then o € N, and hence P, C N,,.

Let

B, = N,nB“", B = | B,

ack
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We define by induction on o € E a one-to-one function g, from B/, onto «
such that

peanE = g5C ga, and g, is the < -first such g,

SO Jo € Niin(E\(a+1))- Let g = U ga- Thus g is a one-to-one function from
aclE
B’ onto A. In the conclusion clauses («), () should be clear and let us prove

clause (7). Solet a € E, x € B'\ {0}. We define J = {z € B, : B
“2Nz =0"}. Then J is an ideal of B/ . We now try to choose by induction
on € < 0, elements y. € J such that

(i) y. is a member of J \ {Op},
(ii) there is no u € [¢]<" such that y, < supy, € B, (sup - in the
CEu
complete Boolean algebra B°™),
(iii) under (i) + (ii), g(y-) (< A) is minimal (hence under (i) + (ii),
8. min{3 < o : y. € By} is minimal).
If we are stuck for some ¢ < 6, then for every y € J the condition (ii) fails
(note that (iii) does not matter at this point), i.e., there is a subset u, of €
of card < r such that B®™ =y < supy.( € u. So (y. : ( < €} is as required
in clause (). So suppose y. is defined for ¢ < . Clearly ( < ¢ = y¢ # y.
(use u = {(} € [ey < K],) ??sograyym??, also ¢ < e < 07? = g(yc) < 9(y.)
as y. satisfies the demand (i)4+(ii) for ¢, so by (iii) we get the inequality
together.

(<e = gy) < 9ye)

and hence ( < ¢ < 0 = [ < B.. Now apply clause (b)(ii) of the
assumption to the set X = {g.(y:) : € < 0} to get a contradiction. 77A
subset u € [A]" of order type k such that for every ¢ € u for some & €
u\ (e+1), we have {g(yc) : ¢ <&} € Nuin(E\ (9(ye) +1) hence {g(yc) : ¢ <
e} € N,. But a € acc(e) hence for some f € ENaf{ga(y) : ¢ < e} € Np,
but g[Ng € N, and g is 1-to-1, hence {y; : ( < e} € Ns. This implies
that z. := supgeom{¥c @ ¢ < €} belong to (B°™ and)?? N, hence to B.
Trivially €1 < g9 € usk = B“"z, < 2z, Ay, < 2, but by the choice
of Yz, B™ |= g-; £ 2, hence (2. : € € w) is strictly increasing in B®™
contradicting to B°™ = k-cc.

Clause (6) follows by (7). O

Proposition 8.4. Suppose that
() A > 0 = cf(f) > k = cf(k) > Ny, and p = p=? < X\ < 2%, and
(Va < 0)[la[=" < 0],
(b) as in 8.3 and either (x); or (x)2 of clause () of 8.3,

(¢) B is a k-cc Boolean algebra of cardinality A,
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(d) every subalgebra B" C B©™ of cardinality < X\ is u-linked (see defini-
tion 8.2(1)).
Then B s p-linked.

Proof. Let (B!, : a € E) be as in the conclusion of 8.3 and let E' = acc(F).
Without loss of generality we may assume that the set of elements B! is .
Let for o € E, hy, : B, \ {0} — p be such that:

ha (1'1) = ha(l’g) = X1 M Xy % Og.

For each v € B'\ B, ) let a(z) = max{a € £’ : z ¢ B[} (well defined as

= UE B/, and (B!, : a € E’) is increasing continuous), and let Y, , C B,
acl’
be such that |Y, .| < @ and

def

Yia C oo ={y€B, :yna =0} and

Y, is cofinal in J, (Y, exists by 8.3, see clause (J) and our present assumption
(1),

For x € B’ we define a pair (u?,Y)") ?7soger?? by induction on n < w
as follows: u? = {0,a(z)min(E" \ (a(z) + 1))} and Y the subalgebra of
B’ generated by {z}, and uj™ = up UJ{u) : y € Y;'} and V"' be the
subalgebra of B’ generated by

YU U{Y;m cyr €Y and a € ul ).
Finally let Y¥ = |J Y. As 6 is regular, |Y"| < 6 and as in addition

n<w
0 is uncountable, |Y¥| < 0. Let uv¥ := {a(y) : y € Y¥} clearly it is
equal to U{u} : n < w}. We can find A, C B\ {0} for ( < p such
that B’ \ {0} = |J A¢ and
<p

w onto

(®) if z1, x5 € Ac, then there are one-to-one functions f : V¥ — Y2
and g : uy e ug, such that:
(i) f preserve the order,
(ii) g is an isomorphism from the Boolean subalgebra Y~ of B’ onto
the Boolean subalgebra Y2 of B’
(iii) f(z1) = 22 and if y € Y}¥ then g(a(y)) = a(f(y)).
(iv) if o € ug, and y € B, N Y then hy(z1) = hy@)(f(21)),
(v) g is the identity on uf Nuf,
(vii) f is the identity on Y“J nYy.

(Why? By [?] or use (1, : x € B'), n, € #2 with no repetitions.)
As B is a Boolean subalgebra of B’, it is enough to prove:

Dl‘l,IQGAcifL‘lﬂxQ;&OB.
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Let D, be an ultrafilter of Y} to which z; belongs, Dy =: {f(y) : y € Y2}
(so D, is an ultrafilter on Y, to which x5 belongs). It suffices to prove
that for each o € E’, (D; NB,) U (Dy N B,) generate non trivial filters on
B,. We do it by induction on « (note if a < 8 this holds for « provided
it holds for §). If a € u¥ Nug, use clause (iii) of (®) — note that this
includes the case when oo = 0. For o € acc(E’) it follows by the finiteness
of the condition. In the remaining case § = sup(E' Na) < a. Now if
Yy NB, C Bj, Yo NB, C Bj this is trivial. So by symmetry we may
assume that o € u¢ \ u, and use the definition of Y, for y € B,NY2 \ Bs.
So we can assume that this fails hence it follows that there is ¢ € {1,2}
and y, € Y, such that a(y) = 3, hence 8 € ug, Uug,. Now if there is also
Yo € Y2, such that a(y.—¢) = 3, then a € vy, Nug, hence g(a) = a (by
clause (v) of ®) and by clause (iv) of ® and the choice of h, we are done.
So we are left with the case that y;, NB;, C Bj. It is enough toe show that
if zo € DN B, 2.0 € DeNBj then B’ =2, N 2o > 07. If this fails then
z.—¢ € I, hence for some y € Y., B | 2., <y, but y € Y, Cy

easy contradiction 0. O
Proposition 8.5. Assume u = p<>". Then for every A € (u,2"] of

cofinality > p, for every large enough regular 8 < J,(k) clause (b) of 8.3
holds.

Proof. By [?], for every 7 € [u, \) for some 6, < J,(k), we have:

(©) there is P = P, C [r]<7™") closed under subsets such that |P| < 7
and every X € [7]<%+(® is the union of < #, members of members
of P,.

Now, as cf(A) > p for some n < w, the set
O={r:p<7<X\0. <.k}

is an unbounded subset of Card N (u, \). Let 8 > (3,,5(k)) be regular.
Choose a club E of A such that o € nacc(FE) = |a| € © and choose
P, C [a]<" of cardinality < || increasing continuous with o € F, such that
for a € nacc(E), for every X € [a]?, for some h : X — J,(k),if Y C X,
Y| < k and h | Y constant then Y € P,.

Now suppose X C A, otp(X) =6, so let X = {7, : ¢ < 0}, 5. increasing
with €; let . = min{a € E : 7. < f},s0 ( < e = [ < B and
B € nacc(E), and there is h. : {¢ : ( < e} — 3,(k) such that for every
J < 3u(k),

u€ [e]™ & (h | uconstant) = {y::( € u} € Ps..

Applying the Erdés-Rado theorem (ie., 6 — (3,(x)")3 ) we get the
desired result (the proof is an overkill). O
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Main Conclusion 8.6. Suppose that k is a regular uncountable cardinal,
p =y~ and B is a Boolean algebra satisfying the s-cc.

(1) If |B| < 2* then B is p-linked.
(2) If X is regular € (p, 2"] then B satisfies the A\-Knaster condition.

Proof. 1)  We prove this by induction on A = [B|. If |B| < p this is trivial
and if cf(|B|) < p this follows easily by the induction hypothesis. In other
cases by 8.5, for some 6* < 3, (k) for every regular § € (6*,3,(k)), clause
(b) of 8.3 holds. Choose = (6%)*+ so for this § both clause (b) of 8.3 and
(%); of clause (0) of 8.3 hold. Thus by claim 8.4 we can prove the desired
conclusion for A = |B).

2) Follows from part 1). O

Proposition 8.7. (1) In 8.6 we can replace the assumption p = p=")

by p = p=" if
® for every A € (u,2") of cardinality > u for some 0 = cf(0) > k
we have: clause (b) of 8.3 and (x)q of clause (0) of 8.3 hold.
(2) If »* € (u,2") and we want to have the conclusion of 8.6(1) with
IB| = \* and 8.6(2) for N*-Knaster only then it suffice to restrict
ourselves in ® to X < \*.

Proposition 8.8. In 8.3, if (Ve < 0)[|e|<* < 0] then we can weaken clause
(i) of assumption (b) to
(i) if X C X has order type 6 then for some (7. : € < k) we have: . € X
and

(Ve < k)(Fy € X)(Ba <min(E\7)){vc: ¢ <e} € Pa).

Proof. Let X = {j. : € < 0} strictly increasing with e, and let 5. = min(E'\
(Jo+1)),s0 ¢ <e = [ < fe. Let

e {e < 0: ¢isalimit ordinal and

if e <eandu € [e]<" and {j¢ : § € u] € U Pp,

L
then {j. :e € u} e U Ps.}
(<e
Now, e is a club of # as (0 is regular and) (Ve < 6)[]e|<" < 0]. So we can
apply clause (ii)’ to X’ =: {j. : ¢ € e}, and get a subset {7. : ¢ < K} as
there, it is as required in clause (ii). O

Proposition 8.9. (1) Assume A\ > 6 = cf(0) > k = cf(k) > Ng. Then
a sufficient condition for clause (b)+(0)(x)1 of claim 8.3 is
(®) (a) A >0 =cf(h),
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(b) for arbitrarily large o < X for some reqular 7 < 6 and N < A,
for every a C Reg N |a| \ 6 for some (b, : ¢ < e < 1) we have
a= |J b. and [b.]<" C J<y[a] for every e < €*,

e<le*

(c) (Ve <0)[le|=" < 0] or for every N € [u, A], Uis<rct(s)=0} -

(2) Assume p > 0 > k = cf(k) > R, a sufficient condition for clause

(b) of 8.3 to hold is:

for every \ € [, 2] of cofinality > p, for some 6’ <0,
®1 holds (with 0" instead ).

Proof. 1) By [?], [?, 2.6], or [?].
2) Follows. O

Remark 8.10. So it is still possible that (assuming CH for simplicity)
® if p = p*, B is a c.c.c. Boolean algebra, |B| < 2* then B is u-linked.

On the required assumption see [?, Hyp. 6.1(x)].

Note that the assumptions of the form A € I[)\] if added save us a little
on pcf hyp. (we mention it only in 8.x). But if we are interested in the
[k—cc = A-Knaster], it can be waived.
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