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Abstract

We prove, in ZFC, the existence of a definable, countably saturated elemen-
tary extension of the reals.

Introduction

It seems that it has been taken for granted that there is no distinguished, definable
nonstandard model of the reals. (This means a countably saturated elementary exten-
sion of the reals.) Of course if V = L then there is such an extension (just take the
first one in the sense of the canonical well-ordering of L ), but we mean the existence
provably in ZFC. There were good reasons for this: without Choice we cannot prove
the existence of any elementary extension of the reals containing an infinitely large
integer. 1 2 Still there is one.

Theorem 1 (ZFC ). There exists a definable, countably saturated extension ∗R of the
reals R, elementary in the sense of the language containing a symbol for every finitary
relation on R .

The problem of the existence of a definable proper elementary extension of R was
communicated to one of the authors (Kanovei) by V. A. Uspensky.

A somewhat different, but related problem of unique existence of a nonstandard
real line ∗R has been widely discussed by specialists in nonstandard analysis. 3 Keisler
notes in [3, § 11] that, for any cardinal κ, either inaccesible or satisfying 2κ = κ+, there
exists unique, up to isomorphism, κ-saturated nonstandard real line ∗R of cardinality
κ, which means that a reasonable level of uniqueness modulo isomorphism can be
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1In fact, from any nonstandard integer we can define a non-principal ultrafilter on N, even a

Lebesgue non-measurable set of reals [4], yet it is consistent with ZF (even plus Dependent Choices)
that there are no such ultrafilters as well as non-measurable subsets of R [5].

2It is worth to be mentioned that definable nonstandard elementary extensions of N do exist in
ZF. For instance, such a model can be obtained in the form of the ultrapower F/U, where F is the
set of all arithmetically definable functions f : N → N while U is a non-principal ultrafilter in the
algebra A of all arithmetically definable sets X ⊆ N .

3“What is needed is an underlying set theory which proves the unique existence of the hyperreal
number system [. . . ]” (Keisler [3, p. 229]).
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achieved, say, under GCH. Theorem 1 provides a countably saturated nonstandard
real line ∗R, unique in absolute sense by virtue of a concrete definable construction in
ZFC. A certain modification of this example also admits a reasonable model-theoretic
characterization up to isomorphism (see Section 4).

The proof of Theorem 1 is a combination of several known arguments. First of
all (and this is the key idea), arrange all non-principal ultrafilters over N in a linear
order A, where each ultrafilter appears repetitiously as Da, a ∈ A. Although A is
not a well-ordering, we can apply the iterated ultrapower construction in the sense of
[1, 6.5] (which is “a finite support iteration” in the forcing nomenclature), to obtain
an ultrafilter D in the algebra of all sets X ⊆ NA concentrated on a finite number
of axes N. To define a D-ultrapower of R, the set F of all functions f : NA → R,
also concentrated on a finite number of axes N, is considered. The ultrapower F/D is
OD, thar is, ordinal-definable, actually, definable by an explicit construction in ZFC,
hence, we obtain an OD proper elementary extension of R. Iterating the D-ultrapower
construction ω1 times in a more ordinary manner, i. e., with direct limits at limit steps,
we obtain a definable countably saturated extension.

To make the exposition self-contained and available for a reader with only fragmen-
tary knowledge of ultrapowers, we reproduce several well-known arguments instead of
giving references to manuals.

1 The ultrafilter

As usual, c is the cardinality of the continuum.
Ultrafilters on N hardly admit any definable linear ordering, but maps a : c →

P(N), whose ranges are ultrafilters, readily do. Let A consist of all maps a : c →
P(N) such that the set Da = ran a = {a(ξ) : ξ < c} is an ultrafilter on N. The
set A is ordered lexicographically: a <lex b means that there exists ξ < c such that
a � ξ = b � ξ and a(ξ) < b(ξ) in the sense of the lexicographical linear order < on
P(N) (in the sense of the identification of any u ⊆ N with its characterictic function).

For any set u, Nu denotes the set of all maps f : u→ N .
Suppose that u ⊆ v ⊆ A.
If X ⊆ Nv then put X ↓ u = {x �u : x ∈ X} .
If Y ⊆ Nu then put Y ↑ v = {x ∈ Nv : x �u ∈ Y } .
We say that a set X ⊆ NA is concentrated on u ⊆ A, if X = (X ↓ u) ↑ A; in other

words, this means the following:

∀x, y ∈ NA
(
x �u = y �u =⇒ (x ∈ X ⇐⇒ y ∈ X)

)
. (∗)

We say that X is a set of finite support , if it is concentrated on a finite set u ⊆ A. The
collection X of all sets X ⊆ NA of finite support is closed under unions, intersections,
complements, and differences, i. e., it is an algebra of subsets of NA. Note that if (∗)
holds for finite sets u, v ⊆ A then it also holds for u ∩ v. (If x � (u ∩ v) = y � (u ∩ v)
then consider z ∈ NA such that z �u = x �u and z � v = y � v .) It follows that for any
X ∈X there is a least finite u = ||X|| ⊆ A satisfying (∗).

In the remainder, if U is any subset of P(I), where I is a given set, then UiΦ(i)
(generalized quantifier) means that the set {i ∈ I : Φ(i)} belongs to U.
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The following definition realizes the idea of a finite iteration of ultrafilters. Suppose
that u = a1 < · · · < an ⊆ A is a finite set. We put

Du = {X ⊆ Nu : Dankn . . . Da2k2 Da1k1 (〈k1, k2, ..., kn〉 ∈ X)} ;

D = {X ∈X : X ↓ ||X|| ∈ D||X||} .

The following is quite clear.

Proposition 2. (i) Du is an ultrafilter on Nu ;

(ii) if u ⊆ v ⊆ A, v finite, X ⊆ Nu, then X ∈ Du iff X ↑ v ∈ Dv ;

(iii) D ⊆X is an ultrafilter in the algebra X ;

(iv) if X ∈X , u ⊆ A finite, and ||X|| ⊆ u, then X ∈ D ⇐⇒ X ↓ u ∈ Du .

2 The ultrapower

To match the nature of the algebra X of sets X ⊆ NA of finite support, we consider
the family F of all f : NA → R, concentrated on some finite set u ⊆ A, in the sense
that

∀x, y ∈ NA
(
x �u = y �u =⇒ f(x) = f(y)

)
. (†)

As above, for any f ∈ F there exists a least finite u = ||f || ⊆ A satisfying (†).
Let R be the set of all finitary relations on R. For any n-ary relation E ∈ R and

any f1, ..., fn ∈ F, define

ED(f1, ..., fn) ⇐⇒ D x ∈ NA E(f1(x), ..., fn(x)) .

The set X = {x ∈ NA : E(f1(x), ..., fn(x))} is obviously concentrated on u = ||f1|| ∪
· · · ∪ ||fn||, hence, it belongs to X , and ||X|| ⊆ u = ||f1|| ∪ · · · ∪ ||fn||.

In particular, f =D g means that D x ∈ NA (f(x) = g(x)). The following is clear:

Proposition 3. =D is an equivalence relation on F, and any relation on F of the
form ED is =D-invariant.

Put [f ]D = {g ∈ F : f =D g}, and ∗R = F/D = {[f ]D : f ∈ F}. For any n-ary
(n ≥ 1) relation E ∈ R, let ∗E be the relation on ∗R defined as follows:

∗E([f1]D, ..., [fn]D) iff ED(f1, ..., fn) iff D x ∈ NA E(f1(x), ..., fn(x)).

The independence on the choice of representatives in the classes [fi]D follows from
Proposition 3. Put ∗R = {∗E : E ∈ R}. Finally, for any r ∈ R we put ∗r = [cr]D,
where cr ∈ F satisfies cr(x) = r, ∀x .

Let L be the first-order language containing a symbol E for any relation E ∈ R.
Then 〈R ; R〉 and 〈∗R ; ∗R〉 are L -structures.

Theorem 4. The map r 7−→ ∗r is an elementary embedding (in the sense of the
language L ) of the structure 〈R ; R〉 into 〈∗R ; ∗R〉 .
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Proof. This is a routine modification of the ordinary argument. By L [F ] we denote
the extension of L by functions f ∈ F used as parameters. It does not have a direct
semantics, but if ϕ is a formula of L [F ] and x ∈ NA then ϕ[x] will denote the
formula obtained by the substitution of f(x) for any f ∈ F which occurs in ϕ. Thus,
ϕ[x] is an L -formula with parameters in R .

Lemma 5 ( Loš). For any closed L [F ]-formula ϕ(f1, ..., fn) (all parameters fi ∈ F
indicated), we have :

〈∗R ; ∗R〉 |= ϕ([f1]D, ..., [fn]D) ⇐⇒ D x (〈R ; R〉 |= ϕ(f1, ..., fn)[x]).

Proof. We argue by induction on the logic complexity of ϕ. For ϕ an atomic relation
E(f1, ..., fn), the result follows by the definition of ∗E. The only notable induction step
is ∃ in the direction ⇐= . Suppose that ϕ is ∃ y ψ(y, f1, ..., fn), and

D x (〈R ; R〉 |= ϕ(f1, ..., fn)[x]), that is, D x (〈R ; R〉 |= ∃ y ψ(y, f1, ..., fn)[x]) .

Obviously there exists a function f ∈ F, concentrated on u = ||f1|| ∪ · · · ∪ ||fn||, such
that, for any x ∈ NA, if there exists a real y satisfying 〈R ; R〉 |= ψ(y, f1, ..., fn)[x],
then y = f(x) also satisfies this formula, i. e., 〈R ; R〉 |= ψ(f, f1, ..., fn)[x]. Formally,

∀x ∈ NA
(
∃ y ∈ R (〈R ; R〉 |= ψ(y, f1, ..., fn)[x]) =⇒ 〈R ; R〉 |= ψ(f, f1, ..., fn)[x]

)
.

This implies D x (〈R ; R〉 |= ψ(f, f1, ..., fn)[x]). Then, by the inductive assumption,
〈∗R ; ∗R〉 |= ψ([f ]D, [f1]D, ..., [fn]D), hence 〈∗R ; ∗R〉 |= ϕ([f1]D, ..., [fn]D), as required.

(Lemma)

To accomplish the proof of Theorem 4, consider a closed L -formula ϕ(r1, ..., rn)
with parameters r1, ..., rn ∈ R. We have to prove the equivalence

〈R ; R〉 |= ϕ(r1, ..., rn) ⇐⇒ 〈∗R ; ∗R〉 |= ϕ(∗r1, ...,
∗rn) .

Let fi = cri , thus, fi ∈ F and fi(x) = ri, ∀x. Obviously ϕ(f1, ..., fn)[x] coincides with
ϕ(r1, ..., rn) for any x ∈ NA, hence ϕ(r1, ..., rn) is equivalent to D x ϕ(f1, ..., fn)[x].
On the other hand, by definition, ∗ri = [fi]D. Now the result follows by Lemma 5.

3 The iteration

Theorem 4 yields a definable proper elementary extension 〈∗R ; ∗R〉 of the structure
〈R ; R〉. Yet this extension is not countably saturated due to the fact that the ultra-
power ∗R was defined with maps concentrated on finite sets u ⊆ A only. To fix this
problem, we iterate the extension used above ω1-many times.

Suppose that 〈M ; M 〉 is an L -structure, so that M consists of finitary relations
on a set M, and for any E ∈ R there is a relation EM ∈ M of the same arity,
associated with E. Let FM be the set of all maps f : NA → M concentrated on
finite sets u ⊆ A. The structure FM/D = 〈∗M ; ∗M 〉, defined as in Section 2, but with
the modified F, will be called the D-ultrapower of 〈M ; M 〉. Theorem 4 remains true
in this general setting: the map x 7−→ ∗x (x ∈ M) is an elementary embedding of
〈M ; M 〉 in 〈∗M ; ∗M 〉 .

We define a sequence of L -structures 〈Mα ; Mα〉, α ≤ ω1, together with a system
of elementary embeddings eαβ : 〈Mα ; Mα〉 → 〈Mβ ; Mβ〉, α < β ≤ ω1, so that
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(i) 〈M0 ; M0〉 = 〈R ; R〉 ;
(ii) 〈Mα+1 ; Mα+1〉 is the D- ultrapower of 〈Mα ; Mα〉, that is, 〈Mα+1 ; Mα+1〉 =

Fα/D, where Fα = FMα consists of all functions f : NA → Mα concentrated on
finite sets u ⊆ A. In addition, eα,α+1 is the associated ∗-embedding 〈Mα ; Mα〉 →
〈Mα+1 ; Mα+1〉, while eγ,α+1 = eα,α+1 ◦ eγα for any γ < α (in other words,
eγ,α+1(x) = eα,α+1(eγα(x)) for all x ∈Mα );

(iii) if λ ≤ ω1 is a limit ordinal then 〈Mλ ; Mλ〉 is the direct limit of the structures
〈Mα ; Mα〉, α < λ. This can be achieved by the following steps:

(a) Mλ is defined as the set of all pairs 〈α, x〉 such that x ∈Mα and x 6∈ ran eγα
for all γ < α .

(b) If E ∈ R is an n-ary relation symbol then we define an n-ary relation Eλ
on Mλ as follows. Suppose that xi = 〈αi, xi〉 ∈ Mλ for i = 1, ..., n. Let
α = sup {α1, ..., αn} and zi = eαi,α(xi) for every i, so that αi ≤ α < λ
and zi ∈ Mα. (Note that if αi = α then eαi,α is the identity.) Define
Eλ(x1, ...,xn) iff 〈Mα ; Mα〉 |= E(z1, ..., zn).

(c) Put Mλ = {Eλ : E ∈ R} – then 〈Mλ ; Mλ〉 is an L -structure.

(d) Define an embedding eαλ : Mα → Mλ (α < λ) as follows. Consider any
x ∈Mα. If there is a least γ < α such that there exists an element y ∈Mγ

with x = eγα(y) then let eαλ(x) = 〈γ, y〉. Otherwise put eαλ(x) = 〈α, x〉 .

A routine verification of the following is left to the reader.

Proposition 6. If α < β ≤ ω1 then eαβ is an elementary embedding of 〈Mα ; Mα〉
to 〈Mβ ; Mβ〉 .

Note that the construction of the sequence of models 〈Mα ; Mα〉 is definable, hence,
so is the last member 〈Mω1 ; Mω1〉 of the sequence. It remains to prove that the L -
structure 〈Mω1 ; Mω1〉 is countably saturated.

This is also a simple argument. Suppose that, for any k, ϕk(pk, x) is an L -formula
with a single parameter pk ∈ Mω1 (the case of many parameters does not essentially
differ from the case of one parameter), and there exists an element xk ∈ Mω1 such
that

∧
i≤k ϕi(pi, xk) is true in 〈Mω1 ; Mω1〉 — in other words, we have 〈Mω1 ; Mω1〉 |=

ϕi(pi, xk) whenever k ≥ i. Fix an ordinal γ < ω1 such that for any k, i there exist
(then obviously unique) yk, qi ∈ Mγ with xk = eγω1(yk) and pi = eγω1(qi). Then
ϕi(qi, yk) is true in 〈Mγ ; Mγ〉 whenever k ≥ i .

Fix a ∈ A such that Da is a non-principal ultrafilter, that is, all cofinite sub-
sets of N belong to Da. Consider the structure 〈Mγ+1 ; Mγ+1〉 as the D-ultrapower
of 〈Mγ ; Mγ〉. The corresponding set Fγ consists of all functions f : NA → Mγ

concentrated on finite sets u ⊆ A. In particular, the map f(x) = yk whenewer
x(a) = k belongs to Fγ. As any set of the form {k : k ≥ i} belongs to Da, we
have Da k (〈Mγ ; Mγ〉 |= ϕi(qi, yk)), that is, D x ∈ NA (〈Mγ ; Mγ〉 |= ϕi(qi, f)[x]), for
any i ∈ N. It follows, by Lemma 5, that ϕi(

∗qi,y) holds in 〈Mγ+1 ; Mγ+1〉 for any i,
where ∗qi = eγ,γ+1(qi) ∈ Mγ+1 while y = [f ]D ∈ Mγ+1 is the D-equivalence class of
f in Fγ. Put x = eγ+1,ω1(y); then ϕi(pi,x) is true in 〈Mω1 ; Mω1〉 for any i because
obviously pi = eγ+1,ω1(

∗qi), ∀ i .
(Theorem 1)
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4 Varia

By appropriate modifications of the constructions, the following can be achieved:

1. For any given infinite cardinal κ, a κ-saturated elementary extension of R, de-
finable with κ as the only parameter of definition.

2. A special elementary extension of R, of as large cardinality as desired. For in-
stance, take, in stage α of the construction considered in Section 3, ultrafilters
on iα. Then the result will be a definable special structure of cardinality iω1 .
Recall that special models of equal cardinality are isomorphic [1, Theorem 5.1.17].
Therefore, such a modification admits an explicit model-theoretical characteriza-
tion up to isomorphism.

3. A class-size definable elementary extension of R, κ-saturated for any cardinal κ .

4. A class-size definable elementary extension of the whole set universe, κ-saturated
for any cardinal κ. (Note that this cannot be strengthened to Ord-saturation, i. e.,
saturation with respect to all class-size families. For instance, OrdM -saturated
elementary extensions of a minimal transitive model M |= ZFC, definable in M,
do not exist — see [2, Theorem 2.8].)

The authors thank the anonimous referee for valuable comments and corrections.
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