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THE RELATIVE CONSISTENCY OF g < cf(Sym(w))

HEIKE MILDENBERGER AND SAHARON SHELAH

ABSTRACT. We prove the consistency result from the title. By forcing we
construct a model of g = Ry, b = cf(Sym(w)) = Ra.

0. INTRODUCTION

We recall the definitions of the three cardinal characteristics in the title and
the abstract. We write A C* B if A\ B is finite. We write f <* g if f,g € “w
and {n : f(n) > g(n)} is finite.

Definition 0.1. (1) A subset G of [w]¥ is called groupwise dense if
—forall Be G, AC* B we have that A € G and
— for every partition {[m;,mi11) : i € w} of w into finite intervals
there is an infinite set A such that \J{[m;, mi+1) : i € A} € G.
The groupwise density number, g, is the smallest number of groupwise

dense families with empty intersection.

(2) Sym(w) is the group of all permutations of w. If Sym(w) = ;. Ki
and k = cf(k) > R, (K; : i < K) is increasing and continuous, K; is
a proper subgroup of Sym(w), we call (K; : i < k) a cofinality witness.
We call the minimal such  the cofinality of the symmetric group, short
cf(Sym(w)).

(8)  The bounding number b is
b=min{|F| : FC% A (Vg € “w)3f € F)f £ g}.

Simon Thomas asked whether g # cf(Sym(w)) is consistent [9, Question 3.1].
In this work we prove:

Theorem 0.2. g < cf(Sym(w)) is consistent relative to ZFC.
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1. FORCINGS DESTROYING MANY COFINALITY WITNESSES

In this section we introduce two families of forcings that will be used in cer-
tain steps of our planned iteration of length Rg. The plot is: If b is large, there
is some way to destroy all shorter cofinality witnesses because by Claims 1.6
and 1.5 none of the subgroups in a cofinality witness contains all permutations
respecting a given equivalence relation. In our intended construction, we shall
extend suitable intermediate models with a forcing built upon such an equiva-
lence relation and thus prevent possible cofinality witnesses to be lifted to the
forcing extension and all further extensions (Claim 1.4).

Here we show some details about destroying one cofinality witness that can
be put separately before we launch into an iteration. The additional task, to
increase the bounding number along the way, will be taken care of only in the

next section.

Definition 1.1. (1) We work with the following set of equivalence rela-

tions:
Econ = {E : E is an equivalence relation of w,
each equivalence class [n|g is a finite interval of even length and
w = liminf(|[n|g| : n <w)}.
We say b C w respects E € Eeon, if (nNEm Am € b) — n € b. A partial
permutation m of w respects E if dom(w) respects E and we have that
n € dom(mw) — nEw(n).
(2) Let Q be the set of p such that
(a) p is a permutation of some subset dom(p) of w,
(b) w\ dom(p) is infinite.
We order QQ by inclusion.

(8) For E € Euon, QE is the set of p satisfying (2)(a) — (b) and addition-
ally

(¢) p respects E.

Part (1) of the following claim is important for later use, whereas part (2)
will never be used directly.

Claim 1.2. (1) IfE € &.n andp € Qp and T is a Qg-name of an ordinal
and b is a finite subset of w\ dom(p) respecting E, then there is some q
such that

(a) p<gqandbCw)\dom(q),
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(b) if T is a permutation of b and it respects E then q U T forces a
value to T.

(2) Qg is proper, “w-bounding, nep (see [6]) and Souslin.

Proof. (1) Note that there are only finitely many permutations of b (that respect
E). So we can treat them consecutively and find stonger and stronger ¢’s.

(2) Let N < H(x,€) be such that Qz € N and p € N, x > (2¥)". Let 7,
n € w, be a list of all Qg-names for ordinals that are in N. Let b,, n € w,
be a list of pairwise disjoint E-classes such that |J,,c,, bn is infinite. Now take
¢n by induction starting with go = p. We let i(—=1) = 0. If g,, i(n — 1)
are chosen, take i(n) > i(n — 1) such that dom(g,) N Up<p<y, bir) = 0. Now
take gn41 treating g,, 7, and Uogkgn bix) as in the proof of part (1). Hence
Uo<r<n biky € w \ dom(gy,) for all n,m € w. We have that ¢ = Jg, € Qg and
that ¢ I-q, (Vn € w)r, € N. By [7, III, Theorem 2.12], Qg is proper.

QE is “w-bounding: Let f be a name for a function from w to w. Again let by,
n € w, be a list of pairwise disjoint E-classes such that J,,c,, by is infinite. Now
take g, by induction starting with go = p. If g, is chosen, take i(n) such that
dom(gy, ) Nb;n) = 0. Now take g, 11 treating gy, 7, and b;(, as in part (2) of this
claim and look which values for f(n) the finitely many permutations in (1)(b)
force. Take g(n) to be the maximum of them. We have that ¢ = J¢, € QF
and that q Ik, (Yn)f(n) < g(n).

nep (non-elementary properness): We use much less than N < H(y, €). We
use that £ € N C H(x, €). See [6].

Souslin: p € Qp, ¢ < q and p L g can be expressed in Y1 (E)-formulas. [

We shall work with the following special subsets of Sym(w).
Definition 1.3. (1) For E € & and A C w we define:
SE,A = {7T€ QE LT [(W\A) :id}.

(2) Weset F:={f: fe€“w f(n)>nlim(f(n)—n : n¢cw)=o0}. For
f € F we set Sy := {m € Sym(w) : (Vn)(r(n) < f(n) A 771(n) <
f(n))}.

The following claim describes the basic step in order to increase cf(Sym(w)).

Claim 1.4. Assume

(a) (K; : i < K) is a cofinality witness, and Ko contains all permutations
that move only finitely many points,

(b) R is a Qg-name of a forcing notion,
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(¢) E € Eon, and for no i < k and no coinfinite A € [w]¥ respecting E we
have that K; O Sk 4.

Then in VOE*E we cannot find a cofinality witness (K] : i < K) such that
Nics (KZ’ N Sym(w)v = Kz)

Proof. Let f = U{p : p € Ggz} be a Qg-name of a permutation of w. It
suffices that

IFq,, “for unboundedly many 7 < &,
*
*) for some g € K; we hawefogo(f)_1 € Kip1\ K7
Why does this suffice? Suppose that (x) holds and we had found a cofinality
witness (K] : i < &) in VO&*E guch that A,_, (KZ’ N Sym(w)Y = K}) Let G
be Qg * R-generic over V. Take j < & such that f[G] € K}. Then we find
according to (x) some i > j and some g € K; such that f[G]ogo (f[G])™" €
Kiy1\ K; € V. But this contradicts the facts that f[G]ogo (f[G])™" € K]
(because this is a subgroup) and K] N Sym(w)Y = K.

Proof of (x): Let p € Qg and j < k. Let w\ dom(p) be the disjoint union of
Agp, A1, both infinite subsets of w respecting E.

Let go € Sym(w) be such that it has order two and {n : go(n) # n} = Ap.
Take A} O Ay such that A{ \ A is infinite. Let g{, € Sym(w) be such that it
has order two and {n : gy(n) # n} = Aj. Let go, gy € Ki(w), i(x) > Jj.

Also S" = {g € Sg, A, + g has order two and does not have a fixed point
in some coinfinite subset of Aj or does not have a fixed point in Aj} together
with all permutations that move only finitely many points generates S, Al In
order to see this, write each element 7 of Sg A} as a union of disjoint cycles. All
cycles are of finite length, because 7 respects E. Let 7y, £ < L, enumerate all
the disjoint cycles in one fixed E-class [n]g, so that 7 [ [n]g = [[,.; 7. First
we write any cycle as my = (ag, a1, ...,a—1), which means that my(a;) = a;41
and Wg(ak_l) = qag.

In the case of even k, we write 7, as a product of two permutations of or-
der two, whose domain is {ag, a1,...,ax—1} and {aq, .. Ak kg , ag—1}
respectively: mp = rrl} o 772, where 7r2 = (ao,ag—1)(ag,ax—1) ... (ag_l,ag) and
ﬂ'l} = (a1,ar-1)(as,ax—2)... (agil,a%l).

For odd k, we have that (ag,a1,...,ax_1) = (ao,ar—1)(ag,...,ax—2). We
write 77 = (ag,ag—1) and treat 7, = (ag,...,ar_2) according to the former
case and thus get 7w, = 7'['% o 771} o W?. In order to have more uniform notation
we choose ﬂ% to be the identity on the domain of the cycle in the case of even
length.
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So we decompose 7 | [n]g = [[,o; 70 o [1,<; 7} © [I,<p 73 For j =0,1,2,
an]E =1li<1 Wz is a permutation of order 2, and depending on the the number
of cycles of uneven length in 7 there may be fixed points in Af in ﬂ&]E. There

: : 1 2 i _ J .
are fixed points in 7, ~and 7, . We set 7/ = U{Tl'[n}E - € R} for some set
of representatives R for E. Now the set of fixed points of 77 is either w \ A{, or

w \ A for some subset A of Aj. W.l.o.g. we assume that A is infinite.

By assumption Sg Ay is not included in any Kj;, so in particular not included
in K. Hence there is g1 € S"\ K;). Take i such that g1 € Ki11\ K;.
Necessarily we have k > i > i(x) > j.

First case: g1 has finitely many fixed points in Af. By changing it slightly
we may assume that is has no fixed point in Af;. Now there is a permutation f
of Aj, respecting E such that f is an isomorphism from (Af, g1) onto (Ajf, g5),
because any two permutations of order two without fixed points are conjugated.
Hence n € 4) = f(gh(n) = g1(f(n)).

Second case: g; has infinitely many fixed points in Aj. Of course g; moves
infinitely many points in Aj. Now there is a permutation f of Af, respecting
E such that f is an isomorphism from (A, g1) onto (Aj, go), because any two
permutations of order two with an infinite and coinfinite set of fixed points are
conjugated. Hence n € A, = f(go(n)) = g1(f(n)).

Let ¢ = pUf. The condition g forces that fogoo(f)™" = g1, or foggo(f) ™ =
91, 91 € Kip1 \ Ky, and i € (j, ), go, 9y € Ki(s) € K, so () is proved. O

Claim 1.5. Assume that (K; : i < k) is a cofinality witness. Assume that
Ky contains all permutations that move only finitely many points. Then the
following are equivalent:

(o) There is some E € Econ, such that for every i < k and for every E-
respecting A € [w]™ we do have K; 2 Sg.a.

(B) For every E € Econ, for everyi < k and for every E-respecting A € [w]™°
we do have K; 2 Sg A.

(v)  Thereis some f € F, such that for everyi < k do we have that Sy Z K;.
(6) For every f € F, for every i < k do we have that Sy Z K;.

Proof. The implications (8) = («) and (§) = (v) are trivial. We shall not use
(8) = («) but close a circle of implications as follows: (8) = (§) and () = (5)
and (7) = ().

Now we prove —=(9) = —(8). Let f and i* exemplify the failure of ().

By the definition of F we have that im(f(n) —n : n € w) = co. Hence we
may choose a strictly increasing sequence (k; : i € w) such that (Vi € w)(Vn >
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ki)(f(n) > i4+n). Then we take E = {[k;, k;i+1i) : i € w}U{[ki+7, kiy1) : 1 € w}
and A = ;e [ki, ki +14). A is infinite and coinfinite. Then we have that
Sg,a €Sy C K+, s0 ~(B).

Now we show —(f) implies —(«). This follows from

Subclaim 1: For all E,E' € &., and E-respecting A € [w]®0 there are
f1, f2 € Sym(w) such that

Spw C((f1) toSpaofi)o((f) toSkao fa)

Proof. Enumerate the E’-classes with order type w. Let fi inject the even-
numbered FE’-classes into high enough (there are large enough ones by the
definition of &.,) E classes that lie in A. The FE-classes need not be cov-
ered, it is enough that nE'm — fi(n)E fi(m). We fill this function up to a
permutation of w and call it f;. Let fo do the same with the odd-numbered E’-
classes. If g € Sgr, then g = g1 0 g2 where g; is the identity on odd-numbered
E’-classes and go is the identity on even-numbered E’-classes. We have that
fiogio(fi) ' € Sg.a for i = 1,2 and thus Subclaim 1 and (—(3) implies —(c))

are proved.

To complete a cycle of implications, we show —(a) = —(y). First we need a
similar claim:

Subclaim 2: For all E € &.,, E-respecting A € [w]™° there are there is
f € Sym(w) such that

Spwa S floSgaof.

Proof. Enumerate the E-classes which lie in w\ A with order type less or equal
w. Let f inject them into high enough E classes that lie in A. As above, the
E-classes need not be covered, it is enough that nEm — f(n)Ef(m). We fill
this function up to a permutation of w and call it f. If g € Sg )\ 4 We have that
fogo f~! € Sg .4, and thus Subclaim 2 is proved.

Now suppose —(a). To prove —(vy) let f € F. We choose by induction on
k € w, m; such that mg = 0, my1 > my and (Vn < mg)(f(n) < mgi1).
Now we define two equivalence relations.

Eo = {[mag, mory2) : k € w},
Ey = {[mag41,man+3) + k € wpU{[0,m1)}.

By our assumption —(«) there is some ¢ < k and there are E-respecting
A, Ay € [w]* such that Sg, 4, C K; for £ =0,1. Now note that
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(x)1 If m € Sy then we can find my € Sg,, for £ =0, 1 such that 7 = 7 o 7.
Why?
By the definition of Sy and Ey, for any « € w, xEgm(z) or xEy7m(x).

Now we choose m(z) and 71(x) by cases.

We write 7 as a (possibly infinite) product of disjoint finite or infinite
cycles. It is enough to show how to decompose each cycle. We write
it explicitly for a finite cycle (ag,aq,...ax—1). Infinite cycles are not
harder to treat. We write aE}b for (aE1b and not aEyb). Then we have,
say, aoEpay, ..., aiy—1Eoai,, aiy Bai +1, ai,+1F0ai, 42, - .., ai,—1Eo0aiy,
aiy Elaiy i1, tiyr1E0aiy, 42, ... 0, Eai, 11, ..., ag_1Epag through
the whole cycle. We assumed that 4, . < k— 1. The complementary

case is treated similarly.

Since (ag, a1, ...ag—1) is a cycle, for each ngg1 we have: If it appears
for some r as a border in a;, Fja;,+1 in the sense that a;, < nopi1 <
ai,+1 then there is a matching 4,s, call it a(i,) such that ap;,) B ap, )41
and Ap(iy) = N2k+1 > Ap(i,)+1- For all involved ngk 1, we choose match-
ing pairs so that {i, : 0 <7 < rieg} is partitioned into pairs {i,, h(iy)}.
We set g = hUh™! and thus get a bijection of {ir : 0<7r < 7Tmaz}

Now we set mo(a;) = a;ji1 if j # i, for all 7. We set mo(as,.) = ap(,)+1
for 0 < 7 < rpag. So m is a bijection of {ag,...ax_1} and it respects
Ey.

Now we set m(a;) = aj if j # i, + 1(modk) for all ». We set
T1(an () 41) = Qi1 for 0 <7 < rpge. So s a bijection of {ao, ... ax—1}
and it respects F;. Now it is easy to check that m = 7 o .

(¥)2  Let for £ = 0,1 choose f; € K; as in Subclaim 2, such that Sg, 4, C
(f@)fl o SEAAE o fg. W.I.O.g. ] > 1. Since SEg,w = SEZ7AZ o SEeyw\Ae we
have that Sg, ., € Kj for £ = 0,1 and hence by (*); that Sy C K}, that
is —\(’y). ]

Claim 1.6. Assume that (K; : i < k) is a cofinality witness such that Ko
contains all the permutations that move only finitely any points. If b > Kk, then
clause () of Claim 1.5 holds (and hence all the other clauses hold as well).

Proof. For each i < k choose m; € Sym(w) \ K;. Since b > x there is some
f € “w such that (Vi < k)(V>®n)(m;i(n) < f(n)) and w.lo.g. f € F. if Sy were a
subset of K;, then we had that m; € K;, which is not the case. So f exemplifies
clause (y) of Claim 1.5. O
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Definition 1.7. (1) Let E € E.op. We set

Q' = {f : f is a permutation of some coinfinite subset of w such that
(a) n € dom(f) = nEf(n),
(b) for every k < w for some n we have k < |[n]g) \ dom(f)|}.

The order is by inclusion.

(2) Wecdl f=(fi :i<a),Qgok ifa <w and fori < j < a,
fi € f;j € Q/,E (i.e. {n € dom(f;) : n Qidom(fj) V fi(n) # fi(n)} is
finite). For f being Q'p-0.k. we set Qw(f) = {g € Q% : g =" fi for
some i}, where f; =* g iff fi C* g and g C* f;. The order is inherited
from Q.

(3)  We write < for the initial segment relation for sequences of ordinal
length, i.e., (gs : B<7v) 2 (fs : B<a)iff (gg : B<y)=(fs: B <
)

Remarks. 1) Claims 1.4 and 1.5 hold for Q% as well with the analogously mod-
ified definition of S}J, 4- This is shown with the same proofs. The domains
of the involved partial permutations must be arranged such that they respect
1.7(1)(b), but they need not be unions of equivalence classes. The ¢ € Qg ful-
fil requirement 1.7(1)(b) automatically, because we have that im(|[n|g| : n €
w) = w and that the domain of ¢ needs to be coinfinite and needs to be a union
of equivalence classes.

2) Both Qg and Q’; can serve for our purpose. Q% exhibits the following
“independence of E”: For Eo, E1 € Econ (Vp € Q%) (Fg) (p < g € Q, A
(QjE‘l)Zp = 350) ~

3) Note that for a < wy, if f = (fg : f € @) Q-0k., then we have that
Q'5(f) is Cohen forcing.

Claim 1.8. Let E be as in Definition 1.7.
(1) Q' is proper, even strongly proper, with the Sacks property (the last is

more than Qg ).

(2) Iff={(fs : B<a)isasin 1.7(2), and o < wy and Q»(f) C M,
w+1C M C (H(x),€), M a countable model of ZEC™, then we can
find fo, such that

(a) [ fais Qg-0.k

(b) If ffa S f and f'is Qz-0.k., thgn fa is (M, Q'5(f"))-generic.
The genericity is independent of f' in the following sense: For
every I there is some finite J C I, J € M such that for all f'
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the following holds: If I C Q;E(f’) is predense and a member of
M, then J is predense above fo in Q'5(f').

Proof. (1) We prove the Sacks property. Let f € V@ N“w. We take bi(n)
as in the proof of the “w-boundedness for Qg (which applies also to Q') in
Claim 1.2, but we do not require that b, respects E. Additionally we choose
bi(n) so small that there are only fewer than n permutations of ngn bik)- So
often, but not cofinitely often, b;(,) will be empty. Then we take ¢, as there
and collect into S(n) all the possible values forced by g, U for f(n), when 7

ranges over the permutations of b,,.

(2) Let (f" : n € w) enumerate all the B-sequences in M that are Q-
ok. for all 3 € [a,wi]. Let 7,, by, n € w be as in the proof of 1.2, 7, a
Q' ( f™)-name. We take an enumeration such that each T, appears infinitely
often. First we choose f0 D* fs for all 3 < a. Here we use that o < w;. Next
we choose f! C*-increasing with n, and i(n) strictly increasing with n such that
Uk<n bi(r) Ndom(fy) = 0 and such that if ff7 < f™ and 7 is a permutation of
ngn bik) then fyuUm II—Q/E T, € V. Let J contain one member ¢ of I for each
permutation 7 of (J;<, bix) that i is compatible with fy Um. Thus J is a finite
subset of I. The choice of f? is independent of f", because (f? U ”_Q}; eV
and f"f? <Q f') implies fI U II—Q/E () Tn € V, independently of the choice of
[ We set fo = Upnew fos and by one of the equivalent characterizations of
(M, Q'5(f"))-genericity [7, III, Theorem 2.12] we are done. O

2. ARRANGING g = Ry, b = cf(Sym(w)) = Ny

Starting from a ground model with a suitable diamond sequence we find a
forcing extension with the constellation from the section headline. The require-
ments on the ground model can be established by a well-known forcing (see [4,
Chapter 7]) starting from any ground model, and are also true in L (see [3]).

Definition 2.1. (1) We say A is a (k, g)-witness if kK = cf(k) > Ng and
(@) AC W],
(B) ifk <wand f: w — w is injective for £ < k then for some

A" C A of cardinality < k we have that for any A that is a finite
union of members of A\ A’

{n : /\ fe(n) & A} is infinite.
<k
(2)  We say M k-exemplifies A if
(a) Ais a (k,g)-witness,
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(b) M = (M; : i< k) is <-increasing and continuous, and w + 1 C
MQ and P(w) - Ui<n Mi7

(c) M; C (H(x),€) is a model of ZFC™ and |M;| < k and (M; =
| X| <k)=XCM,,

(d) M[(’i—l—l)EMiJrl,

(e)  fori non-limit, there is A; € M; such that AN M; = A;,

(f) ifi <k, k<w and f; € M; is an injective function from w to
w for b <k, and k' <w, Ay € A\ M; for { <K', then

{n: /\ fe(n) € AgU---U A1} is infinite.
<k

(3)  We say M leisurely exemplifies A if (a) to (f) above are fulfilled and
additionally;

(9) k=sup{i: M1 = “Aix1 =N}

Definition 2.2. (1) We say (P, A) is a (u, k)-approximation if
() P is a c.c.c. forcing notion, |P| < pu,
(8) Ais a set of P-names of members of ([w]NO)VP, each hereditar-

ily countable, and for simplicity they are forced to be pairwise

distinct,
(v) Fp “Ais a (k,g)-witness.”
(2) If u = Kk we may write just k-approximation. If Kk = Ry we may omit it.
We write (, k)-approximation if it is a (u, k)-approzimation for some
I
(3) (P, Ay) <Gpp (P2, Ag) if:
(a) (P, Ay) is a (x, k)-approximation.
(b) P<Py,
(c) A C Ay (as a set of names, for simplicity),
(d) ifk<w and Ag,...,Ap—1 € Ay \ Ay then
IFp, “if B € ([w])V™,

foe (Bw)vplfor ¢ < k are injective, then

{n €B: /\ fe(n) & U 4@} is infinite”.

<k <k

Remark. We mean A; C A, as a set of names. It is no real difference if A is a
P-name in 2.2(1) and if in (3) we have IF Ag,..., Ap_1 € Ay \ A;.
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Claim 2.3. <{,, is a partial order.

Proof. We check (3) clause (d) of the definition. Let (P1,.4;) <, (P2, 42)
and (P2, Ay) <t,, (P3,43). Let k < w, f; be Pi-names of injective functions
from w to w . Let G C P be generic over V. So let Ay € A;[G] for £ <
m. We assume that for £ < mg < m we have that A, € A, and that that
{A¢ : £ <m} € A3\ Ay. By the assumptions on P; we have that By =
{n<w: Aoy fe(n) € U{Ae : £ <mg}} is infinite. It belongs to V[G N Pa).
Since we have that (P, Ay) <, (I3, 43) and {4, : £ € [mg,m)} C A3\ A,
and B, fo, ..., fi—1 € V[G N P, by Definition 2.2(3) clause (d) we are done.

Claim 2.4. If ((P;, A;) : i < 0) is a <, -increasing continuous sequence
(continuous means that in the limit steps we take unions), then (P, A) =
(Uics PisUics Ai) is an <, -upper bound of the sequence, in particular, a

(%, k)-approximation.

Proof. The only problem is “(P,.A) is a k-approximation.”

Case 1: cf(§) > Vg. Let k < w, f, be P-names of injective functions from w
to w . So for some i < § we have that (fy : £ < k) is a P;-name. Let G C P
be generic over V. In V[G N P}, there is some A" C A such that A" € ([4;,[GN
Pi)]<F)VICOP] a5 required in V|G N Py] for (felGNP] : £ <k). We shall show
that A’ is as required in V[G] for (f([GNP;] : £ < k). Solet Ay € A[G]\ A'[G]
for £ < m, wlo.g. As € A, Ay = Ay[G]. We assume that for £ < mg < m we
have that A, € A; and that j < 0 is such that {4, : £ < m} C A;. By the
assumptions on P; we have that B; = {n <w : A,y fe(n) & U{As : £ <mo}}
is infinite. It belongs to V[G'N P;]. Since we have that (P, A;) <t (P, A;)
and {4y : £ € [mo,m)} € A; \ A; and By, fo,..., fr1 € V|G N P, by
Definition 2.2(3) clause (d) we are done.

Case 2: cf(d) =Rg. Wlo.g.d =w. Solet k <w,pe€ P, pl-“for t <k, fr €
“w is injective.” By renaming we may assume w.l.o.g. that p € Fy. For every
m < w we find (f;" : £ < k) such that

(x)1  f"is a Pyp-name for a P/G,,-name for an injective function from w to

W,

(x)2 if p € G,y € Py, Gy, generic over V and m,n < w, then for densely
many ¢ € P/Gp we have that p IFp, “q IFp/a,, Neci(fe) T n =

(S [Gonl) T 77
We give explicit names in the case that Jfg is written in the form ]fg =
{((n,aen),p) : p € Agp,n € w,ap, € w} and Ay, are suitable maximal an-
tichains. Then we write f;" = {(((n,ar,),p[Gm]),p | Pm) : » € Apn,n €
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w,ap, € w}. Here the [ is a projection function that comes with P,, < P (is a
complete suborder of) as explained in [1].

Let A be the union of all antichains appearing in the names f;”. By the c.c.c.
A is countable. So easily p IFp,, “f;" € “A is injective”.

By the hypothesis on P, and A, we have that p I-p, “there is A,, € [A,,]"
as in 2.2(1)”. As P, is c.c.c. and because of the form of A, there is A}, a set
of < k names from A,, such that

if 40, . ’A]E_l S .Am\.Alm then

plkp, {n : /\ fi'(n) € AgU--- U Akj—l} is infinite.”
<k

So it is enough to show that A" = J,,., A, is as required. Let k' < w,
Ao, ..., Ap—1 € A\ A’ and towards a contradiction assume that ¢ IF “{n < w :
Ay fg(nigz AgU---UAp_1} € [0,m*].” So for some m we have that ¢ € P,
Ao, ..., Ap_1 € A\ .A;,; Let ¢ € G, C P, be P, generic over V. In V[G,,]
we have that B' = {n € w : Ap_p, fI'[Gm](n) & Ao[Gm] U+ U Ap_1[Grn]} is
infinite. So we can find n € B’ such that n > m*. Now there are de~nsely many
q" € P/Gy, forcing fi(n) = f;(n), so wlo.g. ¢ < ¢ € P/Gy,, and we find
p’ € G such that p <p' € P and p' - “fe(n) = f;"(n)”. Contradiction. O

Claim 2.5. Assume that (P, A) is a k-approzimation.
(1) IfIF “Q is Cohen or just < k-centred ”, then (P *Q,.A) is a r-approzi-
mation, and (P, A) <g,, (P*Q,A).

=app

(2) If in addition lFp “w, : n < w) is a set of finite non-empty pairwise
disjoint subsets of w”, and Q) is Cohen forcing, and n is the P * Q-
name of the generic, then (P * Q, AU {J{wn : n(n) = 1}}) is a k-

approzimation, and <g, -above (P, A).

Proof. (1) Let G C P be P-generic over V. We work in V[G]. It is enough to
prove that in (V[G])?, A = A[G] is a (k, g)-witness. let Q = Unmep @ms @m

7

directed, u < k. So let IFg “fo,... fx—1 € “w are injective.” For each m < p

we find (f;" : ¢ < k) such that

(x)1  f;" is a partial function from w to w,

(%)2 if g € Qm, m < p, n <w then qlfg
“Vipep( @ <n)(f(n) is defined and fg(n’) # fr(n'))”.
Just take f;" = fi[Qm]. Since Qy, is directed, this is well-defined. If there is
some ¢ such that dom(f;") is infinite, then for (f;" : ¢ < k,dom(f;") infinite)

<

we choose some A/ € [A]<" as required in Definition 2.1(1). If there is so such
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¢, then we let A}, = 0. Let A" = |J,,., AJ,, it is clearly as required. This is
shown similarly to 2.4. In the the end of the proof of 2.4 write {0} instead of
G, and @, instead of P,.

(2) We prove clause (d) of 2.2(3). Let G C P be P-generic over V. So
let fo,..., fr1 € V[G], B € ([w]*)VI¢ and we should prove that {n € B :
Necr fe(n) & U{wm : n[G](n) = 1}} is infinite. As 7 is Cohen and the wj,
are pairwise disjoint and finite and non-empty, this follows from a density ar-
gument. ]

An ultrafilter D on w is called Ramsey iff for every function f: w — w there
is some A € D such that f | A is injective or is constant.

Claim 2.6. Assume that
(a) V£ CH,

(b) P={(P,A) :i<0)is Sgép—mcreasing and continuous and |P;| < Ny,

(c) cf(d) =Ry =|d],
(d) 6 =sup{i < : Piy1 = P;«Cohen, A; | = A;},

(e) G C Ps is Ps-generic over V, and in V|G| we have A = |J,_,. 4;[G].

Then
(1) In V|G] there is M leisurely exemplifying A.

(2) In VI[G] there is a Ramsey ultrafilter D such that for every f € “w
which is not constant on any set in D and for all but countably [< K]
many A € A we have that {n : f(n) € A} € D. In short we say “D is
A-Ramsey [(k, A)-Ramsey]”.

Proof. (1) By renaming, w.l.o.g. § = R;. Let y > (2%)* and let M° = (M? :
i < wi) be increasing and continuous and M} < (H(x), €, <%), M} countable
and A; € M? and M° | (i + 1) € MY, and such that P(w) C Uicw, M and
hence ;. A; € M. Let M} = MP[G], Ai = A;[G]. Since P is proper, we
have that M} is countable. For any i < w; we shall find j(i) > i,j(i — 1) + 1
and Nj(;) such that
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(a)M() C Nj;y €M .1(,)+17
(B) Njay E [Aja| =
(7) N ( )ESE
() (8) A5 N Nj@) = As N My,
(e) (f e U M0 N flGl e M n¥w) — f is a Pjj)-name,

1<wi

(¢) M} |= [X] <Ny = X C Mj,.

In M}, choosej = j(i) according to the premise (d) such that sup(M}Nw;) <
J <wi and Pj1 = Pj * Cohen, A;,; = A; and such that (¢) and (¢) are true.
In M? 1 we deﬁne the forcing notion R; = { g : g is a function from some n < w
into A;;NM. J +1} This is a variant of Cohen forcing, and hence we can interpret
R; as the Cohen forcing in Pj ;. We let § be generic and set N; = Mjl[ ]. Now
we take a club C' in w; such that (Vo € C)(VS < a)(j(B) < a). We let
(c(i) : i < wp) be an increasing enumeration of C. Finally we let for i < wq,
M; = Mcl(l.) for limit 1.

We have to show that in V[G], M rk-exemplifies A. That is, according to
2.1(2):

(a) Aisan (Nq,g)-witness,

(b) M = (M; : i < ;) is <-increasing and continuous, and w + 1 C M,
and P(w) c Ui<n M;

(¢c) M; C (H(x),€) is a model of ZFC™ and |M;| < ¥y and (M; | |X| <
Nl) =X C MZ',

(d) M f (Z + 1) c Mi—l—h
(e) for non-limit i there is A; € M; such that AN M; = A,

~—~
—
S~—

if i < Wi, £k <wand fy € M; is an injective function from w to w for
0 <k,and k' <w, Ay € A\ M; for £ < k', then

{n : /\ fe(n) & AgU---U Ak/,l} is infinite.
1<k

Item (a) follows from 2.4. The items (b) and (c) follow from M? < (H(x), €, <%)
M} countable and M° | (i 4+ 1) € MY, , and such that P(w) C U, M.

The item (d) is clear by our choice of M;.

The item (e) follows from (J) in (**) and the fact that the c(i)’s are limits
and U,8<c (3) N Uﬁ<c(z J(B)+1-

To show 1tem (f) suppose that i < w; and fy € M; for ¢ < k and Ay € A\ M.
Then we have that f, € VP and A, € A\ A; (the latter holds by (e)) and A; =
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A;[G] = A;[G;] by our choice of C. Hence we may use (P, A;) Sff;)p (P, A)

()

and get from 2.2(3)(d) if k <w and Ao, ..., Ay—1 € A\ 4; then
Fp,, *if B € (W)™,

fe € (Bw)VPifor ¢ < k, then

{n €B: /\ fe(n) ¢ U /}g} is infinite”,

i<k <k
so we get the desired property in V[G].
(2) We work in V[G]. We take (M; : i < wi) as in (1), and choose by
induction on ¢ < w; sets B; such that
(@)  Bi € M,
(B) j<i= B; C* By,
(v) ifi=j+1and f € M;N“wis injective and A € AN (M; \ M;), then
B C*{n : f(n) & A},
(6) if ¢ is limit and f € M; Nw* then for some n* we have that f [ (B;\n*)
is constant or f | (B; \ n*) is injective.
(e) B is <}-first of the sets fulfilling (a) — (6).
Now it is easy to carry out the induction and to show that D, the filter gen-

erated by {B; : i < wi} is as required. We use property (f) of M in order to
show that requirement (vy) is no problem. O

Claim 2.7. Assume that in V
(a) Ais a (k,g)-witness,
(b) D is a(k,A)-Ramsey,
(¢c) Qp ={(w,A) : we w™Ae D}, (wA < @W,A) iffwCw C
wUA and A’ C A.
Then g, “Ais a (k, g)-witness.”.

Proof. For u € [w]<M let Q, = {(u, A) : A € D}. This is a directed subset and
we have that Qp = [J{Qu : u € [w]<N0}. So assume that p = (w, A) € @Qp and

plrQp “fe € “w is injective for £ < k7.

For ¢ € Qp we write pos(q) = {s € [w|<M : 3B (s,B) > ¢}, the set of
possible finite extensions. For s € pos(u, B) we set ¢ll = (s, B\ max(s)). As
usual we write p|l¢ if pIF ¢ or plk = and ¢ >4, p iff ¢ > p and ¢ = (w9, A?),
p = (wP, AP) and w? = wP.
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For every u € pos(p) we define f}' € “(w+ 1) as follows:

fi(n) =mif (3p € Qu)(pIF fe(n) =m),
fi'(n) = wif (Ym)=(3p € Qu)(p Ik fr(n) = m).

Since D is Ramsey [5] (without Ramsey but using memory [8]) we have that

(®)

@ p has the pure decision property:

Vp e QpIq >y p VW <kVmewVn € (w+1)

() <<<aq' > Q)(d|Ifuln) = m)) — (3s € pos(¢)) (g™ fe(n) = m)

We apply this to our initial p and get some ¢ as in (®®), which we fix.
For every u € pos(q) and ¢ < k we can find g} € “w injective, such that if
{n : fi{(n) <w} € D then {n : fi'(n) =g{(n)} € D.

We call u (v, n)-critical if

(@) u € [w]™,
(B) 0#vCHO0,...,k—1},
(6)% (7) Lev= fin)=w,
(&) {m : (¥ € v) ;""" (n) <w} e D,
(€ L<kALgov—{m: P (n) = fi(n)} € D.

For u (v,n)-critical and ¢ € v note that limD<fZU{m} (n)

Proof: If for some k < w, {m : f;u{m}(n) < k} € D, then there is some
k' < k such that X = {m : f;u{m}(n) = k'} € D. For m € X, we choose
a witness pm € Quugmys Pm = fi(n) = k'. Since D is Ramsey, we may glue

m < w) = o0.

all the witnesses together (find a common second component), and thus get a
condition in @, that shows that f;'(n) < w, in contrast to condition (7).

As D is Ramsey for some A = A, ., € D we have if £ € v then <f;u{m}(n) :
m € A) is without repetition.

So we can find for ¢ € v injective functions hy"”" € “w such that {m :
70 ) = hget(m)} € D.

For each injective function h € “w we have that A, = {A € A : {n :
h(n) € A} € D} is empty or at least of cardinality strictly less than x. Let
A= U{An : h = g} for some £ < h, u € [w]<™0 or h = hy"" where u
is (v,n)-critical and ¢ € v and ) # v C k }. So A C A is of cardinality
strictly less than k and it is enough to prove that if Ag,... A1 € A\ A’ then
kg “{n @ Apep fe(n) € AgU -+ U A1} is infinite”.
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Let Ag, ..., Ap/_1 be given. Set B* = AgU---U Ap/_1. Towards a contradic-
tion we assume that p* € Qp, p* > q and n* < w and

p*IF “(Vn) (n* <n<w— \/ fe(n) € B*) .
<k
Let M < (H(x),€) be countable such that the following are elements of M:
p*, D, fofor £ <k, Agfor £ <K', A, (g} : ue [w]<No 0 < k), (b 2 u €
[w]<¥o L€ v, #vCEk).

Let p* = (u*, A*). Let A® € d and A® C A* be such that (VY € DN
M)(A® C* Y) and min(A®) > sup(u*). It is obvious that u* U A® is generic
real for Qp over M, ie.: {(v,A) € QpNM : v/ Cu*UA® CvUA}isa
subset of a (Qp)™-generic over M.

As Ag,..., A1 € ANA C A\ Upeq Agur there is n® € [n*,w) such that
(< k=g (n®) ¢ B* and g¢ (n®) = i (n®). Let

U={u:u* CuCu*UA® u finite, (V< k)(fI(n®) <w — f(n®) & B*}.

Now clearly u* € U. Choose u® € U such that [{¢ : ;@ (n®) = w}| is
minimal. If it is zero, we are done. So assume that is is not zero.

We choose by induction on ¢ < w n; such that
n; € AQ,
n; < Mg,

()

sup(u®) < n;.
0<k— f1°n®) = frooli<it o))

By the pure decision property there is some s € pos(u®, A®) such that
(5, A®\ max(s)) decides fy(n®). So for some i and {n; : 0 < j < i} we cannot
choose n;. Let u® =u®U{n; : j<i}. Letv={l <k : {m: f;AU{m}(nQ) #
FE(n®)} € DY C {0, k—1}. Let C = {m : (£ € v — f o) £

u® (O utU{m} o u® (O :
fi (n¥)) and ({ v — f, (n®) = f}* (n))}. So C € D and necessarily
uru{m}, o ul Oy A . OV pii:
tevAimeC = f (n®) < fi (nY) = w. So u™ is (v,n®)-critical.
Hence C1 = {m : N\, h}f&””"@ (m) € B*} € D. Choose n; € C;NCNA® large
enough. If v = (), it can serve as n; and we have a contradiction. Recall that
A .
th’v’”e(ni) =f U{n’}(rL@) < oo. If v # 0, then u® U {n;} contradicts the
choice of u®, because we had required that [{¢ : le‘@(nQ) = w}| is minimal.
(|

Later we shall use Claim 1.6 in order to fulfil premise (2) of the following
Claim 2.8, which is together with 2.4, 2.5, 2.6, 2.7 the justification of the single
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steps of our final construction of length Ny. Claim 2.8 serves to show that certain
(and in the end we want to have: all) cofinality witnesses in intermediate ZFC

models are not cofinality witnesses any more in any forcing extension.
Claim 2.8. Assume that V, cf(0) = w1, (P, 4;) : i <0) are asin 2.6, and

(1) Irpy “K; @i <wry) is a cofinality witness and { f € Sym(w) : (V*°n)f(n) =
n} g [go 7,

(2) Let Eg = {(n1,n2) : (3n)(n1,n2 € [0, (n+ 1))}, A =U{[(2n)?, (2n +
1)2) : new}. (Any E € Euon and A € [W]N° could have served as well.)
Assume that in Vs, SEy,a 15 not included in any K;.

(3)  d=sup{a : Qq is Cohen, A, = Ayi1}-

Then there is a Ps-name Q such that

(O[) (P57A5) —app (P(S*Q,.A(S);

(8) IFp; QC Q’ (where Q7 is from 1.7).

(v) rpswq “9=U{f = 0 f) € G(Ps xQ)} is a permutation of w and for
arbitmmly large i < w1, (g, Ki)Sym(w) N Sym(w ) [Ps] # K;”.

Proof. As in 2.6, we assume w.l.o.g. § = wy. We can find in V, g* = (gf : i <
wy) such that IFp, “gf € Sym(w) \ Ki, g7 € Sg,,4, and g5 € Mo < (ﬁ(x, €),
My countable”. In V we now choose by induction on i < (;11 M;, Ni, p;, i such
that ~
(a) (M; : j <i) is a sequence of V%-names as in 2.6,
(b) IFp; Q,.A, g:*, <I~Q i <wy) € Mo,
(¢)  Ni={r1n : n € w}isacountable P,,-name such that l-p, “M;[Gp, ] C
N; € (H()VI, €), NG| = Ro, N | ZFC 7, ~
(d) pi € Q/EO is hereditarily countable and a P,,-name of a member Q’EO,
Ip,, @3 : j <) is C*-increasing and € Ni,pi € N,
(e) in V' we have M;[Gs] = M; and (N : j <i) € Mqq, sup(M; Nwy) <
®; € Mit1, Qq, is Cohen and Ao, = .A ai+1s
(f) if] € N;isa Py,-name of a predense subset of Q' ((p; : j <)) = Qa,.
then some ﬁnlte J(I)C I, J(I) € N, is predense above p; in QEO(<pj :
§ <)) in the universe VFai+1,
At limit stages 7 we take for M; the union of the former M;. Otherwise choose
M; as required. Next we choose a; such that sup(M; Nw1) < o < wy and Q,
is Cohen and A,, = A,,,,- We work in V[F,,]. We set NY = M;|Gp, ] We
now interpret the Cohen forcing as Ry x Ry x Ro where

Ry ={h : (3n <w)h:n — P(w)i}

See https://shelah.logic.at/papers/731/ for possible updates.



Paper Sh:731, version 2003-02-03_10. See https://shelah.logic.at/papers/731/ for possible updates.

THE RELATIVE CONSISTENCY OF g < cf(Sym(w)) 19
ordered by inclusion. In N} = N2[Gg,] = M; [GPp, )[GRy| we let

Ri={(n,q) : n<w,qeQp((p; : j<i)}

ordered by (n1,q1) < (n2,q2) & n1 < mAq [ n=q [ nAqg < ¢
Since (Q’EO)Ni1 is countable we have that R; is Cohen forcing. Let N? =
Nz‘l[GRmGRl] = Mi[GPaiHGROHGRJ? q; =U{g : (n,q) € Gr, }-

Now we choose ¢; O* ¢, such that ¢; has the properties of f, in 1.8(2)(b) for

the sequence f = (p; : j <i). So clearly ¢; € (Q’EO)V[PO%“], Nj<iPi € @

We can find in N? a sequence (w} : k < w) and h} such that
k1 #kQé’wi}l ﬂ’wliw :@,
w}; is included in some FEjy-equivalence class,
(©0){ vz [imle\ dom(a) \ Upe | > ).
h} € Sym(w),

hf maps {[n]g, : n € A} onto {w} : k <w}
more precise, h} does this, where for b C w, iij(b) = range(h} | b).

wy, € w \ dom(gs),

Let

Ry = {f : (Im < w) <f is a permutation of U w}, mapping w}, into itself) } ,
k<m
ordered by inclusion. In N} = N?[Gg,] let f° =|JGr, so N} = N2[f7].
So Ni3 e VPt and hence is a P,,y1-name. As P, ; has the c.c.c., we can

assume that this name is hereditarily countable. Now NZ-3 Nwp = NZ-0 Nwp =
M;[Go,] Nw1 = §; < wi, hence N3 N Sym(w)V[P‘ﬂ C Ks,. Let

fil = ogs, o ()71 | wi) o £
k<w

It is still generic for Ry over V7o [G ., G, ]. Weset N} = N2[f], ¢} = ;U .
Now (N#, ¢}) are as required. We choose (i, q¢}) by taking P,,-names (N3, i)
in V for them. Finally we choose by 1.8(2) some p; such that p; > qf‘ and QiNis
(Ni, Qa,;)-generic over IN; and as in (f). i

Ttem (o) of the conclusion is seen as follows: We have for i < w; that
Vi = “Q;;O(sz : j <1i))is c.c.c.”. Hence we have by 2.5 that (Fj, As) <g,
(PsxQ, ((pj : 5 <)), As), and (PsxQpg, ((pj : J <4)), As) <iipp (Ps*Qg, ((p) :
J<k)),As) for i <k € wi. Since Q = Q:EO(@]- D <wi) = Uicw, Q:Eo(@j :
j <)) we can apply 2.4.

Item () of the conclusion follows from the choice of Q.
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For item (7): Fix i. Note that §; > i. We have in VF1 that f7 € Kj, =
Ks,[G,]. We have that p; € ( /EO)VPai and

pitryggl Juwi=5"1 U wi

kew kew

and hence

(®) PilFp,«q g5, 1 A= ()" ogo (f7) o (k) 1 4,

and thus, since gs, | A contains the same information as gs, since the latter is
in Sg, 4, the equation ® gives a witness in (g, Ks,)gym(w) N Sym(w)V[Pwl} \ K,
and hence shows the inequality claimed in (7). O

In order to organize the bookkeeping in our final construction of length Xy we
use (5%) in order to guess the names (K; : i < wi) of objects that we do not
want to have as cofinality witnesses. We recall S? = {a € wy : cf(a) = Ry }.

For E C wy being stationary in wy we have the combinatorial principle $(E):
There is a sequence (X5 : 6 € F) such that for every X C wy the set {6 € E :
X5 =X N4} is stationary in we.

For more information about this and related principles and their relative
consistency we refer the reader to [3, 2].

Conclusion 2.9. Assume that V fulfils 2% = R and <>S%. Then for some
forcing notion P € V of cardinality No in VF we have that g = R; and
cf(Sym(w)) = b = N,.

Proof. Let H(RN2) = Uy,
and (X; C B; : i€ S?)isa O sz2-sequence. We choose by induction on i < Ny
(P;, A;,d;) such that
(a
(8
(v
(0

B;, B; increasing and continuous, B;1q D [B;]<N0

(P, A;) is an Ny-approximation, |P;| < Wy,

(Pi, A;) is <i,-increasing and continuous,

)
)
) d; is a function from A; to wy,

) if i <Ny and (wp : kK < w) is a P-name and IFp, (wp : k < w) are
non-empty pairwise distinct and v < w; then for some j € (i,wy) we
have that I-p, , for some infinite v C w and some A € A; ; we have

that Ukeu wp CAE€ Aj+l A dj+1(f~4) =7

(¢) for arbitrarily large i < wy we have that IFp, “Q; = Qp, and D; is a
Ramsey ultrafilter”,

(¢) ifi € S} and P, C B;, X; code of the Prname (K; : j < w;) and

IFp, “(Kj : j € wi) is a cofinality witness of Sym(w)V[Pi} and {f €
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Sym(w)V[P"] respects Fp and D idy,\ 4,} is not included in any Kj”,
then I-p,_, “ for some f € Sym(w) for arbitrarily large j < wq we have
(K Fsym(w) N (Ej41)VT # (K;)Vi.

Can we carry out such an iteration? We freely use the existence of limits
from Claim 2.4 and that <7 is a partial order 2.3. The step i = 0 is trivial.
So we have to take care of successor steps.

Ifi=j+1and j ¢ S? then we can use 2.5 to define (P,, A4,), and taking
care of clause (§) by bookkeeping.

If i =j+1and j € S? and the assumption of clause (¢) holds, we apply 2.8
to satisfy clause (¢), using Q¢ = @ from 2.8(83).

Ifi = j+1and j € S? but the assumption of clause (¢) fails (which necessarily
occurs stationarily often), we apply 2.6 and 2.7.

Having carried out the induction we let P = J ., Pas A = Uscw, Ao
d = Uycwy da- So (P, A) is an (N2, Ny )-approximation. For v € w; we set
A ={A e A : d(A) =~}. Now clearly V2 = 2% — 9% — Ry Let G C P
be generic.

We show: IFp g = ;. For 6 < Ny we have that A<5> [G] is groupwise dense
by clause (J), and always g > N;. So it is enough to show that the intersection
of the A [G] is empty. Suppose that it is not, i.e. that there is some B € |[w]*
such that for § < w; there is some A5 € AY[G] such that for all §, B C* Aj.
Now let h: w — B be an injective function. But now we have a contradiction
to (P, A) being (Rg, R )-approximation (see 2.2(3)) and to property (2.1(3)) of
A is a (N, g)-witness.

We show that IFp b = Rg. This follows from clause ().

Finally we show that |- c¢f(Sym(w)) > R;. Suppose that (K;[Gy,] : j < wi)is
a cofinality witness in V[G,,,]. Then there is a club subset C in wy such that for
i € C we have that (K;[G;] : j < w;) is a cofinality witness in V[G;]. By $(S5?)
there is some i € S7 such that X; is a code of a P; name of (K;[Gi] = § <wi).
By (the analogues of) Claims 1.4 and 1.6 for Q’; and because of b = Xy and
because of clause (¢) we get that the sequence (K;[G;] : j < wi) does not
lift to a cofinality witness in V[Gy,] such that for all j < w; we have that
K;|G;] = K;[Gw,] N V[G;]. Hence (K;[Gyy,] : j < wi) was no cofinality witness

in V[G,,. O
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