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Abstract. We prove the consistency result from the title. By forcing we

construct a model of g = ℵ1, b = cf(Sym(ω)) = ℵ2.

0. Introduction

We recall the definitions of the three cardinal characteristics in the title and

the abstract. We write A ⊆∗ B if A \ B is finite. We write f ≤∗ g if f, g ∈ ωω

and {n : f(n) > g(n)} is finite.

Definition 0.1. (1) A subset G of [ω]ω is called groupwise dense if

– for all B ∈ G, A ⊆∗ B we have that A ∈ G and

– for every partition {[πi, πi+1) : i ∈ ω} of ω into finite intervals

there is an infinite set A such that
⋃
{[πi, πi+1) : i ∈ A} ∈ G.

The groupwise density number, g, is the smallest number of groupwise

dense families with empty intersection.

(2) Sym(ω) is the group of all permutations of ω. If Sym(ω) =
⋃
i<κKi

and κ = cf(κ) > ℵ0, 〈Ki : i < κ〉 is increasing and continuous, Ki is

a proper subgroup of Sym(ω), we call 〈Ki : i < κ〉 a cofinality witness.

We call the minimal such κ the cofinality of the symmetric group, short

cf(Sym(ω)).

(3) The bounding number b is

b = min{|F| : F ⊆ ωω ∧ (∀g ∈ ωω)(∃f ∈ F)f 6≤∗ g}.

Simon Thomas asked whether g 6= cf(Sym(ω)) is consistent [9, Question 3.1].

In this work we prove:

Theorem 0.2. g < cf(Sym(ω)) is consistent relative to ZFC.
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1. Forcings destroying many cofinality witnesses

In this section we introduce two families of forcings that will be used in cer-

tain steps of our planned iteration of length ℵ2. The plot is: If b is large, there

is some way to destroy all shorter cofinality witnesses because by Claims 1.6

and 1.5 none of the subgroups in a cofinality witness contains all permutations

respecting a given equivalence relation. In our intended construction, we shall

extend suitable intermediate models with a forcing built upon such an equiva-

lence relation and thus prevent possible cofinality witnesses to be lifted to the

forcing extension and all further extensions (Claim 1.4).

Here we show some details about destroying one cofinality witness that can

be put separately before we launch into an iteration. The additional task, to

increase the bounding number along the way, will be taken care of only in the

next section.

Definition 1.1. (1) We work with the following set of equivalence rela-

tions:

Econ = {E :E is an equivalence relation of ω,

each equivalence class [n]E is a finite interval of even length and

ω = lim inf〈|[n]E | : n < ω〉}.

We say b ⊆ ω respects E ∈ Econ if (nEm ∧m ∈ b) → n ∈ b. A partial

permutation π of ω respects E if dom(π) respects E and we have that

n ∈ dom(π)→ nEπ(n).

(2) Let Q be the set of p such that

(a) p is a permutation of some subset dom(p) of ω,

(b) ω \ dom(p) is infinite.

We order Q by inclusion.

(3) For E ∈ Econ, QE is the set of p satisfying (2)(a) – (b) and addition-

ally

(c) p respects E.

Part (1) of the following claim is important for later use, whereas part (2)

will never be used directly.

Claim 1.2. (1) If E ∈ Econ and p ∈ QE and τ
˜

is a QE-name of an ordinal

and b is a finite subset of ω \ dom(p) respecting E, then there is some q

such that

(a) p ≤ q and b ⊆ ω \ dom(q),
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(b) if π is a permutation of b and it respects E then q ∪ π forces a

value to τ
˜

.

(2) QE is proper, ωω-bounding, nep (see [6]) and Souslin.

Proof. (1) Note that there are only finitely many permutations of b (that respect

E). So we can treat them consecutively and find stonger and stronger q’s.

(2) Let N ≺ H(χ,∈) be such that QE ∈ N and p ∈ N , χ ≥ (2ω)+. Let τn
˜

,

n ∈ ω, be a list of all QE-names for ordinals that are in N . Let bn, n ∈ ω,

be a list of pairwise disjoint E-classes such that
⋃
n∈ω bn is infinite. Now take

qn by induction starting with q0 = p. We let i(−1) = 0. If qn, i(n − 1)

are chosen, take i(n) > i(n − 1) such that dom(qn) ∩
⋃

0≤k≤n bi(k) = ∅. Now

take qn+1 treating qn, τn
˜

and
⋃

0≤k≤n bi(k) as in the proof of part (1). Hence⋃
0≤k≤n bi(k) ⊆ ω \ dom(qm) for all n,m ∈ ω. We have that q =

⋃
qn ∈ QE and

that q 
QE (∀n ∈ ω)τn
˜
∈ Ň . By [7, III, Theorem 2.12], QE is proper.

QE is ωω-bounding: Let f
˜

be a name for a function from ω to ω. Again let bn,

n ∈ ω, be a list of pairwise disjoint E-classes such that
⋃
n∈ω bn is infinite. Now

take qn by induction starting with q0 = p. If qn is chosen, take i(n) such that

dom(qn)∩bi(n) = ∅. Now take qn+1 treating qn, τn
˜

and bi(n) as in part (2) of this

claim and look which values for f
˜

(n) the finitely many permutations in (1)(b)

force. Take g(n) to be the maximum of them. We have that q =
⋃
qn ∈ QE

and that q 
QE (∀n)f
˜

(n) ≤ g(n).

nep (non-elementary properness): We use much less than N ≺ H(χ,∈). We

use that E ∈ N ⊆ H(χ,∈). See [6].

Souslin: p ∈ QE , q ≤ q and p ⊥ q can be expressed in Σ1
1(E)-formulas. �

We shall work with the following special subsets of Sym(ω).

Definition 1.3. (1) For E ∈ Econ and A ⊆ ω we define:

SE,A := {π ∈ QE : π � (ω \A) = id}.

(2) We set F := {f : f ∈ ωω, f(n) ≥ n, lim〈f(n)− n : n ∈ ω〉 = ∞}. For

f ∈ F we set Sf := {π ∈ Sym(ω) : (∀n)(π(n) ≤ f(n) ∧ π−1(n) ≤
f(n))}.

The following claim describes the basic step in order to increase cf(Sym(ω)).

Claim 1.4. Assume

(a) 〈Ki : i < κ〉 is a cofinality witness, and K0 contains all permutations

that move only finitely many points,

(b) R
˜

is a QE-name of a forcing notion,
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(c) E ∈ Econ, and for no i < κ and no coinfinite A ∈ [ω]ω respecting E we

have that Ki ⊇ SE,A.

Then in VQE∗R
˜ we cannot find a cofinality witness 〈K ′i : i < κ〉 such that∧

i<κ

(
K ′i ∩ Sym(ω)V = Ki

)
.

Proof. Let f
˜

=
⋃
{p : p ∈ GQE

˜
} be a QE-name of a permutation of ω. It

suffices that


QE“for unboundedly many i < κ,

for some g ∈ Ki we have f
˜
◦ g ◦ (f

˜
)−1 ∈ Ki+1 \Ki.”

(∗)

Why does this suffice? Suppose that (∗) holds and we had found a cofinality

witness 〈K ′i : i < κ〉 in VQE∗R
˜ such that

∧
i<κ

(
K ′i ∩ Sym(ω)V = Ki

)
. Let G

be QE ∗ R
˜

-generic over V. Take j < κ such that f
˜

[G] ∈ K ′j . Then we find

according to (∗) some i ≥ j and some g ∈ Ki such that f
˜

[G] ◦ g ◦ (f
˜

[G])−1 ∈
Ki+1 \ Ki ⊆ V. But this contradicts the facts that f

˜
[G] ◦ g ◦ (f

˜
[G])−1 ∈ K ′i

(because this is a subgroup) and K ′i ∩ Sym(ω)V = Ki.

Proof of (∗): Let p ∈ QE and j < κ. Let ω \ dom(p) be the disjoint union of

A0, A1, both infinite subsets of ω respecting E.

Let g0 ∈ Sym(ω) be such that it has order two and {n : g0(n) 6= n} = A0.

Take A′0 ⊇ A0 such that A′0 \ A0 is infinite. Let g′0 ∈ Sym(ω) be such that it

has order two and {n : g′0(n) 6= n} = A′0. Let g0, g
′
0 ∈ Ki(∗), i(∗) ≥ j.

Also S′ = {g ∈ SE,A′0 : g has order two and does not have a fixed point

in some coinfinite subset of A′0 or does not have a fixed point in A′0} together

with all permutations that move only finitely many points generates SE,A′0 . In

order to see this, write each element π of SE,A′0 as a union of disjoint cycles. All

cycles are of finite length, because π respects E. Let π`, ` < L, enumerate all

the disjoint cycles in one fixed E-class [n]E , so that π � [n]E =
∏
`<L π`. First

we write any cycle as π` = (a0, a1, . . . , ak−1), which means that π`(ai) = ai+1

and π`(ak−1) = a0.

In the case of even k, we write π` as a product of two permutations of or-

der two, whose domain is {a0, a1, . . . , ak−1} and {a1, . . . , a k
2
−1, a k

2
+1, . . . , ak−1}

respectively: π` = π1
` ◦ π0

` , where π0
` = (a0, ak−1)(a2, ak−1) . . . (a k

2
−1, a k

2
) and

π1
` = (a1, ak−1)(a3, ak−2) . . . (a k

2
−1, a k

2
+1).

For odd k, we have that (a0, a1, . . . , ak−1) = (a0, ak−1)(a0, . . . , ak−2). We

write π2
` = (a0, ak−1) and treat π′` = (a0, . . . , ak−2) according to the former

case and thus get π` = π2
` ◦ π1

` ◦ π0
` . In order to have more uniform notation

we choose π2
` to be the identity on the domain of the cycle in the case of even

length.
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So we decompose π � [n]E =
∏
`<L π

0
` ◦
∏
`<L π

1
` ◦
∏
`<L π

2
` . For j = 0, 1, 2,

πj[n]E
=
∏
`<L π

j
` is a permutation of order 2, and depending on the the number

of cycles of uneven length in π there may be fixed points in A′0 in π0
[n]E

. There

are fixed points in π1
[n]E

and π2
[n]E

. We set πj =
⋃
{πj[n]E

: n ∈ R} for some set

of representatives R for E. Now the set of fixed points of πj is either ω \A′0 or

ω \A for some subset A of A′0. W.l.o.g. we assume that A is infinite.

By assumption SE,A′0 is not included in any Ki, so in particular not included

in Ki(∗). Hence there is g1 ∈ S′ \ Ki(∗). Take i such that g1 ∈ Ki+1 \ Ki.

Necessarily we have κ > i ≥ i(∗) ≥ j.
First case: g1 has finitely many fixed points in A′0. By changing it slightly

we may assume that is has no fixed point in A′0. Now there is a permutation f

of A′0 respecting E such that f is an isomorphism from (A′0, g1) onto (A′0, g
′
0),

because any two permutations of order two without fixed points are conjugated.

Hence n ∈ A′0 ⇒ f(g′0(n)) = g1(f(n)).

Second case: g1 has infinitely many fixed points in A′0. Of course g1 moves

infinitely many points in A′0. Now there is a permutation f of A′0 respecting

E such that f is an isomorphism from (A′0, g1) onto (A′0, g0), because any two

permutations of order two with an infinite and coinfinite set of fixed points are

conjugated. Hence n ∈ A′0 ⇒ f(g0(n)) = g1(f(n)).

Let q = p∪f . The condition q forces that f
˜
◦g0◦(f

˜
)−1 = g1, or f

˜
◦g′0◦(f

˜
)−1 =

g1, g1 ∈ Ki+1 \Ki, and i ∈ (j, κ), g0, g
′
0 ∈ Ki(∗) ⊆ Ki, so (∗) is proved. �

Claim 1.5. Assume that 〈Ki : i < κ〉 is a cofinality witness. Assume that

K0 contains all permutations that move only finitely many points. Then the

following are equivalent:

(α) There is some E ∈ Econ, such that for every i < κ and for every E-

respecting A ∈ [ω]ℵ0 we do have Ki 6⊇ SE,A.

(β) For every E ∈ Econ, for every i < κ and for every E-respecting A ∈ [ω]ℵ0

we do have Ki 6⊇ SE,A.

(γ) There is some f ∈ F , such that for every i < κ do we have that Sf 6⊆ Ki.

(δ) For every f ∈ F , for every i < κ do we have that Sf 6⊆ Ki.

Proof. The implications (β)⇒ (α) and (δ)⇒ (γ) are trivial. We shall not use

(β)⇒ (α) but close a circle of implications as follows: (β)⇒ (δ) and (α)⇒ (β)

and (γ)⇒ (α).

Now we prove ¬(δ)⇒ ¬(β). Let f and i∗ exemplify the failure of (δ).

By the definition of F we have that lim〈f(n) − n : n ∈ ω〉 = ∞. Hence we

may choose a strictly increasing sequence 〈ki : i ∈ ω〉 such that (∀i ∈ ω)(∀n ≥
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ki)(f(n) ≥ i+n). Then we take E = {[ki, ki+i) : i ∈ ω}∪{[ki+i, ki+1) : i ∈ ω}
and A =

⋃
i∈ω[ki, ki + i). A is infinite and coinfinite. Then we have that

SE,A ⊆ Sf ⊆ Ki∗ , so ¬(β).

Now we show ¬(β) implies ¬(α). This follows from

Subclaim 1: For all E,E′ ∈ Econ and E-respecting A ∈ [ω]ℵ0 there are

f1, f2 ∈ Sym(ω) such that

SE′,ω ⊆ ((f1)−1 ◦ SE,A ◦ f1) ◦ ((f2)−1 ◦ SE,A ◦ f2).

Proof. Enumerate the E′-classes with order type ω. Let f1 inject the even-

numbered E′-classes into high enough (there are large enough ones by the

definition of Econ) E classes that lie in A. The E-classes need not be cov-

ered, it is enough that nE′m → f1(n)Ef1(m). We fill this function up to a

permutation of ω and call it f1. Let f2 do the same with the odd-numbered E′-

classes. If g ∈ SE′,ω then g = g1 ◦ g2 where g1 is the identity on odd-numbered

E′-classes and g2 is the identity on even-numbered E′-classes. We have that

fi ◦ gi ◦ (fi)
−1 ∈ SE,A for i = 1, 2 and thus Subclaim 1 and (¬(β) implies ¬(α))

are proved.

To complete a cycle of implications, we show ¬(α)⇒ ¬(γ). First we need a

similar claim:

Subclaim 2: For all E ∈ Econ, E-respecting A ∈ [ω]ℵ0 there are there is

f ∈ Sym(ω) such that

SE,ω\A ⊆ f−1 ◦ SE,A ◦ f.

Proof. Enumerate the E-classes which lie in ω \A with order type less or equal

ω. Let f inject them into high enough E classes that lie in A. As above, the

E-classes need not be covered, it is enough that nEm → f(n)Ef(m). We fill

this function up to a permutation of ω and call it f . If g ∈ SE,ω\A we have that

f ◦ g ◦ f−1 ∈ SE,A, and thus Subclaim 2 is proved.

Now suppose ¬(α). To prove ¬(γ) let f ∈ F . We choose by induction on

k ∈ ω, mi such that m0 = 0, mk+1 > mk and (∀n < mk)(f(n) < mk+1).

Now we define two equivalence relations.

E0 = {[m2k,m2k+2) : k ∈ ω},

E1 = {[m2k+1,m2k+3) : k ∈ ω} ∪ {[0,m1)}.

By our assumption ¬(α) there is some i < κ and there are E-respecting

A0, A1 ∈ [ω]ω such that SE`,A` ⊆ Ki for ` = 0, 1. Now note that
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(∗)1 If π ∈ Sf then we can find π` ∈ SE`,ω for ` = 0, 1 such that π = π1 ◦ π0.

Why?

By the definition of Sf and E`, for any x ∈ ω, xE0π(x) or xE1π(x).

Now we choose π0(x) and π1(x) by cases.

We write π as a (possibly infinite) product of disjoint finite or infinite

cycles. It is enough to show how to decompose each cycle. We write

it explicitly for a finite cycle (a0, a1, . . . ak−1). Infinite cycles are not

harder to treat. We write aE′1b for (aE1b and not aE0b). Then we have,

say, a0E0a1, . . . , ai1−1E0ai1 , ai1E
′
1ai1+1, ai1+1E0ai1+2, . . . , ai2−1E0ai2 ,

ai2E
′
1ai2+1, ai2+1E0ai2+2, . . . ,airmaxE

′
1airmax+1, . . . , ak−1E0a0 through

the whole cycle. We assumed that irmax < k − 1. The complementary

case is treated similarly.

Since (a0, a1, . . . ak−1) is a cycle, for each n2k+1 we have: If it appears

for some r as a border in airE
′
1air+1 in the sense that air < n2k+1 ≤

air+1 then there is a matching ir′ , call it h(ir) such that ah(ir)E
′
1ah(ir)+1

and ah(ir) ≥ n2k+1 > ah(ir)+1. For all involved n2k+1, we choose match-

ing pairs so that {ir : 0 ≤ r < rmax} is partitioned into pairs {ir, h(ir)}.
We set g = h ∪ h−1 and thus get a bijection of {ir : 0 ≤ r < rmax}.

Now we set π0(aj) = aj+1 if j 6= ir for all r. We set π0(air) = ah(ir)+1

for 0 ≤ r < rmax. So π0 is a bijection of {a0, . . . ak−1} and it respects

E0.

Now we set π1(aj) = aj if j 6= ir + 1(modk) for all r. We set

π1(ah(ir)+1) = air+1 for 0 ≤ r < rmax. So π1 is a bijection of {a0, . . . ak−1}
and it respects E1. Now it is easy to check that π = π1 ◦ π0.

(∗)2 Let for ` = 0, 1 choose f` ∈ Kj as in Subclaim 2, such that SE`,ω\A` ⊆
(f`)

−1 ◦ SE`,A` ◦ f`. W.l.o.g. j ≥ i. Since SE`,ω = SE`,A` ◦ SE`,ω\A` we

have that SE`,ω ⊆ Kj for ` = 0, 1 and hence by (∗)1 that Sf ⊆ Kj , that

is ¬(γ). �

Claim 1.6. Assume that 〈Ki : i < κ〉 is a cofinality witness such that K0

contains all the permutations that move only finitely any points. If b > κ, then

clause (γ) of Claim 1.5 holds (and hence all the other clauses hold as well).

Proof. For each i < κ choose πi ∈ Sym(ω) \ Ki. Since b > κ there is some

f ∈ ωω such that (∀i < κ)(∀∞n)(πi(n) < f(n)) and w.l.o.g. f ∈ F . if Sf were a

subset of Ki, then we had that πi ∈ Ki, which is not the case. So f exemplifies

clause (γ) of Claim 1.5. �
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Definition 1.7. (1) Let E ∈ Econ. We set

Q′E = {f : f is a permutation of some coinfinite subset of ω such that

(a) n ∈ dom(f)⇒ nEf(n),

(b) for every k < ω for some n we have k ≤ |[n]E) \ dom(f)|}.

The order is by inclusion.

(2) We call f̄ = 〈fi : i < α〉, Q′E-o.k. if α ≤ ω1 and for i ≤ j < α,

fi ⊆∗ fj ∈ Q′E (i.e. {n ∈ dom(fi) : n 6∈ dom(fj) ∨ fi(n) 6= fj(n)} is

finite). For f̄ being Q′E-o.k. we set Q′E(f̄) = {g ∈ Q′E : g =∗ fi for

some i}, where fi =∗ g iff fi ⊆∗ g and g ⊆∗ fi. The order is inherited

from Q′E.

(3) We write E for the initial segment relation for sequences of ordinal

length, i.e., 〈gβ : β < γ〉 E 〈fβ : β < α〉 iff 〈gβ : β < γ〉 = 〈fβ : β <

γ〉.

Remarks. 1) Claims 1.4 and 1.5 hold for Q′E as well with the analogously mod-

ified definition of S′E,A. This is shown with the same proofs. The domains

of the involved partial permutations must be arranged such that they respect

1.7(1)(b), but they need not be unions of equivalence classes. The q ∈ QE ful-

fil requirement 1.7(1)(b) automatically, because we have that lim〈|[n]E | : n ∈
ω〉 = ω and that the domain of q needs to be coinfinite and needs to be a union

of equivalence classes.

2) Both QE and Q′E can serve for our purpose. Q′E exhibits the following

“independence of E”: For E0, E1 ∈ Econ (∀p ∈ Q′E1
) (∃q) (p ≤ q ∈ Q′E1

∧
(Q′E1

)≥p ∼= Q′E0
).

3) Note that for α < ω1, if f̄ = 〈fβ : β ∈ α〉 Q′E-o.k., then we have that

Q′E(f̄) is Cohen forcing.

Claim 1.8. Let E be as in Definition 1.7.

(1) Q′E is proper, even strongly proper, with the Sacks property (the last is

more than QE).

(2) If f̄ = 〈fβ : β < α〉 is as in 1.7(2), and α < ω1 and Q′E(f̄) ⊆ M ,

ω + 1 ⊆ M ⊆ (H(χ),∈), M a countable model of ZFC−, then we can

find fα such that

(a) f̄ f̂α is Q′E-o.k.

(b) If f̄ f̂α E f̄ ′ and f̄ ′ is Q′E-o.k., then fα is (M,Q′E(f̄ ′))-generic.

The genericity is independent of f̄ ′ in the following sense: For

every I there is some finite J ⊆ I, J ∈ M such that for all f̄ ′
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the following holds: If I ⊆ Q′E(f̄ ′) is predense and a member of

M , then J is predense above fα in Q′E(f̄ ′).

Proof. (1) We prove the Sacks property. Let f
˜
∈ V Q′E ∩ ωω. We take bi(n)

as in the proof of the ωω-boundedness for QE (which applies also to Q′E) in

Claim 1.2, but we do not require that bi(n) respects E. Additionally we choose

bi(n) so small that there are only fewer than n permutations of
⋃
k≤n bi(k). So

often, but not cofinitely often, bi(n) will be empty. Then we take qn as there

and collect into S(n) all the possible values forced by qn ∪ π for f
˜

(n), when π

ranges over the permutations of bn.

(2) Let 〈f̄ ′n : n ∈ ω〉 enumerate all the β-sequences in M that are Q′E-

o.k. for all β ∈ [α, ω1]. Let τn
˜

, bn, n ∈ ω be as in the proof of 1.2, τn
˜

a

Q′E(f̄ ′
n
)-name. We take an enumeration such that each τn

˜
appears infinitely

often. First we choose f0
α ⊇∗ fβ for all β < α. Here we use that α < ω1. Next

we choose fnα ⊆∗-increasing with n, and i(n) strictly increasing with n such that⋃
k≤n bi(k)∩dom(fnα ) = ∅ and such that if f̄ f̂nα E f̄ ′

n
and π is a permutation of⋃

k≤n bi(k) then fnα ∪ π 
Q′E τn˜
∈ V . Let J contain one member i of I for each

permutation π of
⋃
k≤n bi(k) that i is compatible with fnα ∪π. Thus J is a finite

subset of I. The choice of fnα is independent of f̄ ′
n
, because (fnα ∪π 
Q′E τn˜

∈ V
and f̄ f̂nα E f̄ ′) implies fnα ∪ π 
Q′E(f̄ ′) τn

˜
∈ V, independently of the choice of

f̄ ′. We set fα =
⋃
n∈ω f

n
α , and by one of the equivalent characterizations of

(M,Q′E(f̄ ′))-genericity [7, III, Theorem 2.12] we are done. �

2. Arranging g = ℵ1, b = cf(Sym(ω)) = ℵ2

Starting from a ground model with a suitable diamond sequence we find a

forcing extension with the constellation from the section headline. The require-

ments on the ground model can be established by a well-known forcing (see [4,

Chapter 7]) starting from any ground model, and are also true in L (see [3]).

Definition 2.1. (1) We say A is a (κ, g)-witness if κ = cf(κ) > ℵ0 and

(α) A ⊆ [ω]ℵ0,

(β) if k < ω and f` : ω → ω is injective for ` < k then for some

A′ ⊆ A of cardinality < κ we have that for any A that is a finite

union of members of A \ A′

{n :
∧
`<k

f`(n) 6∈ A} is infinite.

(2) We say M̄ κ-exemplifies A if

(a) A is a (κ, g)-witness,
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(b) M̄ = 〈Mi : i < κ〉 is ≺-increasing and continuous, and ω + 1 ⊆
M0 and P(ω) ⊆

⋃
i<κMi,

(c) Mi ⊆ (H(χ),∈) is a model of ZFC− and |Mi| < κ and (Mi |=
|X| < κ)⇒ X ⊆Mi,

(d) M̄ � (i+ 1) ∈Mi+1,

(e) for i non-limit, there is Ai ∈Mi such that A ∩Mi = Ai,

(f) if i < κ, k < ω and f` ∈ Mi is an injective function from ω to

ω for ` < k, and k′ < ω, A` ∈ A \Mi for ` < k′, then

{n :
∧
`<k

f`(n) 6∈ A0 ∪ · · · ∪Ak′−1} is infinite.

(3) We say M̄ leisurely exemplifies A if (a) to (f) above are fulfilled and

additionally;

(g) κ = sup{i : Mi+1 |= “Ai+1 = ℵ0”}.

Definition 2.2. (1) We say (P,A
˜

) is a (µ, κ)-approximation if

(α) P is a c.c.c. forcing notion, |P | ≤ µ,

(β) A
˜

is a set of P -names of members of ([ω]ℵ0)V
P

, each hereditar-

ily countable, and for simplicity they are forced to be pairwise

distinct,

(γ) 
P “A
˜

is a (κ, g)-witness.”

(2) If µ = κ we may write just κ-approximation. If κ = ℵ1 we may omit it.

We write (∗, κ)-approximation if it is a (µ, κ)-approximation for some

µ.

(3) (P1,A
˜

1) ≤κapp (P2,A
˜

2) if:

(a) (P`,A
˜
`) is a (∗, κ)-approximation.

(b) P1 l P2,

(c) A
˜

1 ⊆ A
˜

2 (as a set of names, for simplicity),

(d) if k < ω and A0
˜
, . . . , Ak−1

˜
∈ A

˜
2 \ A

˜
1 then


P2“ if B ∈ ([ω]ℵ0)V
P1 ,

f` ∈ (Bω)V
P1

for ` < k are injective, then{
n ∈ B :

∧
`<k

f`(n) 6∈
⋃
`<k

A`
˜

}
is infinite”.

Remark. We mean A
˜

1 ⊆ A
˜

2 as a set of names. It is no real difference if A
˜

is a

P -name in 2.2(1) and if in (3) we have 
 A0,
˜
. . . , Ak−1

˜
∈ A

˜
2 \ A

˜
1.
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Claim 2.3. ≤κapp is a partial order.

Proof. We check (3) clause (d) of the definition. Let (P1,A
˜

1) ≤κapp (P2,A
˜

2)

and (P2,A
˜

2) ≤κapp (P3,A
˜

3). Let k < ω, f
˜
` be P1-names of injective functions

from ω to ω . Let G ⊆ P3 be generic over V. So let A` ∈ A
˜

3[G] for ` <

m. We assume that for ` < m0 ≤ m we have that A`
˜
∈ A

˜
2 and that that

{A`
˜

: ` < m} ⊆ A
˜

3 \ A
˜

2. By the assumptions on P1 we have that B1 ={
n < ω :

∧
`<k f`(n) 6∈

⋃
{A` : ` < m0}

}
is infinite. It belongs to V[G ∩ P2].

Since we have that (P2,A
˜

2) ≤κapp (P3,A
˜

3) and {A`
˜

: ` ∈ [m0,m)} ⊆ A
˜

3 \ A
˜

2

and B1, f0, . . . , fk−1 ∈ V[G ∩ P2], by Definition 2.2(3) clause (d) we are done.

Claim 2.4. If 〈(Pi,A
˜
i) : i < δ〉 is a ≤κapp-increasing continuous sequence

(continuous means that in the limit steps we take unions), then (P,A
˜

) =

(
⋃
i<δ Pi,

⋃
i<δ A˜ i) is an ≤κapp-upper bound of the sequence, in particular, a

(∗, κ)-approximation.

Proof. The only problem is “(P,A
˜

) is a κ-approximation.”

Case 1: cf(δ) > ℵ0. Let k < ω, f
˜
` be P -names of injective functions from ω

to ω . So for some i < δ we have that 〈f`
˜

: ` < k〉 is a Pi-name. Let G ⊆ P

be generic over V. In V[G∩Pi], there is some A
˜
′ ⊆ A

˜
such that A

˜
′ ∈ ([A

˜
i[G∩

Pi]]
<κ)V[G∩Pi] as required in V[G ∩ Pi] for 〈f`

˜
[G ∩ Pi] : ` < k〉. We shall show

that A
˜
′ is as required in V[G] for 〈f`

˜
[G∩Pi] : ` < k〉. So let A` ∈ A

˜
[G] \A

˜
′[G]

for ` < m, w.l.o.g. A`
˜
∈ A

˜
, A` = A`

˜
[G]. We assume that for ` < m0 ≤ m we

have that A`
˜
∈ A

˜
i and that j < δ is such that {A`

˜
: ` < m} ⊆ A

˜
j . By the

assumptions on Pi we have that B1 =
{
n < ω :

∧
`<k f`(n) 6∈

⋃
{A` : ` < m0}

}
is infinite. It belongs to V[G ∩ Pi]. Since we have that (P,A

˜
i) ≤κapp (Pj ,A

˜
j)

and {A`
˜

: ` ∈ [m0,m)} ⊆ A
˜
j \ A

˜
i and B1, f0, . . . , fk−1 ∈ V[G ∩ Pi], by

Definition 2.2(3) clause (d) we are done.

Case 2: cf(δ) = ℵ0. W.l.o.g. δ = ω. So let k < ω, p ∈ P , p 
 “ for ` < k, f`
˜
∈

ωω is injective.” By renaming we may assume w.l.o.g. that p ∈ P0. For every

m < ω we find 〈fm`
˜

: ` < k〉 such that

(∗)1 fm`
˜

is a Pm-name for a P/Gm-name for an injective function from ω to

ω,

(∗)2 if p ∈ Gm ⊆ Pm, Gm generic over V and m,n < ω, then for densely

many q ∈ P/Gm we have that p 
Pm “q 
P/Gm
∧
`<k(f`

˜
) � n =

(fm`
˜

[Gm])) � n”.

We give explicit names in the case that f`
˜

is written in the form f`
˜

=

{((n, a`,n), p) : p ∈ A`,n, n ∈ ω, a`,n ∈ ω} and A`,n are suitable maximal an-

tichains. Then we write fm`
˜

= {(((n, a`,n), p[Gm]), p � Pm) : p ∈ A`,n, n ∈
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12 HEIKE MILDENBERGER AND SAHARON SHELAH

ω, a`,n ∈ ω}. Here the � is a projection function that comes with Pm l P (is a

complete suborder of) as explained in [1].

Let A be the union of all antichains appearing in the names fm`
˜

. By the c.c.c.

A is countable. So easily p 
Pm “fm`
˜
∈ ωA is injective”.

By the hypothesis on Pm and A
˜
m we have that p 
Pm “there is A

˜
m ∈ [A

˜
m]<κ

as in 2.2(1)”. As Pm is c.c.c. and because of the form of A
˜
m there is A

˜
′
m a set

of < κ names from A
˜
m such that

if A0
˜
, . . . , Ak−1

˜
∈ A

˜
m \ A

˜
′
m then

p 
Pm “

{
n :

∧
`<k

fm`
˜

(n) 6∈ A0
˜
∪ · · · ∪Ak′−1

˜

}
is infinite.”

So it is enough to show that A
˜
′ =

⋃
m<ωA˜

′
m is as required. Let k′ < ω,

A0
˜
, . . . , Ak′−1

˜
∈ A

˜
\A

˜
′ and towards a contradiction assume that q 
 “{n < ω :∧

`<k f`
˜

(n) 6∈ A0
˜
∪ · · · ∪Ak′−1

˜
} ⊆ [0,m∗].” So for some m we have that q ∈ Pm,

A0
˜
, . . . , Ak′−1

˜
∈ A

˜
m \ A

˜
′
m. Let q ∈ Gm ⊆ Pm be Pm generic over V. In V[Gm]

we have that B′ = {n ∈ ω :
∧
`<k f

m
`
˜

[Gm](n) 6∈ A0
˜

[Gm] ∪ · · · ∪ Ak′−1
˜

[Gm]} is

infinite. So we can find n ∈ B′ such that n > m∗. Now there are densely many

q′ ∈ P/Gm forcing f`
˜

(n) = fm`
˜

(n), so w.l.o.g. q ≤ q′ ∈ P/Gm, and we find

p′ ∈ G such that p ≤ p′ ∈ P and p′ 
 “f`
˜

(n) = fm`
˜

(n)”. Contradiction. �

Claim 2.5. Assume that (P,A
˜

) is a κ-approximation.

(1) If 
 “Q
˜

is Cohen or just < κ-centred ”, then (P ∗Q
˜
,A
˜

) is a κ-approxi-

mation, and (P,A
˜

) ≤κapp (P ∗Q
˜
,A
˜

).

(2) If in addition 
P “〈wn : n < ω〉 is a set of finite non-empty pairwise

disjoint subsets of ω”, and Q is Cohen forcing, and η
˜

is the P ∗ Q
˜

-

name of the generic, then (P ∗ Q
˜
,A
˜
∪ {
⋃
{wn : η

˜
(n) = 1}}) is a κ-

approximation, and ≤κapp-above (P,A
˜

).

Proof. (1) Let G ⊆ P be P -generic over V. We work in V[G]. It is enough to

prove that in (V[G])Q, A = A
˜

[G] is a (κ, g)-witness. let Q =
⋃
m∈µQm, Qm

directed, µ < κ. So let 
Q “f0
˜
, . . . fk−1

˜
∈ ωω are injective.” For each m < µ

we find 〈fm` : ` < k〉 such that

(∗)1 fm` is a partial function from ω to ω,

(∗)2 if q ∈ Qm, m < µ, n < ω then q 6
Q
“
∨
`<k(∃n′ < n)(fm` (n′) is defined and f`

˜
(n′) 6= fm` (n′))”.

Just take fm` = f`
˜

[Qm]. Since Qm is directed, this is well-defined. If there is

some ` such that dom(fm` ) is infinite, then for 〈fm` : ` < k,dom(fm` ) infinite〉
we choose some A′m ∈ [A]<κ as required in Definition 2.1(1). If there is so such
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`, then we let A′m = ∅. Let A′ =
⋃
m<µA′m, it is clearly as required. This is

shown similarly to 2.4. In the the end of the proof of 2.4 write {0} instead of

Gm and Qm instead of Pm.

(2) We prove clause (d) of 2.2(3). Let G ⊆ P be P -generic over V. So

let f0, . . . , fk−1 ∈ V [G], B ∈ ([ω]ω)V[G] and we should prove that {n ∈ B :∧
`<k f`(n) 6∈

⋃
{wm : η

˜
[G](n) = 1}} is infinite. As η

˜
is Cohen and the wn

are pairwise disjoint and finite and non-empty, this follows from a density ar-

gument. �

An ultrafilter D on ω is called Ramsey iff for every function f : ω → ω there

is some A ∈ D such that f � A is injective or is constant.

Claim 2.6. Assume that

(a) V |= CH,

(b) P = 〈(Pi,A
˜
i) : i ≤ δ〉 is ≤ℵ1app-increasing and continuous and |Pi| ≤ ℵ1,

(c) cf(δ) = ℵ1 = |δ|,

(d) δ = sup{i < δ : Pi+1 = Pi ∗ Cohen,A
˜
i+1 = A

˜
i},

(e) G ⊆ Pδ is Pδ-generic over V, and in V[G] we have A =
⋃
i<κA˜ i[G].

Then

(1) In V[G] there is M̄ leisurely exemplifying A.

(2) In V[G] there is a Ramsey ultrafilter D such that for every f ∈ ωω

which is not constant on any set in D and for all but countably [< κ]

many A ∈ A we have that {n : f(n) 6∈ A} ∈ D. In short we say “D is

A-Ramsey [(κ,A)-Ramsey]”.

Proof. (1) By renaming, w.l.o.g. δ = ℵ1. Let χ ≥ (2ℵ0)+ and let M̄0 = 〈M0
i :

i < ω1〉 be increasing and continuous and M0
i ≺ (H(χ),∈, <∗χ), M0

i countable

and A
˜
i ∈ M0

i and M̄0 � (i + 1) ∈ M0
i+1 and such that P(ω) ⊆

⋃
i<ω1

M0
i and

hence
⋃
i<ω1
A
˜
i ∈ M0

i . Let M1
i = M0

i [G], Ai = A
˜
i[G]. Since P is proper, we

have that M1
i is countable. For any i < ω1 we shall find j(i) ≥ i, j(i − 1) + 1

and Nj(i) such that
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(α) M1
j(i) ⊆ Nj(i) ⊆M1

j(i)+1,

(β) Nj(i) |= |Aj(i)| = ℵ0,

(γ) Nj(i) ∈M1
j(i)+1,

(δ) Aδ ∩Nj(i) = Aδ ∩M1
j(i),

(ε) (f
˜
∈
⋃
i<ω1

M0
i ∧ f

˜
[G] ∈M1

i ∩ ωω)→ f
˜

is a Pj(i)-name,

(ζ) M1
i |= |X| < ℵ1 ⇒ X ⊆M1

j(i).

(∗∗)

In M1
i , choose j = j(i) according to the premise (d) such that sup(M1

i ∩ω1) <

j < ω1 and Pj+1 = Pj ∗ Cohen, A
˜
j+1 = A

˜
j and such that (ε) and (ζ) are true.

In M0
j+1 we define the forcing notion Rj = {g : g is a function from some n < ω

intoA
˜
j+1∩M0

j+1}. This is a variant of Cohen forcing, and hence we can interpret

Rj as the Cohen forcing in Pj+1. We let ĝ be generic and set Nj = M1
j [ĝ]. Now

we take a club C in ω1 such that (∀α ∈ C)(∀β < α)(j(β) < α). We let

〈c(i) : i < ω1〉 be an increasing enumeration of C. Finally we let for i < ω1,

Mi = M1
c(i) for limit i.

We have to show that in V[G], M̄ κ-exemplifies A. That is, according to

2.1(2):

(a) A is an (ℵ1, g)-witness,

(b) M̄ = 〈Mi : i < ℵ1〉 is ≺-increasing and continuous, and ω + 1 ⊆ M0

and P(ω) ⊆
⋃
i<κMi,

(c) Mi ⊆ (H(χ),∈) is a model of ZFC− and |Mi| < ℵ1 and (Mi |= |X| <
ℵ1)⇒ X ⊆Mi,

(d) M̄ � (i+ 1) ∈Mi+1,

(e) for non-limit i there is Ai ∈Mi such that A ∩Mi = Ai,

(f) if i < ℵ1, k < ω and f` ∈ Mi is an injective function from ω to ω for

` < k, and k′ < ω, A` ∈ A \Mi for ` < k′, then{
n :

∧
`<k

f`(n) 6∈ A0 ∪ · · · ∪Ak′−1

}
is infinite.

Item (a) follows from 2.4. The items (b) and (c) follow fromM0
i ≺ (H(χ),∈, <∗χ),

M0
i countable and M̄0 � (i+ 1) ∈M0

i+1 and such that P(ω) ⊆
⋃
i<ω1

M0
i .

The item (d) is clear by our choice of Mi.

The item (e) follows from (δ) in (∗∗) and the fact that the c(i)’s are limits

and
⋃
β<c(i)Nj(β) =

⋃
β<c(i)Mj(β)+1.

To show item (f), suppose that i < ω1 and f` ∈Mi for ` < k and A` ∈ A\Mi.

Then we have that f`
˜
∈ V Pi and A` ∈ A\Ai (the latter holds by (e)) and Ai =
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A
˜
i[G] = A

˜
i[Gi] by our choice of C. Hence we may use (Pi,A

˜
i) ≤ℵ1app (Pω1 ,A

˜
)

and get from 2.2(3)(d) if k < ω and A0
˜
, . . . , Ak−1

˜
∈ A

˜
\ A

˜
i then


Pω1“ if B ∈ ([ω]ℵ0)V
Pi ,

f`
˜
∈ (Bω)V

Pi for ` < k, then{
n ∈ B :

∧
`<k

f`
˜

(n) 6∈
⋃
`<k

A`
˜

}
is infinite”,

so we get the desired property in V[G].

(2) We work in V[G]. We take 〈Mi : i < ω1〉 as in (1), and choose by

induction on i < ω1 sets Bi such that

(α) Bi ∈Mi+1,

(β) j < i⇒ Bi ⊆∗ Bj ,

(γ) if i = j + 1 and f ∈ Mj ∩ ωω is injective and A ∈ A ∩ (Mi \Mj), then

Bi ⊆∗ {n : f(n) 6∈ A},

(δ) if i is limit and f ∈Mi ∩ωω then for some n∗ we have that f � (Bi \n∗)
is constant or f � (Bi \ n∗) is injective.

(ε) Bi is <∗χ-first of the sets fulfilling (α) – (δ).

Now it is easy to carry out the induction and to show that D, the filter gen-

erated by {Bi : i < ω1} is as required. We use property (f) of M̄ in order to

show that requirement (γ) is no problem. �

Claim 2.7. Assume that in V

(a) A is a (κ, g)-witness,

(b) D is a (κ,A)-Ramsey,

(c) QD = {(w,A) : w ∈ [ω]<ω, A ∈ D}, (w,A) ≤ (w′, A′) iff w ⊆ w′ ⊆
w ∪A and A′ ⊆ A.

Then 
QD “A is a (κ, g)-witness.”.

Proof. For u ∈ [ω]<ℵ0 let Qu = {(u,A) : A ∈ D}. This is a directed subset and

we have that QD =
⋃
{Qu : u ∈ [ω]<ℵ0}. So assume that p = (w,A) ∈ QD and

p 
QD “f`
˜
∈ ωω is injective for ` < k”.

For q ∈ QD we write pos(q) = {s ∈ [ω]<ℵ0 : ∃B (s,B) ≥ q}, the set of

possible finite extensions. For s ∈ pos(u,B) we set q[s] = (s,B \max(s)). As

usual we write p||ϕ if p 
 ϕ or p 
 ¬ϕ and q ≥tr p iff q ≥ p and q = (wq, Aq),

p = (wp, Ap) and wq = wp.
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For every u ∈ pos(p) we define fu` ∈ ω(ω + 1) as follows:

fu` (n) = m if (∃p ∈ Qu)(p 
 f`
˜

(n) = m),

fu` (n) = ω if (∀m)¬(∃p ∈ Qu)(p 
 f`
˜

(n) = m).
(⊗)

Since D is Ramsey [5] (without Ramsey but using memory [8]) we have that

QD has the pure decision property:

∀p ∈ QD∃q ≥tr p ∀` < k ∀m ∈ ω ∀n ∈ (ω + 1)(
((∃q′ ≥ q)(q′||f`

˜
(n) = m))→ (∃s ∈ pos(q′))(q[s]||f`

˜
(n) = m

)
.

(⊗⊗)

We apply this to our initial p and get some q as in (⊗⊗), which we fix.

For every u ∈ pos(q) and ` < k we can find gu` ∈ ωω injective, such that if

{n : fu` (n) < ω} ∈ D then {n : fu` (n) = gu` (n)} ∈ D.

We call u (v, n)-critical if

(α) u ∈ [ω]<ω,

(β) ∅ 6= v ⊆ {0, . . . , k − 1},

(γ) ` ∈ v ⇒ fu` (n) = ω,

(δ) {m : (∀` ∈ v)f
u∪{m}
` (n) < ω} ∈ D,

(ε) ` < k ∧ ` 6∈ v → {m : f
u∪{m}
` (n) = fu` (n)} ∈ D.

(∗)uv,n

For u (v, n)-critical and ` ∈ v note that limD〈fu∪{m}` (n) : m < ω〉 = ∞.

Proof: If for some k < ω, {m : f
u∪{m}
` (n) < k} ∈ D, then there is some

k′ < k such that X = {m : f
u∪{m}
` (n) = k′} ∈ D. For m ∈ X, we choose

a witness pm ∈ Qu∪{m}, pm 
 f`
˜

(n) = k′. Since D is Ramsey, we may glue

all the witnesses together (find a common second component), and thus get a

condition in Qu that shows that fu` (n) < ω, in contrast to condition (γ).

As D is Ramsey for some A = Au,v,n ∈ D we have if ` ∈ v then 〈fu∪{m}` (n) :

m ∈ A〉 is without repetition.

So we can find for ` ∈ v injective functions hu,v,n` ∈ ωω such that {m :

f
u∪{m}
` (n) = hu,v,n` (m)} ∈ D.

For each injective function h ∈ ωω we have that Ah = {A ∈ A : {n :

h(n) ∈ A} ∈ D} is empty or at least of cardinality strictly less than κ. Let

A′ =
⋃
{Ah : h = gu` for some ` < h, u ∈ [ω]<ℵ0 or h = hu,v,n` where u

is (v, n)-critical and ` ∈ v and ∅ 6= v ⊆ k }. So A′ ⊆ A is of cardinality

strictly less than κ and it is enough to prove that if A0, . . . Ak′−1 ∈ A \A′ then


Q “{n :
∧
`<k f`

˜
(n) 6∈ A0 ∪ · · · ∪Ak′−1} is infinite”.
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THE RELATIVE CONSISTENCY OF g < cf(Sym(ω)) 17

Let A0, . . . , Ak′−1 be given. Set B∗ = A0 ∪ · · · ∪Ak′−1. Towards a contradic-

tion we assume that p∗ ∈ QD, p∗ ≥ q and n∗ < ω and

p∗ 
 “(∀n)

(
n∗ < n < ω →

∨
`<k

f`
˜

(n) ∈ B∗
)

”.

Let M ≺ (H(χ),∈) be countable such that the following are elements of M :

p∗, D, f`
˜

for ` < k, A` for ` < k′, A′, 〈gu` : u ∈ [ω]<ℵ0 , ` < k〉, 〈hu,v,n` : u ∈
[ω]<ℵ0 , ` ∈ v, ∅ 6= v ⊆ k〉.

Let p∗ = (u∗, A∗). Let A� ∈ d and A� ⊆ A∗ be such that (∀Y ∈ D ∩
M)(A� ⊆∗ Y ) and min(A�) ≥ sup(u∗). It is obvious that u∗ ∪ A� is generic

real for QD over M , i.e.: {(u′, A′) ∈ QD ∩M : u′ ⊆ u∗ ∪ A� ⊆ u′ ∪ A′} is a

subset of a (QD)M -generic over M .

As A0, . . . , Ak′−1 ∈ A \ A′ ⊆ A \
⋃
`<kAgu∗` there is n� ∈ [n∗, ω) such that

` < k ⇒ gu
∗
` (n�) 6∈ B∗ and gu

∗
` (n�) = fu

∗
` (n�). Let

U = {u : u∗ ⊆ u ⊆ u∗ ∪A�, u finite, (∀` < k)(fu` (n�) < ω → fu` (n�) 6∈ B∗}.

Now clearly u∗ ∈ U . Choose u� ∈ U such that |{` : fu
�

` (n�) = ω}| is

minimal. If it is zero, we are done. So assume that is is not zero.

We choose by induction on i < ω ni such that

ni ∈ A�,

ni < ni+1,

sup(u�) < ni.

` < k → fu
�

` (n�) = f
u�∪{nj : j<i}
` (n�).

(♦)

By the pure decision property there is some s ∈ pos(u�, A�) such that

(s,A� \max(s)) decides f`
˜

(n�). So for some i and {nj : 0 ≤ j < i} we cannot

choose ni. Let u4 = u� ∪{nj : j < i}. Let v = {` < k : {m : f
u4∪{m}
` (n�) 6=

fu
4

` (n�)} ∈ D} ⊆ {0, . . . , k − 1}. Let C = {m : (` ∈ v → f
u4∪{m}
` (n�) 6=

fu
4

` (n�)) and (` 6∈ v → f
u4∪{m}
` (n�) = fu

4
` (n�))}. So C ∈ D and necessarily

` ∈ v ∧ m ∈ C ⇒ f
u4∪{m}
` (n�) < fu

4
` (n�) = ω. So u4 is (v, n�)-critical.

Hence C1 = {m :
∧
`∈v h

u4,v,n�

` (m) 6∈ B∗} ∈ D. Choose ni ∈ C1∩C∩A� large

enough. If v = ∅, it can serve as ni and we have a contradiction. Recall that

hu
4,v,n�

` (ni) = f
u4∪{ni}
` (n�) < ∞. If v 6= ∅, then u4 ∪ {ni} contradicts the

choice of u�, because we had required that |{` : fu
�

` (n�) = ω}| is minimal.

�

Later we shall use Claim 1.6 in order to fulfil premise (2) of the following

Claim 2.8, which is together with 2.4, 2.5, 2.6, 2.7 the justification of the single
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18 HEIKE MILDENBERGER AND SAHARON SHELAH

steps of our final construction of length ℵ2. Claim 2.8 serves to show that certain

(and in the end we want to have: all) cofinality witnesses in intermediate ZFC

models are not cofinality witnesses any more in any forcing extension.

Claim 2.8. Assume that V, cf(δ) = ω1, 〈(Pi,A
˜
i) : i ≤ δ〉 are as in 2.6, and

(1) 
Pδ “〈Ki
˜

: i < ω1〉 is a cofinality witness and {f ∈ Sym(ω) : (∀∞n)f(n) =

n} ⊆ K0
˜

”.

(2) Let E0 = {(n1, n2) : (∃n)(n1, n2 ∈ [n2, (n+ 1)2)}, A =
⋃
{[(2n)2, (2n+

1)2) : n ∈ ω}. (Any E ∈ Econ and A ∈ [ω]ℵ0 could have served as well.)

Assume that in VPδ , SE0,A is not included in any Ki.

(3) δ = sup{α : Qα
˜

is Cohen,A
˜
α = A

˜
α+1}.

Then there is a Pδ-name Q
˜

such that

(α) (Pδ,A
˜
δ) ≤κapp (Pδ ∗Q

˜
,A
˜
δ),

(β) 
Pδ “Q
˜
⊆ Q′E0

˜
(where Q′E0

is from 1.7).

(γ) 
Pδ∗Q
˜

“g
˜

=
⋃
{f
˜

: (p, f
˜

) ∈ G
˜

(Pδ ∗ Q
˜

)} is a permutation of ω and for

arbitrarily large i < ω1, 〈g
˜
,Ki

˜
〉Sym(ω) ∩ Sym(ω)V[Pδ] 6= Ki

˜
”.

Proof. As in 2.6, we assume w.l.o.g. δ = ω1. We can find in V, ḡ∗ = 〈g∗i
˜

: i <

ω1〉 such that 
Pω1 “g∗i
˜
∈ Sym(ω) \Ki

˜
, g∗i

˜
∈ SE0,A, and g∗0

˜
∈ M0 ≺ (H(χ,∈),

M0 countable”. In V we now choose by induction on i < ω1 Mi
˜
, Ni

˜
, pi
˜
, αi such

that

(a) 〈Mj

˜
: j ≤ i〉 is a sequence of VPδ -names as in 2.6,

(b) 
Pδ Q̄,A˜
, ḡ∗

˜
, 〈Ki

˜
: i < ω1〉 ∈M0

˜
,

(c) Ni
˜

= {τ
˜

1,n : n ∈ ω} is a countable Pαi-name such that 
Pαi “Mi[GPαi
˜

] ⊆
Ni ⊆ (H(χ)V[Pαi ],∈), ||Ni|| = ℵ0, Ni |= ZFC−”,

(d) pi
˜
∈ Q′E0

is hereditarily countable and a Pαi-name of a member Q′E0
,


Pαi 〈pj
˜

: j ≤ i〉 is ⊆∗-increasing and ∈ Ni
˜
, pi
˜
∈ Ni

˜
,

(e) in VPδ we have Mi
˜

[Gδ] = Mi and 〈Nj

˜
: j ≤ i〉 ∈Mi+1, sup(Mi ∩ ω1) ≤

αi ∈Mi+1, Qαi
˜

is Cohen and Aαi = Aαi+1,

(f) if I
˜
∈ Ni is a Pαi-name of a predense subset of Q′E0

(〈pj
˜

: j < i〉) = Qαi
˜

,

then some finite J(I
˜

) ⊆ I
˜

, J(I
˜

) ∈ Ni, is predense above pi
˜

in Q′E0
(〈pj

˜
:

j ≤ i〉) in the universe VPαi+1 .

At limit stages i we take for Mi the union of the former Mj . Otherwise choose

Mi as required. Next we choose αi such that sup(Mi ∩ ω1) ≤ αi < ω1 and Qαi
˜is Cohen and A

˜
αi = A

˜
αi+1

. We work in V[Pαi ]. We set N0
i = Mi[GPαi ]. We

now interpret the Cohen forcing as R0 ×R1 ×R2 where

R0 = {h : (∃n < ω)h : n→ P(ω)Mi}
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THE RELATIVE CONSISTENCY OF g < cf(Sym(ω)) 19

ordered by inclusion. In N1
i = N0

i [GR0 ] = Mi[GPαi ][GR0 ] we let

R1 = {(n, q) : n < ω, q ∈ Q′E0
(〈pj : j < i〉)},

ordered by (n1, q1) ≤ (n2, q2) ⇔ n1 ≤ n2 ∧ q1 � n = q2 � n ∧ q1 ≤ q2.

Since (Q′E0
)N

1
i is countable we have that R1 is Cohen forcing. Let N2

i =

N1
i [GR0 , GR1 ] = Mi[GPαi ][GR0 ][GR1 ], q′i =

⋃
{q : (n, q) ∈ GR1}.

Now we choose qi ⊇∗ q′i such that qi has the properties of fα in 1.8(2)(b) for

the sequence f̄ = 〈pj : j < i〉. So clearly qi ∈ (Q′E0
)V[Pαi+1],

∧
j<i pj ⊆∗ qi.

We can find in N2
i a sequence 〈wik : k < ω〉 and h∗i such that

(♦♦)



k1 6= k2 ⇒ wik1 ∩ w
i
k2

= ∅,
wik is included in some E0-equivalence class,

wik ⊆ ω \ dom(qi),

∀n∃m
(∣∣∣∣[m]E \ dom(qi) \

⋃
k∈ω w

i
k

∣∣∣∣ > n

)
,

h∗i ∈ Sym(ω),

h∗i maps {[n]E0 : n ∈ A} onto {wik : k < ω}
more precise, ĥ∗i does this, where for b ⊆ ω, ĥ∗i (b) = range(h∗i � b).

Let

R2 =

{
f : (∃m < ω)

(
f is a permutation of

⋃
k<m

wik mapping wik into itself

)}
,

ordered by inclusion. In N3
i = N2

i [GR2 ] let f�i =
⋃
GR2 so N3

i = N2
i [f�i ].

So N3
i ∈ VPαi+1, and hence is a Pαi+1-name. As Pαi+1 has the c.c.c., we can

assume that this name is hereditarily countable. Now N3
i ∩ ω1 = N0

i ∩ ω1 =

Mi[Gαi ] ∩ ω1 = δi < ω1, hence N3
i ∩ Sym(ω)V[Pδ] ⊆ Kδi . Let

f�i = (h∗i ◦ g∗δi ◦ (h∗i )
−1 �

⋃
k<ω

wik) ◦ f�i .

It is still generic for R2 over VPαi [GR0 , GR1 ]. We set N4
i = N3

i [f�i ], q4
i = qi∪f�i .

Now (N4
i , q

4
i ) are as required. We choose (Ni

˜
, q4
i

˜
) by taking Pω1-names (Ni

˜
, q4
i

˜
)

in V for them. Finally we choose by 1.8(2) some pi
˜

such that pi
˜
≥ q4

i
˜

and pi
˜

is

(Ni
˜
, Qαi

˜
)-generic over Ni

˜
and as in (f).

Item (α) of the conclusion is seen as follows: We have for i < ω1 that

VPω1 |= “Q′E0

˜
(〈pj

˜
: j < i〉) is c.c.c.”. Hence we have by 2.5 that (Pδ,A

˜
δ) ≤κapp

(Pδ∗Q′E0

˜
(〈pj

˜
: j < i〉),A

˜
δ), and (Pδ∗Q′E0

˜
(〈pj

˜
: j < i〉),A

˜
δ) ≤κapp (Pδ∗Q′E0

˜
(〈pj

˜
:

j < k〉),A
˜
δ) for i < k ∈ ω1. Since Q

˜
= Q′E0

˜
(〈pj

˜
: j < ω1〉) =

⋃
i<ω1

Q′E0

˜
(〈pj

˜
:

j < i〉) we can apply 2.4.

Item (β) of the conclusion follows from the choice of Q
˜

.
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20 HEIKE MILDENBERGER AND SAHARON SHELAH

For item (γ): Fix i. Note that δi ≥ i. We have in VPω1 that f�i ∈ Kδi =

Kδi
˜

[Gω1 ]. We have that pi ∈ (Q′E0
)V

Pαi and

pi 
Pω1∗Q
˜
g
˜
�
⋃
k∈ω

wik = f�i
˜
�
⋃
k∈ω

wik

and hence

(�) pi 
Pω1∗Q
˜
g∗δi
˜
� A = (h∗i )

−1 ◦ g
˜
◦ (f�i )−1 ◦ (h∗i ) � A,

and thus, since gδi � A contains the same information as gδi since the latter is

in SE0,A, the equation � gives a witness in 〈g
˜
,Kδi

˜
〉Sym(ω) ∩ Sym(ω)V[Pω1 ] \Kδi

˜and hence shows the inequality claimed in (γ). �

In order to organize the bookkeeping in our final construction of length ℵ2 we

use ♦(S2
1) in order to guess the names 〈Ki

˜
: i < ω1〉 of objects that we do not

want to have as cofinality witnesses. We recall S2
1 = {α ∈ ω2 : cf(α) = ℵ1}.

For E ⊆ ω2 being stationary in ω2 we have the combinatorial principle ♦(E):

There is a sequence 〈Xδ : δ ∈ E〉 such that for every X ⊆ ω2 the set {δ ∈ E :

Xδ = X ∩ δ} is stationary in ω2.

For more information about this and related principles and their relative

consistency we refer the reader to [3, 2].

Conclusion 2.9. Assume that V fulfils 2ℵ0 = ℵ1 and ♦S2
1
. Then for some

forcing notion P ∈ V of cardinality ℵ2 in VP we have that g = ℵ1 and

cf(Sym(ω)) = b = ℵ2.

Proof. Let H(ℵ2) =
⋃
i<ℵ2 Bi, Bi increasing and continuous, Bi+1 ⊇ [Bi]

≤ℵ0

and 〈Xi ⊆ Bi : i ∈ S2
1〉 is a ♦S2

1
-sequence. We choose by induction on i < ℵ2

(Pi,A
˜
i, di) such that

(α) (Pi,A
˜
i) is an ℵ1-approximation, |Pi| ≤ ℵ1,

(β) (Pi,A
˜
i) is ≤κapp-increasing and continuous,

(γ) di is a function from A
˜
i to ω1,

(δ) if i < ℵ2 and 〈wk
˜

: k < ω〉 is a Pi-name and 
Pi 〈wk
˜

: k < ω〉 are

non-empty pairwise distinct and γ < ω1 then for some j ∈ (i, ω2) we

have that 
Pj+1 for some infinite u ⊆ ω and some A
˜
∈ A

˜
j+1 we have

that
⋃
k∈uwk ⊆ A˜

∈ A
˜
j+1 ∧ dj+1(A

˜
) = γ,

(ε) for arbitrarily large i < ω2 we have that 
Pi “Qi = QDi and Di is a

Ramsey ultrafilter”,

(ζ) if i ∈ S2
1 and Pi ⊆ Bi, Xi code of the Pi-name 〈Kj

˜
: j < ω1〉 and


Pi “〈Kj

˜
: j ∈ ω1〉 is a cofinality witness of Sym(ω)V[Pi] and {f ∈
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Sym(ω)V[Pi] respects E0 and ⊃ idω\A0
} is not included in any Kj

˜
”,

then 
Pi+1 “ for some f ∈ Sym(ω) for arbitrarily large j < ω1 we have

〈Kj

˜
, f〉Sym(ω) ∩ (Kj+1)Vi

˜
6= (Kj)

Vi

˜
”.

Can we carry out such an iteration? We freely use the existence of limits

from Claim 2.4 and that ≤∗app is a partial order 2.3. The step i = 0 is trivial.

So we have to take care of successor steps.

If i = j + 1 and j 6∈ S2
1 then we can use 2.5 to define (Pα,A

˜
α), and taking

care of clause (δ) by bookkeeping.

If i = j + 1 and j ∈ S2
1 and the assumption of clause (ζ) holds, we apply 2.8

to satisfy clause (ζ), using Q′ζ
˜

= Q
˜

from 2.8(β).

If i = j+1 and j ∈ S2
1 but the assumption of clause (ζ) fails (which necessarily

occurs stationarily often), we apply 2.6 and 2.7.

Having carried out the induction we let P =
⋃
α<ω2

Pα, A
˜

=
⋃
α<ω2

A
˜
α,

d =
⋃
α<ω2

dα. So (P,A
˜

) is an (ℵ2,ℵ1)-approximation. For γ ∈ ω1 we set

A
˜
〈γ〉 = {A

˜
∈ A

˜
: d(A

˜
) = γ}. Now clearly VPℵ2 |= 2ℵ0 = 2ℵ1 = ℵ2. Let G ⊆ P

be generic.

We show: 
P g = ℵ1. For δ < ℵ1 we have that A
˜
〈δ〉[G] is groupwise dense

by clause (δ), and always g ≥ ℵ1. So it is enough to show that the intersection

of the A
˜
〈δ〉[G] is empty. Suppose that it is not, i.e. that there is some B ∈ [ω]ω

such that for δ < ω1 there is some Aδ ∈ A
˜
〈δ〉[G] such that for all δ, B ⊆∗ Aδ.

Now let h : ω → B be an injective function. But now we have a contradiction

to (P,A
˜

) being (ℵ2,ℵ1)-approximation (see 2.2(3)) and to property (2.1(β)) of

A
˜

is a (ℵ1, g)-witness.

We show that 
P b = ℵ2. This follows from clause (ε).

Finally we show that 
 cf(Sym(ω)) > ℵ1. Suppose that 〈Kj

˜
[Gω2 ] : j < ω1〉 is

a cofinality witness in V[Gω2 ]. Then there is a club subset C in ω2 such that for

i ∈ C we have that 〈Kj

˜
[Gi] : j < ω1〉 is a cofinality witness in V[Gi]. By ♦(S2

1)

there is some i ∈ S2
1 such that Xi is a code of a Pi name of 〈Kj

˜
[Gi] : j < ω1〉.

By (the analogues of) Claims 1.4 and 1.6 for Q′E and because of b = ℵ2 and

because of clause (ζ) we get that the sequence 〈Kj

˜
[Gi] : j < ω1〉 does not

lift to a cofinality witness in V[Gω2 ] such that for all j < ω1 we have that

Kj

˜
[Gi] = Kj

˜
[Gω2 ]∩V[Gi]. Hence 〈Kj

˜
[Gω2 ] : j < ω1〉 was no cofinality witness

in V[Gω2 ]. �
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