
CATEGORICITY OF THEORIES IN Lκ∗ω, WHEN κ∗ IS A

MEASURABLE CARDINAL. PART II
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Abstract. We continue the work of [?] and prove that for λ successor, a λ-

categorical theory T in Lκ∗,ω is µ-categorical for every µ,µ ≤ λ which is above

the (2LS(T))+-beth cardinal.

0. Introduction

We deal here with the categoricity spectrum of theories T in the logic: Lκ∗,ω
with κ∗ measurable and more generally, continued the attempts develop classifica-
tion theory of non elementary classes in particular non forking. Makkai and Shelah
[?] dealt with the case κ∗ a compact cardinal. So κ∗ measurable is too high com-
pared with the hope of dealing with T ⊆ Lω1,ω (or any Lκ,ω) but seems quite small
compared to the compact cardinal in [?]. Model theoretically a compact cardinal
ensures many cases of amalgamation, whereas measurable cardinal ensures no max-
imal model. We continue [?], Makkai and Shelah [?], Kolman and Shelah [?]; try
to imitate [?]; a parallel line of research is [?]. Earlier works are [?], [?], [?]; for
later works on the upward  Loś conjecture, look at [?] and [?].

On the situation generally see more [?].
This paper continues the tasks begun in Kolman and Shelah [?]. We use the

results obtained there in to advance our knowledge of the categoricity spectrum of
theories in Lκ∗,ω, when κ∗ is a measurable cardinal.

The main theorems are proved in section three; section one treats of types and
section two describes some constructions.

Note that we may expect to be able to develop better, more informative clas-
sification theory, in particular stability theory, for T ⊆ Lκ∗,ω κ

∗ measurable than
without the measurables assumption, and less informative then the case κ∗ com-
pact.

The notation follows [?], except in two important details: we reserve κ∗ for
the fixed measurable cardinal and T for the fixed λ-categorical theory in Lκ∗,ω
in a given vocabulary L; κ is any infinite cardinal and T is usually some kind of

tree. To recap briefly: T is a λ- categorical theory in Lκ∗,ω, LS(T)
def
= κ∗ + |T|,

K = 〈K,�F 〉 is the class of models of T, where F is a fragment of Lκ∗,ω satisfying
T ⊆ F , |F| ≤ κ∗ + |T|, and for M , N ∈ K, M �F N means that M is an
F-elementary submodel of N .
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2 SAHARON SHELAH

The principal relevant results from [?] are: K<λ has the amalgamation property
(5.5 there), and every member of K<λ is nice (5.4 there). But this assumption (T
categorical in λ) or its consequences mentioned above will be mentioned in theorems
when used.

Let (M1,M0) �F (M3,M2) mean M1 �F M3, M0 �F M2.
(I1, I2) is a Dedekind cut of the linear order I if

I = I1 ∪ I2, I1 ∩ I2 = ∅, ∀x ∈ I1∀y ∈ I2(x < y).

The two sided cofinality of the Dedekind cut (I1, I2) of I, cf(I1, I2) is (cf(I1), cf(I∗2 )),
where I∗2 is the order I2 inverted. The two sided cofinality of I, cf(I, I) = dcf(I) is
(cf(I∗), cf(I)).

Writing proofs we also consider their possible rule in the hopeful classification
theory. But we have been always trying to be careful in stating the assumptions.

Note that [?] improves some of the results of [?]; but they do not fully recapture
the results on the compact case to the measurable case. E.g. there categoricity in
successor λ implies that categoricity start in the relevant Hanf number of omitting
types so in general we deduce categoricity in larger cardinals. For a good under-
standing of this work, the reader is expected to know well [?]. Now it will be helpful
to beware of some “black boxes” [?], [?] for less good source and some knowledge
of [?] or [?] but usually proofs are repeated.

We thank Oren Kolman for writing and ordering notes from lectures on the
subject from Spring 1990 on which the paper is based (you can see his style in the
parts with good language) and Andres Villaveces for corrections.

1. Knowing the right types

The classical notion of type relates to the satisfaction of sets of formulas in a
model. We shall define a post-classical type (following [?], [?] which was followed
by Makkai and Shelah [?], or see [?, §0], but here niceness is involved) and use
this to define notions of freeness and non-forking appropriate in the context of a
λ-categorical theory in Lκ∗,ω. The definitions try to locate a notion which under
the circumstances behave as in [?] and, if you accept some inevitable limitations,
succeed.

Context 1.1. T ⊆ Lκ∗,ω in the vocabulary L, K = {M : M a model of T}, �F as
in the introduction.
Kµ = {M ∈ K : ‖M‖ = µ}, K<κ =

⋃
µ<κ

Kµ, and K = (K,�F ) and we stipulate

K<κ∗ = ∅, hence, e.g., K<κ =
⋃
{Kµ : µ < κ but µ ≥ κ∗} (Why? Models of

cardinality < κ∗ are the parallel of finite ones for first order logic: such models may
have no ≺Lκ∗,ω proper extensions, and using our main tool ultrapower we can tell
little on them. So instead of excluding them many times, we ignore them always).
We let LS(K) = |F|+ κ∗.

We assume if A ⊆ N ∈ K, ‖N‖ ≥ λ, µ = |A| ∈ [κ∗ + T, λ), then for some nice
N ∈ Kµ, A ⊆ M �F N . This is reasonable as by [?, 5.4 p.238] every M ∈ K<λ is
nice. The reader may simplify assuming every M ∈ K<λ is nice.

Remember “M ∈ K is nice” is defined in [?], definitions 3.2, 1.8; nice implies
being an amalgamation base in K<λ (see 3.7). Here for simplicity we mean “amal-
gamation” to include the JEP (the joint embedding property).
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CATEGORICITY OF THEORIES IN Lκ∗ω . . . 3

Definition 1.2. Suppose that M ∈ K<λ is a nice model of T. Define a binary
relation, EM = E<λM , as follows:

(ā1, N1)EM (ā2, N2) if and only if

for ` = 1, 2, N` ∈ K<λ is nice and M �F N`, ā` ∈ N` (i.e., ā` a
finite sequence of members of N`), and there exist a model N and
embeddings h` such that

M �F N, h` : N`→
F
N, idM = h1 �M = h2 �M,

and h1(ā1) = h2(ā2).

Remark: This definition, in fact a generalization for amalgamation bases and more
general, are important in [?], [?], [?], but here we restrict ourselves to nice models.

Fact 1.3. (1) EM is an equivalence relation.
(2) Let M ∈ K<λ, M �F N , ā ∈ N , and for ` = 1, 2, M ∪ ā ⊆ N` �F N ,
‖N`‖ < λ then (ā, N1)EM (ā, N2)

(3) EM is preserved by isomorphism.

Proof. 1) To prove 1.3, let’s look at transitivity.
Suppose (ā`, N`)EM (ā`+1, N`+1), ` = 1, 2. Now M , being nice is an amalgama-

tion base in K<λ thus there are models N ` and embeddings h`0, h`1 of N`, N`+1

over M into N `, with h`0(ā`) = h`1(ā`+1), ` = 1, 2. W.l.o.g., N ` ∈ K<λ (by the
Downward Loewenheim Skolem Theorem). By assumption N2 is nice, hence by [?,
3.5] is an amalgamation base for K<λ, i.e., there is an amalgam N∗ ∈ K<λ, and

embeddings g` : N ` F−→ N∗, amalgamating N1, N2 over N2 w.r.t h1
1, h2

0. In other
words, the following diagram commutes:
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Just notice now that N∗, g1h
1
0, g2h

2
1 witness that (ā1, N1)EM (ā3, N3), since:

g1h
1
0(ā1) = g1(h1

1(ā2)) = g2h
2
0(ā2) = g2h

2
1(ā3).

2), 3) Left to reader. �

Definition 1.4. Suppose that M,N ∈ K<λ are nice, a ∈ N and M �F N . Then

(1) tp(a,M,N), the type of a over M in N , is the EM -equivalence class of
(a,N),

(a,N)/EM = {(b,N1) : (a,N)EM (b,N1)}.
We also say “a ∈ N realizes p”. If ‖N‖ ≥ λ define tp(ā,M,N) by 1.3(2)
(using the hypothesis).

(2) If M ′ �F M ∈ K<λ, p ∈ S(M) (see below) is (a,N)/EM , then p � M ′ =
(a,N)/EM ′ .

(3) If LS(T) < κ ≤ µ ≤ λ, we call M ∈ Kµ κ-saturated if for every nice
N �F M , ||N || < κ and p ∈ S(N), some ā ∈ M realizes p (in M so
necessarily M is nice) or at least for some nice N ′, N �F N ′ �F M , some
a′ ∈ N ′ realizes p in N ′.

(4) Sm(N) = {p : p = tp(ā, N,N1) for any N1, ā satisfying: N �F N1,
‖N1‖ ≤ ‖N‖+ LS(K) and ā ∈ m(N1)},
S(N) = S<ω(N) =

⋃
m<ω

Sm(N).
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CATEGORICITY OF THEORIES IN Lκ∗ω . . . 5

(5) T is µ-stable if N ∈ K≤µ ⇒ |S(N)| ≤ µ.
(6) We say N is µ-universal over M when: M �F N , N ∈ Kµ and if M �F

N ′ ∈ K≤µ then there is a �F -embedding of N ′ into N over M .
(7) We say N is (µ, κ)-saturated over M if there is a �F - increasing continuous

sequence 〈Mi : i < κ〉 such that: M0 = M , N =
⋃
i<κ

Mi, Mi ∈ Kµ and

Mi+1 is µ-universal over Mi. We say N is saturated over M if for some
µ ∈ [LS(T), λ], and some κ ≤ µ, we have: N is (µ, κ)-saturated over M .
So (µ, κ)-saturated over M implies universal over M .

(8) We say K (or T) is stable in µ if for every M ∈ Kµ, M is nice and |S(M)| ≤
µ.

Definition 1.5. We shall write M1

M3⋃
M0

M2 to mean:

M0 �F M1 �F M3, M0 �F M2 �F M3

and there exist suitable operation (I,D,G) and an embedding

h : M3
F−→ Op(M1, I,D,G)

such that h � M1 = idM1
and Rang(h � M2) ⊆ Op(M0, I,D,G) (remember that

Op(M, I,D,G) is the limit ultrapower of M with respect to (I,D,G); see [?, 1.7.4]).
We say that M1,M2 do not fork in M3 over M0 if

M1

M3⋃
M0

M2.

If

M1

M3⋃
M0

M2

does not hold, we’ll write

M1

M3⊎
M0

M2

and say that M1, M2 forks in M3 over M0.

Theorem 1.6. (1) Suppose that

M1

M3⋃
M0

M2 and M2

M3⊎
M0

M1

(failure of
⋃

-symmetry) and M0 �nice M3.

Let µ = κ∗+|T|+||M2||+||M1||. Then for every linear order (I,<) there
exists an Ehrenfeucht–Mostowski model N = EM(I,Φ) with µ (individual)
constants {τ0

i : i < µ} and unary function symbols {τ1
i (xi) : i < µ},

{τ2
i (xi) : i < µ} such that, for M = (N � L) � {τ0

i : i < µ} (i.e., M is a
submodel of N with the same vocabulary as T and universe {τ0

i : i < µ}
i.e., the set of interpretations of these individual constants) and for every
t ∈ I, ` = 1, 2,

M `
t = (N � L) � {τ `i (xt) : i < µ},
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6 SAHARON SHELAH

one has M �F N , M `
t �F N and for s 6= t ∈ I, t < s iff M1

t

N⋃
M
M2
s .

(2) Assume
(a) µ ≥ LS(T), M ∈ Kµ is nice,
(b) for ` = 1, 2 we have Op` is defined by (I`, D`, G`), f`,α ∈ IM for

α < α` with eq(f`,α) ∈ G`, i.e., such that eq(f`,α)/D ∈M I
D|G,

(c) for ` = 1, 2 we have M `
0 = M , M `

1 = Op`(M
`
0), M `

2 = Op3−`(M
`
1),

a`,1α = f`,α/D1 ∈ (M `
0)I`D` |G` = M `

1 and al,2β = f3−`,α/D2 ∈ (M `
2)
I3−`
D3−`
|G3−` =

M `
2 .

Then there are Φ, τ `i (` = 0, i < µ or ` ∈ {1, 2}, i < α`) such that
(α) Φ is a blueprint for E.M. models, |LΦ| ≤ µ, LΦ the vocabulary of Φ so

L ⊆ LΦ,
(β) for any linear order I we have EM(I,Φ) = EML(I,Φ) is the L–reduct

of EMLΦ(I,Φ), (an LΦ)–model) which is a model of T of cardinality
µ+ |I| and

I ⊆ J ⇒ EM(I,Φ) �F EM(J,Φ),

(γ) τ li are unary function symbols in LΦ,
(δ) EM(∅,Φ) is M ,
(ε) for any linear order I, and s < t in I we have: the type which

(i) 〈τ1
α(xs) : α < α1〉∧〈τ2

β(xt) : β < α2〉 realizes over M in EM(I,Φ)

is the same type as 〈a1,1
α : α < α1〉∧〈a1,2

α : α < α2〉 realizes over
M in M1

2 ,
(ii) 〈τ1

α(xt) : α < α1〉∧〈τ2
β(xs) : β < α2〉 realizes over M in EM(I,Φ)

the same type as 〈a2,2
α : α < α1〉∧〈a2,1

β : β < α2〉 realizes over M

in M2
2 .

Remark: Note M0 �nice M3 is automatic in the interesting case since M0 ∈ K<λ

and every element of K<λ is nice by [?, 5.4].
On the operations see [?].

Proof. (1) W.l.o.g. ‖M3‖ = µ. Let M+
0 be an expansion of M0 by ≤ LS(T)

functions such that M∗0 has Skolem functions for the formulas in F . We know
that M0 �nice M3. So there is Op1 such that M0 �F M1 �F Op1(M0) and as

M1

M3⋃
M0

M2 there is Op2 such that M1 �F M3 �F Op2(M1), M2 �F Op2(M0).

Let Op = Op2 ◦ Op1. For each t ∈ I, let Opt = Op. Let N be the iterated
ultrapower of M0 w.r.t. 〈Opt : t ∈ I〉. For each t ∈ I, there is a canonical F-

elementary embedding Ft : Opt(M0)
F−→ N . Let M = M0, and M `

t = Ft(M`) for
` = 1, 2, t ∈ I.

For each t < s, we can let M+
s = 〈Opv : v < s〉(M0), so M0 �F M+

t �F
M+
s �F Op1(M+

s ) and we can extend Ft � M1 to an embedding of Op2(M1) into
Op2

s(Op1
s(M

+
s )), so (Ft � M1) ∪ (Fs � M2) can be extended to a �F–embedding

of M3 into N . From the definition of the iterated ultrapower and non forking it

follows that for s 6= t ∈ I, t < s implies M1
t

N⋃
M0

M2
s . On the other hand, similarly,
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CATEGORICITY OF THEORIES IN Lκ∗ω . . . 7

if s, t ∈ I, s < t then (Fs �M1) ∪ (Ft �M2) can be extended to an �F -embedding

of M3 into N, and hence by the assumption it follows that M1
t

N⊎
M0

M2
s .

(2) A similar proof. �

Corollary 1.7. Assume T categorical in λ or just I(λ,T) < 2λ. Then
⋃

µ+<λ

Kµ

obeys
⋃

-symmetry, i.e.: for M0,M1,M2,M3 ∈
⋃

µ+<λ

Kµ,

if M1

M3⋃
M0

M2 then M2

M3⋃
M0

M1 holds.

Proof. If µ+ < λ, M1

M3⋃
M0

M2 and M2

M3⊎
M0

M2, then theorem 1.6 gives the assump-

tions of the results at the end of section three in [?, III] (or better [?, III,§3]).
These yield a contradiction to the λ-categoricity of T and even 2λ pairwise non
isomorphic models.

But we give a self contained proof of the needed version T categorical in λ,
allowing ourselves to use the rest of this section (which does not relay on 1.7 except
1.24, really use just 1.16, 1.18, 1.20 here. Let Φ be as in 1.6(2), and wlog as used
in 1.18, 1.19. Choose an increasing continuous sequence 〈Iα : α ≤ µ+ + 1〉 of linear
orders each of cardinality µ+, |Iα+1 \ Iα| = µ+, t∗ ∈ Iµ++1 \ Iµ+ , s+

α , s−α ∈ Iα+1 \ Iα
for α < µ such that

α < β ⇒ s+
α < s−α < t∗ < s+

β < s−β ,

and s+
α , s
−
α realize the same Dedekind cut of Iα. Let Mα = EM(Iα,Φ) for α ≤ µ+,

so 〈Mα : α ≤ µ+ + 1〉 is �F -increasing continuous, Mα ∈ Kµ+ , Mα+1 is (µ, µ)-

saturated over Mα, āt = 〈τ1
i (xt) : i〉, b̄t = 〈τ2

i (xt) : i〉 for t ∈ Iµ++1. Easily
tp(ās−α ,Mα,Mµ++1) = tp(ās+α ,Mα,Mµ++1) for α < µ but

tp(b̄∗t
∧ās−α ,Mα,Mµ++1) 6= tp(b̄∗t

∧ās+α ,Mα,Mµ++1).

We now choose enough sequences of models, first we define a linear order J with
set of elements

{ti : i < κ∗} ∪ {sγ : γ < µ+ × (µ+ + 1)}
such that

i < j & β < γ < µ+ × µ+ ⇒ ti < tj < sβ < sγ .

For α ≤ µ+ +1 let Jα = {ti : i < κ∗}∪{tγ : γ < µ+× (1+α)}, let J∗ = Jµ++1 \Jµ.
Let Nα = EM(Jα,Φ). Again 〈Nα : α ≤ µ+ + 1〉 is �F–increasing continuous in
Kµ+ , Nα+1 is (µ+, µ+)-saturated over Nα. Hence there is an isomorphism f∗ from

Mµ+1 onto Nµ++1 mapping each Mα onto Nα. Now, b̄∗ = f(b̄t∗) = 〈f(τ2
i (xt)) : i〉

is a sequence of ≤ µ members of EM(Jµ++1,Φ), hence for some α < µ+ we have

b̄∗ ⊆ EM(J′,Φ) where J ′ = {ti : i < κ∗} ∪ J∗ ∪ \Jα. However by [?, 2.6] we have

J ′µ+

J⋃
Jα

J ′. Hence ([?, 2.5])
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(∗) EM(J ′µ+ ,Φ)
EM(J,Φ)⋃
EM(Jα,Φ)

EM(J ′,Φ).

Now easily there is an automorphism f of EM(Jµ+ ,Φ) over EM(Jα,Φ) which
maps ās−α to ās+α . The Op which witnesses (∗) extends f to an automorphism of

Op(EM(Jµ+ ,Φ) which is the identity over EM(J ′,Φ) continuous. �

It may be helpful, though somewhat vague, to add the remark that
⋃

-asymmetry

enables one to define order and to build many complicated models; so 1.7 removes
a potential obstacle to a categoricity theorem. Note that we could have put 3.11(2)
here.

Definition 1.8. Let A be a set. We write M1

M3⋃
M0

A (where A ⊆ M3, M0 �F

M1 �F M3) to mean that there exist M2, M ′3 such that A ⊆ |M2|, M3 �F M ′3 and

M1

M ′3⋃
M0

M2. In this situation we say that A/M1 = tp(A,M1,M3) does not fork over

M0 in M3.

We will write M1

M3⋃
M0

a to mean M1

M3⋃
M0

{a}, we then say tp(a,M1,M3) does not

fork on M0.

We write A1

M3⋃
M0

A2 if for some M3, M3 �F M ′3 ∈ K<λ, and for some M ′1,

A2 ⊆M ′1 �F M ′3, and M ′1

M ′3⋃
M0

A2.

Remark 1.9. (1) Of particular importance is the case where A is finite. Let us
explain the reason. We wish to prove a result of the form:
(∗) if 〈Mi : i ≤ δ + 1〉 is a continuous ≺F -chain and a ∈Mδ+1, then there

is i < δ such that Mδ

Mδ+1⋃
Mi

a.

This says roughly that the type tp(a,Mδ,Mδ+1) is definable over a finite
set (or at least in some sense has finite character). In general the former
relation is not obtained. However its properties are correct. Hence it will
be possible to define the rank of a over M0, rk(a,M0), as an ordinal, so

that for large enough M3, if M1

M3⊎
M0

a, then rk(a,M1) < rk(a,M0).

(2) If A is an infinite set, then we cannot prove (∗), in general. For example,
suppose that 〈Mi : i ≤ ω〉 is (strictly) increasing continuous, ai ∈ (Mi+1 \

Mi) and A = {ai : i < ω}. Then for every i < ω,
( ⋃
j<ω

Mj

)Mω⊎
Mi

A as

the operation Op we use in the definition, increase Mi and increase
⋃
j<ω

Mj ,

but Op(Mi)
⋂ ⋃
j<ω

Mj = Mi. Still we can restrict ourselves to δ of cofinality

> |A|.
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CATEGORICITY OF THEORIES IN Lκ∗ω . . . 9

(3) Notice that quite generally speaking, N1

N3⋃
N0

N2 implies that N1 ∩N2 = N0

(see above).

Definition 1.10. We define

κµ(T) =
κµ(K) = {κ : cf(κ) = κ ≤ µ and there exist a continuous ≺F -chain

〈Mi : i ≤ κ+ 1〉 ⊆ K≤µ and a ∈Mκ+1 such that
for all i < κ, a/Mκ forks over Mi in Mκ+1}.

I.e., for κ ∈ κµ(T) there are 〈Mi ∈ K≤µ : i ≤ κ + 1〉 and a ∈ Mκ+1 such that

i < κ ⇒ Mκ

Mκ+1⊎
Mi

a.

Example 1.11. Fix µ and α ≤ µ. Let ( µω,Eβ)β<α be the structure with universe

µω = {η : η is a function from µ to ω},
ηEβν iff η � β = ν � β. Let T = Th(µω,Eβ)β<α. Then

κµ(T) = {κ : cf(κ) = κ ≤ α}.

Why? If cf(κ) = κ ≤ α, then there are Mi (i ≤ κ + 1), a ∈ Mκ+1 and ai ∈
(Mi+1 \Mi) for i < κ such that ai/Ei+1 /∈ Mi (that’s to say, no element of Mi is
Ei+1-equivalent to ai) and aEiai.

Definition 1.12. The class K = 〈K,�F 〉 is χ-based iff for every pair of continuous
≺F -chains 〈Ni ∈ K≤χ : i < χ+〉, 〈Mi ∈ K≤χ : i < χ+〉, with Mi �F Ni, there is a
club C of χ+ such that

(∀i ∈ C)

(
Mi+1

Ni+1⋃
Mi

Ni

)
.

Replacing χ+ by regular χ we write (< χ)-based. We say synonymously that T is
χ-based.

Definition 1.13. The class K = 〈K,�F 〉 has continuous non-forking in (µ, κ) iff

(α) whenever 〈Mi ∈ K≤µ : i ≤ δ〉 is a continuous ≺F -chain, |δ| ≤ µ, cf(δ) = κ,

M0 �F N0 �F N∗, Mδ �F N∗ and (∀i < δ)

(
Mi

N∗⋃
M0

N0

)
,

then Mδ

N∗⋃
M0

N0;

(β) whenever 〈Mi ∈ K≤µ : i ≤ δ + 1〉, 〈Ni ∈ K≤µ : i ≤ δ + 1〉 are continuous
≺F -chains, Mi �F Ni, |δ| ≤ µ, cf(δ) = κ and

(∀i < δ)

(
Mδ+1

Nδ+1⋃
Mi

Ni

)
,

then Mδ+1

Nδ+1⋃
Mδ

Nδ.
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10 SAHARON SHELAH

Again we will mean the same thing by saying that T has continuous non-forking in
(µ, κ).

Our next goal is to show that if T fails to possess these features for some µ < λ
such that µ ≥ κ+ LS(K), then T has many models in λ.

Let us recall in this context a further important result from [?, II, 3.10]:

Theorem 1.14. Assume T be a λ-categorical theory, or just K<λ has amalgama-
tion and every N ∈ K<λ is nice.

(1) Let LS(T) < µ ≤ λ, M ∈ Kµ. Then TFAE:
(A) M is universal-homogeneous: if N �F M , ‖N‖ < µ, N �F N ′ ∈

K<µ, then there is an F-elementary embedding g : N ′
F−→ M such

that g � N = idN .
(B) If N �F M , ||N || < µ and p ∈ S(N), then p is realized in M , i.e., N

is saturated.
(2) M as in (A) or (B) is unique for fixed T, µ.
(3) Let LS(T) ≤ µ < λ, and κ ≤ µ. Any two (µ, κ)-saturated models are

isomorphic (see 1.4(7)).
(4) Let LS(T) ≤ µ < λ, and κ ≤ µ. If N1, N2 are (µ, κ)-saturated over M then

N1, N2 are isomorphic over M .

Proof. (1), (2) See [?, II 3.10], or better presented [?, 0.19].

(3) Easy and exist but we shall prove. Assume N1, N2 are (µ, κ)–saturated, hence
for l = 1, 2 there is a �F–increasing continuous sequence 〈Ml,α : α < κ〉 in Kµ such
that Ml,κ = Nl and Ml,α+1 is universal over Ml,α. We now choose by induction on
α ≤ κ a triple (fl,M

′
1,α,M

′
2,α) such that

(a) for l ∈ {1, 2} M ′l,α ∈ Kµ is �F–increasing continuous with α < κ,

(b) fα is an isomorphism from M ′1,α onto M ′2,α increasing with α,
(c) if α is even M ′1,α = M1,α and M ′2,α �F M2,α+1,
(d) if α is odd, M ′2,α = M2,α and M ′1,α �F M,α+1,
(e) if α is a limit ordinal then M ′1,α = M1,α, M ′2,α = M2,α.

Using the universality assumptions there is no problem to carry out the induction
and fκ is an isomorphism from N1 = M1,κ onto N2 = N2.

(4) Similar to (3) (just let M = M1,0 = M2,0, f0 = idM ). �

Proposition 1.15. Assume T is λ-categorical or just K<λ has amalgamation.

(1) If LS(T) ≤ µ < λ, N0 �F N1 are in Kµ, then TFAE
(A) N1 is (µ, µ)-saturated over N0,
(B) there is a �F -increasing continuous 〈Mi : i ≤ µ× µ〉, such that:

Mµ×µ = N1, M0 = N and every p ∈ S(Mi) is realized in Mi+1

(2) Also TFAE for κ = cf(κ) ≤ µ+

(A)κ N1 is (µ, κ)-saturated over N0,
(B)κ there is a �F -increasing continuous 〈Mi : i ≤ µ×κ〉 with Mµ×κ = N1,

M0 = N and every p ∈ S(Mi) is realized in Mi+1

(3) If K is stable in µ, µ ≥ LS(K), κ = cf(κ) ≤ µ+ then there is a (µ, κ)-
saturated model (in fact, over any given model in Kµ).

Proof. (1) Follows from the proof of 1.14(1).

(2), (3) Straightforward. �
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Proposition 1.16. (T categorical in λ)

(1) Any M ∈ Kλ is saturated.
(2) Every N ∈ K<λ is nice.
(3) K<λ has �F -amalgamation.
(4) If µ ∈ [LS(T), λ) and M ∈ Kµ, then there is N ∈Mµ which is µ-universal

over M (see Definition 1.4). K is stable in µ for µ ∈ [LS(T), λ).
(5) K is stable in µ for µ ∈ [LS(T), λ).
(6) If µ ∈ [LS(T), λ), κ ≤ µ and M ∈ Kµ, then there is N ∈ Kµ which is

(µ, κ)–saturated over M .

Proof. (1) By the proof of [?, 5.4] (for λ-regular easier).

(2) See [?, 5.4].

(3) See [?, 5.5].

(4) See [?, 3.7].

(5) Follows by the two previous parts.
(6) Follows by (3)+(5) and 1.15. �

Intermediate Corollary 1.17. (1) Suppose that T is λ-categorical. If µ < λ,
µ > LS(T) and T is not µ-categorical, then there is an unsaturated model
M ∈ Kµ.

(2) It now follows that if we show that the existence of an unsaturated model
in Kµ implies that of an unsaturated model in Kλ, then λ-categoricity of T
implies µ-categoricity of T.

Conclusion 1.18. [T categorical in λ] If I is a linear order, I = I1 + I2, |I| < λ and
J = I1 + ω + I2 then every p ∈ S(EM(I)) is realized in EM(J).

Proof. Clearly EM(I1 + λ+ I2) is in Kλ, and hence is saturated, and hence every
p ∈ S(EM(I)) is realized in it, say by ap, for some finite wp ⊆ λ we have ap ∈
EM(J1 + wp + I2)), now we use indiscernibility. �

Remark 1.19. By changing Φ we can replace “ω” by “1”.

Conclusion 1.20. [T categorical in λ]

(1) If J =
⋃
α<µ

Iα; |J | = µ ∈ [LS(T), λ) or |J | = µ = λ & LS(T) ≤ |I0| < λ, Iα

and increasing continuous, for each α some Dedekind cut of Iα is realized
by infinitely many members of Iα+1 \ Iα then EM(J) is (µ, |I0|)-saturated
over EM(I0).

(2) If Φ is “corrected” as in 1.19, I0 ⊆ J , |J \ I0| = |J | = µ, µ ∈ [LS(T), λ), or
|J | = µ = λ & LS(T) ≤ |I0| < λ, then EM(J) is (µ, |I0|)-saturated over
EM(I0) moreover for any κ = cf(κ) ≤ µ it is (µ, κ)-saturated.

(3) If 〈Mi : I ≤ κ〉 is �F -increasing continuous, Mi ∈ Kµ, Mi+1 is universal
over Mi then Mκ is (µ, θ)-saturated over M0 for every θ ≤ µ, even θ ≤ µ+,
so N ∈ Kµ which is saturated over M ∈ Mµ is unique up to isomorphism
over M .

Proof. (1), (2) by 1.20+1.15(1).

(3) Follows. �
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Proposition 1.21. (1) Suppose 〈N `
i : i ≤ α〉 is �nice-increasing continuous-

inuous for ` = 1, 2, N1
i �F N2

i ∈ K<λ and N2
i

N2
i+1⋃
N1
i

N1
i+1 for each i < α,

then N2
0

N2
α⋃

N1
0

N1
α.

(2) The monotonicity properties of
⋃

, i.e.: if M1

M3⋃
M0

M2 and for some operation

Op and models M ′1, M ′2, M ′3 we have M3 �F M ′3 � Op(M3) and M0 �F

M ′1 �F M1 and M0 �F M ′2 �F M2, then M ′1

M ′3⋃
M0

M ′2.

(3) If M1

M3⋃
M0

A and M0 �F M ′0 �F M ′1 �F M1 �F M ′3 �F M ′′3 and M3 �F

M ′′3 and A′ ⊆ A, then M ′1

M ′3⋃
M ′0

A′.

(4) Note that by the definition if A1

N3⋃
N0

A2 and N0 ⊆ N ′0 ⊆ A1, and N ′0 �F N3,

then A1

N3⋃
N ′0

A2 (the same operation witness this).

Proof. Use [?, 1.11], e.g.:
(1) For each i < α there is Opi such that N1

i+1 �F Opi(N
1
i ), N2

i+1 �F Opi(N
2
i ).

We can find Op resulting from the iterated 〈Opi : i < α〉. Let N∗1 = Op(N1
0 ),

N∗2 = Op(N2
0 ), so we can choose by induction on i an �F -embedding fi of N2

i into
N∗2 mapping N1

i into N∗1 , increasing continuous with i, such that fi(N
2
i ) is included

in 〈Opi : i < α〉(N2
0 ). �

Proposition 1.22. [T is λ-categorical] If M0 �nice M1,M2 are in K<λ then we
can find M4 ∈ K<λ, M0 �F M4 and �F -embeddings f1, f2 of M1, M2 respectively
into M4 such that

(α) f1(M1)
M4⋃
M0

f2(M2) and

(β) f2(M2)
M4⋃
M0

f1(M1).

Remark 1.23. Note 1.7 deals only with models in
⋃
{Kµ : µ+ < λ}, hence (β) is

not totally redundant.

Proof. If we want to get (α) only, use operation Op such that Op(M0) has cardinal-
ity ≥ λ, choose N �F Op(M0), ‖N‖ = λ, hence N is saturated hence we can find a
�F -embedding f2 : M2 → N , let N1 = Op(M1), so N �F Op(M0) �F Op(M1) =
N1, and choose M4 ≺ N1, M4 ∈ Kµ, µ < λ such that M1 ∪ Rangf2 ⊆ N . So we
have gotten clause (α) and if µ+ < λ by 1.7 we are done; but as we need the case
µ+ = λ we have to restart the proof.

Paper Sh:472, version 2001-11-12 10. See https://shelah.logic.at/papers/472/ for possible updates.



CATEGORICITY OF THEORIES IN Lκ∗ω . . . 13

By “every N ∈ Kλ is saturated” there are an operation Op and N ∈ Kλ such
that M0 �F N �F Op(M0) hence there are M+

0 , M+
1 , M+

2 in K<λ such that:

(∗)0 (M+
1 ,M

+
0 ) �F Op(M1,M0), (M+

2 ,M
+
0 ) �F Op(M2,M0) and M+

0 has the
form EM(I0), I0 a linear order with |I0| Dedekind cuts with cofinality
(κ∗, κ∗). [Note that by 1.20(2) if |I0| = λ then EM(I0) is saturated and N
is saturated, clearly there is I0 as required.]

Clearly w.l.o.g. the cardinality of I0 is < λ. Hence we can find I1, I2, I3 such that:

I0
def
= I ⊆ I1 ⊆ I3 I0 ⊆ I2 ⊆ I3, I1 ∩ I2 = I, no t1 ∈ I1 \ I0, t2 ∈ I2 \ I0 realize

the same Dedekind cut of I, and every t ∈ I3 \ I0 realizes a cut of I with cofinality

(κ∗, κ∗). Hence I0⊆nice I` (` ≤ 3), moreover I1
I3⋃
I0

I2 and I2
I3⋃
I0

I1. Hence

(∗)1 EM(I1)
EM(I3)⋃
EM(I0)

EM(I2) and EM(I2)
EM(I3)⋃
EM(I0)

EM(I1).

Also by 1.20(2), wlog (` = 1, 2) M+
` �F EM(I`). So by 1.21(2)

(∗)2 M+
1

EM(I3)⋃
M+

0

M+
2 and M+

2

EM(I3)⋃
M+

0

M+
1 .

By (∗)0 + (∗)2 and 1.21(1) (for α = 2) we get the conclusions. �

Proposition 1.24. [T is λ-categorical]

(1) If M `
1

M `
3⋃

M `
0

M `
2 for ` = 1, 2, M `

3 ∈ K<λ moreover ‖M `
3‖+ < λ and fk an

isomorphism from M1
k onto M2

k for k = 0, 1, 2 such that f0 ⊆ f1, f0 ⊆ f2

then there is M , M2
3 �F M ∈ K<λ, ‖M‖ = ‖M1

3 ‖ + ‖M2
3 ‖ and a �F -

embedding f of M1
3 into M2

3 extending f1 and f2.

(2) Assume M `
1

M `
3⋃

M `
0

A`2 for ` = 1, 2 and A`2 ⊆ M `
2 � M `

3 , and M `
3 ∈ K<λ

moreover ‖M `
3‖+ < λ, and fk is an isomorphism from M1

k onto M2
k for

k = 0, 1, 2 such that f0 ⊆ f1 and f0 ⊆ f2 and f2 maps A1
2 onto A2

2 then
there is M , M3

2 �F M ∈ K<λ such that ‖M‖ = ‖M1
3 ‖ + ‖M2

3 ‖ and a
�F -embedding f of M1

3 into M2
3 extending f1 and f2 � A1

2.
(3) If for ` = 1, 2 we have p` ∈ S(N) does not fork over M (see Definition

1.8), M �F N ∈ Kµ, µ+ < λ and p1 �M = p2 �M then p1 = p2

Remark 1.25. (1) This is uniqueness of non forking amalgamation.
(2) The requirement is ‖M `

3‖+ < λ rather than ‖M `
3‖ < λ only because of the

use of symmetry, i.e., 1.7.

Proof. (1) Wlog f0 = id, M1
0 = M2

0 call it M0 and f1 = idM1
1
, M1

1 = M2
1

call it M1. By the assumption for some operation Op` we have (M `
3 ,M

`
2) �F

Op`(M
`
1 ,M

`
0). Let Op = Op1 ◦Op2, so w.l.o.g. M `

3 �F Op(M1), M `
2 �F Op(M0).

W.l.o.g. ‖Op(M0)‖ ≥ λ and ‖Op(M1)‖ ≥ λ, so there is N0,
2⋃
`=1

M `
2 ⊆ N0 �F

Paper Sh:472, version 2001-11-12 10. See https://shelah.logic.at/papers/472/ for possible updates.



14 SAHARON SHELAH

Op(M0), such that ‖N0‖ = λ, hence N0 is saturated hence there is an automor-
phism g0 of N0 such that g0 � M1

2 = f2 (so g0 � M0 = idM0). So there is N2,
2⋃
`=1

M `
2 ⊆ N2 �F N0, ‖N2‖+ < λ, N2 closed under g0, g−1

0 . Now there is N3,

N0 ∪M1 ⊆ N3 �F Op(M1), N3 ∈ Kλ, hence N3 is saturated. So M1

N3⋃
M0

N2 and

hence N2

N3⋃
M0

M1 (by symmetry, i.e., 1.7). Hence for some N ′3, N ′3 �F N3 ∈ K<λ

and some automorphism g1 of N ′3 extends (g0 � N2) ∪ idM1
. [Why? for some Op′,

(N3,M1) �F Op′(N1,M0) and Op′(N1), Op′(g0 � N2) are as required except having
too large cardinality, but this can be rectified.]

Clearly we are done.

2), 3) Follow from part (1). �

2. Various constructions

In this section we will attempt to describe some constructions of models of T
relating to the situations in 1.12 and 1.13, i.e., we want to prove there are “many
complicated” models of T when T is “on the unstable side” of Definition 1.12 or
Definition 1.13; they will be use in the proofs in 3.2 — 3.5. May we suggest that
on a first reading the reader be content with the perusal of 2.1 and 2.2, leaving the
heavier work of 2.2.1 until after section three which contains the model-theoretic
fruits of the paper. The construction should be meaningful for the classification
problem.

What we actually need are 2.2.1, 2.2.2, 2.2.3

Construction 2.1. First try

Data 2.1.1. Suppose that 〈Mi ∈ K≤µ : i ≤ κ + 1〉 is a continuous �nice-chain of
models of T, µ < λ; T is a non empty subset of (κ+1≥Ord) and

(i) T is closed under initial segments, i.e. if η ∈ T and ν / η, then ν ∈ T ,
(ii) if η ∈ T and `g(η) = κ then η∧〈0〉 ∈ T and for all i, η∧〈1 + i〉 6∈ T .

Let limκ(T ) = {η : `g(η) = κ and ∧
i<κ

(η � i ∈ T )}. Let {ηi : i < i∗} be an

enumeration of T such that if ηi /ηj (ηi is an initial segment of ηj), then i < j, and
if ηi = ν∧〈α〉, ηj = ν∧〈β〉, α < β, then i < j. For simplicity i∗ is a limit ordinal.

First Try 2.1.2. From the data of 2.1.1 we shall build a model N∗ with Skolem

functions, N∗ � L ∈ K, and for η ∈ T , M∗η ⊆ N∗, fη : Mlg(η)
onto7→
F

M∗η � L such that

if ηi / ηj , then fηi ⊆ fηj , and M∗ηi �Fsk M
∗
ηj , where Fsk ⊇ Tsk is a fragment of

(Lsk)κ∗,ω.
Let M∗i = Sk(Mi) be a Skolemization of Mi for F , increasing (⊆) with i i.e. for

every formula (∃y)ϕ(y, x̄) ∈ F we choose a function FMi

ϕ(y,x̄) from Mi to Mi, with

`g(x̄)-places such that

Mi |= (∃y)ϕ(y, ā)→ ϕ(FMi

ϕ(y,x̄)(ā), ā)

and

j < i ⇒ FMi

ϕ(y,ȳ) �Mj = F
Mj

ϕ(y,x̄).
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Note: we do not require even M∗i ≺M∗i+1.

To achieve this, let us define by induction on i < i∗, N∗i , M∗ηi and fηi . W.l.o.g.
η0 = 〈 〉 and i limit implies lg(ηi) limit. LetN∗0 = M∗η0

= Sk(M0), the Skolemization
of M0, f〈 〉 = idM0 . If i is a limit ordinal, let N∗i =

⋃
j<i

N∗j . If i is a successor

ordinal and `g(ηi) = α + 1, then letting ηj = ηi � α, note that ηj / ηi so j < i
and so M∗ηj and fηj are defined. We are assuming Mα �nice Mα+1 hence, there is

an operator Op = Opα such that Mα+1 �nice Op(Mα). Let N∗i = Op(N∗i−1), let
Op(N∗i−1,Mα, fηj ) = (N∗i ,Op(Mα), (Op(fηj )), and let fηi = Op(fηj ) �M`g(ηi) and
M∗ηi = Rang(fηi). (We can replace N∗i+1 by any N ′ such that N∗i ∪M∗ηi ⊆ N ′ �F
N∗i+1 so preserving |N∗i | ≤ µ+ |i|). Finally, let N∗ =

⋃
i<i∗

N∗i . We are left with the

case i successor ordinal, `g(ηi) a limit ordinal; we let N∗i = N∗i+1, M∗ηi =
⋃
ν/ηi

M∗ν

and fηj =
⋃
ν/ηj

fν .

Explanation: In order to use this construction to prove non-structure results, we
intend to use the property: for every η ∈ limκ T , it is possible to extend fη =⋃
α<κ

fη�α to an F-elementary embedding f∗ of Mκ+1 into N∗ iff η ∈ T .

Let us remark that if for example χ is a strong limit cardinal of cofinality κ∗

and χ<κ ⊆ T ⊆ χ≤κ ∩ {η∧〈0〉 : (∃α < κ)`g(η) = α + 1)}, then over
⋃

η∈χ<κ
M∗η

for χ parameters there are 2χ independent decisions. This is not only a reasonable
result, it has been shown ([?, VIII §1] for χ as above, [?, III §5] more generally) that
this result is sufficient to prove the existence of many models in every cardinality
λ > µ+ LS(T).

But to use this construction we have to have some continuity of non forking,
which we have not proved. Hence we shall use another variant of the construction

Construction 2.2. We modify the construction of 2.1 to suit our purposes.

Modified Data 2.2.1. Let 〈Mi ∈ K≤µ : i ≤ κ + 1〉 be a continuous �nice-chain of

models of T, ‖Mκ+1‖ = µ < λ. Let T be a subset of κ+1≥(Ord), <lex be the
lexicographic order on T , this is a linear order of T ; suppose that T is /-closed
i.e. (ν / η ∈ T ⇒ ν ∈ T ), and if η ∈ κ(Ord) ∩ T , then η∧〈0〉 is the unique <lex-
successor of η in T . For S ⊆ T let Sse = {η ∈ S : `g(η) successor}. Let Opi+1

witness Mi �nice Mi+1.

We define Opη = Op`g(η) for η ∈ T se. We can iterate the operation Opη with

respect to (T se, <lex). Also, for each S ⊆ T , we can iterate Opη with respect to
(Sse, <lex). Let us denote the result of this iteration with respect to (S,<lex) by
OpS (see [?, 1.11]). Note that for any M ∈ K, if S1 ⊆ S2 ⊆ T , then M �F
OpS1(M) �F OpS2(M) �F OpT (M) (by natural embeddings). More formally:

Claim 2.2.2. There exist operations OpS for S ⊆ T such that

(1) for every S ⊆ T which is /-closed MS = OpS(M) is defined, and whenever
S1 ⊆ S2 ⊆ T , then MS1 �F MS2 ; let Mη = M{η�α:α≤lg(η)}.

(2) for η ∈ T , hη is a surjective ≺F -elementary embedding from M`g(η) to Mη,
Mη �F M{η}, and 〈hη : η ∈ T 〉 is a C–increasing sequence, i.e., hη ⊆ hν
whenever η C ν;

(3) for every x ∈MT , there exists a /-closed S ⊆ T , |S| ≤ κ such that x ∈MS

(in fact S is the union of finitely many branches);
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(4) for η ∈ T , letting T [η] = {ν ∈ T : ¬(η C ν)}, T≤[η] = {ν ∈ T [η] :
ν ≤lex η}, T≥[η] = {ν ∈ T [η] : η ≤lex ν} (so T [η] = T≤[η] ∪ T≥[η]) and

α < `g(η) we have MT≤[η�α]

MT⋃
Mη�α

Mη so we can replace MT by MT≤[η] and

MT≤[η]

MT⋃
Mη�α

MT≥[η�α] for α < κ;

(5) if η ∈ limκ(T ) and η /∈ T , then MT =
⋃
α<κ

MT [η�α].

(6) ‖MS‖ ≤ |S|+ ‖Mκ+1‖κ
∗

+ sup
η∈S
‖M`gη‖.

(7) for η ∈ T ∪ limκ(T ), 〈MT [η�α] : α ≤ `g(η)〉 is �F -increasing continuous.
Note: 〈T[η�α] : α ≤ `g(η)〉 is increasing but generally not continuous how-
ever 〈T se[η�α] : α ≤ `g(η)〉 is.

Fact 2.2.3. (1) By clause (4), if we have the conclusion of 1.7 for models of
cardinality ≤ µ (and 1.21(1)) then
(∗) if ‖Mη�α‖ ≤ µ, Mη�α ≺F M ′ ≺F Mη, ‖M ′‖ ≤ µ, Mη�α ≺F M ′′ ≺F

MT [η�α] and ‖M ′′‖ ≤ µ, then Mη

MT⋃
Mη�α

MT [η�α] and hence M ′
MT⋃
Mη�α

M ′′.

(2) Then in fact one can replace clause (4) above by the weaker condition
(4)− µ ≥ κ and for every S ⊆ T closed under initial segments, if |S| ≤ µ

and {η � i : i ≤ α} ⊆ S ⊆ T , then Mη

MT⋃
Mη�α

MS.

(2) by (4).

Short Proof of 2.2.2. As 〈Mi : i ≤ κ+ 1〉 is �nice-increasing continuous by renam-
ing there is 〈M∗i : i ≤ κ + 1〉 �nice-increasing continuous, M∗0 = M0, M∗i+1 =

Opi+1(M∗i ), Mi �F M∗i and M∗i

M∗i+1⋃
Mi

Mi+1 (for i ≤ κ). W.l.o.g. ‖M∗i ‖ ≤ ‖Mi‖κ
∗
.

Let (Iη, Dη, Gη) be a copy of Opη for η ∈ T se with Iη’s pairwise disjoint. Define
I = Π{Iη : η ∈ T se}, D,G as in the proof of [?, 1.11], so every equivalence relation
e ∈ G has a finite subset w[e] = {η`0 <lex . . . <lex η`n(`)−1} ⊆ T se and e`[e] ∈ Gη`e
as there. We let OpT se = (I,D,G), MT se = OpT se(M0) and for S ⊆ T se we let

MS = {x ∈MT : w[eq(x)] ⊆ S}.

Naturally there are canonical maps f∗η from M∗`gη onto M{ν:νCη} and let Mη =

f ′′η(M`g(η)). �

Improvement in cardinality 2.2.1.

We can replace ‖Mκ+1‖κ
∗

by ‖Mκ+1‖+ LS(T) in part (6) of claim 2.2.2. After
choosing 〈M∗i : i ≤ κ + 1〉, let M+

0 be a Skolemization of M0 = M∗0 , M∗i+1 =

Op(M+
i ), M+

δ =
⋃
i<δ

M+
i . Of course MT

S (S ⊆ T is /-closed) are well defined

similarly. Let Ni be the Skolem hull of Mi in M∗i . For η ∈ T let Nη = f∗η (N`gη).
Now for any C-closed S ⊆ T let

NS = Skolem hull in M+
S of ∪ {Nη : η ∈ S}.
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∗ ∗ ∗

There are two different ways to carry on the construction (under Data 2.2.1).
We will consider each in its turn.

Construction 2.3. Recall that it is possible to iterate the operation Op with
respect to the linear order (T,<lex) and this iteration can be defined as the direct
limit of finite approximations. We shall use different approximations and take the
direct limit we obtain the required operation.

Suppose that w ⊆ T is closed with respect to C, (i.e., initial segment) and
is <lex-well-ordered. For each approximation w of this kind, the iterated ultra-
power Opw(M0) of M0 with respect to w is defined as a limit ultrapower and
there are natural elementary embeddings into this limit. The principal difference
is that this limit is a little larger than a limit obtained using only finite approx-
imations. For example, if 〈ηn : n ≤ ω〉 is a <lex-increasing sequence, then in

Opηω

(
. . .Opηn

(
. . .

(
Opη0

(
M0

))))
, the last operation Opηω adds elements which

are dispersed over all Opηn
(
. . .Opη0(M0)

)
. (This is of more interest when the se-

quence has length κ.) Now it is easy to check the symmetry (for η ∈ αλ, α < κ)
between the <lex-successors and <lex-predecessors of η.

We define the embeddings hη for η ∈ T as follows. For η = 〈 〉, hη = id �M0. If
η = ν∧〈i〉, then Opη acts on Mν = hν [M`g(ν)] and we use the commuting diagram:

Opη(M`g(ν)) Opη(Mν)

M`g(η)

M`g(ν)

Mη

Mν

-

-

-

6

6

6

6

canonical

canonical

canonical

hν

This completes the construction.
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18 SAHARON SHELAH

Construction 2.4. In this approach, we employ the generalized Ehrenfeucht-
Mostowski models EM(I,Φ) from chapter VII in [?] or [?]. For this we need
to specify the generators of the model and what the types are.

Let M+
0 be the model obtained from M0 by adding Skolem functions and indi-

vidual constants for each element of M0. We know that there is an operation Op
such that, for i ≤ κ, Mi �F Mi+1 �F Op(Mi). As in [?, 1.7.4] this means that
there are I,D and G such that Op(M) = Op(M, I,D,G) where I is a non-empty
set, D is an ultrafilter on I, and G is a suitable set of equivalence relations on I,
i.e.,

(i) if e ∈ G and e′ is an equivalence relation on I coarser than e, then e′ ∈ G;
(ii) G is closed under finite intersections;
(iii) if e ∈ G, then D/e = {A ⊂ I/e :

⋃
x∈A

x ∈ D} is a κ∗-complete ultrafilter on

I/e.

For each b ∈ Mi+1 \Mi, let 〈xbt : t ∈ I〉/D be the image of b in Op(Mi). We’ll
also write 〈xbt : t ∈ I〉/D for the canonical image d(b) of b ∈Mi in Op(Mi).

Mi+1 3 b 7→ 〈xbt : t ∈ I〉/D ∈ Op(Mi)

Mi

J
J
J
J
J
J
J]

�
�
�
�
�
�
�7

We define a model M+, M+
0 �Lκ∗,ω M+, as follows. M+ is generated by the

set {xbη : b ∈ Mi+1 \Mi, η ∈ T, `g(η) = i + 1}. Note that this set does generate a

model since M+
0 is closed under Skolem functions. Since functions have finite arity,

it is enough to specify, for each finite set of the xbη, what quantifier-free type it
realizes. Since there is monotonicity, we shall obtain indiscernibility as in [?]. The
type of a finite set 〈xb`η` : ` = 1, . . . , n〉 depends on the set 〈b1, . . . bn〉 and the atomic
(i.e., quantifier-free) type of 〈η1, . . . , ηn〉 in the model 〈T,C, <lex, “η � i = ν � i”〉.
Now w.l.o.g. we can allow finite sequence b̄ instead of b for b̄ ∈ Mi+1 \Mi and
thus w.l.o.g. η1, . . . , ηn is repetition-free, so w.l.o.g. η1 <lex η2 <lex . . . <lex ηn.
Suppose that the lexicographic order <lex on {η` � α : α ≤ `g(η`) and ` = 1, . . . , n}
is a well-order and the sequence 〈νζ : ζ < ζ(∗)〉 is /-increasing. We define N0 = M+

0 ,
Nζ+1 = Op(Nζ), Nζ =

⋃
ξ<ζ

Nξ (for limit ζ). Next, we define hνζ : M`g(νζ)→F Nζ+1,

hνζ�β ⊆ hνζ . If `g(ν) is a limit ordinal, then α < `g(ν) ⇒ hν�α is defined and we
let hν =

⋃
α<`g(ν)

hν�α. If νζ = νξ
_〈γ〉, i = 〈uξ), then Mζ+1 = Op(Mζ , I,D,G),
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identifying elements of Mζ with their images in the ultrapower. Now define

hνζ (b) =

{
d(Hνζ (b)) if b ∈Mi,
〈hνζ (xbt) : t ∈ I〉/D if b ∈Mi+1 \Mi,

where d(hνξ(b)) is the canonical image of Hνξ(b) in the ultrapower. The type of

〈xb`η` : ` = 1, . . . , n〉 is defined to be the type of 〈hη`(b`) : ` = 1, . . . , n〉 in Nξ.

Remark 2.4.1. It is possible to split the construction into two steps. For i ≤ j ≤
κ+ 1, there is an operation Opi,j , Mi �Mj �= Opi,j(Mi), moving b to 〈 i,jabt : t ∈
I〉, b ∈Mj ,

i,jabt ∈Mi, with the obvious commutativity and continuity properties.
Now the construction is done on a finite tree 〈η` : ` = 1, . . . , n〉, 〈η`∩ηm : `,m < ω〉.
We omit the details of monotonicity.

Notation 2.4.2. Let MT = M be the Skolem closure. If S ⊆ T is closed with
respect to initial segments, let MS = SkMT

(xbη : η ∈ S, b ∈ M`g(η)) and M∗η =

M{η�α:α≤`g(η)}. Define hη : M`g(η) →M∗η by hη(b) = xbη�τ(T) and Nη = hη[Mη].

Remark 2.4.3. The construction can be used to get many fairly saturated models.
We list the principal properties below.

Fact 2.4.4. Suppose that S` ⊆ T is closed with respect to initial segments, S0 =
S1 ∩ S2 and

η ∈ S1 & ν ∈ S2 \ S1 ⇒ η <lex ν

then

MS1

MT⋃
MS0

MS2 .

Proof. W.l.o.g. S` is closed, Mcl(S`) = MS` . Let S2 \ S0 = {νζ : ζ < ζ(∗)} be a list

such that νζ < ζξ ⇒ ζ < ξ; let Sξ2 = S0 ∪ {νζ : ζ < ζ(∗)}. Then

(1) 〈MSξ2
: ξ ≤ ξ(∗)〉 is continuous increasing;

(2) 〈MSξ2∩S1
: ξ ≤ ξ(∗)〉 is continuous increasing.

Hence one has

(3) MSξ2∪S1

MSξ+1
2 ∪S1⋃
MSξ2

MSξ+1
2

This is immediate from the definitions, because MSξ+1
2 ∪S1

is the Skolem closure of

MS2
ξ∪S1

∪Nνξ , and so elements of Nνξ can be represented as averages. �

3. Categoricity in µ, when LS(T) ≤ µ < λ

Hypothesis 3.1. Every M ∈ K<λ is nice hence has a ≺F -extension of cardinality λ
which is saturated and K<λ has amalgamation.

This section contains the principal theorems of the paper: if T is λ-categorical,
LS(T) ≤ µ < λ, then κµ(T) = ∅ when µ ∈ [LS(T), λ) and when LS(T) ≤ χ =
cf(χ) < λ, T is χ–based, (and K does not have (µ, κ)–continuous non forking when
µ ∈ [LS(T), λ), κ ≤ µ) also there is a saturated model in Kµ = 〈Kµ,�F 〉 and
T is categorical in every large enough µ < λ. However we first deal with some
preliminary results, quoting [?] for “black boxes” saying during the combinatorial
work for “there are many non isomorphic models” extensively.
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Theorem 3.2. Assume the conclusion of 1.7 for every µ ≤ µ∗ (e.g., µ+ < λ)
and κ ≤ µ+. Suppose that the tree T is as in Claim 2.2.2 and suppose further:
〈Mi ∈ K≤µ : i ≤ κ + 1〉 is �nice-increasing continuous sequence of members of
K≤µ, such that ‖Mκ+1‖ = ‖Mκ‖ and we apply §2 and

(∗)1 there is no �F -increasing continuous sequence 〈Ni ∈ K≤µ : i ≤ κ〉 such
that:

(i) Mi �F Ni,
(ii) Mκ+1 �F Nκ,

(iii) if i < j ≤ κ and ‖Nj‖ < µ∗, then Ni

Nj⋃
Mi

Mj.

Then TFAE for η ∈ limκ(T )
def
= {η ∈ κ(Ord) :

∧
i<κ

(η � (i+ 1) ∈ T )}:

(α) There is an F-elementary embedding h from Mκ+1 into MT such that⋃
i<κ

hη�i+1 ⊆ h.

(β) η_〈0〉 ∈ T (equivalently, η ∈ T , see 2.2.1).

Proof. As regards the implication from (β) to (α), so assume η ∈ T and consider the
F-elementary embedding hη∧〈0〉. Check that hη∧〈0〉 is as required in (α). The other
direction follows by 2.2.3(1) and (∗). That is we are assuming that h exemplify
clause (α) but η∧〈0〉 /∈ T , equivalently η /∈ T and we shall get a contradiction.
We let ηα = η � α for α ≤ κ, and let Tα = T [η] hence 〈MTα : α ≤ κ〉 is �F -
increasing continuous (see 2.2.2(7)). We can choose by induction on α ≤ κ, a
model Nα �F MTα , ‖Nα‖ < µ∗, (even ‖Nα‖ ≤ ‖Mα‖ + LS(T )), Mη�α ⊆ Nα

and N =
⋃
α<κNα include f(Mκ+1). By 2.2.3 we get Ni

Nj⋃
Mi

Mj if i < j ≤ κ,

‖Mj‖ < µ∗, so we have contradict (*). �

Proposition 3.3. Suppose the conclusion of 1.7 for µ, and κ ≤ µ+ and an �F -
increasing sequence M̄ = 〈Mi : i ≤ κ + 1〉 is given with Mi ∈ K≤µ when i < µ,
i ≤ κ+ 1. Then M̄ satisfies (∗) of 3.2 if one of the following holds:

(α) there is a ∈Mκ+1 such that i < κ ⇒ Mκ

Mκ+1⊎
Mi+1

a, or

(β) κ = cf(κ) = µ > LS(T) and κ < λ and i < κ ⇒ ‖Mi‖ < κ, and
there is a continuous ≺F -chain 〈Ni : i ≤ κ〉, Mκ+1 =

⋃
i≤κ

Ni, κ = χcf(κ),

∧
i<κ

(Ni ∈ K<κ), and E = {i < κ : Mi+1

Nκ⊎
Mi

Ni} is a stationary subset of κ.

Proof. Straight from 3.2, and the monotonicity of
⋃

, that is 1.21(3). �

Remark 3.4. Clause (β) can also be proved using niceness as in the proof of 3.8.
This works for any κ < λ. Also we can imitate 2.2.2 but no need arises.

Corollary 3.5. If T is a λ-categorical theory1, then

1or just has < 2λ non isomorphic models in λ
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(1) T is χ-based if χ+ < λ and χ ≥ LS(T); also it is (< µ)-based if µ = cf(µ),
LS(T ) < µ, µ < λ;

(2) κµ(T) = ∅ for every µ such that µ+ < λ and µ ≥ LS(T).

Proof. (1), (2) We use 3.2, 3.3 to contradict λ-categoricity. In the first phrase
of (1) let µ = χ, κ = χ+, in the second let us repeat the proofs (i.e., prove the
appropriate variants of 3.2, 3.3 be regular; so κ =cf(κ) and κ+ < λ.

Case 1: λµ = λ.
By [?, III, 5.1] = [?, IV, 2.1].

Case 2: λ is regular.
We can find a stationary W ∗ ∈ I[λ], W ∗ ⊆ {δ < λ : cf(δ) = κ} (by [?, §1]).
Hence, possibly replacing W ∗ by its intersection with some club of λ, there is W+,
W ∗ ⊆ W+ and 〈aα : α ∈ W+〉 such that: α ∈ aβ (so β ∈ W+) implies α ∈ W+,
aα = aβ ∩ aα and otp(aα) ≤ κ and

α = sup aα ⇐⇒ cf(α) = κ ⇐⇒ α ∈W ∗.

Now let ηα enumerate aα in increasing order (for α ∈ W+), and for any W ⊆ W ∗

let

TW = {ηα : α ∈W+ but α /∈W ∗ \W} ∪ {ηα_〈0〉 : α ∈W}.
Now if W1, W2 ⊆ W , W1 \W2 is stationary, then MTW1

cannot be �F -embedded

into MTW2
(again by [?, III, §5] = [?, IV §2]).

Case 3: λ singular.
Choose λ′, λ > λ′ = cf(λ′) > µ+ and act as in case 2 using λ′ instead λ except
adding to TW the set {〈i〉 : i < λ} (to get 2λ we need more, see in [?, IV,VI] on
pairwise non isomorphic models). �

Hypothesis 3.6. The conclusion of 3.5 (in addition to 3.1 of course).

Conclusion 3.7. Suppose µ ≥ LS(T), µ+ < λ, M ∈ Kµ

(1) If p ∈ S(M) then p is determined by {p � N : N �F M and ‖N‖ = LS(T)}
(2) Assume further

(∗)M{Nt:t∈I} (a) I is a directed partial order,

(b) Nt �F M ,
(c) I |= t ≤ s implies Nt ⊆ Ns

(hence Nt �F Ns by clause (b)),
(d)

⋃
t∈I

Nt = M .

Then
(α) every p ∈ S(M) is determined by {p � Nt : t ∈ I} which mean just

that if q ∈ S(M) and for every t ∈ I we have p � Nt = q � Nt then
p = q,

(β) for some t ∈ I, p does not fork over Nt, {p � Nt : t ∈ I}.

Proof. (1) Follows from part (2): We can find N̄ = 〈Nt : t ∈ I〉 such that
(∗)M{Nt:t∈I} holds, ‖Nt‖ ≤ LS(T) and on it use part (2). Why N̄ exists? E.g.,

as the proof of part (2) which I = {∅}, N∅ = M and use 〈N∗u : u ∈ I∗〉 for
I∗ = ([M ]<ℵ0 ,⊆). Now apply part (2).

(2) Easily (and as [?, §1]):
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(⊗) we can choose by induction on n < ω for every u ∈ [M ]n, t[u] ∈ I and N∗u
such that: u ⊆ N∗u , N∗u �F Nt[u], ‖N∗u‖ ≤ LS(T) and

u ⊆ v ∈ [|M |]<ℵ0 implies N∗u ≺ N∗v and t[u] ≤I t[v].

For U ⊆ |M | let N∗U =:
⋃
{N∗u : u ⊆ U is finite} (the definitions are compatible).

Easily U1 ⊆ U2 ⊆ |M | ⇒ N∗U1
�F N∗U2

�F M . Now we prove by induction on
µ ≤ ‖M‖ that:

(∗∗) if U ⊆ ‖M‖, |U | = µ, p ∈ S(N∗U ) then for some u ∈ [U ]<ℵ0 , p does not fork
over N∗u .

This is enough for clause (β), as by monotonicity p also does not fork over Nt[u].
For µ finite this is trivial, for µ infinite then cf(µ) /∈ κµ+LS(T)(T) (by 3.5(2)) so
(∗∗) holds. So we have proved clause (β) and clause (α) follows by 1.24(3), and we
are done. �

Theorem 3.8. Suppose that cf(κ) = κ ≤ µ < λ and LS(T) < µ. Then

(1) The (µ, κ)-saturated model M is saturated (i.e., N �F M , ‖N‖ < ‖M‖,
p ∈ S(N) ⇒ p realized in M , and hence unique). Hence there is a saturated
model in Kµ.

(2) The union of a continuous �F -chain of length κ of saturated models from
Kµ is saturated.

(3) In part (1) we can replace saturated by (µ, µ)-saturated if µ = LS(T).
We can in part (2) replace saturated by µ-saturated if µ > LS(T).

Proof. (1), (2) Suppose that M = Mκ and 〈Mi : i ≤ κ〉 is a continuous �F -chain
of members of Kµ such that for the proof of (1) Mi+1, is a universal extension of
Mi and for the proof of (2) Mi+1 is saturated. Let i ≤ j ≤ κ. Then Mi �nice Mj

(by [?, 5.4], or more exactly by the hypothesis 3.1). So there is an operation Opi,j
such that Mi �F Mj �F Opi,j(Mi). It follows that there is an expansion M+

i,j of

Mj by at most LS(T) Skolem functions such that if N is a submodel of M+
i,j , then

Mi

Mj⋃
(N ∩Mj �Mi)

N �Mj .

[Why? as we use operations coming from equivalence relations with ≤ κ∗ classes
and LS(T) ≥ κ∗ by its definition]. More fully, letting Opi,j(N) = N I

D/G, every
element b ∈ Mj being in Opi,j(Mi) has a representation as the equivalence class

of 〈xbt : t ∈ I〉/D under Opi,j , x
b
t ∈ Mi and |{xbt : t ∈ I}| ≤ κ∗. The functions of

M+
i,j are the Skolem functions of Mj and Mi and functions Fζ (ζ < κ∗) such that

{Fζ(b) : ζ < κ∗} ⊇ {xbt : t ∈ I}.]
If κ = µ, the theorem is immediate as κ is regular, µ > LS(T). So we will

suppose that κ < µ. Suppose N � M = Mκ, ‖N‖ < µ and p ∈ S(N). Let
χ =: ‖N‖ + κ + LS(T) so κ < µ hence κ+ < λ. W.l.o.g. there is no N1, N �F
N1 ≺ Mκ, ‖N1‖ ≤ χ and p1, p ⊆ p1 ∈ S(N1) such that p1 forks over N (by 3.3
but not used). If there is i < κ such that N ⊆ Mi, then p is realized in Mi+1.
By the choice of the models M+

i,j , it is easy to find N ′ such that N � N ′ � Mκ,
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‖N ′‖ = χ
def
= ‖N‖+ κ+ LS(T) and, for every i ≤ κ,

Mi

Mκ⋃
Mi ∩N ′

N ′.

Now let Ni = N ′ ∩ Mi and note that Nκ = N ′. The sequence 〈Ni : i ≤ κ〉 is
continuous increasing and there is an extension p′ of p in S(Nκ) = S(N ′). Hence
there exists i < κ such that (i ≤ j < κ) ⇒ (p′ does not fork over Nj). If we
are proving part (2), then Mi+1 is saturated but ‖Mi‖ = µ > κ = ‖Ni+1‖ and
hence there is a ∈Mi+1 realizing p′ � Ni+1. But by the non forking relation above
we get tp(a,N ′,Mκ) does not fork over Ni+1, hence is p′, as required. If we are
proving part (1), Mi+1 is universal over Mi hence we can find a saturated model
N∗ �F Mi+1 which contains Mi ∩N ′. Hence we can find 〈N∗ε : ε < χ+〉 which is
�F -increasing continuous such that: Ni �F N∗ε �F Mi+1, N∗ε+1 is a χ-universal
extension of N∗ε and N∗0 = Mi ∩N ′, and let aε ∈ N∗ε be such that tp(aε, N

∗
ε , N∗ε+1)

does not fork over Mi ∩N ′ and extend p′ � (Mi ∩N ′). By 3.5(1), for some ε there

is N ′ε, N
′ ∪N∗ε ⊆ N ′ε and N∗ε

N ′ε⋃
N ′ ∩Mi

N ′, so aε realizes p′. (Recall symmetry and

uniqueness of extensions).

(3) Similar proof for the second sentence, using 1.20 for the first sentence. �

Remark: Using categoricity we can prove 3.8 also by 1.20(2) (and uniqueness).

Conclusion 3.9. Assume LS(T) ≤ κ < µ ∈ (LS(T), λ), M ∈ Kµ is not κ+-
saturated; let 〈N∗u : u ∈ [|M |]<ℵ0〉 and N∗U (for U ⊆ |M |) be as in the proof of
3.7(2) (for I = {∅}, N∅ = M . Then there is U ⊆ |M |, |U | ≤ κ, p ∈ S(N∗U ), i.e.,
there are N+, N∗U �F N+ ∈ Kκ, and a+ ∈ N+ satisfying (a+, N+)/EN∗U = p such
that for no a ∈M do we have

u ∈ [U ]<ℵ0 ⇒ tp(a,N∗u ,M) = tp(a+, N∗u , N
+).

Equivalently: w.l.o.g. N+∩M = N∗U and we can define N+
u for u ∈ [|N+|]<ℵ0 , such

that 〈N+
u : u ∈ [|N+|]<ℵ0〉 as in the proof of 3.7(2), and u ∈ [U ]<ℵ0 ⇒ N+

u = N∗u
and for no u0 ∈ [|M |]<ℵ0 , v0 ∈ [|N+|]<ℵ0 , a+ ∈ N∗v0

, and a ∈ N∗u0
do we have∧

u∈[U ]<ℵ0

tp(a,N∗u , N
∗
u∪u0

) = tp(a+, N+
u , N

+
u∪v0

).

Corollary 3.10. (1) If T is λ-categorical and LS(T) < µ < λ, LS(T) ≤ χ,
δ(∗) = (2LS(T))+ and iδ(∗)(χ) ≤ µ then every M ∈ Kµ is χ+-saturated.
In fact for some δ < δ(∗) we can replace δ(∗) by δ.

(2) If µ = i(2χ)+×δ, δ a limit ordinal then T is µ-categorical.

Proof. By 3.9 (and 1.17(2), that is 1.17(1)+ 1.14(1)) this problem is translated to
an omitting type argument + cardinality of a predicate which holds (see [?, VIII
§4], [?, VII §5] for a parallel result for first order logic, pseudo elementary classes,
done independently in 1968 by G. Cudnovskii, J. Keisler and S. Shelah). See more
on this in [?] and better [?]. The translated problem is: for (κ, λ1, λ2) consider the
question:
Q(κ, λ1, λ2) for a vocabulary L∗ of cardinality ≤ κ and set Γ of 1-types (or < ω-

types, does not matter), and unary predicate P , does the existence of an L-model

Paper Sh:472, version 2001-11-12 10. See https://shelah.logic.at/papers/472/ for possible updates.



24 SAHARON SHELAH

M1 omitting every p ∈ Γ satisfying ‖M1‖ = λ1 > |PM1 | ≥ κ implies the existence
of an L-model M2 omitting every p ∈ Γ and satisfying ‖M2‖ = λ2 > |PM2 | ≥ κ.

So by 3.9 we have Q(LS(T), λ1, λ2), T categorical in λ = λ1 > LS(T) and
λ2 < λ1 implies T is categorical in λ2 (the need for λ2 < λ1 is as only over models
in K<λ we somewhat understand types). �

Proposition 3.11. [T categorical in λ]

(1) If 〈Mi : i ≤ δ〉 is �F -increasing continuous, Mi ∈ K<λ, p ∈ S(Mδ) then
for some i < δ, p does not fork over Mi.

(2) If N ∈ K<λ and p, q ∈ S(N) does not fork over M , M �F N ∈ K<λ then
p = q ⇐⇒ p �M = q �M . Moreover, if M �F N �F N+, a ∈ N+ then

N
N+⋃
M

a ⇔ a
N+⋃
M

N.

(3) If M �F N ∈ K<λ and p ∈ S(M) then there is q ∈ S(N) extending p not
forking over M .

(4) If M0 �F M1 �F M2 ∈ K<λ, p ∈ S(M2), p � M`+1 does not fork over M`

for ` = 0, 1 then p does not fork over M0.
(5) If µ, δ < λ, Mi ∈ K≤µ for i < δ is �F -increasing continuous, pi ∈ S(Mi),

[j < i ⇒ pj ⊆ pi], then there is p ∈ S(Mδ) such that i < δ ⇒ pi ⊆ pδ.

Proof. (1) Otherwise we can find N , Mδ �F N �F Op(Mδ), N ∈ Kλ such that
N �F N∗ =:

⋃
i<δ

Op(Mi). So N is saturated so let a ∈ N realizes p; so for some i,

a ∈ Op(Mi) and let N ′i �F Op(Mi) be such that Mi ∪ {a} ⊆ N ′i clearly Mδ

N∗⋃
Mi

N ′i .

Hence Mδ

N∗⋃
Mi

a, and hence, by part (2), tp(a,Mδ, N
∗) does not fork over Mi, so it

is 6= p.

(2) The first sentence follows from the second. If the second fails then we can
contradict stability in ‖N‖ (holds by 1.16(5)), by a proof just as in 1.6(2).

(3) We can find an operation Op, ‖Op(M)‖ ≥ λ, so in Op(M) some ā realizes p
so q = tp(ā, N,Op(N)) is as required.

(4) By part (3) there is q ∈ S(M2) such that q �M0 = p and q does not fork over
M0. Now by 1.21(3) usually and part (2) of the present proposition in general the
type q � M1 does not fork over M0 hence by 1.24(3) q � M1 = p � M1, and hence
by the same argument q = p.

(5) Case 1: cf(δ) > ℵ0.
For every limit α < δ for some i < α we have pα does not fork over Mi. By Fodor’s
lemma, for some i < δ and stationary S ⊆ δ we have

j ∈ S ⇒ pj does not fork over Mi.

So the stationarization of pi in S(Mδ) (which exists by 1.22 or use part (3)) is as
required.
Case 2: cf(δ) = ℵ0.
So w.l.o.g. δ = ω. Here chasing arrows (using amalgamation) suffices. �
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Lemma 3.12. In K<λ we can define rk(tp(a,M,N)) with the right properties.
I.e.,

(A) If M ≺F N ∈ K<λ, ā ⊆ N , M ∈
⋃

µ+<λ

Kµ, p = tp(ā,M,N) then

rk(p) ≥ α iff for every β < α there are
p′,M ′ such that M ≺F M ′ ∈

⋃
µ+<λKµ

p′ ∈ S(M ′), p′ �M = p and rk(p′) ≥ β and p′ forks over M.

(B) For every M , N , ā, p as above rk(p) is an ordinal.
(C) If M1 ≺F M2 ∈

⋃
µ+<λ

Kµ and p2 ∈ S(M2), then rk(p2 � M1) ≥ rk(p2) and

equality holds iff p2 does not fork over M1 and then p2 � M1 (and M2)
determines p2.

(D) If 〈Mi : i ≤ δ〉 is �F -increasing continuous, Mi ∈
⋃

µ+<λ

Kµ and pδ ∈ S(Mδ)

then for some i < δ we have:

j ∈ [i, δ] ⇒ rk(pδ) = rk(pδ �Mj).

Proof. Straightforward and used little; in fact by 3.11 we can use K<λ instead⋃
µ+<λ

Kµ. �

Lemma 3.13. Assume µ ≥ LS(T), µ+ < λ. If M ∈ Kµ is saturated (for µ =
LS(T) means (µ, µ)-saturated), and p ∈ S(M) then there are N , a such that N ∈
Kµ is saturated, a ∈ N , tp(a,M,N) = p and N is isolated over M ∪ {a} (where
we say that N is isolated over M ∪ {a} when M �F N , a ∈ N ∈ K<λ and: if
N �F N+ ∈ K<λ and M �F M∗ �F N+, and tp(a,M,N+) does not fork over M

then M∗
N+⋃
M

N).

Remark As in [?, Ch.V] (or Makkai and Shelah [?, 4.22]) because we have 3.5(1)
(by 3.6).

Proof. We can find 〈M ′n : n < ω〉, M ′n ∈ Kµ is saturated, Mn+1 is saturated
over M ′n, hence by the definition

⋃
n<ωM

′
n is (µ,ℵ0)-saturated over M ′n hence is

saturated so by 3.8 wlog it is M , so by 3.11(1), p does not fork over M ′n for some n,
by remaining, p does not fork over M ′0; note also that by 3.8, M is saturated over
M ′0. We try to choose by induction on α < µ+, (Mα, Nα) such that

(a) Mα ∈ Kµ is �F -increasing continuous,
(b) Nα ∈ Kµ is �F -increasing continuous,
(c) Mα, Nα are saturated, Mα �F Nα,
(d) M0 = M , a ∈ N0, tp(a,M0, N0) is p,
(e) if α = β + 1, β successor, then Mβ+1 is (λ,ℵ0)–saturated over Mβ ,
(f) if α = β + 1, β successor, then Nβ+1 is (λ,ℵ0)–saturated over Nβ ,
(g) tp(a,Mα, Nα) does not fork over M0,

(h) Mα+1

Nα+1⊎
Mα

Nα if α is a limit ordinal.

For α = 0 just choose (M0, N0) to satisfy clauses (c) for α = 0 and (d); and let, e.g.,
(M1, N1) = (M0, N0). For α = β+ 2 just satisfy clause (e)+(f) (and Mα �F Nα in
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Kµ), possible by 1.22 + 1.16(6). For α limit take unions (the result are saturated
by the definition, and clause (g) holds by 3.5(2)). Lastly for α = β + 1, β limit, if
there are no such Mα, Nα then Nβ is isolated over Mβ ∪ {a}.

Now both Mβ and M = M0 =
⋃
n<ω

M ′n are saturated over M ′0, and hence there is

an isomorphism f from Mβ onto M which is the identity over M ′0. By uniqueness
of non forking extensions, f maps tp(a,Mβ , Nβ) to p. Renaming we have f is the
identity and letting N = Nβ we have gotten the desired conclusion. But if we
succeed to carry out the induction we get a contradiction to 3.6; so we are done.

Note that for a limit ordinal β, the model Mβ is (µ, cf(µ))-saturated over Mγ

for any γ < β and Nβ is (µ, cf(µ))–saturated over Nγ for any γ < β. �

Proposition 3.14. If M �F N are in Kµ, µ ≥ LS(T), µ+ < λ, and a ∈ N \M ,
then we can find saturated M ′, N ′ ∈ Kµ such that M �F M ′ �F N ′,N �F N ′,
tp(a,M ′, N ′) does not fork over M ′; and N ′ is isolated over M ′ ∪ {a} and M ′ is
saturated over M , N ′ is saturated over N .

Proof. Contained in the the proof of 3.13. �

Proposition 3.15. If µ ∈ [LS(T), λ), M ∈ Kµ is saturated and p ∈ S(M) then
for some saturated N ∈ Kµ, M �F N , a ∈ N tp(ā,M,N)) = p and N is locally
isolated over M ∪ {a} which means:

(�) M �F N ∈ K<λ, a ∈ N and
if N �F N+ ∈ Kλ, M �F M∗ �F N+, M∗ ∈ K<λ and tp(a,M∗, N+)
does not fork over M (�F M∗) and A ⊆M∗ is finite,

then A
N+⋃
M

N .

Proof. Usually we can use 3.14. A problem arises only if µ+ = λ. We can find
〈M ′i : i ≤ µ〉 which is �F -increasing continuous, ‖M ′i‖ = |i| + LS(T), M ′µ = M ,
M ′i is saturated, M ′i+1 universal over M ′i and p does not fork over M0.

Now choose by induction on i ≤ µ, (Mi, Ni, a) such that:

(a) M0 = M ′0,
(b) ‖Mi‖ = ‖Ni‖ = |i|+ LS(T),
(c) for i non limit (Mi, Ni, a) is as in 3.13 (with |i|+LS(T) instead of µ), that

is, Ni is isolated over Mi ∪ {a},
(d) tp(a,M0, N0) = p �M ′0,
(e) 〈Mi : i ≤ µ〉 is �F -increasing continuous,
(f) 〈Ni : i ≤ µ〉 is �F -increasing continuous,
(g) tp(a,Mi+1, Ni+1) does not fork over Mi (hence is the stationarization of

tp(a,M0, N0) = p �M ′0, that is does not fork over M ′0 = M0),
(h) Mi+1 is saturated over Mi and Ni+1 is saturated over Ni,
(i) Mi �F Ni.

There is no problem, so as Mµ is saturated and in Kµ, M0 = M ′0 has cardinality
< µ and uniqueness of nonforking extensions (3.11), w.l.o.g., Mµ = M . For any
candidates N+, A,M∗, as in the definition of “N is locally isolated over M ∪ {a}”

assume toward contradiction that N
N+⊎
M

A; as A is finite, by 3.11(1), for some

i < µ, the type tp(A,M,N+) does not fork over Mi, and for some j < µ the type
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tp(A,N,N+) does not fork over Nj . W.l.o.g., i = j is a successor ordinal and

tp(A ∪ {a},M) does not fork over Mi−1. So as N
N+⊎
M

A, necessarily tp(A,Ni, N
+)

forks over Mi, hence (by clause (c) above), a
N+⊎
Mi

A. But M and Mi are by the

construction saturated over Mi−1, and hence there is an isomorphism f from Mi

onto M which is the identity over Mi−1. So by using uniqueness of does not fork, it

maps tp(A∪{a},Mi−1, N
+) to tp((A∪{a},M,N+) and hence a

N+⊎
M

A (by 1.21(4)).

Thus we get a
M∗⊎
M

M∗, contradiction to the choice of N+, A,M∗.

Alternatively repeat the proof of 3.13 using 3.11(2)’s second sentence. �

Theorem 3.16. Assume λ is a successor cardinal, i.e., λ = λ+
0 . Then T is

categorical in every µ ∈ [i(2LS(T))+ , λ) (really for some µ0 < i(2LS(T))+ , µ ∈ [µ0, λ)

suffices).

Proof. As in [?]. By 3.10, for some µ1 < i(2LS(T))+ every M ∈ K[µ1,λ] is LS(T)+-

saturated. Let µ ∈ [µ1, λ), and assume M ∈ Kµ is not saturated, so for some
κ ∈ (LS(T), µ) the model M is κ-saturated not κ+-saturated. Let p, 〈N∗u : u ∈
[|M |]<ℵ0〉, U , N+, 〈N+

u : u ∈ [|N+|]ℵ0〉 be as in 3.9. Let U0 = U . W.l.o.g. N∗U0
is

saturated, p does not fork over N∗u∗ , u
∗ ∈ [U ]<ℵ0 finite, rk(p) minimal under the

circumstances. Now let b ∈ M \N∗U0
, so there is M+ satisfying M ≺F M+ ∈ Kµ

such that N1 �F M+ which is µ-isolated over N∗U0
∪ {b}. By defining more N∗u

w.l.o.g. N1 = N∗U1
. So tp(b,N∗U0

,M), and p are orthogonal (see [?, Ch.V]). Now we
deal with orthogonal types and we continue as [?]: define a ≺F -chain M∗i (i < λ)
of saturated models of cardinality λ0 all omitting some fixed p ∈ S(M∗0 ). �

Discussion 3.17. (1) Below i(2LS(T))+ .

A problem is what occurs in [LS(T),i(2LS(T))+ ]. As T is not necessarily

complete, for any ψ and T we can consider T′
def
= {ψ → ϕ : ϕ ∈ T}, if ¬ψ

has a model in µ iff µ < µ∗, we get such examples where categoricity can
start “late”. So we may consider T complete in Lκ∗,ω. Hart and Shelah [?]
bound our possible improvement but we may want larger gaps, a worthwhile
direction.

If |T| < κ∗ we may look at what occurs in large enough µ < κ∗.
(2) Below λ.

If λ is a limit cardinal we get only 3.11, this is a more serious issue. The
problem is that we can get µ-saturated not saturated model in Kµ+ , so we
get for M ∈ Kµ saturated, two orthogonal types p, q ∈ S(M) (not realized
in M). We want to build a prime model over M∪(a large indiscernible set
for p). Clearly P−(n)-diagrams are called for.

(3) Above λ.
In some sense we know every model is saturated: if M ∈ K>λ, N �F M ,

‖N‖ < λ, p ∈ S(N) then dim(p,N,M) = ‖M‖, i.e., if N �F N+ �F M
and: ‖N+‖ < ‖M‖ when λ is successor, or i(2LS(T))+(‖N+‖) when λ is a
limit cardinal.
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Another way to say it: the stationarization of p over N+ is realized.
But is every q ∈ S(N+) a stationarization of some p ∈ S(N ′), N ′ �F N+,
‖N ′‖ ≤ LS(T)? We can find N0 �F N+, ‖N0‖ ⊆ (T), such that: [N0 �F
N1 ≤ N+ & ‖N1‖ ≤ LS(T) ⇒ q � N1 does not fork over N0], we can get
it for ‖N1‖ < µ, but does it hold for N1 = N+? A central point is
(∗) Does K satisfy amalgamation?

Again it seems that P−(n)-systems are called for. See more in [?].
(4) If |T| < κ∗ we can do better, as Op(EM(I,Φ)) = EM(Op(I),Φ), will

discuss elsewhere.
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