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Abstract. Both, B1-groups and B2-groups are natural generalizations of finite rank

Butler groups to the infinite rank case and it is known that every B2-group is a B1-

group. Moreover, assuming V = L it was proven that the two classes coincide. Here we

demonstrate that it is undecidable in ZFC whether or not all B1-groups are B2-groups.

Using Cohen forcing we prove that there is a model of ZFC in which there exists a

B1-group that is not a B2-group.

1. Introduction

The study of Butler groups, both in the finite and in the infinite rank case, is a
most active area of Abelian Group Theory. There are several challenging problems
which require deep insight into the theory of Butler groups and the available methods
as well as the development of new machinery. The finite rank case is closely related
to the study of representations of finite posets while the infinite rank case has its own
special flavor. During the last years more and more the connection between infinite rank
Butler groups and infinite combinatorics was discovered and led to numerous interesting
results. In this paper we discuss one of the long-standing problems, namely whether or
not all B1-groups are B2-groups, and show that its solution is independent of ZFC. It
is known that any B2-group is a B1-group and moreover, assuming Goedel’s universe of
constructibility the two classes coincide. In contrast to this result we will show, using
Cohen forcing, that there is a model of ZFC in which there exists a B1-group that is
not a B2-group.

In the following all groups are abelian. Our terminology is standard and maps are
written on the left. If H is a subgroup of a torsion-free group G then the purification
of H in G is denoted by H∗. For notations and basic facts we refer to [11] for abelian
groups, [18] and [21] for forcing and [9] or [17] for set-theory. Moreover, the interested
reader may look at [2] for a survey on finite rank Butler groups and at [3], [12] for
surveys on infinite rank Butler-groups.
Since our problem comes from abelian group theory the authors tried to make the paper
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accessible for non set-theorists. Hence the involved set-theory (forcing) is explained in
detail although the methods are very standard.

2. Infinite rank Butler groups

In this section we recall the definitions of B1-groups and B2-groups as they were given
by Bican-Salce in [6]. Both classes contain the class of finite rank Butler-groups (pure
subgroups of completely decomposable groups of finite rank) first studied by Butler in
[4]. Let us begin with the notion of a balanced subgroup.

A pure subgroup A of the torsion-free groupG is said to be a balanced subgroup if every
coset g+A (g ∈ G) contains an element g+a (a ∈ A) such that χ(g+a) ≥ χ(g+x) for
all x ∈ A, where χ(g) denotes the characteristic of an element g ∈ G. Such an element
is called proper with respect to A and χ(g) denotes the characteristic of an element g in
the given group G.

An exact sequence 0 → A → G → C → 0 is balanced exact if the image of A in
G is a balanced subgroup of G. Hunter [16] discovered that the equivalence classes of
balanced extensions of a group H by a group G give rise to a subfunctor Bext1(H,G)
of Ext1(H,G) and hence homological algebra is applicable. Thus for a balanced exact
sequence

(∗) 0→ A→ G→ C → 0

and a group H we obtain the two long exact sequences

0→ Hom(C,H)→ Hom(G,H)→ Hom(A,H)→ Bext1(C,H)→ Bext1(G,H)→

→ Bext1(A,H)→ Bext2(C,H)→ · · ·
and

0→ Hom(H,A)→ Hom(H,G)→ Hom(H,C)→ Bext1(H,A)→ Bext1(H,G)→

→ Bext1(H,C)→ Bext2(H,A)→ · · ·
It is routine to check that balanced-exactness of the sequence (∗) is equivalent to the
following property: for every rank one torsion-free group R, every homomorphism R→
C can be lifted to a map R → G, i.e. every rank one torsion-free group is projective
with respect to (∗). Thus the following lemma is easily established.

Lemma 2.1. Let

0→ A→ G
ϕ→ C → 0

be a balanced exact sequence. Then this sequence is locally invertible, i.e. for any element

c ∈ C there exists a homomorphism ψc : 〈c〉∗ → G such that ϕψc = id〈c〉∗.

We now come to the definitions of B1-groups and B2-groups.

Definition 2.2. A torsion-free abelian group B is called

(1) a B1-group if Bext1(B, T ) = 0 for all torsion groups T ;
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(2) a B2-group if there exists a continuous well-ordered ascending chain of pure sub-

groups,

0 = B0 ⊂ B1 ⊂ · · · ⊂ Bα ⊂ · · · ⊂ Bλ = B =
⋃
α<λ

Bα

such that Bα+1 = Bα + Gα for every α < λ for some finite rank Butler group

Gα; i.e. Bα is decent in Bα+1 in the sense of Albrecht-Hill [1];

(3) finitely Butler if every finite rank pure subgroup of B is a Butler-group.

Due to Bican-Salce [6] the three definitions are equivalent for countable torsion-free
groups.

Theorem 2.3 ([6]). For a countable torsion-free abelian group B the following are

equivalent:

(1) B is finitely Butler;

(2) B is a B2-group;

(3) B is a B1-group.

Without any restriction to the cardinality we have in general:

Theorem 2.4 ([6]). B2-groups of any rank are B1-groups.

It turned out that the converse implication in the above theorem couldn’t be proved
without any additional set-theoretic assumptions. There are some partial results in
ZFC characterizing the B2-groups among the B1-groups but none of them is really
satisfactory. The following was shown by Fuchs and Rangaswamy independently.

Lemma 2.5 ([13], [20]). Suppose that 0 → H → C → G → 0 is a balanced-exact

sequence where C is a B2-group and H and G are B1-groups. If one of H and G is a

B2-group, then so is the other.

An attempt to characterize the B2-groups in a homological way is the following the-
orem due to Fuchs.

Theorem 2.6 ([13]). If B is a B2-group, then Bexti(B, T ) = 0 for all i ≥ 1 and for all

torsion groups T .

Assuming the continuum hypothesis Rangaswamy was able to show that also the
converse holds and in some cases Fuchs could even remove CH.

Theorem 2.7 ([13], [20]). The following are true:

(1) Assuming CH a torsion-free group B is a B2-group if and only if Bext1(B, T ) =

Bext2(B, T ) = 0 for all torsion groups T .

Paper Sh:754, version 2001-10-30 10. See https://shelah.logic.at/papers/754/ for possible updates.



4 SAHARON SHELAH AND LUTZ STRÜNGMANN

(2) A torsion-free group B of cardinality ℵn (for some integer n ≥ 1) is a B2-group

if and only if Bexti(B, T ) = 0 for all i ≤ n+ 1 and all torsion groups T .

It was natural to ask whether Bext2(B, T ) is always zero for a torsion-free group B
and a torsion group T but Magidor-Shelah [19] proved that this is not the case even
assuming the generalized continuum hypothesis GCH. That CH was relevant in many
papers was explained by Fuchs who showed the following theorem.

Theorem 2.8 ([13]). In any model of ZFC, the following are equivalent:

(1) Bext2(G, T ) = 0 for all torsion-free groups G and torsion groups T ;

(2) CH holds and balanced subgroups of completely decomposable groups are B2-

groups.

One of the most interesting and main results in the theory of infinite rank Butler
groups is the following final theorem of this section proved by Magidor and Fuchs.

Theorem 2.9 ([14]). Assuming V = L every B1-group is a B2-group.

We will show in this paper that the conclusion of the last theorem does not hold in
ZFC but is independent of ZFC.

3. The forcing

In this section we will explain the forcing notion we are going to use to construct our
B1 group H which fails to be B2. The reader who is familiar with forcing, especially
with adding Cohen reals may skip this section. Most results are well-known and basic.
For unexplained notations and further results on forcing we refer to Kunen’s book [18]
or to the more advanced first author’s book [21].

Let M be any countable transitive model of ZFC and assume of course that the set
theory ZFC is consistent. The aim of forcing is to extend M to a new model which still
satisfies ZFC but which has additional properties which we are interested in.

A forcing notion P ∈M is just a non empty, preordered set (P,≤, 0P), where 0P is the
minimal element of P, hence 0P ≤ p for all p ∈ P. Note that we don’t require that p ≤ q
and q ≤ p imply q = p. If two elements p, q ∈ P have no common upper bound, i.e.
there is no t ∈ P such that p ≤ t and q ≤ t, then we say that p and q are incompatible
and write p ⊥ q. If a common upper bound exists we call the elements compatible. We
now want to add to M a subset S of P to construct a transitive set M [S] which is a
model of ZFC with the same ordinals as M such that M ⊆M [S] and S ∈M [S]. Those
sets S are called generic.

Definition 3.1. Let D ⊆ P, S ⊆ P and p ∈ P. Then

(1) D is called dense in P if for any q ∈ P there is an element t ∈ D such that q ≤ t;

(2) D is dense above p if for any q ∈ P such that p ≤ q there exists an element

t ∈ D such that q ≤ t;
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(3) S is called P-generic over M if the following hold:

(a) for all q, r ∈ S there exists t ∈ S such that q ≤ t and r ≤ t, i.e. all elements

of S are compatible in S;

(b) if q ∈ S and t ≤ q for some t ∈ P then also t ∈ S;

(c) S ∩D 6= ∅ for every dense subset D of P which is in M .

A first observation is that a generic set S intersects non-trivially also sets which are
“dense above p” in many cases.

Lemma 3.2. Let D ⊆ P and S be P-generic over M . Then

(1) Either S ∩D 6= ∅ or there exists q ∈ S such that for all r ∈ D we have r ⊥ q;

(2) If p ∈ S and D is dense above p, then S ∩D 6= ∅.

Proof. See [18, Lemma 2.20].

If S is P-generic over M (or, for short, generic), then the existence of the model M [S]

with the desired properties follows from the Forcing Theorem (see [21]). M [S] is the

smallest transitive model of ZFC that contains M and S. We don’t want to recall the

construction of M [S] but we would like to mention the following facts. Since we want

to prove theorems in M [S] we would like to know the members of M [S] but we can

not have full knowledge of them inside M since this would cause these sets to be in M

already. If S is in M then M [S] gives nothing new, so we have to assume that S is not

in M and this is the case in general as the following lemma shows.

Lemma 3.3. Let S be P-generic over M . If P satisfies the following condition

(3.1) ∀ p ∈ P ∃ q, r ∈ P such that p ≤ q, p ≤ r and q ⊥ r

then S 6∈M .

Proof. See [18, Lemma 2.4].

Nevertheless, every element p of P can be a member of a generic set.

Lemma 3.4. Let p ∈ P. Then there is a subset S which is P-generic over M such that

p ∈ S.

Proof. See [18, Lemma 2.3].

Although we don’t know the generic set S we assume that we have some prescription

for building the members of M [S] out of M and S. These prescriptions are called P-

names, usually denoted by τ , and their interpretation in M [S] is τ [S]. For the exact
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definition of P-names and their interpretation we refer again to Kunen’s book [18] but

let us mention that the Strengthened Forcing Theorem (see [21]) shows that

M [S] = {τ [S] : τ ∈M and τ is a P-name }.

If we are talking about the P-name of a special object H from M [S] without specifying

S then we will write H̃ instead of H to avoid confusion but if H is already in M , then

we omit the tilde. Any sentence of our forcing language uses the P-names to assert

something about M [S] but the truth or falsity of a sentence ψ in M [S] depends on S

in general. If p ∈ P, then we write p  ψ and say p forces ψ to mean that for all S

which are P-generic over M , if p ∈ S, then ψ is true in M [S]. If 0P  ψ then we just

write P ψ which means that for any generic S the sentence ψ is true in M [S] since 0P

is always contained in S. Hence the elements of P provide partial information about

objects in M [S] but not all information and if p ≤ q then q contains more information

than p. It may be decided in M whether or not p  ψ and whenever a sentence ψ is

true in M [S] then there is p ∈ S such that p  ψ.

We now turn to the forcing of adding Cohen reals. Therefore let κ be an uncountable

cardinal. We put

P = {p | p is a function from a finite subset of κ× ω to 2}

= {p | p : dom(p) −→ 2, dom(p) a finite subset of κ× ω}

The partial ordering of P is given by set theoretic inclusion, i.e. two functions p and

q satisfy p ≤ q if and only if q extends p as a function. This forcing is called “adding

κ Cohen reals” and the elements of P can obviously be regarded as functions from κ to
<ω2 which we will do in the sequel.

The next lemma shows why the forcing is called adding κ Cohen reals.

Lemma 3.5. P “There are at least κ reals”.

Proof. See [21, Chapter I, Lemma 3.3].

We will give the κ Cohen reals P-names, say η̃α for α < κ and state some basic

properties of the Cohen reals. Note that a real is a function from ω to 2 = {0, 1}.

Lemma 3.6. The following hold for α, β < κ:

(1) P “There are infinitely many n ∈ N such that η̃α(n) = η̃β(n) = 1”;

(2) P “There are infinitely many n ∈ N such that η̃α(n) = η̃β(n) = 0”;

(3) P “There are infinitely many n ∈ N such that η̃α(n) 6= η̃β(n)”.
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Proof. The proof of this fact is standard using a densitiy argument.

Moreover, we have three more important facts.

Lemma 3.7. The following hold for P.

(1) P satisfies the c.c.c. condition, i.e. P has no uncountable subset of pairwise

incompatible members;

(2) P preserves cardinals and cofinalities, i.e. if λ is a cardinal in M , then λ is also

a cardinal in M [S] with the same cofinality;

(3) P “ 2ℵ0 ≥ λ”. In particular, if λℵ0 = λ in M , then P “ 2ℵ0 = λ”.

Proof. See [21, Chapter I, Lemma 3.8], [21, Chapter I, Theorem 4.1] and [18, Theorem

5.10].

Finally we would like to remark that our notation is the ”Jerusalem style” of forcing

notation like in [21] but differs from the notation for example in [18]. In our partial

order p ≤ q means that q contains more information than p does and not vice versa.

4. Our B1 group H

Let M be a countable transitive model of ZFC in which the generalized continuum

hypothesis holds, i.e. 2κ = κ+ for all infinite cardinals κ. Moreover, let κ ≥ ℵ4 be

regular and let P be the forcing of adding κ Cohen reals. As we have seen in the last

section, P preserves cardinals and cofinalities and 2ℵ0 = κ in M [S] for every generic S.

Let η̃α denote the Cohen reals for α < κ and let M∗ be a model extending M , obtained

by Cohen forcing, e.g. M∗ = M [S] for some fixed S.

Inside M∗ we choose independent elements

{xn : n < ω} and {yα : α < κ}

and fix a countable set of natural prime numbers

{pn ∈ Π : n < ω}

such that pn < pm for n < m.

Definition 4.1. Let W =
⊕
n<ω

Qxn ⊕
⊕
α<κ

Qyα be the rational vector space and let F =⊕
n<ω

Zxn ⊕
⊕
α<κ

Zyα be the free abelian group generated by the xn’s and yα’s. In M∗ we

define H as the subgroup of W generated by F ∪{p−1n (yα−xn) : α < κ, n < ω, ηα(n) = 1}
and let H̃ be its P-name.

We can now state our Main Theorem.
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Main Theorem 4.2. In the model M∗ the group H is a B1-group but not a B2-group.

Hence it is consistent with ZFC that B1-groups need not be B2-groups.

The proof of the Main Theorem 4.2 will be divided into two parts. The first part is

to show that H is a B1-group which will be done in this section. Section 5 will then

consist of proving that H is not B2.

Theorem 4.3. In the model M∗ the group H is a B1-group.

The proof of Theorem 4.3 takes the rest of this section and consists of several steps.

Proof. (of Theorem 4.3) To prove thatH is aB1-group we have to show that Bext(H,T ) =

0 for any torsion group T . Hence let

(4.2) 0 −→ T̃
id−→ G̃

ϕ̃−→ H̃ −→ 0

be forced to be a balanced exact sequence in M∗ with T = T̃ [S] torsion. Thus there

exists r∗ ∈ P such that

r∗  ”0 −→ T̃
id−→ G̃

ϕ̃−→ H̃ −→ 0 is balanced exact.”

We now work in M∗ and choose preimages gα ∈ G of yα under ϕ for all α < κ. Similarly

let x̄n ∈ G be a preimage for xn under ϕ for n < ω. Moreover, let

Aα = {n < ω : ηα(n) = 1}

for α < κ.

It is our aim to show that the balanced exact sequence (4.2) is forced to split, hence

it is enough to prove that the homomorphism ϕ is right-invertible, i.e. we have to find

ψ : H −→ G such that ϕψ = idH . Therefore it is necessary to find preimages of the

generators of H in G such that equations satisfied in H also hold in G. We need the

following definition.

Definition 4.4. Let α < κ and t ∈ T arbitrary. Then the set Rα,t is defined as

Rα,t = {n ∈ Aα : gα − t− x̄n is not divisible by pn}.

We will now use a purely group theoretic argument to show that if for every α < κ

there is a tα ∈ T such that Rα,tα is finite then ϕ is invertible.

Lemma 4.5. Let α < κ and let t ∈ T such that Rα,t is finite. Then there exists tα ∈ T
such that Rα,tα = ∅.
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Proof. Since Rα,t is finite we may assume without loss of generality that Rα,t has min-

imal cardinality. Assume that Rα,t is not empty and fix n ∈ Rα,t. By the primary

decomposition theorem we decompose T as

T = Tpn ⊕ T ′

where Tpn denotes the pn-primary component of T . Since n ∈ Aα it follows that pn

divides yα − xn, hence there exists z ∈ G such that

ϕ(z) = p−1n (yα − xn).

Thus

(gα − t− x̄n)− pnz ∈ T = Tpn ⊕ T ′

and therefore there exist t0 ∈ Tpn and t1 ∈ T ′ such that

(gα − t− x̄n)− pnz = t0 + t1.

Since T ′ is divisible by pn we can write t1 = pnt2 for some t2 ∈ T ′. Hence

(gα − t− x̄n)− pn(z − t2) = t0.

We let t′ = t + t0 and will show that Rα,t′ has smaller cardinality than Rα,t - a contra-

diction. By the choice of t′ we have

(gα − t′ − x̄n) = gα − t− t0 − x̄n = pn(z − t2)

and hence n 6∈ Rα,t′ . But on the other side, if m 6∈ Rα,t, then pm divides (gα − t− x̄m)

and thus pm divides (gα − (t′ − t0) − x̄m). Since pn 6= pm it follows that pm divides t0

and therefore pm divides (gα − t′ − x̄m). Hence m 6∈ Rα,t′ showing that Rα,t′ is strictly

smaller than Rα,t. This finishes the proof.

Lemma 4.6. Assume that for every α < κ there exists tα ∈ T such that Rα,tα is finite.

Then ϕ is invertible and hence the sequence (4.2) is forced to split.

Proof. By Lemma 4.5 we may assume without loss of generality that for every α < κ

the set Rα,tα is empty. Thus for each n ∈ Aα we can find zα,n ∈ G such that

pnzα,n = gα − x̄n − tα.

We now define a homomorphism ψ : H −→ G as follows:

(1) ψ(xn) = x̄n (n < ω);

(2) ψ(yα) = gα − tα (α < κ);

(3) ψ(p−1n (yα − xn)) = zα,n (α < κ, n ∈ Aα).
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We leave to the reader to check that (1), (2) and (3) induce a well-defined homomorphism

ψ : H −→ G satisfying ϕψ = idH .

(Continuation of the proof of Theorem 4.3) Up to now we haven’t used any forcing

but we have worked in the model M∗. By Lemma 4.6 it remains to find for every α < κ

an element tα ∈ T such that the set Rα,tα is finite. Here we use the forcing.

We define for α 6= β < κ the pure subgroup Hα,β = 〈yβ − yα〉∗ of H. Since the

sequence (4.2) is forced to be balanced exact Lemma 2.1 shows that there exist homo-

morphisms

ψα,β : Hα,β −→ G such that ϕψα,β = idHα,β .

Let hα,β = ψα,β(yβ − yα) ∈ G, hence

tα,β = hα,β − (gβ − gα) ∈ T.

Since T is a torsion group we can find mα,β < ω such that

ord(tα,β) = mα,β.

Let m̃α,β and g̃α, g̃β be P-names for mα,β and gα, gβ, respectively. We can now easily

show

Fact 4.7. r∗  ” If n > m̃α,β, then pn divides (g̃β − g̃α) for n ∈ Aα ∩ Aβ ”

Proof. If n > mα,β, then pn > mα,β follows since the primes pm are increasing. Therefore

gcd(pn,mα,β) = 1 and thus pn divides (hα,β− (gβ− gα)). Moreover, hα,β = ψα,β(yβ− yα)

is divisible by pn since n ∈ Aα ∩ Aβ. Hence pn divides (gβ − gα).

Now let r∗ ≤ rα,β ∈ P be such that rα,β forces the value mα,β to m̃α,β, i.e.

rα,β  ” m̃α,β = mα,β ” .

Without loss of generality we assume that β ∈ dom(rα,β) for all α, β. Since all elements

of P are functions from κ to 2 with finite domain, we may write for some nα,β < ω

dom(rα,β) = {γ(α,β,0), · · · , γ(α,β,nα,β)} ⊂ κ,

where γ(α,β,i) < γ(α,β,j) if i < j ≤ nα,β. We would like to apply the ∆-Lemma to the

functions rα,β to obtain a ∆-system but unfortunately the functions rα,β depend on two

variables. This forces us to do the ∆-Lemma ’by hand’. For this we use the Erdös-Rado

Theorem (see [10]).

First we define a coloring on 4-tuples in ℵ4. Let α0, α1, α2, α3 < ℵ1 such that α0 <

α1 < α2 < α3 and let

c(α0, α1, α2, α3)
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consist of the following entries in an arbitrary but fixed order:

(i ) nα0,α1 ;

(ii ) mα0,α1 ;

(iii ) rα0,α1(γ(α0,α1,j) : j ≤ nα0,α1);

(iv ) (tv(γ(αn1 ,αn2 ,n3) < γ(αm1 ,αm2 ,m3)) : n1, n2,m1,m2 < 4;n3 < nαn1 ,αn2 ;m3 < nαm1 ,αm2
).

Recall that tv denotes the truth-value of the inequality. The above coloring is a coloring

with ω colors and thus we may apply the Erdös-Rado Theorem. Note that we are

working in our model M in which GCH holds by assumption. Hence we have

ℵ4 −→ (ℵ1)4ℵ0
which is exactly what we need to apply the Erdös-Rado Theorem. We obtain an in-

creasing chain of c-homogeneous elements

Γ = {αε : ε < ω1}

which means that whenever αε1 , αε2 , αε3 , αε4 ∈ Γ such that αε1 < αε2 < αε3 < αε4 , then

c(αε1 , αε2 , αε3 , αε4) = c∗

for a fixed color c∗. Let this particular color consist of the following entries:

(I ) n∗;

(II ) m∗;

(III ) (k1, · · · , kn∗) (ki ∈ {0, 1});
(IV ) (l1, · · · , l162(n∗)2) (li ∈ {Yes, No}).

Let us first explain what the homogenity implies. Let αε1 , αε2 ∈ Γ such that ε1 < ε2,

then (I) ensures that the domain of rαε1 ,αε2 has size n∗. Moreover, (II) says that rαε1 ,αε2
forces the value m∗ to mαε1 ,αε2

and (III) implies that the image of rαε1 ,αε2 is uniquely

determined. Finally (IV) ensures that if we take another pair αε3 , αε4 ∈ Γ such that

ε3 < ε4, then the relationship between the elements of the domains of rαε1 ,αε2 and rαε3 ,αε4
is fixed.

In the sequel we need to be above all the ”trouble”, hence we may increase m∗ without

loss of generality such that m∗ is greater than or equal to length(rαε,αρ(γαε,αρ,e)) for all

ε < ρ < ω1 and e ≤ n∗. We can now approach to the ∆-Lemma.

Definition 4.8. For αε ∈ Γ we define

(1 ) uαε = dom(rαε,αε+1) ∩ dom(rαε,αε+2);

(2 ) u∗ =
⋂
ε<ω1

uαε;

(3 ) sε = rαε,αε+1 �uαε= rαε,αε+2 �uαε .
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We have to explain why (3) in Definition 4.8 is well-defined. This follows from ho-

mogenity since (IV) implies that for γ ∈ uαε we have rαε,αε+1(γ) = rαε,αε+2(γ). We are

now ready to show the following lemma, our version of the ∆-system. Note that if we

talk about a ∆-system of functions then we mean that the corresponding domains of

the functions form a ∆-system.

Lemma 4.9. For αε, αρ ∈ Γ such that ε < ρ we have

uαε ∩ uαρ = u∗.

Hence the functions sε (αε ∈ Γ) form a ∆-system with root u∗. Moreover, for fixed

ε < ω1 the functions rαε,αρ (ε < ρ < ω1) form a ∆-system with root uαε.

Proof. Let αε, αρ ∈ Γ be such that ε < ρ. Clearly we have u∗ ⊆ uαε ∩ uαρ by Definition

4.8. It remains to show the converse inclusion. Therefore let γ ∈ uαε ∩ uαρ and choose

τ < ω1 arbitrary. We have to prove that γ lies in uατ .

If τ = ε or τ = ρ, then we are done.

If τ ≥ ε+1, then c(αε, αε+1, ατ , ατ+1) = c∗ by homogenity. Since γ ∈ dom(rαε,αε+1) we

can find i ≤ n∗ such that γ = γ(αε,αε+1,i) and similarly γ = γ(αρ,αρ+1,j) for some j ≤ n∗.

It follows now that

tv(γ(αε,αε+1,i) < γ(αρ,αρ+1,j)) = No and tv(γ(αρ,αρ+1,j) < γ(αε,αε+1,i)) = No.

Hence there exists by homogenity k ≤ n∗ such that

tv(γ(αε,αε+1,i) < γ(ατ ,ατ+1,k)) = No and tv(γ(ατ ,ατ+1,k) < γ(αε,αε+1,i)) = No.

Thus γ = γ(ατ ,ατ+1,k) ∈ dom(rατ ,ατ+1). Similarly it follows that γ ∈ dom(rατ ,ατ+2) and

hence γ ∈ uατ .
If τ < ε+ 1, then we use similar arguments to those above to prove that γ ∈ uατ .
Thus we have shown that γ ∈ uατ for any τ < ω1 and therefore γ ∈ u∗.
The same kind of arguments show that also the functions rαε,αρ (ε < ρ < ω1) form a

∆-system with root uαε for fixed ε < ω1.

It is now easy to see by a pigeon-hole argument that we may assume without loss

of generality (and we will assume this in the sequel) that all the functions from the

∆-systems in Lemma 4.9 coincide on their root.

(Continuation of the proof of Theorem 4.3) The following definition now makes sense.

Definition 4.10. For ε < ρ < ω1 and a generic S ⊆ P we define
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(I ) s∗ = sε �u∗= sε �(uαε∩uαρ );

(II ) Ỹ = {ατ : sτ ∈ S}.

We can now show that s∗ is strong enough to force that Ỹ has cardinality ℵ1.

Fact 4.11. s∗  ” | Ỹ |= ℵ1 ”

Proof. Let Ỹ ′ = {sε : αε ∈ Γ\Ỹ } and assume that s∗ does not force Ỹ to be of size ℵ1.
Then | Ỹ ′ |= ℵ1. We will show that this set is dense above s∗. Therefore let f ≥ s∗,

then dom(f) is a finite subset of κ and u∗ ⊆ dom(f). We choose sε ∈ Ỹ ′ such that

dom(sε)\u∗ is disjoint to dom(f)\u∗. This is possible since by Lemma 4.9 the sε’s form

a ∆-system, hence

dom(sτ )\u∗ ∩ dom(sβ)\u∗ = ∅

for β 6= τ . Now, f and sε are compatible and thus Ỹ ′ is dense above s∗. Therefore

Ỹ ′ ∩ S 6= ∅ by Lemma 3.2 - a contradiction.

We are almost done and prove the following statement.

Fact 4.12. s∗  ” If αε, αρ ∈ Ỹ and n ∈ Aαε ∩Aαρ\[0,m∗] then pn divides g̃αε − g̃αρ ”.

Proof. Let s∗ ≤ s be such that

s  ”n ∈ Aαε ∩ Aαρ\[0,m∗] ”.

Without loss of generality we may assume that s also forces truth values to αε ∈ Ỹ and

αρ ∈ Ỹ . If one of them is No, then we are done and hence let us assume that both are

Yes. We will show that there exists γ < ω1 such that

(I ) γ > ε;

(II ) γ > ρ;

(III ) dom(rαε,αγ )\uαε ∪ dom(rαρ,αγ )\uαρ ∪ {αγ} ∪ uαγ\u∗ is disjoint to dom(s).

Obviously we can choose γ > ε, ρ such that dom(s) is disjoint to {αγ}, so all we have

to ensure is that also dom(rαε,αγ )\uαε ∪ dom(rαρ,αγ )\uαρ ∪ uαγ\u∗ is disjoint to dom(s).

For this we prove that the three sets

(1 ) {γ < ω1 : dom(rαε,αγ )\uαε is not disjoint to dom(s)};
(2 ) {γ < ω1 : dom(rαρ,αγ )\uαρ is not disjoint to dom(s)};
(3 ) {γ < ω1 : uαγ\u∗ is not disjoint to dom(s)}.

are bounded in ω1. Let us start with (1). By Lemma 4.9 we know that for each

ε < ω1 the domains {dom(rαε,αγ ) : ε < γ < ω1} form a ∆-system with root uαε , hence

{dom(rαε,αγ )\uαε : ε < γ < ω1} is a set of pairwise disjoint sets. Since dom(s) is a
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14 SAHARON SHELAH AND LUTZ STRÜNGMANN

finite set {γ < ω1 : dom(rαε,αγ )\uαε is not disjoint to dom(s)} must be bounded in ω1.

Similarly {γ < ω1 : dom(rαρ,αγ )\uαρ is not disjoint to dom(s)} is bounded in ω1. Finally,

again by Lemma 4.9 the sets {uαγ : γ < ω1} form a ∆-system with root u∗ and so also

{γ < ω1 : uαγ\u∗ is not disjoint to dom(s)} is bounded in ω1.

For this γ we are able to prove that there is s+ such that

(i ) s+ ≥ s;

(ii ) s+  ”η̃αγ (n) = 1”;

(iii ) s+ ≥ rαε,γ ;

(iv ) s+ ≥ rαρ,γ .

Since n was chosen large enough which means that ηαγ has length less than or equal

to m∗ and hence less than or equal to n, there is, once we know that we can satisfy (i),

(iii) and (iv), also some s+ ≥ s satisfying all conditions (i), (ii), (iii) and (iv). Thus

we only have to satisfy conditions (i), (iii) and (iv) and for this it is obviously enough

to show that the three functions s, rαε,αγ and rαρ,αγ are compatible. Assume that rαε,αγ

and rαρ,αγ are incompatible, then by induction we obtain that rαε,αω1 and rαρ,αω1 are

incompatible. Hence for τ < σ < ω1 we have that rατ ,αω1 and rασ ,αω1 are incompatible

which contradicts the c.c.c. condition of our forcing. Therefore rαε,αγ and rαρ,αγ are

compatible. Finally s and rαε,αγ (and similarly s and rαρ,αγ ) are compatible since by the

choice of γ we have dom(s) ∩ dom(rαε,αγ ) = uαε .

Now s+  ”pn divides g̃αε − g̃αγ” and s+  ”pn divides g̃αγ − g̃αρ” and therefore

s+  ”pn divides g̃αε − g̃αρ” as claimed.

Finally we have to prove another fact.

Fact 4.13. s∗  ” For every β < κ there exists mβ < ω such that ∀mβ < n ∈ Aβ and αε

∈ Ỹ such that n ∈ Aαε we have pn divides g̃β − g̃αε ”.

Let us first show how Fact 4.13 implies Theorem 4.2, i.e. using Fact 4.13 we prove

that the set Rβ,0 is contained in [0,mβ)∩Z for all β < κ and hence finite after modifying

the choice of the preimages x̄n of xn (n < ω) slightly (which doesn’t has any effect on

what we have done so far). Choose x̄n ∈ G such that

(i ) ϕ(x̄n) = xn;

(ii ) if n > m∗ and α ∈ Y such that ηα(n) = 1, then pn divides gα − x̄n.

For example if n > m∗ we choose α ∈ Y such that ηα(n) = 1; Let kn ∈ G such that

ϕ(kn) = 1/pn(yα − xn) and put x̄n = pnkn + gα. Then clearly (i) and (ii) are satisfied.
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Now Fact 4.13 ensures that Rβ,0 is contained in [0,mβ) for if mβ < n ∈ Aβ choose

αε ∈ Y such that ηαε(n) = 1 (the one which was used when choosing the x̄n’s), then we

have by the choice of x̄n that pn divides gαε − x̄n and by Fact 4.13 we have pn divides

gβ − gαε and hence pn divides gβ − x̄n. Thus n 6∈ R[β,o) and R[β,0) ⊆ [0,mβ) follows.

Therefore the proof of Fact 4.13 finishes the proof of Theorem 4.3.

Proof. (of Fact 4.13) Fix β < κ and let s+ < s be such that s forces n ∈ Aβ. For

every ε < ω1 we choose (if possible) tεβ in the generic set such that

(i ) s ≤ tεβ;

(ii ) tεβ  ”αε ∈ Ỹ ”;

(iii ) tεβ  ”m̃αε,β = m]
αε,β

” for some m]
αε,β
∈ N.

Note that it is sufficient to find one ε such that

(∗) pn divides gβ − gαε,

for then we can use Fact 4.12 to get the conclusion for any αρ such that n ∈ Aαρ . If we

have one tεβ satisfying (ii) and (iii), then it forces (∗) for n > m]
αε,β

. So we first ensure

(ii) and (iii) and then we use that there is an uncountable subset Sβ of ω1 such that

{tεβ : ε ∈ Sβ} is a ∆-system to ensure (i) where we put mβ = m]
αε,β

which can be chosen

fixed for the ∆-system.

5. Why H fails to be B2

To complete the proof of our Main Theorem 4.2 we show in this section that the group

H from Definition 4.1 can not be a B2-group in M∗.

Theorem 5.1. In the model M∗ the group H can not be a B2-group.

Proof. Towards contradiction assume that H is a B2-group, hence has a B2-filtration

H =
⋃
α<κ

Hα.

Recall that a B2-filtration is a smooth ascending chain of pure subgroups Hα such that

for every α < κ Hα+1 = Hα + Bα for some finite rank Butler group Bα. Recall that a

cub in κ is a subset C of κ such that

(i ) C is closed in κ, i.e. for all C ′ ⊆ C, if supC ′ < κ, then supC ′ ∈ C;

(ii ) C is unbounded in κ, i.e. supC ′ = κ.

The proof of the following lemma is standard (see [9, II.4.12]) but for the convenience

of the reader we include it briefly.
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16 SAHARON SHELAH AND LUTZ STRÜNGMANN

Lemma 5.2. The set C = {δ < κ | Hδ = 〈xn, yβ : n < ω, β < δ〉∗} is a cub in κ.

Proof. First we show that C is closed in κ. Therefore let C ′ = {δi | i ∈ I} be a subset

of C such that supC ′ < κ. If we put γ = supC ′, then clearly

Hγ =
⋃
i∈I

Hδi = 〈xn, yβ : n < ω, β < γ〉∗

and hence γ ∈ C.

It remains to show that C is unbounded. Therefore assume that C is bounded by

δ∗ < κ, i.e. δ ≤ δ∗ for all δ ∈ C. We will show that there exists δ∗ < γ < κ such that

Hγ = 〈xn, yβ : n < ω, β < γ〉∗, hence γ ∈ C - a contradiction.

Let ρ1 = δ∗ and put

Eρ1 = 〈xn, yβ : n < ω, β < ρ1〉∗ .

Now choose ρ1 ≤ α1 < κ such that Eρ1 ⊆ Hα1 . If α1 6∈ C then choose α1 ≤ ρ2 < κ such

that

Hα1 ⊆ Eρ2 = 〈xn, yβ : n < ω, β < ρ2〉∗ .

Continuing this way we obtain a sequence of groups Eρi and Hαi such that

Eρi ⊆ Hαi ⊆ Eρi+1

for all i < ω. Let γ = sup{ρi : i < ω} = sup{αi : i < ω}. Then

Hρ =
⋃
i<ω

Hαi =
⋃
i<ω

Eρi = Eγ = 〈xn, yβ : n < ω, β < γ〉∗

and hence γ ∈ C. This finishes the proof.

(Continuation of the proof of Theorem 5.1) Now let δ ∈ C be such that δ > ℵ1 and

w.l.o.g. let δ be a limit ordinal. This is possible since C is a cub by Lemma 5.2. Note

that yδ 6∈ Hδ but we have the following lemma.

Lemma 5.3. There exists n∗ < ω and a sequence of ordinals δ ≤ α1 ≤ α2 · · · ≤ αn∗ < κ

such that

〈Hδ + Zyδ〉∗ ⊆
∑
m≤n∗

Bαm +Hδ.

Proof. We induct on α ≥ δ to show the even stronger statement that for any L ⊆∗ Hα,

L of finite rank, there exist n∗ < ω and δ ≤ α1 ≤ α2 · · · ≤ αn∗ < κ such that

〈Hδ + L〉∗ ⊆
∑
m≤n∗

Bαm +Hδ.

If α = δ, then we are done choosing n∗ = 1 and α1 = α.
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If α > δ is a limit ordinal, then L ⊆∗ Hα implies L ⊆∗ Hβ for some δ ≤ β < α. Hence

we are done by induction hypothesis.

If α = β+ 1, let Hα = Hβ +Bβ and let L = 〈l1, · · · , lk〉∗. We can find representations

li = hβ,i + bβ,i

for all 1 ≤ i ≤ k where hβ,i ∈ Hβ and bβ,i ∈ Bβ. We put

Lβ = 〈hβ,i, (Bβ ∩Hβ) : 1 ≤ i ≤ k〉∗ ⊆ Hβ

which is a pure subgroup of finite rank of Hβ. An easy calculation shows that L ⊆
Lβ +Bβ.

The induction hypothesis implies that there exist n < ω and δ ≤ α1 ≤ α2 · · · ≤ αn

such that

〈Hδ + Lβ〉∗ ⊆
∑
m≤n

Bαm +Hδ.

Another calculation shows that this implies

〈Hδ + L〉∗ ⊆
∑
m≤n

Bαm +Bβ +Hδ.

This finishes the proof.

(Continuation of the proof of Theorem 5.1) By Lemma 5.3 we can choose n∗ < ω and

δ ≤ α1 ≤ α2 ≤ · · · ≤ αn∗ such that

〈Hδ + Zyδ〉∗ ⊆
∑
m≤n∗

Bαm +Hδ.

For every m ≤ n∗ we choose a finite set Wm ⊂ κ and an integer nm < ω such that

Bαm ⊆

〈 ∑
γ∈Wm

Zyγ +
∑
i≤nm

Zxi

〉
∗

.

Collecting all these generators and letting W =
⋃

m≤n∗
Wm and k = max{nm : m ≤ n∗}

we obtain

(5.3) 〈Hδ + Zyδ〉∗ ⊆ B +Hδ

where B =

〈 ∑
γ∈W

Zyγ +
∑
i≤k

Zxi

〉
∗

.

Now choose β < δ\W and let n ≥ k be such that

n ∈ Aβ ∩ Aδ\
⋃

γ∈W,γ 6=δ

Aγ.

Note that this choice is possible by the following densitiy argument similar to the proof

of Lemma 3.6. Let p ∈ P and write p = (pα0 , pα1 , · · · , pαm−1), where each pαi ∈<ω2
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18 SAHARON SHELAH AND LUTZ STRÜNGMANN

(αi < κ). Without loss of generality we may assume that W ⊆ {αi : i < m}. Put

β = max(W )+1 and let n = max{max(dom(pαi)) : i < m}+1. Now we extend each pαi

to qαi by putting qαi(n) = 0. Moreover, we let qβ(n) = 1. Then q = (qα0 , · · · , qαm−1 , qβ)

is stronger than p and therefore forces what we need. It is now straightforward to

see that p−1n (yδ − yβ) is an element of 〈Hδ + Zyδ〉∗ but it is not an element of B + Hδ

contradicting equation (5.3). This finishes the proof of Theorem 5.1 and therefore the

proof of our Main Theorem 4.2.
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