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ALMOST DISJOINT PURE SUBGROUPS OF THE
BAER-SPECKER GROUP

OREN KOLMAN AND SAHARON SHELAH

ABSTRACT. We prove in ZFC that the Baer-Specker group Z“ has 28! non-
free pure subgroups of cardinality ®; which are almost disjoint: there is no
non-free subgroup embeddable in any pair.

In this short paper we prove the following result.

Theorem 1. There exists a family G = {G, : a < 281} of non-isomorphic non-
free pure subgroups of the Baer-Specker group Z% such that:

(1.1) each G, has cardinality N;;

(1.2) if a < B, then G, and Gg are almost disjoint: if H is isomorphic to sub-
groups of G, and Gg, then H is free. In particular, G, N Gg is free.

Recall that the Baer-Specker group Z¢ is the abelian group of functions from the
natural numbers into the integers (see [1] and [18]). It contains the canonical pure
free subgroup Z,, = ®n<,Z. The group Z% is not x-free for any cardinal k£ > Ny,
but it is N;-free, so the groups G, in Theorem 1 are almost free.

Theorem 1 answers a question of the first author, and has its place in the line of
recent research dealing with the lattice structure of the pure subgroups of Z“ (see
[2], [3], and [5]-[8]). For example, Irwin asked whether there is a subgroup of Z*
with uncountable dual but no free summands of infinite rank. This problem was
resolved recently by Corner and Goebel [5] who proved the following stronger fact.

Theorem 2. [5] The Baer-Specker group Z¥ contains a pure subgroup G whose
endomorphism ring splits as End(G) = Z&Fin(G), with |G*| = 2%, where Z is the
scalar multiplication by integers and Fin(G) is the ideal of all endomorphisms of G
of finite rank.

Quotient-equivalent and almost disjoint abelian groups have been studied by
Eklof, Mekler and Shelah in [9]-[11], who showed that under various set-theoretic
hypotheses, there exist families of maximal possible size of almost free abelian
groups which are pairwise almost disjoint. Following [11], we say that two groups
A and B are almost disjoint if whenever H is embeddable as a subgroup in both A
and B, then H is free. Clearly if A and B are non-free and almost disjoint, then they
are non-isomorphic in a very strong way. On the other hand, the intersection of
two almost disjoint groups of size Ny need not necessarily be countable, so group-
theoretic almost disjointness differs from its set-theoretic homonym. Theorem 1
establishes in ZFC that the Baer-Specker group contains large families of almost
disjoint almost free non-free pure uncountable subgroups.

We thank the referee for constructive comments.
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Our group and set-theoretic notation is standard and can be found in [10] and
[14]. For example, “1>2 is the set of partial functions from w; into {0,1} whose
domains are at most countable; “12 is the set of all functions from wy into {0,1};
for a regular cardinal x, H(x) is the family of all sets of hereditary cardinality less
than x.

For a set A C H(x) for x large enough, we write dcl(H ) [A] for the Skolem

(x),€,<
closure (Skolem hull) of A in the structure (H(x), €, < ), where < is a well-ordering
of H(x) (for details, see [16], 400-402, or [15], 165-170).

In proving Theorem 1, we shall appeal to the well-known Engelking-Kartowicz
theorem from set-theoretic topology:

Theorem 3. [13] If |[Y]| = p = pu<7 < XA = |X| < 2*, then there are functions
ho : X = Y for a < p such that for every partial function f from X to'Y of
cardinality less than o, for some o < pu, f C hgy.

A self-contained short proof can be found in [17], 422-423. We shall need just
the case when u = 0 = Ng, and A = 2¥. Since it may be less familiar to algebraists,
for convenience we deduce the fact to which we appeal later on (although it also
appears as Corollary 3.17 in [4]).

Lemma 4. There exists a family {f, : n €'~ 2} such that f, : w — Z, and
whenever Ny, ...,N, are distinct and ay,...,a, € Z, then

{i<w:(VI<E)(fn (i) =)} is infinite.

Proof. Take p = 0 = Ng, A = 2, X = 122 and Y = Z in the Engelking-
Kartowicz theorem. Since [*1>2| = 2% and |Z| = R, we know that there exist
functions h,, : “1”2 — Z for n < w such that for every partial function f from “1>2
to Z whose domain is finite, there is some m < w such that f C h,,. Let {g; : i < w}
be an enumeration with infinitely many repetitions of each h,, for n < w.

For each n €¥1~ 2, define f, : w — Z by f,(i) = gi(n). The family {f, : n €~
2} is as required: for if ny,..., 7 are distinct and aq,...,ar € Z are given, then
the set f = ((n1,a1),..., (MK, ax)) is a finite function, so there is some m such that
f € hy, and it is now easy to see that {t <w : (V1 < k)(fy, (4) = a;)} is infinite. O

A well-known algebraic fact will also be useful:

Lemma 5. Let C be a closed unbounded subset of the regular uncountable cardinal
k. Suppose that H is an abelian group of cardinality k, and (Hy : o < K) is a
k-filtration of H (a continuous increasing chain of subgroups Hy, |H,| < k, whose
union is H). Let S = {« € C : H/H,, is not k-free}. Then H is free if and only if
S is non-stationary in K.

Proof. Well-known: see Proposition IV.1.7 in [10]. O

We refer the reader to [14] for the definitions of the characteristic x(g) and the
type 7(g) of an element ¢ in a group.

Now we prove Theorem 1.

Proof. Let P be the set of prime numbers, and let {P, : n €1~ 2} be a family
of almost disjoint (infinite) subsets of P: n # v €“1> 2 = |P, N P,| < 8y. By
Lemma 4, there exists {f, : n €'~ 2} such that f, : w — Z, and if ny,...,n; are
distinct and a1, ...,a; € Z, then {i <w : (VI < k)(f,, (i) = a;)} is infinite.
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Define functions z,, and z,; in Z“ as follows. Let x, = (m,; - fy(i) : i < w)
Where s = 1{p € P, : p < i}, and let z,; = (71'7]72 - fo(i) © i < w) where
m i =1{pe Py:j<p<i} (=0ifi<j). Note that x, =z, 0.

For n €t 2, let G, be the subgroup of Z¢ generated by Z, U {2y, : @ <
w1,0 < j < w}

We show that the family G = {G,, : n €“* 2} satisfies the conclusions of Theorem
1.

Claim 1: G, is pure in Z%.

Proof of Claim 1: Suppose that rx = g for some z € Z¥, r € N, and g € G,,. Say
9 =Y+t Ty|a, j, t Ty, jms T # 0, withy € Z,. Without loss of generality
(adding more elements from Z, to the RHS if necessary), (V I < m)(j; = j) for
some j < w, 5> y() =0 (i>j),and (i) = 0 (Vi < j). Relabelling (if
necessary), we may assume that ay < --- < ay, < wi, and because x4, (i) = 0 if
1 < j, we may write

rT =TY" + N1Tyja, ;T F Mnyla,, ;. fOr some y* € Z,.

Fix k € {1,...,m}. Since n]ay,...,n|a, are distinct (a1 < -+ < auy), let-
ting a; = 0y, (Kronecker delta), we know that the set Ny = {i < w : (VI #
k)(fn (i) = 0, fy.(i) = 1)} is infinite. For large enough i in this set (e.g. i >
maxi<i<m [Min(Pya,\{0,...,5}1)]), @yja,,;(7) is zero if and only if I # k. So for
infinitely many i < w, for [ # k, yq,,;(i) = 0, and xy)q, ;(i) # 0.

Unfix k. For each k& < m, for infinitely many i € (j,w)NNg, 72(i) = np2y)q, ; (i) =
nill{p € Pya, : j < p <i}. Since r < j, we must have rsp = ny, for some sy in Z,
and therefore © = y* + 512y, j + - + 5mTy|a,,.,; € Gy (Gy is torsion-free). Hence
G, is pure in Z“, which establishes Claim 1.

Claim 2: G, has cardinality N, so (1.1) holds.

Proof of Claim 2: If { # ( €“'~ 2, then for some j < w, P: N P; C j. Pick
p,q > j with p € Pe and ¢ € P¢; so the set B = {i < w : fe(i) = p and fc(i) = ¢}
is infinite, and if ¢ € B is bigger than max{j,p,q}, then z¢ ;(i) # x¢ (), since
z¢ ;(i) is non-zero and divisible by p? but by no prime in P, and z¢ ;(i) is non-zero
and divisible by ¢ but by no prime in Pe. It follows that G, has cardinality N;.
After this observation, a second’s reflection on the element types of G, and G, (for
71 # v) should convince the reader that the groups are neither isomorphic nor free.

Claim 3: (1.2) holds: if 1y # 12 €“* 2, then G,,, and G,,, are almost disjoint.

Proof of Claim 3: Suppose (towards a contradiction) that for some 1y # 1y €1 2,
for some non-free abelian group H, there exist isomorphisms ¢; : H — range(y;) <
Gy, 1 =1,2. Since G, is Ri-free, H must have cardinality R;. Let (H; : i < wy)
be an ws-filtration of H. Without loss of generality, we may assume that each H;
is pure in H, so that H/H; is torsion-free.

Let Gy = (Zw U{zyp,; 1 j <w, B <i}) fori <w; and n € {n,n2}.

Note that (G,,; : i < wy) is a wy-filtration of Gy, since it is increasing and continu-
ous with union G, and each G, ; is countable. For large enough X, the set C' defined

by {5 < wi dCI(H(X),€,<) [5U {GmaGngv{xmfu tvoer” 2},771377279013%02;{111‘ :
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i < wit}Nwy = 6} is a club of wy (well-known, or see [16], 401). Note that if
0 € C, then ¢; maps Hs into Gy, 5. Since H is not free, it follows by Lemma 5
that S = {6 € C : H/Hj is not Ny-free} is stationary. By Pontryagin’s Criterion,
for each 6 € S, H/H; has a non-free (torsion-free) subgroup Ks/Hs of finite rank
ns + 1 such that every subgroup of Ks/Hs of rank less than ns + 1 is free. Let
H5+/H5 be a pure subgroup of Ks/Hjy of rank ng. Then H5+/H5 is free with basis
Yo + Hs, ..., Yns—1 + Hs say. So Ks/H;" ~ (Ks/Hs)/(Hs"/Hjs) is a torsion-free
rank-1 group which is not free, and hence there is a non-zero element y,, + H 5+
which is divisible in Ks/H 6+ by infinitely many natural numbers. Call this set of
natural numbers A.

For | = 1,2, for large enough j;(x) < w, and /) < --- < ﬁlkl < w1, @1(ym) is an
element of the subgroup of G, generated by G,, s U {xmlﬁlmﬁ(*% s Tyt it
for all m < ns.

Taking large enough § € S, we may assume that min{a : 71 |a # n2|a} < By, [ =
1,2. Since § € C, we can show the following claims:

(*)1: The set A does not contain infinitely many powers of one prime.
()2: Theset Q= (PNA)C P 5 U---U melkl.

Now (x)1 is true because non-zero sums of elements in

Gy sz, 180 ()3 > Tyl Jji(  are divisible by at most finitely many powers of

any given prime (by the definition of the elements z,, |5 ;). Note that x(y,,+H;") =
U{yeyné_i_Hﬁ}x(y) < cup{y€y7L6+H5+}X(gol(y)), where the characteristics are taken

relative to K(;/H6+, Ks and
Gos UL 18t o) - - - Ty, Jji(») } respectively. Hence (x); holds. By ()1, since
A is infinite, the set Q = P N A is infinite.
Also, the same characteristic inequality implies that @ C Pmlﬁ‘o u---u mezk .
1

So (x)2 is true. Hence, @ C Mi=1,2(Ur<k, Py, 5, ) which is finite (since the family
{P, : p €¥»~ 2} is almost disjoint). This is a contradiction, and so Claim 3 follows,

completing the proof of Theorem 1. O

Corollary 6. FEvery non-slender Xi-free abelian group G has a family {G, : o <
2811 of non-free subgroups such that:

1. each G, is almost free of cardinality Wy;

2. if a < BB, then G, and Gg are almost disjoint.

Proof. By Nunke’s characterisation of slender groups (see Corollary 1X.2.5 in [10]
for example), G must contain a copy of the Baer-Specker group. O

Remark: For the same reason, the corollary is true for any non-slender cotorsion-
free abelian group.
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