
Choiceless Polynomial Time

Andreas Blass, Yuri Gurevich and Saharon Shelah

Abstract

Turing machines define polynomial time (PTime) on strings but
cannot deal with structures like graphs directly, and there is no known,
easily computable string encoding of isomorphism classes of structures.
Is there a computation model whose machines do not distinguish be-
tween isomorphic structures and compute exactly PTime properties?
This question can be recast as follows: Does there exist a logic that
captures polynomial time (without presuming the presence of a linear
order)? Earlier, one of us conjectured a negative answer. The prob-
lem motivated a quest for stronger and stronger PTime logics. All
these logics avoid arbitrary choice. Here we attempt to capture the
choiceless fragment of PTime. Our computation model is a version of
abstract state machines (formerly called evolving algebras). The idea
is to replace arbitrary choice with parallel execution. The resulting
logic is more expressive than some other PTime logics in the litera-
ture. A more difficult theorem shows that the logic does not capture
all of PTime.

1 Introduction

The standard computation model is Turing machines, whose inputs are
strings. However, in combinatorics, database theory, etc., inputs are nat-
urally structures (graphs, databases, etc.) indistinguishable up to isomor-
phism. In such cases, there is a problem with a string presentation of input
objects: there is no known, easily computable string encoding of isomor-
phism classes of structures. This calls for a computation model that deals
with structures directly rather than via string encoding. There are several

1

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

such computation models in the literature, in particular relational machines
[Abiteboul and Vianu 1991] and abstract state machines (formerly called
evolving algebras) [Gurevich 1995].

The natural question is whether there is a computation model that cap-
tures PTime over structures (rather than strings). In different terms, es-
sentially the same question has been raised in [Chandra and Harel 1982].
Gurevich translated Chandra–Harel’s question as a question of existence of
a logic that captures PTime and conjectured that no such logic exists [Gure-
vich 1988]. We address this issue in Section 3; here it suffices to say that the
notion of logic is a very broad one and includes computation models.

If one seriously entertains the possibility that there is no logic that cap-
tures PTime, the question arises how much of PTime can be captured by a
logic. Here we define a natural fragment of PTime captured by means of a
version of abstract state machines (ASMs). We call the fragment Choiceless
Polynomial Time (C̃PTime). The idea is to eliminate arbitrary choice by
means of parallel execution.

Consider for example the Graph Reachability problem:

Instance: A graph G = (V,E) with distinguished nodes s and t (an allu-
sion to Source and Target respectively).

Question: Does there exists a path from s to t in G?

A common reachability algorithm constructs the set X of all vertices reach-
able from s and then checks if X contains t. To construct X, an auxiliary
“border-set” Y ⊆ X is used.

if Mode = Initial then

X, Y := {s}, Mode := Construct

endif

2

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

if Mode = Construct then

if Y 6= ∅ then

choose y ∈ Y
let Z = {z ∈ V −X : yEz}

do in parallel

X := X ∪ Z
Y := (Y − {y}) ∪ Z

enddo

endlet

endchoose

else Mode := Examine

endif

endif

if Mode = Examine then

if t ∈ X then Output := Yes else Output := No endif

Mode := Final

endif

If a given graph G comes with an order on vertices, the order can be
used to eliminate choice, but we are interested in structures which are not
necessarily ordered. In the case of the reachability problem, choice can be
eliminated by means of parallelism. Here is a revised version of the second
transition rule from the program above.

if Mode = Construct then

if Y 6= ∅ then

let Z = {z ∈ V −X : (∃y ∈ Y) yEz}
X := X ∪ Z
Y := Z

endlet

else Mode := Examine

endif

endif

Of course, one is not always so lucky. In Section 10, we describe a well-
known PTime algorithm for the Perfect Matching problem. The algorithm

3

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

uses choice and, as far as we know, there is no choiceless PTime algorithm
for Perfect Matching.

Our computation model is explained in Section 4 and our formalization
C̃PTime of Choiceless PTime is given in Section 5. C̃PTime is a computation
model, but it can be viewed as a (very generalized) logic. In Section 7,
we show that this logic is more expressive than the logic whose “formulas”
are Abiteboul-Vianu’s relational machines. It appears that the expressive
power of C̃PTime on finite structures matches that of Abiteboul-Vianu’s
strongly coupled generic machines. Details about these and related systems
will appear in a forthcoming paper by the first two authors and Jan van den
Bussche.

The C̃PTime syntax is richer than the syntax associated to generic ma-
chines. In particular, C̃PTime allows direct use of sets of arbitrary finite type
over the input structure, not only relations. It has basic set-theoretic oper-
ations built in. Also, C̃PTime includes most of the programming constructs
of abstract state machines, a powerful and natural model of computation.

In Section 10, we show that C̃PTime does not express the parity of a
naked set or the perfect matchability of a bipartite graph.

One shortcoming of C̃PTime is that it is naturally three-valued: some
input structures are accepted, some are rejected, and some may be neither
accepted nor rejected by a given machine. The customary two-valuedness
of logic could be restored by giving our machines the ability to tell when
their (polynomial) time limit is reached, so they could reject any input not
accepted by then. In Section 10, we take a step in this direction by giving our
computation model explicit knowledge of the cardinality of (the base set of)
the input structure. Then Parity is in this extensino of C̃PTime, but “parity
of subsets” is not, and neither is perfect matchability. It is not clear whether
the machines of this extended model can detect when a polynomial time
bound expires; the difficulty is in accurately counting the steps performed by
parallel subcomputations.

The logic C̃PTime can be extended further with a counting function (see
Section 4) and maybe it should be. This would be a natural way to continue
this investigation. This extension allows the machines to detect when a
polynomial time bound is reached, so the logic becomes two-valued. It seems
likely that perfect matchability remains uncomputable even in this extended

4

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

C̃PTime.

In connection with extensions like this, let us notice that, unless there is a
logic that captures PTime, there is no end to possible extensions of C̃PTime.
Any PTime decidable problem can be converted to a quantifier and added
to C̃PTime.

Certain aspects of the work reported here are related to previous work of
others. We comment briefly here on these relationships, and we thank the
referees for bringing some of this work to our attention.

Our computation model works not only with the given input structure
but with the universe of hereditarily finite sets over that structure. The idea
that the hereditarily finite sets (over a set of atoms) form a natural domain
for computation is quite classical and is developed in detail in Barwise’s book
[Barwise 1975]. Connections with resource-bounded notions of computation
are presented in [Sazonov 1997] in terms of weak set theories. Codings of the
hereditarily finite sets by natural numbers play a central role in his presenta-
tion, even in the definition of such concepts as PTime. Similarly, Dahlhaus
and Makowsky [Dahlhaus and Makowsky 1992] work in a context very simi-
lar to the universe of hereditarily finite sets over a database and make heavy
use of numerical coding. They are, however, interested primarily in general
computability, without resource bounds. Like Barwise but unlike Sazonov,
Dahlhaus, and Makowsky, we consider computations directly in the world of
hereditarily finite sets without numerical coding. Indeed, numerical coding
is not available to us, because we are interested in input structures that need
not be equipped with an ordering.

In the context of computation by Boolean circuits, Otto [Otto 1997] has
considered computations invariant under automorphisms of the input struc-
ture, and he has obtained, under suitable hypotheses, results which, like those
of our Section 8, assert the existence of small supports for certain objects. In
his case, however, those objects are relations on the input structure, whereas
our results deal with general hereditarily finite sets over the input structure.
The extra generality in our situation increases considerably the amount of
combinatorial work needed to establish these results. Also, Otto needs to
assume that the orbits (under the automorphism group) under consideration
are of polynomial size; in our approach, this is not a separate assumption
but a consequence of the polynomial time bound on the computation.

5

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

The previous work most closely related to ours, both in purpose and in
content though not in appearance, is that of Abiteboul and Vianu, partly
in collaboration with Papadimitriou and Vardi [Abiteboul and Vianu 1991],
[Abiteboul, Papadimitriou and Vianu 1994], and [Abiteboul, Vardi and Vianu
1997]. They introduced three sorts of machines, currently known as the
relational machine, the generic machine, and the reflective relational machine.
Their conventions for imposing time bounds on computations differ from ours
in two ways. The less important difference is that they allow updating a whole
relation in a single step. Another way to express this difference is to say that
they count parallel time (with a number of processors polynomial in the size of
the database) while we count sequential time; even in parallel computations,
we add the times taken by all the processors. Thus, by our standards they
underestimate time; by their standards we overestimate. Fortunately, the
discrepancy is only a polynomial factor, since the parallelism allowed by
their model is only polynomial.

A second difference, however, is more serious. In the generic and relational
machine models, Abiteboul and Vianu require the number of steps in a PTime
computation to be polynomial with respect to the size not of the actual
input structure but of a certain quotient, obtained by identifying sufficiently
indistinguishable (tuples of) objects. For ordered structures, no identification
takes place, but in general, the quotient may be far smaller than the original
structure. As a result, their time bounds are more stringent than ours and
their model therefore appears less powerful.

We shall show in Section 7 that our model is strictly more powerful than
the relational machine model. The structures we use for this purpose are es-
sentially the same size as the quotient mentioned in the preceding paragraph,
so the relational machine is, in these examples, not unfairly hampered by the
use of the quotient in defining its input size.

As mentioned above, it appears that the generic machine model is equiv-
alent to ours, except for the differences, described above, in how the models
measure time. Specifically, it seems that the computations of generic ma-
chines can be straightforwardly simulated in our model, while the simulation
in the reverse direction can be carried out using the “form and matter” con-
structions in Section 9 of the present paper. Nevertheless, we feel that, for
the reasons indicated above, the syntax of C̃PTime is closer to intuition and
therefore easier to use.

6

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

One may wonder whether C̃PTime enjoys some sort of zero-one or conver-
gence law and whether the extension of C̃PTime with the counting function
is a proper fragment of PTime. The third author has recently answered these
questions affirmatively [Shelah 1997].

Finally, we note that it makes sense to investigate C̃PTime as a com-
plexity class. It is not difficult to concoct an artificial complete problem for
C̃PTime, but it would be interesting to see a natural one.

2 Preliminaries

We recall various definitions and establish some terminology and notation.
In this paper, vocabularies are finite.

2.1 Global Relations

We start with a convenient notion of global relation [Gurevich 1988].

A k-ary global relation of vocabulary Υ is a function ρ such that

• the domain Dom(ρ) consists of Υ-structures and is closed under iso-
morphism,

• with every structure A ∈ Dom(ρ), ρ associates a k-ary relation ρA on
(the base set of) A, and

• ρ is abstract in the following sense: every isomorphism from a struc-
ture A ∈ Dom(ρ) onto a structure B is also an isomorphism from the
structure (A, ρA) onto the structure (B, ρB).

Typically the domain of a global relation of vocabulary Υ is the class of all
Υ-structures or the class of all finite Υ-structures. For example, every first-
order formula ϕ(v1, . . . , vk) of vocabulary Υ, with free variables as shown,
denotes a k-ary global relation ρ(v1, . . . , vk) on all Υ-structures. To avoid
set-theoretic difficulties, however, we generally deal only with global relations
on structures of bounded cardinality, in fact usually just on finite structures.

7

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

2.2 Least Fixed Point Logic FO+LFP

Least fixed point logic has been around for a long time [Moschovakis 1974]. It
is especially popular in finite model theory [Ebbinghaus and Flum 1995]. The
latter book contains all the facts that we need. For the reader’s convenience
and to establish notation, we recall a few things.

Syntax FO+LFP is obtained from first-order logic by means of the follow-
ing additional formula-formation rule:

• Suppose that ϕ(P, v̄) is a formula with a k-ary predicate variable P
and a k-tuple v̄ of free individual variables. Further suppose that P
occurs only positively in ϕ. If t̄ is a k-tuple of terms, then[

LFPP,v̄(ϕ(P, v̄))
]
(t̄)

is a formula.

The vocabulary and the free variables of the new formula ψ are defined in
the obvious way. In particular, P is not in the vocabulary of ψ. We say that
a predicate Q in the vocabulary of ψ occurs only positively in ψ if and only
if it occurs only positively in ϕ.

Semantics The formula ϕ(P, v̄), may have free individual variables ū in
addition to v̄. Let w̄ be a k-tuple of fresh individual variables, and let Υ be
the vocabulary of the formula

ψ(ū, w̄) =
[
LFPP,v̄(ϕ(P, ū, v̄))

]
(w̄)

The meaning of ψ is a global relation ρ(ū, w̄) whose domain consists of all
Υ-structures (unless we restrict the domain explicitly, for example to finite
Υ-structures).

Given an Υ-structure A with fixed values ā of parameters ū, consider the
following operator on k-ary relations over BaseSet(A):

8

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

θ(P) = {v̄ : ϕ(P, ā, v̄)}.

Since ϕ is positive in P , θ is monotone in P . The k-ary relation ρA(ā, w̄)
is the least fixed point of θ. To obtain the least fixed point, generate the
sequence

∅ ⊆ θ(∅) ⊆ θ2(∅) ⊆ . . .

of k-ary relations over A. For a finite structure A, there exists a natural
number l such that θl(∅) = θl+1(∅); in this case the least fixed point is
θl(∅). The case of infinite A is similar except that the sequence may continue
transfinitely, with unions at limit stages, and in particular the closure ordinal
l may be infinite.

Simultaneous Induction Let Υ be a vocabulary and consider FO+LFP
formulas ϕ(P,Q, ū) and ψ(P,Q, v̄) of vocabulary Υ ∪ {P,Q} which are pos-
itive in P and Q. Here Arity(P) = Length(ū) and Arity(Q) = Length(v̄).
There may be additional free individual variables which we consider as pa-
rameters.

Given an Υ-structure A with fixed parameters, consider the monotone
operator on pairs of relations

θ(P,Q) =
(
P ∪ {ū : ϕ(P,Q, ū)}, Q ∪ {v̄ : ψ(P,Q, v̄)}

)
and let (P ∗, Q∗) be the least fixed point of θ.

Proposition 1 The global relations P ∗ and Q∗ are expressible by FO+LFP
formulas. Moreover, the result generalizes to simultaneous induction over
any finite number of predicate variables.

2.3 Finite Variable Infinitary Logic

Again, the book [Ebbinghaus and Flum 1995] contains all the information
that we need, but we recall a few things for the reader’s convenience.

9

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

Syntax As in a popular version of first-order logic, Lω∞,ω formulas are built
from atomic formulas by means of negations, conjunctions, disjunctions, the
existential quantifier and the universal quantifier. The only difference is that
Lω∞,ω allows one to form the conjunction and the disjunction of an arbitrary
set S of formulas provided that the total number of variables in all S-formulas
is finite. Recall also our standing convention that all vocabularies are finite.
For every natural number m, Lm∞,ω is the fragment of Lω∞,ω where formulas
use at most m individual variables.

Semantics Every k-ary Lω∞,ω formula of vocabulary Υ denotes a k-ary
global relation of vocabulary Υ in the obvious way.

An important fact is that every global relation on structures of bounded
cardinality expressible in FO+LFP is expressible in Lω∞,ω. This is proved
in [Ebbinghaus and Flum 1995, Theorem 7.4.2] for global relations on finite
structures. For infinite structures, the stages of the iteration leading to the
fixed point can be defined in Lω∞,ω by an induction like that for finite struc-
tures but with an additional clause using infinite disjunctions to represent
the unions that occur at limit stages. For structures of cardinality bounded
by κ, the iterations involved in the semantics of LFP stabilize before stage
κ+ (the next cardinal after κ, regarded as an initial ordinal), so the final
reult of the iteration can be expressed in Lω∞,ω as stage κ+.

Pebble Games There is a pebble game Gm(A,B) appropriate to Lm∞,ω.
Here A and B are structures of the same purely relational vocabulary. For
explanatory purposes, we pretend that A is located on the left and B is
located on the right, but in fact A and B may be the same structure.

The game is played by Spoiler and Duplicator. For each i = 1, . . . , k,
there are two pebbles marked by i: the left i-pebble and the right i-pebble.
Initially all the pebbles are off the board. After any number of rounds, for
every i, either both i-pebbles are off the board or else the left i-pebble covers
an element of A and the right i-pebble covers an element of B. In the obvious
way, the pebbles on the board define a relation R between A to B. A round
of Gk(A,B) is played as follows.

If R is not a partial isomorphism, then the game is over; Spoiler has
won and Duplicator has lost. Otherwise Spoiler chooses a number i; if the

10

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

i-pebbles are on the board, they are taken off the board. Then Spoiler
chooses left or right and puts that i-pebble on an element of the corresponding
structure. Duplicator puts the other i-pebble on an element of the other
structure.

Duplicator wins a play of the game if the number of rounds in the play is
infinite.

Proposition 2 If Duplicator has a winning strategy in Gm(A,B), then no
Lm∞,ω sentence distinguishes between A and B. Therefore, for every FO+LFP
sentence ϕ, there exists m such that, for any A and B, if Duplicator has a
winning strategy in Gm(A,B) then ϕ does not distinguish A from B.

2.4 Set Theory

Let A be a structure. In the literature, the notation |A| is used in two ways:
to denote the base set of A and to denote the cardinality of BaseSet(A). We
will employ notation |A| only in the sense of cardinality; we will also use an
alternative notation Card(A) for the cardinality of A.

As usual in set theory, we identify a natural number (that is a non-
negative integer) i with the set of smaller natural numbers {j : j < i}; this
set is called the von Neumann ordinal for i. The first infinite ordinal is
denoted ω.

We consider sets built from atoms (also called urelements). The term
object will mean an atom or a set. A set X is transitive if y ∈ x ∈ X implies
y ∈ X. If X is an object, then TC(X) is the least transitive set Y with
X ∈ Y . An object X is hereditarily finite if TC(X) is finite.

P is the powerset operation; if X is a set then P(X) is the collection of
all subsets of X. If X is a finite set of atoms, then

HF(X) :=
⋃
{Pi(X) : i < ω} = X ∪P(X) ∪P(X ∪P(X)) ∪ . . .

where P0(X) = X and Pi+1(X) = P(
⋃
j≤i P

j(X)). Alternatively, HF(X)
can be defined as the smallest set Y such that X ⊆ Y and every finite subset

11

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

of Y is a member of Y . The members of HF(X) are exactly the members of
X and those hereditarily finite sets y such that all atoms in TC(y) belong to
X.

Every set has an ordinal rank. If x is an atom or the empty set, then the
rank of x equals 0. Otherwise, the rank of x is the smallest ordinal strictly
above the ranks of all members of x.

3 PTime and PTime Logics

In this section, structures are finite and global relations are restricted to finite
structures.

By definition, the complexity class PTime consists of languages, that is
sets of (without loss of generality, binary) strings. A language X is PTime
if there exists a PTime Turing machine (that is polynomial time bounded
Turing machine) that accepts exactly the strings in X. This definition is
easily generalized to ordered structures by means of a standard encoding;
see for example [Ebbinghaus and Flum 1995] or [Gurevich 1988]. We will
say that a Turing machine accepts an ordered structure A if it accepts the
standard encoding of A.

The generalization to arbitrary (that is not necessarily ordered) struc-
tures is less obvious. One does not want to distinguish between isomorphic
structures and there is no obvious, easily computable string encoding of iso-
morphism classes of structures.

The problem was first addressed by Chandra and Harel in the context
of database theory [Chandra and Harel 1982]. We describe their approach.
A database is defined as a purely relational structure whose elements come
from some fixed countable set, without loss of generality the set of natural
numbers. Thus, each database inherits an ordering from this countable set,
and so standard encodings make sense, but isomorphisms are not required
to respect the orderings. A query is a global relation over databases; recall
that global relations respect isomorphisms. A query Q is PTime if the set

{(B, x̄) : x̄ ∈ Q(B)}

12

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

is PTime. Thus each PTime query Q is given by a PTime Turing machine M
that accepts a string s if and only if s is the standard encoding of some (B, x̄)
with x̄ ∈ Q(B); call M a PTime witness for Q. Let W be the collection of all
PTime witnesses for all queries. It is easy to check that W is not recursive.
Chandra and Harel posed the following question. Does there exists a recursive
set S ⊂ W such that every PTime query has a PTime witness in S?

Gurevich translated their question as a question of the existence of a
logic that captures PTime [Gurevich 1988]. He conjectured that the answer
is negative; in this connection his definition of a logic is very broad. If
desired, some obvious requirements can be imposed; see [Ebbinghaus 1985] in
this connection. Here we recall Gurevich’s definitions and slightly generalize
them in order to define three-valued logics.

PTime Global Relations What does it mean that a global relation is
PTime? The question easily reduces to the case of nullary global relations.
Indeed, let ρ be a k-ary global relation of some vocabulary Υ and let c1, . . . , ck
be the first k individual constants outside of Υ. Define the nullary relation
σ of vocabulary Υ+ = Υ∪{c1, . . . , ck} as follows. If A is an Υ-structure, and
a1, . . . , ak are elements of A, and B is the Υ+-expansion of A where a1, . . . , ak
interpret c1, . . . , ck, then σB ⇐⇒ ρA(a1, . . . , ak). Declare ρ PTime if σ is
so.

A nullary global relation ρ of vocabulary Υ can be identified with the
class of Υ-structures A such that ρA is true. It remains to define what does
it mean that a class K of structures of some vocabulary Υ is PTime. Let <
be a binary predicate not in Υ. An ordered version of an Υ-structure A is a
structure B of vocabulary Υ∪{<} such that the Υ-reduct of B is isomorphic
to A and the interpretation of < is a linear order.

Define a class of K of Υ-structures to be PTime if it is closed under
isomorphisms and there exists a PTime Turing machine M (a PTime witness
for K) which accepts a binary string s if and only if s is the standard encoding
of an ordered version of some structure in K. This definition agrees with
that of Chandra-Harel described above, if we restrict it to the structures
they consider — all base sets contained in a fixed countable set.

13

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

Logics For simplicity, we define logics whose formulas denote nullary global
relations. The trick above allows one to extend such a logic so that its
formulas denote arbitrary global relations.

A logic L is given by a pair of functions (Sen,Sat) satisfying the following
conditions. Sen associates with every vocabulary Υ a recursive set Sen(Υ)
whose elements are called L-sentences of vocabulary Υ. Sat associates with
every vocabulary Υ a recursive relation SatΥ(A,ϕ) where A is an Υ-structure
and ϕ an L-sentence of vocabulary Υ. We say that A satisfies ϕ (symbolically
A |= ϕ) if SatΥ(A,ϕ) holds. It is assumed that SatΥ(A,ϕ) ⇐⇒ SatΥ(B,ϕ)
if A and B are isomorphic.

If ϕ is a sentence of vocabulary Υ, let Mod(ϕ) be the collection of Υ-
structures A satisfying ϕ.

PTime Logics Let L be a logic. For each Υ and each ϕ ∈ Sen(Υ), let
K(Υ, ϕ) be the class of Υ-structures A such that A |= ϕ. Call L PTime, if
every class K(Υ, ϕ) is PTime.

Logic that Capture Ptime A logic L captures PTime if it is PTime and,
for every vocabulary Υ, every PTime class of Υ-structures coincides with
some K(Υ, ϕ).

Remark 3 It may seem odd that the definition of logic does not require
any uniformity with respect to varying Υ, but uniformity is not necessary.
It is not hard to show that, if there is a logic of graphs (rather than arbi-
trary structures) that captures PTime on graphs, then there is a logic that
captures PTime on arbitrary structures and that possesses some uniformity
with respect to Υ [Gurevich 1988].

Three-Valued Logics In the cases when a logic is really a computation
model and sentences are computing machines, A satisfies ϕ means that ϕ
accepts A. That calls for the following natural generalization. Call logics
defined above two-valued.

A three-valued logic L is like a two-valued logic except that SatΥ(A,ϕ)
has three possible values telling us whether ϕ accepts A, or ϕ rejects A,

14

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

or neither. It is assumed that SatΥ(A,ϕ) = SatΥ(B,ϕ) if A and B are
isomorphic.

Each L-sentence ϕ of vocabulary Υ gives rise to two disjoint classes of Υ-
structures. The class Mod+(ϕ) of Υ-structures accepted by ϕ and the class
Mod−(ϕ) of classes rejected by ϕ. Call L PTime if, for every ϕ, the classes
Mod+(ϕ) and Mod−(ϕ) are PTime.

Two disjoint classes K1, K2 of structures of some vocabulary Υ are L-
separable if there exists an L-sentence ϕ such that K1 ⊆ Mod+(ϕ) and K2 ⊆
Mod−(ϕ). We will see that this is a more robust notion than the similar
notion where ⊆ is replaced with equality.

Abiteboul-Vianu Relational Machines Finally, for future reference, we
recall (a version of) Abiteboul-Vianu’s relational machines [Abiteboul and
Vianu 1991; Abiteboul-Vardi-Vianu 1997].

A relational machine is a Turing machine augmented with a relational
store which is a structure of a fixed purely relational vocabulary Υ. A part
Υ0 of the vocabulary is devoted to input relations. The Turing tape is ini-
tially empty. As usual, the program consists of “if condition then action”
instructions. Here is an example of an instruction.

If the control state is s3, and the head reads symbol 1, and the
relation R1 is empty, then change the state to s4, replace 1 by 0,
move the head to the right and replace R2 with R2 ∩R3.

In general, instructions are Turing instructions except that (1) the condi-
tion may be augmented with the emptiness test of one of the relations, and
(2) the action may be augmented with an algebraic operation on the rela-
tions. The algebraic operations are of the following four types. It is assumed
that the arities of the operations involved are appropriate; in the example
above, the relations R2 and R3 are of the same arity.

• Boolean operations.

• Projections πi1...imRk. Project Rk on the coordinates i1, . . . , im in the
specified order.

15

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

• Cartesian product of two relations.

• Selections σi=jRk. Select the tuples in Rk whose i-th component coin-
cides with the j-th component.

A PTime relational machine M can be defined as a relational machine
together with a polynomial p(n) bounding the number of computation steps
on input structures of size n. The notion of PTime relational machine gives
rise to a PTime logic (which may be called AV Logic) where the sentences
of vocabulary Υ0 are PTime relational machines with input vocabulary Υ0.

In our view, AV Logic is naturally three-valued. Given an input structure
I of size n, a PTime relational machine (M, p(n)) may accept I within time
p(n), may reject I within time p(n), or do neither. In many computation
models, e.g., the Turing machine model, one customarily regards all non-
accepted inputs as rejected. This convention is reasonable for models where
the machine can determine the size n of its input, compute p(n), keep track
of the number of steps it has executed, and reject an input if the time limit
expires without acceptance. But for a computation model (or logic) that
cannot determine the size of its input or cannot keep track of the number of
steps it executes, to call the undecided inputs rejected is to go beyond what
the computing devices could do on their own. In this sense, our three-valued
approach is more appropriate whenever the size of the input is unavailable
to the computing devices.

The three-valuedness of the computation model affects the notion of sim-
ulation. For one program Π′ to simulate another program Π, we require that
Π′ accept every input accepted by Π and reject every input rejected by Π,
but we do not care what Π′ does with inputs for which Π reaches no decision.
Thus, any pair of classes separated by Π will also be separated by Π′, but
not necessarily vice versa.

4 The Computation Model

Our computing devices are abstract state machines (ASMs, formerly called
evolving algebras) [Gurevich 1995, Gurevich 1997] adapted for our purposes
here.

16

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

4.1 Vocabularies

An ASM vocabulary is a finite collection of function names, each of a fixed
arity. Some function names may be marked as relational or static, or both.
Relational names are also called predicates. A function name is dynamic if it
is not marked static. The Greek letter Υ is reserved to denote vocabularies.

In our case, every vocabulary consists of the following four parts:

Logic names The equality sign, nullary function names true, false and
the names of the usual Boolean operations. All logic names are rela-
tional and static. (The standard ASM definition [Gurevich 1995] re-
quires another logic name, undef, but we will not employ undef here,
using ∅ instead as a default value.)

Set-theoretic names The static binary predicate ∈ and the following static
non-predicate function names.

• Nullary names ∅ and Atoms.

• Unary names
⋃

and TheUnique.

• A binary name Pair.

Input names A finite collection of static names. For simplicity of exposi-
tion, we assume that all input names are relational.

Dynamic names A finite collection of dynamic function names including
nullary predicates Halt and Output.

4.2 States

A state A of vocabulary Υ is a structure A of vocabulary Υ satisfying a
number of conditions described in this subsection.

Base Set The base set of A consists of two disjoint parts:

1. A finite set X of atoms, that is elements that are not sets.

17

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

2. The collection of all hereditarily finite sets built from the atoms.

The atoms and the sets are objects of A. The objects form a transitive set
HF(X) which can be defined as the closure of X under the following opera-
tion: If n is a natural number and x1, . . . , xn are in, then throw {x1, . . . , xn}
in. We have also as in Subsection 2.4:

HF(X) =
⋃
n<ω

Pn(X).

Set-Theoretic Functions The interpretations of ∈ and ∅ are obvious.
Atoms is the set of atoms. If a is an atom, then

⋃
a = ∅. If a1, . . . , aj are

atoms and b1, . . . , bk are sets then
⋃
{a1, . . . , aj, b1, . . . , bk} = b1 ∪ · · · ∪ bk. If

a is a singleton set, then TheUnique(a) is the unique element of a; otherwise
TheUnique(a) = ∅. (If x is a set then x = TheUnique{x} =

⋃
{x}, so

TheUnique is redundant in this situation, but it is needed if x is an atom.)
Pair(a, b) = {a, b}.

Logic Names false and true are interpreted as 0 and 1 respectively.
Recall that 0 is ∅ and that 1 is Pair(0, 0) = {∅}. The Boolean connectives
are interpreted in the obvious way over the Boolean values 0, 1 and take the
value 0 if at least one of the arguments is not Boolean.

Predicates Predicates are interpreted as functions whose only possible val-
ues are the Boolean values 0, 1. If P (ā) evaluates to 1 (respectively 0), we
say that P (ā) holds or is true (respectively, fails or is false). The input pred-
icates “live” over the atoms: if P is an input predicate and P (a1, . . . , aj)
holds, then every ai is an atom.

Dynamic Functions Define the extent of a dynamic function f of arity j
to be the set

{(x0, . . . , xj) : f(x0, . . . , xj−1) = xj 6= 0}.

18

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

The only restriction on the interpretation of a dynamic function f is that its
extent is finite.

4.3 Input Structures

Consider an ASM vocabulary Υ. An input structure appropriate for Υ-
programs is any finite structure I of the input vocabulary (i.e., the vocabulary
consisting of the input names from Υ). We want to treat the elements of I
as atoms and build sets over them, so a little problem arises if some elements
of I happen to be sets. The actual input corresponding to I is a structure
isomorphic to I whose base set (the universe) consists of atoms. An Υ-state
is initial if the extent of every dynamic function is empty. For any input
structure I appropriate for Υ, there is a unique, up to isomorphism, initial
Υ-state A where the atoms together with input relations form a structure
isomorphic to I. We call this A the input structure generated by I.

Remark. We will be not very careful in distinguishing between an input
structure I and its atomic version. Without loss of generality, one may
assume that the input structure itself consists of atoms.

4.4 Terms

By induction, we define a syntactic category of terms and a subcategory of
Boolean terms.

• A variable is a term.

• If f is a function name of arity j and t1, . . . , tj are terms, then
f(t1, . . . , tj) is a term. If f is a predicate then f(t1, . . . , tj) is Boolean.

• Suppose that v is a variable, t(v) is a term, r is a term without free
occurrences of v, and g(v) is a Boolean term. Then

{t(v) : v ∈ r : g(v)}

is a term.

19

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

In the usual way, the same induction is used to define free variables of a
given term. In particular, the free variables of {t(v) : v ∈ r : g(v)} are those
of t(v), r and g(v) except for v.

Semantics is obvious. In particular, the value of {t(v) : v ∈ r : g(v)} at a
given state A is the set of values ValA(t(v)) such that, in A, both v ∈ r and
g(v) hold.

4.5 Syntax of Rules

Transition rules are defined inductively.

Skip Skip is a rule.

Update Rules Suppose that f is a dynamic function name of some arity
r and t0, . . . , tr are terms. If f is relational, we require that t0 is Boolean.
Then

f(t1, . . . , tr) := t0

is a rule.

Conditional Rules If g is a Boolean term and R1, R2 are rules, then

if g then R1 else R2 endif

is a rule.

Do-forall Rules If v is a variable, r is a term without v free, and R0(v) is
a rule, then

do forall v ∈ r
R0(v)

enddo

20

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

is a rule with head variable v, guard r and body R0. The definition of free
and bound variables is obvious.

Abbreviate rule

do forall v ∈ {0, 1}
if v = 0 then R0

else R1 endif

enddo

to
do in-parallel

R0, R1

enddo

Here and in the following, we use standard notation as a more readable
substitute for the official syntax. In particular, 0 means ∅, {x, y} means
Pair(x, y), {x} means Pair(x, x), x ∪ y means

⋃
{x, y} and 1 means {0}.

Readers familiar with other work on abstract state machines, such as
[Gurevich 1995, 1997], will notice that our model lacks the customary “im-
port” rule. The effect of this rule can, however, be simulated (with some
bookkeeping effort) because our states are infinite structures. Thanks to the
pairing function, we can use sets of sufficiently high rank to play the role of
imported elements.

4.6 Semantics of Rules

If ζ is a variable assignment over a state A, assigning values to finitely many
variables, then the pair B = (A, ζ) is an expanded state, A = State(B),
ζ = Assign(B), and Dom(ζ) = Var(B). Further, let v be a variable and a
an element of A. Then B(v 7→ a) is the expanded state obtained from B by
assigning or reassigning a to v. In other words, B(v 7→ a) = (A, ζ ′) where
Dom(ζ ′) = Dom(ζ) ∪ {v}, ζ ′(v) = a and ζ ′(u) = ζ(u) for the remaining
variables.

A location of an expanded state A is a pair ` = (f, ā) where f is a dynamic
function and ā is a tuple of elements of A such that the length of ā equals the
arity of f . If b is also an element of A, then the pair α = (`, b) is an update
of A. ((f, (a1, . . . , aj)), b) is abbreviated to (f, a1, . . . , aj, b). To fire α at A,
put b into the location f , that is, redefine A so that f(ā) = b. The other
locations remain intact. The resulting state is the sequel of A with respect

21

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

to α. Two updates clash if they have the same locations but different new
contents.

An action over a state A is a set of updates of A. An action is consistent
if it contains no clashing updates. To perform an action β, do the following.
If β is consistent, then fire all updates α ∈ β simultaneously; otherwise do
nothing. The result is the sequel of A with respect to β. If β is inconsistent
then the sequel of A is A itself.

A rule R and the expanded state A are appropriate for each other if
Voc(A) contains all function symbols in R and Var(A) contains all free vari-
ables in R.

Now we are ready to explain the semantics of rules. The denotation
Den(R) of a rule R is a function on expanded states A appropriate for R.
Each Den(R)(A) (or Den(R,A) for brevity) is an action. To fire R at A,
perform the action Den(R,A) at State(A). The sequel of A with respect to
R is the sequel of A with respect to Den(R,A). Den(R,A) is defined by
induction on R.

Skip Den(Skip, A) = ∅.

Update Rules If R is an update rule f(s̄) := t and ` is location
(f,ValA(s̄)), then Den(R,A) = {(`,ValA(t))}.

Conditional Rules If R is the rule if g then R1 else R2 endif,
then

Den(R,A) =

{
Den(R1, A) if g holds at A;
Den(R2, A) otherwise.

Do-forall Rules If R is

do forall v ∈ r,
R0(v)

enddo

22

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

then

Den(R,A) =
⋃
{Den(R0(v), A(v 7→ a)) : a ∈ ValA(r)}

4.7 Programs

A program is a rule without free variables. The vocabulary Voc(Π) of a
program Π is the collection of function names that occur in Π. States of Π
are states of the vocabulary Voc(Π).

Runs A run of Π is a (finite or infinite) sequence 〈Ai : i < κ〉 of states of
Π such that

• A0 is an initial state,

• every Ai+1 is a sequel of Ai with respect to Π, and

• Halt fails at every Ai with i+ 1 < κ.

Here κ is a positive integer or the first infinite ordinal ω. The length of a
finite run 〈Ai : i ≤ l〉 is l. The length of an infinite run is ω.

Let I be an input structure for Π. The run of Π on I is the run 〈Ai : i < κ〉
such that

• A0 is the initial state generated by I, and

• either κ is infinite, or else κ is finite and Halt holds at the final state
Aκ−1.

The base set and objects of a run 〈Ai : i < κ〉 are those of A0.

4.8 The Counting Function

There are many ways to extend the computation model described above
without introducing explicit choice in its full generality. One gentle extension

23

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

of the computation model described above is considered in Section 10. A
more powerful extension is achieved by introducing the counting function
which, given a set x of cardinality k, produces the von Neumann ordinal for
k.

Remark. Since the computation model is expandable by adding static
functions for counting or perfect matching, etc., one gets in fact a notion of
relative computability.

5 Choiceless PTime

It is easy to check that every computable global relation on finite structures
is computable by an appropriate ASM program. The idea is that an ASM
computation can first produce the set of all linear orderings of the input
structure. (For more details about this, see Section 7.) Then it can simulate
a Turing machine computation on ordered structures by means of parallel
subcomputations, one for each ordering.

Thus, the “choicelessness” of our machines has a real effect only in the
presence of a resource bound stringent enough to prevent the computation
from trying all possible choices. We are interested in polynomial time com-
putation, and this, when reasonably defined, is stringent enough.

5.1 The Definition of Choiceless PTime

Critical and Active Objects Let A be a state and x ∈ BaseSet(A).

• Object x is critical at A if x is an atom, or x ∈ {0, 1}, or x is a value of a
dynamic function, or x is a component of a tuple where some dynamic
function takes a value different from ∅.

• Object x is active at A if x ∈ TC(y) for some critical y.

Further, let ρ be a run of a program Π. An object x is active in ρ if it is so
at some state of ρ. The idea behind this definition is that the active objects
are those that are really involved in the computation process.

24

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

PTime Programs There are two ways to count the steps in a run of an
ASM program. One is as the length of the run, considered as a sequence of
states. That is, one execution of the entire program counts as a single step,
regardless of how much work this involves. We use the word “macrosteps”
for steps counted in this way; “macro” is intended to suggest that there may
be a lot going on inside one such step. The other approach is to count every
function evaluation and every transfer of control (as in a conditional rule) as
a separate step. We use the word “microstep” for steps in this sense. When
several subcomputations are done in parallel, the numbers of microsteps in
them are to be added to produce the microstep count for the whole compu-
tation. Microsteps are intended to provide an honest measure of the total
amount of work done by a computation. Indeed, we sometimes refer to the
number of microsteps as “honest computation time.” This measure agrees,
except for some overhead, with the time required by a sequential simulation
of the computation on a standard device such as a Turing machine. For de-
tails about the definition of microsteps, see [Blass and Gurevich 1997]. We
shall not need the details here, because the requirement that a computa-
tion have only polynomially many microsteps can be reformulated as in the
definition below, bounding macrosteps and active objects.

A PTime (bounded) program Π̄ is a triple Π̄ = (Π, p(n), q(n)) where Π is
a program and p(n), q(n) are integer polynomials. The run of Π̄ on an input
structure I of size n is the longest initial segment ρ of the run of Π on I such
that the length of ρ is ≤ p(n) and the number of active objects in ρ is ≤ q(n).
A PTime program Π̄ accepts (respectively rejects) an input structure I if the
run of Π̄ on I halts (i.e., ends with value true for Halt) and Output equals
true (respectively false) in the final state.

Remark. In this definition, p(n) bounds the number of macrosteps in
the run ρ, while q(n) limits the amount of parallelism so that one macrostep
contains only polynomially many microsteps.

To see what can go wrong if the q(n) restriction is omitted, consider the
program

c := c ∪ {∅} ∪
⋃
{{u ∪ {v} : v ∈ Atoms : true} : u ∈ c : true}.

If the number of atoms is n, then this program produces, after a run of
length n, a state where c = PAtoms. Each of the 2n sets of atoms will have
been “visited” by the computation. In other words, in only n macrosteps the

25

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

computation executed exponentially many microsteps.

The role of q(n) in our definition is to prevent such things from counting
as PTime.

Choiceless Polynomial Time Notice that the classes of accepted and
rejected input structures are disjoint but not necessarily complementary and
that increasing the polynomial bound may increase these classes. If the size of
the input structure is known and if one uses a version of honest computation
time, a program may keep track of the honest computation time and in this
way insure that every computation accepts or rejects the input. We will
consider this scenario in Section 10. But when the size of the input structure
is not available to the computation then our three-valued picture (accept,
reject, neither) seems more appropriate.

Here, we define Choiceless Polynomial Time (in brief C̃PTime) as a collec-
tion of pairs (K1, K2) where K1, K2 are disjoint classes of finite structures of
the same vocabulary. A pair (K1, K2) is in C̃PTime (or C̃PTime separable)
if there exists a PTime program that accepts all structures in K1 and rejects
all structures in K2. The program may accept some structures not in K1

or reject some structures not in K2. Obviously, there is a three-valued logic
that separates exactly C̃PTime pairs; use PTime programs as sentences.

A class K of finite structures of the same vocabulary Υ is in C̃PTime, if
the pair (K,K ′) is in C̃PTime where K ′ is the complement of K in the class
of finite structures of vocabulary Υ.

Call two programs Π and Σ PTime equivalent if

• for every PTime version Π̄ of Π, there exists a PTime version Σ̄ of Σ
which accepts all input structures accepted by Π̄ and rejects all input
structures rejected by Π̄, and

• for every PTime version Σ̄ of Σ, there exists a PTime version Π̄ of Π
which accepts all input structures accepted by Σ̄ and rejects all input
structures rejected by Σ̄.

26

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

5.2 Upper Bounds for C̃PTime

In our definition of a PTime program, the polynomial q bounds the space
used by the computation. So one may fear that the definition is too broad,
akin to PSpace rather than PTime. We show in this subsection that C̃PTime
is not too broad.

Theorem 4 Consider a PTime program Π̄ = (Π, p(n), q(n)).

1. There is a PTime-bounded Turing machine that accepts exactly those
strings that encode ordered versions of input structures accepted by Π̄
and rejects exactly those strings that encode ordered versions of input
structures rejected by Π̄.

2. There exists a polynomial r(n) such that the number of microsteps in
every run of Π̄ on an input structure of size n is bounded by r(n).

Proof 1. The desired Turing machine simulates the given PTime program.
The bound r in a term {s(v) : v ∈ r : g(v)} and in a do-forall rule ensures
that the number of immediate subcomputations is bounded by the number
of active elements and thus by q(n). This yields a polynomial bound on
the work needed to simulate one transition in the run. Since the number of
transitions is bounded by p(n), the whole simulation takes only polynomial
time.

2. Since the number of macrosteps is bounded by a polynomial, it suffices
to check that the number of microsteps needed to fire an arbitrary rule R is
bounded by a polynomial. This is done by an obvious induction on R. 2

Part 1 of the theorem gives the following corollary.

Corollary 5 Every C̃PTime pair of structure classes (K1, K2) is separated
by a PTime class.

5.3 A Lower Bound for C̃PTime

In the previous subsection, we have shown that our definition of C̃PTime is
not too broad. One may also worry that it is too narrow, that — because of

27

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

the use of transitive closure in the definition of active objects — it is possible
to create a large number of active objects in short time. If this happened,
then our definition, bounding the number of active objects, would be more
restrictive than the intuitive idea of bounding the number of microsteps. The
purpose of this subsection is to show that this problem does not arise.

Some active objects, namely atoms and 0, 1, exist already in the initial
state. The problem is to show that only polynomially many active nonempty
sets can be created within polynomial honest computation time. We show
that, under the definition of honest computation time hinted at above, the
number of objects activated (that is the number of active objects which are
inactive in the initial state) in any run of a PTime program is bounded by the
honest computation time. The details of the definition of honest computation
time are not important.

Consider a PTime program Π. Without loss of generality, we may assume
that Π does not reuse variables, that is no variable is bound more than once.
It follows that, in every subrule of Π, no variable is bound more than once
and no variable occurs both free and bound. Define a grounded term to be
a pair (t, A) where t is a term and A is an expanded state appropriate for
t. Similarly, define a grounded rule to be a pair consisting of a rule and
expanded state appropriate for it. Notice that a grounded term (t, A) has a
value, namely ValA(t).

The following definitions are intended to describe, for each grounded term
or rule, say (X,A), a partially ordered set (poset) Pre(X,A) whose nodes are
labeled with grounded terms that one would naturally evaluate in the course
of evaluating X at A; the order of Pre(X,A) reflects the order in which one
would evaluate the grounded terms. Pre(X,A) is similar to the parse tree of
X, but there are some distinctions. To prevent the definitions from getting
even longer than they are, we omit the grounded terms involved in evaluating
guards; one could include them without any damage to our argument.

In fact, Pre(X,A) is not necessarily a tree. It will be convenient for our
purposes that, for each free variable of X, there is at most one node with
a label of the form (x,A) or (x,A(v̄ 7→ ā)); this gives rise to the following
auxiliary definition. Let P be a poset whose nodes are labeled with grounded
terms, and let F be a collection of variables x such that no label in P has
the form (x,A(x 7→ a)) and each node with a label of the form (x,A) or
(x,A(v̄ 7→ ā)) is minimal in P . Then adjusting P with respect to F means

28

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

merging, for each x ∈ F , all nodes of P with labels of the form (x,A) or
(x,A(v̄ 7→ ā)) into one node labeled with (x,A).

Define a disjoint union of labeled posets in the obvious way: order and
the labels within each piece are preserved and elements of distinct pieces are
incomparable. Now we are ready to define posets Pre(X,A) by induction on
X.

Definition 6 Pre(t, A) is defined by recursion on t.

• If t is a variable x, then Pre(t, A) is a singleton poset whose only node
is labeled with (x,A).

• If t is f(t1, . . . , tj), then Pre(t, A) is obtained from the disjoint union
of Pre(t1, A), . . . ,Pre(tj, A) by adding a (t, A)-labeled node at the top
and adjusting the result with respect to the free variables of t.

• If t is {s(v) : v ∈ r : g(v)}, then construct Pre(t, A) as follows. Form
the disjoint union of Pre(s(v), A(v 7→ a)) for all a ∈ ValA(r). Add a
copy of Pre(r, A) below each (v, A(v 7→ a)) if there are any; otherwise
add a copy of Pre(r, A) to the disjoint union. Adjoin a (t, A)-labeled
node at the top. Adjust the result with respect to the free variables of t.

Note that Pre(t, A) always has the top node labeled with (t, A). Further,
for each free variable x of t, there is at most one node labeled with (x,A)
and this node (if present at all) is minimal in Pre(t, A).

Definition 7 Pre(R,A) is defined by recursion on R.

• If R is Skip, then Pre(R,A) = ∅.

• If R is f(t1, . . . , tj) := t0, then construct Pre(R,A) as follows. Form
the disjoint union of Pre(t0, A), . . . ,Pre(tj, A) and adjust the result with
respect to the free variables of R.

• If R is “if g then R1 else R2 endif” then Pre(R,A) is Pre(R1, A) or
Pre(R2, A) according to whether ValA(g) is true or false.

29

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

• If R is “do forall v ∈ r, R0(v) enddo”, then construct Pre(R,A) as
follows. Form the disjoint union of Pre(R0(v), A(v 7→ a)) for all a ∈
ValA(r). Add a copy of Pre(r, A) below each (v,A(v 7→ a)) if there are
any; otherwise add a copy of Pre(r, A) to the disjoint union. Adjust the
result with respect to the set of free variables of R.

If (X,A) is a grounded term or rule, let Val[Pre(X,A)] be the collection
of objects ValB(s) such that (s, B) is a label in Pre(X,A).

Lemma 8 1. If Den(R,A) contains an update (f, (a0, . . . , aj−1), aj), then
every ai ∈ Val[Pre(R,A)].

2. Suppose that (X,A) is a grounded term or rule with bound variable v.
If (v,B) is a label in Pre(X,A), then B has the form C(v 7→ a) where
C = A(ū 7→ b̄) and the variables ū (if present at all) are all different
from v.

Proof
1. Induction on R.
2. Induction on X. 2

The labels of Pre(X,A) are (some of the) grounded terms that would
be evaluated when one evaluates X in A. At least one unit of honest com-
putation time should be spent to evaluate each of the labels. So if a run
〈A0, . . . , Al〉 of the program Π takes honest computation time T , then

Card(
⋃
i

Val[Pre(Π, Ai)]) ≤ T.

Theorem 9 Consider a run ρ = 〈A0, . . . , Al〉 of Π. Every object x activated

in ρ belongs to
⋃
i

Val[Pre(Π, Ai)].

Proof Call the sets 0, 1 binary and let x be an active nonbinary set in ρ. In
view of the convention about dynamic functions in initial states, A0 has no
critical nonbinary sets and thus no active nonbinary sets. Let i be the first

30

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

index such that x is active in Ai+1. So there is a nonbinary set y, critical
for Ai+1, with x ∈ TC(y). Since y is not critical for Ai, there must be an
update, executed in the step from Ai to Ai+1, involving y as either the new
value or a component of the location. By Lemma 8, y ∈ Val[Pre(Π, Ai)].
Among all nodes n in Pre(Π, Ai) such that x ∈ TC(Val(Label(n))), choose
a minimal one. Call this node n0 and let (t, B) = Label(n0). Our goal is to
show that ValB(t) = x. So suppose this fails. Then there exists w ∈ ValB(t)
such that x ∈ TC(w). (This includes the possibility that x = w.) As x is a
nonbinary set, w is a nonbinary set. We consider the various possibilities for
t and deduce a contradiction in every case. Note that B is an expansion of
Ai.

Suppose that t has the form f(s̄) for a dynamic f . Then ValB(t) is critical
already in Ai and therefore x is active in Ai, contrary to our choice of i.

Suppose that t is ∅ or Atoms. This is absurd, as ValB(t) contains a
nonbinary set w.

Suppose that t is
⋃
s. Since w ∈ ValB(t) =

⋃
ValB(s), we have w ∈

u ∈ ValB(s) for some u. Since x ∈ TC(w), we have x ∈ TC(ValB(s)). But
Pre(t, B) has a node labeled (s, B) and thus there is a node labeled (s, B)
below n0 in Pre(Π, A). This contradicts the choice of n0.

Suppose t is {s1, s2}. Then x ∈ TC(w) = TC(ValB(s)) for some s ∈
{s1, s2}. The rest is as in the

⋃
case.

Suppose that t is TheUnique(s). Since ValB(t) is a set (not an atom),
TheUnique(s) =

⋃
(s) here, and we get a contradiction as in the

⋃
case.

Suppose that t is P (s̄) where P is a predicate name. According to our
presentation of truth values, ValB(t) is either ∅ or {∅}. In the first case, we
get a contradiction as in the ∅ case. In the second case, w = ∅ which is
impossible as TC(w) contains a nonbinary set x.

Suppose that t is {s(v) : v ∈ r : g(v)}. Since w ∈ ValB(t), there is some
a ∈ ValB(r) such that ValB(v 7→a)(g(v)) = true and ValB(v 7→a)(s(v)) = w.
Recall that x ∈ TCB(w). But Pre(t, B) has a node labeled (s(v), B(v 7→ a))
and thus there is a node labeled (s(v), B(v 7→ a)) below n0 in Pre(Π, A).
This contradicts the choice of n0.

Finally, suppose that t is a variable v. As Π is a program and thus has
no free variables, v is bound in Π. Since Π does not reuse variables, v is

31

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

bound exactly once, either by a {s(v) : v ∈ r : g(v)} construction or by a
do-forall. Let r be the range of v. By Lemma 8, B must be C(v 7→ a),
where C is an expansion of Ai that involves only variables different from v
and where a ∈ ValC(r). So ValB(t) = ValC(v 7→a)(v) = a ∈ ValC(r). Thus,
x ∈ TC(ValC(r)). But Pre(Π, A) includes a copy of Pre(r, C), whose top
node is labeled with (r, C), below node n0. This contradicts the minimality
of n0.

2

Corollary 10 Let Π̄ be a PTime program (Π, p(n), q(n)), and let ρ be the
run of Π̄ on some input structure I. The number of objects active in ρ is
bounded by the number of microsteps plus the number of atoms plus two.

Proof Except for 0, 1, and atoms, everything active in ρ is activated in ρ.
The theorem and the observation preceding it immediately give the desired
bound. 2

5.4 The Robustness of C̃PTime

We have considered two definitions of PTime programs: the official defi-
nition by means of active elements, and the counting-microsteps definition.
Even though details of the second definition have been skipped, we have
shown in the previous two subsections that the two definitions are equivalent
in the sense that they give rise to the same notion of C̃PTime.

There is another natural definition of PTime programs. Fix a program
Π, and call an object x relevant to a state A of Π if it is active at A or there
exists a dynamic function f such that x ∈ TC(Extent(f)). Call x relevant
to a run ρ of Π if it is relevant to some state of ρ.

A PTime program can be defined as a pair (Π, r(n)) where Π is a program
and r(n) is a polynomial that bounds the number of relevant objects in Π’s
runs. If ρ is the run of Π on an initial structure I, then the run of (Π, r(n)) on
I is the maximal initial segment ρ0 of ρ such that (1) the number of objects
relevant to ρ0 is bounded by r(n), and (2) all states of ρ0 are distinct. The
second clause is needed to ensure that ρ0 is finite in the case when Π loops
on I.

32

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

Theorem 11 The active-object and relevant-object definitions give the same
notion of C̃PTime

Proof First, let (Π, r(n)) be a PTime program with respect to the relevant-
object definition, and let ρ be the run of (Π, r(n)) on an input structure I
of size n. Clearly, r(n) bounds the number of active objects in Π’s runs. It
suffices to show that the length of ρ is bounded by a polynomial of n that is
independent of I.

Let m be the number of dynamic names in Voc(Π), and let f range over
dynamic functions of Π. A state in ρ is uniquely determined by the relevant
sets Extent(f). Hence the number of different states in ρ is at most r(n)m.

Second let (Π, p(n), q(n)) be a PTime program with respect to the active-
object definition, and let ρ be the run of (Π, p(n), q(n)) on an input structure
I of size n. It suffices to show that the number of objects relevant to ρ is
bounded by a polynomial of n that is independent of I.

Let m be the number of dynamic functions in Π and let j be the maximum
of their arities. A relevant object x has one of the following two forms. First,
x may be Extent(f) for some dynamic function f . There at most m · p(n)
relevant objects of that sort. Second, x may be a k-tuple of active objects,
k ≤ j + 1, or a member of the transitive closure of such a tuple. Obviously,
there is a polynomial bound on the number of such relevant objects. 2

6 Two Fixed-Point Theorems

The main purpose of this section is to show that any C̃PTime computation
over an input structure I can be described in the logic FO+LFP over any
transitive set that contains the active elements. (The relations of I are to
be viewed as relations on that transitive set.) This fact, along with the
translation of FO+LFP into Lω∞,ω, will be used in obtaining our negative

results about C̃PTime computability in Section 10.

33

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

6.1 Definable Set-Theoretic Functions

The ASM programming language allows one to use much of the usual set-
theoretic notation. Here are some examples.

Lemma 12 Over ASM states, every first-order formula with bounded quan-
tifiers is expressible by a Boolean term.

Proof An easy induction over the given formula. In particular, (∃v ∈
r) g(v) ⇐⇒ 0 ∈ {0 : v ∈ r : g(v)}. 2

Lemma 13 The function

if y then x1 else x2 =

{
x1 if y 6= 0
x2 if y = 0

is definable

Proof

TheUnique
(
{v : v ∈ {x1, x2} : (y 6= 0 ∧ v = x1) ∨ (y = 0 ∧ v = x2)}

)
.

2

Lemma 14 Operations x ∪ y,
⋂
x, x− y are definable.

Proof

x ∪ y =
⋃
{x, y}⋂

x = {v : v ∈
⋃

x : (∀w ∈ x)v ∈ w}
x− y = {w : w ∈ x : w /∈ y}

2

The standard Kuratowski definition of ordered pairs is

OP(x, y) = {{x}, {x, y}}.

34

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

Lemma 15 There are definable functions P1 and P2 satisfying the following
condition. If z = OP(x, y), then P1(z) = x and P2(z) = y.

Proof

P1(z) = TheUnique
(⋂

z
)

P2(z) =
(

if
⋃

z =
⋂

z then P1(z) else TheUnique(
⋃

z −
⋂

z)
)

2

We will use the following lemma. Every nonempty transitive set T is a
natural model of the vocabulary {∈, ∅}; this model will be also called T .

Lemma 16 There exists a formula PosInteger(x) in the vocabulary {∈, ∅}
such that, for every transitive set T and every x ∈ T ,

T |= PosInteger(x) ⇐⇒ x is a positive integer.

Proof First express that x is a natural number: x is transitive and either
0 or of the form z ∪ {z}, and the same is true for each y ∈ x. PosInteger(x)
asserts that x is a natural number and x 6= 0. 2

6.2 First-Order Semantics

The sequel of a given state with respect to a given program can be described
in the given state by means of first-order formulas [Glavan and Rosenzweig
1993]. We need here a related result.

Lemma 17 For every rule R and every dynamic function name f , there is
a first-order formula UpdateR,f (x̄, y) such that

A |= UpdateR,f (x̄, y) ⇐⇒ (f, x̄, y) ∈ Den(R,A) and Den(R,A) is consistent

for all appropriate expanded states A.

35

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

The appropriateness of A means that A is appropriate for R and its
vocabulary contains the name f which may or may not occur in R.

Proof Induction on R. If R is Skip or an update rule with head name
different from f , then UpdateR,f is any logically false formula. If R is f(t̄) :=
t0, then UpdateR,f is (x̄ = t̄ ∧ y = t0). If R is “if g then R1 else R2 endif”,
then UpdateR,f is (g = true ∧ UpdateR1,f) ∨ (g = false ∧ UpdateR2,f).

If R is “do-forall u ∈ r, R0(u) enddo”, then UpdateR,f is

¬ClashR ∧ (∃u ∈ r)UpdateR0(u),f

where ClashR =
∨
h∈Υ ClashR,h and ClashR,h is

(∃u, u′ ∈ r)∃z̄∃w∃w′
[
UpdateR0(u),h(z̄, w) ∧ UpdateR0(u′),h(z̄, w

′) ∧ w 6= w′
]

Here Length(z̄) = Arity(h). 2

6.3 Time-Explicit Programs

Call a PTime program Π time-explicit if every positive integer i is active in
all runs of Π of length ≥ i.

Lemma 18 Every PTime program can be simulated by a time-explicit
PTime program.

Proof Just alter the given program Π to

do-in-parallel

Π
if not(Halt) then

CT := CT ∪ {CT}
endif

enddo

36

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

where CT (an allusion to Current Time) is a fresh nullary dynamic function
name (automatically initialized to 0, according to our conventions). 2

6.4 Fixed-Point Definability

Fix a PTime program Π̄ = (Π, p(n), q(n)) where Π is time-explicit. Let
I range over input structures for Π. Define Active(I) to be the collection
of active objects in the run of Π̄ on I. It is easy to see that Active(I) is
transitive. We also denote by Active(I) the structure (Active(I),∈, ∅, R̄)
where R̄ stands for all the relations of the input structure I.

Theorem 19 (First Fixed-Point Theorem) Let 〈Ai : i ≤ l〉 be the run
of Π̄ on an input structure I. Relations

Df (i, x̄, y) ⇐⇒ Ai |= f(x̄) = y 6= 0,

where f ranges over the dynamic function symbols in Π, are uniformly
FO+LFP definable in Active(I).

The uniformity means that the defining formulas are independent of I.

Proof Notice that if i is a positive integer then i− 1 =
⋃
i. For clarity, we

will use i− 1 instead of
⋃
i in the situations where i is a positive integer.

Call a first-order formula ϕ simple if every atomic subformula of ϕ has
the form f(x̄) = t where x̄ is a tuple of variables and t is either a variable or
true or false. It is easy to see that every first-order formula whose vocab-
ulary consists of function names is logically equivalent to a simple formula.
Without loss of generality, we may assume that the formulas UpdateR,f (x̄, y),
constructed in the previous subsection, are simple.

By simultaneous recursion, we define relations Df , where f ranges over
the dynamic function names of Π:

Df (i, x̄, y) ⇐⇒ PosInteger(i) ∧ y 6= 0 ∧[(
Df (i− 1, x̄, y) ∧ ¬(∃z 6= y)Uf (i− 1, x̄, z)

)
∨ Uf (i− 1, x̄, y)

]
37

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

Here Uf (j, x̄, y) is the formula UpdateΠ,f (x̄, y) where each atomic subformula
h(ū) = t is replaced with

Dh(j, u, t) ∨ [t = 0 ∧ ¬(∃y)Dh(j, u, y)].

2

The First Fixed-Point Theorem remains true if the computation time
of the given program is bounded by any other function (not necessarily a
polynomial) or is not bounded at all. Also, we get the same definability in
any transitive T that includes Active(I).

Theorem 20 (Second Fixed-Point Theorem) Restrict attention to in-
put structures I such that Π̄ halts on I. Then the set Active(I) is uniformly
FO+LFP definable in HF(BaseSet(I)).

Proof The desired FO+LFP formula ϕ(x) asserts that x is an atom, or
x ∈ {0, 1}, or the following is true for some dynamic function f where k =
Arity(f).

(∃i, v0, . . . , vk)
[
Df (i, v0, . . . , vk) ∧ (v0 = x ∨ · · · ∨ vk = x)

]
2

7 On the Extent of C̃PTime

We show, in particular, that PTime abstract state machines are more pow-
erful than the PTime relational machines of Abiteboul–Vianu.

Theorem 21 For every PTime relational machine Ξ, there exists a PTime
ASM program Π that accepts all input structures accepted by Ξ and rejects
all input structures rejected by Ξ.

Proof If Ξ has m instructions, then the desired program Π is a do-in-
parallel rule with m components. Each component simulates one instruction
of Ξ. 2

38

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

To show that choiceless polynomial time computations are strictly more
powerful than polynomial time relational machines, we shall exhibit two
classes of structures that can be separated by the former but not by the
latter.

It would be easy to give a trivial example, based on the fact that for
relational machines “polynomial time” is measured relative to the size of
a quotient structure obtained by identifying indistinguishable elements of
the input structure. If this quotient is much smaller than the actual input
structure, then “polynomial time” is a much more stringent restriction for
the relational machine than for our framework. We are interested, however,
not in this trivial difference between the conventions of the two models but
in actual computational differences. We therefore use in our example only
structures where the quotient structure is nearly as large as the original, so
that “polynomial” has the same meaning for both models.

The vocabulary for our example consists of a unary predicate symbol P
and a binary predicate symbol <. Let K be the class of structures A in
which (1) the interpretation PA of P is small in the sense that |PA|! ≤ |A|
and (2) < linearly orders A− PA. Thus a structure in K consists of a large
linearly ordered part plus a small naked set PA. Let K0 resp. K1 be the
subclasses of K consisting of structures where the cardinality of PA is even
resp. odd.

Because A−PA is ordered, all its elements remain distinct in the quotient
structure used as the measure of input size in the relational model. Since PA

is small, the quotient is of size comparable to A; in particular, polynomial
relative to the quotient structure is the same as polynomial relative to the
original structure. This observation is our only reason for including < in our
structures.

Theorem 22 The classes K0 and K1 can be separated by C̃PT .

Proof Let us begin with some wishful thinking. If the structures included
an ordering of PA, then we could use it to obtain the parity of |PA| just by
counting. For example, we could use two 0-ary names p and q, where p is a
set that is initially empty and, in each execution of the program, acquires as
a new member the first element of PA not already in p (until p = PA), while
q alternates between 0 and 1. (This wishful thinking is, of course, just a

39

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

special case of the fact that, on ordered structures, C̃PTime captures PTime
because it can simulate the least fixed point operator.)

In reality, however, no ordering of PA is available, so the wishful thinking
of the preceding paragraph cannot succeed. Our ASM model can, however,
produce the set X of all linear orderings of PA; the following program does
the job in a run of length |PA|.

if mode=final then skip else

if (∀x ∈ Atoms)(∀u ∈ X) [P (x)⇒ (x, x) ∈ u] then mode:=final else

X := {u∪{(x, y) : (x, x) ∈ u or x = y} : u ∈ X and P (y) and (y, y) /∈ u}

endif endif

The number of objects activated by this program is bounded by a linear
function of |PA|! and is therefore bounded by a polynomial (in fact linear)
function of |A| for A ∈ K. This is the reason for considering structures that
are so much bigger than the interpretation of P ; polynomial time relative to
|A| is enough to produce all the linear orderings of PA.

Finally, after producing the set X of all linear orderings of PA, we can
run many copies of the “wishful thinking” algorithm in parallel, one copy for
each ordering in X. When they all halt, i.e., when their p’s stop growing,
their q’s all agree, and this common value gives the parity of PA. 2

Lemma 23 The classes K0 and K1 cannot be separated by a polynomial time
relational machine.

Proof It is known [Abiteboul and Vianu 1991] that the operation of any
polynomial time relational machine can be described by a sentence of the
finite variable infinitary language Lω∞ω. But an easy pebble-game argument
shows that an m-variable infinitary sentence cannot distinguish two struc-
tures A,B ∈ K as long as their ordered parts A− PA and B − PB have the
same size and their unordered parts PA and PB have size at least m. Thus,
such a sentence cannot separate K0 from K1. 2

Thus PTime abstract state machines are more powerful than PTime re-
lational machines.

40

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

Remark. Theorem 22 can be strengthened by replacing the restriction
|PA|! ≤ |A| with 2|P

A| ≤ |A|. The idea is to compute the set of 2-element
subsets of PA, then extend it with the set of all 4-element subsets of PA,
then extend the result with the set of all 6-element subsets of PA, and so on.
When this computation converges, check if the result contains PA.

Remark. Theorem 22 and its proof apply in much greater generality than
stated above. Once the set X of linear orderings of PA has been produced,
the program can go on to simulate any PTime Turing machine operating
on input PA. Thus, any PTime computable property of structures becomes
C̃PTime computable when the input structure for the C̃PTime computation
has the input of the Turing computation as a small, definable substructure.
Here “small” is defined using the factorial function, as in the theorem.

Furthermore, the theorem and its proof can be extended to cover the
situation where PA is not merely a subset of the input structure but rather a
set that can be produced in polynomial time by an ASM. For example, if the
input structures are groups G then it might be the commutator subgroup G′

or the quotient G/G′.

8 The Support Theorem

The goal of this and the next sections is to show that the parity of a naked
set is not C̃PTime computable. Thus the inclusion of C̃PTime in PTime (see
Theorem 4) is proper; “choiceless” is a real restriction. The present section
is devoted to establishing a limitation on the sets that can be activated by a
C̃PTime computation over a naked set. This limitation is used in the next
sections to prove the negative result about parity. The same method will
also yield other negative results.

Consider a PTime program Π and let I be an input structure for Π.
The recipe θ(x) = {θ(y) : y ∈ x} extends any automorphism θ of I to an
automorphism of the whole initial state State(I) generated by I. It is easy to
see that every automorphism of State(I) can be obtained this way. Indeed,
an automorphism θ′ of State(I) coincides, on I, with some automorphism θ
of I; by induction on Rank(x), check that θ′(x) = θ(x) for all x ∈ State(I).

Definition 24 A set X of atoms of I is a support of an object y ∈ State(I)

41

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

if every automorphism of I that pointwise fixes X fixes y as well.

For example, the set of atoms in TC(y) is a support of y. But y may also
have other, far smaller supports. For example, the empty set is a support of
the set of all atoms.

Let Active(I) be the set of active objects in the run of Π on I. It is easy to
see that Active(I) is transitive and closed under automorphisms of State(I).
Let Active+(I) be the substructure of State(I) with base set Active(I).

Theorem 25 (Support Theorem) Assume that the input vocabulary of Π
is empty. There exists a number k such that, for all sufficiently large I, every
object in Active(I) has a support of cardinality ≤ k.

To avoid interruption of the natural flow of the proof, we start with a
version of a known combinatorial lemma which will be used later in the
proof. Recall that a ∆-system is a collection K of sets such that X ∩ Y is
the same set for all X 6= Y in K.

Lemma 26 Any indexed family F of ≥ l!pl+1 sets (not necessarily distinct),
each of size ≤ l, includes a ∆-system of p sets.

Proof Induction on l. If l = 0, then F itself is a ∆-system. Assume that
l > 0 and the results holds for l − 1.

Case 1: There exists a point x that belongs to ≥ (l− 1)!pl sets in F , say
sets Xi, i ∈ I. Apply the induction hypothesis to the family {Xi − {x} :
i ∈ I}, to extract a ∆-system of p sets {Xi − {x} : i ∈ J}. The family
{Xi : i ∈ J} is the desired ∆-system.

Case 2: Each point belongs to < (l− 1)!pl sets in F . In this case, we find
p pairwise disjoint members of F ; they form the desired ∆-system. Notice
that each member of F intersects < l(l−1)!pl = l!pl other members and that
Card(F)/(l!pl) ≥ p. Pick a member X1 arbitrarily, and then eliminate those
members that meet X1. Pick a member X2 among the remaining members
arbitrarily, and then eliminate those members that meet X2. And so on. 2

42

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

Proceeding toward the proof of the support theorem, let Π be as in its
hypothesis. So the input structure I is a neked set and “automorphism”
means simply “permutAtion of I. Let A = Active(I).

Lemma 27 If X1, X2 support y and X1 ∪X2 6= I, then X1 ∩X2 supports y
as well.

Proof Suppose that X1, X2 support y. Fix an atom a ∈ I − (X1 ∪ X2).
Let b range over I − (X1 ∩ X2) and πb be the transposition of atoms that
interchanges a and b. For each b, either b /∈ X1 or b /∈ X2. In the first case πb
pointwise fixes X1, and in the second it pointwise fixes X2. In either case, it
fixes y. It is easy to see that the transpositions πb generate all permutations
of atoms which pointwise fix X1 ∩X2. Hence the automorphisms induced by
permutations πb generate all automorphisms of A that fix X1 ∩ X2. Hence
every such automorphism fixes y. 2

Let n = Card(I). Lemma 27 justifies the following definition. If object y
has a support X with |X| < n/2, then the set

Supp(y) =
⋂
{X : X supports y and |X| < n/2}.

is the smallest support of y.

Since Π is PTime, there exists a bound nk on Card(A). Fix such a k and

assume that n is so large that

(
n

k + 1

)
> nk.

Lemma 28 If x ∈ A has a support of size < n/2, then |Supp(x)| ≤ k.

Proof Suppose that x has a support of size < n/2 and s = |Supp(x)|. If
an automorphism θ moves x to some y, then it moves Supp(x) to Supp(y).
If s > k, we have

nk ≥ Card(A) ≥ Card{θ(x) : θ ∈ Aut(A)}
≥ Card{θ(Supp(x)) : θ ∈ Aut(A)}

=

(
n

s

)
≥
(

n

k + 1

)
> nk

43

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

2

In order to prove the theorem, it suffices to prove the following lemma.

Lemma 29 If n is sufficiently large, then every member of A has a support
of size < n/2.

Proof Toward a contradiction, assume that the lemma fails and let x be
an object of minimal rank in A without support of size < n/2. Clearly, x is
a set and each member of x has a support of size < n/2. Let m = bn/(4k)c.

Claim 30 There exists a sequence 〈(θj, yj, zj, Yj, Zj) : 1 ≤ j ≤ m〉 such that
every initial segment 〈(θi, yi, zi, Yi, Zi) : 1 ≤ i ≤ j〉 satisfies the following
conditions:

• θj is an automorphism of A, and yj, zj are objects in A, and Yj =
Supp(yj), Zj = Supp(zj).

• yj ∈ x, zj /∈ x.

• θj fixes Yi ∪Zi pointwise for all i < j, and θj(yj) = zj, and θj maps Yj
onto Zj.

Proof of the claim. We construct the tuples by induction on j. Suppose
that a sequence 〈(θi, yi, zi, Yi, Zi) : 1 ≤ i < j〉, satisfying all the conditions,
has been constructed. By the minimality of x, each yi has a support of size
< n/2. Since zi is an automorphic image of yi, the same applies to zi. By
the previous lemma, |Yi|, |Zi| ≤ k.

Let Xj =
⋃
i<j(Yi ∪Zi). We have |Xj| ≤ (j − 1) · 2k < (n/4k) · 2k = n/2.

If every automorhism θ that pointwise fixes
⋃
i<j(Yi∪Zi) fixes x as well, then

x has a support of size < n/2 and we have a contradiction. So there exists an
automorphism θ that pointwise fixes Xj but moves x. It follows that there
exists y ∈ x such that the element z = θ(y) does not belong to x. (Otherwise
θ(x) = θ{y : y ∈ x} = {θ(y) : y ∈ x} = x.) Since θ(y) = z, θ maps Supp(y)
onto Supp(z). Choose, θj = θ, yj = y and zj = z. 2

44

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

Let p be the largest integer with (2k)!p2k+1 ≤ m. As n grows, both m
and p grow (but k is fixed). For large enough n, we have

2p−1 >
[(

(2k)!(p+ 1)2k+1 · 4k
)k]
≥
[(

(m+ 1) · 4k
)k]

> nk

Assume that n is sufficiently large, so that 2p−1 > nk.

Claim 31 There exists a sequence 〈(θj, yj, zj, Yj, Zj) : 1 ≤ j ≤ p〉 such that

• every initial segment 〈(θi, yi, zi, Yi, Zi) : 1 ≤ i ≤ j〉 of the given sequence
satisfies the three conditions of Claim 30, and

• The sets Yi ∪ Zi form a ∆-system.

Proof of the claim. Let 〈(θj, yj, zj, Yj, Zj) : 1 ≤ j ≤ m〉 be as in Claim 30.
By the induction hypothesis, each Yi is of cardinality ≤ k. Since Zi is an
automorphic image of Yi, the same applies to Zi. Thus Yi ∪ Zi ≤ 2k. Now
apply Lemma 26. 2

Fix a sequence 〈(θj, yj, zj, Yj, Zj) : 1 ≤ j ≤ p〉 as in Claim 31, and let
X0 = (Yi ∪ Zi) ∩ (Yj ∪ Zj) for all i 6= j in [1, . . . , p]. Let U be the integer
interval [2, . . . , p]. If i ∈ U , then θi pointwise fixes Y1 ∪ Z1 and therefore
pointwise fixes X0.

Claim 32 For each V ⊆ U , there exists an automorphism θV such that

• if i ∈ V , then zi = θV (zi).

• if i ∈ U − V , then zi = θV (yi).

Proof of the claim. Construct a permutation π(a) of atoms as follows.
If a ∈ X0 then π(a) = a. If a ∈ Yi ∪ Zi for some i ∈ V , then π(a) = a. If
a ∈ Yi for some i ∈ U − V but a /∈ X0, then π(a) = θi(a), so that π maps
Yi onto Zi. We do not care how π behaves on the remaining atoms. The
desired θV is the automorphism induced by π. To see that it sends yi to zi
for i ∈ U − V , observe that it agrees with θi on the support Yi of yi, that
therefore π−1θi fixes yi, that θi sends yi to zi, and that therefore π−1 must
send zi to yi. 2

45

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

Let the automorphisms θV be as in Claim 32.

Claim 33 If V,W are different subsets of U , then θV (x) 6= θW (x).

Proof of the claim. Suppose that V and W are distinct. Without loss
of generality, V − W 6= ∅. Pick some i ∈ V − W . We show that zi ∈
θW (x)− θV (x).

Since zi /∈ x, θV (zi) /∈ θV (x). Since i ∈ V , zi = θV (zi) /∈ θV (x).

Since yi ∈ x, θW (yi) ∈ θW (x). Since i ∈ U −W , zi = θW (yi) ∈ θW (x). 2

By Claim 32, there are 2p−1 different automorphic images of x. Recall
that n is sufficiently large, so that 2p−1 > nk. Hence Card(A) ≥ 2p−1 >
nk ≥ Card(A). This gives the desired contradiction. The Support Theorem
is proved. 2

Define a colored set to be an input structure with only unary relations,
called colors, which partition the base set, so that every atom (that is every
element of the base set) belongs to exactly one color. We shall be interested
in colored structures with a fixed number c of colors (i.e., the vocabulary is
fixed), none of which are too small in proportion to the size of the whole set.
Specifically, for any real number ε > 0, we call a colored set of size n ε-level
if each color has cardinality at least ε · n.

Corollary 34 Assume that input structures for the PTime program Π are
ε-level colored sets with c colors. There exists a number k, depending only on
Π, ε, and c, such that, whenever the input structure I is sufficiently large,
then every object in ActiveΠ(I) has a support of cardinality ≤ k.

Proof The proof is similar to the proof of the theorem. We indicate the
more important changes. Throughout the proof, require permutations to pre-
serve the colors, i.e., to be automorphisms of the colored set. In Lemma 27,
require that I − (X1 ∪X2) contains at least one atom of every color, so that
the transpositions used in the proof can be taken to preserve colors.

In the definition of Supp(y), replace |X| < n/2 with the requirement

46

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

|X ∩ C| < |C|/2 for all colors C (*)

Accordingly, in Lemma 28 and Lemma 29, instead of supports of size < n/2,
speak about supports satisfying (*). In connection with Lemma 28, first
choose k′ (rather than k) so that nk

′
bounds the number of active elements,

and take n so large that

(
εn

k′ + 1

)
> nk

′
. The lemma then asserts that if

(*) holds then the support of X has at most k′ elements in each color and
therefore at most k = c · k′ elements altogether. This is the k needed for the
support theorem.

In the definition of m, replace n with the minimum of the color sizes. The
rest of the proof remains valid. 2

Finally, let us note that, over some input structures, a PTime program
can activate sets with no bounded support, so that the minimal support size
depends on the input structure I, not only on the PTime program.

Example 35 Let I be the disjoint union of (i) a vector space V over the
two-element field and (ii) a disjoint set S of size ≥ 2|V |. Let the program do
the following with a dynamic nullary function Q. Initialize Q to {{0̄}} where
0̄ is the zero of V . Thereafter, for each q ∈ Q and each v ∈ V − q, put into
Q the subspace generated by q ∪ {v}, except if this would make V ∈ Q, in
which case halt and accept. On the first step, the program activates all one-
dimensional subspaces of V ; on the second, all two-dimensional subspaces;
on the third, all three-dimensional subspaces, and so on. The length of the
run equals the dimension of V . The number of active objects in the run is

|V |+ |S|+ |Subspaces of(V)| ≤ |V |+ 2|S| < 2|I|.

Thus a PTime version of Π accepts I. Notice that every hyperplane H of V
is activated. But H has no support smaller than dim(V)− 1.

9 The Equivalence Theorem

Fix an input vocabulary Υ0 and let I, J denote input structures of vocab-
ulary Υ0. Recall that every automorphism of I naturally extends to an

47

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

automorphism of HF(I) and that a subset X of BaseSet(I) supports an ob-
ject y ∈ HF(I) if every automorphism of I that pointwise fixes X also fixes
y. Given a positive integer k, call an object y ∈ HF(I) k-symmetric if every
z ∈ TC(y) has a support of size ≤ k. This terminology makes sense in the
case of interest to us when many permutations of I fix a k-symmetric object
y. Notice that every atom has a support of size one and thus is k-symmetric.
Also the set of atoms has empty support, so it is k-symmetric for any k.
But a linear ordering of the atoms is not k-symmetric unless k is at least
equal to the number of atoms (in which case everything is k-symmetric).
Let Īk denote the collection of k-symmetric objects in HF(I) as well as the
corresponding structure of vocabulary Υ0 ∪ {∈, ∅}.

We are interested in a special case when Υ0 is empty and thus I, J are
naked sets.

Theorem 36 (Equivalence Theorem) Fix positive integers k and m. If
naked sets I, J are sufficiently large, then structures Īk and J̄k are Lm∞,ω-
equivalent.

The theorem is proved in the rest of this section. We drop the subscript
k and abbreviate “k-symmetric” to “symmetric”. Without loss of generality,
m ≥ 3. We assume that the naked sets I, J have size ≥ km and construct a
winning strategy for the Duplicator in Gamem(Ī , J̄). The idea is to represent
every symmetric object x as a combination of a form and matter. The form
of an object x reflects a definition of x independent from the underlying sets
of atoms. The matter of x is an ordered support of x.

9.1 Matter

Molecules A molecule over a naked set I is an injective map σ : k −→ I.
In other words, a molecule is a sequence of k distinct atoms.

The Configuration of a Sequence of Molecules Consider a naked set
I. The configuration C(σ̄) of a finite sequence σ̄ = (σ0, . . . , σl−1) of molecules
over I is the equivalence relation on l × k given by

48

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

(i, p)C(σ̄)(j, q) ⇐⇒ σi(p) = σj(q).

The configuration describes how the ranges of the molecules overlap. By
the injectivity, (i, p)C(σ̄)(i, q) ⇐⇒ p = q. Notice that C(σ̄) is uniquely
determined by the configurations C(σi, σj).

Abstract Configurations Let l be a natural number. An l-ary configura-
tion is an equivalence relation E on l× k such that (i, p)E(i, q) ⇐⇒ p = q.
Every C(σ0, . . . , σl−1) is an l-ary configuration, and every l-ary configuration
can be realized in this way. To prove the latter, assign a different atom [i, p]
to every equivalence class (i, p)E of E. Then set σi(p) = [i, p].

Lemma 37 Suppose that l < m, and σ0, . . . , σl are molecules over I, and
τ1, . . . , τl are molecules over J ; Q = C(σ0, . . . , σl) and Q′ = C(σ1, . . . , σl) =
C(τ1, . . . , τl).

There exists a molecule τ0 over J with C(τ0, . . . , τl) = Q.

Proof Define the desired τ0 by setting

τ ′0(p) =

τ1(q1) if (0, p)Q(1, q1)
τ2(q2) if (0, p)Q(2, q2)
. . .
τl(ql) if (0, p)Q(l, ql)

and then extending τ ′0 to a full molecule τ0 by using distinct values in J −⋃l
i=1 Range(τi). It is obvious that C(τ0, . . . , τl) = Q provided that τ0 is well-

defined. Recall that Card(J) ≥ km and thus there exist enough distinct
values to extend τ ′0 to τ0. In the rest of the proof, we check that τ ′0 is well-
defined.

First, we check that each τ ′0(p) is defined uniquely. Let 1 ≤ i, j ≤ l and
suppose (0, p)Q(i, q) and (0, p)Q(j, s). Then (i, q)Q(j, s), (i, q)Q′(j, s), and
therefore τi(q) = τj(s).

Second, we check that τ ′0 is injective. Let 1 ≤ i, j ≤ l and suppose
that τ ′0(p) = τ ′0(p′) where τ ′0(p) = τi(q) and τ ′0(p′) = τj(s). By the defini-
tion of τ ′0, we have (0, p)Q(i, q) and (0, p′)Q(j, s). Further, τi(q) = τ ′0(p) =

49

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

τ ′0(p′) = τj(s), and hence (i, q)Q′(j, s) and therefore (i, q)Q(j, s). Putting
this together, we have

(0, p) Q (i, q) Q (j, s) Q (0, p′)

which implies p = p′. 2

9.2 Forms

The Definition of Forms Fix a list c0, c1, . . . , ck−1 of new symbols. The
set of forms is defined recursively as the smallest set containing the symbols
cp and containing every finite set of pairs (ϕ,E) where ϕ is a form and E is
a binary configuration. If ϕ = cp then Rank(ϕ) = 0; otherwise

Rank(ϕ) = 1 + max{Rank(ψ) : some (ψ,E) ∈ ϕ}.

Denotations A form ϕ and a molecule σ over a naked set I uniquely define
an object ϕ∗I σ ∈ HF(I), which we may think of as the denotation of ϕ with
respect to σ. The subscript may be omitted in ∗I if the naked set is clear
from the context. The definition is given by induction on ϕ.

• cp ∗ σ = σ(p).

• If ϕ is a set, then ϕ ∗ σ = {ψ ∗ τ : (ψ,C(τ, σ)) ∈ ϕ}.

Permutations Recall that any permutation π of I extends to an automor-
phism, also called π, of the structure (HF(I),∈) by means of the following
rule: π(x) = {π(y) : y ∈ x}. Recall also that every automorphism of HF(I)
is obtained this way.

Lemma 38 If π is a permutation of I, then π(ϕ ∗ σ) = ϕ ∗ πσ.

Proof by induction on ϕ. π(cp ∗ σ) = πσ(p) = (πσ)(p) = cp ∗ (πσ). If ϕ
is a set, then

50

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

π(ϕ ∗ σ) = π{ψ ∗ τ : (ψ,C(τ, σ)) ∈ ϕ} = {π(ψ ∗ τ) : (ψ,C(τ, σ)) ∈ ϕ}
= {ψ ∗ πτ : (ψ,C(τ, σ)) ∈ ϕ} (by induction hypothesis)

= {ψ ∗ ρ : (ψ,C(π−1ρ, σ)) ∈ ϕ} (ρ = πτ)

= {ψ ∗ ρ : (ψ,C(ρ, πσ)) ∈ ϕ} (see below)

= ϕ ∗ πσ

It remains to verify that C(π−1ρ, σ) = C(ρ, πσ):

(0, p)C(π−1ρ, σ)(1, q) ⇐⇒ (π−1ρ)(p) = σ(q) ⇐⇒
ρ(p) = (πσ)(q) ⇐⇒ (0, p)C(ρ, πσ)(1, q)

2

Corollary 39 Every ϕ ∗I σ is symmetric and thus belongs to Ī.

Proof Indeed, every ϕ∗Iσ is supported by Range(σ) and thus has a support
of size ≤ k. The same conclusion applies to the members of the transitive
closure of ϕ ∗I σ because they are of the form ψ ∗ τ . 2

Recall that I is a naked set of cardinality ≥ km.

Lemma 40 Every symmetric object x over I is equal to ϕ∗I σ for some form
ϕ and some molecule σ over I.

Proof Any atom x equals c0 ∗ σ where σ is an arbitrary molecule with
σ(0) = x. Proceeding inductively, suppose that x is a symmetric set with
elements y = ψy ∗τy. Since x is symmetric, there is a molecule σ whose range
supports x. We will prove that x = ϕ ∗ σ where ϕ = {(ψy, C(τy, σ)) : y ∈ x}.
One inclusion is easy. Suppose that y ∈ x. By the definition of ∗I , ϕ ∗ σ =
{ψ ∗ τ : (ψ,C(τ, σ)) ∈ ϕ}. By the definition of ϕ, (ψy, C(τy, σ)) ∈ ϕ. Hence
y = ψy ∗ τy ∈ ϕ ∗ σ.

51

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

For the difficult direction, consider any z ∈ ϕ ∗σ. By the definition of ∗I ,
z is a composition ψ ∗ ρ such that (ψ,C(ρ, σ)) ∈ ϕ. By the definition of ϕ,
there exists a y such that ψ = ψy and C(ρ, σ) = C(τy, σ). The latter equality
does not imply that ρ = τy and we are not going to prove that z = y. Instead
we construct an automorphism π of Ī that pointwise fixes σ and moves y to
z. Since σ supports x, π fixes x; hence z ∈ x. It remains to construct such
π.

We want that πτy = ρ and that π pointwise fixes Range(σ). To this end,
define a function π0 : Range(τy) ∪ Range(σ) −→ I by

π0(a) =

{
ρ(p) if a = τy(p);
a if a = σ(q)

Even though the two cases are not mutually exclusive, π0 is well-defined.
Indeed,

τy(p) = σ(q)⇒ (0, p)C(τy, σ)(1, q)⇒ (0, p)C(ρ, σ)(1, q)⇒ ρ(p) = σ(q).

Furthermore, π0 is injective. Indeed, assume that π0(a) = π0(b). If
π0(a) = ρ(p1), π0(b) = ρ(p2) then p1 = p2 (because ρ is injective) and
therefore a = τy(p1) = τy(p2) = b. In case a = σ(q1), b = σ(q2), we have
a = π0(a) = π0(b) = b. Finally suppose that a = τy(p), b = σ(q). Then

π0(a) = π0(b)⇒ ρ(p) = σ(q)⇒ (0, p)C(ρ, σ)(1, q)⇒
(0, p)C(τy, σ)(1, q)⇒ τy(p) = σ(q)⇒ a = b

Thus, function π0 is one-to-one. Extend it to a permutation π over I
in an arbitrary way. Since π extends π0, it pointwise fixes Range(σ) and
πτy = ρ. In the standard way, π extends to an automorphism of Ī which will
be denoted π as well. Since σ supports x (by the choice of σ), π(x) = x. By
Lemma 38,

π(y) = π(ψy ∗ τy) = ψy ∗ (πτy) = ψy ∗ ρ = z.

2

52

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

9.3 The In and Eq Relations

Lemma 41 There are ternary relations Eq and In such that, in every Ī,

ψ ∗ τ ∈ ϕ ∗ σ ⇐⇒ In(ψ, ϕ,C(τ, σ)) (1)

ψ ∗ τ = ϕ ∗ σ ⇐⇒ Eq(ψ, ϕ, C(τ, σ)) (2)

for all forms ϕ, ψ and all molecules σ, τ .

The crucial points here are that σ and τ are involved in In and Eq only
via their configurations and that In and Eq don’t depend on I.

Proof We define In(ψ, ϕ,E) and Eq(ψ, ϕ,E) by recursion on Rank(ψ) +
Rank(ϕ).

In(ψ, ϕ,E) ⇐⇒ ϕ is a set and (∃ form χ)

(∃ ternary configuration Q with Q12 = E)[
(χ,Q02) ∈ ϕ) and Eq(ψ, χ,Q10)

]
Eq(ψ, ϕ,E) ⇐⇒ either (∃p, q ∈ k)

[
ψ = cp ∧ ϕ = cq ∧ (0, p)E(1, q)

]
,

or ϕ, ψ are sets and (∀ form χ)

(∀ ternary configuration Q with Q12 = E)[
if (χ,Q02) ∈ ϕ then In(χ, ψ,Q01), and

if (χ,Q01) ∈ ψ then In(χ, ϕ,Q02)]

Proof of (1). If ϕ is a symbol cp, then ϕ ∗ σ is an atom, so the left side
of (1) is false. So is the right side, by the definition of In. Thus, we may
assume from now on that ϕ is a set.

Suppose first that ψ ∗ τ ∈ ϕ ∗ σ. By the definition of ∗I , ψ ∗ τ =
χ ∗ ρ for some χ, ρ with (χ,C(ρ, σ)) ∈ ϕ. By the induction hypothe-
sis, Eq(ψ, χ, C(τ, ρ)). We check that this χ and the ternary configura-
tion Q = C(ρ, τ, σ) witness In(ψ, ϕ,C(τ, σ)). Indeed, Q12 = C(τ, σ),
(χ,Q02) = (χ,C(ρ, σ)) ∈ ϕ, and Eq(ψ, χ,Q10) is Eq(ψ, χ, C(τ, ρ)).

Conversely, suppose that In(ψ, ϕ,C(τ, σ)) is witnessed by χ and Q. By
Lemma 37, there exists ρ such that Q = C(ρ, τ, σ). We have:

53

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

(χ,C(ρ, σ)) = (χ,Q02) ∈ ϕ, so that χ ∗ ρ ∈ ϕ ∗ σ; and

Eq(ψ, χ,Q10) holds, that is Eq(ψ, χ, C(τ, ρ)) holds.

By the induction hypothesis, ψ ∗ τ = χ ∗ ρ ∈ ϕ ∗ σ. Part (1) is proved.

Proof of (2). Both sides of (2) are false if one of ψ, ϕ is a symbol cp while
the other is a set. If ϕ = cq, ψ = cp, then

ψ ∗ τ = ϕ ∗ σ ⇐⇒ τ(p) = σ(q) ⇐⇒ (0, p)C(τ, σ)(1, q)

⇐⇒ Eq(ψ, ϕ,C(τ, σ))

So we may assume from now on that both ψ and ϕ are sets.

Suppose first that ψ ∗ τ = ϕ∗σ. Let χ be any form and Q be any ternary
configuration with Q12 = C(τ, σ). We must prove

(χ,Q02) ∈ ϕ ⇒ In(χ, ψ,Q01)

(χ,Q01) ∈ ϕ ⇒ In(χ, ψ,Q02)

By symmetry, it suffices to prove only the first of these two implications.
So assume (χ,Q02) ∈ ϕ. By Lemma 37, there exists ρ such that C(ρ, τ, σ) =
Q. Then (χ,C(ρ, σ)) = (χ,Q02) ∈ ϕ, so χ ∗ ρ ∈ ϕ ∗ σ = ψ ∗ τ . By the
induction hypothesis, In(χ, ψ, C(ρ, τ)), that is In(χ, ψ,Q01), as required.

Conversely, suppose that Eq(ψ, ϕ,C(τ, σ)) holds. By symmetry, it suffices
to prove only that ψ ∗ τ ⊆ ϕ ∗ σ. Let χ ∗ ρ, with (χ,C(ρ, τ)) ∈ ψ, be an
arbitrary element of ψ ∗τ . Apply the definition of Eq(ψ, ϕ,C(τ, σ)) with this
χ and with Q = C(ρ, τ, σ), which satisfies Q12 = C(τ, σ). Since (χ,Q01) =
(χ,C(ρ, τ)) ∈ ψ, we have In(χ, ϕ,Q02), that is In(χ, ϕ,C(ρ, σ)). By the
induction hypothesis, χ ∗ ρ ∈ ϕ ∗ σ, as required. 2

9.4 The Winning Strategy

Now we are ready to construct a winning strategy for the Duplicator in the
Gamem(Ī , J̄). The strategy is to ensure that, after every step, there exist
forms ϕi, I-molecules σi and J-molecules τi, i ∈ m, such that

54

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

xi = ϕi ∗ σi, yi = ϕi ∗ τi, C(σ̄) = C(τ̄) (*)

where xi, yi are elements covered by pebbles i in Ī , J̄ respectively. (Without
loss of generality, we assume that, in the beginning, all 2m pebbles are on
the board with all xi = yi = ∅.)

First we check that Duplicator can always play in the required manner.
Clearly (*) holds in the initial position, as we can take all ϕi = ∅, all σi = σj
and all τi = τj. Now suppose that, after some number of steps, (*) holds
witnessed by ϕ̄, σ̄, τ̄ , and then Spoiler moves. By symmetry, we may assume
that Spoiler moves pebble 0 on Ī from x0 to x′0. By Lemma 40, x′0 = ϕ′0 ∗I σ′0
for some form ϕ′0 and some molecule σ′0 over Ī. By Lemma 37, there exists
a molecule τ ′0 over J̄ such that C(σ′0, σ1, . . . , σm−1) = C(τ ′0, τ1, . . . , τm−1).
Duplicator can move pebble 0 on J̄ from y0 to y′0 = ϕ′0 ∗J τ ′0 and (*) will be
restored.

Second, we check that (*) ensures that the map xi 7→ yi is a partial
isomorphism and thus the proposed strategy of Duplicator is winning. For
each i, j ∈ m, (*) implies C(σi, σj) = C(τi, τj). By Lemma 41,

xi ∈ xj ⇐⇒ ϕi ∗ σi ∈ ϕj ∗ σj ⇐⇒ In(ϕi, ϕj, C(σi, σj))

⇐⇒ In(ϕi, ϕj, C(τi, τj)) ⇐⇒ ϕi ∗ τi ∈ ϕj ∗ τj
⇐⇒ yi ∈ yj

and similarly with = and Eq in place of ∈ and In.

The Equivalence Theorem is proved. 2

9.5 A Generalization

Until now we have considered the case when the input vocabulary Υ0 is
empty. Now we consider the case when Υ0 consists of unary predicates,
say P0, . . . , Pc−1. Restrict attention to input structures where the c basic
relations partition the base set; recall that such input structures are called
colored set with colors P0, . . . , Pc−1. An automorphism of a colored set I is
simply a color preserving permutation of the elements of I. Recall that Īk is
the collection of k-symmetric elements of HF(I) as well as the corresponding

55

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

structure of vocabulary {P0, . . . , Pc−1,∈, ∅}. We shall indicate how to modify
the proof of the Equivalence Theorem to obtain the following version of it
for colored sets.

Corollary 42 Fix positive integers c, k,m. If I and J are colored sets, in
each of which all the colors P0, . . . , Pc−1 are sufficiently large, then Īk and J̄k
are Lm∞,ω-equivalent.

Proof To prove this, we need only make the following changes in the proof
of the Equivalence Theorem for naked sets.

First, a configuration should specify not only how the ranges of molecules
overlap but also the colors of the atoms in the molecules. Thus, the con-
figuration C(σ̄) of a finite sequence σ̄ = (σ0, . . . , σl−1) of molecules should
be defined as a pair (C=(σ̄), C∗(σ̄)) where C=(σ̄) is the equivalence relation
on l × k that we previously called the configuration and where C∗(σ̄) is the
function l× k −→ c sending each pair (i, p) to the unique r with σi(p) ∈ Pr.
An abstract l-ary configuration is a pair E whose first component E= is what
we previously called an abstract l-ary configuration and whose second com-
ponent E∗ is a function from l×k into c that is constant on every equivalence
class of E=.

Next, we check that Lemma 37 still holds with this new notion of con-
figuration. Two things must be added to the earlier proof of the lemma:
τ ′0 and σ0 agree as to colors, and τ ′0 can be extended to τ0 so as to main-
tain agreement with σ0. The latter is clear because the colors Pr in our
input structures are large enough. As for the former, we must prove that,
if i ≥ 1 and (0, p)Q=(i, q) then τi(q) has the same color as σ0(p). But from
(0, p)Q=(i, q) we get σ0(p) = σi(q), and this element has the same color as
τi(q) because C(σ1, . . . , σl)∗ = C(τ1, . . . , τl)∗.

In the statement of Lemma 38, “permutation” must be changed to “au-
tomorphism”. The proof of that lemma is unchanged except that the com-
putation verifying that C(π−1ρ, σ) = C(ρ, πσ) now verifies only that the C=

components of the configurations agree. To get agreement of the C∗ compo-
nents, we use the fact that π is an automorphism and thus preserves colors.

The only other change in the earlier proof occurs in Lemma 40, where
the difficult direction involved constructing a certain permutation π. In the

56

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

colored situation, we must make sure that π is an automorphism. For this
purpose, we first verify that the π0 defined in the earlier proof preserves
colors. For atoms a with π0(a) = a, this is trivial, so we consider an atom
a for which a = τy(p) and π0(a) = ρ(p). Because C(τy, σ) = C(ρ, σ), in
particular the C∗ components agree. So τy(a) has the same color as ρ(p).
But these atoms are a and π0(a), so π0 preserves the color of a. Finally,
when extending the map π0 to an automorphism π, we must choose the
extension so as to preserve colors, but this is trivially possible. 2

10 Negative Results

10.1 Parity

Recall that a naked set is an input structure of the empty vocabulary.

Theorem 43 (Parity Theorem) Parity is not in C̃PTime. Moreover,
suppose that K1, K2 are disjoint infinite classes of naked sets, each containing
sets of infinitely many cardinalities; then (K1, K2) is not C̃PTime.

Proof Let Π̄ be any PTime ASM program with empty input vocabulary.
We show that there are I1 ∈ K1 and I2 ∈ K2 such that Π̄ does not distinguish
between I1 and I2. By the Support Theorem in Section 8, there is a positive
integer k such that, in every run of Π̄, every active set has a support of size
≤ k. Fix such a k. Since activeness is hereditary by definition, it follows that
every active set is k-symmetric.

Let Active(I) be as in Section 6. By the First Fixed-Point Theorem in
Section 6, there exists an FO+LFP sentence ϕ that asserts that Π̄ accepts
I. The sentence ϕ asserts that there exists i such that Df (i, true) holds in
Active(I) where f is Output and also when f is Halt. Then Π̄ accepts I if
and only if ϕ is true in some or equivalently in every transitive substructure
of HF (I) containing all the active elements. In particular, Π̄ accepts I if
and only if Īk satisfies ϕ. By Proposition 2 in Section 2, there is m such that
ϕ is expressible in Lm∞,ω. By the Equivalence Theorem in Section 9, ϕ does
not distinguish between any sufficiently large input structures I1, I2. 2

57

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

10.2 Bipartite Matching is not in Choiceless PTime

Bipartite Matching is the following decision problem.

Instance: A bipartite undirected graph G = (V,E) with the two parts (of
boys and girls respectively) of the same size.

Question: Does there exists a perfect matching for G?

Recall that a perfect matching is a set F of edges such that every vertex
is incident to exactly one edge in F . A partial matching is an edge set F
such that every vertex is incident to at most one edge in F . The standard
perfect-matching algorithm starts with the empty partial matching F and
then enlarges F in a number of iterations. During each iteration, one con-
structs an auxiliary set D of directed edges, then seeks a D-path P from an
unmatched boy to an unmatched girl, and then modifies F by means of P .

We use variables b, g to vary over boys and girls respectively. If X is a
set of edges, let

Boys-to-girls(X) = {(b, g) : {b, g} ∈ X}
Girls-to-boys(X) = {(g, b) : {b, g} ∈ X}

And if X is a set of ordered pairs of the form (b, g) or (g, b), let

Unordered(X) = {{b, g} : (b, g) ∈ X ∨ (g, b) ∈ X}.

In Table 10.2, we give a self-explanatory program in the ASM language
with the the choice construct for the perfect matching algorithm. It is cus-
tomary to omit the keywords do-in-parallel/enddo. For readability, we
take some little additional liberties with the ASM syntax.

The relation REACHABLE and the function PATH in the last transition
rule are external. In other words, we take for granted algorithms that, given a
boy b, a girl g and set D of directed edges over V , check whether there exists
a D-path from b to g and if yes then construct such a path. For simplicity,
we identify a path with the set of its edges.

58

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

if Mode = Initial then

F := ∅, Mode := Examine

endif

if Mode = Examine then

if there is an unmatched boy then

Mode := Build-Digraph

else Output := true, Mode := Final

endif

if Mode = Build-Digraph then

D := Girls-to-boys(F) ∪ Boys-to-girls(E-F)

Mode := Build-Path

endif

if Mode = Build-Path then

choose an unmatched boy b

if (∃ unmatched girl g) REACHABLED(b,g) then

choose an unmatched girl g with REACHABLE(D,b,g)

P := PATHD(b,g), Mode := Modify-Matching

endchoose

else Output := false, Mode := Final

endchoose

endif

if Mode = Modify-Matching then

F := (F - Unordered(P)) ∪ (Unordered(P) - F)

Mode := Examine

endif

Table 1: The perfect matching algorithm

59

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

For the benefit of those unfamiliar with the algorithm, let us explain one
iteration of the algorithm in the case when the given bipartite graph has
a perfect matching M . Suppose that F is a current partial matching, and
there are some F -unmatched boys. Abusing notation, let M(b) be the girl
M -matched to b and let F (g) be the boy F -matched to g. Let D be as in the
Build-Digraph rule. For any F -ummatched boy b0, there exists a D-path P
from b0 to some F -unmatched girl. Indeed, construct

g1 = M(b0), b1 = F (g1)

g2 = M(b1), b2 = F (g2)

. . .

gk = M(bk−1), bk = F (gk)

gk+1 = M(bk)

until you encounter an F -unmatched girl gk+1. It is easy to see that, if
X = Unordered(P), then (F −X)∪ (X −F) is a partial matching involving
one more boy than F did.

Theorem 44 (Bipartite Matching Theorem)
Bipartite Matching is not in C̃PTime.

Proof Given an even integer n = 2p > 2, we construct two bipartite graphs
G0 and G1 on a set

Vn = {b0, . . . , bn−1} ∪ {g0, . . . , gn−1}

of n boys and n girls. In G0, (1) the first p boys and the first p girls form
a complete bipartite graph, (2) the last p boys and the last p girls form a
complete bipartite graph, and (3) there are no other edges. Clearly, G0 has
a perfect matching. In G1, (1) the first p+ 1 boys and the first p girls form a
complete bipartite graph, (2) the last p− 1 boys and the last p girls form a
complete bipartite graph, and (3) there are no other edges. Clearly, G1 has
no perfect matching.

Notice that the two graphs are essentially 4-colored sets; “adjacency”
is definable from the colors. The rest of the proof is similar to the proof

60

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

of the Parity Theorem, except that, instead of the Support Theorem and
Equivalence Theorem, we use Corollary 34 and Corollary 42 respectively.
These corollaries apply because the colored sets used here are (once n is
large enough) ε-level for any ε < 1/4. 2

In the rest of this section, we consider a modified computation model,
designed to overcome the non-computability of Parity in C̃PTime in the sim-
plest natural way, namely by making the system “aware” of the cardinality
of its input.

Enrich the computation model with a static nullary function InputSize.
In the definition of initial states with n atoms require that InputSize is the
von Neumann ordinal for n. That changes the notion of C̃PTime; indeed,
there is an obvious PTime ASM program with InputSize that accepts all
naked sets of odd cardinality and rejects all naked sets of even cardinality.
Let us call the new complexity class C̃PTime+.

In the rest of this section, we show that:

• for input structures with just one unary relation U , the parity of |U |
cannot be computed in C̃PTime+, and

• Bipartite Matching is outside C̃PTime+.

For this purpose, we first observe that Corollary 34, the Support The-
orem for colored structures, remains true when InputSize is allowed, as a
static nullary function, in programs. Indeed since the value of InputSize is
a von Neumann ordinal, it involves no atoms and is therefore fixed by all
permutations of the atoms. It follows that, when any program Π is run with
a colored set I as the input structure, the set A of active elements is invari-
ant under all automorphisms of I. With this observation, the proof of the
Support Theorem for colored structures goes through as before.

Recall from Section 9 that, for any colored set I and any positive integer
k, Īk denotes the set of k-symmetric elements of HF(I) as well as the corre-
sponding structure with ∈, ∅, and the colors. For our present purposes, we
must consider the expansion (Īk, |I|) of the structure Īk where the cardinal-
ity |I| of the input set is named by the nullary symbol InputSize. We show
next that the only effect of this extra constant on the equivalence theorem

61

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

is to restrict the result (as one might expect) to input structures of equal
cardinality.

Theorem 45 Fix positive integers c, k, and m. If I and J are c-colored
sets of the same cardinality, and if all the colors P0, . . . , Pc−1 are sufficiently
large in both of them, then (Īk, |I|) and (J̄k, |J |) are Lm∞,ω-equivalent.

Proof Observe first that, for each natural number n, there is a form ϕn such
that ϕn ∗ σ = n for every molecule σ. Such ϕn can be defined inductively by

ϕn = {(ϕr, E) | r < n and E is a binary configuration}.

The verification that ϕn ∗ σ = n is a trivial induction on n.

Now suppose I and J are as in the hypothesis of the theorem. The
m-pebble game for the structures (Īk, |I|) and (J̄k, |J |) is the same as the
(m + 1)-pebble game for Īk and J̄k with one pebble located permanently at
the natural number |I| = |J | = n in both structures. Since this number is
the denotation of the same form ϕn in both structures, Duplicator can still
use the winning strategy described in Section 9: match the forms and the
configurations of molecules. 2

Let Subset Parity be the following decision problem.

Instance: A structure (I, U) where U is a unary relation on I (i.e., U ⊆ I).

Question: Is |U | odd?

Corollary 46 Subset Parity is not in C̃PTime+.

Proof An instance of Subset Parity can be regarded as a 2-colored set,
the colors being U and its complement. Fix some ε with 0 < ε < 1/2,
say ε = 1/4, and consider those instances of Subset Parity that are ε-level,
as defined in our discussion of colored sets at the end of Section 8. By the
results there, along with Proposition 2, Theorem 4, and Corollary 3, if Subset
Parity were in C̃PTime+ then there would be positive integers m and k such
that, whenever (I, U) is a positive instance and (J, V) a negative instance of

62

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

Subset Parity, both instances being ε-level, then Duplicator has no winning
strategy in the m-pebble game for (Īk, |I|) and (J̄k, |J |) (where I abbreviates
(I, U) and similarly for J).

On the other hand, by Theorem 45, Duplicator has a winning strategy
provided |I| = |J | and all of |U |, |V |, |I − U |, and |J − V | are large enough.
This situation and ε-levelness are clearly compatible with |U | being odd and
|V | even, so we have a contradiction. 2

Corollary 47 Bipartite Matching is not in C̃PTime+.

Proof We can use exactly the same proof as for Theorem 44, because the
two structures used in that proof had the same cardinality. 2

References

Abiteboul, Papadimitriou and Vianu 1994 Serge Abiteboul, Christot
H. Papadimitriou, and Victor Vianu, “The power of reflective relational
machines”, 9th IEEE Symposium on Logic in Cmoputer Science, 1994,
230–240.

Abiteboul, Vardi and Vianu 1997 Serge Abiteboul, Moshe Y. Vardi and
Victor Vianu, “Fixpoint Logics, Relational Machines, and Computa-
tional Complexity”, Journal of ACM, 44 (1997), 30–56.

Abiteboul and Vianu 1991 Serge Abiteboul and Victor Vianu, “Generic
Computation and its Complexity”, ACM Symposium on Theory of
Computing, 1991, 209–219.

Barwise 1975 Jon Barwise, “Admissible Sets and Structures”, Springer
1975.

Blass and Gurevich 1997 Andreas Blass and Yuri Gurevich, “The Linear
Time Hierarchy Theorem for RAMs and Abstract State Machines”,
Journal of Universal Computer Science (Springer), Vol. 3, No. 4 (1997),
247–278.

63

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

Chandra and Harel 1982 Ashok Chandra and David Harel, “Structure
and Complexity of Relational Queries”, J. Comput. and System Sci-
ences 25 (1982), 99–128.

Dahlhaus and Makowsky 1992 Elias Dahlhaus and Johann A.
Makowsky, “Query languages for hierarchic databases”, Informa-
tion and Computation, 101 (1992), 1-32.

Ebbinghaus 1985 Heinz Dieter Ebbinghaus, “Extended Logics: The Gen-
eral Framework”, “Model-Theoretical Logics” (ed. J. Barwise and S.
Feferman), Springer-Verlag, 1985, 25–76.

Ebbinghaus and Flum 1995 Heinz-Dieter Ebbinghaus and Jörg Flum,
“Finite Model Theory”, Springer 1995.

Fagin 1993 Ron Fagin, “Finite Model Theory — A Personal Perspective”,
Theoretical Computer Science 116 (1993), 3–31.

Gurevich 1988 Yuri Gurevich, “Logic and the Challenge of Computer Sci-
ence”, In “Current Trends in Theoretical Computer Science” (Ed. E.
Börger), Computer Science Press, 1988, 1–57.

Gurevich 1995 Yuri Gurevich, “Evolving Algebra 1993: Lipari Guide”,
in “Specification and Validation Methods”, Ed. E. Boerger, Oxford
University Press, 1995, 9–36.

Gurevich 1997 Yuri Gurevich, “May 1997 Draft of the ASM Guide”, Tech.
Report, EECS Dept, University of Michigan, May 1997.

Glavan and Rosenzweig 1993 Paola Glavan and Dean Rosenzweig,
“Communicating Evolving Algebras”, in “Computer Science Logic”,
eds. E. Börger et al., Lecture Notes in Computer Science 702, Springer,
1993, 182–215.

Immerman 1989 Neil Immerman, “Descriptive and Computational Com-
plexity”, Proc. of Symposia in Applied Math. 38 (1989), 75–91.

Kolaitis and Vardi 1992 Ph. G. Kolaitis and M. Y. Vardi, “Infinitary
Logic and 0–1 Laws”, Information and Computation 98 (1992), 258–
294.

64

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

Leivant 1989 Daniel Leivant, “Descriptive Characterizations of Compu-
tational Complexity”, Journal of Computer and System Sciences 39
(1989), 51–83.

Moschovakis 1974 Y. N. Moschovakis, “Elementary Induction on Abstract
Structures” North-Holland, 1974.

Otto 1997 Martin Otto, “The logic of explicitly presentation-invariant cir-
cuits”, Computer Science Logic (Utrecht, 1996), Springer Lecture Notes
in Comput. Sci., 1258 (1997) 369–384.

Sazonov 1997 Vladimir Sazonov, “On bounded set theory”, in “Logic and
Scientific Methods”, ed. Dalla Chiara et al., Kluwer, 1997.

Shelah 1997 Saharon Shelah, Manuscript 534.

65

Paper Sh:533, version 2000-10-27 10. See https://shelah.logic.at/papers/533/ for possible updates.

	Introduction
	Preliminaries
	Global Relations
	Least Fixed Point Logic FO+LFP
	Finite Variable Infinitary Logic
	Set Theory

	PTime and PTime Logics
	The Computation Model
	Vocabularies
	States
	Input Structures
	Terms
	Syntax of Rules
	Semantics of Rules
	Programs
	The Counting Function

	Choiceless PTime
	The Definition of Choiceless PTime
	Upper Bounds for CPTime
	A Lower Bound for CPTime
	The Robustness of CPTime

	Two Fixed-Point Theorems
	Definable Set-Theoretic Functions
	First-Order Semantics
	Time-Explicit Programs
	Fixed-Point Definability

	On the Extent of CPTime
	The Support Theorem
	The Equivalence Theorem
	Matter
	Forms
	The In and Eq Relations
	The Winning Strategy
	A Generalization

	Negative Results
	Parity
	Bipartite Matching is not in Choiceless PTime

