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Abstract. The Kalikow problem for a pair (λ, κ) of cardinal numbers,
λ > κ (in particular κ = 2) is whether we can map the family of ω–
sequences from λ to the family of ω–sequences from κ in a very contin-
uous manner. Namely, we demand that for η, ν ∈ ωλ we have: η, ν are
almost equal if and only if their images are.

We show consistency of the negative answer, e.g., for ℵω but we prove
it for smaller cardinals. We indicate a close connection with the free
subset property and its variants.

0. Introduction

In the present paper we are interested in the following property of pairs
of cardinal numbers:

Definition 0.1. Let λ, κ be cardinals. We say that the pair (λ, κ) has the
Kalikow property (and then we write KL(λ, κ)) if

there is a sequence 〈Fn : n < ω〉 of functions such that

Fn : nλ −→ κ (for n < ω)

and if F : ωλ −→ ωκ is given by

(∀η ∈ ωλ)(∀n ∈ ω)
(
F (η)(n) = Fn(η�n)

)
then for every η, ν ∈ ωλ

(∀∞n)(η(n) = ν(n)) iff (∀∞n)(F (η)(n) = F (ν)(n)).

In particular we answer the following question of Kalikow:

Kalikow Problem 0.2. Is KL(2ℵ0 , 2) provable in ZFC?

The Kalikow property of pairs of cardinals was studied in [?]. Several
results are known already. Let us mention some of them. First, one can
easily notice that

KL(λ, κ) & λ′ ≤ λ & κ′ ≥ κ ⇒ KL(λ′, κ′).
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Also (“transitivity”)

KL(λ2, λ1) & KL(λ1, λ0) ⇒ KL(λ2, λ0)

and

KL(λ, κ) ⇒ λ ≤ κℵ0 .

Kalikow proved that CH implies KL(2ℵ0 , 2) (in fact that KL(ℵ1, 2) holds
true) and he conjectured that CH is equivalent to KL(2ℵ0 , 2).

The question 0.2 is formulated in [?, Problem 15.15, p.653].
We shall prove that KL(λ, 2) is closely tied with some variants of the free

subset property (both positively and negatively). First we present an answer
to the problem 0.2 proving the consistency of ¬KL(2ℵ0 , 2) in 1.1 (see 2.8
too). Later we discuss variants of the proof (concerning the cardinal and
the forcing). Then we deal with positive answer, in particular KL(ℵn, 2)
and we show that the negation of a relative of the free subset property for
λ implies KL(λ, 2).

We thank the participants of the Jerusalem Logic Seminar 1994/95 and
particularly Andrzej Ros lanowski for writing it up so nicely.

Notation: We will use Greek letters κ, λ, χ to denote (infinite) cardinals
and letters α, β, γ, ζ, ξ to denote ordinals. Sequences of ordinals will be
called ᾱ, β̄, ζ̄ with the usual convention that ᾱ = 〈αn : n < `g(ᾱ)〉 etc. Sets
of ordinals will be denoted by u, v, w (with possible indexes).

The quantifiers (∀∞n) and (∃∞n) are abbreviations for “for all but finitely
many n ∈ ω” and “for infinitely many n ∈ ω”, respectively.

1. The negative result

For a cardinal χ, the forcing notion Cχ for adding χ many Cohen reals

consists of finite functions p such that for some w ∈ [χ]<ω, n < ω

dom(p) = {(ζ, k) : ζ ∈ w & k < n} and rang(p) ⊆ 2

ordered by the inclusion.

Theorem 1.1. Assume λ→ (ω1 · ω)<ω2κ , 2κ < λ ≤ χ. Then

Cχ ¬KL(λ, κ) and hence Cχ ¬KL(2ℵ0 , 2).

Proof. Suppose that Cχ-names F
˜
n (for n ∈ ω) and a condition p ∈ Cχ are

such that

p Cχ “〈F
˜
n : n < ω〉 exemplifies KL(λ, κ)”.

For ᾱ ∈ nλ choose a maximal antichain 〈pnᾱ,` : ` < ω〉 of Cχ deciding the
values of F

˜
n(ᾱ). Thus we have a sequence 〈γnᾱ,` : ` < ω〉 ⊆ κ such that

pnᾱ,` Cχ F
˜
n(ᾱ) = γnᾱ,`.
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Let χ∗ be a sufficiently large regular cardinal. Take an elementary submodel
M of

(
H(χ∗),∈, <∗χ∗

)
such that

‖M‖ = χ, χ+ 1 ⊆M ,
〈pnᾱ,` : ` < ω, n ∈ ω, ᾱ ∈ nλ〉, 〈γnᾱ,` : ` < ω, n ∈ ω, ᾱ ∈ nλ〉 ∈
M .

By λ→ (ω1 ·ω)<ω2κ (see [?, Claim 1.3]), we find a set B ⊆ λ of indescernibles
in M over

κ ∪ {〈pnᾱ,` : ` < ω : n ∈ ω, ᾱ ∈ nλ〉, 〈γnᾱ,` : ` < ω : n ∈ ω, ᾱ ∈ nλ〉, χ, p}

and a system 〈Nu : u ∈ [B]<ω〉 of elementary submodels of M such that

(a) B is of the order type ω1 · ω and for u, v ∈ [B]<ω:
(b) κ+ 1 ⊆ Nu,
(c) χ, p, 〈pnᾱ,` : ` < ω, n < ω, ᾱ ∈ nλ〉, 〈γnᾱ,` : ` < ω, n < ω, ᾱ ∈ nλ〉 ∈

Nu,
(d) |Nu| = κ, Nu ∩B = u,
(e) Nu ∩Nv = Nu∩v,
(f) |u| = |v| ⇒ Nu

∼= Nv, and let πu,v : Nv −→ Nu be this (unique)
isomorphism,

(g) πv,v = idNv , πu,v(v) = u, πu0,u1 ◦ πu1,u2 = πu0,u2 ,
(h) if v′ ⊆ v, |v| = |u| and u′ = πu,v(v

′) then πu′,v′ ⊆ πu,v.

Note that if u ⊆ B is of the order type ω then we may define

Nu =
⋃
{Nv : v is a finite initial segment of u}.

Then the models Nu (for u ⊆ B of the order type ≤ ω) have the properties
(b)–(h) too.

Let 〈βζ : ζ < ω1 · ω〉 be the increasing enumeration of B. For a set
u ⊆ B of the order type ≤ ω let β̄u be the increasing enumeration of u
(so `g(β̄u) = |u|). Let u∗ = {βω1·n : n < ω}. For k ≤ ω and a sequence
ξ̄ = 〈ξm : m < k〉 ⊆ ω1 we define

u[ξ̄] = {βω1·m+ξm : m < k} ∪ {βω1·n : n ∈ ω \ k}.
Now, working in VCχ , we say that a sequence ξ̄

˜
is k–strange if

(1) ξ̄
˜

is a sequence of countable ordinals greater than 0, `g(ξ̄
˜

) = k

(2) (∀m < ω)(F
˜
m(β̄u[ξ̄

˜
]�m) = F

˜
m(β̄u

∗
�m)).

Claim 1.1.1. In VCχ:
if ξ̄

˜

k are k–strange sequences (for k < ω) such that (∀k < ω)(ξ̄
˜

k C ξ̄
˜

k+1)

then the sequence ξ̄
˜

def
=
⋃
k<ω

ξ̄
˜

k is ω–strange.

Proof of the claim. Should be clear (note that in this situation we have

β̄u[ξ̄
˜

]�m = β̄u[ξ̄
˜

m]�m). �
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Claim 1.1.2.

p Cχ “there are no ω–strange sequences”.

Proof of the claim. Assume not. Then we find a name ξ̄
˜

= 〈ξ
˜
m : m < ω〉

for an ω–sequence and a condition q ≥ p such that

q Cχ “(∀m < ω)(0 < ξ
˜
m < ω1 & F

˜
m(β̄u[ξ̄

˜
]�m) = F

˜
m(β̄u

∗
�m))”.

By the choice of p and F
˜
m we conclude that

q Cχ “(∀∞m)(β̄u[ξ̄
˜

](m) = β̄u
∗
(m))”

which contradicts the definition of β̄u[ξ̄
˜

], β̄u
∗

and the fact that

q Cχ “(∀m < ω)(0 < ξ
˜
m < ω1)”.

�

By 1.1.1, 1.1.2, any inductive attempt to construct (in VCχ) an ω–strange
sequence ξ̄

˜
has to fail. Consequently we find a condition p∗ ≥ p, an integer

k < ω and a sequence ξ̄ = 〈ξ` : ` < k〉 such that

p∗ Cχ “ξ̄ is k–strange but ¬(∃ξ < ω1)(ξ̄_〈ξ〉 is (k + 1)–strange)”.

Then in particular

(�) p∗ Cχ “(∀m < ω)(F
˜
m(β̄u[ξ̄]�m) = F

˜
m(β̄u

∗
�m))”.

[It may happen that k = 0, i.e., ξ̄ = 〈〉.]
For ξ < ω1 let uξ = u[ξ̄_〈ξ〉] and wξ = uξ∪(u∗\{ω1 ·k}). Thus w0 = u[ξ̄]∪

u∗ and all wξ have order type ω and πwξ1 ,wξ2 is the identity on Nwξ\{ω1·k+ξ2}.

Let q
def
= p∗�Nw0 and qξ = πwξ,w0(q) ∈ Nwξ (so q0 = q). As the isomorphism

πwξ,w0 is the identity on Nw0 ∩ Nwξ = Nw0∩wξ (and by the definition of
Cohen forcing), we have that the conditions q, qξ are compatible. Moreover,
as p∗ ≥ p and p ∈ N∅, we have that both q and qξ are stronger than p.

Now fix ξ0 ∈ (0, ω1) (e.g. ξ0 = 1) and look at the sequences β̄uξ0 and β̄u
∗
.

They are eventually equal and hence

p Cχ “(∀∞m)(F
˜
m(β̄uξ0�m) = F

˜
m(β̄u

∗
�m))”.

So we find m∗ < ω and a condition q′ξ0 ≥ qξ0 , q such that

(⊗ξ0,m
∗

q′ξ0
) q′ξ0 Cχ“(∀m ≥ m∗)(F

˜
m(β̄uξ0 �m) = F

˜
m(β̄u

∗
�m))”

and (as we can increase q′ξ0)

(⊕ξ0,m
∗

q′ξ0
) the condition q′ξ0 decides the values of F

˜
m(β̄uξ0 �m) and F

˜
m(β̄u

∗
�m)

for all m ≤ m∗.

Note that the condition (⊗ξ0,m
∗

q′ξ0
) means that
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there are NO m ≥ m∗, `0, `1 < ω with
γm
β̄
uξ0 �m,`0

6= γm
β̄u∗ �m,`1

and the three conditions q′ξ0 , p
m
β̄
uξ0 �m,`0

and pm
β̄u∗�m,`1

have a common upper bound in Cχ
(remember the choice of the pnᾱ,`’s and γnᾱ,`’s). Similarly, the condition

(⊕ξ0,m
∗

q′ξ0
) means

there are NO m ≤ m∗, `0, `1 < ω with
either γm

β̄
uξ0 �m,`0

6= γm
β̄
uξ0 �m,`1

and both q′ξ0 and pm
β̄
uξ0 �m,`0

, and

q′ξ0 and pm
β̄
uξ0 �m,`1

are compatible in Cχ
or γm

β̄u∗ �m,`0
6= γm

β̄u∗ �m,`1
and both q′ξ0 and pm

β̄u∗�m,`0
, and q′ξ0 and

pm
β̄u
∗ �m,`1

are compatible in Cχ.

Consequently the condition q∗ξ0
def
= q′ξ0�Nw0∪wξ0 has both properties (⊗ξ0,m

∗

q∗ξ0
)

and (⊕ξ0,m
∗

q∗ξ0
) (and it is stronger than both q and qξ0).

Now, for 0 < ξ < ω1 let

q∗ξ
def
= πw0∪wξ,w0∪wξ0 (q∗ξ0) ∈ Nw0∪wξ .

Then (for ξ ∈ (0, ω1)) the condition q∗ξ is stronger than

both q = πw0∪wξ,w0∪wξ0 (q) and qξ = πw0∪wξ,w0∪wξ0 (qξ0)

and it has the properties (⊗ξ,m
∗

q∗ξ
) and (⊕ξ,m

∗

q∗ξ
). Moreover for all ξ1, ξ2 the

conditions q∗ξ1 , q
∗
ξ2

are compatible. [Why? By the definition of Cohen forc-
ing, and πw0∪wξ2 ,w0∪wξ1 (q∗ξ1) = q∗ξ2 (chasing arrows) and πw0∪wξ2 ,w0∪wξ1 is the
identity on Nw0∪wξ2 ∩Nw0∪wξ1 = N(w0∪wξ2 )∩(w0∪wξ1 ) (see clauses (e), (f), (h)

above).]

Claim 1.1.3. For each ξ1, ξ2 ∈ (0, ω1) the condition q∗ξ1 ∪ q
∗
ξ2

forces in Cχ
that

(∀m < ω)(F
˜
m(β̄uξ1�m) = F

˜
m(β̄uξ2 �m)).

Proof of the claim. If m ≥ m∗ then, by (⊗ξ1,m
∗

q∗ξ1
) and (⊗ξ2,m

∗

q∗ξ2
) (passing

through F
˜

(β̄u
∗
�m)), we get

q∗ξ1 ∪ q
∗
ξ2
Cχ “F

˜
m(β̄uξ1 �m) = F

˜
m(β̄uξ2 �m)”.

If m < m∗ then we use (⊕ξ1,m
∗

q∗ξ1
) and (⊕ξ1,m

∗

q∗ξ2
) and the isomorphism: the

values assigned by q∗ξ1 , q
∗
ξ2

to F
˜
m(β̄uξ1�m) and F

˜
m(β̄uξ2�m) have to be equal

(remember κ ⊆ N∅, so the isomorphism is the identity on κ). �

Look at the conditions

qξ1,ξ2
def
= q∗ξ1�Nwξ1

∪ q∗ξ2�Nwξ2
∈ Nwξ1∪wξ2 .

Paper Sh:590, version 1999-11-12 10. See https://shelah.logic.at/papers/590/ for possible updates.



6 SAHARON SHELAH

It should be clear that for each ξ1, ξ2 ∈ (0, ω1)

qξ1,ξ2 Cχ “(∀m < ω)(F
˜
m(β̄uξ1�m) = F

˜
m(β̄uξ2�m))”.

Now choose ξ ∈ (0, ω1) so large that

dom(p∗) ∩ (Nwξ \Nw0) = ∅

(possible as dom(p∗) is finite, use (e)). Take any 0 < ξ1 < ξ2 < ω1 and put

q∗
def
= πw0∪wξ,wξ1∪wξ2 (qξ1,ξ2).

(Note: πw0,wξ1
⊆ πw0∪wξ,wξ1∪wξ2 and πwξ,wξ2 ⊆ πw0∪wξ,wξ1∪wξ2 .) By the iso-

morphism we get that

q∗ Cχ “(∀m < ω)(F
˜
m(β̄uξ�m) = F

˜
m(β̄u[ξ̄]�m))”.

Now look back:

q∗ξ1 ≥ qξ1 = πw0∪wξ1 ,w0∪wξ0 (qξ0) = πwξ1 ,wξ0 (qξ0) =
= πwξ1 ,wξ0 (πwξ0 ,w0(q)) = πwξ1 ,w0(q)

and hence

q∗ξ1�Nwξ1
≥ πwξ1 ,w0(q)

and thus

q∗�Nw0 ≥ πw0,wξ1
(q∗ξ1�Nwξ1

) ≥ q = p∗�Nw0 .

Consequently, by the choice of ξ, the conditions q∗ and p∗ are compatible
(remember the definition of qξ1,ξ2 and q∗). Now use (�) to conclude that

q∗ ∪ p∗ Cχ “(∀m < ω)(F
˜
m(β̄u

∗
�m) = F

˜
m(β̄u[ξ̄]�m) = F

˜
m(β̄uξ�m))”

which implies that

q∗ ∪ p∗ Cχ “ξ̄_〈ξ〉 is (k + 1)–strange”,

a contradiction. �

Remark 1.2. About the proof of 1.1:

(1) No harm is done by forgetting 0 and replacing it by ξ1, ξ2.
(2) A small modification of the proof shows that in VCχ :

If Fn : nλ −→ κ (n ∈ ω) are such that

(∀η, ν ∈ ωλ)[(∀∞n)(η(n) = ν(n)) ⇒ (∀∞n)(Fn(η�n) = Fn(ν�n))]

then there are infinite sets Xn ⊆ λ (for n < ω) such
that

(∀n < ω)(∀ν, η ∈
∏
`<n

X`)(Fn(ν) = Fn(η)).
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Say we shall haveXn = {γn,i : i < ω}. Starting we have γ∗0 , . . . , γ
∗
n, . . ..

In the proof at stage n we have determined γ`,i (`, i < n) and p ∈ G,
p ∈ N{γ`,i:`,i<ω}∪{γ∗n,γ∗n+1,...}. For n = 0, 1, 2 as before. For n + 1 > 2
first γ0,n, . . . , γn−1,n are easy by transitivity of equalities. Then find
γn,0, γn,1 as before then again duplicate.

(3) In the proof it is enough to use {βω·n+` : n < ω, ` < ω}. Hence,
by 1.2 of [?] it is enough to assume λ → (ω3)<ω2κ . This condition is
compatible with V = L.

(4) We can use only λ→ (ω2)<ω2κ .

Definition 1.3. (1) For a sequence λ̄ = 〈λn : n < ω〉 of cardinals we
define the property (~)λ̄:

(~)λ̄ for every model M of a countable language, with universe sup
n∈ω

λn

and Skolem functions (for simplicity) there is a sequence 〈Xn :
n < ω〉 such that

(a) Xn ∈ [λn]λn (actually Xn ∈ [λn]ω1 suffices)
(b) for every n < ω and ᾱ = 〈α` : ` ∈ [n + 1, ω)〉 ∈

∏
`≥n+1

X`,

letting (for ξ ∈ Xn)

M ξ
ᾱ = Sk(

⋃
`<n

X` ∪ {ξ} ∪ {α` : ` ∈ [n+ 1, ω)})

we have:
(
⊕

) the sequence 〈M ξ
ᾱ : ξ ∈ Xn〉 forms a ∆–system with

the heartNᾱ and its elements are pairwise isomorphic
over the heart Nᾱ.

(2) For a cardinal λ the condition (~)λ is:
(~)λ there exists a sequence λ̄ = 〈λn : n < ω〉 such that

∑
n<ω

λn = λ

and the condition (~)λ̄ holds true.

In [?] a condition (∗)λ, weaker than (~)λ was considered. Now, [?] con-
tinues [?] to get stronger indiscernibility. But by the same proof (using
ω-measurable) one can show the consistency of (~)ℵω + GCH.

Note that to carry out the proof of 1.1 we need even less then (~)λ: the⋃
`<n

X` (in (b) of 1.3) is much more then needed; it suffices to have β̄0 ∪ β̄1

where β̄0, β̄1 ∈
∏
`<n

X`.

Conclusion 1.4. It is consistent that

2ℵ0 = ℵω+1 and
∧
n<ω

¬KL(ℵω,ℵn) so ¬KL(2ℵ0 , 2).
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Remark 1.5. Koepke [?] continues [?] to get equiconsistency. His refinement
of [?] (for the upper bound) works below too.

2. The positive result

For an algebra M on λ and a set X ⊆ λ the closure of X under functions
of M is denoted by clM(X). Before proving our result (2.6) we remind the
reader of some definitions and propositions.

Proposition 2.1. For an algebra M on λ the following conditions are equiv-
alent

(F)0
M for each sequence 〈αn : n ∈ ω〉 ⊆ λ we have

(∀∞n)(αn ∈ clM({αk : n < k < ω})),
(F)1

M there is no sequence 〈An : n ∈ ω〉 ⊆ [λ]ℵ0 such that

(∀n ∈ ω)(clM(An+1)  clM(An)),

(F)2
M (∀A ∈ [λ]ℵ0)(∃B ∈ [A]ℵ0)(∀C ∈ [B]ℵ0)(clM(B) = clM(C)).

Definition 2.2. We say that a cardinal λ has the (F)–property for κ (and
then we write PrF(λ, κ)) if there is an algebra M on λ with vocabulary of
cardinality ≤ κ satisfying one (equivalently: all) of the conditions (F)iM
(i < 3) of 2.1. If κ = ℵ0 we may omit it.

Remember

Proposition 2.3. If V0 ⊆ V1 are universes of set theory, V1 |= ¬PrF(λ)
then V0 |= ¬PrF(λ).

Proof. By absoluteness of the existence of an ω–branch to a tree. �

Remark 2.4. The property ¬PrF(λ) is a kind of a large cardinal property.
It was clarified in L (remember that it is inherited from V to L) by Silver
[?] to be equiconsistent with “there is a beautiful cardinal” (terminology of
2.3 of [?]), another partition property inherited by L.

Proposition 2.5. For each n ∈ ω, PrF(ℵn).

Proof. This was done in [?, Chapter XIII], see [?, Chapter VII] too, and
probably earlier by Silver. However, for the sake of completeness we will
give the proof.

First note that clearly PrF(ℵ0) and thus we have to deal with the case
when n > 0. Let f, g : ℵn −→ ℵn be two functions such that

if m < n, α ∈ [ℵm,ℵm+1)

then f(α, ·)�α : α
1−1−→ ℵm, g(α, ·)�ℵm : ℵm

1−1−→ α are func-
tions inverse each to the other.
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Let M be the following algebra on ℵn:

M = (ℵn, f, g,m)m∈ω.

We want to check the condition (F)1
M :

assume that a sequence 〈Ak : k < ω〉 ⊆ [ℵn]ℵ0 is such that for each k < ω

clM(Ak+1)  clM(Ak).

For each m < n, the sequence 〈sup(clM(Ak) ∩ ℵm+1) : k < ω〉 is non-
increasing and therefore it is eventually constant. Consequently we find k∗

such that

(∀m < n)(sup(clM(Ak∗+1) ∩ ℵm+1) = sup(clM(Ak∗) ∩ ℵm+1)).

By the choice of 〈Ak : k < ω〉 we have clM(Ak∗+1)  clM(Ak∗). Let

α0
def
= min(clM(Ak∗) \ clM(Ak∗+1)).

As the model M contains individual constants m (for m ∈ ω) we know that
ℵ0 ⊆ clM(∅) and hence ℵ0 ≤ α0. Let m < n be such that ℵm ≤ α0 < ℵm+1.
By the choice of k∗ we find β ∈ clM(Ak∗+1)∩ ℵm+1 such that α0 ≤ β. Then
necessarily α0 < β. Look at f(β, α0): we know that α0, β ∈ clM(Ak∗) and
therefore f(β, α0) ∈ clM(Ak∗) ∩ ℵm and f(β, α0) < α0. The minimality of
α0 implies that f(β, α0) ∈ clM(Ak∗+1) and hence

α0 = g(β, f(β, α0)) ∈ clM(Ak∗+1),

a contradiction. �

Explanation: Better think of the proof from the end. Let ᾱ = 〈αn : n <
ω〉 ∈ ωλ. So for some n(∗), n(∗) ≤ n < ω ⇒ αn ∈ clM(α` : ` > n). So for
some mn > n, {αn(∗), . . . , αn−1} ⊆ clM(αn, . . . , αm−1) and

(∀` < n(∗))(α` ∈ clM(α` : ` > n(∗)) ⇒ α` ∈ clM(α` : ` ∈ [n,mn))).

Let W ∗ = {` < n(∗) : α` ∈ clM(αn : n ≥ n(∗)). It is natural to aim at:

(∗) for n large enough (say n > mn(∗)), Fn(〈α` : ` < n〉) depends just
on {α` : ` ∈ [n(∗), n) or ` ∈ w} and 〈Fm(ᾱ�m) : m ≥ n〉 codes
ᾱ�(w ∪ [n(∗), ω)).

Of course, we are a given n and we do not know how to compute the real
n(∗), but we can approximate. Then we look at a late enough end segment
where we compute down.

Theorem 2.6. Assume that λ ≤ 2ℵ0 is such that PrF(λ) holds.
Then KL(λ, ω) (and hence KL(λ, 2)).

Proof. We have to construct functions Fn : nλ −→ ω witnessing KL(λ, ω).
For this we will introduce functions k and l such that for ᾱ ∈ nλ the
value of k(ᾱ) will say which initial segment of ᾱ will be irrelevant for Fn(ᾱ)
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and l(ᾱ) will be such that (under certain circumstances) elements αi (for
k(ᾱ) ≤ i < l(ᾱ)) will be encoded by 〈αj : j ∈ [l(ᾱ), n)〉.

Fix a sequence 〈ηα : α < λ〉 ⊆ ω2 with no repetitions.
Let M be an algebra on λ such that (F)0

M holds true. We may assume
that there are no individual constants in M (so clM(∅) = ∅).
Let 〈τn` (x0, . . . , xn−1) : ` < ω〉 list all n-place terms of the language of the

algebra M (and τ 1
0 (x) is x). For ᾱ ∈ ω≥λ (with αj the j-th element in ᾱ)

let

u(ᾱ) = {` < `g(ᾱ) : α` /∈ clM
(
ᾱ�(`, `g(ᾱ))

)
} ∪ {0}

and for ` /∈ u(ᾱ), ` < `g(ᾱ) let

f`(ᾱ) = min{j : α` ∈ clM(ᾱ�(`, j))}
g`(ᾱ) = min{i : α` = τ

f`(ᾱ)−`−1
i (ᾱ�(`, f`(ᾱ)))}.

For ᾱ ∈ nλ (1 < n < ω) put

k1(ᾱ) = min
(
(u(ᾱ�(n− 1)) \ u(ᾱ)) ∪ {n− 1}

)
k0(ᾱ) = max

(
u(ᾱ) ∩ k1(ᾱ)

)
.

Note that if (n > 1 and) ᾱ ∈ nλ then n − 1 ∈ u(ᾱ) (as clM(∅) = ∅) and
k1(ᾱ) > 0 (as always 0 ∈ u(β̄)) and k0(ᾱ) is well defined (as 0 ∈ u(ᾱ)∩k1(ᾱ))
and k0(ᾱ) < k1(ᾱ) < n. Moreover, for all ` ∈ (k0(ᾱ), k1(ᾱ)) we have
α` /∈ u(ᾱ�(n − 1)) and thus α` ∈ clM(ᾱ�(`, n − 1)). Now, for ᾱ ∈ ω>λ,
`g(ᾱ) > 1 we define

l(ᾱ) = max{j ≤ k1(ᾱ) : j>k0(ᾱ) ⇒ (∀i∈(k0(ᾱ), j))(gi(ᾱ) ≤ `g(ᾱ))}
m(ᾱ) = max{j ≤ l(ᾱ) : j>max{1, k0(ᾱ)} ⇒ k0(ᾱ�j) = k0(ᾱ)}
k(ᾱ) = l(ᾱ�m(ᾱ)) (if m(ᾱ) ≤ 1 then put k(ᾱ) = −1).

Clearly k(ᾱ) < m(ᾱ) ≤ l(ᾱ) ≤ k1(ᾱ) < `g(ᾱ).

Claim 2.6.1. For each ᾱ ∈ ωλ, the set u(ᾱ) is finite and:

(1) The sequence 〈k1(ᾱ�n) : n < ω〉 diverges to ∞.
(2) The sequence 〈k0(ᾱ�n) : n < ω & k0(ᾱ) 6= maxu(ᾱ)〉, if infinite,

diverges to ∞. There are infinitely many n < ω with k0(ᾱ�n) =
maxu(ᾱ).

(3) The sequence 〈l(ᾱ�n) : n < ω〉 diverges to ∞.
(4) The sequences 〈m(ᾱ�n) : n < ω〉 and 〈k(ᾱ�n) : n < ω〉 diverge to
∞.

Proof of the claim. Let ᾱ = 〈αn : n < ω〉 ∈ ωλ. By the property (F)0
M we

find n∗ < ω such that u(ᾱ) ⊆ n∗. Fix n0 > n∗ and define

n1 = max{fn(ᾱ) + gn(ᾱ) + 2 : n ∈ (n0 + 1) \ u(ᾱ)}

Paper Sh:590, version 1999-11-12 10. See https://shelah.logic.at/papers/590/ for possible updates.



ON A PROBLEM OF STEVE KALIKOW 11

(so n1 ≥ fn0(ᾱ) + 2 > n0 + 3 and for all ` ∈ (n0 + 1) \ u(ᾱ) we have:

α` ∈ clM(α`+1, . . . , αn1−1) is witnessed by τ
f`(ᾱ)−`−1
g`(ᾱ) (α`+1, . . . , αf`(ᾱ)−1) with

f`(ᾱ), g`(ᾱ) < n1 − 1).

1) Note that u(ᾱ�n) ∩ (n0 + 1) = u(ᾱ) for all n ≥ n1 − 1 and hence for
n ≥ n1

u(ᾱ�n) ∩ (n0 + 1) = u(ᾱ�(n− 1)) ∩ (n0 + 1).

Consequently for all n ≥ n1 we have that k1(ᾱ�n) > n0. As we could have
chosen n0 arbitrarily large we may conclude that lim

n→∞
k1(ᾱ�n) =∞.

2) Note that for all n ≥ n1

either k0(ᾱ�n) = max(u(ᾱ)) or k0(ᾱ�n) > n0.

Hence, by the arbitrarity of n0, we get the first part of 2).
Let `∗ = min(u(ᾱ�n1) \ u(ᾱ)) (note that n1 − 1 ∈ u(ᾱ�n1) \ u(ᾱ)). Clearly
`∗ > n0 and α`∗ /∈ u(ᾱ). Consider n = f`∗(ᾱ) (so `∗ ≤ n − 2, n1 ≤ n − 1).
Then `∗ ∈ u(ᾱ�(n− 1)) \ u(ᾱ�n). As

`∗ ∩ u(ᾱ�n1) = `∗ ∩ u(ᾱ�n− 1) = u(ᾱ)

(remember the choice of `∗) we conclude that

`∗ = k1(ᾱ�n) and k0(ᾱ�n) = maxu(ᾱ).

Now, since n0 was arbitrarily large, we get that for infinitely many n,
k0(ᾱ�n) = maxu(ᾱ).

3) Suppose that n ≥ n1. Then we know that k1(ᾱ�n) > n0 and either
k0(ᾱ�n) = maxu(ᾱ) or k0(ᾱ�n) > n0 (see above). If the first possibility
takes place then, as n ≥ n1, we may use j = n0 + 1 to witness that l(ᾱ�n) >
n0 (remember the choice of n1). If k0(ᾱ�n) > n0 then clearly l(ᾱ�n) > n0.
As n0 could be arbitrarily large we are done.

4) Suppose we are given m0 < ω. Take m1 > m0 such that for all
n ≥ m1

either k0(ᾱ�n) = maxu(ᾱ) or k0(ᾱ�n) > m0

(possible by 2)) and then choose m2 > m1 such that k0(ᾱ�m2) = maxu(ᾱ)
(by 2)). Due to 3) we find m3 > m2 such that for all n ≥ m3, l(ᾱ�n) > m2.
Now suppose that n ≥ m3. If k0(ᾱ�n) = maxu(ᾱ) then, as l(ᾱ�n) > m2, we
get m(ᾱ�n) ≥ m2 > m0. Otherwise k0(ᾱ�n) > m0 (as n > m1) and hence
m(ᾱ�n) > m0. This shows that lim

n→∞
m(ᾱ�n) = ∞. Now, immediately by

the definition of k and 3) above we conclude that lim
n→∞

k(ᾱ�n) =∞. �

Claim 2.6.2. If ᾱ1, ᾱ2 ∈ ωλ are such that (∀∞n)(α1
n = α2

n) then

(∀∞n)

(
l(ᾱ1�n) = l(ᾱ2�n) & m(ᾱ1�n) = m(ᾱ2�n) & k(ᾱ1�n) = k(ᾱ2�n)

)
.
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Proof of the claim. Let n0 be greater than max(u(ᾱ1)∪u(ᾱ2)) and such that

ᾱ1�[n0, ω) = ᾱ2�[n0, ω).

For k = 1, 2, 3 define nk by

nk+1 = max{fn(ᾱi) + gn(ᾱi) + 2 : n ∈ (nk + 1) \ u(ᾱi), i < 2}.
As in the proof of 2.6.1 we have that then for i = 1, 2 and j < 3:

(⊗1) (∀n ≥ nj+1)(k0(ᾱi�n) = maxu(ᾱi) or k0(ᾱi�n) > nj)
(⊗2) (∀n ≥ nj+1)(k1(ᾱi�n) > nj & l(ᾱi�n) > nj)
(⊗3) (∃n′ ∈ (n1, n2))(k0(ᾱ1�n′) = maxu(ᾱ1) & k0(ᾱ2�n′) = maxu(ᾱ2))

(for (⊗3) repeat arguments from 2.6.1.(2) and use the fact that ᾱ1�[n0, ω) =
ᾱ2�[n0, ω)). Clearly

(⊗4) (∀n > n0)(u(ᾱ1�n) \ n0 = u(ᾱ2�n) \ n0).

Hence, applying (⊗1), (⊗2), we conclude that:

(⊗5) (∀n ≥ n1)(k1(ᾱ1�n) = k1(ᾱ2�n)) and
(⊗6) for all n ≥ n1:

either k0(ᾱ1�n) = maxu(ᾱ1) and k0(ᾱ2�n) = maxu(ᾱ2)
or k0(ᾱ1�n) = k0(ᾱ2�n).

Since

(∀n ≥ n0)(fn(ᾱ1) = fn(ᾱ2) & gn(ᾱ1) = gn(ᾱ2))

and by (⊗2) + (⊗5), we get (compare the proof of 2.6.1):

(∀n ≥ n1)(l(ᾱ1�n) = l(ᾱ2�n))

and by (⊗2) + (⊗3) + (⊗6)

(∀n ≥ n3)(m(ᾱ1�n) = m(ᾱ2�n) ≥ n1).

Moreover, now we easily get that

(∀n ≥ n3)(k(ᾱ1�n) = k(ᾱ2�n)).

�

For integers n0 ≤ n1 ≤ n2 we define functions F 0
n0,n1,n2

: n2λ −→ H(ℵ0) by

letting F 0
n0,n1,n2

(α0, . . . , αn2−1) (for 〈α0, . . . , αn2−1〉 ∈ n2λ) be the sequence
consisting of:

(a) 〈n0, n1, n2〉,
(b) the set Tn1,n2 of all terms τn` such that n ≤ n2 − n1 and

either ` ≤ n2 (we will call it the simple case)
or τn` is a composition of depth at most n2 of such
terms,

(c) 〈ηα�n2, n, `, 〈i0, . . . , in−1〉〉 for n ≤ n2−n1, i0, . . . , in−1 ∈ [n1, n2) and
` such that τn` ∈ Tn1,n2 and α = τn` (αi0 , . . . , αin−1),
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(d) 〈n, `, 〈i0, . . . , in−1〉, i〉 for n ≤ n2 − n1, i0, . . . , in−1 ∈ [n1, n2), i ∈
[n0, n1) and ` such that τn` ∈ Tn1,n2 and αi = τn` (αi0 , . . . , αin−1),

(e) equalities among appropriate terms, i.e. all tuples

〈n′, `′, n′′, `′′, 〈i′0, . . . , i′n′−1〉, 〈i′′0, . . . , i′′n′′−1〉〉
such that n1 ≤ i′0 < . . . < i′n′−1 < n2, n1 ≤ i′′0 < . . . < i′′n′′−1 < n2,

n′, n′′ ≤ n2 − n1, `′, `′′ are such that τn
′

`′ , τ
n′′

`′′ ∈ Tn1,n2 and

τn
′

`′ (αi′0 , . . . , αi′n′−1
) = τn

′′

`′′ (αi′′0 , . . . , αi′′n′′−1
).

(Note that the value of F 0
n0,n1,n2

(ᾱ) does not depend on ᾱ�n0.)

Finally we define functions Fn : nλ −→ H(ℵ0) (for 1 < n < ω) by:

if ᾱ ∈ nλ
then Fn(ᾱ) = F 0

k(ᾱ),l(ᾱ),n(ᾱ).

As H(ℵ0) is countable we may think that these functions are into ω. We
are going to show that they witness KL(λ, ω).

Claim 2.6.3. If ᾱ1, ᾱ2 ∈ ωλ are such that (∀∞n)(α1
n = α2

n)
then (∀∞n)(Fn(ᾱ1�n) = Fn(ᾱ2�n)).

Proof of the claim. Take m0 < ω such that for all n ∈ [m0, ω) we have

α1
n = α2

n, l(ᾱ1�n) = l(ᾱ2�n), and k(ᾱ1�n) = k(ᾱ2�n)

(possible by 2.6.2). Let m1 > m0 be such that for all n ≥ m1:

k(ᾱ1�n) = k(ᾱ2�n) > m0

(use 2.6.1). Then, for n ≥ m1, i = 1, 2 we have

Fn(ᾱi�n) = F 0
k(ᾱi�n),l(ᾱi�n),n(ᾱi�n) = F 0

k(ᾱ1�n),l(ᾱ1�n),n(ᾱi�n).

Since the value of F 0
n0,n1,n2

(β̄) does not depend on β̄�n0 and the sequences

ᾱ1�n, ᾱ2�n agree on [m0, ω), we get

F 0
k(ᾱ1�n),l(ᾱ1�n),n(ᾱ1�n) = F 0

k(ᾱ1�n),l(ᾱ1�n),n(ᾱ2�n) = F 0
k(ᾱ2�n),l(ᾱ2�n),n(ᾱ2�n),

and hence
(∀n ≥ m1)(Fn(ᾱ1�n) = Fn(ᾱ2�n)),

finishing the proof of the claim. �

Claim 2.6.4. If ᾱ1, ᾱ2 ∈ ωλ and (∀∞n)(Fn(ᾱ1�n) = Fn(ᾱ2�n))
then (∀∞n)(α1

n = α2
n)

Proof of the claim. Take n0 < ω such that

u(ᾱ1) ∪ u(ᾱ2) ⊆ n0 and (∀n ≥ n0)(Fn(ᾱ1�n) = Fn(ᾱ2�n)).

Then for all n ≥ n0 we have (by clause (a) of the definition of F 0
n0,n1,n2

):

l(ᾱ1�n) = l(ᾱ2�n) & k(ᾱ1�n) = k(ᾱ2�n).

Paper Sh:590, version 1999-11-12 10. See https://shelah.logic.at/papers/590/ for possible updates.



14 SAHARON SHELAH

Further, let n1 > n0 be such that for all n ≥ n1, k(ᾱ1�n) > n0.
We are going to show that α1

n = α2
n for all n > n1. Assume not. Then

we have n > n1 with α1
n 6= α2

n and thus ηα1
n
6= ηα2

n
. Take n′ > n such that

ηα1
n
�n′ 6= ηα2

n
�n′. Applying 2.6.1 (2) and (4) choose n′′ > n′ such that

m(ᾱ1�n′′) > n′ and k0(ᾱ1�n′′) = maxu(ᾱ1).

Now define inductively: m0 = n′′, mk+1 = m(ᾱ1�mk).
Thus

n′′ = m0 > l(ᾱ1�m0) ≥ m1 > l(ᾱ1�m1) ≥ m2 > . . .

and
mk > maxu(ᾱ1) ⇒ k0(ᾱ1�mk) = maxu(ᾱ1)

(see the definition of m). Let k∗ be the first such that n ≥ mk∗ (so k∗ ≥ 2).
Note that by the choice of n1 above we necessarily have

mk∗ > l(ᾱ1�mk∗) = k(ᾱ1�mk∗−1) > n0.

Hence for all k < k∗:

Fmk(ᾱ
1�mk) = Fmk(ᾱ

2�mk) and
l(ᾱ1�mk+1) = l(ᾱ2�mk+1) = k(ᾱ1�mk) = k(ᾱ2�mk).

By the definition of the functions l,m,k and the choice of m0 (remember
k0(ᾱ1�m0) = maxu(ᾱ1)) we know that for each i ∈ [k(ᾱ1�mk), l(ᾱ

1�mk)),
k < k∗ for some τm` ∈ Tl(ᾱ1�mk),mk and i0, . . . , im−1 ∈ [l(ᾱ1�mk),mk) we have
α1
i = τm` (α1

i0
, . . . , α1

im−1
). Moreover we may demand that τm` is a composition

of depth at most l(ᾱ1�mk)− i of simple case terms. Since

F 0
k(ᾱ1�mk),l(ᾱ1�mk),mk

(ᾱ1�mk) = F 0
k(ᾱ2�mk),l(ᾱ2�mk),mk

(ᾱ2�mk)

we conclude that (by clause (d) of the definition of the functions F 0
n0,n1,n2

):

α2
i = τm` (α2

i0
, . . . , α2

im−1
).

Now look at our n.
If l(ᾱ1�mk∗−1) > n then k(ᾱ1�mk∗−1) ≤ n < l(ᾱ1�mk∗−1) and thus we find
i0, . . . , im−1 ∈ [l(ᾱ1�mk∗−1),mk∗−1) and τm` ∈ Tl(ᾱ1�mk∗−1),mk∗−1

such that

α1
n = τm` (α1

i0
, . . . , α1

m−1) & α2
n = τm` (α2

i0
, . . . , α2

m−1).

If l(ᾱ1�mk∗−1) ≤ n then n ∈ [k(ᾱ1�mk∗−2), l(ᾱ1�mk∗−2)) (as l(ᾱ1�mk∗−1) =
k(ᾱ1�mk∗−2) and n < mk∗−1 ≤ l(ᾱ1�mk∗−2)). Hence, for some i0, . . . , im−1 ∈
[l(ᾱ1�mk∗−2),mk∗−2) and τm` ∈ Tl(ᾱ1�mk∗−2),mk∗−2

, we have

α1
n = τm` (α1

i0
, . . . , α1

m−1) & α2
n = τm` (α2

i0
, . . . , α2

m−1).

In both cases we may additionally demand that the respective term τm` is
a composition of depth l(ᾱ1�mk∗−1) − n (or l(ᾱ1�mk∗−2) − n, respectively)
of terms of the simple case. Now we proceed inductively (taking care of the
depth of involved terms) and we find a term τ ∈ Tl(ᾱ1�m0),m0

(which is a
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composition of depth at most l(ᾱ1�m0)−n of terms of the simple case) and
i0, . . . , im−1 ∈ [l(ᾱ1�m0),m0) such that

α1
n = τ(α1

i0
, . . . , α1

m−1) & α2
n = τ(α2

i0
, . . . , α2

m−1).

But now applying the clause (c) of the definition of the functions F 0
n0,n1,n2

we conclude that ηα1
n
�m0 = ηα2

n
�m0. Contradiction to the choice of n′ and

the fact that m0 > n′. �

The last two claims finish the proof of the theorem. �

Remark 2.7. If the models M have κ < λ functions (so 〈τni (x0, . . . , xn−1) :
i < κ〉 lists the n–place terms) we can prove KL(λ, κ) and the proof is
similar.

∗ ∗ ∗

Final Remarks 2.8. 1) Now we phrase exactly what is needed to carry the
proof of theorem 1.1 for λ > κ. It is:

(�) for every model M with universe λ and Skolem functions and with
countable vocabulary, we can find pairwise distinct αn,` < λ (for n < ω, ` <
ω) such that

(⊗) if m0 < m1 < ω and `′i < `′′i for i < m0 and `i < ω for i ∈ [m0,m1)
then the models

(Sk({αi,`′i , αi,`′′i : i < m0} ∪ {αm0,k0 , αm0,k1} ∪ {αi,`i : i ∈ (m0,m1)}),
α0,`′0

, α0,`′′0
, α1,`′1

, α1,`′′1
, . . . , αm0−1,`′m0−1

, αm0−1,`′′m0−1
, αm0,k0 ,

αm0,k1 , αm0+1,`m0+1 , . . . , αm1−1,`m1−1)

and

(Sk({αi,`′i , αi,`′′i : i < m0} ∪ {αm0,k0 , αm0,k2} ∪ {αi,`i : i ∈ (m0,m1)}),
α0,`′0

, α0,`′′0
, α1,`′1

, α1,`′′1
, . . . , αm0−1,`′m0−1

, αm0−1,`′′m0−1
, αm0,k0 ,

αm0,k2 , αm0+1,`m0+1 , . . . , αm1−1,`m1−1)

are isomorphic and the isomorphism is the identity on their inter-
section and they have the same intersection with κ.

For more details and more related results we refer the reader to [?].
2) Together with 1.5, 2.7 this gives a good bound to the consistency
strength of ¬KL(λ, κ).
3) What if we ask Fn : nλ −→ ω >κ such that Fn(η) E Fn+1(η) and
η ∈ ωλ ⇒ F (η) =

⋃
Fn(η�n) ∈ ωκ? No real change.
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