SAHARON SHELAH

ABSTRACT. The Kalikow problem for a pair (λ, κ) of cardinal numbers, $\lambda > \kappa$ (in particular $\kappa = 2$) is whether we can map the family of ω -sequences from λ to the family of ω -sequences from κ in a very continuous manner. Namely, we demand that for $\eta, \nu \in {}^{\omega}\lambda$ we have: η, ν are almost equal if and only if their images are.

We show consistency of the negative answer, e.g., for \aleph_{ω} but we prove it for smaller cardinals. We indicate a close connection with the free subset property and its variants.

0. INTRODUCTION

In the present paper we are interested in the following property of pairs of cardinal numbers:

Definition 0.1. Let λ, κ be cardinals. We say that the pair (λ, κ) has the Kalikow property (and then we write $\mathcal{KL}(\lambda, \kappa)$) if

there is a sequence $\langle F_n : n < \omega \rangle$ of functions such that

 $F_n: {}^n\lambda \longrightarrow \kappa \qquad (\text{for } n < \omega)$

and if $F: {}^{\omega}\lambda \longrightarrow {}^{\omega}\kappa$ is given by

$$(\forall \eta \in {}^{\omega}\lambda)(\forall n \in \omega) \big(F(\eta)(n) = F_n(\eta \restriction n)\big)$$

then for every $\eta, \nu \in {}^{\omega}\lambda$

$$(\forall^{\infty} n)(\eta(n) = \nu(n)) \quad \underline{\mathrm{iff}} \quad (\forall^{\infty} n)(F(\eta)(n) = F(\nu)(n)).$$

In particular we answer the following question of Kalikow:

Kalikow Problem 0.2. Is $\mathcal{KL}(2^{\aleph_0}, 2)$ provable in ZFC?

The Kalikow property of pairs of cardinals was studied in [?]. Several results are known already. Let us mention some of them. First, one can easily notice that

$$\mathcal{KL}(\lambda,\kappa) \& \lambda' \leq \lambda \& \kappa' \geq \kappa \quad \Rightarrow \quad \mathcal{KL}(\lambda',\kappa').$$

The research was partially supported by the Israel Science Foundation. Publication 590.

Also ("transitivity")

$$\mathcal{KL}(\lambda_2, \lambda_1) \& \mathcal{KL}(\lambda_1, \lambda_0) \quad \Rightarrow \quad \mathcal{KL}(\lambda_2, \lambda_0)$$

and

$$\mathcal{KL}(\lambda,\kappa) \quad \Rightarrow \quad \lambda \leq \kappa^{\aleph_0}.$$

Kalikow proved that CH implies $\mathcal{KL}(2^{\aleph_0}, 2)$ (in fact that $\mathcal{KL}(\aleph_1, 2)$ holds true) and he conjectured that CH is equivalent to $\mathcal{KL}(2^{\aleph_0}, 2)$.

The question 0.2 is formulated in [?, Problem 15.15, p.653].

We shall prove that $\mathcal{KL}(\lambda, 2)$ is closely tied with some variants of the free subset property (both positively and negatively). First we present an answer to the problem 0.2 proving the consistency of $\neg \mathcal{KL}(2^{\aleph_0}, 2)$ in 1.1 (see 2.8 too). Later we discuss variants of the proof (concerning the cardinal and the forcing). Then we deal with positive answer, in particular $\mathcal{KL}(\aleph_n, 2)$ and we show that the negation of a relative of the free subset property for λ implies $\mathcal{KL}(\lambda, 2)$.

We thank the participants of the Jerusalem Logic Seminar 1994/95 and particularly Andrzej Rosłanowski for writing it up so nicely.

Notation: We will use Greek letters κ , λ , χ to denote (infinite) cardinals and letters α , β , γ , ζ , ξ to denote ordinals. Sequences of ordinals will be called $\bar{\alpha}$, $\bar{\beta}$, $\bar{\zeta}$ with the usual convention that $\bar{\alpha} = \langle \alpha_n : n < \ell g(\bar{\alpha}) \rangle$ etc. Sets of ordinals will be denoted by u, v, w (with possible indexes).

The quantifiers $(\forall^{\infty} n)$ and $(\exists^{\infty} n)$ are abbreviations for "for all but finitely many $n \in \omega$ " and "for infinitely many $n \in \omega$ ", respectively.

1. The negative result

For a cardinal χ , the forcing notion \mathbb{C}_{χ} for adding χ many Cohen reals consists of finite functions p such that for some $w \in [\chi]^{\leq \omega}$, $n < \omega$

$$\operatorname{dom}(p) = \{(\zeta, k) : \zeta \in w \& k < n\} \quad \text{and} \quad \operatorname{rang}(p) \subseteq 2$$

ordered by the inclusion.

Theorem 1.1. Assume $\lambda \to (\omega_1 \cdot \omega)_{2^{\kappa}}^{<\omega}, 2^{\kappa} < \lambda \leq \chi$. Then

 $\Vdash_{\mathbb{C}_{\chi}} \neg \mathcal{KL}(\lambda, \kappa) \quad and \ hence \quad \Vdash_{\mathbb{C}_{\chi}} \neg \mathcal{KL}(2^{\aleph_0}, 2).$

Proof. Suppose that \mathbb{C}_{χ} -names F_n (for $n \in \omega$) and a condition $p \in \mathbb{C}_{\chi}$ are such that

 $p \Vdash_{\mathbb{C}_{\chi}} ``\langle \mathcal{F}_n : n < \omega \rangle$ exemplifies $\mathcal{KL}(\lambda, \kappa)$ ".

For $\bar{\alpha} \in {}^{n}\lambda$ choose a maximal antichain $\langle p_{\bar{\alpha},\ell}^{n} : \ell < \omega \rangle$ of \mathbb{C}_{χ} deciding the values of $\tilde{\mathcal{E}}_{n}(\bar{\alpha})$. Thus we have a sequence $\langle \gamma_{\bar{\alpha},\ell}^{n} : \ell < \omega \rangle \subseteq \kappa$ such that

$$p_{\bar{\alpha},\ell}^n \Vdash_{\mathbb{C}_{\chi}} \bar{F}_n(\bar{\alpha}) = \gamma_{\bar{\alpha},\ell}^n$$

 $\mathbf{2}$

3

Let χ^* be a sufficiently large regular cardinal. Take an elementary submodel M of $(\mathcal{H}(\chi^*), \in, <^*_{\chi^*})$ such that

$$\begin{split} \|M\| &= \chi, \ \chi + 1 \subseteq M, \\ \langle p_{\bar{\alpha},\ell}^n : \ell < \omega, n \in \omega, \bar{\alpha} \in {}^n \lambda \rangle, \langle \gamma_{\bar{\alpha},\ell}^n : \ell < \omega, n \in \omega, \bar{\alpha} \in {}^n \lambda \rangle \in \\ M. \end{split}$$

By $\lambda \to (\omega_1 \cdot \omega)_{2^{\kappa}}^{<\omega}$ (see [?, Claim 1.3]), we find a set $B \subseteq \lambda$ of indescernibles in M over

$$\kappa \cup \{ \langle p_{\bar{\alpha},\ell}^n : \ell < \omega : n \in \omega, \bar{\alpha} \in {}^n \lambda \rangle, \langle \gamma_{\bar{\alpha},\ell}^n : \ell < \omega : n \in \omega, \bar{\alpha} \in {}^n \lambda \rangle, \chi, p \}$$

and a system $\langle N_u : u \in [B]^{\leq \omega} \rangle$ of elementary submodels of M such that

- (a) B is of the order type $\omega_1 \cdot \omega$ and for $u, v \in [B]^{<\omega}$:
- (b) $\kappa + 1 \subseteq N_u$,
- (c) $\lambda + 1 \equiv 1 \lambda u$, (c) $\chi, p, \langle p_{\bar{\alpha},\ell}^n : \ell < \omega, n < \omega, \bar{\alpha} \in {}^n\lambda\rangle, \langle \gamma_{\bar{\alpha},\ell}^n : \ell < \omega, n < \omega, \bar{\alpha} \in {}^n\lambda\rangle \in N_u$,
- (d) $|N_u| = \kappa, N_u \cap B = u,$
- (e) $N_u \cap N_v = N_{u \cap v}$,
- (f) $|u| = |v| \Rightarrow N_u \cong N_v$, and let $\pi_{u,v} : N_v \longrightarrow N_u$ be this (unique) isomorphism,
- (g) $\pi_{v,v} = \operatorname{id}_{N_v}, \pi_{u,v}(v) = u, \pi_{u_0,u_1} \circ \pi_{u_1,u_2} = \pi_{u_0,u_2},$
- (h) if $v' \subseteq v$, |v| = |u| and $u' = \pi_{u,v}(v')$ then $\pi_{u',v'} \subseteq \pi_{u,v}$.

Note that if $u \subseteq B$ is of the order type ω then we may define

 $N_u = \bigcup \{N_v : v \text{ is a finite initial segment of } u\}.$

Then the models N_u (for $u \subseteq B$ of the order type $\leq \omega$) have the properties (b)–(h) too.

Let $\langle \beta_{\zeta} : \zeta < \omega_1 \cdot \omega \rangle$ be the increasing enumeration of B. For a set $u \subseteq B$ of the order type $\leq \omega$ let $\bar{\beta}^u$ be the increasing enumeration of u (so $\ell g(\bar{\beta}^u) = |u|$). Let $u^* = \{\beta_{\omega_1 \cdot n} : n < \omega\}$. For $k \leq \omega$ and a sequence $\bar{\xi} = \langle \xi_m : m < k \rangle \subseteq \omega_1$ we define

$$u[\bar{\xi}] = \{\beta_{\omega_1 \cdot m + \xi_m} : m < k\} \cup \{\beta_{\omega_1 \cdot n} : n \in \omega \setminus k\}.$$

Now, working in $\mathbf{V}^{\mathbb{C}_{\chi}}$, we say that a sequence $\bar{\xi}$ is *k*-strange if

- (1) $\bar{\xi}$ is a sequence of countable ordinals greater than 0, $\ell g(\bar{\xi}) = k$
- (2) $(\forall m < \omega)(\underline{\mathcal{F}}_m(\bar{\beta}^{u[\underline{\bar{\xi}}]} \restriction m) = \underline{\mathcal{F}}_m(\bar{\beta}^{u^*} \restriction m)).$

Claim 1.1.1. In $\mathbf{V}^{\mathbb{C}_{\chi}}$:

 $\begin{array}{l} \text{if } \bar{\xi}^k \ are \ k-strange \ sequences \ (for \ k < \omega) \ such \ that \ (\forall k < \omega)(\bar{\xi}^k \lhd \bar{\xi}^{k+1}) \\ \text{then \ the \ sequence \ } \bar{\xi} \stackrel{\text{def}}{=} \bigcup_{k < \omega} \bar{\xi}^k \ is \ \omega-strange. \end{array}$

Proof of the claim. Should be clear (note that in this situation we have $\bar{\beta}^{u[\bar{\xi}]} \upharpoonright m = \bar{\beta}^{u[\bar{\xi}^m]} \upharpoonright m$).

Claim 1.1.2.

 $p \Vdash_{\mathbb{C}_{\gamma}}$ "there are no ω -strange sequences".

Proof of the claim. Assume not. Then we find a name $\overline{\xi} = \langle \underline{\xi}_m : m < \omega \rangle$ for an ω -sequence and a condition $q \ge p$ such that

 $q\Vdash_{\mathbb{C}_{\chi}} ``(\forall m<\omega)(0<\underline{\xi}_m<\omega_1\quad \&\quad \underline{F}_m(\bar{\beta}^{u[\underline{\bar{\xi}}]}{\upharpoonright}m)=\underline{F}_m(\bar{\beta}^{u^*}{\upharpoonright}m))".$

By the choice of p and \tilde{F}_m we conclude that

$$q \Vdash_{\mathbb{C}_{\chi}} "(\forall^{\infty} m)(\bar{\beta}^{u[\bar{\xi}]}(m) = \bar{\beta}^{u^*}(m))"$$

which contradicts the definition of $\bar{\beta}^{u[\bar{\xi}]}$, $\bar{\beta}^{u^*}$ and the fact that

$$q \Vdash_{\mathbb{C}_{\chi}} "(\forall m < \omega) (0 < \xi_m < \omega_1)".$$

By 1.1.1, 1.1.2, any inductive attempt to construct (in $\mathbf{V}^{\mathbb{C}_{\chi}}$) an ω -strange sequence ξ has to fail. Consequently we find a condition $p^* \geq p$, an integer $k < \omega$ and a sequence $\xi = \langle \xi_{\ell} : \ell < k \rangle$ such that

 $p^* \Vdash_{\mathbb{C}_{\chi}} ``\xi is k$ -strange but $\neg (\exists \xi < \omega_1)(\bar{\xi} \land \langle \xi \rangle is (k+1)$ -strange)".

Then in particular

$$(\boxtimes) \qquad p^* \Vdash_{\mathbb{C}_{\chi}} "(\forall m < \omega) (\underline{\mathcal{F}}_m(\bar{\beta}^{u[\xi]} \restriction m) = \underline{\mathcal{F}}_m(\bar{\beta}^{u^*} \restriction m))".$$

[It may happen that k = 0, i.e., $\xi = \langle \rangle$.]

For $\xi < \omega_1$ let $u_{\xi} = u[\bar{\xi} \land \langle \xi \rangle]$ and $w_{\xi} = u_{\xi} \cup (u^* \setminus \{\omega_1 \cdot k\})$. Thus $w_0 = u[\bar{\xi}] \cup u^*$ and all w_{ξ} have order type ω and $\pi_{w_{\xi_1}, w_{\xi_2}}$ is the identity on $N_{w_{\xi} \setminus \{\omega_1 \cdot k + \xi_2\}}$. Let $q \stackrel{\text{def}}{=} p^* \upharpoonright N_{w_0}$ and $q_{\xi} = \pi_{w_{\xi}, w_0}(q) \in N_{w_{\xi}}$ (so $q_0 = q$). As the isomorphism π_{w_{ξ}, w_0} is the identity on $N_{w_0} \cap N_{w_{\xi}} = N_{w_0 \cap w_{\xi}}$ (and by the definition of Cohen forcing), we have that the conditions q, q_{ξ} are compatible. Moreover, as $p^* \geq p$ and $p \in N_{\emptyset}$, we have that both q and q_{ξ} are stronger than p.

Now fix $\xi_0 \in (0, \omega_1)$ (e.g. $\xi_0 = 1$) and look at the sequences $\bar{\beta}^{u_{\xi_0}}$ and $\bar{\beta}^{u^*}$. They are eventually equal and hence

$$p \Vdash_{\mathbb{C}_{\chi}} "(\forall^{\infty} m)(\underline{F}_m(\bar{\beta}^{u_{\xi_0}} \restriction m) = \underline{F}_m(\bar{\beta}^{u^*} \restriction m))".$$

So we find $m^* < \omega$ and a condition $q'_{\xi_0} \ge q_{\xi_0}, q$ such that $(\bigotimes_{q'_{\xi_0}}^{\xi_0,m^*}) q'_{\xi_0} \Vdash_{\mathbb{C}_{\chi}} (\forall m \ge m^*) (\mathcal{F}_m(\bar{\beta}^{u_{\xi_0}} \upharpoonright m) = \mathcal{F}_m(\bar{\beta}^{u^*} \upharpoonright m))^{"}$ and (as we can increase q'_{ξ_0})

 $(\oplus_{q'_{\xi_0}}^{\xi_0,m^*}) \text{ the condition } q'_{\xi_0} \text{ decides the values of } \underline{F}_m(\bar{\beta}^{u_{\xi_0}} \restriction m) \text{ and } \underline{F}_m(\bar{\beta}^{u^*} \restriction m) \text{ for all } m \leq m^*.$

Note that the condition $(\bigotimes_{q'_{\xi_0}}^{\xi_0,m^*})$ means that

there are NO $m \geq m^*, \ell_0, \ell_1 < \omega$ with

 $\gamma^m_{\bar{\beta}^{u_{\xi_0}}\restriction m,\ell_0} \neq \gamma^m_{\bar{\beta}^{u^*}\restriction m,\ell_1}$ and the three conditions q'_{ξ_0} , $p^m_{\bar{\beta}^{u_{\xi_0}}\restriction m,\ell_0}$ and $p^m_{\bar{\beta}^{u^*}\restriction m,\ell_1}$ have a common upper bound in \mathbb{C}_{χ}

(remember the choice of the $p_{\bar{\alpha},\ell}^n$'s and $\gamma_{\bar{\alpha},\ell}^n$'s). Similarly, the condition $(\oplus_{q_{\xi_0}'}^{\xi_0,m^*})$ means

there are NO $m \leq m^*, \ell_0, \ell_1 < \omega$ with either $\gamma^m_{\bar{\beta}^{u_{\xi_0}}\upharpoonright m, \ell_0} \neq \gamma^m_{\bar{\beta}^{u_{\xi_0}}\upharpoonright m, \ell_1}$ and both q'_{ξ_0} and $p^m_{\bar{\beta}^{u_{\xi_0}}\upharpoonright m, \ell_0}$, and q'_{ξ_0} and $p^m_{\bar{\beta}^{u_{\xi_0}}\upharpoonright m, \ell_1}$ are compatible in \mathbb{C}_{χ} or $\gamma_{\bar{\beta}^{u^*}\mid m,\ell_0}^m \neq \gamma_{\bar{\beta}^{u^*}\mid m,\ell_1}^m$ and both q'_{ξ_0} and $p^m_{\bar{\beta}^{u^*}\mid m,\ell_0}$, and q'_{ξ_0} and $p^m_{\bar{\beta}^{u^*}\mid m,\ell_1}$ are compatible in \mathbb{C}_{χ} .

Consequently the condition $q_{\xi_0}^* \stackrel{\text{def}}{=} q_{\xi_0}' \upharpoonright N_{w_0 \cup w_{\xi_0}}$ has both properties $(\bigotimes_{q_{\xi_0}}^{\xi_0, m^*})$ and $(\bigoplus_{q_{\xi_0}^*}^{\xi_0,m^*})$ (and it is stronger than both q and q_{ξ_0}). Now, for $0 < \xi < \omega_1$ let

$$q_{\xi}^* \stackrel{\text{def}}{=} \pi_{w_0 \cup w_{\xi}, w_0 \cup w_{\xi_0}}(q_{\xi_0}^*) \in N_{w_0 \cup w_{\xi}}.$$

Then (for $\xi \in (0, \omega_1)$) the condition q_{ξ}^* is stronger than

both $q = \pi_{w_0 \cup w_{\xi}, w_0 \cup w_{\xi_0}}(q)$ and $q_{\xi} = \pi_{w_0 \cup w_{\xi}, w_0 \cup w_{\xi_0}}(q_{\xi_0})$

and it has the properties $(\bigotimes_{q_{\xi}}^{\xi,m^*})$ and $(\bigoplus_{q_{\xi}}^{\xi,m^*})$. Moreover for all ξ_1, ξ_2 the conditions $q_{\xi_1}^*, q_{\xi_2}^*$ are compatible. [Why? By the definition of Cohen forcing, and $\pi_{w_0 \cup w_{\xi_2}, w_0 \cup w_{\xi_1}}(q_{\xi_1}^*) = q_{\xi_2}^*$ (chasing arrows) and $\pi_{w_0 \cup w_{\xi_2}, w_0 \cup w_{\xi_1}}$ is the identity on $N_{w_0 \cup w_{\xi_2}} \cap N_{w_0 \cup w_{\xi_1}} = N_{(w_0 \cup w_{\xi_2}) \cap (w_0 \cup w_{\xi_1})}$ (see clauses (e), (f), (h) above).]

Claim 1.1.3. For each $\xi_1, \xi_2 \in (0, \omega_1)$ the condition $q_{\xi_1}^* \cup q_{\xi_2}^*$ forces in \mathbb{C}_{χ} that

$$(\forall m < \omega)(\underline{F}_m(\bar{\beta}^{u_{\xi_1}} \restriction m) = \underline{F}_m(\bar{\beta}^{u_{\xi_2}} \restriction m)).$$

Proof of the claim. If $m \geq m^*$ then, by $(\bigotimes_{q_{\xi_1}}^{\xi_1,m^*})$ and $(\bigotimes_{q_{\xi_2}}^{\xi_2,m^*})$ (passing through $F(\bar{\beta}^{u^*} \upharpoonright m))$, we get

$$q_{\xi_1}^* \cup q_{\xi_2}^* \Vdash_{\mathbb{C}_{\chi}} "\check{F}_m(\bar{\beta}^{u_{\xi_1}} \restriction m) = \check{F}_m(\bar{\beta}^{u_{\xi_2}} \restriction m)".$$

If $m < m^*$ then we use $(\oplus_{q_{\xi_1}}^{\xi_1,m^*})$ and $(\oplus_{q_{\xi_2}}^{\xi_1,m^*})$ and the isomorphism: the values assigned by $q_{\xi_1}^*, q_{\xi_2}^*$ to $\tilde{F}_m(\bar{\beta}^{u_{\xi_1}} \upharpoonright m)$ and $\tilde{F}_m(\bar{\beta}^{u_{\xi_2}} \upharpoonright m)$ have to be equal (remember $\kappa \subseteq N_{\emptyset}$, so the isomorphism is the identity on κ).

Look at the conditions

$$q_{\xi_1,\xi_2} \stackrel{\text{def}}{=} q_{\xi_1}^* | N_{w_{\xi_1}} \cup q_{\xi_2}^* | N_{w_{\xi_2}} \in N_{w_{\xi_1} \cup w_{\xi_2}}.$$

It should be clear that for each $\xi_1, \xi_2 \in (0, \omega_1)$

$$q_{\xi_1,\xi_2}\Vdash_{\mathbb{C}_{\chi}} "(\forall m<\omega)(\underline{\mathcal{F}}_m(\bar{\beta}^{u_{\xi_1}}{\upharpoonright}m)=\underline{\mathcal{F}}_m(\bar{\beta}^{u_{\xi_2}}{\upharpoonright}m))".$$

Now choose $\xi \in (0, \omega_1)$ so large that

$$\operatorname{dom}(p^*) \cap (N_{w_{\xi}} \setminus N_{w_0}) = \emptyset$$

(possible as dom(p^*) is finite, use (e)). Take any $0 < \xi_1 < \xi_2 < \omega_1$ and put

$$q^* \stackrel{\text{def}}{=} \pi_{w_0 \cup w_{\xi}, w_{\xi_1} \cup w_{\xi_2}}(q_{\xi_1, \xi_2}).$$

(Note: $\pi_{w_0,w_{\xi_1}} \subseteq \pi_{w_0 \cup w_{\xi},w_{\xi_1} \cup w_{\xi_2}}$ and $\pi_{w_{\xi},w_{\xi_2}} \subseteq \pi_{w_0 \cup w_{\xi},w_{\xi_1} \cup w_{\xi_2}}$.) By the isomorphism we get that

$$q^* \Vdash_{\mathbb{C}_{\chi}} "(\forall m < \omega) (\tilde{F}_m(\bar{\beta}^{u_{\xi}} \restriction m) = \tilde{F}_m(\bar{\beta}^{u[\xi]} \restriction m))".$$

Now look back:

$$q_{\xi_1}^* \ge q_{\xi_1} = \pi_{w_0 \cup w_{\xi_1}, w_0 \cup w_{\xi_0}}(q_{\xi_0}) = \pi_{w_{\xi_1}, w_{\xi_0}}(q_{\xi_0}) = \pi_{w_{\xi_1}, w_{\xi_0}}(\pi_{w_{\xi_0}, w_0}(q)) = \pi_{w_{\xi_1}, w_0}(q)$$

and hence

6

$$q_{\xi_1}^* \! \upharpoonright \! N_{w_{\xi_1}} \ge \pi_{w_{\xi_1}, w_0}(q)$$

and thus

$$q^* \upharpoonright N_{w_0} \ge \pi_{w_0, w_{\xi_1}} (q^*_{\xi_1} \upharpoonright N_{w_{\xi_1}}) \ge q = p^* \upharpoonright N_{w_0}.$$

Consequently, by the choice of ξ , the conditions q^* and p^* are compatible (remember the definition of q_{ξ_1,ξ_2} and q^*). Now use (\boxtimes) to conclude that

$$q^* \cup p^* \Vdash_{\mathbb{C}_{\chi}} "(\forall m < \omega)(\underline{F}_m(\bar{\beta}^{u^*} \restriction m) = \underline{F}_m(\bar{\beta}^{u[\underline{\xi}]} \restriction m) = \underline{F}_m(\bar{\beta}^{u_{\underline{\xi}}} \restriction m))"$$

which implies that

$$q^* \cup p^* \Vdash_{\mathbb{C}_{\chi}} ``\bar{\xi} \land \langle \xi \rangle$$
 is $(k+1)$ -strange",

a contradiction.

Remark 1.2. About the proof of 1.1:

- (1) No harm is done by forgetting 0 and replacing it by ξ_1, ξ_2 .
- (2) A small modification of the proof shows that in $\mathbf{V}^{\mathbb{C}_{\chi}}$: If $F_n : {}^n \lambda \longrightarrow \kappa \ (n \in \omega)$ are such that

 $(\forall \eta, \nu \in {}^{\omega}\lambda)[(\forall^{\infty}n)(\eta(n) = \nu(n)) \quad \Rightarrow \quad (\forall^{\infty}n)(F_n(\eta \restriction n) = F_n(\nu \restriction n))]$

then there are infinite sets $X_n \subseteq \lambda$ (for $n < \omega$) such that

$$(\forall n < \omega)(\forall \nu, \eta \in \prod_{\ell < n} X_{\ell})(F_n(\nu) = F_n(\eta)).$$

Say we shall have $X_n = \{\gamma_{n,i} : i < \omega\}$. Starting we have $\gamma_0^*, \ldots, \gamma_n^*, \ldots$ In the proof at stage n we have determined $\gamma_{\ell,i}$ $(\ell, i < n)$ and $p \in G$, $p \in N_{\{\gamma_{\ell,i}:\ell,i<\omega\}\cup\{\gamma^*_n,\gamma^*_{n+1},\ldots\}}$. For n = 0, 1, 2 as before. For n + 1 > 2first $\gamma_{0,n}, \ldots, \gamma_{n-1,n}$ are easy by transitivity of equalities. Then find $\gamma_{n,0}, \gamma_{n,1}$ as before then again duplicate.

- (3) In the proof it is enough to use $\{\beta_{\omega \cdot n+\ell} : n < \omega, \ell < \omega\}$. Hence, by 1.2 of [?] it is enough to assume $\lambda \to (\omega^3)_{2^{\kappa}}^{<\omega}$. This condition is compatible with $\mathbf{V} = \mathbf{L}$.
- (4) We can use only $\lambda \to (\omega^2)^{<\omega}_{2\kappa}$.
- Definition 1.3. (1) For a sequence $\lambda = \langle \lambda_n : n < \omega \rangle$ of cardinals we define the property $(\circledast)_{\bar{\lambda}}$:
 - $(\circledast)_{\bar{\lambda}}$ for every model M of a countable language, with universe sup λ_n

and Skolem functions (for simplicity) there is a sequence $\langle X_n :$ $n < \omega$ such that

- (a) $X_n \in [\lambda_n]^{\lambda_n}$ (actually $X_n \in [\lambda_n]^{\omega_1}$ suffices) (b) for every $n < \omega$ and $\bar{\alpha} = \langle \alpha_\ell : \ell \in [n+1,\omega) \rangle \in \prod_{\ell > n+1} X_\ell$,

letting (for $\xi \in X_n$)

$$M_{\bar{\alpha}}^{\xi} = \operatorname{Sk}(\bigcup_{\ell < n} X_{\ell} \cup \{\xi\} \cup \{\alpha_{\ell} : \ell \in [n+1, \omega)\})$$

we have:

- (\bigoplus) the sequence $\langle M_{\bar{\alpha}}^{\xi} : \xi \in X_n \rangle$ forms a Δ -system with the heart $N_{\bar{\alpha}}$ and its elements are pairwise isomorphic over the heart $N_{\bar{\alpha}}$.
- (2) For a cardinal λ the condition $(\circledast)^{\lambda}$ is:

 $(\circledast)^{\lambda}$ there exists a sequence $\bar{\lambda} = \langle \lambda_n : n < \omega \rangle$ such that $\sum_{n < \omega} \lambda_n = \lambda$ and the condition $(\circledast)_{\bar{\lambda}}$ holds true.

In [?] a condition $(*)_{\lambda}$, weaker than $(\circledast)^{\lambda}$ was considered. Now, [?] continues [?] to get stronger indiscernibility. But by the same proof (using ω -measurable) one can show the consistency of $(\circledast)^{\aleph_{\omega}} + \text{GCH}$.

Note that to carry out the proof of 1.1 we need even less then $(\circledast)^{\lambda}$: the $\bigcup X_{\ell}$ (in (b) of 1.3) is much more then needed; it suffices to have $\bar{\beta}^0 \cup \bar{\beta}^1$ where $\bar{\beta}^0, \bar{\beta}^1 \in \prod_{\ell < \infty} X_{\ell}$.

Conclusion 1.4. It is consistent that

$$2^{\aleph_0} = \aleph_{\omega+1}$$
 and $\bigwedge_{n < \omega} \neg \mathcal{KL}(\aleph_{\omega}, \aleph_n)$ so $\neg \mathcal{KL}(2^{\aleph_0}, 2)$.

Remark 1.5. Koepke [?] continues [?] to get equiconsistency. His refinement of [?] (for the upper bound) works below too.

2. The positive result

For an algebra M on λ and a set $X \subseteq \lambda$ the closure of X under functions of M is denoted by $cl_M(X)$. Before proving our result (2.6) we remind the reader of some definitions and propositions.

Proposition 2.1. For an algebra M on λ the following conditions are equivalent

$$(\bigstar)^{0}_{M} \text{ for each sequence } \langle \alpha_{n} : n \in \omega \rangle \subseteq \lambda \text{ we have} \\ (\forall^{\infty}n)(\alpha_{n} \in \operatorname{cl}_{M}(\{\alpha_{k} : n < k < \omega\})), \\ (\bigstar)^{1}_{M} \text{ there is no sequence } \langle A_{n} : n \in \omega \rangle \subseteq [\lambda]^{\aleph_{0}} \text{ such that} \\ (\forall n \in \omega)(\operatorname{cl}_{M}(A_{n+1}) \subsetneq \operatorname{cl}_{M}(A_{n})), \\ (\bigstar)^{2}_{M} (\forall A \in [\lambda]^{\aleph_{0}})(\exists B \in [A]^{\aleph_{0}})(\forall C \in [B]^{\aleph_{0}})(\operatorname{cl}_{M}(B) = \operatorname{cl}_{M}(C))$$

Definition 2.2. We say that a cardinal λ has the (\bigstar) -property for κ (and then we write $\Pr^{\bigstar}(\lambda, \kappa)$) if there is an algebra M on λ with vocabulary of cardinality $\leq \kappa$ satisfying one (equivalently: all) of the conditions $(\bigstar)_M^i$ (i < 3) of 2.1. If $\kappa = \aleph_0$ we may omit it.

Remember

Proposition 2.3. If $\mathbf{V}_0 \subseteq \mathbf{V}_1$ are universes of set theory, $\mathbf{V}_1 \models \neg \operatorname{Pr}^{\bigstar}(\lambda)$ then $\mathbf{V}_0 \models \neg \operatorname{Pr}^{\bigstar}(\lambda)$.

Proof. By absoluteness of the existence of an ω -branch to a tree.

Remark 2.4. The property $\neg \Pr^{\bigstar}(\lambda)$ is a kind of a large cardinal property. It was clarified in **L** (remember that it is inherited from **V** to **L**) by Silver [?] to be equiconsistent with "there is a beautiful cardinal" (terminology of 2.3 of [?]), another partition property inherited by **L**.

Proposition 2.5. For each $n \in \omega$, $Pr^{\bigstar}(\aleph_n)$.

Proof. This was done in [?, Chapter XIII], see [?, Chapter VII] too, and probably earlier by Silver. However, for the sake of completeness we will give the proof.

First note that clearly $\Pr^{\bigstar}(\aleph_0)$ and thus we have to deal with the case when n > 0. Let $f, g : \aleph_n \longrightarrow \aleph_n$ be two functions such that

if $m < n, \alpha \in [\aleph_m, \aleph_{m+1})$ then $f(\alpha, \cdot) \upharpoonright \alpha : \alpha \xrightarrow{1-1} \aleph_m, g(\alpha, \cdot) \upharpoonright \aleph_m : \aleph_m \xrightarrow{1-1} \alpha$ are functions inverse each to the other.

Let M be the following algebra on \aleph_n :

$$M = (\aleph_n, f, g, m)_{m \in \omega}$$

We want to check the condition $(\bigstar)_M^1$: assume that a sequence $\langle A_k : k < \omega \rangle \subseteq [\aleph_n]^{\aleph_0}$ is such that for each $k < \omega$

$$\operatorname{cl}_M(A_{k+1}) \subsetneq \operatorname{cl}_M(A_k).$$

For each m < n, the sequence $\langle \sup(\operatorname{cl}_M(A_k) \cap \aleph_{m+1}) : k < \omega \rangle$ is non-increasing and therefore it is eventually constant. Consequently we find k^* such that

$$(\forall m < n)(\sup(\mathrm{cl}_M(A_{k^*+1}) \cap \aleph_{m+1}) = \sup(\mathrm{cl}_M(A_{k^*}) \cap \aleph_{m+1})).$$

By the choice of $\langle A_k : k < \omega \rangle$ we have $\operatorname{cl}_M(A_{k^*+1}) \subsetneq \operatorname{cl}_M(A_{k^*})$. Let

$$\alpha_0 \stackrel{\text{def}}{=} \min(\operatorname{cl}_M(A_{k^*}) \setminus \operatorname{cl}_M(A_{k^*+1})).$$

As the model M contains individual constants m (for $m \in \omega$) we know that $\aleph_0 \subseteq \operatorname{cl}_M(\emptyset)$ and hence $\aleph_0 \leq \alpha_0$. Let m < n be such that $\aleph_m \leq \alpha_0 < \aleph_{m+1}$. By the choice of k^* we find $\beta \in \operatorname{cl}_M(A_{k^*+1}) \cap \aleph_{m+1}$ such that $\alpha_0 \leq \beta$. Then necessarily $\alpha_0 < \beta$. Look at $f(\beta, \alpha_0)$: we know that $\alpha_0, \beta \in \operatorname{cl}_M(A_{k^*})$ and therefore $f(\beta, \alpha_0) \in \operatorname{cl}_M(A_{k^*}) \cap \aleph_m$ and $f(\beta, \alpha_0) < \alpha_0$. The minimality of α_0 implies that $f(\beta, \alpha_0) \in \operatorname{cl}_M(A_{k^*+1})$ and hence

$$\alpha_0 = g(\beta, f(\beta, \alpha_0)) \in \operatorname{cl}_M(A_{k^*+1}),$$

a contradiction.

Explanation: Better think of the proof from the end. Let $\bar{\alpha} = \langle \alpha_n : n < \omega \rangle \in {}^{\omega}\lambda$. So for some $n(*), n(*) \leq n < \omega \Rightarrow \alpha_n \in \operatorname{cl}_M(\alpha_\ell : \ell > n)$. So for some $m_n > n, \{\alpha_{n(*)}, \ldots, \alpha_{n-1}\} \subseteq \operatorname{cl}_M(\alpha_n, \ldots, \alpha_{m-1})$ and

$$(\forall \ell < n(*))(\alpha_{\ell} \in \operatorname{cl}_{M}(\alpha_{\ell} : \ell > n(*)) \Rightarrow \alpha_{\ell} \in \operatorname{cl}_{M}(\alpha_{\ell} : \ell \in [n, m_{n}))).$$

Let $W^* = \{\ell < n(*) : \alpha_\ell \in \operatorname{cl}_M(\alpha_n : n \ge n(*))\}$. It is natural to aim at:

(*) for *n* large enough (say $n > m_{n(*)}$), $F_n(\langle \alpha_{\ell} : \ell < n \rangle)$ depends just on $\{\alpha_{\ell} : \ell \in [n(*), n) \text{ or } \ell \in w\}$ and $\langle F_m(\bar{\alpha} \upharpoonright m) : m \ge n \rangle$ codes $\bar{\alpha} \upharpoonright (w \cup [n(*), \omega)).$

Of course, we are a given n and we do not know how to compute the real n(*), but we can approximate. Then we look at a late enough end segment where we compute down.

Theorem 2.6. Assume that $\lambda \leq 2^{\aleph_0}$ is such that $\Pr^{\bigstar}(\lambda)$ holds. Then $\mathcal{KL}(\lambda, \omega)$ (and hence $\mathcal{KL}(\lambda, 2)$).

Proof. We have to construct functions $F_n : {}^n \lambda \longrightarrow \omega$ witnessing $\mathcal{KL}(\lambda, \omega)$. For this we will introduce functions \mathbf{k} and \mathbf{l} such that for $\bar{\alpha} \in {}^n \lambda$ the value of $\mathbf{k}(\bar{\alpha})$ will say which initial segment of $\bar{\alpha}$ will be irrelevant for $F_n(\bar{\alpha})$

9

and $\mathbf{l}(\bar{\alpha})$ will be such that (under certain circumstances) elements α_i (for $\mathbf{k}(\bar{\alpha}) \leq i < \mathbf{l}(\bar{\alpha})$) will be encoded by $\langle \alpha_i : j \in [\mathbf{l}(\bar{\alpha}), n) \rangle$.

Fix a sequence $\langle \eta_{\alpha} : \alpha < \lambda \rangle \subseteq {}^{\omega}2$ with no repetitions.

Let M be an algebra on λ such that $(\bigstar)^0_M$ holds true. We may assume that there are no individual constants in M (so $\operatorname{cl}_M(\emptyset) = \emptyset$).

Let $\langle \tau_{\ell}^n(x_0, \ldots, x_{n-1}) : \ell < \omega \rangle$ list all *n*-place terms of the language of the algebra M (and $\tau_0^1(x)$ is x). For $\bar{\alpha} \in \omega \geq \lambda$ (with α_j the *j*-th element in $\bar{\alpha}$) let

$$u(\bar{\alpha}) = \{\ell < \ell g(\bar{\alpha}) : \alpha_{\ell} \notin \mathrm{cl}_{M}(\bar{\alpha} \upharpoonright (\ell, \ell g(\bar{\alpha})))\} \cup \{0\}$$

and for $\ell \notin u(\bar{\alpha}), \, \ell < \ell g(\bar{\alpha})$ let

$$\begin{aligned} f_{\ell}(\bar{\alpha}) &= \min\{j : \alpha_{\ell} \in \mathrm{cl}_{M}(\bar{\alpha} \upharpoonright (\ell, j))\} \\ g_{\ell}(\bar{\alpha}) &= \min\{i : \alpha_{\ell} = \tau_{i}^{f_{\ell}(\bar{\alpha}) - \ell - 1}(\bar{\alpha} \upharpoonright (\ell, f_{\ell}(\bar{\alpha})))\}. \end{aligned}$$

For $\bar{\alpha} \in {}^{n}\lambda \ (1 < n < \omega)$ put

$$k_1(\bar{\alpha}) = \min\left(\left(u(\bar{\alpha}\restriction(n-1))\setminus u(\bar{\alpha})\right)\cup\{n-1\}\right) \\ k_0(\bar{\alpha}) = \max\left(u(\bar{\alpha})\cap k_1(\bar{\alpha})\right).$$

Note that if $(n > 1 \text{ and}) \ \bar{\alpha} \in {}^{n}\lambda$ then $n - 1 \in u(\bar{\alpha})$ (as $\operatorname{cl}_{M}(\emptyset) = \emptyset$) and $k_{1}(\bar{\alpha}) > 0$ (as always $0 \in u(\bar{\beta})$) and $k_{0}(\bar{\alpha})$ is well defined (as $0 \in u(\bar{\alpha}) \cap k_{1}(\bar{\alpha})$) and $k_{0}(\bar{\alpha}) < k_{1}(\bar{\alpha}) < n$. Moreover, for all $\ell \in (k_{0}(\bar{\alpha}), k_{1}(\bar{\alpha}))$ we have $\alpha_{\ell} \notin u(\bar{\alpha} \upharpoonright (n - 1))$ and thus $\alpha_{\ell} \in \operatorname{cl}_{M}(\bar{\alpha} \upharpoonright (\ell, n - 1))$. Now, for $\bar{\alpha} \in {}^{\omega >}\lambda$, $\ell g(\bar{\alpha}) > 1$ we define

$$\begin{aligned} \mathbf{l}(\bar{\alpha}) &= \max\{j \leq k_1(\bar{\alpha}) : j > k_0(\bar{\alpha}) \implies (\forall i \in (k_0(\bar{\alpha}), j))(g_i(\bar{\alpha}) \leq \ell g(\bar{\alpha}))\} \\ \mathbf{m}(\bar{\alpha}) &= \max\{j \leq \mathbf{l}(\bar{\alpha}) : j > \max\{1, k_0(\bar{\alpha})\} \implies k_0(\bar{\alpha} \restriction j) = k_0(\bar{\alpha})\} \\ \mathbf{k}(\bar{\alpha}) &= \mathbf{l}(\bar{\alpha} \restriction \mathbf{m}(\bar{\alpha})) \quad (\text{if } \mathbf{m}(\bar{\alpha}) \leq 1 \text{ then put } \mathbf{k}(\bar{\alpha}) = -1). \end{aligned}$$

Clearly $\mathbf{k}(\bar{\alpha}) < \mathbf{m}(\bar{\alpha}) \le \mathbf{l}(\bar{\alpha}) \le k_1(\bar{\alpha}) < \ell \mathbf{g}(\bar{\alpha}).$

Claim 2.6.1. For each $\bar{\alpha} \in {}^{\omega}\lambda$, the set $u(\bar{\alpha})$ is finite and:

- (1) The sequence $\langle k_1(\bar{\alpha} \upharpoonright n) : n < \omega \rangle$ diverges to ∞ .
- (2) The sequence $\langle k_0(\bar{\alpha} \upharpoonright n) : n < \omega \& k_0(\bar{\alpha}) \neq \max u(\bar{\alpha}) \rangle$, if infinite, diverges to ∞ . There are infinitely many $n < \omega$ with $k_0(\bar{\alpha} \upharpoonright n) = \max u(\bar{\alpha})$.
- (3) The sequence $\langle \mathbf{l}(\bar{\alpha} \restriction n) : n < \omega \rangle$ diverges to ∞ .
- (4) The sequences $\langle \mathbf{m}(\bar{\alpha} \upharpoonright n) : n < \omega \rangle$ and $\langle \mathbf{k}(\bar{\alpha} \upharpoonright n) : n < \omega \rangle$ diverge to ∞ .

Proof of the claim. Let $\bar{\alpha} = \langle \alpha_n : n < \omega \rangle \in {}^{\omega}\lambda$. By the property $(\bigstar)_M^0$ we find $n^* < \omega$ such that $u(\bar{\alpha}) \subseteq n^*$. Fix $n_0 > n^*$ and define

$$n_1 = \max\{f_n(\bar{\alpha}) + g_n(\bar{\alpha}) + 2 : n \in (n_0 + 1) \setminus u(\bar{\alpha})\}$$

(so $n_1 \ge f_{n_0}(\bar{\alpha}) + 2 > n_0 + 3$ and for all $\ell \in (n_0 + 1) \setminus u(\bar{\alpha})$ we have: $\alpha_\ell \in \operatorname{cl}_M(\alpha_{\ell+1}, \dots, \alpha_{n_1-1})$ is witnessed by $\tau_{g_\ell(\bar{\alpha})}^{f_\ell(\bar{\alpha})-\ell-1}(\alpha_{\ell+1}, \dots, \alpha_{f_\ell(\bar{\alpha})-1})$ with $f_\ell(\bar{\alpha}), g_\ell(\bar{\alpha}) < n_1 - 1$).

1) Note that $u(\bar{\alpha} \upharpoonright n) \cap (n_0 + 1) = u(\bar{\alpha})$ for all $n \ge n_1 - 1$ and hence for $n \ge n_1$

$$u(\bar{\alpha}\restriction n)\cap (n_0+1)=u(\bar{\alpha}\restriction (n-1))\cap (n_0+1).$$

Consequently for all $n \ge n_1$ we have that $k_1(\bar{\alpha} \upharpoonright n) > n_0$. As we could have chosen n_0 arbitrarily large we may conclude that $\lim_{n \to \infty} k_1(\bar{\alpha} \upharpoonright n) = \infty$.

2) Note that for all $n \ge n_1$

either
$$k_0(\bar{\alpha} \upharpoonright n) = \max(u(\bar{\alpha}))$$
 or $k_0(\bar{\alpha} \upharpoonright n) > n_0$.

Hence, by the arbitrarity of n_0 , we get the first part of 2). Let $\ell^* = \min(u(\bar{\alpha} \upharpoonright n_1) \setminus u(\bar{\alpha}))$ (note that $n_1 - 1 \in u(\bar{\alpha} \upharpoonright n_1) \setminus u(\bar{\alpha})$). Clearly $\ell^* > n_0$ and $\alpha_{\ell^*} \notin u(\bar{\alpha})$. Consider $n = f_{\ell^*}(\bar{\alpha})$ (so $\ell^* \leq n-2, n_1 \leq n-1$). Then $\ell^* \in u(\bar{\alpha} \upharpoonright (n-1)) \setminus u(\bar{\alpha} \upharpoonright n)$. As

$$\ell^* \cap u(\bar{\alpha} \restriction n_1) = \ell^* \cap u(\bar{\alpha} \restriction n - 1) = u(\bar{\alpha})$$

(remember the choice of ℓ^*) we conclude that

 $\ell^* = k_1(\bar{\alpha} \upharpoonright n)$ and $k_0(\bar{\alpha} \upharpoonright n) = \max u(\bar{\alpha}).$

Now, since n_0 was arbitrarily large, we get that for infinitely many n, $k_0(\bar{\alpha} \upharpoonright n) = \max u(\bar{\alpha})$.

3) Suppose that $n \ge n_1$. Then we know that $k_1(\bar{\alpha} \upharpoonright n) > n_0$ and either $k_0(\bar{\alpha} \upharpoonright n) = \max u(\bar{\alpha})$ or $k_0(\bar{\alpha} \upharpoonright n) > n_0$ (see above). If the first possibility takes place then, as $n \ge n_1$, we may use $j = n_0 + 1$ to witness that $\mathbf{l}(\bar{\alpha} \upharpoonright n) > n_0$ (remember the choice of n_1). If $k_0(\bar{\alpha} \upharpoonright n) > n_0$ then clearly $\mathbf{l}(\bar{\alpha} \upharpoonright n) > n_0$. As n_0 could be arbitrarily large we are done.

4) Suppose we are given $m_0 < \omega$. Take $m_1 > m_0$ such that for all $n \ge m_1$

either $k_0(\bar{\alpha} \upharpoonright n) = \max u(\bar{\alpha})$ or $k_0(\bar{\alpha} \upharpoonright n) > m_0$

(possible by 2)) and then choose $m_2 > m_1$ such that $k_0(\bar{\alpha} \upharpoonright m_2) = \max u(\bar{\alpha})$ (by 2)). Due to 3) we find $m_3 > m_2$ such that for all $n \ge m_3$, $\mathbf{l}(\bar{\alpha} \upharpoonright n) > m_2$. Now suppose that $n \ge m_3$. If $k_0(\bar{\alpha} \upharpoonright n) = \max u(\bar{\alpha})$ then, as $\mathbf{l}(\bar{\alpha} \upharpoonright n) > m_2$, we get $\mathbf{m}(\bar{\alpha} \upharpoonright n) \ge m_2 > m_0$. Otherwise $k_0(\bar{\alpha} \upharpoonright n) > m_0$ (as $n > m_1$) and hence $\mathbf{m}(\bar{\alpha} \upharpoonright n) > m_0$. This shows that $\lim_{n \to \infty} \mathbf{m}(\bar{\alpha} \upharpoonright n) = \infty$. Now, immediately by the definition of \mathbf{k} and 3) above we conclude that $\lim_{n \to \infty} \mathbf{k}(\bar{\alpha} \upharpoonright n) = \infty$. \Box

Claim 2.6.2. If
$$\bar{\alpha}^1, \bar{\alpha}^2 \in {}^{\omega}\lambda$$
 are such that $(\forall^{\infty}n)(\alpha_n^1 = \alpha_n^2)$ then
 $(\forall^{\infty}n) \left(\mathbf{l}(\bar{\alpha}^1 \restriction n) = \mathbf{l}(\bar{\alpha}^2 \restriction n) \& \mathbf{m}(\bar{\alpha}^1 \restriction n) = \mathbf{m}(\bar{\alpha}^2 \restriction n) \& \mathbf{k}(\bar{\alpha}^1 \restriction n) = \mathbf{k}(\bar{\alpha}^2 \restriction n) \right).$

Proof of the claim. Let n_0 be greater than $\max(u(\bar{\alpha}^1) \cup u(\bar{\alpha}^2))$ and such that

 $\bar{\alpha}^1 \upharpoonright [n_0, \omega) = \bar{\alpha}^2 \upharpoonright [n_0, \omega).$

For k = 1, 2, 3 define n_k by

$$n_{k+1} = \max\{f_n(\bar{\alpha}^i) + g_n(\bar{\alpha}^i) + 2 : n \in (n_k + 1) \setminus u(\bar{\alpha}^i), \ i < 2\}.$$

As in the proof of 2.6.1 we have that then for i = 1, 2 and j < 3:

$$\begin{array}{l} (\otimes^1) \ (\forall n \geq n_{j+1})(k_0(\bar{\alpha}^i \upharpoonright n) = \max u(\bar{\alpha}^i) \quad \text{or} \quad k_0(\bar{\alpha}^i \upharpoonright n) > n_j) \\ (\otimes^2) \ (\forall n \geq n_{j+1})(k_1(\bar{\alpha}^i \upharpoonright n) > n_j \& \mathbf{l}(\bar{\alpha}^i \upharpoonright n) > n_j) \\ (\otimes^3) \ (\exists n' \in (n_1, n_2))(k_0(\bar{\alpha}^1 \upharpoonright n') = \max u(\bar{\alpha}^1) \& k_0(\bar{\alpha}^2 \upharpoonright n') = \max u(\bar{\alpha}^2)) \\ (\text{for} \ (\otimes^3) \text{ repeat arguments from 2.6.1.(2) and use the fact that } \bar{\alpha}^1 \upharpoonright [n_0, \omega) = \bar{\alpha}^2 \upharpoonright [n_0, \omega)). \ \text{Clearly} \end{array}$$

$$(\otimes^4) \ (\forall n > n_0)(u(\bar{\alpha}^1 \upharpoonright n) \setminus n_0 = u(\bar{\alpha}^2 \upharpoonright n) \setminus n_0)$$

Hence, applying (\otimes^1) , (\otimes^2) , we conclude that:

 (\otimes^5) $(\forall n \ge n_1)(k_1(\bar{\alpha}^1 \restriction n) = k_1(\bar{\alpha}^2 \restriction n))$ and

(\otimes^6) for all $n \ge n_1$: either $k_0(\bar{\alpha}^1 \upharpoonright n) = \max u(\bar{\alpha}^1)$ and $k_0(\bar{\alpha}^2 \upharpoonright n) = \max u(\bar{\alpha}^2)$ or $k_0(\bar{\alpha}^1 \upharpoonright n) = k_0(\bar{\alpha}^2 \upharpoonright n)$.

Since

$$(\forall n \ge n_0)(f_n(\bar{\alpha}^1) = f_n(\bar{\alpha}^2) \& g_n(\bar{\alpha}^1) = g_n(\bar{\alpha}^2))$$

and by $(\otimes^2) + (\otimes^5)$, we get (compare the proof of 2.6.1):

$$(\forall n \ge n_1)(\mathbf{l}(\bar{\alpha}^1 \restriction n) = \mathbf{l}(\bar{\alpha}^2 \restriction n))$$

and by $(\otimes^2) + (\otimes^3) + (\otimes^6)$

$$(\forall n \ge n_3)(\mathbf{m}(\bar{\alpha}^1 \restriction n) = \mathbf{m}(\bar{\alpha}^2 \restriction n) \ge n_1).$$

Moreover, now we easily get that

$$(\forall n \ge n_3)(\mathbf{k}(\bar{\alpha}^1 \restriction n) = \mathbf{k}(\bar{\alpha}^2 \restriction n)).$$

For integers $n_0 \leq n_1 \leq n_2$ we define functions $F^0_{n_0,n_1,n_2} : {}^{n_2}\lambda \longrightarrow \mathcal{H}(\aleph_0)$ by letting $F^0_{n_0,n_1,n_2}(\alpha_0,\ldots,\alpha_{n_2-1})$ (for $\langle \alpha_0,\ldots,\alpha_{n_2-1}\rangle \in {}^{n_2}\lambda$) be the sequence consisting of:

- (a) $\langle n_0, n_1, n_2 \rangle$,
- (b) the set T_{n_1,n_2} of all terms τ_{ℓ}^n such that $n \leq n_2 n_1$ and either $\ell \leq n_2$ (we will call it *the simple case*) or τ_{ℓ}^n is a composition of depth at most n_2 of such terms,
- (c) $\langle \eta_{\alpha} \upharpoonright n_2, n, \ell, \langle i_0, \dots, i_{n-1} \rangle \rangle$ for $n \leq n_2 n_1, i_0, \dots, i_{n-1} \in [n_1, n_2)$ and ℓ such that $\tau_{\ell}^n \in T_{n_1, n_2}$ and $\alpha = \tau_{\ell}^n(\alpha_{i_0}, \dots, \alpha_{i_{n-1}}),$

- (d) $\langle n, \ell, \langle i_0, \dots, i_{n-1} \rangle, i \rangle$ for $n \leq n_2 n_1, i_0, \dots, i_{n-1} \in [n_1, n_2), i \in [n_0, n_1)$ and ℓ such that $\tau_\ell^n \in T_{n_1, n_2}$ and $\alpha_i = \tau_\ell^n(\alpha_{i_0}, \dots, \alpha_{i_{n-1}}),$
- (e) equalities among appropriate terms, i.e. all tuples

 $\langle n', \ell', n'', \ell'', \langle i'_0, \dots, i'_{n'-1} \rangle, \langle i''_0, \dots, i''_{n''-1} \rangle \rangle$

such that $n_1 \leq i'_0 < \ldots < i'_{n'-1} < n_2, n_1 \leq i''_0 < \ldots < i''_{n''-1} < n_2,$ $n', n'' \leq n_2 - n_1, \ell', \ell''$ are such that $\tau_{\ell'}^{n'}, \tau_{\ell''}^{n''} \in T_{n_1,n_2}$ and

$$\tau_{\ell'}^{n'}(\alpha_{i'_0},\ldots,\alpha_{i'_{n'-1}})=\tau_{\ell''}^{n''}(\alpha_{i''_0},\ldots,\alpha_{i''_{n''-1}}).$$

(Note that the value of $F_{n_0,n_1,n_2}^0(\bar{\alpha})$ does not depend on $\bar{\alpha} \upharpoonright n_0$.) Finally we define functions $F_n : {}^n \lambda \longrightarrow \mathcal{H}(\aleph_0)$ (for $1 < n < \omega$) by:

if $\bar{\alpha} \in {}^{n}\lambda$ then $F_{n}(\bar{\alpha}) = F^{0}_{\mathbf{k}(\bar{\alpha}),\mathbf{l}(\bar{\alpha}),n}(\bar{\alpha}).$

As $\mathcal{H}(\aleph_0)$ is countable we may think that these functions are into ω . We are going to show that they witness $\mathcal{KL}(\lambda, \omega)$.

Claim 2.6.3. If $\bar{\alpha}^1, \bar{\alpha}^2 \in {}^{\omega}\lambda$ are such that $(\forall^{\infty}n)(\alpha_n^1 = \alpha_n^2)$ then $(\forall^{\infty}n)(F_n(\bar{\alpha}^1 \upharpoonright n) = F_n(\bar{\alpha}^2 \upharpoonright n)).$

Proof of the claim. Take $m_0 < \omega$ such that for all $n \in [m_0, \omega)$ we have

 $\alpha_n^1 = \alpha_n^2, \quad \mathbf{l}(\bar{\alpha}^1 {\restriction} n) = \mathbf{l}(\bar{\alpha}^2 {\restriction} n), \quad \text{ and } \mathbf{k}(\bar{\alpha}^1 {\restriction} n) = \mathbf{k}(\bar{\alpha}^2 {\restriction} n)$

(possible by 2.6.2). Let $m_1 > m_0$ be such that for all $n \ge m_1$:

$$\mathbf{k}(\bar{\alpha}^1 \!\upharpoonright\! n) = \mathbf{k}(\bar{\alpha}^2 \!\upharpoonright\! n) > m_0$$

(use 2.6.1). Then, for $n \ge m_1$, i = 1, 2 we have

$$F_n(\bar{\alpha}^i \restriction n) = F^0_{\mathbf{k}(\bar{\alpha}^i \restriction n), \mathbf{l}(\bar{\alpha}^i \restriction n), n}(\bar{\alpha}^i \restriction n) = F^0_{\mathbf{k}(\bar{\alpha}^1 \restriction n), \mathbf{l}(\bar{\alpha}^1 \restriction n), n}(\bar{\alpha}^i \restriction n).$$

Since the value of $F^0_{n_0,n_1,n_2}(\bar{\beta})$ does not depend on $\bar{\beta} \upharpoonright n_0$ and the sequences $\bar{\alpha}^1 \upharpoonright n, \bar{\alpha}^2 \upharpoonright n$ agree on $[m_0, \omega)$, we get

 $F^{0}_{\mathbf{k}(\bar{\alpha}^{1}\restriction n),\mathbf{l}(\bar{\alpha}^{1}\restriction n),n}(\bar{\alpha}^{1}\restriction n) = F^{0}_{\mathbf{k}(\bar{\alpha}^{1}\restriction n),\mathbf{l}(\bar{\alpha}^{1}\restriction n),n}(\bar{\alpha}^{2}\restriction n) = F^{0}_{\mathbf{k}(\bar{\alpha}^{2}\restriction n),\mathbf{l}(\bar{\alpha}^{2}\restriction n),n}(\bar{\alpha}^{2}\restriction n),$ and hence

$$(\forall n \ge m_1)(F_n(\bar{\alpha}^1 \restriction n) = F_n(\bar{\alpha}^2 \restriction n)),$$

finishing the proof of the claim.

Claim 2.6.4. If $\bar{\alpha}^1, \bar{\alpha}^2 \in {}^{\omega}\lambda$ and $(\forall^{\infty}n)(F_n(\bar{\alpha}^1 \upharpoonright n) = F_n(\bar{\alpha}^2 \upharpoonright n))$ then $(\forall^{\infty}n)(\alpha_n^1 = \alpha_n^2)$

Proof of the claim. Take $n_0 < \omega$ such that

 $u(\bar{\alpha}^1) \cup u(\bar{\alpha}^2) \subseteq n_0$ and $(\forall n \ge n_0)(F_n(\bar{\alpha}^1 \restriction n) = F_n(\bar{\alpha}^2 \restriction n)).$

Then for all $n \ge n_0$ we have (by clause (a) of the definition of F_{n_0,n_1,n_2}^0):

$$\mathbf{l}(\bar{\alpha}^1 \restriction n) = \mathbf{l}(\bar{\alpha}^2 \restriction n) \quad \& \quad \mathbf{k}(\bar{\alpha}^1 \restriction n) = \mathbf{k}(\bar{\alpha}^2 \restriction n).$$

Further, let $n_1 > n_0$ be such that for all $n \ge n_1$, $\mathbf{k}(\bar{\alpha}^1 | n) > n_0$.

We are going to show that $\alpha_n^1 = \alpha_n^2$ for all $n > n_1$. Assume not. Then we have $n > n_1$ with $\alpha_n^1 \neq \alpha_n^2$ and thus $\eta_{\alpha_n^1} \neq \eta_{\alpha_n^2}$. Take n' > n such that $\eta_{\alpha_n^1} \upharpoonright n' \neq \eta_{\alpha_n^2} \upharpoonright n'$. Applying 2.6.1 (2) and (4) choose n'' > n' such that

$$\mathbf{m}(\bar{\alpha}^1 \upharpoonright n'') > n' \text{ and } k_0(\bar{\alpha}^1 \upharpoonright n'') = \max u(\bar{\alpha}^1).$$

Now define inductively: $m_0 = n'', m_{k+1} = \mathbf{m}(\bar{\alpha}^1 \upharpoonright m_k)$. Thus

$$n'' = m_0 > \mathbf{l}(\bar{\alpha}^1 \upharpoonright m_0) \ge m_1 > \mathbf{l}(\bar{\alpha}^1 \upharpoonright m_1) \ge m_2 > \dots$$

and

$$m_k > \max u(\bar{\alpha}^1) \quad \Rightarrow \quad k_0(\bar{\alpha}^1 \restriction m_k) = \max u(\bar{\alpha}^1)$$

(see the definition of **m**). Let k^* be the first such that $n \ge m_{k^*}$ (so $k^* \ge 2$). Note that by the choice of n_1 above we necessarily have

$$m_{k^*} > \mathbf{l}(\bar{\alpha}^1 \restriction m_{k^*}) = \mathbf{k}(\bar{\alpha}^1 \restriction m_{k^*-1}) > n_0.$$

Hence for all $k < k^*$:

$$F_{m_k}(\bar{\alpha}^1 \restriction m_k) = F_{m_k}(\bar{\alpha}^2 \restriction m_k) \quad \text{and} \\ \mathbf{l}(\bar{\alpha}^1 \restriction m_{k+1}) = \mathbf{l}(\bar{\alpha}^2 \restriction m_{k+1}) = \mathbf{k}(\bar{\alpha}^1 \restriction m_k) = \mathbf{k}(\bar{\alpha}^2 \restriction m_k).$$

By the definition of the functions $\mathbf{l}, \mathbf{m}, \mathbf{k}$ and the choice of m_0 (remember $k_0(\bar{\alpha}^1 \upharpoonright m_0) = \max u(\bar{\alpha}^1)$) we know that for each $i \in [\mathbf{k}(\bar{\alpha}^1 \upharpoonright m_k), \mathbf{l}(\bar{\alpha}^1 \upharpoonright m_k))$, $k < k^*$ for some $\tau_\ell^m \in T_{\mathbf{l}(\bar{\alpha}^1 \upharpoonright m_k), m_k}$ and $i_0, \ldots, i_{m-1} \in [\mathbf{l}(\bar{\alpha}^1 \upharpoonright m_k), m_k)$ we have $\alpha_i^1 = \tau_\ell^m(\alpha_{i_0}^1, \ldots, \alpha_{i_{m-1}}^1)$. Moreover we may demand that τ_ℓ^m is a composition of depth at most $\mathbf{l}(\bar{\alpha}^1 \upharpoonright m_k) - i$ of simple case terms. Since

$$F^{0}_{\mathbf{k}(\bar{\alpha}^{1}\restriction m_{k}),\mathbf{l}(\bar{\alpha}^{1}\restriction m_{k}),m_{k}}(\bar{\alpha}^{1}\restriction m_{k}) = F^{0}_{\mathbf{k}(\bar{\alpha}^{2}\restriction m_{k}),\mathbf{l}(\bar{\alpha}^{2}\restriction m_{k}),m_{k}}(\bar{\alpha}^{2}\restriction m_{k})$$

we conclude that (by clause (d) of the definition of the functions F_{n_0,n_1,n_2}^0):

$$\alpha_i^2 = \tau_\ell^m(\alpha_{i_0}^2, \dots, \alpha_{i_{m-1}}^2).$$

Now look at our n.

If $\mathbf{l}(\bar{\alpha}^1 \upharpoonright m_{k^*-1}) > n$ then $\mathbf{k}(\bar{\alpha}^1 \upharpoonright m_{k^*-1}) \leq n < \mathbf{l}(\bar{\alpha}^1 \upharpoonright m_{k^*-1})$ and thus we find $i_0, \ldots, i_{m-1} \in [\mathbf{l}(\bar{\alpha}^1 \upharpoonright m_{k^*-1}), m_{k^*-1})$ and $\tau_{\ell}^m \in T_{\mathbf{l}(\bar{\alpha}^1 \upharpoonright m_{k^*-1}), m_{k^*-1}}$ such that

$$\alpha_n^1 = \tau_\ell^m(\alpha_{i_0}^1, \dots, \alpha_{m-1}^1) \& \alpha_n^2 = \tau_\ell^m(\alpha_{i_0}^2, \dots, \alpha_{m-1}^2)$$

If $\mathbf{l}(\bar{\alpha}^1 \upharpoonright m_{k^*-1}) \leq n$ then $n \in [\mathbf{k}(\bar{\alpha}^1 \upharpoonright m_{k^*-2}), \mathbf{l}(\bar{\alpha}^1 \upharpoonright m_{k^*-2}))$ (as $\mathbf{l}(\bar{\alpha}^1 \upharpoonright m_{k^*-1}) = \mathbf{k}(\bar{\alpha}^1 \upharpoonright m_{k^*-2})$ and $n < m_{k^*-1} \leq \mathbf{l}(\bar{\alpha}^1 \upharpoonright m_{k^*-2}))$. Hence, for some $i_0, \ldots, i_{m-1} \in [\mathbf{l}(\bar{\alpha}^1 \upharpoonright m_{k^*-2}), m_{k^*-2})$ and $\tau_{\ell}^m \in T_{\mathbf{l}(\bar{\alpha}^1 \upharpoonright m_{k^*-2}), m_{k^*-2})$, we have

$$\alpha_n^1 = \tau_\ell^m(\alpha_{i_0}^1, \dots, \alpha_{m-1}^1) \& \alpha_n^2 = \tau_\ell^m(\alpha_{i_0}^2, \dots, \alpha_{m-1}^2).$$

In both cases we may additionally demand that the respective term τ_{ℓ}^m is a composition of depth $\mathbf{l}(\bar{\alpha}^1 \upharpoonright m_{k^*-1}) - n$ (or $\mathbf{l}(\bar{\alpha}^1 \upharpoonright m_{k^*-2}) - n$, respectively) of terms of the simple case. Now we proceed inductively (taking care of the depth of involved terms) and we find a term $\tau \in T_{\mathbf{l}(\bar{\alpha}^1 \upharpoonright m_0), m_0}$ (which is a

composition of depth at most $\mathbf{l}(\bar{\alpha}^1 \upharpoonright m_0) - n$ of terms of the simple case) and $i_0, \ldots, i_{m-1} \in [\mathbf{l}(\bar{\alpha}^1 \upharpoonright m_0), m_0)$ such that

$$\alpha_n^1 = \tau(\alpha_{i_0}^1, \dots, \alpha_{m-1}^1) \& \alpha_n^2 = \tau(\alpha_{i_0}^2, \dots, \alpha_{m-1}^2)$$

But now applying the clause (c) of the definition of the functions F_{n_0,n_1,n_2}^0 we conclude that $\eta_{\alpha_n^1} \upharpoonright m_0 = \eta_{\alpha_n^2} \upharpoonright m_0$. Contradiction to the choice of n' and the fact that $m_0 > n'$.

The last two claims finish the proof of the theorem.

Remark 2.7. If the models M have $\kappa < \lambda$ functions (so $\langle \tau_i^n(x_0, \ldots, x_{n-1}) : i < \kappa \rangle$ lists the *n*-place terms) we can prove $\mathcal{KL}(\lambda, \kappa)$ and the proof is similar.

* * *

Final Remarks 2.8. 1) Now we phrase exactly what is needed to carry the proof of theorem 1.1 for $\lambda > \kappa$. It is:

(\boxtimes) for every model M with universe λ and Skolem functions and with countable vocabulary, we can find pairwise distinct $\alpha_{n,\ell} < \lambda$ (for $n < \omega, \ell < \omega$) such that

(\otimes) if $m_0 < m_1 < \omega$ and $\ell'_i < \ell''_i$ for $i < m_0$ and $\ell_i < \omega$ for $i \in [m_0, m_1)$ then the models

$$(\mathrm{Sk}(\{\alpha_{i,\ell'_{i}},\alpha_{i,\ell''_{i}}:i< m_{0}\}\cup\{\alpha_{m_{0},k_{0}},\alpha_{m_{0},k_{1}}\}\cup\{\alpha_{i,\ell_{i}}:i\in(m_{0},m_{1})\}),\\\alpha_{0,\ell'_{0}},\alpha_{0,\ell''_{0}},\alpha_{1,\ell'_{1}},\alpha_{1,\ell''_{1}},\ldots,\alpha_{m_{0}-1,\ell'_{m_{0}-1}},\alpha_{m_{0}-1,\ell''_{m_{0}-1}},\alpha_{m_{0},k_{0}},\\\alpha_{m_{0},k_{1}},\alpha_{m_{0}+1,\ell_{m_{0}+1}},\ldots,\alpha_{m_{1}-1,\ell_{m_{1}-1}})$$

and

$$(\mathrm{Sk}(\{\alpha_{i,\ell'_{i}},\alpha_{i,\ell''_{i}}:i< m_{0}\}\cup\{\alpha_{m_{0},k_{0}},\alpha_{m_{0},k_{2}}\}\cup\{\alpha_{i,\ell_{i}}:i\in(m_{0},m_{1})\}),\\alpha_{0,\ell'_{0}},\alpha_{0,\ell''_{0}},\alpha_{1,\ell'_{1}},\alpha_{1,\ell''_{1}},\ldots,\alpha_{m_{0}-1,\ell'_{m_{0}-1}},\alpha_{m_{0}-1,\ell''_{m_{0}-1}},\alpha_{m_{0},k_{0}},\\alpha_{m_{0},k_{2}},\alpha_{m_{0}+1,\ell_{m_{0}+1}},\ldots,\alpha_{m_{1}-1,\ell_{m_{1}-1}})$$

are isomorphic and the isomorphism is the identity on their intersection and they have the same intersection with κ .

For more details and more related results we refer the reader to [?]. 2) Together with 1.5, 2.7 this gives a good bound to the consistency strength of $\neg \mathcal{KL}(\lambda, \kappa)$.

3) What if we ask $F_n : {}^n\lambda \longrightarrow {}^{\omega}{}^{>}\kappa$ such that $F_n(\eta) \trianglelefteq F_{n+1}(\eta)$ and $\eta \in {}^{\omega}\lambda \Rightarrow F(\eta) = \bigcup F_n(\eta \upharpoonright n) \in {}^{\omega}\kappa$? No real change.

15

16

SAHARON SHELAH

References

INSTITUTE OF MATHEMATICS, THE HEBREW UNIVERSITY OF JERUSALEM, 91904 JERUSALEM, ISRAEL, AND DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, NEW BRUNSWICK, NJ 08854, USA

Email address: shelah@math.huji.ac.il URL: http://www.math.rutgers.edu/~shelah