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Abstract. We prove that it is consistent that the covering number of
the ideal of measure zero sets has countable cofinality.

0. Introduction

In the present paper we show that it is consistent that the covering of the
null ideal has countable cofinality. Recall that the covering number of the
null ideal (i.e. the ideal of measure zero sets) is defined as

cov(null) = min{|P| : P ⊆ null and
⋃
A∈P

A = R(= ω2)}.

The question whether the cofinality of cov(null) is uncountable has been
raised by D. Fremlin and has been around since the late seventies. It appears
in the current Fremlin’s list of problems, [?], as problem CO. Recall that for
the ideal of meagre sets the answer is positive, i.e. A. Miller [?] proved that
the cofinality of the covering of category is uncountable. T. Bartoszyński [?]
saw that b < ℵω is necessary (see [?, ch 5] for more results related to this
problem). It should be noted that most people thought cf(cov(null)) = ℵ0

is impossible
The main result of this paper is the following:

Theorem 0.1. Con(cov(null) = ℵω + MAℵn) for each n < ω.

The presentation of the proof of 0.1 sacrifices generality for hopeful trans-
parency. We finish by some further remarks, e.g. the exact cardinal assump-
tion for 0.1. We try to make the paper self contained for readers with basic
knowledge of forcing.

In a subsequent paper, [?], we deal with the question: “can every non-
null set be partitioned to uncountably many non-null sets”, equivalently:
“can the ideal of null sets which are subsets of a non-null subset of R be
ℵ1-saturated”. P. Komjath [?] proved that it is consistent that there is a non-
meagre set A such that the ideal of meagre subsets of A is ℵ1-saturated. The
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2 SAHARON SHELAH

question whether a similar fact may hold for measure dates back to Ulam,
see also Prikry’s thesis. It appears as question EL(a) on the Fremlin’s list.
In [?] we prove the following:

Theorem 1. It is consistent that there is a non-null set A ⊆ R such that
the ideal of null subsets of A is ℵ1-saturated (of course, provided that “ZFC
+∃ measurable” is consistent).

In [?] we also prove the following.

Theorem 2. It is consistent that:

(⊕) there is a non null A ⊆ R such that: for every f : A → R, the
function f as a subset of the plane R× R is null

provided that “ZFC + there is a measurable cardinal” is consistent.

Notation 0.2. We denote:

• natural numbers by k, l, m, n and also i, j
• ordinals by α, β, γ, δ, ζ, ξ (δ always limit)
• cardinals by λ, κ, χ, µ
• reals by a, b and positive real (normally small) by ε.
• subsets of ω or ω≥2 or Ord by A, B, C, X, Y , Z but
• B is a Borel function
• finitely additive measures by Ξ
• sequences of natural numbers or ordinals by η, ν, ρ,
• s is used for various things

T is as in definition 2.9, t is a member of T .
We denote

• forcing notions by P , Q,
• forcing conditions by p, q

and use r to denote members of Random (see below) except in definition
2.2.

• Leb is the Lebesgue measure (on ω2),
• Random will be the family{

r ⊆ ω>2 : r is a subtree of (ω>2,C)
(i.e. non-empty subset of ω>2 closed under initial segments)
with no C –maximal element
(so lim(r) =: {η ∈ ω2 : (∀n ∈ ω)(η�n ∈ t)}
is a closed subset of ω2)

and Leb(lim(r)) > 0
}

ordered by inverse inclusion. We may sometimes use instead

{B : B is a Borel non-null subset of ω2}.

For η ∈ ω>2, A ⊆ ω≥2 let

A[η] = {ν ∈ A : ν E η ∨ η E ν}.
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Let H(χ) denote the family of sets with transitive closure of cardinality < χ,
and let <∗χ denote a well ordering of H(χ).

We thank Tomek Bartoszyński and Mariusz Rabus for reading and com-
menting and correcting.

1. Preliminaries

We review various facts on finitely additive measures.

Definition 1.1. (1) M is the set of functions Ξ from some Boolean subal-
gebra P of P(ω) including the finite sets, to [0, 1]R such that:

• Ξ(∅) = 0, Ξ(ω) = 1,
• if Y,Z ∈ P are disjoint, then Ξ(Y ∪ Z) = Ξ(Y ) + Ξ(Z),
• Ξ({n}) = 0 for n ∈ ω.

(2) Mfull is the set of Ξ ∈ M with domain P(ω) and members are called
“finitely additive measures (on ω)”.
(3) We say “A has Ξ-measure a (or > a, or whatever) if A ∈ dom(Ξ) and
Ξ(A) is a (or > a or whatever).

Proposition 1.2. Let aα, bα (α < α∗) be reals, 0 ≤ aα ≤ bα ≤ 1, and let
Aα ⊆ ω (α < α∗) be given. The following conditions are equivalent:

(A) There exists Ξ ∈M which satisfies Ξ(Aα) ∈ [aα, bα] for α < α∗.
(B) For every ε > 0,m < ω and n < ω, and α0 < α1, . . . < αn−1 < α∗

we can find a finite, non-empty u ⊆ [m,ω) such that for l < n

aαl − ε ≤ |Aαl ∩ u|/|u| ≤ bαl + ε.

(C) For every real ε > 0, n < ω and α0 < α1, . . . < αn−1 < α∗ there are
cl ∈ [aαl − ε, bαl + ε] such that in the vector space Rn, 〈c0, . . . cn−1〉
is in the convex hull of {ρ ∈ n{0, 1} : for infinitely many m ∈ ω we
have ∀l<n[ρ(l) = 1⇔ m ∈ Aαl ]}.

(D) Like part (A) with Ξ ∈Mfull.
(E) like part (B) demanding u ⊆ ω, |u| ≥ m.

Proof. Straightforward. On (C) see the 2.17. �

Proposition 1.3. 1) Assume that Ξ0 ∈ M and for α < α∗, Aα ⊆ ω and
0 ≤ aα ≤ bα ≤ 1, aα, bα reals. The following are equivalent:

(A) There is Ξ ∈ Mfull extending Ξ0 such that α < α∗ ⇒ Ξ(Aα) ∈
[aα, bα].

(B) For every partition 〈B0, . . . , Bm−1〉 of ω with Bi ∈ dom(Ξ0) and
ε > 0, n < ω and α0 < . . . < αn−1 < α∗ we can find a finite
set u ⊆ ω such that Ξ(Bα) − ε ≤ |u ∩ Bα|/|u| ≤ Ξ(Bα) + ε and
aαl − ε ≤ |u ∩Aαl |/|u| ≤ bαl + ε.

(C) For every partition 〈B0, . . . , Bm−1〉 of ω with Bi ∈ dom(Ξ0) and
ε > 0, n < ω and α0 < . . . < αn−1 < α∗ we can find cl,k ∈ [0, 1]R for
l < n, k < m such that
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(a)
∑
k<m

cl,k ∈ (aαl − ε, bαl + ε)

(b) for each k < m and s < ω we can find u ⊆ Bk with ≥ s members
such that

l < n⇒ cl,k − ε < (|u ∩Al ∩Bk|/|u|)× Ξ(Bk) < cl,k + ε.

(D) for every partition 〈B0, . . . , Bm−1〉 of ω, with Bi ∈ dom(Ξ0), ε > 0,
n < ω, and α0, . . . , αn−1 < α∗ we can find cl,k ∈ [0, 1]R for l < n,
k < m such that
(a)

∑
k<m cl,k ∈ [aαl − ε, bαl + ε],

(b) 〈cl,k : l < n〉 is in the convex hull of

{ρ ∈ n{0, 1} : for infinitely many i ∈ Bk, we have:
(∀l < n)[ρ(l) = 1⇔ i ∈ Aαl ]}.

2) The following are sufficient conditions for (A), (B), (C), (D) above:

(E) For every ε > 0, A∗ ∈ dom(Ξ0) such that Ξ0(A∗) > 0, n < ω,
α0 < . . . < αn−1 < α∗, we can find a finite, non-empty u ⊆ A∗ such
that aαl − ε ≤ |Aαl ∩ u|/|u| ≤ bαl + ε for l < n.

(F) For every ε > 0, n < ω, α0 < α1, . . . < αn−1 < α∗ and A∗ ∈
dom(Ξ0) such that Ξ0(A∗) > 0, the set

∏
l<n[aαl − ε, bαl + ε] ⊆ Rn

is not disjoint to the convex hull of

{ρ ∈ n{0, 1} : for infinitely many m ∈ A∗ we have:
∀l<n[ρ(l) = 1⇔ m ∈ Aαl ]}.

3) If in addition bα = 1 for α < α∗ then a sufficient condition for (A) —
(E) above is

(G) if A∗ ∈ dom(Ξ0) and Ξ(A∗) > 0 and n < ω and α0 < . . . < αn−1 <
α∗ then A∗ ∩

⋂
l<n

Aαl 6= ∅.

Proof. Straightforward. �

Definition 1.4. (1) For Ξ ∈Mfull and sequence ā = 〈al : l < ω〉 of reals in
[0, 1]R (or just sup

l<ω
(|al|) <∞), let

AvΞ(ā) =
sup{

∑
k<k∗

Ξ(Ak) inf({al : l ∈ Ak}) : 〈Ak : k < k∗〉 is a partition of ω} =

inf{
∑
k<k∗

Ξ(Ak) sup({al : l ∈ Ak}) : 〈Ak : k < k∗〉 is a partition of ω}.

(Easily proved that they are equal.)
(2) For Ξ ∈ M, A ⊆ ω such that Ξ(A) > 0 define ΞA(B) = Ξ(A ∩

B)/Ξ(A). Clearly ΞA ∈ M with the same domain, ΞA(A) = 1. If B ⊆ ω
and Ξ(B) > 0 then we let

AvΞ�B(〈ak : k ∈ B〉) = AvΞ(〈a′k : k < ω〉)/Ξ(B)

where a′k =

{
ak if k ∈ B
0 if k /∈ B
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Proposition 1.5. Assume that Ξ ∈ Mfull and ail ∈ [0, 1]R for i < i∗ < ω,
l < ω, B ⊆ ω, Ξ(B) > 0 and AvΞB (〈ail : l < ω〉) = bi for i < i∗, m∗ < ω
and lastly ε > 0. Then for some finite u ⊆ B \m∗ we have: if i < i∗, then
bi − ε < (

∑
{ail : l ∈ u})/|u| < bi + ε.

Proof. Let B =
⋃
j<j∗

Bj be a partition of B with j∗ < ω such that for every

i < i∗ we have∑
j<j∗

sup{ail : l ∈ Bj}Ξ(Bj)−
∑
j<j∗

inf{ail : l ∈ Bj}Ξ(Bj) < ε/2.

Now choose k∗ large enough such that there are kj satisfying k∗ =
∑
j<j∗

kj

and |kj/k∗−Ξ(Bj)/Ξ(B)| < ε/(2j∗) for j < j∗. Let uj ⊆ Bj \m∗, |uj | = kj
for j < j∗. Now let u =

⋃
j<j∗

uj . Now calculate:

∑
l∈u

ail/|u| =
∑
j<j∗

∑
{ail : l ∈ uj}/|u| ≤

∑
j<j∗

sup{ail : l ∈ Bj}kj/k∗

≤
∑
j<j∗

sup{ail : l ∈ Bj}(Ξ(Bj)/Ξ(B) + ε/2j∗)

≤ bi + ε
2 + ε

2 = bi + ε,∑
l∈u

ail/|u| =
∑
j<j∗

∑
{ail : l ∈ uj}/|u| ≥

∑
j<j∗

inf{ail : l ∈ Bj}kj/k∗

≥
∑
j<j∗

inf{ail : l ∈ Bj}(Ξ(Bj)/Ξ(B)− ε/(2j∗)) > bi − ε

�

Claim 1.6. Suppose Q1, Q2 are forcing notions, Ξ0 ∈ Mfull in V , and for
` = 1, 2


Q` “ Ξ
˜
` is a finitely additive measure extending Ξ0 ”.

Then


Q1×Q2 “there is a finitely additive measure extending Ξ
˜

1 and Ξ
˜

2

(hence Ξ0)”.

Proof. Straightforward by 1.2 as:

(∗) if 
Ql “A
˜
l ⊆ ω” and 
Q1×Q2 “A

˜
1 ∩A

˜
2 is finite” then


Q1×Q2 “ for some m and A ⊆ ω, A ∈ V we have:
A
˜

1 \m ⊆ A, (A
˜

2 \m) ∩A = ∅ ”.

�

Fact 1.7. Assume Ξ is a partial finitely additive measure, āα = 〈aαk : k < ω〉
sequence of reals for α < α∗ such that lim sup

k
|aαk | < ∞ for each α. Then

(B) ⇒ (A) where

(A) there is Ξ∗, Ξ ⊆ Ξ∗ ∈Mfull such that AvΞ∗(ā
α) ≥ bα for α < α∗.
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(B) for every partition 〈B0, . . . , Bm∗−1〉 of ω with Bm ∈ dom(Ξ) and
ε > 0, k∗ > 0 and α0 < . . . < αn∗−1 < α∗, there is a finite u ⊆ ω \k∗
such that:

(i) Ξ(Bm)− ε < |u ∩Bm|/|u| < Ξ(Bm) + ε,
(ii) 1

|u|
∑
k∈u

aαlk > bαl − ε for l < n∗.

Remark 1.8. If in (A) we demand AvΞ(āα) = bα,
then in (B)(ii) add 1

|u|
∑
k∈u

aαlk ≤ bαl + ε.

2. The iteration

Ignoring MA<κ (which anyhow was a side issue) a quite natural approach
in order to get 0.1 (i.e. cov(null) = λ, say λ = ℵω) is to use finite support
iteration, Q̄ = 〈Pα, Qα : α < α∗〉, add in the first λ steps null sets Nα (the
intention is that

⋃
α<λ

Nα = ω2 in the final model), and then iterate with Qα

being RandomVP ′α where P ′α <◦ Pα and |P ′α| < λ. Say, for some Aα ⊆ α

P ′α = {p ∈ Pα : dom(p) ⊆ Aα and this holds for the conditions
involved in the Pγ-name for γ ∈ dom(p) etc}

(so each Qα is a partial random; see Definition 2.2). If every set of < λ null

sets from VPα∗ is included in some VP ′α , clearly VPα∗ |= cov(null) ≥ λ; but
we need the other inequality too.

The problem is why does 〈Nα : α < λ〉 continue to cover? For Pλ+n such
that α ∈ [λ, λ+n)⇒ Aα = α this is very clear (we get iteration of Random
forcing) and if α ∈ [λ, λ+ n)⇒ Aα ⊆ λ this is clear (we get product). But
necessarily we get a quite chaotic sequence 〈Aαm ∩ {α` : ` < m} : m < m∗〉
for some α0 < . . . < αm∗−1. More concretely this is the problem of why
there are no perfect sets of random reals (see 2.7) or even just no dominating
reals. We need to “let the partial randoms whisper secrets one to another”,
in other words to pass information in some way. This is done by the finitely
additive measures Ξ

˜
t
α. We had tried with thinking of using ℵε-support (see

[?]), the idea is still clear in the proof of 3.3. In this proof we start with “no
dominating reals” for which we can just use ultrafilters (rather than finitely
additive measures).

Let us start with a ground model V satisfying the following hypothesis:

Hypothesis 2.1. (a) λ =
∑

ζ<δ(∗)
λζ , ℵ0 < κ = cf(κ), κ < λζ < λγ for

ζ < γ < δ(∗), χλ = χ, 2κ = χ and ζ < δ(∗)⇒ (λζ)
ℵ0 < λ,

(b) we have one of the following1:
(α) cf(χ) > λ, the length of the final iteration is χ,
(β) length of the final iteration is χ× χ× λ+.

1actually, any ordinal α∗ of cardinality χ, divisible by χ and of cofinality > λ is O.K.
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We speak mainly on (α). In case (β) we should be careful to have no
repetitions in η̄ = 〈ηα : α < δ∗〉 (see below) or 〈ηα/ ≈κ: α < δ∗〉 with no
repetitions, where η ≈κ ν iff η, ν ∈ κ2 and |{i < κ : η(i) 6= ν(i)}| < κ.

The reader may choose to restrict himself and start with V satisfying:
GCH, λ = ℵω, δ(∗) = ω, λn = ℵn(∗)+n, κ = ℵn(∗) > ℵ1 and χ = ℵω+1.
Now add ℵω+1 generic subsets of κ, i.e., force with a product of χ copies of
(κ>2,C) with support < κ. This model satisfies the hypothesis.

We intend to define a forcing P such that

VP |= 2ℵ0 = χ + cov(null) = λ + MA<κ.

Definition 2.2. 1) K is the family of sequences

Q̄ = (Pα, Q
˜
α, Aα, µα, τ

˜
α : α < α∗)

satisfying:

(A) (Pα, Q
˜
α : α < α∗) is a finite support iteration of c.c.c. forcing notions,

we call α∗ = `g(Q̄) (the length of Q̄), Pα∗ is the limit,
(B) τ

˜
α ⊆ µα < κ is the generic of Q

˜
α, (i.e. over VPα from GQ

˜
α we can

compute τ
˜
α and vice versa),

(C) Aα ⊆ α (for proving theorem 0.1 we use |Aα| < λ),
(D) Q

˜
α is a Pα-name of a c.c.c. forcing notion but computable from
〈τ
˜
γ [G

˜
Pα ] : γ ∈ Aα〉; in particular it belongs to Vα = V[〈τ

˜
γ [GPα ] :

γ ∈ Aα〉].
(E) α∗ ≥ λ and for α < λ we have Qα = (ω>2,C) (the Cohen forcing)

and µα = ℵ0 (well, identifies ω>2 with ω).
(F) For each α < α∗ one of the following holds, (and the case is deter-

mined in V):
(α) |Q

˜
α| < κ, |Aα| < κ and (just for notational simplicity) the set

of elements of Q
˜
α is µα < κ (but the order not necessarily the

order of the ordinals) and Q
˜
α is seperative (i.e. ζ 
 ξ ∈ GQ

˜
α ⇔

Q
˜
α |= ξ ≤ ζ),

(β) essentially Q
˜
α = RandomVα

(= {r ∈ Vα : r ⊆ ω>2, perfect tree, Leb(lim(r)) > 0})
and |Aα| ≥ κ;

but for simplicity Q
˜
α = RandomAα,Q̄�α where for A ⊆ `g(Q̄),

RandomA,Q̄ = {p : there is (in V ) a Borel function B = B(x0, x1, . . .),
with variables ranging on {true, false} and
range perfect subtrees r of ω>2 with Leb(lim r) > 0,

such that (∀η ∈ r)[Leb lim r[η] > 0],

recalling r[η] = {ν ∈ r : ν E η ∨ η E ν}, and
there are pairs (γ`, ζ`) for `<ω, γ` ∈ A and ζ` < µγ` ,
such that p = B(. . . , truth value(ζ` ∈ τ

˜
γ`), . . .)`<ω}

(in other notation, p = B(truth value(ζ` ∈ τ
˜
γ`) : ` < ω));

in this case we let supp(p) = {γ` : ` < ω}.
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In this case µα = ω and τ
˜
α is the random real, i.e.

τ
˜
α(n) = `⇔ (∃η ∈ n2)(ω>2)[η_〈`〉] ∈ G

˜
Qα .

2) Let

P ′α = {p ∈ Pα : for every γ ∈ dom(p), if |Aγ | < κ then
p(γ) is an ordinal < µγ (not just a Pγ–name) and
if |Aγ | ≥ κ then p(γ) has the form mentioned in clause
(F)(β) above (and not just a Pγ–name of such object) }

(this is a dense subset of Pα).
3) For A ⊆ α let

P ′A = {p ∈ P ′α : dom(p) ⊆ A and γ ∈ dom(p)⇒ supp(p(γ)) ⊆ A}

Fact 2.3. Suppose Q̄ ∈ K with `g(Q̄) = α∗.

(1) For α ≤ α∗, P ′α is a dense subset of Pα and Pα satisfies the c.c.c.
(2) If

(a) cf(α∗) > λ,
(b) for every A ⊆ α∗, if |A| < λ, then there is β < α∗ such that

A ⊆ Aβ (and |Aβ| ≥ κ).
Then, in the extension, ω2 is not the union of < λ null sets.

(3) In VPα, from τ
˜
α[GQα ] we can reconstruct GQα and vice versa. From

〈τ
˜
γ : γ < α〉[GPα ] we can reconstruct GPα and vice versa. So VPα =

V[〈τ
˜
β : β < α〉].

(4) If µ < λ, and X
˜

is a Pα∗-name of a subset of µ, then there is
a set A ⊆ α∗ such that |A| ≤ µ and 
Pα∗ “X

˜
∈ V[〈τ

˜
γ : γ ∈

A〉]”. Moreover for each ζ < µ there is in V a Borel function
B(x0, . . . , xn, . . .)n<ω with domain and range the set {true, false} and
γ` ∈ A, ζ` < µγ` for ` < ω such that


Pα∗ “ζ ∈ X
˜

iff true = B(. . . , “truth value of ζ` ∈ τ
˜
γ` [GQγ` ]”, . . .)`<ω”

(5) For Q̄ ∈ K and A ⊆ α∗, every real in V[〈τ
˜
γ : γ ∈ A〉] has the form

mentioned in clause (F)(β) of2.2(1).
(6) If condition (c) below holds then VPα∗ |= MA<κ, where

(c) if Q
˜

is a Pα∗-name of a c.c.c. forcing notion with set of elements
µ < κ then for some α < α∗, Q

˜
is a Pα-name µα = µ and


Pα “Q
˜

= Q
˜
α”.

(7) if |Aβ| ≥ κ then Qβ is actually RandomV
PAβ

.

Proof. 2) Easy using parts (3) — (7). Note that for any β < α∗ satisfying

|Aβ| ≥ κ the null sets from V[〈τ
˜
γ :γ∈Aβ〉] do not cover ω2 in VPα∗ as we have

random reals over V[〈τ
˜
γ :γ∈Aβ〉]. So, by clause (b) of the assumption, it is

enough to note that if y
˜

is a Pα∗–name of a member of ω2, then there is a
countable A ⊆ α∗, such that y

˜
[G
˜

] ∈ V[〈τ
˜
β : β ∈ A〉]. This follows by part

(4).
3) By induction on α.
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4) Let χ∗ be such that {Q̄, λ} ∈ H(χ∗), and let ζ < µ; let M be a countable
elementary submodel of (H(χ∗),∈, <∗χ∗) to which {Q̄, λ, κ, µ,X

˜
, ζ} belongs,

so 
Pα∗ “M [G
˜
Pα∗ ] ∩ H(χ∗) = M”. Hence by 2.3(3) (i.e. as VPα = V[〈τ

˜
β :

β < α〉]) we have M [G
˜
Pα∗ ] = M [〈τ

˜
i : i ∈ α∗∩M〉] and the conclusion should

be clear.
5) By 2.3(4).
6) Straight.
7) Check. �

Definition 2.4. (1) Suppose that ā = 〈al : l < ω〉 and 〈nl : l < ω〉 are such
that:

(a) al ⊆ nl2,
(b) nl < nl+1 < ω for l < ω,
(c) |al|/2nl > 1− 1/10l.

Let N [ā] =: {η ∈ ω2 : (∃∞l)(∀ν ∈ al)ν 6C η}.
(2) For ā as above and n ∈ ω, let

treen(ā) = {ν ∈ ω>2 : nl > n⇒ ν � nl ∈ al}.

It is well known that for ā as above the set N [ā] is null (and N [ā] =
ω2 \

⋃
n<ω

lim treen(ā)).

Definition 2.5. For α < λ we identify Qα (the Cohen forcing) with:

{〈(nl, al) : l < k〉 : k < ω, nl < nl+1 < ω, al ⊆ nl2, |al|/2nl > 1− 1/10l},
ordered by the end extension. If GQα is Qα-generic, let 〈(ā

˜
α
` , n˜

α
` ) : ` <

ω〉[GQα ] be the ω–sequence such that every p ∈ GQα is an initial segment
of it. So we have defined the Qα–name ā

˜
α = 〈a

˜
α
` : ` < ω〉 and similarly

〈n
˜
α
` : ` < ω〉. Let N

˜
α = N [ā

˜
α].

Our aim is to prove that

Definition 2.6. For Q̄ ∈ K with α∗ = `g(Q̄) let:

(∗)Q̄ 〈Nα : α < λ〉 cover ω2 in VPα∗ , where Pα∗ = Lim(Q̄).

We eventually shall prove it not for every Q̄, but for enough Q̄’s (basically
asking the Aα of cardinality ≥ κ to be closed enough).

Lemma 2.7. For Q̄ ∈ K with γ = `g(Q̄), a sufficient condition for (∗)Q̄ is:

(∗∗)Q̄ In VPγ : there is no perfect tree T ⊆ ω>2 and E ∈ [λ]κ
+

such that,
for some n < ω, T ⊆ treen[āα] for all α ∈ E.

Proof. By induction on γ ≥ λ. For γ = λ, trivial by properties of the Cohen
forcing.

Suppose γ > λ limit. Assume toward contradiction that

p 
Pγ “ η
˜
6∈
⋃
α<λ

N [ā
˜
α] ”.
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W.l.o.g.
p 
Pγ “ η

˜
6∈ VPβ ”

for every β < γ, hence by properties of FS iteration of c.c.c. forcing notions
cf(γ) = ℵ0. So for each α < λ there are pα, mα such that

p ≤ pα ∈ Pγ , pα 
 “ η
˜
∈ lim(treemα(ā

˜
α)) ”.

Note that (by properties of c.c.c. forcing notions) 〈{α < λ : pα ∈ Pβ} : β <
γ〉 is an increasing sequence of subsets of λ of length γ, so for some γ1 < γ

there is E ∈ [λ]κ
+

such that pα ∈ Pγ1 for every α ∈ E and w.l.o.g. mα = m
for α ∈ E. Note that for all but < κ+ of the ordinals α ∈ E we have

pα 
 “|{β ∈ E : pβ ∈ GPγ1
}| = κ+”.

Fix such α, let GPγ1
be Pγ1-generic over V subset of Pγ1 to which pα belongs.

Now in V[GPγ1
] let E′ = {β ∈ E : pβ ∈ GPγ1

} so |E′| = κ+. Let T ∗ =⋂
β∈E′ treem(āβ). Note that, in VPγ1 , T ∗ is a subtree of ω>2 and by (∗∗),

T ∗ contains no perfect subtree. Hence lim(T ∗) is countable, so absolute.
But pα 
Pγ “ η

˜
∈ lim(T ∗) ”, so pα 
 “η

˜
∈ V Pγ1 ”, a contradiction.

Assume now that γ = β + 1 > λ and work in V Pβ . Choose p, pα ∈ Qβ as
before. Note that Qβ has a dense subset of cardinality < λ, so there is some
q ∈ Qβ and m such that E = {α < λ : mα = n, pα ≤ q} has cardinality
≥ κ+. Continue as above.

As we have covered the cases γ = λ, γ > λ limit and γ > λ successor, we
have finished the proof. �

Discussion 2.8. Note that by Lemma 2.7 and Fact 2.3 it is enough to show
that there is Q̄ ∈ K such that α∗ = `g(Q̄) (where α∗ is chosen as the length
of the final iteration from 2.1 clause (b)), satisfying clauses (a)+(b)+(c) of
Fact 2.3(2) + 2.3(6) and (∗∗)Q̄. To prove the latter we need to impose more
restrictions on the iteration.

Definition 2.9. T , the set of blueprints, is the set of tuples

t = (wt,nt,mt, η̄t, ht0, h
t
1, h

t
2, n̄

t)

where:

(a) wt ∈ [κ]ℵ0 ,
(b) 0 < nt < ω, mt ≤ nt

(c) η̄t = 〈ηtn,k : n < nt, k < ω〉, ηtn,k ∈ wt2 for n < nt, k < ω,

(d) ht0 is a partial function from [0,nt) to ωκ, its domain includes the
set {0, . . . ,mt − 1} (here we consider members of Qα (for α < λ) as
integers2),

(e) ht1 is a partial function from [0,nt) to (0, 1)Q (rationals), but for n ∈
[0,nt)\dom(ht1) we stipulate ht1(n) = 0 and we assume

∑
n<nt

√
ht1(n) <

1/10.

2 actually the case where each ht0(n) is a constant function from ω to κ suffices, and so
κ < λ suffices instead κℵ0 < λ
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COVERING OF THE NULL IDEAL MAY HAVE COUNTABLE COFINALITY 11

(f) ht2 is a partial function from [0,nt) to ω>2,
(g) dom(ht0), dom(ht1) are disjoint with union [0,nt),
(h) dom(ht2) = dom(ht1),
(i) ηtn1,k1

= ηtn2,k2
⇒ n1 = n2,

(j) for each n < nt we have: 〈ηtn,k : k < ω〉 is constant or with no

repetitions; if it is constant and n ∈ dom(ht0) then ht0 is constant.
(k) n̄t = 〈ntk : k < ω〉 where nt0 = 0, ntk < ntk+1 < ω and the sequence

〈ntk+1 − ntk : k < ω〉 goes to infinity. Let for ` < ω and such n̄,
kn̄(`) = k(`, n̄) be the unique k such that nk ≤ ` < nk+1.

Discussion 2.10. The definitions of a blueprint t ∈ T (in Definition 2.9) and
of iterations Q̄ ∈ K3 (defined in Definition 2.11 clause (c) below; the reader
may first read it) contain the main idea of the proof, so though they have
many clauses, the reader is advised to try to understand them.

In order to prove (∗∗)Q̄ we will show in VPα∗ that if E ∈ [λ]κ
+

, and n < ω,
then

⋂
α∈E

treen(ā
˜
α) is a tree with finitely many branches. So let p be given,

let p ≤ pζ 
 “ βζ ∈ E
˜

” for ζ < κ+, βζ /∈ {βξ : ξ < ζ}, we can assume pζ is
in some pregiven dense set, and 〈pζ : ζ < κ+〉 form a ∆-system (with some
more “thinning” demands), dom(pζ) = {αn,ζ : n < n∗}, αn,ζ is increasing
with n, and αn,ζ < λ iff n < m∗. Let p′ζ be pζ when pζ(αn,ζ) is increased a
little, as described below.

It suffices to find p∗ ≥ p such that p∗ 
 “ A
˜

=: {ζ < ω : p′ζ ∈ G˜
} is large

enough such that
⋂
ζ∈A

˜

treem(āβζ ) has only finitely many branches”.

Because of “communication problems” the “large enough” is interpreted
as of Ξ

˜
t
α-measure (again defined in 2.11 below).

The natural numbers n < n∗ such that Qαn,ζ
is a forcing notion of cardi-

nality < κ, do not cause problems, as ht0(n) tells us exactly what the condi-
tion pζ(αn,ζ) is. Still there are many cases of such 〈pζ : ζ < ω〉 which fall into
the same t; we possibly will get contradictory demands if αn1,ζ1 = αn2,ζ2 ,
n1 6= n2. But the wt, η̄t are exactly built to make this case not to happen.
That is, we have to assume 2κ = χ (= |α∗|) in order to be able for our itera-
tion 〈Pα, Q

˜
α : α < α∗〉 to choose 〈ηα : α < α∗〉, ηα ∈ κ2 with no repetitions,

so that if v ⊆ χ, |v| ≤ ℵ0 (e.g. v = {αn,ζ : n < nt, ζ < ω}) then for some

w = wt ∈ [κ]ℵ0 we have 〈ηα � w : α ∈ v〉 is with no repetitions.
So the blueprint t describes such situation, giving as much information as

we can, as long as the number of blueprints is not too large, κℵ0 = κ in our
case.

If Qαn,ζ
is a partial random, we may get many candidates for pζ(αn,ζ) ∈

Random and they are not all the same ones. We want that in many cases
they will be in the generic set. Well, we can (using ht1(n), ht2(n)) know

that in some interval (ω2)[ht2(n)] the set lim pζ(αn,ζ) is large, say of relative
measure ≥ 1− ht1(n), and we could have chosen the pζ ’s such that 〈ht1(n) :
n < nt〉 is small enough, still the number of candidates is not bounded by
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12 SAHARON SHELAH

1/ht1(n). Here taking limit by ultrafilters is not good enough, but using
finitely additive measures is.

Well, we have explained wt, η̄t, ht0, ht1, ht2, but what about the n̄t = 〈ntk :
k < ω〉? In the end (in §3) the specific demand on {ζ : p′ζ ∈ G} being large,
is that for infinitely many k < ω,

|{` : ntk ≤ ` < ntk+1 and p` ∈ G}|/(ntk+1 − ntk)
is large, the ntk will be chosen such that it is increasing fast enough and
〈p′`(β`) : ` ∈ [ntk, n

t
k+1)〉 will be chosen such that for each ε > 0 for some

s < ω, for k large enough if the above fraction is ≥ ε then essentially
k2 ∩ {treem(āβ`) : ntk ≤ ` < ntk+1 and p′` ∈ G} has ≤ s members, this
suffices.

What is our plan? We define K3, the class of suitable expanded iterations
Q̄ by choice of ηα (for α < `g(Q̄)) and names for finitely additive measures
Ξ
˜
t
α satisfying the demands natural in this context. You may wonder why

we use Ξ-averages; this is like integral or expected value, and so “behave
nicely” making the “probability computations” simpler. Then we show that
we can find Q̄ ∈ K3 in which all obligations toward “cov(null) ≥ λ” and
MA<κ hold.

The main point of §3 will be that we can carry the argument of “for some
p∗ we have p∗ 
 {` < ω : p′` ∈ G} is large” and why it gives n < ω & E ∈
[χ]κ

+ ⇒
⋂
ζ∈A

treen(āζ) has finitely many branches, thus proving theorem 0.1.

The reader may wonder how much the Ξ
˜
t
α are actually needed. As ex-

plained above they are just a transparent way to express the property; this
will be utilized in [?].

Definition 2.11. K3 is the class of sequences

Q̄ = 〈Pα, Q
˜
β, Aβ, µβ, τ

˜
β, ηβ, (Ξ

˜
t
α)t∈T : α ≤ α∗, β < α∗〉

(we write α∗ = `g(Q̄)), such that:

(a) 〈Pα, Q
˜
β, Aβ, µβ, τ

˜
β : α ≤ α∗, β < α∗〉 is in K,

(b) ηβ ∈ κ2 and ∀β < α < α∗[ηα 6= ηβ],
(c) T is from Definition 2.9, and Ξ

˜
t
α is a Pα-name of a finitely additive

measure on ω (in VPα), increasing with α,
(d) We say that ᾱ = 〈αl : l < ω〉 satisfies (t,n) (for Q̄) if:

• 〈αl : l < ω〉 ∈ V (of course),
• t ∈ T , n < nt,
• αl ≤ αl+1 < α∗,
• n < mt ⇔ (∀l)(αl < λ)⇔ (∃k)(αk < λ),
• ηtn,l ⊆ ηαl (as functions),

• if n ∈ dom(ht0), then µαl < κ and


Pαl “|Qαl | < κ and (ht0(n))(l) ∈ Q
˜
αl i.e. (ht0(n))(l) < µαl”,

• if n ∈ dom(ht1), then µαl ≥ κ so 
Pαl “Qαl has cardinality ≥
κ”, (so it is a partial random),
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• if 〈ηtn,k : k ∈ ω〉 is constant, then ∀l[αl = α0], if 〈ηtn,k : k < ω〉
is not constant, then ∀l[αl < αl+1],

(e) if ᾱ = 〈αl : l < ω〉 satisfies (t,n) for Q̄,
∧
l<ω

(αl < αl+1), n ∈ dom(ht0)

then


Pα∗ “the following set has Ξ
˜
t
α∗- measure 1 :

{k < ω : if l ∈ [ntk, n
t
k+1) then (ht0(n))(l) ∈ G

˜
Qαl
}”,

(f) if ᾱ = 〈αl : l < ω〉 satisfies (t,n) for Q̄, n ∈ dom(ht1), ∀l < ω[αl <
αl+1], and r̄ = 〈r

˜
l : l < ω〉 where for l < ω, r

˜
l is a Pαl-name of a

member of Q
˜
αl such that (it is forced that)

(∗) 1− ht1(n) ≤ Leb({η ∈ ω2 : ht2(n) C η ∈ lim(r
˜
l)})/2`g(h

t
2(n)),

then for each ε > 0 we have


Pα∗ “ the following set has Ξ
˜
t
α∗-measure 1 :

{k < ω : in the set {` ∈ [ntk, n
t
k+1) : r

˜
` ∈ GQα`} there are

at least (ntk+1 − ntk)× (1− ht1(n))× (1− ε) elements} ”

(g) if ᾱ = 〈αl : l < ω〉 satisfies (t,n) for Q̄, n ∈ dom(ht1), ∀l[αl = α],

and r
˜
, r
˜
l are P ′Aα-names of members of Qα satisfying (∗∗)Q̄r

˜
,〈r

˜
l:l<ω〉

(see below for the definition of (∗∗)) then


Pα∗ “ if r
˜
∈ GQα then (1− ht1(n))

≤ AvΞ
˜
t
α∗

(〈|{l ∈ [ntk, n
t
k+1) : r

˜
l ∈ G

˜
Qα}|/(ntk+1 − ntk) : k < ω〉) ”,

where
(∗∗)Q̄r

˜
,〈r

˜
l:l<ω〉 r˜

, rl
˜

are P ′Aα–names of members of Qα and, in VPα , for every

r′ ∈ Qα satisfying r ≤ r′ we have

AvΞtα
(〈ak(r′) : k < ω〉) ≥ (1− ht1(n))

where

(�) ak(r
′) = ak(r

′, r̄) = ak(r
′, r̄, n̄t)

=

 ∑
`∈[ntk,n

t
k+1)

Leb(lim(r′)∩lim(r`))
Leb(lim(r′))

× 1
ntk+1−n

t
k

(so ak(r
′, r̄, n̄) ∈ [0, 1]R is well defined for k < ω, r̄ = 〈rl : l < ω〉,

{r, rl} ⊆ Random, n̄ = 〈nl : l < ω〉, nl < nl+1 < ω),
(h) P ′Aα <◦ Pα, and β ∈ Aα & |Aβ| < κ ⇒ Aβ ⊆ Aα,

(i) if 
Pα “|Q
˜
α| ≥ κ”, then Ξ

˜
t
α � P(ω)V

PAα is a PAα-name3, for every
t ∈ T .

Definition 2.12. (1) For Q̄ ∈ K3 and for α∗ ≤ `g(Q̄) let

Q̄ � α∗ = 〈Pα, Q
˜
β, Aβ, µβ, τ

˜
β, ηβ, (Ξ

t
α)t∈T : α ≤ α∗, β < α∗〉,

(2) For Q̄1, Q̄2 ∈ K3 we say:

Q̄1 ≤ Q̄2 if Q̄1 = Q̄2 � `g(Q̄1).

3Here the secret was whispered.
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14 SAHARON SHELAH

Fact 2.13. (1) If Q̄ ∈ K3, α ≤ `g(Q̄), then Q̄ � α ∈ K3.
(2) (K3,≤) is a partial order.
(3) If a sequence 〈Q̄β : β < δ〉 ⊆ K3 is increasing, cf(δ) > ℵ0, then there
is a unique Q̄ ∈ K3 which is the least upper bound, `g(Q̄) =

⋃
β<δ

`g(Q̄β) and

Q̄β ≤ Q̄ for all β < δ.

Proof. Easy (recall that it is well known that (ω2)V
Pδ =

⋃
β<δ

(ω2)V
Pβ

, so

Ξ
˜
t
δ =

⋃
β<δ

Ξtβ is a legal choice). �

Lemma 2.14. Suppose that Q̄n ∈ K3, Q̄n < Q̄n+1, αn = `g(Q̄n), δ =
sup
n<ω

(αn). Then there is Q̄ ∈ K3 such that `g(Q̄) = δ and Q̄n ≤ Q̄ for n ∈ ω.

Proof. Note that the only problem is to define Ξ
˜
t
δ for t ∈ T , i.e., we have

to extend
⋃
α<δ

Ξ
˜
t
α so that the following two conditions are satisfied, (they

correspond to clauses (f) and (e) of Definition 2.11).

(a) we are given4 n < nt, n ∈ dom(ht1), 〈αl : l < ω〉, from V of course,
satisfies (t,n) for Q̄ and is strictly increasing with limit δ and we
are given 〈p

˜
l : l < ω〉 such that 
Pαl “p

˜
l ∈ Q

˜
αl and 1 − ht1(n) ≤

Leb({η ∈ ω2 : ht2(n) C η ∈ lim(p
˜
l)})/2`g(h

t
2(n)) ”. The demand is:

for each ε > 0 we have 
Pδ “ Ξ
˜
t
δ(C˜

) = 1 ”, where

C
˜

= {k < ω : in the set {` : ` ∈ [ntk, n
t
k+1) and p` ∈ G

˜
Qα`
} there are

at least (ntk+1 − ntk)× (1− ht1(n))× (1− ε) elements}.

(b) If4 n < nt, n ∈ dom(ht0), 〈α` : ` < ω〉 satisfies (t,n) for Q̄ and is
strictly increasing with limit δ, and pl ∈ Qαl , satisfy pl = ht0(n)(l)
for ` < ω (an ordinal < µαl), then 
Pδ “Ξ

˜
t
δ(C˜

) = 1” where

C
˜

= {k < ω : for every l ∈ [nk, nk+1) we have pl ∈ G
˜
Qαl
}

As
⋃
α<δ

Ξ
˜
t
α is a (Pδ-name of a) member of M, in VPδ by 1.3(3) it suffices

to prove

(∗) 
Pδ “if B
˜
∈
⋃
α<δ

dom(Ξ
˜
t
α) =

⋃
α<δ

P(ω)V[Pα] and Ξ
˜
t
α(B

˜
) > 0 and j∗ <

ω, and C
˜
j (for j < j∗) are from (a), (b) above then B

˜
∩
⋂
j<j∗

C
˜
j 6= ∅”.

Toward contradiction assume q ∈ Pδ force the negation so possibly increasing
q we have: for some B

˜
and for some j∗ < ω, for each j < j∗ we have the

εj > 0, and n(j) < nt, 〈αjl : l < ω〉, 〈pjl : l < ω〉 involved in the definition

of C
˜
j (in (a) or (b) above), q force: B

˜
∈
⋃
α<δ

dom(Ξ
˜
t
α) =

⋃
α<δ

P(ω)V[Pα] and

(
⋃
α<δ

Ξ
˜
t
α)(B

˜
) > 0 and C

˜
j (for j < j∗) comes from (a) or (b) above, but

4in V, so 〈(αl, pl) : l < ω〉 ∈ V, of course
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B
˜
∩
⋂
j<j∗

C
˜
j = ∅; as we can decrease ε, wlog εj = ε. Again w.l.o.g. for

some α(∗) < δ we have B
˜
∈ dom(Ξ

˜
t
α(∗)) is a Pα(∗)-name, and C

˜
j have the

n(j) < nt, 〈αjl : l < ω〉, 〈pjl : l < ω〉 witnessing it is as required in (a) or
(b) above. W.l.o.g. q ∈ Pα(∗). Possibly increasing q (inside Pα(∗) though)

we can find k < ω such that q �“k ∈ B
˜

” and
∧
j<j∗

∧
l∈[ntk,n

t
k+1)

αjl > α(∗) and

moreover such that ntk+1 − ntk is large enough compared to 1/ε, j∗ (just
let q ∈ GPα(∗) ⊆ Pα(∗), GPα(∗) generic over V and think in V[GPα(∗) ]). Let

{αjl : j < j∗ and l ∈ [ntk, n
t
k+1)} be listed as {βm : m < m∗}, in increasing

order (so β0 > α(∗)) (possibly α
j(1)
l(1) = α

j(2)
l(2) & (j(1), l(1)) 6= (j(2), l(2))).

Now we choose by induction on m ≤ m∗ a condition qm ∈ Pβm above q,
increasing with m, where we stipulate βm∗ = δ.

During this definition we “throw a dice” and prove that the probability
of success (i.e. qm∗ 
 “k ∈ C

˜
j” for j < j∗) is positive, so there is qm∗ as

desired hence we get the desired contradiction.

Case A: m = 0
Let q0 = q

Case B: m + 1, and for some n < nt, we have n ∈ dom(ht0) and ζ and: if

j < j∗ and l < ω then αjl = βm ⇒ n(j) = n & pjl = ζ (= ht0(n(j))(l)) ∈
Qβm).

In this case dom(qm+1) = dom(qm) ∪ {βm}, and

qm+1(β) =

{
qm(β) if β < βm(so β ∈ dom(qm))
ζ if β = βm

Case C: m+ 1 and for some n < nt, we have n ∈ dom(ht1) and: αjl = βm ⇒
n(j) = n.

Work first in V[GPβm ], qm ∈ GPβm , GPβm generic over V. The sets

{lim(p
˜

j
l [GPβm ]) : αjl = βm (and l ∈ [ntk, n

t
k+1), j < j∗)}

are subsets of (ω2)[ht2(n)] = {η ∈ ω2 : ht2(n) C η}, we can define an equiva-

lence relation Em on (ω2)[ht2(n)]:

ν1Emν2 iff ν1 ∈ lim(p
˜

j
l [GPβm ]) ≡ ν2 ∈ lim(p

˜

j
l [GPβm ])

whenever αjl = βm.

Clearly Em has finitely many equivalence classes, call them 〈Zmi : i < i∗m〉, all
are Borel (sets of reals) hence they are measurable; w.l.o.g. Leb(Zmi ) = 0⇔
i ∈ [i⊗m, i

∗
m), so clearly i⊗m > 0. For each i < i⊗m there is r = rm,i ∈ Q

˜
βm [GPβm ]

such that

lim(pjl [GPβm ]) ⊇ Zmi ⇒ r ≥ pjl [GPβm ],

lim(pil[GPβm ]) ∩ Zmi = ∅ ⇒ (lim r) ∩ (lim pil[GPβm ]) = ∅.
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We can also find a rational am,i ∈ (0, 1)R such that

am,i < Leb(Zmi )/2`g(h
t
2(n)) < am,i + ε/(2i∗m).

We can find q′m ∈ GPβm , qm ≤ q′m such that q′m forces all this information (so

for Z
˜
m
i , r

˜
m,i we shall have Pβm–names, but am,i, i

⊗
m, i∗m are actual objects).

We then can find rationals bm,i ∈ (am,i, am,i + ε/2) such that
∑
i<i⊗m

bm,i = 1.

Now we throw a dice choosing im < i⊗m with the probability of im = i being
bm,i and define qm+1 as:

dom(qm+1) = dom(q′m) ∪ {βm}

qm+1(β) =

{
q′m(β) if β < βm (so β ∈ dom(q′m))
r
˜
m,im if β = βm

An important point is that this covers all cases (and in Case B the choice of
(j, l) is immaterial) as for each βm there is a unique n < nt and l such that
ηβm � w

t = ηtn,l (see Definition 2.11 clause (b) and Definition 2.9 clause (i)).

Basic probability computations (for ntk+1 − ntk independent experiments)
show that for each j coming from clause (a), by the law of large numbers
the probability of successes is > 1−1/j∗, successes meaning qm∗ 
 “k ∈ C

˜
j”

(remember if j comes from clause (b) we always succeed). �

Remark 2.15. In the definition of t ∈ T (i.e. 2.9) we can add ηtn,ω ∈ wt2 (i.e.

replace 〈ηtn,l : l < ω〉 by 〈ηtn,l : l ≤ ω〉) and demand

(l) if ζ ∈ wt then for every n < ω large enough, ζ ∈ ηtn,ω ≡ ζ ∈ ηtn,ω,

and in Definition 2.11 clause (d) use ᾱ = 〈αl : l < ω〉 but this does not help
here.

Lemma 2.16. 1) Assume

(a) Q̄ ∈ K3, Q̄ = 〈Pα, Q
˜
β, Aβ, µβ, r

˜
β, ηβ, (Ξ

˜
t
α)t∈T : α ≤ α∗, β < α∗〉,

(b) A ⊆ α∗, κ < |A| < λ,
(c) η ∈ (κ2)V \ {ηβ : β < α∗},
(d) (∀α ∈ A)[|Aα| < κ ⇒ Aα ⊆ A] and P ′A <◦ Pα∗, Q

˜
= Q

˜

A,Q̄ is the
Pα∗-name from 2.2(F)(β) and

if t ∈ T then Ξ
˜
t
α∗ � VPA is a PA-name,

Then there is

Q̄+ = 〈Pα, Q
˜
β, Aβ, µβ, τ

˜
β, ηβ, (Ξ

˜
t
α)t∈T : α ≤ α∗ + 1, β < α∗ + 1〉

from K3, extending Q̄ such that Q
˜
α∗ = Q

˜
, Aα∗ = A, ηα∗ = η.

2) If clauses (a)+(b)+(c) of part one hold then we can find A′ such that:
A ⊆ A′ ⊆ α∗, |A′| ≤ (|A|+ κ)ℵ0 (which is < λ by Hypothesis 2.1) and such
that Q̄, A′, η satisfy (a)+(b)+(c)+(d).
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Proof. 1) As before the problem is to define Ξ
˜
t
α∗+1. We have to satisfy clause

(g) of Definition 2.11 for each fixed t ∈ T . Let n∗ be the unique n < nt

such that η � wt = ηtn,l. If n∗ ∈ dom(ht0) or 〈ηtn∗,l : l < ω〉 not constant or
there is no such n∗ then we have nothing to do. So assume that αl = α∗ for
l < ω, ηtn∗,l = η � wt (for l < ω). Let Γ be the set of all pairs (r

˜
, 〈r

˜
l : l < ω〉)

which satisfy the assumption (∗∗)Q̄r
˜
,〈r

˜
l:l<ω〉 of 2.11 clause (g). In VPα∗+1 we

have to choose Ξ
˜
t
α∗+1 taking care of all these obligations. We work in VPα∗ .

By assumption (d) and Claim 1.6 it suffices to prove it for VPA so Qα∗ is

RandomVPA (see 2.3(7)). By 1.7 it is enough to prove condition (B) of 1.7.
Suppose it fails. Then there are 〈Bm : m < m(∗)〉 a partition of ω from
VPA , for simplicity Ξtα∗(Bm) > 0 for m < m(∗), and (r

˜
i, 〈r

˜
i
l : l < ω〉) ∈ Γ

and n(i) = n∗ < nt for i < i∗ < ω and ε∗ > 0 and r ∈ Qα∗ which forces
the failure (of (B) of 1.7) for these parameters; (the ε∗ comes from 1.7).
W.l.o.g. r forces that r

˜
i ∈ G

˜
Qα∗ for i < i∗ (otherwise we can ignore such r

˜
i

as nothing is demanded on them in (g) of 2.11). So r ≥ ri for i < i∗.
By the assumption, for each i < i∗ we have: for each r′ ≥ r (hence r′ ≥ ri

and r′ ∈ Random) and i < i∗ we have:

AvΞt
α∗

(〈aik(r′) : k < ω〉) ≥ (1− ht1(n∗))

where (see 2.11(g)(�)) we let

aik(r
′) = ak(r

˜
, 〈r

˜
l : l < ω〉, n̄t) =

1

ntk+1 − ntk

∑
l∈[ntk,n

t
k+1)

Leb(lim(r′) ∩ lim(ril))

Leb(lim(r′))
.

By 1.7 it suffices to prove the following

Lemma 2.17. Assume Ξ is a finitely additive measure, 〈B0, . . . , Bm∗−1〉 a
partition of ω, Ξ(Bm) = am, i∗ < ω and r, ril ∈ Random for i < i∗, l < ω
and n̄∗ = 〈n∗i : i < ω〉, n∗i < n∗i+1 < ω are such that

(∗) for every r′ ∈ Random, r′ ≥ r and i < i∗ we have AvΞ(〈aik(r′) : k <
ω〉) ≥ bi where

aik(r
′) = aik(r

′, 〈ril : l < ω〉, n̄∗) =
1

n∗k+1 − n∗k

n∗k+1−1∑
l=n∗k

Leb(lim(r′) ∩ lim(ril))

Leb(lim(r′))
.

Then for each ε > 0, k∗ < ω there is a finite u ⊆ ω \ k∗ and r′ ≥ r
such that:
(1) am − ε < |u ∩Bm|/|u| < am + ε, for m < m∗

(2) for each i < i∗ we have

1

|u|
∑
k∈u

|{l : n∗k ≤ l < n∗k+1 and r′ ≥ ril}|
n∗k+1 − n∗k

is ≥ bi − ε.
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Proof. Let for i < i∗, m < m∗ and r′ ≥ r (from Random):

ci,m(r′) = AvΞ�Bm(〈aik(r′) : k ∈ Bm〉) ∈ [0, 1]R.

So clearly

(∗)1 for r′ ≥ r (in Random)

bi ≤ AvΞ(〈aik(r′) : k < ω〉) =
∑

m<m∗
AvΞ�Bm(〈aik(r′) : k ∈ Bm〉) Ξ(Bm)

=
∑

m<m∗
ci,m(r′)am.

There are r∗ ≥ r and a sequence c̄ = 〈ci,m : i < i∗,m < m∗〉 such that:

(∗)2 (a) ci,m ∈ [0, 1]R,
(b)

∑
m<m∗

cm,iam ≥ bi,

(c) for every r′ ≥ r∗ there is r′′ ≥ r′ such that

(∀i < i∗)(∀m < m∗)[ci,m − ε < ci,m(r′′) < ci,m + ε].

[Why? Let k∗ < ω be such that 1/k∗ < ε/(10 · l∗ · m∗) (so k∗ > 0). Let
Γ = {c̄ : c̄ = 〈ci,m : i < i∗, m < m∗〉, ci,m ∈ [0, 1]R and k∗ci,m is an integer
and

∑
m<m∗

ci,mam > bi}. Clearly Γ is finite and let us list it as 〈c̄s : s < s∗〉.

We try to choose by induction on s ≤ s∗ a condition rs ∈ Random such that
r0 = r, rs ≤ rs+1, and for no r′′ ≥ rs+1 do we have

(∀i < i∗)(∀m < m∗)[csi,m − ε < ci,m(r′′) < csi,m + ε].

For s = 0 we have no problem. If we succeed to arrive to rs∗ , for i < i∗,
m < m∗ we can define c∗i,m ∈ {l/k∗ : l ∈ {0, . . . , k∗}} such that ci,m(rs∗) ≤
c∗i,m < ci,m(rs∗) + ε/(10 · l∗ ·m∗). By (∗)1 we have bi ≤

∑
m<m∗

ci,m(r∗s∗)am.

Clearly ∑
m<m∗

csi,mam ≥
∑
m<m∗

ci,m(r∗s∗)am

so c̄∗ = 〈c∗i,m : i < i∗, m < m∗〉 ∈ Γ, hence for some s < s∗, c̄∗ = c̄s. But

then r∗ contradicts the choice of rs+1. Also by the above Γ 6= ∅. So we
necessarily are stuck at some s < s∗, i.e. cannot find rs+1 as required. This
means that rs, c̄

s as needed in (∗)2, so r∗, c̄ as required exist.]
Let k∗ < ω be given. Now choose s∗ < ω large enough and try to choose

by induction on s ≤ s∗, a condition rs ∈ Random and natural numbers
(ms, ks) (flipping coins along the way) such that:

(∗)3 (a) r0 = r∗,
(b) rs+1 ≥ rs,
(c) ci,m − ε < ci,m(rs) < ci,m + ε for i < i∗, m < m∗,
(d) ks > k∗, ks+1 > ks,
(e) ks ∈ Bms .

In stage s, given rs, we define rs+1, is, ms, ks as follows: choose ms < m∗

randomly with the probability of ms = m being am. Next we can find a
finite set us ⊆ Bms with min(us) > max{k∗ + 1, ks1 + 1 : s1 < s} such that
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(∗) if i < i∗ then ci,ms − ε/2 < 1
|us|

∑
k∈us

aik(rs) < ci,ms + ε/2

We define an equivalence relation es on lim(rs):

η1esη2 iff (∀i < i∗)(∀k ∈ us)(∀` ∈ [n∗k, n
∗
k+1))[η1 ∈ lim(ri`) ≡ η2 ∈ lim(ri`)].

The number of es–equivalence classes is finite, and if Y ∈ lim(rs)/es satisfies
Leb(Y ) > 0 choose rs,Y ∈ Random such that lim(rs,Y ) ⊆ Y and rs,Y satisfies
clause (c) of (∗)3 (possible by clause (c) of (∗)2). Now choose rs+1 among
{rs,Y : Y ∈ lim(rs)/es and Leb(Y ) > 0}, with the probability of rs,Y being
Leb(Y )/Leb(lim(rs)). Lastly choose ks ∈ us, with all k ∈ us having the
same probability.

Now the expected value, assuming ms = m, of

1

n∗ks+1 − n∗ks
× |{` : n∗ks ≤ ` < n∗ks+1 and rs+1 ≥ ri`}|

belongs to the interval (ci,m−ε/2, ci,m+ε/2), because of the expected value
of

1

|us|
∑
k∈us

1

n∗k+1 − n∗k
× |{` : n∗k ≤ ` < n∗k+1 and rs+1 ≥ ri`}|

is in this interval (as∑
{Leb(Y ) : Y ∈ lim(rs)/es, rs,Y ≥ ril} =

Leb(lim(rs) ∩ lim(ril))

Leb(lim(rs))

and see the choice of aik(−)).
Let r′ = rs∗ , u = {ks : s ≤ s∗}. Hence the expected value of

1

|u|
∑
k∈u

1

n∗k+1 − n∗k
× |{` : n∗k ≤ ` < n∗k+1 and r′ ≥ ri`}|

is ≥
∑
am(ci,m − ε/2) ≥ bi − ε/2.

As s∗ is large enough with high probability (though just positive proba-
bility suffices), (rs∗ , {ks : s < s∗}) are as required for (r′, u); note: we do
not know the variance but we have a bound for it not depending on s.

2) Straightforward. �

�

The following is needed later to show that there are enough cases of the
Definition of t with clause (g) of Definition 2.11 being non trivial (i.e. (∗∗)
there holds).

Lemma 2.18. Assume

(a) Ξ is a finitely additive measure on ω and b ∈ (0, 1]R,
(b) n∗k < ω (for k < ω), n∗k < n∗k+1, and lim(n∗k+1 − n∗k) =∞,
(c) r∗, rl ∈ Random are such that:

(∗) (∀l < ω)[Leb(lim(r∗) ∩ lim(rl))/Leb(lim(r∗)) ≥ b].
Then for some r⊗ ≥ r∗ we have:
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⊗r⊗ for every r′ ≥ r⊗ we have AvΞ(〈a(r′, k) : k < ω〉) ≥ b where:
ak(r

′) = a(r′, k) = ak(lim r′) and for X ⊆ ω2 we let

ak(X) =
1

n∗k+1 − n∗k

∑
l∈[n∗k,n

∗
k+1)

Leb(X ∩ (lim rl))

Leb(X)
.

Proof. Let

I = {r ∈ Random : r ≥ r∗, and AvΞ(〈ak(r′) : k < ω〉) < b}.

If I is not dense above r∗ there is r⊗ ≥ r∗ (in Random) such that for every
r ≥ r⊗, r /∈ I so r⊗ is as required, so assume toward contradiction that I
is not dense above r∗. There is a maximal antichain I1 = {si : i < i∗} ⊆ I
(maximal among those ⊆ I), now I1 is a maximal antichain above r∗ as r ∈
I ⇒ r ≥ r∗ and the previous sentence. Hence Leb(lim r∗) =

∑
i<i∗

Leb(lim si);

of course |i∗| ≤ ℵ0 as Random satisfies c.c.c. so w.l.o.g. i∗ ≤ ω.
For any j < i∗ let sj =

⋃
i<j

si, note then lim(
⋃
m<i

sm) =
⋃
m<i

lim(sm) and

ak(s
j) = ak(

⋃
m<i

sm) =
∑
i<j

Leb(si)

Leb(
⋃
m<j

sm)
ak(si)

hence

AvΞ(〈ak(sj) : k < ω〉) = AvΞ(〈ak(
⋃
m<j

sm) : k < ω〉)

=
∑
i<j

Leb(si)
Leb(

⋃
m<j

sm) ×AvΞ(〈ak(si) : k < ω〉)

≤ Leb(lim(s0))
Leb(lim(

⋃
i<j si))

(b− ε) +
∑

0<i<j

Leb(lim(si))
Leb(lim(

⋃
m<j sm))b

= b− Leb(lim(s0)) · ε

where ε = b−AvΞ(〈ak(s0) : k < ω〉) so ε > 0.

Let j be large enough such that Leb(lim(r∗)\lim(sj))
Leb(lim(r∗)) < Leb(lim(s0)) · ε. So

AvΞ(〈ak(r∗) : k < ω〉) =
Leb(lim(r∗)\lim(sj))

Leb(lim(r∗)) AvΞ(〈ak(lim(r∗) \ lim(sj)) : k < ω〉)
+ Leb(lim(sj))

Leb(lim(r∗))Av(〈ak(sj) : k < ω〉)
≤ Leb(lim(r∗)\lim(sj))

Leb(r∗) × 1 + Leb(lim(sj))
Leb(lim(r∗)) × (b− Leb(lim(s0))ε)

< Leb(lim(s0)) · ε+ (b− Leb(lim(s0)) · ε) = b

contradicting assumption (c). �

Claim 2.19. Assume

(a) Q̄ ∈ K3, Q̄ = 〈Pα, Q
˜
β, Aβ, µβ, r

˜
β, ηβ, (Ξ

˜
t
α)t∈T : α ≤ α∗, β < α∗〉,

(b) A ⊆ α∗ and |A| < κ and µ < κ are such that β ∈ A & |Aβ| < κ ⇒
Aβ ⊆ A,

(c) η ∈ κ2 \ {ηβ : β < α∗},
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(d) Q
˜

is a Pα∗-name of a forcing notion with set of elements µ, and is
really definable in V[〈τ

˜
α : α ∈ A〉] from 〈τ

˜
α : α ∈ A〉 and parameters

from V.

Then there is

Q̄+ = 〈Pα,Q
˜
α, Aβ, µβ, τ

˜
β, ηβ, (Ξ

˜
t
α)t∈T : α ≤ α∗ + 1, β < α∗ + 1〉

from K3 extending Q̄ such that Q
˜
α∗ = Q

˜
, Aα∗ = A, ηα∗ = η and µα∗ = µ.

Proof. Straight. �

Remark 2.20. If Q is the Cohen forcing we can make one step toward {A ⊆
ω : Ξtα∗+1(A) = 1} being a selective filter but not needed at present.

3. Continuation of the proof of Theorem 0.1

We need the following lemma.

Lemma 3.1. Suppose that ε̄ = 〈εl : l < ω〉 is a sequence of positive reals
and Q̄ ∈ K3 has length α. The following set Iε̄ ⊆ Pα is dense:

Iε̄ = {p ∈ P ′α : there are m and αl, νl (for l < m) such that
(a) dom(p) = {α0, . . . , αm−1}, α0 > α1 > . . . > αm−1,
(b) if |Qαl | < κ, then p(αl) is an ordinal ,

(c) if Qαl is a partial random, then 
Pαl “p(αl) ⊆ (ω2)[νl]

and Leb(lim(p(αl))) ≥ (1− εl)/2`g(νl)”}

Proof. By induction on α for all possible ε̄. �

Discussion 3.2. 1) By the previous sections it follows that it is enough to
prove that if Q̄ ∈ K3, Pα = Lim(Q̄), then in VPα the following sufficient
condition holds:

(∗∗)Q̄ In VPα : there is no perfect tree T ⊆ ω>2, m ∈ ω and E ∈ [λ]κ
+

such that T ⊆ treem[āα] for all α ∈ E.

2) Note that if we just want to prove 
Pα “b ≤ κ” life is easier: Ξtα is a
zero-one measure (so essentially an ultrafilter) and we interpret for α < λ,
the forcing notion Qα as (ω>ω,C) with generic real η

˜
α and replace below

(∗∗)Q̄ by

(∗∗)+
Q̄

in V Pα there is no η∗ ∈ ωω such that {α < λ : (∀` < ω)(η
˜
α(`) ≤

η∗(`)} has cardinality ≥ κ+.

In the proof below, T
˜

is replaced by η
˜

, and p′ζ(αζ) is s∗_〈ζ〉.
3) We can make the requirements on the ∆-system stronger: make it indis-
cernible also over some A ⊆ α of cardinality < κ, where T

˜
is a PA-name,

p∗ ∈ PA, and w.l.o.g. the heart is ⊆ A.
4) Here the existence of ht2 help; we can use 3.1 with

∑
`<ω

ε` very small.

Lemma 3.3. If Pα = Lim(Q̄), α = `g(Q̄) and Q̄ ∈ K3, then (∗∗)Q̄ from
2.7.
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Proof. Suppose that p∗ 
Pα “T
˜
,m,E

˜
form a counterexample to (∗∗)Q̄”, wlog

p∗ ∈ P ′α. Let ε̄ = 〈εl : l < ω〉 be such that εl ∈ (0, 1)R and
∑
l<ω

√
εl < 1/10.

For each ζ < κ+ let pζ ≥ p∗ be such that pζ ∈ Iε̄ (⊆ P ′α) witnessed by

〈νζβ : β ∈ dom(pζ) and |Qβ| ≥ κ〉 (on Iε̄ see 3.1) and

pζ 
Pα “αζ is the ζ-th element of E
˜

”.

So clearly αζ < λ. W.l.o.g., by thinning out, we can assume that:

• dom(pζ) = {γζi : i < i∗} with γζi increasing with i, let vζ0 = {i < i∗ :

|Q
γζi
| < κ}, then vζ0 = v0 is fixed for all ζ < κ+, and let v1 = i∗ \ v0,

• dom(pζ) (ζ < κ+) form a ∆–system, with the heart ∆, so ∆ ⊇
dom(p∗),

• αζ ∈ dom(pζ), αζ = γζz for a fixed z < i∗,
• (dom(pζ),∆, <) are isomorphic for ζ < κ+,

• if i ∈ v0, then pζ(γ
ζ
i ) = γi, for ζ < κ+,

• if i ∈ v1, then νζ
γζi

= νi, (recall νζ
γζi
∈ ω>2 is given by the definition

of Iε̄),
• pζ(αζ) = s∗ for ζ < κ+ with s∗ = 〈(nl, al) : l < m∗〉, w.l.o.g. m∗ > m

(where m is from “the counterexample to (∗∗)Q̄”) and m∗ > 10,

• for each i < i∗ the sequence 〈γζi : ζ < κ+〉 is constant or strictly
increasing,
• the sequence 〈αζ : ζ < κ+〉 is with no repetitions (as if pζ1 , pζ2 are

compatible and ζ1 < ζ2 < λ then αζ1 6= αζ2).

Now we are interested only in the first ω conditions, i.e., we consider ζ < ω.
For every such ζ let p′ζ ≥ pζ be such that dom(p′ζ) = dom(pζ), p

′
ζ(γ) = pζ(γ)

except for γ = αζ in which case we extend pζ(αζ) = s∗ in the following way.
We put `g(p′ζ(αζ)) = `g(s∗) + 1 = m∗ + 1, p′ζ(αζ) = s∗_〈(j0

ζ , aζ)〉. Before

we define j0
ζ , aζ choose an increasing sequence of integers s̄ = 〈sl : l < ω〉,

s0 = 0, such that sk+1 − sk = |[jk2]2
jk (1−8−m

∗
)| (i.e. it is the number of

subsets of jk2 with 2jk(1 − 8−m
∗
) elements), where j∗ = 3nm∗−1 + 1 (i.e.

we define j∗ from the first coordinate in the last pair in s∗) and we let
jk = j∗ + k!!, and let j0

ζ = jk when ζ ∈ [sk, sk+1). Now for ζ ∈ [sk, sk+1)
define aζ such that

{aζ : ζ ∈ [sk, sk+1)} = [jk2]2
jk (1−8−m

∗
)

(so necessarily without repetitions). For ε∗ > 0 we define a Pα-name by

A
˜
ε∗ = {k < ω : |{ζ ∈ [sk, sk+1) : p′ζ ∈ G

˜
Pα}|/(sk+1 − sk) > ε∗}.

For the proof of 3.3 we need:

Subclaim 3.4. There is a condition p⊗ ≥ p∗ which forces that for some
ε∗ > 0 the set A

˜
ε∗ is infinite .
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Proof. Choose ε∗ > 0 small enough. First we define a suitable blueprint
t ∈ T ,

t = (wt,nt,mt, η̄t, ht0, h
t
1, h

t
2, n̄

t).

Let

wt = {min{β < κ : η
γ
ζ(1)
i(1)

(β) 6= η
γ
ζ(2)
i(2)

(β)} : ζ(1), ζ(2) < ω and

i(1), i(2) < i∗ and γ
ζ(1)
i(1) 6= γ

ζ(2)
i(2) }.

Let nt = i∗, dom(ht0) = v0, dom(ht1) = dom(ht2) = v1 and ntl = sl. If
n ∈ v0, then ht0(n)(l) = γn and ηtn,ζ = η

γζn
� wt. If n ∈ v1, then ht1(n) = εn,

ht2(n) = νn.
We now define a condition p⊗, it will be in Pα, dom(p⊗) = ∆, p∗ ≤ p⊗;

remember dom(p∗) ⊆ ∆ as for each ζ we have p∗ ≤ pζ . If γ ∈ ∆ then for

some n < nt, we have
∧
ζ<ω

γζn = γ. If n ∈ v0 we let p⊗(γ) = ht0(n), so

trivially in VPγ

p⊗(γ) 
Qγ “Ξ
˜
t
γ+1({ζ < ω : ht0(n) ∈ GQγ}) = 1 if n ∈ dom(ht0)(= v0) ”

If n ∈ v1, then define a Pγ-name for a member of Qγ as follows. Consider

r
˜
n
ζ = p

˜

′
ζ(γ) for ζ < ω. Let r

˜
be the member (ω2)[ht2(n)] of Qγ . Working in

VP ′Aα , by Lemma 2.18 there is r
˜
∗
γ ≥ r

˜
from Q

˜
γ such that for every r′ ≥ r∗γ

in Qγ we have

(∗∗)r′,ε AvΞtα
(〈ank (r′) : k < ω〉) ≥ (1− ht1(n)) = (1− εn) where

ank (r′) =:
1

ntk+1 − ntk

∑
l∈[ntk,n

t
k+1)

Leb(lim(r′) ∩ lim(rnl ))

Leb(lim(r′))
.

Hence the assumption of condition (g) in Definition 2.11 holds, hence in VPγ

we have:

r∗γ 
Qγ “ AvΞtγ+1
(〈|{` ∈ [ntk+1 − ntk) : p`(γ) ∈ G

˜
Qγ}|/(ntk+1 − ntk) : k ∈ ω〉)

≥ 1− εn ”.

So there is a Pγ-name r
˜
∗
γ of such a condition. In this case let p⊗(γ) = r

˜
∗
γ , so

we have finished defining p⊗, clearly it has the right domain.

Now suppose that n < nt, n ∈ v1 is such that γζn 6∈ ∆. Define β̄ = 〈βζ :

ζ < ω〉, βζ = γζn. Then β̄ satisfies (t,n) for Q̄. By our assumption the

assumption of clause (f) in Definition 2.11 is satisfied, hence in VPα , for
any ε > 0:


Pα “ Ξ
˜
t
α

(
{k :
|{l ∈ [ntk, n

t
k+1) : pl(γ

l
n) ∈ G

˜
Q
γln
}|

(ntk+1 − ntk)
≥ (1− εn) · (1− ε)}

)
= 1 ”.

Now for each n ∈ v1, as

(1− εn) · (1− ε) ≤ AvΞtα
(〈
|{` : ntk ≤ ` < ntk+1 and rn` ∈ GPα}|

ntk+1 − ntk
: k < ω〉)
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and ε > 0 was arbitrary, clearly

(∗)n in VPα ,
√

2εn ≥ Ξtα

(
{k < ω : 1−

√
2εn ≥

|{`:ntk≤`<n
t
k+1 and rn` ∈GPα}|
ntk+1−n

t
k

}
)

.

Let

A
˜
′
ε∗ = {k < ω : if ζ ∈ [sk, sk+1) and i ∈ vo then pζ � {γζi } ∈ G˜ Pα},

clearly Ξtα(A
˜
′
ε∗) = 1.

Let ε∗ < 1−
∑
n

√
2εn and ε∗ > 0, so

A
˜
ε∗ ∪ (ω \A′ε∗) = {k < ω : ε∗ <

|
⋂

n∈v1
{l∈[ntk,n

t
k+1) and p′ζ(γζn)∈GQγn }|

(ntk+1−n
t
k)

}

⊇ {k < ω : if n ∈ v1 then
|{`:ntk≤`<n

t
k+1 and rn` ∈GPα}|
ntk+1−n

t
k

≥ 1−
√

2εn}

= ω \
⋃

n∈v1

{k < ω :
|{`:ntk≤`<n

t
k+1 and rn` ∈GPα}|
ntk+1−n

t
k

< 1−
√

2εn},

hence Ξtα(A
˜
ε∗ ∪ (ω \A

˜
′
ε∗)) ≥ 1−

∑
n∈v

√
2εn ≥ ε∗ > 0, but

Ξ
˜
t
α(ω \A

˜
′
ε∗) = 1− Ξ

˜
t
α(A

˜
′
ε∗) = 1− 1 = 0

hence necessarily Aε∗ is infinite.
This suffice for 3.4. �

Let p⊗ be as in the claim 3.4, let GPα be a generic subset of Pα to which p⊗

belongs and we shall work in V[GPα ]. So A = A
˜
ε∗ [G] is infinite. For k ∈ A,

let bk = {ζ ∈ [sk, sk+1) : p′ζ ∈ GPα}. We know that |bk| > (sk+1 − sk)× ε∗.
Note that if k ∈ A, then T ∩ jk2 ⊆

⋂
ζ∈bk aζ as `g(s∗) = m∗ > m. To reach

a contradiction it is enough to show that for infinitely many k ∈ A there is
a bound on the size of ck = T ∩ jk2 which does not depend on k.

Now |bk|/(sk+1− sk) is at most the probability that if we choose a subset

of (jk)2 with 2jk(1 − 8−m
∗
) elements, it will include T ∩ (jk)2; now if k ∈ A

this probability has a lower bound ε∗ not depending on k, and this implies
a bound on |T ∩ (jk)2| not depending on k. More formally, for a fixed k < ω
we have:

|bk| = |{aζ : ζ ∈ [sk, sk+1), ζ ∈ bk}|
≤ |{aζ : ζ ∈ [sk, sk+1), (T ∩ jk2) ⊆ aζ}|
≤ |{a ⊆ (jk2) : (T ∩ jk2) ⊆ a and |a| = 2jk(1− 8−m

∗
)}|

= |{a ⊆ (jk2) \ (T ∩ jk2) : |a| = 2jk × 8−m
∗}|

=

(
2jk − |T ∩ (jk)2|
2jk · 8−m∗

)
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similarly sk+1 − sk =

(
2jk

2jk · 8−m∗
)
. Hence

|bk|/(sk+1 − sk) ≤
(

2jk − |T ∩ jk2|
2jk · 8−m∗

)/( 2jk

2jk · 8−m∗
)

=
∏

i<|T∩(jk)2|
(2jk − 2jk8−m

∗ − i)/
∏

i<|T∩(jk)2|
(2jk − i)

=
∏

i<|T∩(jk)2|

(
1− 2jk8−m

∗

2jk−i

)
.

Let ik(∗) = min{|T ∩ (jk)2|, 2jk−1} so

ε∗ ≤ |bk|
sk+1−sk ≤

∏
i<|T∩jk2|

(1− 2jk8−m
∗

2jk−i )

≤
∏

i<ik(∗)
(1− 2jk8−m

∗

2jk
) = (1− 8−m

∗
)ik(∗).

So we can find a bound to ik(∗) not depending on k:

ik(∗) ≤ (log(1/ε∗)/ log(1/(1− 8−m
∗
),

remember m∗ > 10 so 1− 8−m
∗ ∈ (0, 1)R. So for k large enough,

|T ∩ (jk)2| = ik(∗) ≤ log(1/ε∗)/ log(1/(1− 8−m
∗
)).

This finishes the proof. �

Theorem 3.5. Under Hypothesis 2.1 there is Q̄ ∈ K3, `g(Q̄) = χ = δ∗ (if
clause (α) of 2.1(b) holds) or `g(Q̄) = χ × χ × λ+ (if clause (β) of 2.1(b)

holds) such that in VPlim Q̄ we have MA<κ + cov(null) = λ.

Proof. First assume clause (α) of 2.1. By 2.3(2) and 2.3(6) it suffices to find
an iteration

〈Pα, Q
˜
β, Aβ, µβ, τ

˜
β, ηβ, (Ξ

˜
t
α)t∈T : α ≤ χ, β < χ〉 ∈ K3

(see definition 2.11) satisfying clauses (a)+(b)+(c) of 2.3(2)+(6) (as the only
property missing, cov(null) ≤ λ, holds by 2.7 + 3.3.

Let K−3 = {Q̄ ∈ K3 : `g(Q̄) < χ}.
Now choose Q̄ξ ∈ K−3 for ξ < χ increasing with ξ (see definition 2.12)

by induction on χ. Now if cf(ξ) > ℵ0 use 2.13(3), if cf(ξ) = ℵ0 use 2.14.
Bookkeeping give us sometimes a case Q

˜
of 2.3(6)(c) as assignment, we can

find suitable A ⊆ `g(Q̄ξ) by 2.3(4) and then apply 2.19 to get Q̄ξ+1. For
other ξ, bookkeeping gives us a case of 2.3(2)(b) as assignment A ⊆ `g(Q̄ξ),
such that |A| < λ. Now we apply 2.16(2) (with Q̄, A there standing for Q̄′, A
here) and get A′ as there. Now apply 2.16(1) with Q̄′, A′ here standing for Q̄,
A′ here standing for Q̄, A there (and η any member of κ2\{ηβ : β < `g(Q̄′)}
possible as `g(Q̄′) < χ as Q̄′ ∈ K3) and get Q̄ξ+1 (corresponding to Q̄+

there).
Second assume clause (β) of 2.1(b). We just should be more careful in

our bookkeeping, particularly in the beginning let 〈ηα : α < χ× χ× λ+〉 be
an enumeration of κ2 with no repetition. �
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