
Norms on possibilities I: forcing with trees and

creatures

Andrzej Ros lanowski

Saharon Shelah

Institute of Mathematics, The Hebrew University of Jerusalem,
91904 Jerusalem, Israel, and Mathematical Institute of Wroclaw Uni-
versity, 50384 Wroclaw, Poland

Current address: Department of Mathematics and Computer Science, Boise
State University, Boise ID 83725, USA

Email address: roslanow@math.idbsu.edu
URL: http://math.idbsu.edu/∼roslanow

Institute of Mathematics, The Hebrew University of Jerusalem,
91904 Jerusalem, Israel, and Department of Mathematics, Rutgers
University, New Brunswick, NJ 08854, USA

Email address: shelah@math.huji.ac.il
URL: http://www.math.rutgers.edu/∼shelah

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

1991 Mathematics Subject Classification. Primary 03E35;
Secondary 03E40, 03E05

The first author thanks the Hebrew University of Jerusalem and the Lady Davis
Foundation for the Golda Meir Postdoctoral Fellowship, and the KBN (Polish

Committee of Scientific Research) for partial support through grant 2P03A01109.
The research of the second author was partially supported by “Basic Research

Foundation” of the Israel Academy of Sciences and Humanities. Publication 470.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

Contents

Annotated Content vi

Chapter 0. Introduction 1
0.1. The content of the paper 2
0.2. Notation 3

Chapter 1. Basic definitions 5
1.0. Prologue 5
1.1. Weak creatures and related forcing notions 7
1.2. Creatures 12
1.3. Tree creatures and tree–like forcing notions 15
1.4. Non proper examples 20

Chapter 2. Properness and the reading of names 27
2.1. Forcing notions Q∗s∞(K,Σ), Q∗w∞(K,Σ) 27
2.2. Forcing notion Q∗f (K,Σ): bigness and halving 31

2.3. Tree–creating (K,Σ) 39
2.4. Examples 43

Chapter 3. More properties 52
3.1. Old reals are dominating 52
3.2. Preserving non-meager sets 53
3.3. Preserving non-null sets 58
3.4. (No) Sacks Property 62
3.5. Examples 62

Chapter 4. Omittory with Halving 66
4.1. What omittory may easily do 66
4.2. More operations on weak creatures 68
4.3. Old reals are unbounded 70
4.4. Examples 79

Chapter 5. Around not adding Cohen reals 93
5.1. (f, g)-bounding 93
5.2. (t̄, F̄)–bounding 97
5.3. Quasi-generic Γ and preserving them 103
5.4. Examples 113

Chapter 6. Playing with ultrafilters 122
6.1. Generating an ultrafilter 122
6.2. Between Ramsey and p-points 125

iii

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

iv CONTENTS

6.3. Preserving ultrafilters 128
6.4. Examples 139

Chapter 7. Friends and relatives of PP 146
7.1. Balcerzak–Plewik number 146
7.2. An iterable friend of the strong PP–property 148
7.3. Bounded relatives of PP 152
7.4. Weakly non-reducible p-filters in iterations 155
7.5. Examples 156

List of definitions 164

Bibliography 166

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

Annotated Content

Chapter 0: Introduction

Chapter 1: Basic definitions We introduce a general method of building
forcing notions with use of norms on possibilities and we specify the two cases we
are interested in.

1.0 Prologue
1.1 Weak creatures and related forcing notions [We define weak crea-

tures, weak creating pairs and forcing notions determined by them.]
1.2 Creatures [We introduce the first specific case of the general schema:

creating pairs and forcing notions of the type Q∗C(nor)(K,Σ).]

1.3 Tree creatures and tree–like forcing notions [The second case of the
general method: forcing notions Qtree

e (K,Σ) in which conditions are trees
with norms; tree creatures and tree–creating pairs.]

1.4 Non proper examples [We show several examples justifying our work
in the next section: the method may result in forcing notions collapsing
ℵ1, so special care is needed to ensure properness.]

Chapter 2: Properness and the reading of names We define properties
of weak creating pairs which guarantee that the forcing notions determined by
them are proper. Typically we get a stronger property than properness: names for
ordinals can be read continuously.

2.1 Forcing notions Q∗s∞(K,Σ), Q∗w∞(K,Σ) [We show that the respective
forcing notions are proper if (K,Σ) is finitary and either growing or cap-
tures singletons.]

2.2 Forcing notion Q∗f (K,Σ): bigness and halving [We introduce an
important property of creatures: bigness. We note that it is useful for
deciding “bounded” names without changing the finite part of a condition
in forcing notions discussed in 2.1. Next we get properness of Q∗f (K,Σ)

when the creating pair (K,Σ) is big and has the Halving Property.]
2.3 Tree–creating (K,Σ) [We show that properness is natural for forcing

notions Qtree
e (K,Σ) determined by tree–creating pairs (with our norm

conditions). With more assumptions on (K,Σ) we can decide names on
fronts.]

2.4 Examples [We recall some old examples of forcing notions with norms
putting them in our setting and we build more of them.]

Chapter 3: More properties We formulate conditions on weak creating
pairs which imply that the corresponding forcing notions: do not add unbounded
reals, preserve non-null sets or preserve non-meager sets.

v

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

vi ANNOTATED CONTENT

3.1 Old reals are dominating [From the results of section 2 we conclude
that various forcing notions are ωω–bounding.]

3.2 Preserving non-meager sets [We deal with preservation of being a non-
meager set. We show that if a tree–creating pair (K,Σ) is T -omittory then
the forcing notion Qtree

1 (K,Σ) preserves non-meager sets. We formulate
a weaker property (being of the NMP–type) which in the finitary case
implies that forcing notions Qtree

1 (K,Σ), Q∗f (K,Σ) preserve non-meager

sets. We get a similar conclusion for Q∗w∞(K,Σ) when (K,Σ) is a finitary
creating pair which captures singletons.]

3.3 Preserving non-null sets [We formulate a property of tree–creating
pairs which implies that the forcing notion Qtree

e (K,Σ) preserves non-null
sets.]

3.4 (No) Sacks Property [An easy condition ensuring “no Sacks property”
for forcing notions of our type.]

3.5 Examples [We build a tree–creating pair (K,Σ) such that the forcing
notion Qtree

1 (K,Σ) is proper, ωω-bounding, preserves the outer measure,
preserves non-meager sets but does not have the Sacks property.]

Chapter 4: Omittory with Halving We explain how omittory creating
pairs with the weak Halving Property produce almost ωω-bounding forcing no-
tions.

4.1 What omittory may easily do [We show why natural examples of
forcing notions Q∗s∞(K,Σ) (for an omittory creating pair (K,Σ)) add a
Cohen real and make ground model reals meager.]

4.2 More operations on weak creatures [Just what the title says: we
present more ways to put weak creatures together.]

4.3 Old reals are unbounded [We say when a creating pair (K,Σ) is of the
AB–type and we show that this property may be concluded from easier–
to–check properties. We show that Q∗s∞(K,Σ) is almost ωω-bounding if
(K,Σ) is growing condensed and of the AB–type. For omittory creating
pairs we do not have to assume “condensed” but then we require a stronger
variant of the AB, AB+.]

4.4 Examples [We generalize the forcing notions from [Sh 207], [RoSh 501]
building examples for properties investigated before.]

Chapter 5: Around not adding Cohen reals We try to ensure that the
forcing notions built according to our schema do not add Cohen reals even if it-
erated. We generalize “(f, g)–bounding” and further we arrive to a more general
iterable condition implying “no Cohen reals”.

5.1 (f, g)–bounding [We present easy ways to make sure that our method
results in (f, g)–bounding forcing notions.]

5.2 (t̄, F̄)–bounding [We introduce a natural (in our context) generalization
of (f, g)–bounding property. For the sake of completeness we show that
the new property is preserved in CS iterations.]

5.3 Quasi–generic Γ and preserving them [We formulate a reasonably
weak but still iterable condition for not adding Cohen reals. We define
t̄–systems, we say when Γ is quasi-W -generic and when a forcing notion is
Γ–genericity preserving. These notions will be crucial in the next section
too.]

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

ANNOTATED CONTENT vii

5.4 Examples [We construct a sequence 〈W k
`,h : h ∈ F`, k, `〉 such that W k

`,h

are t̄–systems and various forcing notions (including the random alge-
bra) are (Γ,W k

`,h)–genericity preserving (for quasi-generic Γ). We build a

forcing notion Q∗w∞(K,Σ) which is proper, ωω-bounding, (f, g)-bounding,
makes ground model reals null and we use the technology of “Γ–genericity”
to conclude that its CS iterations with Miller’s forcing, Laver’s forcing and
random algebra do not add Cohen reals.]

Chapter 6: Playing with ultrafilters Our aim here is to build a model
in which there is a p-point generated by ℵ1 elements which is not a q-point and
m1 = ℵ2.

6.1 Generating an ultrafilter [We say when and how quasi-W -generic Γ
determines an ultrafilter on ω.]

6.2 Between Ramsey and p-points [We define semi–Ramsey and almost–
Ramsey ultrafilters and we have a short look at them.]

6.3 Preserving ultrafilters [We give conditions on a tree–creating pair (K,Σ)
which imply that the forcing notion Qtree

1 (K,Σ) preserves “D is an ultra-
filter” for D which is Ramsey, almost Ramsey. We say when the filter
generated by D in the extension is almost Ramsey.]

6.4 Examples [We construct t̄–systems Wn
L such that if a quasi-WN

L -generic
Γ generates a semi–Ramsey ultrafilter then it generates an almost–Ramsey
ultrafilter, and we build a suitable quasi-generic Γ. For a function ψ ∈ ωω
we give a tree–creating pair (K,Σ) such that the forcing notionQtree

1 (K,Σ)

preserves “D is an almost–Ramsey ultrafilter” and it adds a function Ẇ

(with Ẇ (m) ∈ [ψ(m)]m+ 1) such that for each partial function h ∈∏
m∈dom(h)

ψ(m) infinitely often h(m) ∈ Ẇ (m). Next we apply it to get an

answer to Matet’s problem.]

Chapter 7: Friends and relatives of PP We deal with Balcerzak–Plewik
number and various properties resembling PP–property.

7.1 Balcerzak–Plewik number [We recall the definition of κBP and we show
that it is bounded by the dominating number of the relation determined
by the strong PP–property.]

7.2 An iterable friend of strong PP–property [We introduce a property
slightly stronger than the strong PP–property but which can be easily
handled in CS iterations. We show that this property is natural for forc-
ings Qtree

0 (K,Σ), Q∗w∞(K,Σ) (in finitary cases).]
7.3 Bounded relatives of PP [We define various PP-like properties for

localizing functions below a given function. We say how one gets them for
our forcing notions and how we may handle them in iterations.]

7.4 Weakly non-reducible p-filters in iterations [We show that a prop-
erty of filters, crucial for getting PP-like properties for our forcing notions,
is easy to preserve in CS iterations.]

7.5 Examples [For a perfect set P ⊆ 2ω we build a creating pair (K,Σ)
such that the forcing notion Q∗f (K,Σ) is proper, ωω-bounding and adds

a perfect subset Q of P whith property that (∀K ∈ [ω]ω)(Q�K 6= 2K).
We use this forcing notion to get consistency of d < κBP. We show how
forcing notions from other parts of the paper may be used to distinguish

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

viii ANNOTATED CONTENT

PP-like properties (and the corresponding cardinal invariants). We build
an example of a forcing notion which is ωω–bounding and preserves non-
meager sets but which does not have the strong PP-property.]

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

CHAPTER 0

Introduction

Set Theory1 began with Georg Cantor’s work when he was studying some spe-
cial sets of reals in connection with the theory of trigonometric series. This study
led Cantor to the following fundamental question: does there exist a bijection be-
tween the natural numbers and the set of real numbers? He answered this question
negatively by showing that there is no such function. Cantor’s work did not stop
here and with his sharp intuition he discovered new concepts like the aleph’s scale:

0, 1, . . . ,ℵ0,ℵ1, . . . ,ℵω,ℵω+1,

Thus Cantor’s theorem says that ℵ0 < 2ℵ0 and Cantor’s question was: is 2ℵ0 equal
to ℵ1?

A real advance on Cantor’s question was given by Kurt Gödel when he showed
that it is (relatively) consistent that 2ℵ0 = ℵ1. In 1963 Paul Cohen showed that if
the ZF–axioms for Set Theory are consistent then there is a model for Set Theory
where the continuum is bigger than ℵ1. Cohen’s work is the end of classical set
theory and is beginning of a new era.

When the cardinality of the continuum is ℵ1 (i.e. CH holds) most of the com-
binatorial problems are solved. When the continuum is at least ℵ3 then most of
the known technology fails and we meet very strong limitations and barriers.

When the continuum is ℵ2 there are many independence results; moreover there
are reasonably well developed techniques for getting them by sewing the countable
support iterations of proper forcing notions together with theorems on preservation
of various properties.

The aim of this paper is to present some tools applicable in the last case.
We present here a technique of constructing of (proper) forcing notions that was
introduced by Shelah for solving problems related to cardinal invariants like the un-
bounded number or the splitting number as well as questions of existence of special
kinds of P-points (see Blass Shelah [BsSh 242] and Shelah [Sh 207], [Sh 326]).
That method was successfully applied in Fremlin Shelah [FrSh 406], Ros lanowski
Shelah [RoSh 501], Ciesielski Shelah [CiSh 653] and other papers. The first at-
tempt to present a systematic study of the technique was done in the late eighties
when the second author started work on preparation of a new edition of [Sh:b].
For a long time the new book, [Sh:f], was supposed to contain 19 chapters. The
last chapter, Norms on possibilities, contained a series of general definitions and
statements of some basic results. However, there was no new application (or: a
good question to solve) and the author of the book decided to put this chapter

1A large part of the beginning of this introduction is based on notes of Haim Judah. I really
think that they fit to the present paper, though Saharon Shelah is not convinced — Andrzej

Ros lanowski.

1

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

2 0. INTRODUCTION

aside. Several years later, when the first author started his cooperation with She-
lah some new applications of Norms on possibilities appeared. But the real shape
was given to the work due to questions of Tomek Bartoszyński and Pierre Matet.
The answers were very stimulating for the development of the general method.

This paper is meant as the first one in a series of works presenting applicability
of the method of norms on possibilities. In [RoSh 670] we will present more
applications of this technique – for example we develop the ideas of Ciesielski Shelah
[CiSh 653] to build models without magic sets and their relatives. Though one
can get an impression here that our method results in non-ccc forcing notions, we
managed to generalize it slightly and get a tool for constructing ccc forcing notions.
That was successfully applied in [RoSh 628] to answer a problem of Kunen by
constructing a ccc Borel ideal on 2ω which is translation–invariant index–invariant
and is distinct from the null ideal, the meager ideal and their intersection. It
should be pointed out here, that already in Judah Ros lanowski Shelah [JRSh 373]
an example of a ccc forcing notion built with the use of norms on possibilities
was given (the forcing notion there can be presented as some Qtree

1 (K,Σ) in the
terminology here). Investigations of ccc forcing notions constructed according to our
schema are continued in [RoSh 672]. There are serious hopes that the technique
presented here might be used to deal with problems of large continuum due to
special products. This would continue Goldstern Shelah [GoSh 448]. Another
direction is study of σ-ideals related to forcing notions built according to the schema.

Let us note that most of the forcing notions constructed here fall into the
category of snep–forcing notions of [Sh 630]. Consequently, the general machinery
of definable forcing notions is applicable here. We may use it to improve some of
our results, and also to get more tools for handling iterations (see [Sh 630] and
[Sh 669] for more details).

We want to emphasize that though the aim of the paper is strongly related
to independence proofs it should have some value for those firmly committed to
unembellished ZFC, too. This is nicely expressed by the following:

Thesis 0.0.1. We cannot discover the (candidates for) Theorems of ZFC with-
out having good forcing techniques to show they are hard nuts.

0.1. The content of the paper

Most of the results of the paper originated in answering a particular question
by constructing an example of a forcing notion. However, the general idea of the
paper is to extract those properties of the example which are responsible for the
fact that it works, with the hope that it may help in further applications of the
method. That led us to separation of “the general theory” from its applications, and
caused us to introduce a large number of definitions specifying various properties
of weak creating pairs. Each chapter ends with a section presenting examples and
applications of the tools developed in previous sections. Moreover, at the end of
the paper we present the list of all definitions which appeared in it. This is not a
real index, but should be helpful. The first chapter introduces basic definitions and
the general scheme. In the next chapter we deal with the fundamental question of
when our forcing notions are proper. The first two chapters are a basis for the rest
of the paper. After reading them one can jump to any of the following chapters.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

0.2. NOTATION 3

In the third chapter we show how we may control some basic properties of
forcing notions built according to our scheme. The properties we deal with here
are related to measure and category and they lead us to example 3.5.1 of a proper
forcing notion which is ωω–bounding, preserves non-meager sets and the outer
measure, but does not have the Sacks Property. This answers Bartoszyński’s request
[Ba94, Problem 5].

The fourth part continues [RoSh 501], dealing with localizations of subsets of
ω. Though the example constructed here is a minor modification of the one built
there, it is presented according to our general setting. We show explicitly how the
weak Halving Property works in this type of examples.

A serious problem in getting models of ZFC with given properties of measure
and category is that of not adding Cohen reals. What is disturbing here is that we
do not have any good (meaning: sufficiently weak but iterable) conditions for this.
In the fifth chapter we show how one can ensure that our general scheme results in
forcing notions not adding Cohen reals. A new iterable condition for this appears
here and quite general tools are developed (see 5.3.6, 5.4.2). Finally, in 5.4.3, 5.4.4,
we fully answer another request of Bartoszyński formulated in [Ba94, Problem 4].
We build a proper ωω–bounding forcing notion which preserves non-meager sets,
makes ground model reals null, is (f, g)–bounding and such that countable support
iterations of this forcing with Laver forcing, Miller forcing and random real forcing
do not add Cohen reals.

The next chapter leads to answering a question of Matet and Pawlikowski.
In 6.4.6 we show that it is consistent that there exists a p-point generated by ℵ1

elements which is not a q-point and that for every ψ ∈ ωω and a family F of ℵ1

partial infinite functions h : dom(h) −→ ω such that h(n) < ψ(n) for n ∈ dom(h) ⊆
ω there is W ∈

∏
n∈ω

[ψ(n)]n+ 1 with (∀h ∈ F)(∃∞n ∈ dom(h))(h(n) ∈ W (n)).

Several general results on preserving special properties of ultrafilters are presented
on the way to this solution.

A starting point for chapter 7 was a problem of Balcerzak and Plewik. We
show that the Balcerzak–Plewik number κBP (see 7.1.1) is bounded by a cardinal
invariant related to the strong PP–property (in 7.1.3). Next we show the consistency
of both “d < κBP” (in 7.5.2) and “κBP < c” (in 7.5.3). We treat our solution as
a good opportunity to look at various properties of forcing notions related to the
PP–property (and corresponding cardinal invariants).

0.2. Notation

Most of our notation is standard and compatible with that of classical textbooks
on Set Theory (like Bartoszyński Judah [BaJu95] or Jech [J]). However in forcing
we keep the convention that a stronger condition is the larger one.

Notation 0.2.1. (1) R≥0 stands for the set of non-negative reals. The
integer part of a real r ∈ R≥0 is denoted by brc.

(2) For two sequences η, ν we write ν C η whenever ν is a proper initial
segment of η, and ν E η when either ν C η or ν = η. The length of a
sequence η is denoted by `g(η).

(3) A tree is a family of finite sequences closed under initial segments. (In
1.3.1 we will define more general objects.) For a tree T the family of all

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

4 0. INTRODUCTION

ω–branches through T is denoted by [T]. We may use the notation lim(T)
for this object too (see 1.3.1, note that a tree is a quasi tree).

(4) The quantifiers (∀∞n) and (∃∞n) are abbreviations for

(∃m ∈ ω)(∀n > m) and (∀m ∈ ω)(∃n > m),

respectively.
(5) For a function h : X −→ X and an integer k we define h(k) as the kth–

iteration of h: h(1) = h, h(k+1) = h ◦ h(k).

(6) For a set X, [X]≤ω , [X]<ω and P(X) will stand for families of countable,
finite and all, respectively, subsets of the set X. The family of k-element

subsets of X will be denoted by [X]k. The set of all finite sequences with

values in X is called X<ω (so domains of elements of X<ω are integers).
The collection of all finite partial functions from ω to X is Xω

^.
(7) The Cantor space 2ω and the Baire space ωω are the spaces of all functions

from ω to 2, ω, respectively, equipped with natural (Polish) topology.
(8) For a forcing notion P, ΓP stands for the canonical P–name for the generic

filter in P. With this one exception, all P–names for objects in the exten-
sion via P will be denoted with a dot above (e.g. τ̇ , Ẋ).

(9) c stands for the cardinality of the continuum. The dominating number
(the minimal size of a dominating family in ωω in the ordering of eventual
dominance) is denoted by d and the unbounded number (the minimal size
of an unbounded family in that order) is called b. M, N stand for the
σ–ideals of meager and null sets on the real line, respectively.

General Definitions 0.2.2. (1) For an ideal J of subsets of a space X
we define its cardinal characteristics (called additivity, covering number,
uniformity and cofinality, respectively):
• add(J) = min{|A| : A ⊆ J &

⋃
A /∈ J },

• cov(J) = min{|A| : A ⊆ J &
⋃
A = X},

• non(J) = min{|Y | : Y ⊆ X & Y /∈ J },
• cof(J) = min{|A| : A ⊆ J & (∀A ∈ J)(∃B ∈ A)(A ⊆ B)}.

(2) Assume that X,Y are Polish spaces and R ⊆ X × Y is a Borel relation.
Suppose that V ⊆ V′ are models of ZFC and that all parameters we
need are in V. We say that the extension (V,V′) has the R-localization
property if

(∀x ∈ X ∩V′)(∃y ∈ Y ∩V)((x, y) ∈ R).

If x ∈ X ∩V′, y ∈ Y ∩V and (x, y) ∈ R then we say that y R-localizes x.
We say that a forcing notion P has the R–localization property if every

generic extension of V via P has this property.
(3) For a relation R ⊆ X×Y we define two cardinal numbers (the unbounded

and the dominating number for R):

b(R) = min{|B| : (∀y ∈ Y)(∃x ∈ B)((x, y) /∈ R)}
d(R) = min{|D| : (∀x ∈ X)(∃y ∈ D)((x, y) ∈ R)}.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

CHAPTER 1

Basic definitions

In this chapter we introduce our heroes: forcing notions built of weak creatures.
The Prologue is intended to give the reader some intuitions needed to get through
a long list of definitions. A general scheme is presented in the second part, where
we define weak creatures, sub–composition operations, weak creating pairs (K,Σ)
and corresponding forcing notions QC(nor)(K,Σ). However, in practice (at least
in this paper) we will be interested in two special cases of the scheme. The first
main family of weak creating pairs (and related forcing notions) are creating pairs
determined by composition operations on creatures. The second family consists of
tree–creating pairs coming from tree compositions on tree–creatures. These two
options are introduced in the following two parts of the chapter. It should be
underlined here that the rest of the paper will deal with these two (essentially
disjoint and parallel) cases of the general scheme. In the last section we give some
justifications for our work in the next chapter, showing that without extra care our
schema may result in forcing notions collapsing ℵ1.

Note: Our terminology (weak creatures, creatures, tree–creatures etc) might be
slightly confusing, but it was developed during a long period of time (see introduc-
tion) and large parts of it are established in literature already.

Basic Notation: In this paper H will stand for a function with domain ω such
that (∀m ∈ ω)(|H(m)| ≥ 2). We usually assume that 0 ∈ H(m) (for all m ∈
ω); if it is not the case then we fix an element of H(m) and we use it whenever
appropriate notions refer to 0. Moreover we fix “a sufficiently large” uncountable
regular cardinal χ and we assume that at least H ∈ H(χ) (the family of sets of
cardinality hereditarily less than χ) or, what is more natural, even H ∈ H(ℵ1).

1.0. Prologue

If one looks at forcing notions appearing naturally in the Set Theory of Reals
(i.e. the forcing notions adding a real with certain properties and preserving various
properties of the ground model reals) then one realizes that they often have a com-
mon pattern. A condition in such a forcing notion determines an initial segment of
the real we want to add and it puts some restrictions on possible further extensions
of the initial segment. When we pass to a stronger condition we extend the deter-
mined part of the generic real and we put more restrictions on possible extensions.
But we usually demand that the amount of freedom which is left by the restrictions
still goes to infinity in a sense. The basic part of the definition of such a forcing
notion is to describe the way a condition puts a restriction on possible initial seg-
ments of the generic real. Typically the restriction can be described locally by use
of “atoms” or “black boxes”, in our terminology called weak creatures. So a weak
creature t has a domain (contained in finite sequences) and for each sequence w

5

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

6 1. BASIC DEFINITIONS

from the domain it gives a family of extensions of w (this is described by a relation
val[t]: if 〈u, v〉 ∈ val[t] then v is an allowed extension of u). Moreover, such a t
has a norm nor[t] which measures the amount of freedom it leaves. Further, we
are told what we are allowed to do with weak creatures: typically we may shrink
them, glue together or just forget about them (i.e. omit them). The results of
permitted operations on a family S of weak creatures are elements of Σ(S) in our
notation (where Σ is a sub-composition operation on the considered family K of
weak creatures), see 1.1.4. Now a condition in our forcing notion can be viewed as
(w,S), where w is a finite sequence (the determined part of the generic real) and
S is a countable family of weak creatures satisfying some demands on its structure
and requirements on nor[t] for t ∈ S. When we want to build a stronger condition
then we take t ∈ S such that w is in the domain of t and we pick up one of the
possible extensions of w allowed by t. We may repeat this procedure finitely many
times and we get a sequence w∗ extending w. Next we choose a family S∗ of weak
creatures such that each s ∈ S∗ is obtained by permitted procedures from some
Ss ⊆ S (i.e. s ∈ Σ(Ss)). The pair (w∗,S∗) is an extension of (w,S) provided S∗
satisfies the structure demands and norm requirements.

However, this general schema breaks to two cases, which, though very similar,
are of different flavors. In the first case we demand that the family S in a con-
dition (w,S) has a linear structure. Then we usually represent the condition as
(w, t0, t1, t2, . . .), where for some sequence 0 ≤ m0 < m1 < m2 < . . . < ω

w is a sequence of length m0 and for each i < ω:

ti is a weak creature saying in which way sequences of length mi

may be extended to sequences of length mi+1.

So it is natural in this context to consider only weak creatures t such that for
some integers mt

dn < mt
up (dn stands for “down”), the domain of t is contained

in sequences of length mt
dn and every extension of a sequence from the domain

allowed by t is of length mt
up. In other words we require that if 〈u, v〉 ∈ val[t] then

`g(u) = mt
dn and `g(v) = mt

up. In applications the domain of the relation val[t]

consist of all legal sequences of length mt
dn. Let us describe a simple example of

this kind. Consider the Silver forcing Q “below 2n”: a condition in Q is a function
p : dom(p) −→ ω such that

dom(p) ⊆ ω & |ω \ dom(p)| = ω & (∀n ∈ dom(p))(p(n) < 2n).

Let us look at this forcing in a different way.
Let K consist of all triples t = (nor[t],val[t],dis[t]) such that

• dis[t] = (mt, kt) where mt < ω and kt ∈ {∗} ∪ 2m
t

,
• nor[t] = mt if kt = ∗ and nor[t] = 0 otherwise,
• val[t] = {〈u, v〉 ∈

∏
i<mt

2i ×
∏
i≤mt

2i : u C v & (kt 6= ∗ ⇒ v(mt) = kt)}.

For S ⊆ K we let Σ(S) = ∅ if |S| 6= 1 and
if t ∈ K, kt 6= ∗ then Σ({t}) = {t},
if t ∈ K, kt = ∗ then Σ({t}) consists of all s ∈ K with ms = mt.

Now, a condition p in Q may be represented as a sequence (wp, tp0, t
p
1, . . .), where

(a) each tpi is from K,

(b) wp is a finite sequence of length mtp0 such that wp(n) < 2n for n < mtp0 ,

(c) mtpi = mtp0 + i,

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

1.1. WEAK CREATURES AND RELATED FORCING NOTIONS 7

(d) lim sup
i→ω

nor[tpi] =∞.

The order ≤ of Q is defined by (wp, tp0, t
p
1, t

p
2, . . .) ≤ (wq, tq0, t

q
1, t

q
2, . . .) if and only if

for some N < ω:

wp E wq, `g(wq) = `g(wp) +N ,
〈wq�`g(wp) + i, wq�(wp) + i+ 1〉 ∈ val[tpi] for each i < N , and
tqj ∈ Σ(tpN+j) for every j < ω.

The pair (K,Σ) is an example of a creating pair and the forcing notion Q (repre-
sented as above) is Q∗w∞(K,Σ) (see 1.2.2 and 1.2.4).

On the other pole of possible weak creatures we have those which provide
possible extensions for only one sequence η (i.e. those t for which |dom(val[t])| = 1).
Weak creatures of this type are called tree–creatures and they say to us simply:

I know what the restrictions on extensions of a single sequence η
are, and I do not look at other sequences at all.

Tree–creatures are fundamental for building forcing notions in which conditions are
trees of a special kind. In these forcing notions a condition p = (w,S) is such that
w is a root (stem) of a tree T p and each t ∈ S is a part of the tree T p; usually such
a t describes how one passes from an element η ∈ T p to its extensions in T p (not
necessarily immediate successors). It is natural to put some requirements on sub–
composition operations Σ when the weak creatures we consider are tree–creatures,
and this leads to the definition of tree composition and tree–creating pair, see 1.3.3.
Moreover, it turns out to be very practical to consider special demands on the
norms nor[t] to take an advantage of the tree–form of a condition, see 1.3.5. (Note
that in further definitions we do not require that T p is a tree but we demand that
it is a quasi tree only. This will simplify the notation a little bit.) Let us illustrate
this by a suitable representation of the Laver forcing L. Recall that a condition in
L is a tree T ⊆ ω<ω such that if η ∈ T , root(T) E η then |succT (η)| = ω.

Let K consist of all triples t = (nor[t],val[t],dis[t]) such that

• dis[t] = (ηt, At), where At ∈ [ω]ω and ηt ∈ ω<ω ,
• nor[t] = `g(ηt),
• val[t] = {〈ηt, ν〉 : ηt C ν & `g(ν) = `g(ηt) + 1 & ν(`g(ηt)) ∈ At}.

For t ∈ K we let Σ({t}) = {s ∈ K : ηs = ηt & As ⊆ At} and for S ⊆ K
with |S| 6= 1 we declare Σ(S) = ∅. Now, a condition p in L can be represented

as (ηp, 〈tpν : ν ∈ T p〉), where T p ⊆ ω<ω is a tree such that root(T p) = ηp and
for each ν ∈ T p, root(T p) E ν we have succTp(ν) = {ρ : 〈ν, ρ〉 ∈ val[tpν]} (so
S is {tpν : ν ∈ T p} here). Moreover, we demand that for each infinite branch
η through T p the norms nor[tpη�i] go to infinity. The order ≤ of L is given by

(ηp, 〈tpν : ν ∈ T p〉) ≤ (ηq, 〈tqν : ν ∈ T q〉) if and only if ηq ∈ T p and

(∀ν ∈ T q)(ν ∈ T p & tqν ∈ Σ(tpν)).

The pair (K,Σ) defined above is a tree creating pair and the forcing notion L is
Qtree

1 (K,Σ).

1.1. Weak creatures and related forcing notions

Definition 1.1.1. (1) A triple t = (nor,val,dis) is a weak creature for
H if:
(a) nor ∈ R≥0,

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

8 1. BASIC DEFINITIONS

(b) val is a non-empty subset of

{〈x, y〉 ∈
⋃

m0<m1<ω

[
∏
i<m0

H(i)×
∏
i<m1

H(i)] : x C y},

(c) dis ∈ H(χ).
The family of all weak creatures for H is denoted by WCR[H].

(2) In the above definition we write nor = nor[t], val = val[t] and dis =
dis[t].

[val is for value, nor is for norm, dis is for distinguish.]

Remark 1.1.2. The dis[t] in a weak creature t plays the role of an additional
parameter which allows as to have distinct creatures with the same values of val
and nor. This may be sometimes important in defining sub-composition operations
on K (see 1.1.4 below): we will be able to have distinct values of Σ(t0), Σ(t1)
though val[t0] = val[t1] and nor[t0] = nor[t1]. One may think that this additional
parameter describes the way the weak creature t was constructed (while val[t],
nor[t] give the final effect of the construction). We may sometimes “forget” to
mention dis[t] explicitly – in most of the results and applications dis[t] might be
arbitrary. In the examples we construct, if we do not mention dis[t] we mean that
either it is 0 or its form is clear.

Definition 1.1.3. (1) If we omit H we mean for some H or the H is
clear from the context, etc.

(2) We say that H is finitary (or of a countable character, respectively) if H(n)
is finite (countable, resp.) for each n ∈ ω. We say that K ⊆ WCR[H] is
finitary if H is finitary and val[t] is finite for each t ∈ K.

Definition 1.1.4. Let K ⊆WCR[H].

(1) A function Σ : [K]≤ω −→ P(K) is a sub-composition operation on K if:

(a) (transitivity) if S ∈ [K]≤ω and for each s ∈ S we have s ∈ Σ(Ss)
then Σ(S) ⊆ Σ(

⋃
s∈S
Ss),

(b) r ∈ Σ(r) for each r ∈ K and Σ(∅) = ∅.
[Note that Σ(S) may be empty for non-empty S; in future defining Σ we
will describe it only for the cases it provides a non-empty result, in all
other cases we will assume that Σ(S) = ∅.]

(2) In the situation described above the pair (K,Σ) is called a weak creating
pair for H.

(3) Suppose that (K,Σ) is a weak creating pair, t0, t1 ∈ K. We say that
t0, t1 are Σ–equivalent (and we write then t0 ∼Σ t1) if nor[t0] = nor[t1],

val[t0] = val[t1] and for each S ⊆ [K \{t0, t1}]≤ ω we have Σ(S ∪{t0}) =
Σ(S ∪ {t1}).

Remark 1.1.5. Note that the relation ∼Σ as defined in 1.1.4(3) does not have
to be transitive in a general case (so, perhaps, we should not use the name Σ–
equivalent). However, if (K,Σ) is either a creating pair (see 1.2.2) or a tree–creating
pair (see 1.3.3) then∼Σ is an equivalence relation. Then, if additionally Σ(S) is non-
empty for finite S only, the value of Σ(S) depends on the ∼Σ–equivalence classes
of elements of S only. Therefore we will tend to think in these situations that we
identify all ∼Σ–equivalent elements of K (or just consider a selector K∗ ⊆ K of
K/∼Σ). If Σ(S) may be non-empty for an infinite S ⊆ K (which may happen

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

1.1. WEAK CREATURES AND RELATED FORCING NOTIONS 9

for tree–creating pairs), then we have to be more careful before we consider this
identification: we should check that the values of Σ depend on ∼Σ–equivalence
classes only.

Definition 1.1.6. Let (K,Σ) be a weak creating pair for H.

(1) For a weak creature t ∈ K we define its basis (with respect to (K,Σ)) as

basis(t) = {w ∈
⋃
m<ω

∏
i<m

H(i) : (∃s ∈ Σ(t))(∃u)(〈w, u〉 ∈ val[s])}.

(2) For w ∈
⋃
m<ω

∏
i<m

H(i) and S ∈ [K]≤ω we define the set pos(w,S) of

possible extensions of w from the point of view of S (with respect to
(K,Σ)) as:

pos∗(w,S) = {u : (∃s ∈ Σ(S))(〈w, u〉 ∈ val[s])},

pos(w,S) = {u : there are disjoint sets Si (for i < m < ω) with
⋃
i<m

Si = S

and a sequence 0 < `0 < . . . < `m−1 < `g(u) such that
u�`0 ∈ pos∗(w,S0) and
u�`1 ∈ pos∗(u�`0,S1) & . . . & u ∈ pos∗(u�`m−1,Sm−1)}.

(3) Whenever we use basis or pos we assume that the weak creating pair
(K,Σ) with respect to which these notions are defined is understood.

Definition 1.1.7. Suppose (K,Σ) is a weak creating pair for H and C(nor) is
a property of ω-sequences of weak creatures from K (i.e. C(nor) can be thought of
as a subset of Kω). We define the forcing notion QC(nor)(K,Σ) by

conditions are pairs (w, T) such that for some k0 < ω:

(a) w ∈
∏
i<k0

H(i)

(b) T = 〈ti : i < ω〉 where:
(i) ti ∈ K for each i,

(ii) w ∈ basis(ti) for some i < ω and for each u ∈ pos(w, {ti : i ∈ I0}),
I0 ⊆ ω there is i ∈ ω \ I0 such that u ∈ basis(ti),

(c) the sequence 〈ti : i < ω〉 satisfies the condition C(nor);

the order is given by: (w1, T
1) ≤ (w2, T

2) if and only if
for some disjoint sets S0,S1,S2, . . . ⊆ ω we have:

w2 ∈ pos(w1, {t1` : ` ∈ S0}) and t2i ∈ Σ({t1` : ` ∈ Si+1}) for each i < ω

(where T ` = 〈t`i : i < ω〉).
If p = (w, T) we let wp = w, T p = T and if T p = 〈ti : i < ω〉 then we let

tpi = ti. We may write (w, t0, t1, . . .) instead of (w, T) (when T = 〈ti : i < ω〉).

Proposition 1.1.8. If (K,Σ) is a weak creating pair and C(nor) is a property
of sequences of elements of K then QC(nor)(K,Σ) is a forcing notion.

Remark 1.1.9. The reason for our notation C(nor) for the property relevant
for (c) of 1.1.7 is that in the applications this conditions will say that the norms
nor[ti] go to the infinity in some sense. Some of the possibilities here are listed in
1.1.10 below.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

10 1. BASIC DEFINITIONS

Definition 1.1.10. For a weak creature t let us denote

mdn(t) = min{`g(u) : u ∈ dom(val[t])}.

We introduce the following (basic) properties of sequences of weak creatures which
may serve as C(nor) in 1.1.7:

(s∞) A sequence 〈ti : i < ω〉 satisfies Cs∞(nor) if and only if

(∀i < ω)(nor[ti] > max{i,mdn(ti)}).

(∞) A sequence 〈ti : i < ω〉 satisfies C∞(nor) if and only if

lim
i→ω

nor[ti] =∞.

(w∞) A sequence 〈ti : i < ω〉 satisfies Cw∞(nor) if and only if

lim sup
i→ω

nor[ti] =∞.

Let f : ω × ω −→ ω. We define the property introduced by f by

(f) A sequence 〈ti : i < ω〉 satisfies Cf (nor) if and only if

(∀k < ω)(∀∞i)(nor[ti] > f(k,mdn(ti))).

For notational convenience we will sometimes use the empty norm condition:

(∅) Each sequence 〈ti : i < ω〉 satisfies C∅(nor).

The forcing notions corresponding to the above properties (for a weak creating
pair (K,Σ)) will be denoted by Qs∞(K,Σ), Q∞(K,Σ), Qw∞(K,Σ), Qf (K,Σ) and
Q∅(K,Σ), respectively.

Remark 1.1.11. 1) Note that the second component of a pair (w, T) ∈
QC(nor)(K,Σ) is a sequence of weak creatures, and in the most general case the order
of its members may be important. For example the property Cs∞(nor) introduced
in 1.1.10 is not permutation invariant and some changes of the order in the sequence
〈ti : i < ω〉 may produce a pair (w, T ′) which is not a legal condition. This is not
what we would like to have here, so in applications in which this kind of problems
appears we will restrict ourselves to suborders Q∗C(nor)(K,Σ) of QC(nor)(K,Σ) in

which we put additional structure demands on the sequences 〈ti : i < ω〉 (see 1.2.6).
Moreover, to get properness for forcing notions Q∗s∞(K,Σ) we will have to put some
demands on (K,Σ) (see 2.1.6). These demands will cause that various variants of
the norm condition Cs∞(nor) result in equivalent forcing notions (see 2.1.3). So,
from the point of view of applications, the main reason for introducing Cs∞(nor)
is a notational convenience.
2) Note that

Qs∞(K,Σ) ⊆ Q∞(K,Σ) ⊆ Qw∞(K,Σ) ⊆ Q∅(K,Σ)

where the inclusions mean “suborder” (but often not “complete suborder”). If
we put some conditions on f (e.g. f is fast, see 1.1.12) then we may easily have
Qf (K,Σ) ⊆ Q∞(K,Σ).
3) In our applications we will consider the forcing notions Qf (K,Σ) only for
functions f : ω × ω −→ ω which are growing fast enough (see 1.1.12 below).

Definition 1.1.12. A function f : ω × ω −→ ω is fast if

(∀k ∈ ω)
(
∀` ∈ ω)(f(k, `) ≤ f(k, `+ 1) & 2 · f(k, `) < f(k + 1, `)

)
.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

1.1. WEAK CREATURES AND RELATED FORCING NOTIONS 11

The function f is H-fast if additionally (H is finitary and) for each k, ` ∈ ω:

2ϕH(`) · (f(k, `) + ϕH(`) + 2) < f(k + 1, `),

where ϕH(`) = |
∏
i<`

H(i)|.

Definition 1.1.13. Suppose that (K,Σ) is a weak creating pair and C(nor)

is a property of sequences of elements of K. Let Ẇ be a QC(nor)(K,Σ)-name such
that

QC(nor)(K,Σ) Ẇ =
⋃
{wp : p ∈ ΓQC(nor)(K,Σ)}.

Proposition 1.1.14. Suppose that (K,Σ) is a weak creating pair and C(nor)
is a property such that the forcing notion QC(nor)(K,Σ) is non-empty. Then:

(1) QC(nor)(K,Σ) “Ẇ is a member of
∏
i<ω

H(i)”.

(2) If (∀i ∈ ω)(H(i) = 2) then QC(nor)(K,Σ) “Ẇ is a real”.

(3) If for every t ∈ K, u ∈ basis(t) the set pos(u, t) has at least two elements

then QC(nor)(K,Σ)“Ẇ /∈ V”.

Remark 1.1.15. 1) We will always assume that the considered weak creating
pairs (K,Σ) (and norm conditions C(nor)) are such that QC(nor)(K,Σ) 6= ∅. Usu-
ally, it will be enough that K contains enough creatures with large norms and in
each particular example this requirement will be easy to verify.
2) In general, the Ẇ defined in 1.1.13 does not have to encode the generic fil-
ter. We may formulate a condition ensuring this. Let (K,Σ) be a weak creating
pair and C(nor) be a norm condition such that QC(nor)(K,Σ) is not empty. For
p ∈ QC(nor)(K,Σ) define

S(p)
def
= {w ∈

⋃
n∈ω

∏
i<n

H(i) : (∃q ≥ p)(w E wq)}

Clearly S(p) is a subtree of
⋃
n∈ω

∏
i<n

H(i). Moreover, for each w ∈
⋃
n∈ω

∏
i<n

H(i) and

p, q ∈ QC(nor)(K,Σ):

p 6QC(nor)(K,Σ) “w 6 Ẇ” if and only if w ∈ S(p) and

p QC(nor)(K,Σ) “Ẇ ∈ [S(q)]” if and only if S(p) ⊆ S(q).

Now we may define a QC(nor)(K,Σ)–name Ḣ by

QC(nor)(K,Σ)
Ḣ = {p ∈ QC(nor)(K,Σ) : Ẇ ∈ [S(p)]}

and we may want to claim that Ḣ = ΓQC(nor)(K,Σ). But for this we need to

know that any two conditions in Ḣ are compatible. A sufficient and necessary
requirement for this is:

(�) if p, q ∈ QC(nor)(K,Σ) and S(p) ⊆ S(q)
then p q ∈ ΓQC(nor)(K,Σ) (or in other words p ≥ q modulo the

equivalence of conditions).

In most of our examples and applications, the condition (�) will be easy to check.
We will not mention it in future as we will not use its consequences.
Note however that it is very easy to build examples of weak creating pairs (K,Σ)
(even creating pairs or tree creating pairs) for which (�) fails. Some of these
examples might appear naturally.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

12 1. BASIC DEFINITIONS

1.2. Creatures

Now we will deal with the first specific case of the general scheme: creating
pairs and forcing notions Q∗C(nor)(K,Σ). Notation and definitions introduced here

are applicable to this case only and should not be confused with that for tree–
creating pairs.

Definition 1.2.1. Let t be a weak creature for H.

(1) If there is m < ω such that (∀〈u, v〉 ∈ val[t])(`g(u) = m)
then this unique m is called mt

dn.
(2) If there is m < ω such that (∀〈u, v〉 ∈ val[t])(`g(v) = m)

then this unique m is called mt
up.

(3) If both mt
dn and mt

up are defined then t is called an (mt
dn,m

t
up)–creature

(or just a creature).
(4) CRmdn,mup

[H] = {t ∈WCR[H] : mt
dn = mdn and mt

up = mup},
CR[H] =

⋃
mdn<mup<ω

CRmdn,mup [H].

Definition 1.2.2. Suppose that K ⊆ CR[H] and Σ is a sub-composition op-
eration on K. We say that Σ is a composition on K (and we say that (K,Σ) is a
creating pair for H) if:

(1) if S ∈ [K]≤ ω and Σ(S) 6= ∅ then S is finite and for some enumeration

S = {t0, . . . , tm−1} we have mti
up = m

ti+1

dn for all i < m− 1, and

(2) for each s ∈ Σ(t0, . . . , tm−1) we have ms
dn = mt0

dn and ms
up = m

tm−1
up .

In this paper we will always assume that the creating pair under considerations is
additionally nice and smooth (see 1.2.5 below) and we will not repeat this demand
later.

Remark 1.2.3. Sets of creatures with pairwise distinct mt
dn’s might be natu-

rally ordered according to this value and therefore in similar situations we identify
sets of creatures with the corresponding sequences of creatures.

Definition 1.2.4. (1) For K ⊆ CR[H] and a composition operation Σ
on K we define finite candidates (FC) and pure finite candidates (PFC)
with respect to (K,Σ):

FC(K,Σ) = {(w, t0, . . . , tn) : w ∈ basis(t0) and for each i ≤ n
ti ∈ K,mti

up = m
ti+1

dn and pos(w, t0, . . . , ti) ⊆ basis(ti+1)},

PFC(K,Σ) = {(t0, . . . , tn) : (∃w ∈ basis(t0))((w, t0, . . . , tn) ∈ FC(K))}.
(2) We have a natural partial order ≤ on FC(K,Σ) (like in 1.1.7). The partial

order ≤ on PFC is defined by

(t0, . . . , tn−1) ≤ (s0, . . . , sm−1) if and only if m
tn−1
up = m

sm−1
up , and

(∀w ∈ basis(t0))
(
w ∈ basis(s0) and (w, t0, . . . , tn−1) ≤ (w, s0, . . . , sm−1)

)
(so (t0) ≤ (s0) means that s0 ∈ Σ(t0) and basis(t0) ⊆ basis(s0)).

(3) A sequence 〈t0, t1, t2, . . .〉 of creatures from K is a pure candidate with
respect to a creating pair (K,Σ) if

(∀i < ω)(mti
up = m

ti+1

dn) and

(∃w ∈ basis(t0))(∀i < ω)(pos(w, t0, . . . , ti) ⊆ basis(ti+1)).

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

1.2. CREATURES 13

The set of pure candidates with respect to (K,Σ) is denoted by PC(K,Σ).
The partial order ≤ on PC(K,Σ) is defined naturally.

(4) For a norm condition C(nor) the family of C(nor)-normed pure candidates
is

PCC(nor)(K,Σ)
def
= {〈t0, t1, . . .〉 ∈ PC(K,Σ) : 〈t0, t1, . . . , 〉 satisfies C(nor)}.

Definition 1.2.5. Let (K,Σ) be a creating pair for H. We say that

(1) (K,Σ) is nice if for all t0, . . . , tn−1 ∈ K and s ∈ Σ(t0, . . . , tn−1) we have
basis(t0) ⊆ basis(s).

(2) (K,Σ) is smooth provided that:
if (w, t0, . . . , tn−1) ∈ FC(K,Σ), m < n and u ∈ pos(w, t0, . . . , tn−1)
then u � mtm

dn ∈ pos(w, t0, . . . , tm−1) and u ∈ pos(u � mtm
dn , tm, . . . , tn−1).

(3) K is forgetful if for every creature t ∈ K we have:

[〈w, u〉 ∈ val[t] & w′ ∈
∏

n<mtdn

H(n)] ⇒ 〈w′, w′_u � [mt
dn,m

t
up)〉 ∈ val[t].

(4) K is full if dom(val[t]) =
∏

n<mtdn

H(n) for every t ∈ K.

As we said in 1.2.2, we will always demand that a creating pair is nice and
smooth (but these properties occur naturally in applications). The main reason for
the first assumption is to have the effect presented in 1.2.8(2) below and the second
demand is to get the conclusion of 1.2.10. Before we state these observations let us
modify a little bit the forcing notions we are interested in.

Definition 1.2.6. Let (K,Σ) be a creating pair and C(nor) be a property
of ω-sequences of creatures. The forcing notion Q∗C(nor)(K,Σ) is a suborder of

QC(nor)(K,Σ) consisting of these conditions (w, t0, t1, . . .) for which additionally

(�1.2.6) (∀i < ω)(mti
up = m

ti+1

dn).

Remark 1.2.7. 1) The forcing notions introduced in 1.2.6 fit better to the
idea of creatures and compositions on them. Moreover in most of the applications
the forcing notions Q∗C(nor)(K,Σ) and QC(nor)(K,Σ) will be equivalent. Even in the

most general case they are not so far from each other; note that if p ∈ Q∗C(nor)(K,Σ)

and q ∈ QC(nor)(K,Σ), p ≤ q (in QC(nor)(K,Σ)) then q ∈ Q∗C(nor)(K,Σ). Of course

it may happen that Q∗C(nor)(K,Σ) is trivial – this usually suggests that the tree–

approach is more suitable (see 1.3.3).
2) Several notions simplify for the forcing notions Q∗C(nor)(K,Σ). For example if

t0, . . . , tn−1 ∈ K are such that m = mt0
dn, mti

up = m
ti+1

dn and w ∈
∏
i<m

H(i) then

pos(w, t0, . . . , tn−1) = {u : for some 0≤k1<. . .<k`<n− 1 we have

u � m
tk1
up ∈ pos∗(w, t0, . . . , tk1) &

u � m
tk2
up ∈ pos∗(u � m

tk1
up , tk1+1, . . . , tk2

) & . . . &

u ∈ pos∗(u � m
tk`
up , tk`+1, . . . , tn−1)}.

3) The norm condition (s∞) (see 1.1.10) can be presented slightly simpler for
Q∗s∞(K,Σ). For (w, t0, t1, . . .) ∈ Q∗s∞(K,Σ) it says just that

(∀i < ω)(nor[ti] > mti
dn).

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

14 1. BASIC DEFINITIONS

Proposition 1.2.8. Suppose (K,Σ) is a creating pair for H.

(1) Assume that K is full. Then (K,Σ) is nice and if C(nor) is one of the
conditions (s∞), (∞), or (f) (where f is any fast function), then the
forcing notion Q∗C(nor)(K,Σ) is a dense subset of QC(nor)(K,Σ).

(2) If (K,Σ) is nice, (w, t0, t1, t2, . . .) is a condition in Q∗∅(K,Σ) and 〈sn :
n ∈ ω〉 is such that for some 0 = k0 < k1 < . . . < ω, sn ∈ Σ(ti : kn ≤ i <
kn+1) (for all n ∈ ω) then (w, s0, s1, s2, . . .) is a condition in Q∗∅(K,Σ)
(stronger than (w, t0, t1, t2, . . .)).

(3) If (K,Σ) is forgetful then it is full.

Definition 1.2.9. Let (K,Σ) be a creating pair, C(nor) be a norm condition,
p ∈ Q∗C(nor)(K,Σ) and τ̇ be a Q∗C(nor)(K,Σ)-name for an ordinal. We say that

(1) p essentially decides the name τ̇ if

(∃m ∈ ω)(∀u ∈ pos(wp, tp0, . . . , t
p
m−1))((u, tpm, t

p
m+1, . . .) decides the value of τ̇),

(2) p approximates τ̇ at n (or at tpn) whenever:
for each w1 ∈ pos(wp, tp0, . . . , t

p
n−1), if there is a condition r ∈ Q∗C(nor)(K,Σ)

stronger than p and such that wr = w1 and r decides the value of τ̇ then
the condition (w1, t

p
n, t

p
n+1, . . .) decides the value of τ̇ .

Lemma 1.2.10. Suppose that (K,Σ) is a smooth creating pair, C(nor) is a norm
condition and τ̇ is a Q∗C(nor)(K,Σ)–name for an ordinal. Assume that a condition

p ∈ Q∗C(nor)(K,Σ) essentially decides τ̇ (approximates τ̇ at each n, respectively).

Then each q ≥ p essentially decides τ̇ (approximates τ̇ at each n, respectively).

Proof. Immediate by smoothness. �

Definition 1.2.11. Let (K,Σ) be a creating pair for H.

(1) For a property C(nor) of ω-sequences of creatures from K and conditions
p, q ∈ Q∗C(nor)(K,Σ) we define

p ≤apr q (in Q∗C(nor)(K,Σ)) if and only if

p ≤ q and for some k we have (∀i < ω)(tpi+k = tqi)

(so then wq ∈ pos(wp, tp0, . . . , t
p
k−1) too).

(2) We define relations ≤s∞
n (for n < ω) on Q∗s∞(K,Σ) by:

(α) p ≤s∞
0 q (in Q∗s∞(K,Σ)) if p ≤ q and wp = wq,

(β) p ≤s∞
n+1 q (in Q∗s∞(K,Σ)) if p ≤s∞

0 q and tpi = tqi for i < n+ 1.
(3) Relations ≤∞n on Q∗∞(K,Σ) (for n < ω) are defined by:

(α) p ≤∞0 q (in Q∗∞(K,Σ)) if p ≤ q and wp = wq,
(β∗) p ≤∞n+1 q (in Q∗∞(K,Σ)) if p ≤∞0 q and

tpj = tqj for all j ≤ min{i < ω : nor[tpi] > n+ 1} and

{tqi : i < ω & nor[tqi] ≤ n+ 1} ⊆ {tpi : i < ω}.
(4) Relations ≤w∞

n on Q∗w∞(K,Σ) are defined by
(α) p ≤w∞

0 q (in Q∗w∞(K,Σ)) if p ≤ q and wp = wq,
(β+) p ≤w∞

n+1 q (in Q∗w∞(K,Σ)) if p ≤w∞
0 q and

tpj = tqj for all j ≤ min{i < ω : nor[tpi] > n+ 1}.

(5) Let f : ω × ω −→ ω be a fast function. Relations ≤fn on Q∗f (K,Σ) are
defined by:

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

1.3. TREE CREATURES AND TREE–LIKE FORCING NOTIONS 15

(α) p ≤f0 q (in Q∗∞(K,Σ)) if p ≤ q and wp = wq,

(βf) p ≤fn+1 q (in Q∗f (K,Σ)) if p ≤f0 q and

tpj = tqj for all j ≤ min{i < ω : nor[tpi] > f(n+ 1,m
tpi
dn)} and

{tqi : i < ω & nor[tqi] ≤ f(n+ 1,m
tqi
dn)} ⊆ {tpi : i < ω}.

(6) We may omit superscripts in ≤s∞
n , ≤∞n , ≤w∞

n and ≤fn if it is clear from
the context in which forcing notion we are working (i.e. what is the norm
condition we deal with).

Remark 1.2.12. The difference between e.g. (3) and (4) is in the last condition
of (3), of course.

Proposition 1.2.13. Suppose (K,Σ) is a creating pair for H. Let C(nor)
be one of the following properties of ω-sequences: Cs∞(nor), C∞(nor), Cw∞(nor)
or Cf (nor) for some fast function f (see 1.1.10) and let ≤n be the corresponding
relations (defined in 1.2.11). Then

(1) ≤apr is a partial order (stronger than ≤) on Q∗C(nor)(K,Σ).

(2) ≤n (with superscripts) are partial orders (stronger than ≤) on the respec-
tive Q∗C(nor)(K,Σ) and p ≤n+1 q implies p ≤n q.

(3) Suppose that pn ∈ Q∗C(nor)(K,Σ) (for n ∈ ω) are such that

(∀n ∈ ω)(pn ≤n+1 pn+1).

Then the naturally defined limit condition p = lim
n
pn satisfies:

p ∈ Q∗C(nor)(K,Σ) and (∀n < ω)(pn ≤n+1 p).

Remark 1.2.14. A natural property one could ask for in the context of creating
pairs is some kind of monotonicity:

basis(t) = dom(val[t]) and pos(u, t) = {v : 〈u, v〉 ∈ val[t]},
for t ∈ K and u ∈ basis(t). However, there is no real need for it, as all our demands
and assumptions on creating pairs will refer to pos (and not val). But for tree–
creating pairs we will postulate the respective demand, mainly to simplify notation
(and have explicit tree–representations of conditions), see 1.3.3(3).

1.3. Tree creatures and tree–like forcing notions

Here we introduce the second option for our general scheme: forcing notions
in which conditions are trees with norms. This case, though parallel to the one
of creating pairs, is of different character and therefore we reformulate all general
definitions for this particular context.

Definition 1.3.1. (1) A quasi tree is a set T of finite sequences with the
C-smallest element denoted by root(T).

(2) A quasi tree T is a tree if it is closed under initial segments. If T is a quasi
tree then dcl(T) is the smallest tree containing T (the downward closure
of T).

(3) For a quasi tree T and η ∈ T we define the successors of η in T , the
restriction of T to η, the splitting points of T and maximal points of T by:

succT (η) = {ν ∈ T : η C ν & ¬(∃ρ ∈ T)(η C ρ C ν)},

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

16 1. BASIC DEFINITIONS

T [η] = {ν ∈ T : η E ν},
split(T) = {η ∈ T : |succT (η)| ≥ 2},

max(T) = {ν ∈ T : there is no ρ ∈ T such that ν C ρ}.
We put T̂ = T \max(T).

(4) The set of all limit infinite branches through a quasi tree T is

lim(T)
def
= {η : η is an ω–sequence and (∃∞n)(η�n ∈ T)}.

The quasi tree T is well founded if lim(T) = ∅.
(5) A subset F of a quasi tree T is a front in T if no two distinct members of

F are C-comparable and

(∀η ∈ lim(T) ∪max(T))(∃n ∈ ω)(η � n ∈ F).

Remark 1.3.2. Note the difference between lim(T) and lim(dcl(T)) for a quasi
tree T . In particular, it is possible that a quasi tree T is well-founded but there is
an infinite branch through dcl(T). Moreover, a front in T does not have to be a
front in dcl(T).

Definition 1.3.3. (1) A weak creature t ∈WCR[H] is a tree–creature if
dom(val[t]) is a singleton {η} and no two distinct elements of rng(val[t])
are C–comparable;

TCR[H] is the family of all tree–creatures for H.
(2) TCRη[H] = {t ∈ TCR[H] : dom(val[t]) = {η}}.
(3) A sub-composition operation Σ on K ⊆ TCR[H] is a tree composition

(and then (K,Σ) is called a tree–creating pair (for H)) if:

(a) if S ∈ [K]≤ω , Σ(S) 6= ∅ then S = {sν : ν ∈ T̂} for some well founded

quasi tree T ⊆
⋃
n<ω

∏
i<n

H(i) and a system 〈sν : ν ∈ T̂ 〉 ⊆ K such that

for each finite sequence ν ∈ T̂
sν ∈ TCRν [H] and rng(val[sν]) = succT (ν),

and
(b) if t ∈ Σ(sν : ν ∈ T̂) then t ∈ TCRroot(T)[H] and rng(val[t]) ⊆

max(T).

If T̂ = {root(T)}, t = troot(T) ∈ TCRroot(T)[H] and rng(val[t]) = max(T)

then we will write Σ(t) instead of Σ(tν : ν ∈ T̂).

(4) A tree-composition Σ on K is bounded if for each t ∈ Σ(sν : ν ∈ T̂) we
have

nor[t] ≤ max{nor[sν] : (∃η ∈ rng(val[t]))(ν C η)}.

Remark 1.3.4. 1) Note that sets of tree creatures relevant for tree composi-
tions have a natural structure: we identify here S with {sν(s) : s ∈ S} where ν(s)
is such that s ∈ TCRν(s) and sν(s) = s.
2) To check consistency of our notation for tree creatures with that of 1.1.7 note

that in 1.3.3(3), if sν ∈ Σ(sν,η : η ∈ T̂ν) for each ν ∈ T̂ , T is a well founded quasi

tree as in (3)(a) of 1.3.3 then T ∗
def
=

⋃
ν∈T̂

Tν is a well founded quasi tree, T̂ ∗ =
⋃
ν∈T̂

T̂ν

and 〈sν,η : ν ∈ T̂ , η ∈ T̂ν〉 is a system for which Σ may be non-empty, i.e. it satisfies
the requirements of 1.3.3(3)(a).

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

1.3. TREE CREATURES AND TREE–LIKE FORCING NOTIONS 17

3) Note that if (K,Σ) is a tree–creating pair for H, t ∈ TCRη[H] then basis(t) =
{η} and pos(η, t) = rng(val[t]) (see 1.1.6). For this reason we will write pos(t) for
pos(η, t) and rng(val[t]) in the context of tree–creating pairs.
4) Tree–creating pairs have the properties corresponding to the niceness and
smoothness of creating pairs (see 1.2.5, compare with 1.3.9).

When dealing with tree–creating pairs it seems to be more natural to consider
both very special norm conditions and some restrictions on conditions of the forcing
notions we consider. The second is not very serious: the forcing notions Qtree

e (K,Σ)
(for e < 5) introduced in 1.3.5 below are dense subsets of the general forcing
notions QC(nor)(K,Σ) (for suitable conditions C(nor)). We write the definition of
Qtree
e (K,Σ) fully, not referring the reader to 1.1.7, to show explicitly the way tree

creating pairs work.

Definition 1.3.5. Let (K,Σ) be a tree–creating pair for H.

(1) We define the forcing notion Qtree
1 (K,Σ) by letting:

conditions be sequences p = 〈tη : η ∈ T 〉 such that
(a) T ⊆

⋃
n∈ω

∏
i<n

H(i) is a non-empty quasi tree with max(T) = ∅,

(b) tη ∈ TCRη[H] ∩K and pos(tη) = succT (η) (see 1.3.4(3)),
(c)1 for every η ∈ lim(T) we have:

the sequence 〈nor[tη�k] : k < ω, η�k ∈ T 〉 diverges to infinity;

the order be given by:
〈t1η : η ∈ T 1〉 ≤ 〈t2η : η ∈ T 2〉 if and only if

T 2 ⊆ T 1 and for each η ∈ T 2 there is a well founded quasi tree T0,η ⊆
(T 1)[η] such that t2η ∈ Σ(t1ν : ν ∈ T̂0,η).

If p = 〈tη : η ∈ T 〉 then we write root(p) = root(T), T p = T , tpη = tη
etc.

(2) Similarly we define forcing notions Qtree
e (K,Σ) for e = 0, 2, 3, 4 replacing

the condition (c)1 by (c)e respectively, where:
(c)0 for every η ∈ lim(T):

lim sup〈nor[tη�k] : k < ω, η�k ∈ T 〉 =∞,

(c)2 for every η ∈ T and n < ω there is ν such that η C ν ∈ T and
nor[tν] ≥ n,

(c)3 for every η ∈ T and n < ω there is ν such that η C ν ∈ T and

(∀ρ ∈ T)(ν C ρ ⇒ nor[tρ] ≥ n),

(c)4 for every n < ω, the set

{ν ∈ T : (∀ρ ∈ T)(ν C ρ ⇒ nor[tρ] ≥ n)}

contains a front of the quasi tree T .
(3) If p ∈ Qtree

e (K,Σ) then we let p[η] = 〈tpν : ν ∈ (T p)[η]〉 for η ∈ T p.
(4) For the sake of notational convenience we define partial order Qtree

∅ (K,Σ)

in the same manner as Qtree
e (K,Σ) above but we omit the requirement

(c)e (like in 1.1.10; so this is essentially Q∅(K,Σ)).

Remark 1.3.6. 1) In the definition above we do not follow exactly the notation
of 1.1.7: we omit the first part wp of a condition p as it can be clearly read from the

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

18 1. BASIC DEFINITIONS

rest of the condition. Of course the missing item is root(p). In this new notation

the name Ẇ of 1.1.13 may be defined by

Qtree
e (K,Σ) Ẇ =

⋃
{root(p) : p ∈ ΓQtree

e (K,Σ)}.

2) Note that

Qtree
4 (K,Σ) ⊆ Qtree

1 (K,Σ) ⊆ Qtree
0 (K,Σ) ⊆ Qtree

2 (K,Σ) and
Qtree

1 (K,Σ) ⊆ Qtree
3 (K,Σ) ⊆ Qtree

2 (K,Σ)

but in general these inclusions do not mean “complete suborders”. If the tree–
creating pair is t-omittory (see 2.3.4) then Qtree

4 (K,Σ) is dense in Qtree
2 (K,Σ) and

thus all these forcing notions are equivalent. If (K,Σ) is 2̄–big (see 2.3.2) then
Qtree

4 (K,Σ) is dense in Qtree
1 (K,Σ) (see 2.3.12).

Let us give two simple examples of tree–creating pairs.
Let H(i) = ω (for i ∈ ω).
Let K0 ⊆ TCR[H] consists of these tree–creatures s that if s ∈ TCRη[H] then

rng(val[s]) ⊆ {η_〈k〉 : k ∈ ω} and

nor[s] =

{
`g(η) if val[s] is infinite,
0 otherwise.

The operation Σ0 gives non-empty values for singletons only; for s ∈ K0 we let
Σ0(s) = {t ∈ K0 : val[t] ⊆ val[s]} (an operation Σ defined in this manner will be
further called trivial). Clearly (K0,Σ0) is a tree–creating pair. Note that:

(a) the forcing notionsQtree
2 (K0,Σ0) andQtree

0 (K0,Σ0) are equivalent to Miller’s
Rational Perfect Set Forcing;

(b) the forcing notions Qtree
1 (K0,Σ0), Qtree

3 (K0,Σ0), Qtree
4 (K0,Σ0) are equiv-

alent to the Laver forcing

(thus Qtree
1 (K0,Σ0) is not a complete suborder of Qtree

0 (K0,Σ0), and Qtree
3 (K0,Σ0)

is not a complete suborder of Qtree
2 (K0,Σ0)).

Let us modify the norms on the tree–creatures a little. For this we define a
function f : ω<ω −→ ω by

f(〈〉) = 0, f(η_〈k〉) =

{
f(η) + 1 if k = 0
f(η) otherwise.

Now, let K1 consist of tree creatures s ∈ TCR[H] such that rng(val[s]) ⊆ {η_〈k〉 :
k ∈ ω} (where s ∈ TCRη[H]) and

nor[s] =

{
f(η) if val[s] is infinite,
0 otherwise.

Let Σ1 be the trivial tree-composition on K1, so it is nonempty for singletons only
and then Σ1(s) = {t ∈ K1 : val[t] ⊆ val[s]} (clearly (K1,Σ1) is a tree creating
pair). Then

(a) the forcing notion Qtree
0 (K1,Σ1) is a dense suborder of Qtree

2 (K1,Σ1),
(b) the partial orders Qtree

1 (K1,Σ1) and Qtree
4 (K1,Σ1) are empty, but

(c) Qtree
3 (K1,Σ1) is not–trivial (it adds a new real) and it is not a complete

suborder of Qtree
2 (K1,Σ1) (e.g. incompatibility is not preserved) and it is

disjoint from Qtree
0 (K1,Σ1).

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

1.3. TREE CREATURES AND TREE–LIKE FORCING NOTIONS 19

Definition 1.3.7. Let (K,Σ) be a tree creating pair, e < 5, p ∈ Qtree
e (K,Σ).

A set A ⊆ T p is called an e-thick antichain (or just a thick antichain) if it is an
antichain in (T p,C) and for every condition q ∈ Qtree

e (K,Σ) stronger than p the
intersection A ∩ dcl(T q) is non-empty.

Proposition 1.3.8. Suppose that (K,Σ) is a tree–creating pair for H, e < 5,
p ∈ Qtree

e (K,Σ) and η ∈ T p. Then:

(1) Qtree
e (K,Σ) is a partial order.

(2) Each e-thick antichain in T p is a maximal antichain. Every front of T p

is an e-thick antichain in T p.
(3) If e ∈ {1, 3, 4}, n < ω then the set

Bn(p)
def
= {η ∈ T p : (i) (∀ν ∈ T p)(η E ν ⇒ nor[tν] > n) but

(ii) no η′ C η, η′ ∈ T p satisfies (i)}
is a maximal C-antichain in T p. If e = 4 then Bn(p) is a front of T p.

(4) For every m,n < ω the set

Fmn (p)
def
= {η ∈ T p : (i) nor[tη] > n and

(ii) |{η′ ∈ T p : η′ C η & nor[tη′] > n}| = m}
is a maximal C-antichain of T p. If e ∈ {0, 1, 4} then Fmn (p) is a front of
T p.

(5) If K is finitary (so |val[t]| < ω for t ∈ K, see 1.1.3) then every front of
T p is a front of dcl(T p) and hence it is finite.

(6) If Σ is bounded then each Fmn (p) is a thick antichain of T p.
(7) p ≤ p[η] ∈ Qtree

e (K,Σ) and root(p[η]) = η.

Remark 1.3.9. One of the useful properties of tree–creating pairs (K,Σ) and
forcing notions Qtree

e (K,Σ) is the following:

(∗)1.3.9 Suppose that p, q ∈ Qtree
e (K,Σ), p ≤ q (so in particular T q ⊆ T p), η ∈ T q

and ν C η, ν ∈ T p.
Then p[ν] ≤ q[η].

Definition 1.3.10. Let p, q ∈ Qtree
e (K,Σ), e < 3 (and (K,Σ) a tree–creating

pair). We define relations ≤en for n ∈ ω by:

(1) If e ∈ {0, 2} then:
p ≤e0 q (in Qtree

e (K,Σ)) if p ≤ q and root(p) = root(q),
p ≤en+1 q (in Qtree

e (K,Σ)) if p ≤e0 q and
if η ∈ F 0

n(p) (see 1.3.8(4)) and ν ∈ T p, ν E η then ν ∈ T q and tqν = tpν .
(2) The relations ≤1

n (on Qtree
1 (K,Σ)) are defined by:

p ≤1
0 q (in Qtree

1 (K,Σ)) if and only if p ≤ q and root(p) = root(q),
p ≤1

n+1 q (in Qtree
1 (K,Σ)) if p ≤1

0 q and
if η ∈ F 0

n(p) (see 1.3.8(4)) and ν ∈ T p, ν E η then ν ∈ T q, tpν = tqν ,
and

{tqη : η ∈ T q & nor[tqη] ≤ n} ⊆ {tpη : η ∈ T p}.
(3) We may omit the superscript e in ≤en if it is clear in which of the forcing

notions Qtree
e (K,Σ) we are working.

Proposition 1.3.11. Let (K,Σ) be a tree–creating pair for H, e < 3.

(1) The relations ≤en are partial orders on Qtree
e (K,Σ) stronger than ≤. The

partial order ≤en+1 is stronger than ≤en.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

20 1. BASIC DEFINITIONS

(2) Suppose that conditions pn ∈ Qtree
e (K,Σ) are such that pn ≤en+1 pn+1.

Then lim
n∈ω

pn ∈ Qtree
e (K,Σ) and (∀n ∈ ω)(pn ≤en+1 lim

n∈ω
pn) (where the

limit condition p = lim
n∈ω

pn is defined naturally; T p =
⋂
n∈ω

T pn).

1.4. Non proper examples

In the next chapter we will see that if one combines a norm condition with suit-
able properties of a weak creating pair then the resulting forcing notion is proper.
In particular we will see that (with the norm conditions defined in 1.3.5) getting
properness in the case of tree–creating pairs is relatively easy. Here, however,
we show that one cannot expect a general theorem like “Qtree

C(nor)(K,Σ) is always

proper” and that we should be always careful a little bit. The forcing notions re-
sulting from our general schema may collapse ℵ1! For example, looking at the norm
conditions introduced in 1.3.5(2) one could try to consider the following condition

(c)5 (∀k ∈ ω)(∀∞n)(∀η ∈ T p)(`g(η) ≥ n ⇒ nor[tν] ≥ k).

If a creating pair (K,Σ) is finitary then, clearly, the forcing notions Qtree
5 (K,Σ)

and Qtree
4 (K,Σ) are the same.

The forcing notion Qtree
5 (K,Σ) might be even not proper. The following exam-

ple shows this bad phenomenon which may be made quite general.

Example 1.4.1. Let H(i) = ω for i ∈ ω.
There is a tree creating pair (K1.4.1,Σ1.4.1) for H which is simple (see 2.1.7) and
the forcing notion Qtree

5 (K1.4.1,Σ1.4.1) is not proper (and collapses c onto ω).

Construction. To define the family K1.4.1 of tree creatures for H choose
families ∅ 6= S`η ⊆ Rη ⊆ [ω]ω and functions hη : Rη −→ ω (for η ∈ ω<ω , 0 < ` ≤
`g(η)) such that for every η, ` we have:

(α) ω ∈ Rη, hη(ω) = `g(η) + 1,
(β) if F ∈ S`η then hη(F) = `, each S`η is infinite,

(γ) if F0, F1 ∈ S`η, F0 6= F1 then F0 ∩ F1 = ∅,
(δ) if A ∈ Rη, hη(A) ≥ `+ 1 then for each F ∈ S`η

A ∩ F ∈ Rη and hη(A ∩ F) = `,

(ε) if A0, A1 ∈ Rη, A0 ⊆ A1 then hη(A0) ≤ hη(A1).

There are several possibilities to construct S`η, Rη, hη as above. One can do it for

example in the following way. Fix η ∈ ωn. Take a system {Kσ : σ ∈ ω≤n} of
infinite subsets of ω such that

a) K〈〉 = ω,

b) σ0 C σ1 ∈ ω≤n ⇒ Kσ1
⊆ Kσ0

,

c) σ0, σ1 ∈ ω` & ` ≤ n & σ0 6= σ1 ⇒ Kσ0 ∩Kσ1 = ∅,
d) σ ∈ ω<n ⇒ Kσ =

⋃
m∈ω

Kσ_〈m〉.

Now put Rη = {
⋃
σ∈I

Kσ : ∅ 6= I ⊆ ωn}. For A ∈ Rη we declare that

e) hη(A) ≥ 1, hη(ω) = hη(K〈〉) = n+ 1,

f) if for some σ ∈ ωn− `, ` ≤ n the set A contains the set Kσ then hη(A) ≥
`+ 1,

g) if A0 ⊆ A1, A0, A1 ∈ Rη then hη(A0) ≤ hη(A1).

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

1.4. NON PROPER EXAMPLES 21

Next we put

F `,mη =
⋃
{Kσ_〈m〉 : σ ∈ ωn− `}, for 0 < ` ≤ n, m ∈ ω and

S`η = {F `,mη : m ∈ ω}.
It should be easy to check that S`η, Rη, hη (for η ∈ ω<ω , 0 < ` ≤ `g(η)) defined in
this way satisfy the requirements (α)–(ε).

A tree creature t ∈ TCRη[H] is in K1.4.1 if η ∈ ω<ω , `g(η) > 0 and

dis[t] ∈ Rη, val[t] = {〈η, η_〈m〉〉 : m ∈ dis[t]} and nor[t] = hη(dis[t]).

If A ∈ Rη then the unique tree–creature t ∈ TCRη[H]∩K1.4.1 such that dis[t] = A
will be denoted by tη,A.
The operation Σ1.4.1 is trivial: it gives a non-empty result for singletons only and
then Σ1.4.1(t) = {s ∈ K1.4.1 : val[s] ⊆ val[t]}.

Claim 1.4.1.1. The forcing notion Qtree
5 (K1.4.1,Σ1.4.1) collapses c onto ω.

Proof of the claim. Fix η ∈ ω<ω \ {〈〉} for a moment.
Elements of S`η are pairwise disjoint so we may naturally order them according to

the smallest element. Say S`η = {F `,mη : m < ω}. Let f : [`g(η), ω) −→ ω. We

define a condition pf,η ∈ Qtree
5 (K1.4.1,Σ1.4.1) putting (we keep the notation as for

the forcing notions Qtree
e (K,Σ)):

root(pf,η) = η;
let k0 = `g(η), k`+1 = f(k`) + k` + 1 (for ` < ω);

if ν ∈ T pf,η , k`−1 ≤ `g(ν) < k` then tp
f,η

ν = tν,F
`,f(`g(ν))
ν and

succ
Tp

f,η (ν) = {ν_〈m〉 : m ∈ F `,f(`g(ν))
ν }.

Clearly this defines pf,η ∈ Qtree
5 (K1.4.1,Σ1.4.1). Note that

if f, g : [`g(η), ω) −→ ω are distinct
then the conditions pf,η, pg,η are incompatible in Qtree

5 (K1.4.1,Σ1.4.1)
(by the requirement (γ)). Let τ̇ be a Qtree

5 (K1.4.1,Σ1.4.1)–name for a function

defined on ω<ω such that “τ̇(η) ∈ V & τ̇(η) : [`g(η), ω) −→ ω” for η ∈ ω<ω and
for f : [`g(η), ω) −→ ω we have

pf,η Qtree
5 (K1.4.1,Σ1.4.1) τ̇(η) = f.

This definition is correct as {pf,η : f : [`g(η), ω) → ω} is an antichain (of course it
is not necessarily maximal in Qtree

5 (K1.4.1,Σ1.4.1)). The claim will be shown if we
prove that

Qtree
5 (K1.4.1,Σ1.4.1) (∀g ∈ ωω ∩V)(∃η ∈ ω<ω)(∀n ≥ `g(η))(τ̇(η)(2n) = g(n)).

For this suppose that g ∈ ωω , p ∈ Qtree
5 (K1.4.1,Σ1.4.1). Choose an increasing

sequence `g(root(p)) < k0 < k1 < . . . of odd integers such that for each ` < ω

(∀ν ∈ T p)(k` ≤ `g(ν) ⇒ nor[tpν] ≥ `+ 2).

Let f : [k0, ω) −→ ω be a function such that:

(1) f(k`) = k`+1 − k` − 1
(2) if n ≥ k0 then f(2n) = g(n).

(Note that these clauses are compatible as the k`’s are odd. Of course there is still
much freedom left in defining f .)

Choose η ∈ T p ∩ ωk0 and look at the condition pf,η. Due to the requirement
(δ) this condition is compatible with p: define r ∈ Qtree

5 (K1.4.1,Σ1.4.1) by

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

22 1. BASIC DEFINITIONS

root(r) = η, T r ⊆ T p and
if ν ∈ T r, k`−1 ≤ `g(ν) < k` then

trν = tν,Aν and succT r (ν) = {ν_〈m〉 : m ∈ Aν}

where Aν = dis[tpν] ∩ F `,f(`g(ν))
ν .

Note that by the choice of k` and the requirement (δ) we have

tν,Aν ∈ Σ1.4.1(tpν) ∩ Σ1.4.1(tp
f,η

ν) and nor[tν,Aν] = `.

Consequently the definition of r is correct. Clearly r is stronger than both p and
pf,η. Thus

r Qtree
5 (K1.4.1,Σ1.4.1) (∀n ≥ k0)(τ̇(η)(n) = f(n))

which together with

(∀n ≥ k0)(f(2n) = g(n)) and k0 = `g(η)

finishes the proof of the claim. �

�

Our next example shows that the assumption that (K,Σ) is finitary in 2.1.6 is
crucial.

Example 1.4.2. Let H(i) = ω for i ∈ ω.
There is a creating pair (K1.4.2,Σ1.4.2) for H which is forgetful and growing (see
2.1.1(3)) but the forcing notion Q∗∞(K1.4.2,Σ1.4.2) is not proper (and collapses c
onto ω).
(By 2.1.3 we may replace Q∗∞ by either Q∗w∞ or Q∗s∞ or Q∗f (for a fast function f).)

Construction. This is similar to 1.4.1: for 0 < ` ≤ i < ω choose ∅ 6= S`i ⊆
Ri ⊆ [ω]ω and functions hi : Ri −→ ω satisfying the requirements (α)–(ε) of the
construction of 1.4.1 (with i instead of η and `g(η)) and

(ζ)
⋃
S`i = ω for each 0 < ` ≤ i < ω

(this additional condition is satisfied by the example constructed there). Fix an

enumeration S`i = {F `,mi : m ∈ ω}.
A creature t ∈ K1.4.2 may be described in the following way. For each i ∈

[mt
dn,m

t
up) we have a set Ai ∈ Ri. Now:

dis[t] = 〈Ai : mt
dn ≤ i < mt

up〉
val[t] = {〈u, v〉∈

∏
i<mtdn

H(i)×
∏

i<mtup

H(i) : u C v & (∀i∈ [mt
dn,m

t
up))(v(i) ∈ Ai)},

nor[t] = max{hi(Ai) : i ∈ [mt
dn,m

t
up)}.

If creatures t0, . . . , tn−1 ∈ K1.4.2 are determined by sets Aji ∈ Ri (for j < n,

i ∈ [m
tj
dn,m

tj
up)) in the way described above and m

tj+1

dn = m
tj
up (for j < n− 1) then

Σ1.4.2(t0, . . . , tn−1) consists of all creatures t ∈ K1.4.2 which are determined (in

the way described above) by some sets Ai ∈ Ri (for i ∈ [mt0
dn,m

tn−1
up)) such that

Ai ⊆ Aji whenever m
tj
dn ≤ i < m

tj
up, j < n.

It is easy to check that Σ1.4.2 is a composition operation on K1.4.2. The creating
pair (K1.4.2,Σ1.4.2) is forgetful and growing.

Claim 1.4.2.1. The forcing notion Q∗∞(K1.4.2,Σ1.4.2) collapses c onto ω.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

1.4. NON PROPER EXAMPLES 23

Proof of the claim. We proceed like in 1.4.1.1 (with small modifications how-

ever). Let π : ω −→ ω×ω : n 7→ (π0(n), π1(n)) be a bijection. Let π∗n : ω[n, ω) −→
ωω (for n ∈ ω) be mappings defined in the following manner. Let f : [n, ω) −→ ω;

inductively define n0 = n, n`+1 = n` + π0(f(n`)) + π1(f(n`)) + 2
(for ` < ω) and then m` = n`+π0(f(n`))+1 (so n` < m` < n`+1);
now put π∗n(f)(`) = f(m`) (for ` ∈ ω).

For 0 < n < ω, u ∈
∏
i<n

H(i) and a function f : [n, ω) −→ ω define a condition

pu,f ∈ Q∗∞(K1.4.2,Σ1.4.2):

k0 = n, k2`+1 = k2`+π0(f(k2`))+1, k2`+2 = k2`+1+π1(f(k2`))+1,

wp
u,f

= u,

if k2` ≤ i+n < k2`+2 then tp
u,f

i ∈ K1.4.2 is such that m
tp
u,f

i

dn = n+i,

m
tp
u,f

i
up = n+ i+ 1, dis[tp

u,f

i] = 〈F `+1,f(i+n)
i+n 〉.

As in 1.4.1.1, if f, g : [n, ω) −→ ω are distinct, u ∈
∏
i<n

H(i) then the conditions

pu,f , pu,g are incompatible. Consequently we may choose a Q∗∞(K1.4.2,Σ1.4.2)–name
τ̇ for a function on ω such that (∀n ∈ ω)(τ̇(n) : [n, ω)→ ω) and pu,f τ̇(n) = f .
To finish it is enough to show that

Q∗∞(K1.4.2,Σ1.4.2) (∀g ∈ ωω ∩V)(∃n ∈ ω)(π∗n(τ̇(n)) = g).

Suppose that p ∈ Q∗∞(K1.4.2,Σ1.4.2), g ∈ ωω . Choose 2 < i0 < i1 < . . . < ω such
that nor[tpi`] ≥ ` + 2 and next choose k0 < k1 < k2 < . . . < ω such that for each
` ∈ ω:

m
tpi`
dn ≤ k` < m

tpi`
up and for some set A` ∈ Rk` we have

hk`(A`) ≥ `+ 2 and (∀n ∈ A`)(∃〈u, v〉 ∈ val[tpi`])(v(k`) = n)

(possible by the way we defined (K1.4.2,Σ1.4.2)). Choose any v ∈ pos(wp, tp0, . . . , t
p
i0

)
and let u = v�k0. Next choose f : [k0, ω) −→ ω such that for each ` ∈ ω:

π0(f(k2`)) = k2`+1 − k2` − 1, π1(f(k2`)) = k2`+2 − k2`+1 − 1, f(k2`+1) = g(`),

and if k ∈ (k2`, k2`+2) \ {k2`+1}, m
tpi
dn ≤ k < m

tpi
up (` < ω, i < ω) then

(∃〈u, v〉 ∈ val[tpi])(v(k) ∈ F `+1,f(k)
k).

One easily checks that the choice of f is possible (remember the additional require-
ment (ζ)) and that the conditions pu,f and p are compatible in Q∗∞(K1.4.2,Σ1.4.2).
As

pu,f Q∗∞(K1.4.2,Σ1.4.2) π
∗
n(τ̇(n)) = π∗n(f) = g,

we finish the proof of the claim. �

�

One could expect that the main reason for collapsing c in the two examples
constructed above is that the (K,Σ)’s there are not finitary. But this is not the
case. Using similar ideas we may build a finitary creating pair (K,Σ) for which the
forcing notion Q∗∞(K,Σ) collapses c onto ω as well. This is the reason why we have
to use forcing notions Q∗f (K,Σ) with (K,Σ) satisfying extra demands (including

Halving and bigness, see 2.2.12) and why Q∗∞(K,Σ) is used only for growing (K,Σ)
(so then Q∗s∞(K,Σ) is dense in Q∗∞(K,Σ), see 2.1). This bad effect can be made

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

24 1. BASIC DEFINITIONS

quite general and we will present it in this way, trying to show the heart of the
matter. One could try to cover the previous examples by our “negative theory”
too, but this would involve much more complications.

Definition 1.4.3. We say that a weak creating pair (K,Σ) is local if for every
t ∈ K, w ∈ basis(t) and u ∈ pos(w, t) we have `g(u) = `g(w) + 1.

Definition 1.4.4. Let (K,Σ) be a (nice and smooth) creating pair for H
which is local (so t ∈ K ⇒ mt

up = mt
dn + 1) and simple (which means that

Σ(S) 6= ∅ ⇒ |S| = 1; see 2.1.7(1)).

We say that (K,Σ) is definitely bad if there are a perfect tree T ⊆ ω<ω and
mappings F0, F1 such that

(1) T ∩ ωm is finite for each m ∈ ω, dom(F0) = dom(F1) =
⋃
m<ω

∏
i<m

H(i),

(2) if v ∈
∏
i≤m

H(i), m < ω then F1(v) : T ∩ωm −→ 2 and F0(v) : T ∩ωm −→

T is such that (∀η ∈ T ∩ ωm)(F0(v)(η) ∈ succT (η)),
(3) if t ∈ K, nor[t] ≥ 2, m = mt

dn > 0, i < 2 and F ∗ : T ∩ ωm −→ T is such
that F ∗(ν) ∈ succT (ν) for ν ∈ T ∩ ωm then there is s ∈ Σ(t) such that

nor[s] ≥ nor[t] − 1 and for each η ∈ T ∩ ωm− 1 there is ν ∈ succT (η)
with

(∀u ∈ basis(s))(∀v ∈ pos(u, s))(F0(v)(ν) = F ∗(ν) & F1(v)(ν) = i).

Proposition 1.4.5. Suppose that (K,Σ) is a local, simple and definitely bad
creating pair for H such that Σ(t) is finite for each t ∈ K. Then

(a) the forcing notion Q∗∞(K,Σ) collapses c onto ω,
(b) if f : ω × ω −→ ω is a fast function then the forcing notion Q∗f (K,Σ)

collapses c onto ω.

Proof. In both cases the proof is exactly the same, so let us deal with (a)

only. So suppose that a finitely branching perfect tree T ⊆ ω<ω and functions
F0, F1 witness that (K,Σ) is definitely bad. Let G0 : T ×

∏
i<ω

H(i) −→ [T] and

G1 : [T]×
∏
i<ω

H(i) −→ 2ω be defined by

G0(η,W)�`g(η) = η, and
G0(η,W)�(m+ 1) = F0(W �(m+ 1))(G0(η,W)�m) for m ≥ `g(η),
G1(ρ,W)(n) = F1(W �(n+ 1))(ρ�n) for n ∈ ω.

We are going to show that

Q∗∞(K,Σ) (∀r ∈ 2ω ∩V)(∃η ∈ T)(∀∞n ∈ ω)(r(n) = G1(G0(η, Ẇ), Ẇ)(n)),

where Ẇ is the Q∗∞(K,Σ)–name defined in 1.1.13. To this end suppose that r ∈ 2ω

and p ∈ Q∗∞(K,Σ). We may assume that `g(wp) > 0 and (∀i ∈ ω)(nor[tpi] ≥ 3).

Fix i0 ∈ ω for a moment. By downward induction on i ≤ i0 we choose si0i ∈
Σ(tpi) and F ∗i0,i : T ∩ ω`g(wp) + i− 1 −→ T such that

(α) nor[si0,i] ≥ nor[tpi]− 1,
(β) F ∗i0,i(ν) ∈ succT (ν) for ν ∈ T , `g(ν) = `g(wp) + i− 1,
(γ) for all sequences u ∈ basis(si0,i) and v ∈ pos(u, si0,i) and every ν ∈ T of

length `g(ν) = `g(wp) + i− 1 we have

F0(v)(F ∗i0,i(ν)) = F ∗i0,i+1(ν) and F1(v)(F ∗i0,i(ν)) = r(`g(wp) + i)

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

1.4. NON PROPER EXAMPLES 25

[for i = i0 we omit the first part of the above demand].

It should be clear that the choice of the si0,i’s and F ∗i0,i’s as above is possible by
1.4.4(3). All levels of the tree T are finite, so for each i ∈ ω there are finitely many

mappings F ∗ : T ∩ ω`g(wp) + i− 1 −→ T ∩ ω`g(wp) + i. Moreover, each Σ(tpi) is
finite (for i ∈ ω). Hence, by König’s lemma, we find a sequence 〈tqi : i ∈ ω〉 and a
mapping F∗ : T −→ T such that

(i) (∀ν ∈ T)(F∗(ν) ∈ succT (ν)) and
(ii) for each i ∈ ω there is j(i) > i such that for every j ≤ i

s
j(i)
j = tqj and (∀ν ∈ T ∩ ω`g(wp) + j − 1)(F∗(ν) = F ∗j(i),j(ν)).

By (α) we have that q = (wp, tq0, t
q
1, . . .) ∈ Q∗∞(K,Σ) and it is stronger than p.

Take any η ∈ T with `g(η) = `g(wp) − 1 and let η0 = F∗(η), ηi+1 = F∗(ηi), and
η+ = lim(ηi) ∈ [T]. It follows from (γ) and (ii) (e.g. inductively using smoothness)
that for each n ∈ ω and v ∈ pos(wp, tq0, . . . , t

q
n−1) we have

(v, tqn, t
q
n+1, . . .) “ G0(η0, Ẇ)�`g(v) = η+�`g(v) and

G1(G0(η0, Ẇ), Ẇ)�[`g(η0), `g(v)) = r�[`g(η0), `g(v))”.

Hence we conclude

q Q∗∞(K,Σ) (∀n ≥ `g(η0))(G1(G0(η0, Ẇ), Ẇ)(n) = r(n)),

finishing the proof. �

Example 1.4.6. Let f : ω × ω −→ ω be a fast function (for example f(k, `) =
22k(`+ 1)). There are a finitary function H and a creating pair (K1.4.6,Σ1.4.6) for
H such that

(a) (K1.4.6,Σ1.4.6) is local, simple, forgetful and definitely bad (and smooth),
(b) Σ1.4.6(t) is finite for each t ∈ K1.4.6,
(c) the forcing notions Q∗∞(K1.4.6,Σ1.4.6) and Q∗f (K1.4.6,Σ1.4.6) are not trivial

and thus collapse c onto ω.

Construction. Let f : ω × ω −→ ω be fast. For n ∈ ω let kn = 2f(n+1,n+1).
Next, for n ∈ ω, let H(n) consist of all pairs 〈z0, z1〉 such that

z0 :
∏
i<n

ki −→ kn and z1 :
∏
i<n

ki −→ 2.

Immediately by the definition, one sees that H is finitary. Now we define the
creating pair (K1.4.6,Σ1.4.6) for H. A creature t ∈ CR[H] with mt

dn > 0 is in K1.4.6

if:

• dis[t] = 〈mt
dn, 〈Atν : ν ∈

∏
i<mtdn−1

ki〉, F t0 , F t1〉, where

Atν ⊆ kmtdn−1 for ν ∈
∏

i<mtdn−1

ki,

F t0 : {ν ∈
∏

i<mtdn

ki : ν(mt
dn − 1) ∈ Atν�(mtdn−1)} −→ kmtdn

,

F t1 : {ν ∈
∏

i<mtdn

ki : ν(mt
dn − 1) ∈ Atν�(mtdn−1)} −→ 2,

• val[t] consists of all pairs 〈w, u〉 ∈
∏

i<mtdn

H(i)×
∏

i≤mtdn

H(i) such that w C u

and if u(mt
dn) = 〈z0, z1〉 then z0 ⊇ F t0 and z1 ⊇ F t1 .

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

26 1. BASIC DEFINITIONS

• nor[t] = kmtdn
−max{|Atν | : ν ∈

∏
i<mtdn−1

ki}.

If t ∈ CR[H], mt
dn = 0 then we take t to K1.4.6 if:

nor[t] = 0, dis[t] = 〈0, xt, it〉, where xt ∈ k0, it < 2, val[t] = {〈 〈〉, u 〉}, where
u ∈

∏
i≤0

H(i), u(0) = 〈xt, it〉 (both xt and it are treated here as functions from

{〈〉}).
The composition operation Σ1.4.6 is the trivial one (so Σ1.4.6(S) is non-empty for

singletons only and Σ1.4.6(t) = {s ∈ K1.4.6 : val[s] ⊆ val[t]}). Easily (K1.4.6,Σ1.4.6)
is a local, simple and forgetful creating pair. Note that if n > 0 and t ∈ K1.4.6

is such that mt
dn = n and Atν = ∅ for each ν ∈

∏
i<n−1

ki then nor[t] = kn−1 >

f(n, n), so the forcing notions Q∗∞(K1.4.6,Σ1.4.6), Q∗f (K1.4.6,Σ1.4.6) are non-trivial.

Finally let T =
⋃
n∈ω

∏
i<n

ki and for v ∈
∏
i≤m

H(i) let F0(v), F1(v) be such that

v(m) = 〈F0(v), F1(v)〉. It should be clear that T, F0, F1 witness that (K1.4.6,Σ1.4.6)
is definitely bad. �

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

CHAPTER 2

Properness and the reading of names

This chapter is devoted to getting the basic property: properness. The first
two sections deal with forcing notions determined by creating pairs. We define
properties of creating pairs implying that appropriate forcing notions are proper.
Some of these properties may look artificial, but in applications they appear natu-
rally. The third part deals with forcing notions Qtree

e (K,Σ) (determined by a tree
creating pair). Here, properness is an almost immediate consequence of our choice
of norm conditions. In most cases, proving properness of a forcing notion we get
much stronger property: continuous reading of names for ordinals. This property
will be intensively used in the rest of the paper. Finally, in the last part of the
chapter we give several examples for properties introduced and studied before.

2.1. Forcing notions Q∗s∞(K,Σ), Q∗w∞(K,Σ)

Definition 2.1.1. Let (K,Σ) be a creating pair for H.

(1) For t ∈ K, m0 ≤ mt
dn, mt

up ≤ m1 we define the creature s
def
= t � [m0,m1)

by:

nor[s] = nor[t],
dis[s] = 〈4,m0,m1〉_〈dis[t]〉,
val[s] = {〈w, u〉 ∈

∏
i<m0

H(i)×
∏

i<m1

H(i) : 〈u�mt
dn, u�m

t
up〉 ∈ val[t] &

w C u & (∀i ∈ [m0,m
t
dn) ∪ [mt

up,m1))(u(i) = 0)}.

[Note that t � [m0,m1) is well defined only if val[s] 6= ∅ above and then
ms

dn = m0, ms
up = m1.]

(2) The creating pair (K,Σ) is omittory if:
(�0) if t ∈ K and u ∈ basis(t) then u_0[mtdn,m

t
up) ∈ pos(u, t) but there is

v ∈ pos(u, t) such that v�[mt
dn,m

t
up) 6= 0[mtdn,m

t
up),

(�1) for every (t0, . . . , tn−1) ∈ PFC(K,Σ) and i < n:

ti � [mt0
dn,m

tn−1
up) ∈ Σ(t0, . . . , tn−1),

(�2) if t, t � [m0,m1) ∈ K then for every u ∈ basis(t � [m0,m1)) and
v ∈ pos(u, t � [m0,m1)) we have

v(n) 6= 0 & n ∈ [`g(u), `g(v)) ⇒ n ∈ [mt
dn,m

t
up).

[Note that (�0) implies that in the cases relevant for (�1), ti � [mt0
dn,m

tn−1
up)

is well defined.]
(3) (K,Σ) is growing if for any (t0, . . . , tn−1) ∈ PFC(K,Σ) there is a creature

t ∈ Σ(t0, . . . , tn−1) such that nor[t] ≥ max
i<n

nor[ti].

Proposition 2.1.2. If (K,Σ) is omittory then it is growing.

27

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

28 2. PROPERNESS AND THE READING OF NAMES

Proposition 2.1.3. Suppose that a creating pair (K,Σ) is growing.

(1) Then Q∗s∞(K,Σ) is a dense subset of both Q∗∞(K,Σ) and Q∗w∞(K,Σ) and
Q∗f (K,Σ) (for every fast (see 1.1.12) function f : ω × ω −→ ω). Conse-
quently whenever we work with growing creating pairs we may interchange
the respective forcing notions as they are equivalent.

(2) Moreover, if g : ω×ω −→ ω, p ∈ Q∗w∞(K,Σ) then there is q ∈ Q∗s∞(K,Σ)
such that p ≤w∞

0 q and

(∀n ∈ ω)(nor[tqn] > g(n,m
tqn
dn)).

Proof. Suppose that g : ω×ω −→ ω and (w, t0, t1, . . .) ∈ Q∗w∞(K,Σ). Choose
an increasing sequence k0 < k1 < k2 < . . . such that

nor[tk0] > g(0,mt0
dn) and nor[tkn+1] > g(n+ 1,m

tkn
up)

(exists by 1.1.10(w∞)) and choose s0 ∈ Σ(t0, . . . , tk0), sn+1 ∈ Σ(tkn+1, . . . , tkn+1)
such that nor[sn] ≥ nor[tkn] (exist by 2.1.1(3)). Hence (by 1.2.8(2); remember
that we assume (K,Σ) is nice)

q
def
= (w, s0, s1, s2, . . .) ∈ Q∗s∞(K,Σ)

and clearly (w, t0, t1, t2, . . .) ≤0 q. �

Theorem 2.1.4. Assume (K,Σ) is a finitary creating pair. Further assume
that p ∈ Q∗s∞(K,Σ) and for n < ω we have a Q∗s∞(K,Σ)-name τ̇n such that
Q∗s∞(K,Σ)“τ̇n is an ordinal” and ` < ω. Then there is q = (wp, s0, s1, s2, . . .)
such that:

(a) p ≤s∞
` q ∈ Q∗s∞(K,Σ) and

(b) if ` ≤ n < ω, m ≤ msn−1
up then the condition q approximates τ̇m at sn (see

1.2.9(2)).

Proof. Let p = 〈wp, tp0, t
p
1, t

p
2, . . .〉. Let si = tpi for i < `. Now, by induction

on n ≥ ` we define qn, sn, t
n
n+1, t

n
n+2, . . . such that:

(i) q` = p,
(ii) qn+1 = (wp, s0, . . . , sn, t

n
n+1, t

n
n+2, . . .) ∈ Q∗s∞(K,Σ)

(iii) qn ≤s∞
n qn+1

(iv) if w1 ∈ pos(wp, s0, . . . , sn−1), m ≤ m
sn−1
up and there is a condition r ∈

Q∗s∞(K,Σ), ≤s∞
0 –stronger than (w1, sn, t

n
n+1, t

n
n+2, . . .) which decides the

value of τ̇m
then the condition (w1, sn, t

n
n+1, t

n
n+2, . . .) does it.

Arriving at the stage n+ 1 > ` we have defined

qn = (wp, s0, . . . , sn−1, t
n−1
n , tn−1

n+1, . . .).

Fix an enumeration 〈(wni ,mn
i) : i < kn〉 of

pos(wp, s0, . . . , sn−1)× (msn−1
up + 1)

(since each H(m) is finite, kn is finite). Next choose by induction on k ≤ kn
conditions qn,k ∈ Q∗s∞(K,Σ) such that:

(α) qn,0 = qn
(β) qn,k is of the form (wp, s0, . . . , sn−1, t

n,k
n , tn,kn+1, t

n,k
n+1, . . .)

(γ) qn,k ≤n qn,k+1

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

2.1. FORCING NOTIONS Q∗s∞(K,Σ), Q∗w∞(K,Σ) 29

(δ) if, in Q∗s∞(K,Σ), there is a condition r ≥0 (wnk , t
n,k
n , tn,kn+1, t

n,k
n+2, . . .) which

decides (in Q∗s∞(K,Σ)) the value of τ̇mnk , then

(wnk , t
n,k+1
n , tn,k+1

n+1 , tn,k+1
n+2 , . . .) ∈ Q∗s∞(K,Σ)

is a condition which forces a value to τ̇mnk .

(Note: (wnk , t
n,k
n , tn,kn+1, t

n,k
n+2, . . .) ∈ Q∗s∞(K,Σ).)

For this part of the construction we need our standard assumption that (K,Σ) is

nice. Note that choosing (wnk , t
n,k+1
n , tn,k+1

n+1 , tn,k+1
n+2 , . . .) we want to be sure that

(wp, s0, . . . , sn−1, t
n,k+1
n , tn,k+1

n+1 , tn,k+1
n+2 , . . .) ∈ Q∗s∞(K,Σ)

(remember that 1.1.7(b)(ii) might fail). But by 1.2.8(2) it is not a problem. Next,

the condition qn+1
def
= qn,kn ∈ Q∗s∞(K,Σ) satisfies (iv): the keys are the clause (δ)

and the fact that

(wnk , t
n,k+1
n , tn,k+1

n+1 , tn,k+1
n+2 , . . .) ≤s∞

0 (wnk , t
n,kn
n , tn,knn+1 , t

n,kn
n+2 , . . .) ∈ Q∗s∞(K,Σ).

Thus sn
def
= tn,knn , qn+1 and tnn+k

def
= tn,knn+k are as required.

Now, by 1.2.13:

q
def
= (wp, s0, s1, . . . , sl, sl+1, . . .) = lim

n
qn ∈ Q∗s∞(K,Σ).

Easily it satisfies the assertions of the theorem. �

A small modification of the proof of 2.1.4 shows the corresponding result for
the forcing notion Q∗w∞(K,Σ):

Theorem 2.1.5. Assume (K,Σ) is a finitary creating pair and p ∈ Q∗w∞(K,Σ).
Let τ̇n be Q∗w∞(K,Σ)-names for ordinals (for n < ω), ` < ω. Then there is a
condition q = (wp, s0, s1, . . .) ∈ Q∗w∞(K,Σ) such that

(a) p ≤` q and
(b) there is an increasing sequence ` = k0 < k1 < k2 < . . . < ω such that if

n < ω and m ≤ mskn−1
up then the condition q approximates τ̇m at skn .

As an immediate corollary to theorem 2.1.4 we get the following.

Corollary 2.1.6. Assume that (K,Σ) is a finitary creating pair.

(a) Suppose that τ̇n are Q∗s∞(K,Σ)-names for ordinals and q ∈ Q∗s∞(K,Σ)
is a condition satisfying (b) of 2.1.4 (for ` = 0). Further assume that
q ≤ r ∈ Q∗s∞(K,Σ), n < `g(wr) and r “τ̇n = α” (for some ordinal α).
Then for some q′ ∈ Q∗s∞(K,Σ), q ≤apr q

′ ≤0 r, we have q′ “τ̇n = α”.

(Note: {q′∈Q∗s∞(K,Σ): q ≤apr q
′} is countable provided

⋃
i<ω

H(i) is countable.)

(b) The forcing notion Q∗s∞(K,Σ) is proper (and α-proper for α < ω1).

It should be underlined here that 2.1.6 applies to forcing notions Q∗∞(K,Σ) for
finitary growing creating pairs (remember 2.1.3). To get the respective conclusion
for Q∗w∞(K,Σ) we need to assume more.

Definition 2.1.7. We say that:

(1) A weak creating pair (K,Σ) is simple if Σ(S) is non-empty for singletons
only.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

30 2. PROPERNESS AND THE READING OF NAMES

(2) A creating pair (K,Σ) is gluing if it is full and for every k < ω there is
n0 < ω such that for every n0 ≤ n < ω, (t0, . . . , tn) ∈ PFC(K,Σ), for
some s ∈ Σ(t0, . . . , tn) we have

nor[s] ≥ min{k,nor[t0], . . . ,nor[tn]}.
In this situation the integer n0 is called the gluing witness for k.

The two properties defined above are, in a sense, two extremal situations under
which we may say something on (K,Σ). The demand “either simple or gluing”
(like in 2.2.11) should not be surprising if one realizes that then we know what may
happen when Σ is applied, at least in terms of mt

dn, mt
up.

Corollary 2.1.8. Assume that (K,Σ) is a finitary and simple creating pair.

(a) Suppose that τ̇n are Q∗w∞(K,Σ)–names for ordinals, k0 < k1 < . . . < ω
and q ∈ Q∗w∞(K,Σ) are as in 2.1.5(b). Suppose that q ≤ r ∈ Q∗w∞(K,Σ),
and r decides the value of one of the names τ̇n, say r “τ̇n = α”.

Then for some q′ ∈ Q∗w∞(K,Σ) we have

q ≤apr q
′, q′ “τ̇n = α” and q′, r are compatible.

(b) The forcing notion Q∗w∞(K,Σ) is proper (and even more).

Remark 2.1.9. Note the presence of “simple” in the assumptions of 2.1.8. In
practical applications of forcing notions of the type Q∗w∞ we can get more, see
2.1.12 below.

Definition 2.1.10. Let (K,Σ) be a creating pair for H. We say that (K,Σ)
captures singletons if (K,Σ) is forgetful and for every (t0, . . . , tn) ∈ PFC(K,Σ)
and for each u ∈ basis(t0)(=

∏
m<m

t0
dn

H(m)) and v ∈ pos(u, t0, . . . , tn) there is

(s0, . . . , sk) ∈ PFC(K,Σ) such that (t0, . . . , tn) ≤ (s0, . . . , sk) (see 1.2.4) and

pos(u, s0, . . . , sk) = {v}, mt0
dn = ms0

dn, msk
up = mtn

up.

[Note that we put no demands on the norms of the si’s.]

Proposition 2.1.11. Suppose that (K,Σ) is a creating pair which captures
singletons (so in particular it is forgetful), p ∈ Q∗w∞(K,Σ) and τ̇ is a Q∗w∞(K,Σ)–
name for an ordinal. Then there is q ∈ Q∗w∞(K,Σ) such that

p ≤w∞
0 q and q decides τ̇ .

Proof. Take r ∈ Q∗w∞(K,Σ) such that p ≤ r and r τ̇ = α (for some α).
Look at wr: for some n ∈ ω we have wr ∈ pos(wp, tp0, . . . , t

p
n−1). By 2.1.10 we find

s0, . . . , sk such that pos(wp, s0, . . . , sk) = {wr} and

(wp, tp0, t
p
1, . . .) ≤ (wp, s0, . . . , sk, t

r
0, t

r
1, . . .)

def
= q ∈ Q∗w∞(K,Σ).

Clearly p ≤w∞
0 q. To show that q τ̇ = α we use our standard assumption that

(K,Σ) is smooth. Suppose that q′ ≥ q is such that q′ τ̇ 6= α. We may assume that

`g(wq
′
) > msk

up. By the smoothness we have wq
′
�msk

up ∈ pos(wp, s0, . . . , sk), and so

wq
′
�msk

up = wr, and wq
′ ∈ pos(wr, tr0, . . . , t

r
`) (for a suitable ` < ω). Consequently

q′ ≥ r and this is a contradiction. �

Corollary 2.1.12. Assume (K,Σ) is a finitary creating pair which captures
singletons.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

2.2. FORCING NOTION Q∗f (K,Σ): BIGNESS AND HALVING 31

(1) Let p ∈ Q∗w∞(K,Σ), τ̇n be Q∗w∞(K,Σ)-names for ordinals (for n < ω)
and ` < ω. Then there is a condition q ∈ Q∗w∞(K,Σ) such that
(a) p ≤` q and
(b) the condition q essentially decides (see 1.2.9(1)) each name τ̇n.

(2) The forcing notion Q∗w∞(K,Σ) is proper.

Proof. 1) Follows from 2.1.5 and 2.1.11.
2) Follows from 1). �

2.2. Forcing notion Q∗f (K,Σ): bigness and halving

Definition 2.2.1. Let r̄ = 〈rm : m < ω〉 be a non-decreasing sequence of
integers ≥ 2. For a creating pair (K,Σ) for H we say that:

(1) (K,Σ) is big if for every k < ω there is m < ω such that:
if t ∈ K, nor[t] ≥ m, u ∈ basis(t) and c : pos(u, t) −→ {0, 1}
then there is s ∈ Σ(t) such that nor[s] ≥ k, and c�pos(u, s) is constant.
In this situation we call m a bigness witness for k.

(2) (K,Σ) is r̄–big if for each t ∈ K such that nor[t] > 1 and u ∈ basis(t)
and c : pos(u, t) −→ rmtdn

there is s ∈ Σ(t) such that nor[s] ≥ nor[t]− 1

and c � pos(u, s) is constant.

Remark 2.2.2. Clearly, for a creating pair (K,Σ), r̄–big implies implies big.

To show how the notions introduced in definition 2.2.1 work we start with
proving an application of 2.1.4 to the case when the creating pair is additionally
big and growing.

Proposition 2.2.3. Assume (K,Σ) is a finitary, growing and big creating pair.
If p ∈ Q∗s∞(K,Σ), p “τ̇ < m”, m < ω then there is q, p ≤0 q ∈ Q∗s∞(K,Σ) such
that q “τ̇ = m0” for some m0.

Proof. Let h ∈ ωω be such that h(k) is a bigness witness for k (remember
that (K,Σ) is big, see 2.2.1(1)). Note that 2.1.4 + 2.1.3(2) give us a condition
p′ = (wp, s0, s1, s2, . . .) ∈ Q∗s∞(K,Σ) such that p ≤s∞

0 p′ and

(α) nor[s`] ≥ h(m·|pos(wp,s0,...,s`−1)|)(ms`
dn + 1) for all ` < ω and

(β) p′ approximates the name τ̇ at each n < ω.

Using iteratively the choice of h(k) we will have then

(γ) for every ` < ω and each function

d : {〈u, v〉 : u ∈ pos(wp, s0, . . . , s`−1) & v ∈ pos(u, s`)} −→ m+ 1

there is a creature s ∈ Σ(s`) such that nor[s] > ms`
dn and

d � {〈u, v〉 ∈ dom(d) : v ∈ pos(u, s)}
depends on the first coordinate only.

(Since, as usual, we assume that (K,Σ) is nice, we have in (γ) above that basis(s) ⊇
pos(wp, s0, . . . , s`−1).)

Now apply (γ) to find s′` ∈ Σ(s`) (for ` < ω) such that nor[s′`] > ms`
dn = m

s′`
dn

and for every u ∈ pos(wp, s′0, . . . , s
′
`−1) we have

(δ) for each v0, v1 ∈ pos(u, s′`), i < m

(v0, s
′
`+1, s

′
`+2, . . .) τ̇ = i iff (v1, s

′
`+1, s

′
`+2, . . .) τ̇ = i.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

32 2. PROPERNESS AND THE READING OF NAMES

Look at q
def
= (wp, s′0, s

′
1, s
′
2, . . .). First it is a condition in Q∗s∞(K,Σ) as (K,Σ) is

nice and s′` ∈ Σ(s`), nor[s′`] > m
s′`
dn. To show that

(∃m0 < m)(q τ̇ = m0)

take a condition r = (w1, t0, t1, . . .) ≥ q such that r decides the value of τ̇ ,
w1 ∈ pos(wp, s′0, . . . , s

′
`−1) and ` is the smallest possible. By (β) we know that

the condition (w1, s
′
`, s
′
`+1, . . .) forces a value to τ̇ , say m0. We claim that ` = 0,

i.e. w1 = wp (which is enough as then q decides the value of τ̇). Why? Suppose that

` > 0 and look at the requirement (δ) for `−1, u = w1 � m
s′`−1

dn . By the smoothness
u ∈ pos(wp, s′0, . . . , s

′
`−2) and consequently, by (δ), for each v ∈ pos(u, s′`−1) we

have

(v, s′`, s
′
`+1, . . .) τ̇ = m0.

Applying smoothness once again we note that for each w ∈ pos(u, s′`−1, s
′
`, . . . , s

′
k)

w � ms′`
dn ∈ pos(u, s′`−1) and w ∈ pos(w � ms′`

dn, s
′
`, . . . , s

′
k).

Hence for each such w we have

(w � ms′`
dn, s

′
`, s
′
`+1, . . . ,) τ̇ = m0 and

(w, s′k+1, s
′
k+2, . . .) ≥ (w � ms′`

dn, s
′
`, s
′
`+1, . . .)

and so

(w, s′k+1, s
′
k+2, . . . ,) τ̇ = m0.

Hence we may conclude that (u, s′`−1, s
′
`, . . .) τ̇ = m0 which contradicts the choice

of `. �

Remark 2.2.4. One may notice that the assumptions of 2.2.3 are difficult to
satisfy in most natural cases. First examples of growing creating pairs one has in
mind are omittory creating pairs. However, if we demand that an omittory creating
pair (K,Σ) is smooth then we get to

t ∈ K & u ∈ basis(t) ⇒ u_0[mtdn,m
t
up) ∈ pos(u, t).

This excludes bigness as defined in 2.2.1. Thus it is desirable to consider in this
case a weaker condition, which more fits to specific properties of omittory creating
pairs.

Definition 2.2.5. An omittory creating pair (K,Σ) is omittory–big if for every
k < ω there is m < ω such that:
if t ∈ K, nor[t] ≥ m, u ∈ basis(t) and c : pos(u, t) −→ {0, 1} then there is s ∈ Σ(t)
such that nor[s] ≥ k and c�(pos(u, s) \ {0[mtdn,m

t
up)}) is constant.

We may call m an omittory-bigness witness for k.

Proposition 2.2.6. Assume (K,Σ) is a finitary, omittory and omittory–big
creating pair. Suppose that p ∈ Q∗s∞(K,Σ), p “τ̇ < m”, m < ω. Then there is a
condition q ∈ Q∗s∞(K,Σ) such that p ≤s∞

0 q and q decides the value of τ̇ .

Proof. We start as in the proof of 2.2.3, but in (γ) there we say that

d � {〈u, v〉 ∈ dom(d) : v ∈ pos(u, s) & (∃k ∈ [`g(u), `g(v)))(v(h) 6= 0)}
depends on the first coordinate only, and therefore we get s′` ∈ Σ(s`) as there but
with (δ) replaced by

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

2.2. FORCING NOTION Q∗f (K,Σ): BIGNESS AND HALVING 33

(δ)− for each v0, v1 ∈ pos(u, s′`) \ {u_0
[m

s′
`

dn,m
s′
`

up)
}, i < m

(v0, s
′
`+1, s

′
`+2, . . .) τ̇ = i iff (v1, s

′
`+1, s

′
`+2, . . .) τ̇ = i.

Now comes the main modification of the proof of 2.2.3. We choose an infinite set
I = {i0, i1, i2, . . .} ⊆ ω such that for every i < m we have

if: k < ` ≤ `′ < ω, w ∈ pos(wp, s′0, . . . , s
′
ik

), v0 ∈ pos(w, s′i` � [m
s′ik
up ,m

s′i`
up)),

v1 ∈ pos(w, s′i`′ � [m
s′ik
up ,m

s′i
`′

up)), and

(∃m ∈ [m
s′i`
dn ,m

s′i`
up))(v0(m) 6= 0) and (∃m ∈ [m

s′i
`′

dn ,m
s′i
`′

up))(v1(m) 6= 0)

then: (v0, s
′
i`+1, s

′
i`+2, . . .) τ̇ = i iff (v1, s

′
i`′+1, s

′
i`′+2, . . .) τ̇ = i

and a similar condition for the case of w = wp, 0 ≤ ` ≤ `′ < ω. The construction
of the set I is rather standard (by induction) and it goes like in the proof of the
suitable property for the Mathias forcing (see e.g. [BaJu95, 7.4.6]). Next we look
at

q
def
= (wp, s′i0 � [m

s′0
dn,m

s′i0
up), s′i1 � [m

s′i0
up ,m

s′i1
up), s′i2 � [m

s′i1
up ,m

s′i2
up), . . .).

It should be clear that it is a condition in Q∗s∞(K,Σ) which is ≤s∞
0 –stronger than

p. Note that, as (K,Σ) is omittory (remember the demand (�0) of 2.1.1(2)), by
the choice of the set I we have

if w1 ∈ pos(wq, tq0, . . . , t
q
k), k < ω, w1�[m

tqk
dn,m

tqk
up) = 0

[m
t
q
k

dn,m
t
q
k

up)
and

the condition (w1, t
q
k+1, t

q
k+2, . . .) decides the value of τ̇

then (w1�m
tqk
dn, t

q
k, t

q
k+1, t

q
k+2, . . .) does so.

Now, like in 2.2.3 we show that the condition q decides the value of τ̇ , using the
remark above and the choice of the set I. �

Definition 2.2.7. Let (K,Σ) be a creating pair.

(1) We say that (K,Σ) has the Halving Property if there is a mapping

half : K −→ K

such that
(a) for each t ∈ K, half(t) ∈ Σ(t) and nor[half(t)] ≥ 1

2nor[t],
(b) if t0, . . . , tn ∈ K, min{nor[ti] : i ≤ n} ≥ 2 and a creature t ∈

Σ(half(t0), . . . ,half(tn)) is such that nor[t] > 0 then there is s ∈
Σ(t0, . . . , tn) such that

nor[s] ≥ min{1

2
nor[ti] : i ≤ n} and (∀u∈basis(t0))(pos(u, s) ⊆ pos(u, t)).

(2) We say that (K,Σ) has the weak Halving Property if there is a mapping
half : K −→ K which satisfies (a) above and

(b)− if t0 ∈ K, nor[t0] ≥ 2 and t ∈ Σ(half(t0)) is such that nor[t] > 0
then there is a creature s ∈ Σ(t0) such that

nor[s] ≥ 1

2
nor[t0] and (∀u ∈ basis(t0))(pos(u, s) ⊆ pos(u, t)).

(3) Whenever we say that (K,Σ) has the (weak) Halving Property we assume
that the function half : K −→ K witnessing this is fixed.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

34 2. PROPERNESS AND THE READING OF NAMES

Remark 2.2.8. Remember that we standardly assume that creating pairs are
nice, so in 2.2.7(1b), 2.2.7(2b−) we have basis(t0) ⊆ basis(t) and basis(t0) ⊆
basis(s). Of course, the Halving Property implies the weak Halving Property.
Moreover, the two notions agree for simple creating pairs.

Our next lemma shows how we are going apply the Halving Property.

Lemma 2.2.9. Assume that (K,Σ) is a creating pair with the Halving Property
(witnessed by a mapping half : K −→ K). Suppose that f : ω × ω −→ ω is a fast
function, τ̇ is a Q∗f (K,Σ)-name for an ordinal, n < ω, 0 < ε ≤ 1 and p ∈ Q∗f (K,Σ)
is a condition such that

(∀i ∈ ω)(nor[tpi] ≥ ε · f(n,m
tpi
dn)).

Further assume that there is a condition r ∈ Q∗f (K,Σ) such that

(∀i ∈ ω)(nor[tri] > 0) and (wp,half(tp0),half(tp1), . . .) ≤f0 r and

r essentially decides τ̇ (see 1.2.9). Then there is a condition q ∈ Q∗f (K,Σ) such
that

(∀i ∈ ω)(nor[tqi] ≥
ε

2
· f(n,m

tqi
dn)), p ≤f0 q and q essentially decides τ̇ .

Proof. First note that the niceness implies that (wp,half(tp0),half(tp1), . . .) is
a condition in Q∗f (K,Σ) (by 2.2.7(1)(a) and 1.2.8(2); remember that f is fast). Now

suppose that r ∈ Q∗f (K,Σ) is as in the assumptions of the lemma. Take m < ω so
large that

(∀u ∈ pos(wp, tr0, . . . , t
r
m−1))((u, trm, t

r
m+1, . . .) decides the value of τ̇) and

(∀i ≥ m)(nor[tri] ≥
ε

2
f(n,m

tri
dn))

(for the first requirement remember that (K,Σ) is smooth; the second is possible
since ε ≤ 1). Next choose integers 0 = i0 < i1 < . . . < im−1 < im such that

(∀` < m)(tr` ∈ Σ(half(tpi`), . . . ,half(tpi`+1−1))).

Applying the Halving Property (see 2.2.7(1b); remember that we have assumed
nor[tr`] > 0 for each ` ∈ ω) we find s` ∈ Σ(tpi` , . . . , t

p
i`+1−1) (for ` < m) such that

nor[s`] ≥ min{ 1
2nor[tpi] : i` ≤ i < i`+1} and

(∀u∈basis(tpi`))(pos(u, s`) ⊆ pos(u, tr`)).

Then easily

q
def
= (wp, s0, . . . , sm−1, t

r
m, t

r
m+1, . . .) ∈ Q∗f (K,Σ), p ≤f0 q and

(∀i ∈ ω)(nor[tqi] ≥
ε

2
f(n,m

tqi
dn))

(for the last statement remember that f is fast so f(n, ·) is non-decreasing). More-
over q essentially decides the value of τ̇ as

pos(wp, s0, . . . , sm−1) ⊆ pos(wp, tr0, . . . , t
r
m−1).

�

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

2.2. FORCING NOTION Q∗f (K,Σ): BIGNESS AND HALVING 35

Remark 2.2.10. One could ask why we cannot in the conclusion of 2.2.9 require
that simply nor[tqi] ≥ 1

2nor[tpj] (for j chosen somehow suitably, e.g. such that

m
tqi
dn = m

tpj
dn). The reason is that “the upgrading procedure” given by 2.2.7(1b)

takes care of possibilities only: no other relation between s, t there is required.
In particular we do not know if Σ(t) ∩ Σ(s) 6= ∅. Consequently, if we apply this
procedure to all m (replacing each trm by suitable sm) then we may get a condition
incompatible with r.

Theorem 2.2.11. Assume that a creating pair (K,Σ) for H is finitary, 2̄-big
and has the Halving Property. Further suppose that a function f : ω × ω −→ ω is
H-fast and that (K,Σ) is either simple or gluing (see 2.1.7). Let τ̇m be Q∗f (K,Σ)-

names for ordinals (for m ∈ ω), p ∈ Q∗f (K,Σ) and n < ω.

Then there is a condition q ∈ Q∗f (K,Σ) such that p ≤fn q and q essentially decides

(see 1.2.9) all the names τ̇m (for m ∈ ω).

Proof. Let (K,Σ) and f be as in the assumptions of the theorem.

Claim 2.2.11.1. Suppose that τ̇ is a Q∗f (K,Σ)-name for an ordinal, n < ω, a

condition p ∈ Q∗f (K,Σ) and a real ε are such that

2|pos(wp,tp0)| · 2−ϕH(m
t
p
1

dn) ≤ ε ≤ 1

(where ϕH(`) = |
∏
i<`

H(i)|, see 1.1.12), and

nor[tp0] > 1 and (∀i > 0)(nor[tpi] ≥ ε · f(n+ 1,m
tpi
dn)).

Then there is a condition q ∈ Q∗f (K,Σ) such that p ≤f0 q, tq0 ∈ Σ(tp0), nor[tq0] ≥
nor[tp0]− 1, q essentially decides the value of τ̇ and

(∀i > 0)(nor[tqi] ≥
ε

2|pos(wp,tp0)| · f(n+ 1,m
tqi
dn)).

Proof of the claim: First note that our assumptions on ε (and the fact that f is

H-fast) imply that if t ∈ K is such that mt
dn ≥ m

tp1
dn and

nor[t] ≥ ε

2|pos(wp,tp0)| · f(n+ 1,mt
dn)

then

nor[t] > f(n,mt
dn) + ϕH(mt

dn) + 2.

Let {w0
m : m < m0} enumerate pos(wp, tp0). We inductively choose conditions p0

m

for m ≤ m0 such that

(α) p0
0 = (w0

0, t
p
1, t

p
2, . . .),

(β) if there is a condition r ∈ Q∗f (K,Σ) such that p0
m ≤0 r and

(∀i ∈ ω)(nor[tri] ≥
ε

2m+1
· f(n+ 1,m

tri
dn))

and r essentially decides τ̇ then we choose such an r and we put

p0
m+1 = (w0

m+1, t
r
0, t

r
1, . . .),

(γ) if we cannot apply the clause (β) (i.e. there is no r as above) then

p0
m+1 = (w0

m+1,half(t
p0
m

0),half(t
p0
m

1), . . .).

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

36 2. PROPERNESS AND THE READING OF NAMES

[For the sake of the uniformity of the inductive definition we let w0
m0

to be e.g. w0
0.]

Note that by the niceness there are no problems in the above construction (i.e.
p0
m ∈ Q∗f (K,Σ)). Let c : pos(wp, tp0) −→ 2 be such that

c(w0
m) =

{
0 if the clause (β) was applied to choose p0

m+1,
1 otherwise.

Due to the bigness of (K,Σ) we find a creature s0 ∈ Σ(tp0) such that c is constant
on pos(wp, s0) and nor[s0] ≥ nor[tp0]− 1. Note that

q
def
= (wp, s0, t

p0
m0

0 , t
p0
m0

1 , t
p0
m0

2 , . . .) ∈ Q∗f (K,Σ)

(the niceness applies here once again, see 1.2.8; the norm condition should be
obvious as p0

m0
∈ Q∗f (K,Σ)). Moreover

nor[t
p0
m0
i] ≥ ε

2|pos(wp,tp0)| · f(n+ 1,m
t
p0
m0
i

dn)

and hence, in particular,

nor[t
p0
m0
i] > f(n,m

t
p0
m0
i

dn) + ϕH(m
t
p0
m0
i

dn) + 2.

If the constant value of c � pos(wp, s0) is 0 then easily the condition q satisfies the
requirements of the claim (use 1.2.10).

So we want to exclude the possibility that the constant value is 1. For this
assume that it is the case. First note that then, due to the way we constructed
p0
m0

, we may apply lemma 2.2.9 and conclude that there are no u ∈ pos(wp, s0) and
r ∈ Q∗f (K,Σ) such that nor[tri] > 0 for all i ∈ ω and

(u, t
p0
m0

0 , t
p0
m0

1 , . . .) ≤0 r and r essentially decides the value of τ̇ .

Now we inductively choose an increasing sequence `0 < `1 < . . . of integers, crea-
tures s1, s2, . . . ∈ K and conditions p0, p1, . . . ∈ Q∗f (K,Σ) such that

(1) p0 = q (defined above), `0 = 0,
(2) `k+1 is such that `k+1 > `k and

(∀i ≥ `k+1)(nor[tpki] ≥ f(n+ k + 2,m
t
pk
i

dn)),

(3) si = tpki for i ≤ `k and nor[tpki] > f(n + k,m
t
pk
i

dn) + ϕH(m
t
pk
i

dn) + 2 for
i > `k,

(4) there are no u ∈ pos(wp, s0, . . . , s`k) and r ∈ Q∗f (K,Σ) such that

(∀i ∈ ω)(nor[tri] > 0)

and (u, tpk`k+1, t
pk
`k+2, . . .) ≤0 r and r essentially decides τ̇ ,

(5) for i ∈ (`k, `k+1], si ∈ Σ(tpki) and nor[si] > f(n+ k,msi
dn),

(6) nor[s`k+1
] > f(n+ k + 1,m

s`k+1

dn) and pk ≤fk pk+1.

Suppose we have defined `k, pk and si for i ≤ `k. Choose `k+1 according to the
requirement (2) above. Fix an enumeration

{wkm : m < mk} = pos(wp, s0, . . . , s`k , t
pk
`k+1, . . . , t

pk
`k+1

).

We inductively choose conditions pkm ∈ Q∗f (K,Σ) (in the way analogous to the

construction of p0
m’s):

(α)k pk0 = (wk0 , t
pk
`k+1+1, t

pk
`k+1+2, . . .),

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

2.2. FORCING NOTION Q∗f (K,Σ): BIGNESS AND HALVING 37

(β)k if there is a condition r ∈ Q∗f (K,Σ) such that pkm ≤0 r and

(∀i ∈ ω)(nor[tri] ≥
1

2m+1
· f(n+ k + 2,m

tri
dn))

and r essentially decides τ̇ then we choose such an r and we put

pkm+1 = (wkm+1, t
r
0, t

r
1, . . .),

(γ)k if we cannot apply the clause (β)k then

pkm+1 = (wkm+1,half(t
pkm
0),half(t

pkm
1), . . .).

As previously, due to the assumptions about (K,Σ), we can carry out the con-
struction. Let ck : pos(wp, s0, . . . , s`k , t

pk
`k+1, . . . , t

pk
`k+1

) −→ 2 be a function such

that

ck(wkm) =

{
0 if the clause (β)k was applied to choose pkm+1

1 otherwise.

Applying successively 2̄-bigness (to each tpki for i = `k+1, `k+1 − 1, . . . , `k + 1) we
find creatures s`k+1, . . . , s`k+1

such that for each i ∈ [`k + 1, `k+1]

si ∈ Σ(tpki) and nor[si] ≥ nor[tpki]− |pos(wp, s0, . . . , s`k , t
pk
`k+1, . . . , t

pk
i−1)|

and for each u ∈ pos(wp, s0, . . . , s`k , s`k+1, . . . , s`k+1
) the value of ck(u) depends

on u � m
s`k
up only. If the constant value of ck � pos(v, s`k+1, . . . , s`k+1

) (for some
sequence v ∈ pos(wp, s0, . . . , s`k)) is 0 then easily

(v, s`k+1, . . . , s`k+1
, t
pkmk
0 , t

pkmk
1 , . . .) ∈ Q∗f (K,Σ)

(remember that (K,Σ) is nice), it is ≤0-stronger than (v, tp
k

`k+1, t
pk

`k+2, . . .) and it

essentially decides τ̇ (by 1.2.10). This contradicts the inductive assumption (4). So
the constant value is always 1 and consequently ck � pos(wp, s0, . . . , s`k , . . . , s`k+1

)
is constantly 1. Put

pk+1
def
= (wp, s0, . . . , s`k+1

, t
pkmk
0 , t

pkmk
1 , . . .) ∈ Q∗f (K,Σ).

Note that for all i ∈ ω

nor[t
pkmk
i] > f(n+ k + 1,m

t
pkmk
i

dn) + ϕH(m
t
pkmk
i

dn) + 2

and thus pk+1 satisfies (3). By the construction (and 2.2.9) the condition pk+1

satisfies the inductive requirement (4) (for k + 1). Since f is H-fast we have that
for i ∈ [`k + 1, `k+1] (by the inductive assumption (3))

nor[t
pk+1

i] ≥ nor[tpki]− |pos(wp, s0, . . . , s`k , t
pk
`k+1, . . . t

pk
i−1)| > f(n+ k,m

t
pk+1
i

dn),

and for i > `k+1

nor[t
pk+1

i] > f(n+ k + 1,m
t
pk+1
i

dn)

and (if k > 0)

nor[tpk`k] = nor[s`k] > f(n+ k,m
t
pk
`k

dn).

Hence pk ≤fk pk+1. Moreover nor[s`k+1
] > f(n+ k + 1,m

s`k+1

dn). Thus the require-
ments (5) and (6) are satisfied.

Finally look at the limit condition

p∗ = (wp, s0, s1, . . .) = lim
k∈ω

pk ∈ Q∗f (K,Σ).

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

38 2. PROPERNESS AND THE READING OF NAMES

Now we have to distinguish the two cases: (K,Σ) is simple and (K,Σ) is gluing.
If our creating pair is simple then we take a condition r ≥ p∗ which decides the

value of τ̇ and such that nor[tri] > 0 for all i ∈ ω. We may assume that for some
k ∈ ω we have wr ∈ pos(wp, s0, . . . , s`k). Then (wr, tpk`k+1, t

pk
`k+2, . . .) ≤0 r and this

contradicts the assumption (4) about pk.
Now suppose that (K,Σ) is gluing. Note that choosing `k+1 we may take it

arbitrarily large. So we may assume that (additionally) `k+1− `k is larger then the

gluing witness for f(k,m
s`k
up). Then we find s∗k+1 ∈ Σ(s`k+1, . . . , s`k+1

) such that

nor[s∗k+1] ≥ min{f(k,m
s`k
up),nor[s`k+1], . . . ,nor[s`k+1

]} = f(k,m
s`k
up).

Put s∗0 = s0 and consider the condition

p∗∗ = (wp, s∗0, s
∗
1, s
∗
2, . . .) ≥ p∗.

Now we finish choosing the r as earlier above p∗∗. The claim is proved.

Claim 2.2.11.2. Suppose that τ̇ is a Q∗f (K,Σ)-name for an ordinal, n < ω and

p ∈ Q∗f (K,Σ). Then there is q ∈ Q∗f (K,Σ) such that p ≤fn q and q essentially
decides τ̇ .

Proof of the claim: Take i0 < ω so large that

(∀i ≥ i0)(nor[tpi] > f(n+ 1,m
tpi
dn)).

Let {wm : m < m∗} enumerate pos(wp, tp0, . . . , t
p
i0

). Choose inductively qm, εm (for
m < m∗) such that

q0 is given by 2.2.11.1 for (w0, t
p
i0+1, t

p
i0+2, . . .), ε0 = 1

ε1 = 1

2
|pos(w0,t

p
i0+1

)| , εm+1 = εm

2|pos(wm,t
qm−1
0)|

(for m > 0),

qm+1 is given by claim 2.2.11.1 for (wm+1, t
qm
0 , tqm1 , . . .), εm+1.

Note that arriving at the stage m+ 1 < m∗ of this construction we have

|pos(w0, t
p
i0+1)|+

∑
`≤m

|pos(w`+1, t
q`
0)| ≤ ϕH(m

tqm1
dn),

so εm+1 satisfies the respective demand. Moreover,

nor[tqmi] ≥ εm+1 · f(n+ 1,m
tqmi
dn) > f(n,m

tqmi
dn) for i > 0, m < m∗,

and for each m < m∗

nor[tqm0] ≥ nor[tpi0+1]−m > f(n,m
tqm0
dn) + 2.

Consequently we may carry out the construction and finally letting

q
def
= (wp, tp0, . . . , t

p
i0
, t
qm∗−1

0 , t
qm∗−1

1 , . . .)

we will clearly have a condition as required in the claim.

Applying inductively claim 2.2.11.2 to τ̇m and n+m we finish the theorem (using
1.2.13 and 1.2.10). �

Corollary 2.2.12. Suppose that a creating pair (K,Σ) is finitary, 2̄-big and
has the Halving Property. Further assume that it is either simple or gluing. Let
f : ω×ω −→ ω be an H-fast function. Then the forcing notion Q∗f (K,Σ) is proper.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

2.3. TREE–CREATING (K,Σ) 39

2.3. Tree–creating (K,Σ)

Proposition 2.3.1. Let e < 3, n < ω, p ∈ Qtree
e (K,Σ) and let A ⊆ T p be an

antichain in T p such that (∀η ∈ A)(∃ν ∈ F 0
n(p))(ν C η). Assume that for each

η ∈ A we have a condition qη ∈ Qtree
e (K,Σ) such that p[η] ≤0 qη and

if e = 1 then {tqην : ν ∈ T qη & nor[t
qη
ν] ≤ n} ⊆ {tpν : ν ∈ T p}.

Then there exists q ∈ Qtree
e (K,Σ) such that p ≤en+1 q, A ⊆ T q, q[η] = qη for η ∈ A

and if ν ∈ T p is such that there is no η ∈ A with η E ν then ν ∈ T q and tpν = tqν .

Definition 2.3.2. Let (K,Σ) be a tree-creating pair for H, k < ω.

(1) A tree creature t ∈ K is called k-big if nor[t] > 1 and for every function
h : pos(t) −→ k there is s ∈ Σ(t) such that h�pos(s) is constant and
nor[s] ≥ nor[t]− 1.

(2) We say that (K,Σ) is k-big if every t ∈ K with nor[t] > 1 is k-big.

Remark 2.3.3. The difference with 2.2.1 is not serious - we could have inter-
fering.

Definition 2.3.4. A tree creating pair (K,Σ) is t-omittory if for each system

〈sν : ν ∈ T̂ 〉 ⊆ K such that T̂ is a well founded quasi tree, root(sν) = ν, pos(sν) =

succT (ν) (for ν ∈ T̂) and for every ν0 ∈ T̂ such that pos(sν0) ⊆ max(T) there is

s ∈ Σ(sν : ν ∈ T̂) such that

nor[s] ≥ nor[sν0
]− 1 and pos(s) ⊆ pos(sν0

).

Remark 2.3.5. The name “t-omittory” comes from “tree–omittory”: it is a
natural notion corresponding to omittory creating pairs for the case of tree–creating
pairs. The main point of being t-omittory is that if p, q ∈ Qtree

e (K,Σ), p ≤ q then
we have a condition r ∈ Qtree

e (K,Σ) such that p ≤e0 r and dcl(T r) ⊆ dcl(T q) and
trν = tqν for each ν ∈ T r, root(r) C ν. [Why? Let η = root(q) and let T ∗ ⊆ T p be a
well founded quasi tree such that

(∀ν ∈ T̂ ∗)(succT∗(ν) = pos(tpν)), and root(T ∗) = η, and tqη ∈ Σ(tpν : ν ∈ T̂ ∗).

Let T− = {root(p)} ∪
⋃
{pos(tpν) : ν C η & ν ∈ T p} ∪ pos(tqη). Clearly T− is a well

founded quasi tree and we may apply 2.3.4 to 〈tqη, tpν : ν C η & ν ∈ T p〉 and η. Thus
we get trroot(p) ∈ Σ(tqη, t

p
ν : ν C η & ν ∈ T p) such that pos(trroot(p)) ⊆ pos(tqη). Note

that, by transitivity of Σ, trroot(p) ∈ Σ(tpν : ν ∈ T̂− ∪ T̂ ∗). For ν ∈ pos(trroot(p)) let

trν = tqν and so on. Easily, this defines a condition r as required.]
Moreover this property implies that Qtree

4 (K,Σ) is dense in Qtree
2 (K,Σ).

Lemma 2.3.6. Suppose (K,Σ) is a tree–creating pair, e < 3, p ∈ Qtree
e (K,Σ),

n < ω and τ̇ is a Qtree
e (K,Σ)-name for an ordinal. Further assume that if e = 2

then (K,Σ) is bounded (see 1.3.3(4)). Then:

(1) There exist a condition q ∈ Qtree
e (K,Σ) and a maximal antichain A ⊆ T q

of T q such that:
(α) p ≤en q,
(β) for every η ∈ A the condition q[η] decides the value of τ̇ ,
(γ) A is an e-thick antichain of T p (see definition 1.3.7).

(2) Assume additionally that either e = 0 and (K,Σ) is t-omittory or e = 1
and (K,Σ) is 2-big. Then there are q ∈ Qtree

e (K,Σ) and a front F of T q

satisfying clauses (α) and (β) of (1) above.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

40 2. PROPERNESS AND THE READING OF NAMES

Proof. 1) Put

A0 = {ν ∈ T p : (∃η ∈ F 0
n(p))(η C ν) and there is q ∈ Qtree

e (K,Σ) such that
p[ν] ≤e0 q, q decides the value of τ̇ and
if e = 1 then (∀η ∈ T q)(nor[tqη] > n)}.

Claim 2.3.6.1. (∀r ∈ Qtree
e (K,Σ))(p ≤ r ⇒ A0 ∩ T r 6= ∅).

Proof of the claim: Suppose r ∈ Qtree
e (K,Σ) is such that p ≤ r. We may

assume that r decides the value of τ̇ and if e = 1 then additionally we have (∀η ∈
T r)(nor[trη] > n) (by 1.3.8(3)). Now, as F 0

n(p) is an e-thick antichain of T p (see
1.3.8(4), (6); remember that if e = 2 then we assume that (K,Σ) is bounded), we
find ν ∈ T r such that (∃η ∈ F 0

n(p))(η C ν). Look at the condition r[ν]: it witnesses
that ν ∈ A0.

Thus

A
def
= {ν ∈ A0 : there is no ν′ C ν which is in A0}

is an e-thick antichain of T p and for each η ∈ A we may take a witness qη for

η ∈ A0. Now apply 2.3.1 to find q ∈ Qtree
e (K,Σ) such that p ≤en q and q[η] = qη for

η ∈ A.

2) If e = 0 and (K,Σ) is t-omittory then for each ν ∈ F 1
n(p) we may choose a

condition qν ≥0 p
[ν] deciding the value of τ̇ (see remark 2.3.5). Now apply 2.3.1.

Assume now that (K,Σ) is 2-big, e = 1. Let

A1
def
= {ν ∈ T p : (∃η ∈ F 1

n(p))(η E ν) and there is q ≥0 p
[ν] such that

{tqρ : ρ ∈ T q & nor[tqρ] ≤ n} ⊆ {tpρ : ρ ∈ T p} and

there is a front F of T q with (∀ρ ∈ F)(q[ρ] decides τ̇)}.

Our aim is to show that F 1
n(p) ⊆ A1 which will finish the proof (applying 2.3.1

remember that F 1
n(p) is a front of T p “above” F 0

n(p)).
Fix η0 ∈ F 1

n(p). For each η0 E η ∈ T p such that nor[tpη] > 1 the creature tpη is
2-big so there is sη ∈ Σ(tpη) such that nor[sη] ≥ nor[tpη]− 1 and

either pos(sη) ∩A1 = ∅ or pos(sη) ⊆ A1.

Claim 2.3.6.2. If η0 E η ∈ T p, nor[tpη] ≥ n + 2 and pos(sη) ∩ A1 6= ∅ then
η ∈ A1.

Proof of the claim: By the the choice of sη we know that then pos(sη) ⊆ A1

so for ρ ∈ pos(sη) we may choose a condition qρ and a front F ρ ⊆ T qρ witnessing
ρ ∈ A1. Look at the quasi tree

T r
def
= {η} ∪ pos(sη) ∪

⋃
ρ∈pos(sη)

T qρ .

It determines a condition r ∈ Qtree
1 (K,Σ). It follows from the assumption nor[tpη] ≥

n+ 2 that nor[sη] > n and therefore

{trν : ν ∈ T r & nor[trν] ≤ n} ⊆ {tpν : ν ∈ T p
[η]

}.
Hence the condition r together with F η =

⋃
ρ∈pos(sη)

F ρ (which is clearly a front of

T r) witness that η ∈ A1, finishing the proof of the claim.

Now we construct inductively a condition q:

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

2.3. TREE–CREATING (K,Σ) 41

root(T q) = η0, T q ⊆ T p,
if ν ∈ T q and nor[tpν] < n+ 2 then tqν = tpν , succT q (ν) = pos(tpν),
if ν ∈ T q and nor[tpν] ≥ n+ 2 then tqν = sν , and succT q (ν) = pos(sν).

It should be clear that q ∈ Qtree
1 (K,Σ) and

{tqν : ν ∈ T q & nor[tqν] ≤ n} ⊆ {tpν : ν ∈ T p
[η0]

}.

Claim 2.3.6.3. B
def
= {η ∈ T q : (∀ν ∈ T q)(η E ν ⇒ nor[tqν] ≥ n+ 2)} ⊆ A1.

Proof of the claim: Suppose that η ∈ B. Take a condition r ∈ Qtree
1 (K,Σ),

q[η] ≤ r which decides τ̇ . We may assume that (∀ν ∈ T r)(nor[trν] ≥ n + 2) (by
1.3.8(3)). Consequently ∅ = {trν : ν ∈ T r & nor[trν] ≤ n} ⊆ {tpν : ν ∈ T p} and
root(r) ∈ A1. But now we note that for each ν ∈ T q, if η E ν C root(r) then
nor[tpν] ≥ n+ 2 (as η ∈ B) and tqν = sν . Thus we may apply 2.3.6.2 inductively to
conclude that all these ν, including η, are in A1, finishing the proof of the claim.

Claim 2.3.6.4. If η ∈ T q, η /∈ A1 then there is ν ∈ pos(tqη) such that ν /∈ A1.

Proof of the claim: Should be clear.

Claim 2.3.6.5. η0 ∈ A1.

Proof of the claim: Assume not. Then we inductively choose a sequence

η0 C η1 C η2 C . . . ∈ T q

such that

(∀i ∈ ω)(ηi /∈ A1 & nor[tqηi+1
] < n+ 2).

For this suppose that we have defined ηi /∈ A1. Take η∗ ∈ pos(tqηi)\A1 (possible by

2.3.6.4). By claim 2.3.6.3 we know that η∗ /∈ B so there is ν ∈ (T q)[η∗] such that
nor[tqν] < n+ 2. Let ηi+1 be the shortest such ν, i.e. ηi+1 is such that

[η ∈ T q & η∗ E η C ηi+1] ⇒ nor[tqη] ≥ n+ 2 and nor[tqηi+1
] < n+ 2.

By repeating applications of 2.3.6.2 we conclude that ηi+1 /∈ A1, as otherwise
η∗ ∈ A1.
Now look at the branch through T q determined by 〈ηi : i < ω〉 – it contradicts
q ∈ Qtree

1 (K,Σ). This finishes the proof of the claim and the lemma. �

Theorem 2.3.7. Suppose (K,Σ) is a tree–creating pair, e < 3, p ∈ Qtree
e (K,Σ).

Further suppose that if e = 2 then Σ is bounded. Let n < ω and let τ̇k be Qtree
e (K,Σ)-

names for ordinals (for k ∈ ω). Then:

(1) There exist a condition q ∈ Qtree
e (K,Σ) and e-thick antichains Ak ⊆ T q

of T q such that for each k ∈ ω:
(α) p ≤en q,
(β) for every η ∈ Ak the condition q[η] decides the value of τ̇k,
(γ) (∀ν ∈ Ak+1)(∃η ∈ Ak)(η C ν).

(2) If either e = 0 and (K,Σ) is t-omittory or e = 1 and (K,Σ) is 2-big then
there are q ∈ Qtree

e (K,Σ) and fronts Fk of T q such that for each k ∈ ω
the conditions (α)–(γ) of (1) above are satisfied.

Proof. This is an inductive application of 2.3.6 and 2.3.1 (and 1.3.8 + 1.3.11).
�

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

42 2. PROPERNESS AND THE READING OF NAMES

Lemma 2.3.8. Let (K,Σ) be a tree–creating pair, τ̇ be a Qtree
3 (K,Σ)–name for

an ordinal, p ∈ Qtree
3 (K,Σ), n < ω. Then there are a condition q ∈ Qtree

3 (K,Σ)
and a 3–thick antichain A ⊆ T p of T p such that q ≥ p and

(α) (∀η ∈ A)(∀ν ∈ T p)(ν C η ⇒ ν ∈ T q & tqν = tpν),
(β) for every η ∈ A the condition q[η] decides the value of τ̇ ,
(γ) (∀η ∈ A)(∀ν ∈ T q)(η E ν ⇒ nor[tqν] > n).

Proof. Look at the set

B
def
= {η ∈ T p : there is a condition q ≥ p[η] such that root(q) = η,

(∀ν ∈ T q)(nor[tqν] > n) and q decides the name τ̇}.

Easily, B ∩ T r 6= ∅ for every condition r ≥ p. Hence the set

A
def
= {η ∈ B : ¬(∃ν ∈ B)(ν C η)}

is a 3–thick antichain of T p. Now we finish in a standard way. �

Theorem 2.3.9. Let (K,Σ) be a tree–creating pair, τ̇k be Qtree
3 (K,Σ)–names

for ordinals (for k < ω) and p ∈ Qtree
3 (K,Σ). Then there are a condition q ∈

Qtree
3 (K,Σ) and 3–thick antichains Ak of T p such that q ≥ p and for every k ∈ ω:

(α) Ak ⊆ T q,
(β) if η ∈ Ak then q[η] decides τ̇k,
(γ) (∀ν ∈ Ak+1)(∃η ∈ Ak)(η C ν).

Proof. Build the condition q by induction using 2.3.8. �

Corollary 2.3.10. If e < 4, (K,Σ) is a tree creating pair which is bounded if
e = 2, and

⋃
i∈ω

H(i) is countable then the forcing notion Qtree
e (K,Σ) is proper (and

even more).

Proof. By 2.3.7, 2.3.9 (or rather the proofs of them) and the definition of
thick antichains (remember 1.3.9). �

Lemma 2.3.11. Assume that (K,Σ) is a 2–big tree–creating pair, n < ω, and
p ∈ Qtree

1 (K,Σ). Then there are q ∈ Qtree
1 (K,Σ) and a front F of T q such that

p ≤1
n q and

(∀ν ∈ F)(∀η ∈ T q)(ν E η ⇒ nor[tqη] > n+ 1).

Proof. It is like 2.3.6(2). We consider the set

A∗1
def
= {ν ∈ T p : (∃η ∈ F 1

n(p))(η E ν) and there is q ≥0 p
[ν] such that

{tqρ : ρ ∈ T q & nor[tqρ] ≤ n} ⊆ {tpρ : ρ ∈ T p} and
there is a front F of T q with
(∀ρ ∈ F)(∀η ∈ T q)(ρ E η ⇒ nor[tqη] > n+ 1)}.

We proceed exactly as in 2.3.6(2) to show that F 1
n(p) ⊆ A∗1. �

Corollary 2.3.12. Suppose that (K,Σ) is a 2-big tree creating pair, n < ω,
p ∈ Qtree

1 (K,Σ). Then there are q ∈ Qtree
1 (K,Σ) and fronts Fm of T q (for m ∈ ω)

such that

p ≤1
n q and (∀η ∈ T q)(∀ν ∈ Fm)(ν E η ⇒ nor[tqη] ≥ m).

Hence, in particular, Qtree
4 (K,Σ) is dense in Qtree

1 (K,Σ).

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

2.4. EXAMPLES 43

2.4. Examples

In this part we will give several examples of weak creating pairs, putting some
of the known forcing notions into our setting. It seems that the main ingredient of
any application of our technique is, next to an appropriate choice of the function
H, the definition of the norm we use to measure possibilities. Often such a norm
is an application of a particular type of pre–norms.

Definition 2.4.1. A function H : P(A) −→ R≥0 is a pre-norm on the set A
(or rather P(A)) if

(a) B ⊆ C ⊆ A implies H(B) ≤ H(C)
(b) H(A) > 0 and if a ∈ A then H({a}) ≤ 1.

A pre-norm H on A is nice if additionally

(c) if B ⊆ C ⊆ A, H(C) > 1 then either H(B) ≥ H(C) − 1 or H(C \ B) ≥
H(C)− 1.

Definition 2.4.2. (1) For a non-empty finite set A we let dp0(A) = |A|.
(2) For a finite family A ⊆ [ω]<ω such that (∀a ∈ A)(|a| > 1) we define

dp1(A) ∈ ω by the following induction

dp1(A) ≥ 0 always,

dp1(A) ≥ 1 if A 6= ∅,
dp1(A) ≥ n+ 2 if for every set X ⊆ ω one of the following conditions holds:

dp1({a ∈ A : a ⊆ X}) ≥ n+ 1 or

dp1({a ∈ A : a ⊆ ω \X}) ≥ n+ 1.

(3) For a non-empty finite family A of non-empty subsets of ω we let

dp2(A) = min{|I| : (∀a ∈ A)(a ∩ I 6= ∅)}.

(4) For n ∈ ω, i < 3 and A in the domain of dpi we let

dpin = log2+n(dpi(A)).

Proposition 2.4.3. (1) Let i < 3, n ∈ ω. Suppose that A is a finite set

in the domain of dpi such that dpin(A) > 0. Then dpin�P(A) is a nice
pre-norm on P(A).

(2) If H is a nice pre-norm on P(A), r < H(A) is a positive real number and
Hr : P(A) −→ R≥0 is defined by

Hr(B) = max{0, H(B)− r} for B ⊆ A,

then Hr is a nice pre-norm on P(A).

Proof. 1) Note that (in all cases), if B,C ⊆ A then

dpi(B ∪ C) ≤ dpi(B) + dpi(C).

The only unclear instance here might be i = 1, but note that if
⋃
A ⊆ [m0,m1),

B ⊆ A then

dp1(B) ≥ k + 2 if and only if
for every partition 〈I` : ` < `0〉 of [m0,m1), `0 ≤ 2k+1, there are
b ∈ B and ` < `0 such that b ⊆ I`.

2) Check. �

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

44 2. PROPERNESS AND THE READING OF NAMES

Remark 2.4.4. 2.4.3(2) will be of special importance when defining creating
pairs with the Halving Property. Then we will use Hr for r = b 1

2H(A)c (see 2.4.6,
4.4.2 and 7.5.1).

Our first example of a creating pair recalls Blass–Shelah forcing notion applied
in [BsSh 242] to show the consistency of the following statement:

if D1,D2 are non-principal ultrafilters on ω
then there is a finite-to-one function f ∈ ωω such that f(D1) =
f(D2).

(The suitable model was obtained there by a countable support iteration of forcing
notions close to Q∗s∞(K∗2.4.5,Σ

∗
2.4.5) over a model of CH.)

Example 2.4.5. Let H(m) = 2 for m ∈ ω. We build a full, omittory and
omittory–big (and smooth) creating pair (K2.4.5,Σ2.4.5) for H.

Construction. A creature t ∈ CR[H] is in K2.4.5 if mt
dn +2 < mt

up and there

is a sequence 〈Atu : u ∈
∏

i<mtdn

H(i)〉 such that for every u ∈
∏

i<mtdn

H(i):

(α) Atu is a non-empty family of subsets of [mt
dn,m

t
up), each member of Atu

has at least 2 elements,
(β) 〈u, v〉 ∈ val[t] if and only if

u C v ∈
∏

i<mtup

H(i) and {i ∈ [mt
dn,m

t
up) : v(i) = 1} ∈ Atu ∪ {∅},

(γ) nor[t] = min{dp1
0(Atu) : u ∈

∏
i<mtdn

H(i)}.

[Note that we do not specify here what are the dis[t] for t ∈ K2.4.5. We have a
total freedom in this, we may allow all possible values of dis[t] to appear.]

The composition operation Σ2.4.5 on K2.4.5 is defined as follows. Suppose that

t0, . . . , tn ∈ K2.4.5 are such that mti
up = m

ti+1

dn for i < n. Then

s ∈ Σ2.4.5(t0, . . . , tn) if and only if
s ∈ K2.4.5, ms

dn = mt0
dn, ms

up = mtn
up and for every 〈u, v〉 ∈ val[s]

for each i ≤ n we have 〈v�mti
dn, v�

ti
up〉 ∈ val[ti].

It is an easy exercise to check that (K2.4.5,Σ2.4.5) is a full, omittory, smooth and
omittory–big creating pair (for the last property use 2.4.3). Note that the forcing
notion Q∗s∞(K2.4.5,Σ2.4.5) is non-trivial as for each m0 < m0 + 2n+1 < m1 there is
t ∈ K2.4.5 ∩ CRm0,m1

[H] such that nor[t] = log2(n+ 1).
One may consider a modification of (K2.4.5,Σ2.4.5) making it forgetful. For

this we let K∗2.4.5 = {t ∈ K2.4.5 : (∀u0, u1 ∈
∏

i<mtdn

H(i))(Atu0
= Atu1

)} and

Σ∗2.4.5(t0, . . . , tn) = Σ2.4.5(t0, . . . , tn)∩K∗2.4.5 (for suitable t0, . . . , t1 ∈ K∗2.4.5). Check
that (K∗2.4.5,Σ

∗
2.4.5) is a forgetful, omittory and omittory–big creating pair. �

Example 2.4.6. We define functions H : ω −→ ω and f : ω × ω −→ ω and a
creating pair (K2.4.6,Σ2.4.6) for H such that:

• f is H–fast,
• (K2.4.6,Σ2.4.6) is 2̄–big, forgetful, simple and has the Halving Property,
• the forcing notion Q∗f (K2.4.6,Σ2.4.6) is non–trivial.

Construction. Let F ∈ ωω be an increasing function. Define inductively
functions H = HF and f = fF such that for each n, k, ` ∈ ω:

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

2.4. EXAMPLES 45

(i) H(n) = F (ϕH(n)) · 2f(n,n) (remember ϕH(n) =
∏
i<n

|H(i)|, ϕH(0) = 1),

(ii) f(0, `) = `+ 1, f(k + 1, `) = 2ϕH(`) · (f(k, `) + F (ϕH(`)) · ϕH(`) + 2)

(note that (i)+(ii) uniquely determine H and f and f is H–fast).
A creature t ∈ CR[H] belongs to K2.4.6 if mt

up = mt
dn + 1 and

• dis[t] = 〈mt
dn, At, Ht〉, where At is a subset of H(mt

dn) and Ht : P(At) −→
ω is a nice pre-norm,

• val[t] = {〈u, v〉 ∈
∏

i<mtdn

H(i)×
∏

i≤mtdn

H(i) : u C v & v(mt
dn) ∈ At},

• nor[t] = Ht(At).

For t ∈ K2.4.6 let Σ2.4.6(t) consist of all s ∈ K2.4.6 such that ms
dn = mt

dn, As ⊆
At and (∀B ⊆ As)(Hs(B) ≤ Ht(B)). (And if S ⊆ K2.4.6, |S| 6= 1 then we let
Σ2.4.6(S) = ∅.) Next, for t ∈ K2.4.6 we define half(t) ∈ K2.4.6 as follows:

if nor[t] < 2 then half(t) = t,
if nor[t] ≥ 2 then half(t) ∈ K2.4.6 is (the unique creature) such that

m
half(t)
dn = mt

dn, Ahalf(t) = At, and Hhalf(t) = (Ht)
r (see 2.4.3(2)),

where r = b 1
2nor[t]c.

It should be clear that (K2.4.6,Σ2.4.6) is a forgetful, simple and 2̄–big creating pair
(for the last remember the definition of nice pre-norms). Moreover, the function half
witnesses that (K2.4.6,Σ2.4.6) has the weak Halving Property (and so the Halving
Property). [Why? Note that if s ∈ Σ2.4.6(half(t)), nor[s] > 0, nor[t] ≥ 2 then
As ⊆ At and

1 ≤ Hs(As) ≤ Hhalf(t)(As) = Ht(As)− b
1

2
nor[t]c.

Thus Ht(As) ≥ b 1
2nor[t]c + 1 > 1

2nor[t] ≥ 1. Now look at a creature t′ ∈ K2.4.6

such that dis[t′] = 〈mt
dn, As, Ht�P(As)〉.] Finally note that if m < ω and t ∈ K2.4.6

is such that dis[t] = 〈m,H(m),dp0
0�P(H(m))〉 then nor[t] > f(m,m). �

Note that the creating pair (K,Σ) described in the Prologue to represent the
Silver forcing Q “below 2n” is an example of a finitary creating pair which captures
singletons.

The first serious application of tree–creating pairs appeared in [Sh 326]. The

forcing notion LT fd constructed there was later modified in various ways and several
variants of it found their applications (see e.g. [BJSh 368], [FrSh 406] and 2.4.8
below). This forcing notion is essentially the Qtree

1 (K0
2.4.7,Σ

0
2.4.7). (One should note

similarities with the forcing notion Q∗s∞(K2.4.5,Σ2.4.5).)

Example 2.4.7. Let f ∈ ωω be a strictly increasing function, H(m) = f(m)+1
for m ∈ ω. We construct finitary tree–creating pairs (K`

2.4.7,Σ
`
2.4.7), ` < 4, for H

such that

(1) K0
2.4.7 = K1

2.4.7, K2
2.4.7 = K3

2.4.7,
(2) (K0

2.4.7,Σ
0
2.4.7), (K1

2.4.7,Σ
1
2.4.7) are 2–big local tree–creating pairs,

(3) (K2
2.4.7,Σ

2
2.4.7), (K3

2.4.7,Σ
3
2.4.7) are 2–big t-omittory tree–creating pairs.

Construction. First we define (K0
2.4.7,Σ

0
2.4.7). A tree creature t ∈ TCRη[H]

(where η ∈
⋃
n<ω

∏
i<n

H(i)) is in K0
2.4.7 if

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

46 2. PROPERNESS AND THE READING OF NAMES

• dis[t] = 〈η,At, Ht〉, where At ⊆ H(`g(η)) and Ht is a nice pre-norm on
P(At),

• val[t] = {〈η, ν〉 : η C ν & `g(ν) = `g(η) + 1 & ν(`g(η)) ∈ At},
• nor[t] = Ht(At).

The operation Σ0
2.4.7 is the trivial one and for t ∈ TCRη[H] ∩K0

2.4.7:

Σ0
2.4.7(t) = {s ∈ TCRη[H] ∩K0

2.4.7 : As ⊆ At & Hs = Ht�P(As)}.
Easily, (K0

2.4.7,Σ
0
2.4.7) is a finitary 2–big simple tree–creating pair.

To define Σ1
2.4.7 on K1

2.4.7 = K0
2.4.7 we let for t ∈ TCRη[H]:

Σ1
2.4.7(t) = {t ∈ TCRη[H] ∩K1

2.4.7 : As ⊆ At & (∀B ⊆ As)(Hs(B) ≤ Ht(B))}.
Plainly, (K1

2.4.7,Σ
1
2.4.7) is a finitary 2–big simple tree–creating pair too.

To have t-omittory variants of the tree-creating pairs defined above we declare
that a tree–creature t ∈ TCRη[H] is in K2

2.4.7 = K3
2.4.7 if

• dis[t] = 〈η, η∗t , At, Ht〉, where η E η∗t ∈
⋃
n<ω

∏
i<n

H(i), At ⊆ H(`g(η∗t)) and

Ht is a nice pre-norm on P(At),
• val[t] = {〈η, ν〉 : η∗t C ν & `g(ν) = `g(η∗t) + 1 & ν(`g(η∗t)) ∈ At},
• nor[t] = Ht(At).

The operations Σ2
2.4.7, Σ3

2.4.7 are such that if T is a well founded quasi tree, 〈sν :

ν ∈ T̂ 〉 is a system of tree–creatures from K2
2.4.7 such that

(∀ν ∈ T̂)(sν ∈ TCRν [H] & rng(val[sν]) = succT (ν))

then Σ2
2.4.7(sν : ν ∈ T̂) consists of all tree-creatures s ∈ K2

2.4.7∩TCRroot(T)[H] such

that for some ν0 ∈ T̂ we have

rng(val[s]) ⊆ rng(val[sν0
]) ⊆ max(T) and Hs = Hsν0

�P(As),

and Σ3
2.4.7(sν : ν ∈ T̂) is defined in a similar manner but we replace the last demand

(on Hs) by “(∀B ⊆ As)(Hs(B) ≤ Hsν0
(B))”. Now check that Σ2

2.4.7, Σ3
2.4.7 are t-

omittory 2–big tree compositions on K2
2.4.7 = K3

2.4.7. �

Let us finish our overview of “classical” examples recalling Fremlin–Shelah forc-
ing notion. This forcing notion is essentially Qtree

1 (K2.4.8,Σ2.4.8), and it is a relative
of Qtree

1 (K1
2.4.7,Σ

1
2.4.7). It was applied in [FrSh 406] to construct a model in which

there is a countable relatively pointwise compact set of Lebesgue measurable func-
tions which is not stable.

Example 2.4.8. We build a function H and a finitary, local 2–big tree–creating
pair (K2.4.8,Σ2.4.8).

Construction. Choose inductively increasing sequences 〈nk : k < ω〉 and
〈mk : k < ω〉 such that n0 = m0 = 4, mk+1 > mk · 2nk and

(nk+1)(mk+1)−(k+6)

· (mk+1)−(k+6) > log2(nk+1), nk+1 > 2(mk+1)k+6

· (mk+1)k+6.

For i ∈ ω let H(i) = {a ⊆ ni : |a|ni ≥ 1− 1
2i+2 }.

A tree–creature t ∈ TCRη[H] is taken to K2.4.8 if

• dis[t] = 〈η,At〉, where At ⊆ H(`g(η)) is non-empty,
• val[t] = {〈η, ν〉 : η C ν & `g(ν) = `g(η) + 1 & ν(`g(η)) ∈ At},
• nor[t] = `g(η)+1

log2(n`g(η))−(`g(η)+2) · dp2
0(At).

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

2.4. EXAMPLES 47

[Note that dp2
0(H(i)) ≥ log2(ni) − (i + 2).] The operation Σ2.4.8 is trivial and for

t ∈ TCRη[H] ∩K2.4.8

Σ2.4.8(t) = {s ∈ K2.4.8 ∩ TCRη[H] : As ⊆ At}.

Check that (K2.4.8,Σ2.4.8) is a local 2–big tree–creating pair. �

Remark 2.4.9. (1) Note that if Ẇ is the Qtree
1 (K2.4.8,Σ2.4.8)–name for

the generic real (see 1.1.13), then

Qtree
1 (K2.4.8,Σ2.4.8) “ (∀i ∈ ω)(Ẇ (i) ⊆ ni & |Ẇ (i)|

ni
≥ 1− 1

2i+2) and

(∀η ∈ V ∩
∏
i<ω

ni)(∀∞i ∈ ω)(η(i) /∈ Ẇ (i)) ”.

Thus, after forcing with Qtree
1 (K2.4.8,Σ2.4.8), the ground model reals are

of measure zero.
(2) One can define a t-omittory variant of (K2.4.8,Σ2.4.8) (similarly to the

definition of the pair (K2
2.4.7,Σ

2
2.4.7); in forcing this would correspond to

considering Qtree
0 (K2.4.8,Σ2.4.8)).

(3) In practical applications, forcing notions of the type Qtree
0 (K,Σ) can be

represented in an equivalent form as Qtree
1 (K∗,Σ∗) for some t-omittory

pair (K∗,Σ∗).

In the next two examples we want to show that the choice of the type of forcing
notion or the norm condition may be very crucial. Even if we use the same or very
similar weak creating pairs, different approaches may result in forcing notions with
extremely different properties.

Example 2.4.10. There exists a finitary, local and 2–big tree–creating pair
(K2.4.10,Σ2.4.10) such that the forcing notion Qtree

1 (K2.4.10,Σ2.4.10) is ωω–bounding
but the forcing notion Qtree

3 (K2.4.10,Σ2.4.10) adds an unbounded real.

Construction. Let H(i) = 2i+1 for i ∈ ω. A tree–creature t ∈ TCRη[H] is
taken to K2.4.10 if

• dis[t] = 〈η,At〉 for some At ⊆ H(`g(η)),
• val[t] = {〈η, ν〉 : η C ν & `g(ν) = `g(η) + 1 & ν(`g(η)) ∈ At},
• nor[t] = dp0

0(At).

The operation Σ2.4.10 is trivial and Σ2.4.10(t) = {s ∈ K2.4.10 : val[s] ⊆ val[t]}.
Plainly, (K2.4.10,Σ2.4.10) is a finitary, local and 2–big tree creating pair. By

2.3.7(2) we conclude that Qtree
1 (K2.4.10,Σ2.4.10) is ωω–bounding (compare 3.1.1).

Note that, by 2.3.12, Qtree
4 (K2.4.10,Σ2.4.10) is dense in Qtree

1 (K2.4.10,Σ2.4.10).
Suppose now that p ∈ Qtree

3 (K2.4.10,Σ2.4.10). By induction on i < ω we build
an increasing sequence 〈ni : i < ω〉 ⊆ ω, a condition q ∈ Qtree

3 (K2.4.10,Σ2.4.10) and
a function f : {η ∈ T q : (∃i < ω)(`g(η) = ni)} −→ ω such that

(α) q ≥ p and root(q) = root(p),
(β) n0 = `g(root(q)), f(root(q)) = 0,
(γ) if ν, η ∈ T q, `g(η) = ni, `g(ν) = ni+1 and η C ν then f(ν) ∈ {f(η), f(η) +

1},
(δ) for each η ∈ T q such that `g(η) = ni there is exactly one ν ∈ T q such that

η C ν, `g(ν) = ni+1 and f(ν) = f(η) + 1,
(ε) if ν ∈ T q, ni ≤ `g(ν) < ni+1 then nor[tqν] = f(ν�ni).

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

48 2. PROPERNESS AND THE READING OF NAMES

The construction is quite straightforward. Suppose we have defined ni, T
q∩ω≤ni ⊆

T p ∩ ω≤ni and f�T q ∩ ω≤ni in such a way that

(∀η ∈ T q ∩ ωni)(∀ν ∈ T p)(η E ν ⇒ nor[tpν] ≥ f(η)).

By the definition of Qtree
3 (K2.4.10,Σ2.4.10) we find ni+1 > ni such that for each

η ∈ T q ∩ ωni there is η∗ ∈ T p ∩ ωni+1 such that η C η∗ and

(∀ν ∈ T p)(η∗ E ν ⇒ nor[tpν] ≥ f(η) + 1)

(remember T q ∩ ωni is finite). Now, for each η ∈ T q ∩ ωni we continue building
the condition q above η in such a manner that each tqν (for ni ≤ `g(ν) < ni+1) has
norm f(η) and the η∗ is taken to T q. Declare f(η∗) = f(η) + 1 and f(η′) = f(η)
for all η′ ∈ T q ∩ ωni+1 extending η but different from η∗.
It is easy to check that q built in this manner is a condition in Qtree

3 (K2.4.10,Σ2.4.10)
stronger than p.

Note that for each m ∈ ω the set {η ∈ T q : η ∈ dom(f) & f(η) = m+ 1} is the
Bm(q) (and thus it is a 3–thick antichain of T q). We will be done if we show the
following claim.

Claim 2.4.10.1. If q ≤ r ∈ Qtree
3 (K2.4.10,Σ2.4.10) then for some m ∈ ω the set

{η ∈ T r : η ∈ dom(f) & f(η) = m} is infinite.

Proof of the claim: Choose η ∈ T r such that

(∀ν ∈ T r)(η E ν ⇒ nor[trν] ≥ 2) and `g(η) = ni (for some i ∈ ω).

Let m = f(η) + 1. Note that if ν ∈ T r, `g(ν) = nj ≥ ni, η E ν and f(ν) = f(η)
then:

(1) |{ν∗ ∈ T r : ν C ν∗ & `g(ν∗) = nj+1}| ≥ 4,
(2) there is at most one ν∗ ∈ T r such that

`g(ν∗) = nj+1, ν C ν∗, and f(ν∗) = m,

(3) there are j∗ > j and ν∗ ∈ T r such that

ν C ν∗, `g(ν∗) = nj∗ and f(ν∗) = m.

Hence the set {ν ∈ T r : η E ν & ν ∈ dom(f) & f(ν) = m} is infinite. �

Remark 2.4.11. Note that the proof that Qtree
3 (K2.4.10,Σ2.4.10) adds an un-

bounded real does not use the specific form of (K2.4.10,Σ2.4.10). With not much
changes we may repeat it for any local tree creating pair (K,Σ) such that

(1) if ν ∈ pos(t), t ∈ K and m ≤ nor[t], m ∈ ω
then there is s ∈ Σ(t) such that nor[s] = m and ν ∈ pos(s), and

(2) if nor[t] > 2 then |pos(t)| > 2.

In the last example of this section we try to show the difference between the
use of tree creating pairs and that of creating pairs.

Example 2.4.12. Let 〈ni : i < ω〉 ⊆ ω, f : ω × ω −→ ω and H : ω −→ [ω]<ω

be such that

(1) f(0, `) = `+ 1, f(k + 1, `) = 2ϕH(`)+1 · (f(k, `) + ϕH(`) + 2),

(2) n0 = 0, ni+1 ≥ (ni + 1) · 222·f(i,i)·ϕH(i)2+2

+ ni,

(3) H(i) = [[ni, ni+1)]ni + 1

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

2.4. EXAMPLES 49

(so f is H–fast).
We construct weak creating pairs (K0

2.4.12,Σ
0
2.4.12) and (K1

2.4.12,Σ
1
2.4.12) for H such

that

(a) (K0
2.4.12,Σ

0
2.4.12) is a 2–big, local and finitary tree creating pair,

(b) (K1
2.4.12,Σ

1
2.4.12) is a simple, 2̄–big, finitary and forgetful creating pair

with the Halving Property,
(c) if P is either Qtree

1 (K0
2.4.12,Σ

0
2.4.12) or Q∗f (K1

2.4.12,Σ
1
2.4.12) and Ẇ is the

corresponding name for the generic real (see 1.1.13) interpreted as an
infinite subset of ω, then

P “ (∀i ∈ ω)(|Ẇ ∩ [ni, ni+1)| = ni + 1) and

(∀X∈ [ω]ω ∩V)(∀∞i∈ω)(Ẇ ∩ [ni, ni+1) ⊆ X or Ẇ ∩ [ni, ni+1) ∩X = ∅)”.

Construction. We try to define minimal forcing notions adding a set Ẇ ⊆
[ω]ω with the property stated in the clause (c). The most natural way is to use

weak creatures giving approximations to Ẇ with norms related to dp1.
Defining (K0

2.4.12,Σ
0
2.4.12) we may follow the simplest possible pattern presented

already in 2.4.8 and 2.4.10. So a tree–creature t ∈ TCRη[H] is in K0
2.4.12 if

• dis[t] = 〈η,At〉, where At ⊆ H(`g(η)),
• val[t] = {〈η, ν〉 : η C ν & `g(ν) = `g(η) + 1 & ν(`g(η)) ∈ At},
• nor[t] =

dp1
0(At)

2·ϕH(`g(η))2 .

The operation Σ0
2.4.12 is trivial (and so s ∈ Σ0

2.4.12(t) if and only if val[s] ⊆ val[t]).
One easily checks that (K0

2.4.12,Σ
0
2.4.12) is a local 2–big and finitary tree creating

pair. Note that (see the proof of 2.4.3)

dp1(H(i)) ≥ 22·ϕH(i)2·f(i,i) + 1 and thus dp1
0(H(i)) > f(i, i) · 2 · ϕH(i)2.

Consequently, Qtree
1 (K0

2.4.12,Σ
0
2.4.12) is a non-trivial forcing notion. Checking that

it satisfies the demand (c) is easy if you remember the definition of dp1.
Now we want to define a creating pair (K1

2.4.12,Σ
1
2.4.12) in a similar way as

(K0
2.4.12,Σ

0
2.4.12). However, we cannot just copy the previous case (making suitable

adjustments) as we have to get a new quality: the Halving Property. But we use
2.4.3(2) for this. Thus a creature t ∈ CR[H] is taken to K1

2.4.12 if mt
up = mt

dn + 1
and

• dis[t] = 〈mt
dn, Bt, rt〉, where Bt ⊆ H(mt

dn) and rt is a non-negative real,
• val[t] = {(u, v) ∈

∏
i<mtdn

H(i)×
∏

i≤mtdn

: u C v & v(mt
dn) ∈ Bt},

• nor[t] = max{0, dp1
0(Bt)

2·ϕH(mtdn)2 − rt}.

The operation Σ1
2.4.12 is defined by:

Σ1
2.4.12(t) = {s ∈ K1

2.4.12 : mt
dn = ms

dn & Bs ⊆ Bt & rs ≥ rt}.

It is not difficult to verify that (K1
2.4.12,Σ

1
2.4.12) is a finitary, forgetful, simple and

2̄–big creating pair (remember 2.4.3(2)). Let half : K1
2.4.12 −→ K1

2.4.12 be such that
s = half(t) if and only if ms

dn = mt
dn, Bs = Bt and rs = rt + 1

2nor[t].

We claim that the function half witnesses the Halving Property for (K1
2.4.12,Σ

1
2.4.12).

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

50 2. PROPERNESS AND THE READING OF NAMES

Clearly half(t) ∈ Σ(t) and

nor[half(t)] = max{0, dp1
0(Bt)

2·ϕH(mtdn)2 − rt − 1
2nor[t]} =

max{0, dp1
0(Bt)

2·ϕH(mtdn)2 − rt − 1
2 ·

dp1
0(Bt)

2·ϕH(mtdn)2 + 1
2rt} =

1
2 max{0, dp1

0(Bt)
2·ϕH(mtdn)2 − rt} = 1

2nor[t].

Suppose now that t0 ∈ K1
2.4.12, nor[t0] ≥ 2 and t ∈ Σ1

2.4.12(half(t0)) is such that
nor[t] > 0. Then mt

dn = mt0
dn, Bt ⊆ Bt0 and rt ≥ rt0 + 1

2nor[t0]. Let s ∈
Σ1

2.4.12(t0) be such that Bs = Bt and rs = rt0 . Clearly val[s] = val[t] and nor[s] =

max{0, dp1
0(Bs)

2·ϕH(msdn)2 − rt0}. But we know that

0 < nor[t] = max{0, dp1
0(Bt)

2·ϕH(mtdn)2 − rt} =
dp1

0(Bs)
2·ϕH(msdn)2 − rt ≤ dp1

0(Bs)
2·ϕH(msdn)2 − rt0 − 1

2nor[t0]

and hence 1
2nor[t0] ≤ nor[s].

Moreover, by standard arguments, the forcing notion Q∗f (K1
2.4.12,Σ

1
2.4.12) is not

trivial and satisfies the demand (c).
Let us try to show what may distinguish the two forcing notions. We do not

have a clear property of the extensions, but we will present a technical hint that
they may work differently. Let us start with noting the following property of the
pre-norm dp1.

Claim 2.4.12.1. Suppose that A0, . . . , Ak−1 ⊆ [ω]<ω are finite families of sets

with at least 2 elements, m > k(k+3)
2 and dp1(Ai) ≥ m for each i < k. Then there

is a set X ⊆ ω such that for each i < k

both dp1({a ∈ Ai : a ⊆ X}) ≥ m− k(k+3)
2

and dp1({a ∈ Ai : a ∩X = ∅}) ≥ m− k(k+3)
2 .

Proof of the claim: We prove the claim by induction on k.
Step k = 1.
We have A0 ⊆ P([m0,m1)) such that dp1(A0) ≥ m > 2. Take a set X ⊆ [m0,m1)
of the smallest possible size such that dp1({a ∈ A0 : a ⊆ X}) ≥ m − 1. Pick any
point n ∈ X and let Y = X \ {n}. Then

dp1({a ∈ A0 : a ⊆ Y }) < m− 1 and dp1({a ∈ A0 : a ⊆ {n}}) = 0.

Hence we get dp1({a ∈ A0 : a ∩X = ∅}) ≥ m− 2 (remember the characterization
of dp1 from the proof of 2.4.3(1)). Consequently, the set X is as required.

Step k + 1.
Suppose A0, . . . , Ak−1, Ak ⊆ P([m0,m1)) are such that dp1(Ai) ≥ m > (k+1)(k+4)

2 .
Let X0 ⊆ [m0,m1) be such that for each i < k

dp1({a ∈ Ai : a ⊆ X0}) ≥ m− k(k+3)
2 and

dp1({a ∈ Ai : a ∩X0 = ∅}) ≥ m− k(k+3)
2

(exists by the inductive hypothesis). Since dp1(Ak) ≥ m, one of the following holds:

dp1({a ∈ Ak : a ⊆ X0}) ≥ m− 1 or dp1({a ∈ Ak : a ∩X0 = ∅}) ≥ m− 1.

We may assume that the first takes place. Take X1 ⊆ X0 such that both

dp1({a ∈ Ak : a ⊆ X1}) ≥ m− 3 and dp1({a ∈ Ak : a ⊆ X0 \X1}) ≥ m− 3.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

2.4. EXAMPLES 51

Let I0 = {i < k : dp1({a ∈ Ai : a ⊆ X0 \X1}) ≥ m − k(k+3)
2 − 1}. If I0 = k then

we finish this procedure, otherwise we fix i0 ∈ k \ I0 and we choose a set X2 ⊆ X1

such that
dp1({a ∈ Ak : a ⊆ X2}) ≥ m− 5,

dp1({a ∈ Ak : a ⊆ X1 \X2}) ≥ m− 5, and

dp1({a ∈ Ai0 : a ⊆ X1 \X2}) ≥ m− k(k+3)
2 − 2.

We let I1 = {i < k : i ∈ I0 or dp1({a ∈ Ai : a ⊆ X1 \X2}) ≥ m− k(k+3)
2 − 2}. Note

that I0 (I1. We continue in this fashion till we get I` = k. Note that this has to
happen for some ` ≤ k. Look at the set X`+1 constructed at this stage. It has the
property that

dp1({a ∈ Ak : a ⊆ X`+1}) ≥ m− (2k + 1),

dp1({a ∈ Ak : a ⊆ X0 \X`+1}) ≥ m− (2k + 1), and for i < k

dp1({a ∈ Ai : a ⊆ X0 \X`+1}) ≥ m− k(k+3)
2 − (k + 1) ≥ m− (k+1)(k+4)

2 .

So let X = X0 \X`+1 and check that it is as required for A0, . . . , Ak (and k + 1).

Now we may show an extra property of Ẇ which we may get in the case of
Qtree

1 (K0
2.4.12,Σ

0
2.4.12).

Claim 2.4.12.2. The following holds in VQtree
1 (K0

2.4.12,Σ
0
2.4.12):

there are sequences 〈ik : k < ω〉, 〈Xi : i < ω〉 from V such that

(1) i0 < i1 < . . . < ω, Xi ⊆ [ni, ni+1),

(2) for each k ∈ ω, for exactly one i ∈ [ik, ik+1) we have Ẇ ∩ [ni, ni+1) ⊆ Xi,

(3) the set {i ∈ ω : Ẇ ∩ [ni, ni+1) ⊆ Xi} is not in V.

[The last demand is to avoid a triviality like Xi ∈ {∅, [ni, ni+1)}.]

Proof of the claim: Let p ∈ Qtree
1 (K0

2.4.12,Σ
0
2.4.12). We may assume that (∀ν ∈

T p)(nor[tpν] > 4). Let i ≥ `g(root(p)) and let η ∈ T p, `g(η) = i. Then

dp1(Atpη) > 28·ϕH(i)2

>
ϕH(i)(ϕH(i) + 3)

2
.

Since |{η ∈ T p : `g(η) = i}| ≤ ϕH(i), we may use 2.4.12.1 to find a set Xi ⊆
[ni, ni+1) such that for every η ∈ T p with `g(η) = i we have both

dp1({a ∈ Atpη : a ⊆ Xi}) ≥ dp1(Atpη)− ϕH(i)(ϕH(i)+3)
2 and

dp1({a ∈ Atpη : a ∩Xi = ∅}) ≥ dp1(Atpη)− ϕH(i)(ϕH(i)+3)
2 .

Note that
log2(dp1(Atpη)− ϕH(i)(ϕH(i)+3)

2)

2 · ϕH(i)2
≥ nor[tpη]− 1.

Therefore we may inductively build a condition q ∈ Qtree
1 (K0

2.4.12,Σ
0
2.4.12) and a

sequence 〈ik : k < ω〉 such that

(1) p ≤ q, root(q) = root(p), `g(root(q)) = i0 < i1 < i2 < . . . < ω,
(2) for each η ∈ T q, if `g(η) = i then either

Atqη = {a ∈ Atpη : a ∩Xi = ∅} or Atqη = {a ∈ Atpη : a ⊆ Xi}

(and so nor[tqη] ≥ nor[tpη]− 1),
(3) for each η ∈ T q with `g(η) = ik there is exactly one i = i(η) ∈ [ik, ik+1)

such that

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

52 2. PROPERNESS AND THE READING OF NAMES

if η C ν ∈ T q, `g(ν) = ik+1 and ν0 = ν�i
then Atqν0 = {a ∈ Atpν0 : a ⊆ Xi},

and for distinct η as above the values of i(η) are distinct.

Now check that the condition q forces that 〈Xi : i < ω〉 and 〈ik : k < ω〉 are as
required.

Finally look at 2.4.12.2 in the context of the forgetful creating pair (K1
2.4.12,Σ

1
2.4.12).

�

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

CHAPTER 3

More properties

While the properness is the first property we usually ask for when building a
forcing notion, the next request is preserving some properties of ground model reals.
In this chapter we start investigations in this direction dealing with three properties
of this kind. We formulate conditions on weak creating pairs which imply that the
corresponding forcing notions: do not add unbounded reals, preserve non–null sets
or preserve non–meager sets. Applying the methods developed here we answer
Bartoszyński’s request (see [Ba94, Problem 5]), building a proper forcing notion P
which

(1) preserves non–meager sets, and
(2) preserves non–null sets, and
(3) is ωω-bounding, and
(4) does not have the Sacks property.

A forcing notion with these properties is associated with the cofinality of the null
ideal (see [BaJu95]). The construction is done in 3.5.1, 3.5.2 and it fulfills promise
of [BaJu95, 7.3A].

3.1. Old reals are dominating

Recall that a forcing notion P is ωω–bounding if it does not add unbounded
reals, i.e.

P (∀x ∈ ωω)(∃y ∈ ωω ∩V)(∀∞n)(x(n) < y(n)).

Any countable support iteration of proper ωω–bounding forcing notions is ωω–
bounding (see [Sh:f, Ch VI, 2.8A–C, 2.3]).

Conclusion 3.1.1. Suppose that (K,Σ) is a finitary tree-creating pair.

(1) If (K,Σ) is 2-big then the forcing notion Qtree
1 (K,Σ) is ωω-bounding.

(2) If (K,Σ) is t-omittory then the forcing notion Qtree
0 (K,Σ) is ωω-bounding.

Proof. By 2.3.7(2) and 1.3.8(5). �

Conclusion 3.1.2. Let (K,Σ) be a finitary creating pair for H, and let f :
ω × ω −→ ω be an H-fast function. Suppose that (K,Σ) is 2̄-big, has the Halving
Property and is either simple or gluing. Then the forcing notion Q∗f (K,Σ) is ωω-
bounding.

Proof. By 2.2.11. �

Conclusion 3.1.3. Let (K,Σ) be a finitary creating pair which captures sin-
gletons. Then the forcing notion Q∗w∞(K,Σ) is ωω-bounding.

Proof. By 2.1.12. �

53

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

54 3. MORE PROPERTIES

3.2. Preserving non-meager sets

An important question concerning forcing notions is if “large” sets of reals from
the ground model remain “large” after the forcing. Here we interpret “large” as
“non-meager”. Preserving this property in countable support iteration is relatively
easy. Any countable support iteration of proper ωω–bounding forcing notions which
preserve non-meager sets is of the same type (see [BaJu95, 6.3.21, 6.3.22]). If
we omit “ωω–bounding” then we may consider a condition slightly stronger than
“preserving non-meager sets”:

Definition 3.2.1. Let P be a proper forcing notion. We say that P is Cohen–
preserving if

⊗meager
P for every countable elementary submodel N of (H(χ),∈, <∗χ), a condition

p ∈ P and a real x ∈ 2ω such that p,P, . . . ∈ N and x is a Cohen real over
N , there is an (N,P)–generic condition q ∈ P stronger than p such that

q P “x is a Cohen real over N [ΓP]”.

In practice, forcing notions preserving non-meagerness of sets from the ground
model are Cohen–preserving. Now, to deal with iterations we may use [Sh:f, Ch
XVIII, 3.10] (considering (R̄, S,g) as there with ga being a Cohen real over a).

Theorem 3.2.2. Suppose that
⋃
i∈ω

H(i) is countable and (K,Σ) is a t-omittory

tree–creating pair. Then the forcing notion Qtree
0 (K,Σ) is Cohen–preserving.

Proof. Suppose that N ≺ (H(χ),∈, <∗χ) is countable, H,K,Σ, p, . . . ∈ N ,

p ∈ Qtree
0 (K,Σ) and x∈2ω is a Cohen real over N . Let 〈τ̇n : n < ω〉, 〈〈k̇ni : i < ω〉 :

n < ω〉, 〈〈σ̇ni : i < ω〉 : n < ω〉 list all Qtree
0 (K,Σ)–names from N for ordinals and

sequences of integers and sequences of finite functions, respectively, such that for
each n < ω:

(a) Qtree
0 (K,Σ)“the sequence 〈k̇ni : i < ω〉 is strictly increasing”,

(b) Qtree
0 (K,Σ)“(∀i < ω)(σ̇ni : [k̇ni , k̇

n
i+1) −→ 2)”.

Thus each 〈k̇ni , σ̇ni : i < ω〉 is essentially a name for a canonical co-meager set

{y ∈ 2ω : (∃∞i)(y�[k̇ni , k̇ni+1) = σ̇ni)}.

Of course, the enumerations are not in N , but their initial segments are there.

Claim 3.2.2.1. Suppose that q ∈ Qtree
0 (K,Σ) ∩N , ν ∈ T q, n ∈ ω. Then there

exists a condition qnν ∈ Qtree
0 (K,Σ) ∩N such that

(1) q[ν] ≤0
0 q

n
ν ,

(2) nor[tq
n
ν] > n,

(3) qnν decides the values of τ̇m for m ≤ n,
(4) for every m ≤ n:

qnν (∃i0 < . . . < in < ω)
(
x�[k̇mi0 , k̇

m
i0+1) = σ̇mi0 & . . . & x�[k̇min , k̇

m
in+1) = σ̇min

)
.

Proof of the claim: First, using 2.3.7(2), choose a condition q∗ ∈ Qtree
0 (K,Σ) ∩N

such that q[ν] ≤ q∗, q∗ decides the values of τ̇m for m ≤ n and for some fronts F ∗j
of T q

∗
(for j < ω) we have

(α) (∀j ∈ ω)(∀η0 ∈ F ∗j+1)(∃η1 ∈ F ∗j)(η1 C η0),

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

3.2. PRESERVING NON-MEAGER SETS 55

(β) for each m ≤ n, j ∈ ω, η ∈ F ∗j and i ≤ j, the condition (q∗)[η] decides the

values of k̇mi , σ̇mi ,
(γ) 〈F ∗j : j < ω〉 ∈ N

(remember that N is an elementary submodel of (H(χ),∈, <∗χ)). Now take an

infinite branch ρ ∈ N ∩ lim(T q
∗
) through the quasi tree T q

∗
. Take an increasing

sequence 〈`j : j < ω〉 ∈ N of integers such that ρ�`j ∈ F ∗j . Then, by (β), we have
two sequences 〈kmj : m ≤ n, j < ω〉 and 〈σmj : m ≤ n, j < ω〉, both in N , such that
for m ≤ n, j < ω:

(q∗)[ρ�`j] Qtree
0 (K,Σ) “k̇mj = kmj & σ̇mj = σmj ”.

Look at the set

{y ∈ 2ω : (∀m ≤ n)(∃∞j)(y�[kmj , kmj+1) = σmj)}.

It is a dense Π0
2–set (coded) in N and therefore x belongs to it. Hence we find

j∗ < ω such that

(∀m ≤ n)(|{j < j∗ : x�[kmj , k
m
j+1) = σmj }| > n).

Now take η∗ ∈ T (q∗)
[ρ�`j∗]

such that nor[tq
∗

η∗] > n + 1. Since (K,Σ) is t-omittory

we find a condition qnν ∈ Qtree
0 (K,Σ) ∩N such that

q[ν] ≤0
0 q

n
ν , pos(t

qnν
ν) ⊆ pos(tq

∗

η∗), nor[t
qnν
ν] > n, and

t
qnν
η = tq

∗

η for all η ∈ T qnν , ν C η (compare 2.3.5). Now one easily checks that qnν is
as required in the claim.

We inductively build a sequence 〈qn : n < ω〉, a condition q ∈ Qtree
0 (K,Σ) and

an enumeration 〈νn : n < ω〉 of T q such that for all m,n ∈ ω:

(1) νn C νm ⇒ n < m,
(2) 〈νn : n < ω〉 ⊆ T p,
(3) qn ∈ Qtree

0 (K,Σ) ∩ N , p[νn] ≤0
0 qn and if νm C νn (so m < n) and

νn ∈ pos(tqmνm) then (qm)[νn] ≤0
0 qn,

(4) nor[tqnνn] > n,
(5) the condition qn decides the values of τ̇m for m ≤ n,
(6) for every m ≤ n:

qn (∃i0 < . . . < in < ω)
(
x�[k̇mi0 , k̇

m
i0+1) = σ̇mi0 & . . . & x�[k̇min , k̇

m
in+1) = σ̇min

)
,

(7) tqνn = tqnνn .

The construction is actually described by the conditions above: with a suitable
bookkeeping we build sequences 〈νn : n ∈ ω〉 and 〈An : n < ω〉 ⊆ P(ω). Arriving at
the stage n of the construction we know νm for m ≤ n and qm for m < n. Applying
3.2.2.1 we find qn ∈ Qtree

0 (K,Σ) ∩N such that the requirements (3)–(6) above are
satisfied. Next we choose An ⊆ ω\

⋃
m<n

Am of size |pos(tqnνn)| and we assign numbers

from An to elements of pos(tqnνn) in such a way that pos(tqnνn) = {νk : k ∈ An}, the
set ω \

⋃
m≤n

Am is infinite and min(ω \
⋃
m<n

Am) ∈ An.

The q constructed above is a condition in Qtree
0 (K,Σ) due to (4), and it is stronger

than p by (3) and (7). Clearly q is not in N , but as every finite step of the

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

56 3. MORE PROPERTIES

construction takes place in N , the condition q is (N,Qtree
0 (K,Σ))–generic (by (5)).

Moreover, by (6),

q Qtree
0 (K,Σ) (∀m < ω)(∃∞i)(x�[k̇mi , k̇mi+1) = σ̇mi),

what implies that

q Qtree
0 (K,Σ) “x is a Cohen real over N [ΓQtree

0 (K,Σ)]”.

This finishes the proof. �

The definition 3.2.3 below was inspired by 3.2.2 and its proof. We distinguish
here the two cases: “(K,Σ) is a creating pair” and “(K,Σ) is a tree–creating pair”,
but in both of them the flavor of being of the NMP–type is the same: it generalizes
somehow the notion of t-omittory tree–creating pairs. (Note that if (K,Σ) is a t-
omittory tree–creating pair then it is of the NMP–type.) One could formulate
a uniform condition here, but that would result in unnecessary complications in
formulation.

Definition 3.2.3. (1) A finitary creating pair (K,Σ) is of the NMP–
type if the following condition is satisfied:

(~)NMP Suppose that (w, t0, t1, . . .) ∈ Q∗∅(K,Σ) is such that

(∀k ∈ ω)(nor[tk] > ϕH(mtk
dn))

and let n0 < n1 < n2 < . . . < ω. Further, assume that

g :
⋃
i∈ω

pos(w, t0, . . . , tni−1) −→
⋃
i∈ω

pos(w, t0, . . . , tni+1−1)

is such that g(v) ∈ pos(v, tni , . . . , tni+1
) for v ∈ pos(w, t0, . . . , tni−1)

(so v C g(v)). Then there are 0 < i < ω and a creature s ∈
Σ(tn0 , . . . , tni−1) such that

(α) nor[s] ≥ min{nor[tm]− ϕH(mtm
dn) : n0 ≤ m < ni},

(β) for each v ∈ pos(w, t0, . . . , tn0−1, s) there is j < i such that

v�m
tnj+1−1

up = g(v�m
tnj−1

up).

(2) A tree–creating pair (K,Σ) is of the NMP–type if the following condition
is satisfied:

(~)tree
NMP Suppose that 〈tη : η ∈ T 〉 ∈ Qtree

∅ (K,Σ) (see 1.3.5(4)) is such that

(∀η ∈ T)(nor[tη] > 1)

and let F0, F1, F2, . . . be fronts of the quasi tree T such that for i < ω:

(∀ν ∈ Fi+1)(∃ν′ ∈ Fi)(ν′ C ν).

Assume that a function g :
⋃
i∈ω

Fi −→
⋃
i∈ω

Fi+1 is such that ν C g(ν) ∈

Fi+1 provided ν ∈ Fi. Then there are 0 < i < ω and a tree–creature
s ∈ Σ(tη : (∃ν ∈ Fi)(η C ν)) such that

(α)tree nor[s] ≥ inf{nor[tη]− 1 : η ∈ T},
(β)tree for each ν ∈ pos(s) there are j < i and k < `g(ν) such that

ν�k ∈ Fj and g(ν�k) E ν.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

3.2. PRESERVING NON-MEAGER SETS 57

Theorem 3.2.4. Assume (K,Σ) is a finitary, gluing and 2̄–big creating pair.
Suppose that (K,Σ) is of the NMP–type and has the Halving Property. Let f :
ω × ω −→ ω be an H-fast function. Then the forcing notion Q∗f (K,Σ) is Cohen–
preserving.

Proof. By 3.1.2 we know that the forcing notion Q∗f (K,Σ) is ωω-bounding.

Consequently it is enough to show that if A ⊆ 2ω is a non-meager set then

Q∗f (K,Σ) “A is not meager”

(see [BaJu95, 6.3.21]). So suppose that A ⊆ 2ω is not meager but some condition
in Q∗f (K,Σ) forces that this set is meager. Thus we find a condition p0 ∈ Q∗f (K,Σ)

and Q∗f (K,Σ)–names k̇n, σ̇n such that

p0 Q∗f (K,Σ) “ k̇0 < k̇1 < . . . < ω and σ̇n : [k̇n, k̇n+1) −→ 2 (for n < ω) and

(∀x ∈ A)(∀∞n)(x�[k̇n, k̇n+1) 6= σ̇n)”.

As Q∗f (K,Σ) is ωω-bounding, we find a condition p1 ≥ p0, a sequence 0 = k0 <
k1 < k2 < . . . < ω and names ρ̇n such that

p1 Q∗f (K,Σ) “ρ̇n : [kn, kn+1) −→ 2 (for n < ω) and

(∀x ∈ A)(∀∞n)(x�[kn, kn+1) 6= ρ̇n)”.

Further, applying 2.2.11 we find p2 ≥ p1 such that p2 essentially decides all the

names ρ̇n. Clearly we may assume that nor[tp2
n] > f(2,m

tp2
n

dn) for all n < ω (and thus

nor[tp2
n] > ϕH(m

tp2
n

dn)). Choose 0 = n0 < n1 < . . . < ω and `0 < `1 < `2 < . . . < ω
such that

(∀m ∈ ω)(ϕH(m
tp2
nm

dn) < `m+1 − `m)

and for eachm < ω and every sequence w ∈ pos(wp2 , tp2

0 , . . . , t
p2

nm+1−1) the condition

(w, tp2
nm+1

, tp2

nm+1+1, . . .) decides all the names ρ̇j for j ∈ [`m, `m+1) (remember the

choice of p2). Let

g :
⋃
m∈ω

pos(wp2 , tp2

0 , . . . , t
p2

nm−1) −→
⋃
m∈ω

pos(wp2 , tp2

0 , . . . , t
p2

nm+1−1)

be such that v C g(v) ∈ pos(wp2 , tp2

0 , . . . , t
p2

nm+1−1) for v ∈ pos(wp2 , tp2

0 , . . . , t
p2

nm−1).

Next, for each v ∈ pos(wp2 , tp2

0 , . . . , t
p2

nm−1), m < ω fix `(v) ∈ [`m, `m+1) and ρ(v)
such that

• there are no repetitions in 〈`(v) : v ∈ pos(wp2 , tp2

0 , . . . , t
p2

nm−1)〉,
• ρ(v) : [k`(v), k`(v)+1) −→ 2 is such that

(g(v), tp2
nm+1

, tp2

nm+1+1, . . .) Q∗f (K,Σ) “ ρ̇`(v) = ρ(v) ”.

Now we apply successively 3.2.3(1) to the condition (wp2 , tp2

0 , t
p2

1 , . . .), the sequence
〈ni : i < ω〉 and the mapping g. As a result we construct an increasing sequence
0 = i0 < i1 < i2 < . . . < ω of integers and creatures sj ∈ Σ(tp2

nij
, . . . , tp2

nij+1
−1) such

that for all j < ω:

(1) nor[sj] ≥ min{nor[tp2
nij

]−ϕH(m
tp2
nij

dn), . . . ,nor[tp2

nij+1
−1]−ϕH(m

t
p2
nij+1

−1

dn)},
(2) for each v ∈ pos(wp2 , tp2

0 , . . . , t
p2
nij−1

, sj) there is i∗ ∈ [ij , ij+1) such that

v�m
tp2
ni∗+1

dn = g(v�m
tp2
ni∗

dn).

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

58 3. MORE PROPERTIES

It should be clear that (wp2 , s0, s1, . . .) ∈ Q∗f (K,Σ) (note that if nor[tp2
n] > f(k +

1,m
tp2
n

dn) for all n ∈ [nij , nij+1) then nor[sj] > f(k,m
sj
dn)). Look at the set

A∗
def
= {x ∈ 2ω : for infinitely many j ∈ ω, for every i∗ ∈ [ij , ij+1)

(∀v ∈ pos(wp2 , tp2

0 , . . . , t
p2

ni∗−1))(x�[k`(v), k`(v)+1) = ρ(v))}.

It is a dense Π0
2–subset of 2ω and hence A∗ ∩ A 6= ∅. Take x ∈ A∗ ∩ A. Note

that the choice of the sj ’s (see clause 2. above) implies that for each j < ω and

v ∈ pos(wp2 , s0, . . . , sj) there is i∗ ∈ [ij , ij+1) such that letting v′ = v�m
tp2
ni∗

dn we
have

(v, sj+1, sj+2, . . .) Q∗f (K,Σ) “ ρ̇`(v′) = ρ(v′) ”.

Hence (wp2 , s0, s1, . . .) Q∗f (K,Σ)“ (∃∞n ∈ ω)(x�[kn, kn+1) = ρ̇n) ”, a contradiction.

�

Theorem 3.2.5. Assume that (K,Σ) is a finitary 2-big tree–creating pair of
the NMP–type. Then the forcing notion Qtree

1 (K,Σ) is Cohen–preserving.

Proof. Like 3.2.4 but using 3.1.1, 2.3.7(2), 2.3.12, and 3.2.3(2): we choose p0,

k̇n, σ̇n, p1, kn and ρ̇n as there. Further we inductively build an increasing sequence
〈`m : m ∈ ω〉 of integers, a condition p2 ≥ p1 and fronts Fm of T p2 (for m < ω)
such that |Fm| < `m+1 − `m and for every η ∈ Fm+1

η E ν ∈ T p2 ⇒ nor[tp2
ν] ≥ m+ 1 and p

[η]
2 decides all ρ̇j for j ∈ [`m, `m+1),

)
and the front Fm+1 is above Fm. For ν ∈ Fm we define g(ν) ∈ Fm+1, `(ν) ∈
[`m, `m+1) and ρ(ν) : [k`(ν), k`(ν)+1) −→ 2 in a manner parallel to that in the proof
of 3.2.4. Next we build a condition q ≥ p2 and an increasing sequence 〈mi : i ∈ ω〉
such that each Fmi ∩ T q is a front of T q and

if η ∈ Fmi ∩ T q, i ∈ ω then pos(tqη) ⊆
⋃
{Fm : mi < m ≤ mi+1}

and for every ν ∈ pos(tqη) there are j and k < `g(ν) such that
ν�k ∈ Fj and g(ν�k) E ν.

Finally we let

A∗
def
= {x ∈ 2ω : (∃∞i ∈ ω)(∀m ∈ [mi,mi+1))(∀ν ∈ Fm)(x�[k`(ν), k`(ν)+) = ρ(ν))}

and we finish as in 3.2.4. �

Theorem 3.2.6. Suppose that (K,Σ) is a finitary creating pair which captures
singletons. Then the forcing notion Q∗w∞(K,Σ) is Cohen–preserving.

Proof. Like 3.2.4, but using 3.1.3, 2.1.12 and 2.1.10. Note that the last implies
that the pair (K,Σ) has the following property:

(}) If (t0, . . . , tN) ∈ PFC(K,Σ), ϕH(mt0
dn) ≤ k, 0 = n0 < n1 < . . . <

nk < N and u ∈ pos(u�mt0
dn, t0, . . . , tN) then there are s0, . . . , s` ∈ K

such that pos(u�ms0
dn, s0, . . . , s`) = {u}, ms0

dn = mt0
dn, ms`

up = mtN
up and

〈t0, . . . , tN 〉 ≤ 〈s0, . . . , s`〉. Consequently, choosing an enumeration

{wj : j < ϕH(mt0
dn)} of basis(t0) and letting uj = wj

_u�[mt0
dn,m

tnj+1−1

up)
we will have (remember (K,Σ) is forgetful)
(α) uj ∈ pos(wj , t0, . . . , tnj+1−1),
(β) (t0, . . . , tN) ≤ (s0, . . . , s`),

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

3.3. PRESERVING NON-NULL SETS 59

(γ) for each w ∈ basis(s0) and v ∈ pos(w, s0, . . . , s`) there is j<ϕH(mt0
dn)

such that v�m
tnj+1−1

up = uj .

Thus we may repeat the proof of 3.2.4 with not many changes. �

Let us note that it is not an accident that we have the results on preserving of
non-meager sets only for forcing notions which are very much like the ones coming
from t-omittory tree–creating pairs. If we look at the opposite pole: local weak
creating pairs, then we notice that they easily produce forcing notions making the
ground reals meager.

Definition 3.2.7. Let H be of countable character. We say that a weak
creating pair (K,Σ) for H is trivially meagering if for every t ∈ K with nor[t] > 1
and each u ∈ basis(t) and v ∈ pos(u, t) there is s ∈ Σ(t) such that nor[s] ≥
nor[t]− 1 and v /∈ pos(u, s).

Proposition 3.2.8. (1) If (K,Σ) is a local trivially meagering tree–creating
pair for H, H is of countable character and e = 1, 3 then

Qtree
e (K,Σ) “ ωω ∩V is meager ”.

(2) If (K,Σ) is a simple finitary and trivially meagering creating pair for H
and f : ω × ω −→ ω is H–fast then

Q∗f (K,Σ) “ ωω ∩V is meager ”.

Proof. In the first case remember that if p ∈ Qtree
e (K,Σ), e = 1, 3 then for

some ν ∈ T p we have (∀η ∈ T p)(ν E η ⇒ nor[tpη] ≥ 2). Hence, as (K,Σ) is local
and trivially meagering we easily get

Qtree
e (K,Σ) “ (∀x ∈

∏
m∈ω

H(m) ∩V)(∀∞m ∈ ω)(Ẇ (m) 6= x(m)) ”.

For the second case suppose that p ∈ Q∗f (K,Σ). Since f(n+ 1, `) > ϕH(`) + f(n, `)

using the assumptions that (K,Σ) is simple and trivially meagering we immediately
see that

p Q∗f (K,Σ) “ (∀x ∈
∏
m∈ω

H(m) ∩V)(∀∞n ∈ ω)(Ẇ �[mtpn
dn,m

tpn
up) 6= x�[mtpn

dn,m
tpn
up)) ”,

finishing the proof. �

Later, in 4.1.3, we will see that the forcing notions Q∗s∞(K,Σ) may make the
ground model reals meager too. This suggests that if one wants to build a forcing
notion preserving non-meagerness then the most natural approach is Qtree

e for e =
0, 2 or Q∗w∞.

3.3. Preserving non-null sets

In this section we introduce a property of tree–creating pairs which implies that
forcing notions Qtree

e (K,Σ) preserve non-null sets. Though preserving non-null sets
alone is not enough to use the preservation theorem of [Sh:f, Ch. XVIII, §3], one
may apply the methods of [Sh 630], [Sh 669] when dealing with countable support
iterations of forcing notions of the type presented here.

Definition 3.3.1. We say that a weak creating pair (K,Σ) is of the NNP–type
if the following condition is satisfied:

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

60 3. MORE PROPERTIES

(~)NNP there are increasing sequences ā = 〈an : n < ω〉 ⊆ (0, 1) and
k̄ = 〈kn : n ∈ ω〉 ⊆ ω such that lim

n→∞
an < 1 and:

if t ∈ K, nor[t] > 2, v ∈ basis(t), `g(v) ≥ kn, N < ω and a function

g : pos(v, t) −→ P(N)

is such that (∀u ∈ pos(v, t))(an+1 ≤ |g(u)|
N) then the set

{n < N : there is s ∈ Σ(t) such that nor[s] ≥ nor[t]− 1 and
basis(t) ⊆ basis(s) and (∀u ∈ pos(v, s))(n ∈ g(u))}

has not less than N · an elements.

(The sequences ā, k̄ from (~)NNP are said to witness NNP.)

Definition 3.3.2. We say that a tree–creating pair (K,Σ) for H is gluing
(respectively: weakly gluing) if for each well founded quasi tree T ⊆

⋃
n<ω

∏
i<n

H(i)

and a system 〈sν : ν ∈ T̂ 〉 ⊆ K such that

(∀ν ∈ T̂)(sν ∈ TCRν [H] & pos(sν) = succT (ν))

there is s ∈ Σ(sν : ν ∈ T̂) such that

nor[s] ≥ sup{nor[sν]− 1 : ν ∈ T̂}

(nor[s] ≥ inf{nor[sν]− 1 : ν ∈ T̂}, respectively).

Remark 3.3.3. The above definition, though different from 2.1.7(2) (for creat-
ing pairs), has actually the same meaning: we may glue together creatures without
loosing too much on norms.

Definition 3.3.4. We say that a weak creating pair (K,Σ) is strongly finitary
if K is finitary (see 1.1.3(2)) and Σ(S) is finite for each S ⊆ K. If ∼Σ (see 1.1.4(3))
is an equivalence relation on K and Σ depends on ∼Σ–equivalence classes only, then
what we actually require is that Σ(S)/∼Σ is finite.

Theorem 3.3.5. Suppose (K,Σ) is a strongly finitary tree–creating pair of the
NNP–type. Further suppose that:

either (K,Σ) is t-omittory and e = 0
or (K,Σ) is 2-big and weakly gluing and e = 1.

If A ⊆ 2ω is a non-null set then Qtree
e (K,Σ) “A is not null”.

Proof. In both cases (i.e. e = 0 and e = 1) the proof is actually the same
so let us deal with the case e = 1 only (and thus we assume that (K,Σ) is 2-big
and weakly gluing). Suppose that A ⊆ 2ω is a set which is not null but for some
p0 ∈ Qtree

1 (K,Σ)

p0 Qtree
1 (K,Σ) “A is null”.

We may assume that A is of outer measure 1 – just consider the set

{x ∈ 2ω : (∃y ∈ A)(∀∞n)(x(n) = y(n))}.

Let ā = 〈an : n < ω〉, k̄ = 〈kn : n < ω〉 witness that (K,Σ) is of the NNP–type.

Let Ṫ be a Qtree
1 (K,Σ)-name for a subtree of 2<ω such that

p0 Qtree
1 (K,Σ) “µ([Ṫ]) > lim

n→∞
an & [Ṫ] ∩A = ∅”.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

3.3. PRESERVING NON-NULL SETS 61

By 2.3.7(2) we find a condition p1 ≥ p0 and fronts Fn of T p1 such that for each
n < ω:

(∀η ∈ Fn)(the condition p
[η]
1 decides Ṫ ∩ 2n).

Clearly we may assume that

F0 = {root(p1)} and (∀n∈ω)(∀ν∈Fn+1)(∃ν′∈Fn)(ν′ C ν & kn+1 ≤ `g(ν))

and (∀n ∈ ω)(∀ν ∈ Fn)(∀η ∈ T p1)(ν E η ⇒ nor[tp1
η] > 4 + n) (remember 2.3.12).

As (K,Σ) is weakly gluing and finitary we find a condition p2 ≥ p1 such that

T p2 =
⋃
n∈ω

Fn and (∀η ∈ T p2)(nor[tp2
η] > 3).

For η ∈ Fn, n < ω let gη : pos(tp2
η) −→ P(2n+ 1) be a function such that

(∀ν ∈ pos(tp2
η))(p

[ν]
2 Qtree

1 (K,Σ) Ṫ ∩ 2n+ 1 = gη(ν)).

Clearly, if η ∈ Fn, n < ω and ν ∈ pos(tp2
η) then an+1 ≤ |gη(ν)|

2n+1 . Let (for η ∈ Fn,
n < ω)

Xn
η

def
= {σ ∈ 2n+ 1 : there is s ∈ Σ(tp2

η) such that
nor[s] ≥ nor[tp2

η]− 1, and (∀ν ∈ pos(s))(σ ∈ gη(ν))}.

Due to (~)NNP we know that 2n+1 · an ≤ |Xn
η | (for all η ∈ Fn, n ∈ ω). Fix n < ω.

By downward induction on m < n we define sets Xn
η for η ∈ Fm:

if η ∈ Fm, m < n then

Xn
η = {σ ∈ 2n+1 : there is s ∈ Σ(tp2

η) such that
nor[s] ≥ nor[tp2

η]− 1 and (∀ν ∈ pos(tp2
η))(σ ∈ Xn

ν))}.

Now we may apply the choice of ā, k̄ (remembering that `g(η) ≥ km for each
η ∈ Fm) to conclude (by the downward induction on m ≤ n) that

(∀m ≤ n)(∀η ∈ Fm)(|Xn
η | ≥ 2n+1 · am).

Hence, in particular, 2n+1 · a0 ≤ |Xn
root(p2)| for each n < ω. So look at the set

F
def
= {x ∈ 2ω : (∃∞n)(x�(n+ 1) ∈ Xn

root(p2))}.

Necessarily µ(F) ≥ a0 > 0 and thus we may take x ∈ F ∩ A. For each n < ω such
that x�(n+1) ∈ Xn

root(p2) we may choose a well founded quasi tree Sn and a system

〈snν : ν ∈ Ŝn〉 of creatures from K such that:

Ŝn ⊆
⋃
m≤n

Fm, max(Sn) ⊆ Fn+1, root(Sn) = root(p2) and for all ν ∈ Ŝn we have

pos(snν) = succSn(ν), snν ∈ Σ(tp2
ν), nor[snν] ≥ nor[tp2

ν]− 1 and x�(n+ 1) ∈ Xn
ν ,

and if ν ∈ Sn∩Fn, ν∗ ∈ pos(snν) then x�(n+1) ∈ gν(ν∗). Note that if one constructs
a condition qn such that

Sn ⊆ T qn ⊆
⋃
m<ω

Fm,

(∀m ≤ n)(∀ν ∈ T qn ∩ Fm)(ν ∈ Ŝn & tqnν = snν) and
(∀m > n)(∀ν ∈ T qn ∩ Fm)(tqnν = tp2

ν)

then qn Qtree
1 (K,Σ) x�(n+ 1) ∈ Ṫ . Hence, in particular,

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

62 3. MORE PROPERTIES

(⊕) if n is such that x�(n+ 1) ∈ Xn
root(p2), m ≤ n+ 1 and ν ∈ Sn ∩ Fm

then p
[ν]
2 x�m ∈ Ṫ .

Applying the König Lemma (remember that (K,Σ) is strongly finitary!) we find a
quasi tree S ⊆

⋃
n∈ω

Fn and a system 〈sν : ν ∈ S〉 such that

(1) max(S) = ∅,
(2) for all ν ∈ S:

succS(ν) = pos(sν) and nor[sν] ≥ nor[tp2
ν]− 1 and sν ∈ Σ(tp2

ν),

(3) for some increasing sequence 0 < n0 < n1 < n2 < . . . < ω we have:

(∀i ∈ ω)(x�(ni + 1) ∈ Xni
root(p2)) and

(∀i ∈ ω)(∀ν ∈ S ∩ Fi)(∀j ≥ i)(ν ∈ Snj & sν = s
nj
ν).

The quasi tree S determines a condition q ∈ Qtree
1 (K,Σ) stronger than p2. We

claim that q Qtree
1 (K,Σ) (∀i < ω)(x�i ∈ Ṫ). Why? Let i ∈ ω and ν ∈ S ∩Fi. Then

sν = sniν , and ν ∈ Sni ∩ Fi, i ≤ ni and x�(ni + 1) ∈ Xni
root(p2).

But now we may use (⊕) to conclude that for each such ν

p
[ν]
2 Qtree

1 (K,Σ) x�i ∈ Ṫ ,

and hence q x�i ∈ Ṫ . Consequently q x ∈ [Ṫ], contradicting q ≥ p0. �

We may get a variant of 3.3.5 for tree creating pairs which are not gluing (e.g.
for local (K,Σ), see 1.4.3). Then, however, we have to require more from the
witnesses for the NNP–type.

Theorem 3.3.6. Suppose that (K,Σ) is a strongly finitary 2–big tree creating
pair of the NNP–type with witnesses ā, k̄ such that kn = n. Then

Qtree
1 (K,Σ) “ A is non-null ”

whenever A ⊆ 2ω is a set of positive outer measure.

Proof. It is similar to 3.3.5. We start exactly like there choosing A, Ṫ , p1,

fronts Fn of T p1 and functions gn : Fn −→ P(2n) such that p
[η]
1 Ṫ ∩ 2n = gn(η)

for each n ∈ ω and η ∈ Fn. Next we define gn(ν) for ν ∈ T p1 below Fn by downward
induction, in such a way that:

if ν ∈ T p1 and there is η0 ∈ Fn such that ν C η0 and gn(η) has been
defined already for all η ∈ pos(tp1

ν) and (∀η ∈ pos(tp1
ν))(a`g(η) ≤

|gn(η)|
2n) then

gn(ν) = {σ ∈ 2n : there is s ∈ Σ(tp1
ν) such that

nor[s] ≥ nor[tp1
ν]− 1, and (∀η ∈ pos(s))(σ ∈ gn(η))}.

We continue as in 3.3.5 getting suitable Sn for n ∈ ω and applying the König lemma
we get S ⊆ T p1 with the corresponding properties.
Note that the main difference is that, in the above construction, we may keep the

demand |gn(ν)|
2n ≥ a`g(ν) (and this is the replacement for “weakly gluing”). �

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

3.5. EXAMPLES 63

3.4. (No) Sacks Property

Recall that a forcing notion P has the Sacks property is for every P–name ẋ for
a real in ωω we have

P (∃F ∈
∏
n∈ω

[ω]n+ 1 ∩V)(∀n ∈ ω)(ẋ(n) ∈ F (n)).

The Sacks property is equivalent to preserving the basis of the null ideal: every
Lebesgue null set in the extension may be covered by a null set (coded) in the
ground model. Here we are interested in refusing this property, i.e. getting forcing
notions which do not preserve the basis of the null ideal.

Definition 3.4.1. We say that a weak–creating pair (K,Σ) strongly violates
the Sacks property if

(⊗)3.4.1 for some nondecreasing unbounded function f ∈ ωω we have
if t ∈ K, nor[t] > 1
then for each u ∈ basis(t) there is n ≥ `g(u) such that

f(n) < |{w(n) : w ∈ pos(u, t) & n < `g(w)}|.

Theorem 3.4.2. Let H be of countable character and let (K,Σ) be a weak
creating pair for H which strongly violates the Sacks property. Assume that

either (K,Σ) is a creating pair and P is one of Q∗s∞(K,Σ), Q∗∞(K,Σ),
Q∗w∞(K,Σ), Q∗f (K,Σ)

or (K,Σ) is a tree–creating pair and then P is one of Qtree
e (K,Σ) (e < 5).

Then the forcing notion P fails the Sacks property.

Proof. For simplicity we may assume that H(i) = ω (for all i ∈ ω). Take an
increasing sequence 〈nk : k < ω〉 of positive integers such that k + 1 < f(nk) for

all k ∈ ω. Let Ẇ be the P–name for the generic real (see 1.1.13) and let ẋ be the
P-name for an element of ωω such that

P (∀k ∈ ω)(ẋ(k) = π(Ẇ �nk)).

where π : ω<ω −→ ω is the canonical bijection. Now we claim that

P (∀F ∈
∏
n∈ω

[ω]n+ 1 ∩V)(∃∞n)(ẋ(n) /∈ F (n)).

Why? Suppose that p ∈ P, F ∈
∏
n∈ω

[ω]n, N ∈ ω. By 3.4.1, in all relevant cases,

we find k > N and n ∈ [nk, nk+1) such that p “allows” more than f(n) values for

Ẇ (n). But k + 2 ≤ f(nk) ≤ f(n) and thus the condition p “allows” more than
k + 1 values for ẋ(k + 1). �

3.5. Examples

Example 3.5.1. We build a tree–creating pair (K3.5.1,Σ3.5.1) which is: strongly
finitary, 2-big, t-omittory, gluing, of the NNP–type, and which strongly violates
the Sacks property.

Construction. Before we define (K3.5.1,Σ3.5.1) let us note some basic prop-
erties of the nice pre-norm dp0

k defined in 2.4.2(1),(4).

Claim 3.5.1.1. Let M < ω, k < ω.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

64 3. MORE PROPERTIES

(1) If A ⊆M then either dp0
k(A) ≥ dp0

k(M)− log2+k(2)

or dp0
k(M \A) ≥ dp0

k(M)− log2+k(2).
(2) Suppose that a ∈ (0, 1), N < ω and a function g : M −→ P(N) is such

that

(∀m < M)(N · a(k + 1) + 1

k + 2
≤ |g(m)|).

Then a ·N ≤ |{n < N : dp0
k({m < M : n ∈ g(m)}) ≥ dp0

k(M)− 1}|.

Proof of the claim: 2) Let u(n) = {m < M : n ∈ g(m)} and

X = {n < N : dp0
k(u(n)) ≥ dp0

k(M)− 1}.

Look at the set Y
def
= {(m,n) ∈M ×N : n ∈ g(m)} and note that

|Y | =
∑
m<M

|g(m)| ≥ N · a(k + 1) + 1

k + 2
·M.

On the other hand, noticing that n ∈ X ⇔ |u(n)| ≥ M
k+2 , we have:

|Y | =
∑
n<N

|u(n)| ≤
∑
n∈X
|u(n)|+

∑
n/∈X

M

k + 2
≤ |X| ·M + (N − |X|) · M

k + 2
.

Consequently a(k+1)+1
k+2 ·N ≤ |X|+ N−|X|

k+2 and hence a ·N ≤ |X|, proving the claim.

Let H(n) = (n+ 2)n.
Let K3.5.1 be the collection of all tree–creatures t for H such that

(1) dis[t] is a pair (d0(t), d1(t)) such that d0(t) ⊆
⋃
n∈ω

∏
m<n

H(m) is a finite

tree, |d0(t)| > 2 and d1(t) E root(d0(t)),
(2) nor[t] = min{dp0

k(succd0(t)(η)) : η ∈ split(d0(t)) & `g(η) = k},
(3) val[t] = {〈d1(t), ν〉 : ν ∈ max(d0(t))}.

For a well founded quasi tree T and a system 〈sν : ν ∈ T̂ 〉 of tree–creatures from
K3.5.1 such that the requirement (a) of 1.3.3 is satisfied we let

Σ3.5.1(sν : ν ∈ T̂) = {s ∈ K3.5.1 : d1(s) = root(T) & rng(val[s]) ⊆ max(T)}.

It should be clear that Σ3.5.1 is a tree-composition on K3.5.1. Now, the tree–
creating pair (K3.5.1,Σ3.5.1) is strongly finitary, t-omittory and gluing. For the last
two properties we apply the procedure similar to the one below.

Note that if t ∈ K3.5.1 and ν ∈ d0(t) is a splitting point of d0(t) then choosing
ηρ ∈ max(d0(t)) (for ρ ∈ succd0(t)(ν)) such that ρ E ηρ we may build a tree
creature s ∈ Σ3.5.1(t) such that pos(s) = {ηρ : ρ ∈ succd0(t)(ν)}. Then we will
have nor[s] ≥ nor[t]. If additionally ν ∈ d0(t) is a splitting point such that
nor[t] = dp0

`g(ν)(succd0(t)(ν)) then nor[s] = nor[t] (see the definition of K3.5.1). In

this case, let us call the respective tree–creature s(t) (here we just fix one such).
Considering suitable s(t)’s and using 3.5.1.1(1) one can easily show that the

creating pair (K3.5.1,Σ3.5.1) is 2-big.

Let kn = 2n+4 − 2, a0 = 1
2 , an+1 = an·(kn+1)+1

kn+2 = an − an
2n+4 + 1

2n+4 . We are

going to show that the sequences k̄ = 〈kn : n < ω〉, ā = 〈an : n < ω〉 witness that
(K3.5.1,Σ3.5.1) is of the NNP–type.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

3.5. EXAMPLES 65

First note that ā, k̄ are strictly increasing, ā ⊆ (0, 1) and lim
n→∞

an ≤ 5
8 . Now

suppose that t ∈ K3.5.1, kn ≤ mt
dn, N < ω and g : pos(t) −→ P(N) is such that

(∀ν ∈ pos(t))(an+1 ≤
|g(ν)|
N

).

Take s(t) (defined above) and look at h = g�pos(s(t)). We may think that actually
h : succd0(s(t))(ν) −→ P(N), where ν is the unique splitting point of s(t) (note that

`g(ν) ≥ ms(t)
dn ≥ kn). Applying claim 3.5.1.1(2) we get

an ·N ≤ |{n < N : dp0
kn({m : n ∈ h(m)}) ≥ dp0

kn(succd0(s(t))(ν))− 1}|.
For each n < N from the set on the right hand side of the inequality above choose
sn ∈ Σ3.5.1(s(t)) such that pos(sn) = {η ∈ pos(s(t)) : n ∈ h(η(`g(ν)))}. By the
definition of dp0

k, dp0
k(w0) ≥ dp0

k(w1) − 1 implies that dp0
k+1(w0) ≥ dp0

k+1(w1) −
1, and therefore dp0

kn({m : n ∈ h(m)}) ≥ dp0
kn(succd0(s(t))(ν)) − 1 implies that

nor[sn] ≥ nor[s(t)]− 1. Now we may conclude that the set

{n < N : there is s ∈ Σ3.5.1(t) such that nor[s] ≥ nor[t]− 1 and
(∀ν ∈ pos(s))(n ∈ g(ν))}.

has not less than an ·N elements.
Finally note that (K3.5.1,Σ3.5.1) satisfies the condition (⊕3.4.1) for f(n) = n

(so it strongly violates the Sacks property). �

Conclusion 3.5.2. The forcing notions Qtree
e (K3.5.1,Σ3.5.1) for e<5 are equiv-

alent. They are proper, preserve the outer measure, preserve non-meager sets, are
ωω-bounding, but do not have the Sacks property.

Example 3.5.3. We construct a finitary, 2–big and local tree–creating pair
(K3.5.3,Σ3.5.3) which is trivially meagering and of the NNP–type with the sequence
k̄ = 〈n : n < ω〉 witnessing it.

Construction. This is similar to 3.5.1. We define k̄∗, k̄ and ā letting k∗n =

2n+4 − 2, kn = n, a0 = 1
2 , an+1 =

an(k∗n+1)+1
k∗n+2 . Let H(n) = 2(n+4)2

.

The family K3.5.3 consists of these t ∈ TCR[H] that:

• dis[t] = 〈η,At〉, where η is such that t ∈ TCRη[H] and At ⊆ H(`g(η)),
• val[t] = {〈η, ν〉 : η C ν & `g(ν) = `g(η) + 1 & ν(`g(η)) ∈ At},
• nor[t] = dp0

k∗
`g(η)

(At).

The operation Σ3.5.3 is trivial and s ∈ Σ3.5.3(t) if and only if val[s] ⊆ val[t].
Plainly, (K3.5.3,Σ3.5.3) is a 2–big local and trivially meagering tree–creating

pair. Checking that it is of the NNP–type (with witnesses ā and k̄) is exactly like
in 3.5.1 (just apply 3.5.1.1). �

Conclusion 3.5.4. Qtree
1 (K3.5.3,Σ3.5.3) is a proper ωω–bounding forcing no-

tion which preserves outer measure but makes the ground model reals meager.

Example 3.5.5. We define functions H, f and a creating pair (K3.5.5,Σ3.5.5)
such that

(1) H is finitary, f : ω × ω −→ ω is H–fast,
(2) (K3.5.5,Σ3.5.5) is gluing, forgetful, 2̄–big, has the Halving Property and is

of the NMP–type,
(3) the forcing notion Q∗f (K3.5.5,Σ3.5.5) is not trivial.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

66 3. MORE PROPERTIES

Construction. Define inductively H and f such that for all n, k, ` ∈ ω:

(i) H(0) = 8, H(n) = 2ϕH(n)+f(n,n),
(ii) f(0, `) = `+ 1, f(k + 1, `) = 2ϕH(`)+1 · (f(k, `) + ϕH(`) + 2)

(compare with 2.4.6; note that the above conditions uniquely determine H and f).
By their definition H is finitary and f is H–fast.

A creature t ∈ CRm0,m1
[H] belongs to K3.5.5 if:

• dis[t] = 〈m0,m1, Xt, Ht, 〈Akt , Hk
t , u

k
t : k ∈ Xt〉〉, where Xt ⊆ [m0,m1),

Ht is a nice pre-norm on P(Xt), and for each k ∈ Xt:
Akt ⊆ H(k), Hk

t is a nice pre-norm on P(Akt) and ukt ∈
∏

i∈[m0,m1)\{k}
H(i),

• val[t] = {〈u, v〉 ∈
∏

i<m0

H(i)×
∏

i<m1

H(i) : u C v & (∃k ∈ Xt)(u
k
t ⊆

v & v(k) ∈ Akt)},
• nor[t] = min{Ht(Xt), H

k
t (Akt) : k ∈ Xt}.

Now we describe the operation Σ3.5.5. Suppose that t0, . . . , tn ∈ K3.5.5 are such

that mti
up = m

ti+1

dn for i < n. Let Σ3.5.5(t0, . . . , tn) consist of all creatures s ∈ K3.5.5

such that ms
dn = mt0

dn, ms
up = mtn

up and for some i ≤ n
(α) Xs ⊆ Xti , (∀B ⊆ Xs)(Hs(B) ≤ Hti(B)) and for every k ∈ Xs:
(β) Aks ⊆ Akti and (∀A ⊆ Aks)(Hk

s (A) ≤ Hk
ti(A)), and

(γ) ukti ⊆ u
k
s and for every j ∈ (n+ 1) \ {i} for some ` ∈ Xtj we have

u`tj ⊆ u
k
s and uks(`) ∈ A`tj .

It should be clear that (K3.5.5,Σ3.5.5) is a gluing and forgetful creating pair for H.
It is 2̄–big as for each t ∈ K3.5.5 both Ht and Hk

t (for k ∈ Xt) are nice pre-norms.
We may use similar arguments as in 3.2.6 to show that (K3.5.5,Σ3.5.5) is of the
NMP–type. Now define function half : K3.5.5 −→ K3.5.5 by

half(t) = s if and only if
ms

dn = mt
dn, ms

up = mt
up, Xs = Xt, Aks = Akt for k ∈ Xs and

Hs = (Ht)
1
2nor[t], Hk

s = (Hk
t)

1
2nor[t] for k ∈ Xs

(see 2.4.3(2)).

It is not difficult to check that the function half witnesses that (K3.5.5,Σ3.5.5) has
the Halving Property.

Note that (K3.5.5,Σ3.5.5) resembles an omittory creating pair. �

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

CHAPTER 4

Omittory with Halving

In 2.2.11, 3.1.2 we saw how the Halving Property and the bigness apply to
forcing notions Q∗f (K,Σ). In this chapter we will look at another combination:
omittory creating pairs with the weak Halving Property. Since an omittory creating
pair cannot be big, it is natural that we consider in this context the (s∞) norm
condition. The first example of a forcing notion of the type Q∗s∞(K,Σ) for an
omittory creating pair (K,Σ) with the weak Halving Property appeared in [Sh 207]
(but in the real application there a different norm condition was used). A direct
application of a forcing notion of this type was presented in [RoSh 501]. In the
last part of this chapter we will develop the example from that paper. Before, in
the first section, we show that the forcing notions Q∗s∞(K,Σ) with (K,Σ) omittory
tend to add Cohen reals and make ground reals meager. Next we introduce some
general operations on creating pairs and, in the third section, we explain how the
weak Halving Property may prevent them from adding dominating reals.

4.1. What omittory may easily do

Natural examples of omittory creating pairs with the weak Halving Property
are meagering and anti-big (see 4.1.2 below). We will show how these properties
cause that forcing notions Q∗s∞(K,Σ) do some harm to the old reals. Examples
and applications are presented in the last part of this chapter.

First note the following easy observation.

Proposition 4.1.1. If (K,Σ) is an omittory creating pair such that for each
t ∈ K, u ∈ basis(t)

nor[t] > 0 ⇒ |pos(u, t)| > 2

then Q∗s∞(K,Σ) “there is an unbounded real over V”.

Definition 4.1.2. Let (K,Σ) be a creating pair.

(1) We say that (K,Σ) is meagering if for every (t0, . . . , tn−1) ∈ PFC(K,Σ),
t ∈ Σ(t0, . . . , tn−1) and 〈ki : i < n〉 such that for each i < n:

nor[ti] > 2 and mti
dn ≤ ki < mti

up and nor[t] > 2

there is s ∈ Σ(t) satisfying

nor[s] ≥ nor[t]− 1 and
(∀u ∈ basis(t0))(∃v ∈ pos(u, s))(∃k ∈ [`g(u), `g(v)))(v(k) 6= 0) and
(∀u ∈ basis(t0))(∀v ∈ pos(u, s))(∀i < n)(v(ki) = 0).

(2) The creating pair (K,Σ) is called anti-big if there are colourings

ct :
⋃

u∈basis(t)

pos(u, t) −→ 3 for t ∈ K

67

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

68 4. OMITTORY WITH HALVING

such that: if (t0, . . . , tn−1) ∈ PFC(K,Σ), nor[ti] > 1 (for i < n) and
t ∈ Σ(t0, . . . , tn−1), nor[t] > 1 then for each u ∈ basis(t0) there are
v0, v1 ∈ pos(u, t) and ` < n satisfying

v0�m
t`
dn = v1�m

t`
dn, ct`(v0�mt`

up) = 0, ct`(v1�mt`
up) = 1, and

(∀i ∈ n \ {`})(cti(v0�mti
up) = cti(v1�mti

up) = 2).

Theorem 4.1.3. Let (K,Σ) be a growing creating pair.

(1) If (K,Σ) is meagering then

Q∗s∞(K,Σ) “ωω ∩V is meager”.

(2) If (K,Σ) is anti-big then

Q∗s∞(K,Σ) “there is a Cohen real over V”.

Proof. 1) Let p = (wp, tp0, t
p
1, . . .) ∈ Q∗s∞(K,Σ) and for n ∈ ω let f(n) =

P([m
tpn
dn,m

tpn
up)). The space

∏
n∈ω

f(n) equipped with the product topology (of the

discrete f(n)’s) is a perfect Polish space. Thus it is enough to show that

p Q∗s∞(K,Σ) “
∏
n∈ω

f(n) ∩V is a meager subset of
∏
n∈ω

f(n) ”.

Note that if X ∈
∏
n∈ω

f(n) is such that (∃∞n ∈ ω)(X(n) 6= ∅) then the set

{Y ∈
∏
n∈ω

f(n) : (∀∞n ∈ ω)(Y (n) = ∅ or Y (n) 6= X(n))}

is meager in
∏
n∈ω

f(n). Let Ẋ be a Q∗s∞(K,Σ)–name for an element of
∏
n∈ω

f(n)

such that

p Q∗s∞(K,Σ) (∀n ∈ ω)(Ẋ(n) = {k ∈ [m
tpn
dn,m

tpn
up) : Ẇ (k) 6= 0}),

where Ẇ is the Q∗s∞(K,Σ)–name for the generic real (see 1.1.13). It follows from
the remarks above that it is enough to show that

(α) p Q∗s∞(K,Σ) (∃∞n ∈ ω)(Ẋ(n) 6= ∅) and

(β) p Q∗s∞(K,Σ) (∀Y ∈
∏
n∈ω

f(n) ∩V)(∀∞n ∈ ω)(Y (n) = ∅ or Y (n) 6= Ẋ(n)).

To this end suppose that p ≤ q = (wq, tq0, t
q
1, . . .) ∈ Q∗s∞(K,Σ) is such that `g(wq) >

1 and nor[tqi] > m
tqi
dn + 2 for i ∈ ω and let Y ∈

∏
n∈ω

f(n). For each n ∈ ω choose

kn ∈ [m
tpn
dn,m

tpn
up) such that Y (n) 6= ∅ ⇒ kn ∈ Y (n). Let 0 ≤ n0 < n1 < n2 < . . . <

ω be such that wq ∈ pos(wp, tp0, . . . , t
p
n0−1) and tqi ∈ Σ(tpni , . . . , t

p
ni+1−1) for i ∈ ω.

Note that necessarily m
tpn0

dn ≥ 2 and thus nor[tpn] > 2 for each n ≥ n0. Applying
4.1.2(1) we find si ∈ Σ(tqi) such that for each i ∈ ω:

(∗)1
i nor[si] ≥ nor[tqi]− 1 > m

tqi
dn, and

(∗)2
i (∀u ∈ pos(wp, tp0, . . . , t

p
ni−1))(∃v ∈ pos(u, si))(∃k ∈ [`g(u), `g(v)))(v(k) 6=

0),
(∗)3

i (∀u ∈ pos(wp, tp0, . . . , t
p
ni−1))(∀v ∈ pos(u, si))(∀n ∈ [ni, ni+1))(v(kn) = 0).

Look at r
def
= (wq, s0, s1, s2, . . .). Clearly r ∈ Q∗s∞(K,Σ) is a condition stronger

than q. Moreover, by the choice of the si’s we have

r Q∗s∞(K,Σ) (∀n ≥ n0)(Ẇ (kn) = 0)

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

4.2. MORE OPERATIONS ON WEAK CREATURES 69

and therefore, by the choice of the kn’s, we get

r Q∗s∞(K,Σ) (∀n ≥ n0)(Y (n) 6= ∅ ⇒ Y (n) 6= Ẋ(n)).

Further note that if v ∈ pos(wp, s0) is given by (∗)2
0 above for wq then

(v, s1, s2, . . .) (∃n ∈ [n0, n1))(Ẋ(n) 6= ∅).

We finish by density arguments.

2) Let p = (wp, tp0, t
p
1, . . .) ∈ Q∗s∞(K,Σ) and let Ż be a Q∗s∞(K,Σ)–name for a

subset of ω such that

p Q∗s∞(K,Σ) Ż = {n ∈ ω : ctpn(Ẇ �mtpn
up) < 2}.

Note that p “Ż is infinite”. Why? Suppose p ≤ q ∈ Q∗s∞(K,Σ), `g(wq) > 1.
Let n0 < n1 < ω be such that wq ∈ pos(wp, tp0, . . . , t

p
n0−1), tq0 ∈ Σ(tpn0

, . . . , tpn1−1).
Necessarily nor[tpi] > 1 for i ∈ [n0, n1) and nor[tq0] > 1. So we find ` ∈ [n0, n1) and
v0, v1 ∈ pos(wq, tq0) as in 4.1.2(2). Now look at the condition r = (v0, t

q
1, t

q
2, . . .) ∈

Q∗s∞(K,Σ). It is stronger than q and forces that ` ∈ Ż.
Now let ċ be a Q∗s∞(K,Σ)–name for a real in 2ω such that

p Q∗s∞(K,Σ) “ if k ∈ ω and n is the kth member of Ż then ċ(k) = ctpn(Ẇ �mtpn
up) ”.

We claim that p “ċ is a Cohen real over V”. So suppose that p ≤ q ∈ Q∗s∞(K,Σ),
`g(wq) > 1 and U ⊆ 2ω is an open dense set. Let 0 ≤ n0 < n1 < . . . < ω be such
that

wq ∈ pos(wp, tp0, . . . , t
p
n0−1) and tqi ∈ Σ(tpni , . . . , t

p
ni+1−1) for i ∈ ω.

Let m = |{n < n0 : ctpn(wq�mtpn
up) < 2}| and let ν ∈ 2m be such that ν(k) =

ctpn(wq�mtpn
up) if k < m and n < n0 is the kth member of the set {n < n0 :

ctpn(wq�mtpn
up) < 2}. Choose η ∈ 2<ω such that ν C η and

(∀x ∈ 2ω)(η C x ⇒ x ∈ U).

Let j = `g(η)−m. Use 4.1.2(2) to define inductively u ∈ pos(wq, tq0, . . . , t
q
j−1) such

that for each i < j, for some ` ∈ [ni, ni+1) we have

ctp` (u�m
tp`
up) = η(`) and (∀k ∈ [ni, ni+1) \ {`})(ctpk(u�m

tpk
up) = 2).

Look at the condition r = (u, tqj , t
q
j+1, . . .) ∈ Q∗s∞(K,Σ): it is stronger than q and

it forces that η C ċ. We finish by density argument. �

4.2. More operations on weak creatures

Below we define some operations on creatures and tree–creatures which provide
for (some) systems of weak creatures a new weak creature (of the same type). These
operations may be used to define sub–composition operations.

Definition 4.2.1. Suppose 0 < m < ω and for i < m we have ti ∈ CR[H]

such that mti
up ≤ m

ti+1

dn . Then we define the sum of the creatures ti as a creature
t = Σsum(ti : i < m) such that (if well defined then):

(a) mt
dn = mt0

dn, mt
up = m

tm−1
up ,

(b) val[t] is the set of all pairs 〈h1, h2〉 such that:

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

70 4. OMITTORY WITH HALVING

`g(h1) = mt
dn, `g(h2) = mt

up, h1 C h2,

and 〈h2�m
ti
dn, h2�mti

up〉 ∈ val[ti] for i < m,

and h2�[mti
up,m

ti+1

dn) is identically zero for i < m− 1,
(c) nor[t] = min{nor[ti] : i < m},
(d) dis[t] = 〈0〉_〈dis[ti] : i < m〉.

If for all i < m− 1 we have mti
up = m

ti+1

dn then we call the sum tight.

Remark 4.2.2. Note that the sum Σsum(ti : i < m) is defined only for these

sequences 〈ti : i < m〉 ⊆ CR[H] for which mti
up ≤ m

ti+1

dn and part (b) of the definition
gives a nonempty value of val[t].

Definition 4.2.3. If m < ω, u ⊆ m, d ∈ H(χ) is a function such that dom(d) ⊇
(R≥0)u and rng(d) ⊆ R≥0, and for i < m creatures ti ∈ CR[H] are such that

mti
up ≤ m

ti+1

dn then we define the (d, u)-sum t = Σsum
d,u (ti : i < m) of the ti’s by:

(a) mt
dn = mt0

dn, mt
up = m

tm−1
up ,

(b) val[t] is the set of pairs 〈h1, h2〉 such that:
`g(h1) = mt

dn, `g(h2) = mt
up, h1 C h2 and

〈h2�m
ti
dn, h2�mti

up〉 ∈ val[ti] for i ∈ u,

h2�[m
ti
dn,m

ti
up) is identically zero for i /∈ u and

h2�[mti
up,m

ti+1

dn) is identically zero for i < m− 1.
(c) nor[t] = d(〈nor[ti] : i ∈ u〉),
(d) dis[t] = 〈1, d, u〉_〈dis[ti] : i < m〉.

[Note: the (d, u)-sum is defined only if clause (b) gives a nonempty value for val[t].]

Definition 4.2.4. (1) For a pre-norm H on ω (see 2.4.1) let DH be the
family of all functions d such that for some finite set ud ⊆ ω, H(ud) > 0
and

d : (R≥0)ud −→ R≥0 : 〈ri : i ∈ ud〉 7→ min{H(ud), ri : i ∈ ud}.
(2) We say that a creating pair (K,Σ) is saturated with respect to a pre-norm

H on ω if for each d ∈ DH and (ti : m0 ≤ i < m1) ∈ PFC(K,Σ) such
that ud ⊆ [m0,m1) and nor[ti] > 0 for i ∈ ud:

Σsum
d,ud

(ti : m0 ≤ i < m1) is well defined and belongs to Σ(ti : m0 ≤ i < m1),

and if t ∈ Σ(Σsum
d,ud

(ti : m0 ≤ i < m1)), nor[t] > 0 then for some d∗ ∈ DH

and si ∈ Σ(ti) (for m0 ≤ i < m1) we have

ud∗ ⊆ ud, val[Σsum
d∗,ud∗

(si : m0 ≤ i < m1)] ⊆ val[t], and nor[si] > 0 for i ∈ ud∗ .

We say that (K,Σ) is saturated with respect to (nice) pre–norms if for each
(nice) pre-norm H on ω, (K,Σ) is saturated with respect to H. Similarly
for other classes of pre–norms.

Remark 4.2.5. Note that in practical realizations of 4.2.4(2) the additional
parameter dis may play a crucial role. Looking at a creature t we may immediately
recognize if it comes from the operation Σsum

d,ud
and we do not have to worry that the

last demand gives a contradiction. It may happen that for distinct d’s from DH we
get (as a result of Σsum

d,ud
) creatures with the same values of val, nor, however they

are distinguished by dis. Moreover, the same effect appears for distinct pre–norms
H: we can read from dis the function d and consequently the function H restricted

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

4.3. OLD REALS ARE UNBOUNDED 71

to subsets of ud. In applications we may redefine dis[Σsum
d,ud

(ti : i < m)], but we
should keep this coding property.

Definition 4.2.6. Let T ⊆
⋃
n<ω

∏
i<n

H(i) be a well founded quasi tree and let

〈sν : ν ∈ T̂ 〉 ⊆ TCR[H] be a system of tree creatures such that for each ν ∈ T̂ :

dom(val[sν]) = {ν} and pos(sν) = succT (ν).

(1) The tree–sum t = Σtsum(sν : ν ∈ T̂) of tree creatures sν (for ν ∈ T̂) is
defined by:
(α) val[t] = {〈root(T), η〉 : η ∈ max(T)},
(β) nor[t] = inf{nor[sν] : ν ∈ T̂ & nor[sν] ≥ 1}, if nor[sν] < 1 for all

ν ∈ T̂ then we let nor[t] = 0,

(γ) dis[t] = 〈2〉_〈sν : ν ∈ T̂ 〉.
(2) For a function g ∈ ωω , the special tree–sum t = Σtsum

g (sν : ν ∈ T̂) of tree

creatures sν (for ν ∈ T̂) with respect to g is defined in a similar manner
as Σtsum but the conditions (β), (γ) introducing the norm and dis are
replaced by
(β)∗g nor[t] = max{k < ω : (∀η ∈ max(T))(|{` < `g(η) : η�` ∈ T̂ and

nor[sη�`] ≥ k}| ≥ g(k))},
(γ)∗g dis[t] = 〈3, g〉_〈dis[sν] : ν ∈ T̂ 〉.

4.3. Old reals are unbounded

Recall that a forcing notion P is almost ωω–bounding if for every P–name ḟ for
an element of ωω and any p ∈ P we have

(∃g ∈ ωω)(∀A ∈ [ω]ω)(∃q ≥ p)(q P “(∃∞n ∈ A)(ḟ(n) < g(n))”).

Almost ωω–bounding forcing notions do not add dominating reals (i.e. they force
that “(∀x ∈ ωω)(∃y ∈ ωω ∩V)(∃∞n)(x(n) < y(n))”). If Q is a forcing notion not
adding dominating reals and

Q “Ṗ is almost ωω–bounding”

then the composition Q∗ Ṗ does not add a dominating real (see [Sh:f, Ch VI, 3.6]).
Thus the notion of “being almost ωω–bounding” is very useful from the point of
view of iterations: in a countable support iteration of proper forcing notions no
dominating reals are added at limit stages (see [Sh:f, Ch VI, 3.17]). (Note that
“not adding dominating reals” is not preserved by compositions.)

In the definition 4.3.1(1) below one can think about the following situation
(explaining the name “decision function”). Suppose that (K,Σ) is a creating pair,
τ̇ is a Q∗s∞(K,Σ)–name for an ordinal and p ∈ Q∗s∞(K,Σ), N0 < ω are such that p
approximates τ̇ at each n ≥ N0 (see 1.2.9, remember 2.1.4). Let us define a function

z : pos(wp, tp0, . . . , t
p
N0−1)× PC(K,Σ) −→

⋃
k≥N0

pos(wp, tp0, . . . , t
p
k−1)

such that for every v ∈ pos(wp, tp0, . . . , t
p
N0−1) and 〈t′0, t′1, . . .〉 ∈ PC(K,Σ) satisfying

〈tpN0
, tpN0+1, . . .〉 ≤ 〈t′0, t′1, . . .〉:
(1) If (v, t′0, t

′
1, . . .) ∈ Q∗s∞(K,Σ) then z(v, 〈t′0, t′1, . . .〉) is the first (in a fixed or-

dering of
⋃
n<ω

∏
m<n

H(m)) of the shortest v∗ such that v∗∈pos(v, t′0, . . . , t
′
k−1)

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

72 4. OMITTORY WITH HALVING

(for some k < ω) and (v∗, tpm, t
p
m+1, . . .) decides the value of τ̇ (m is just

suitable: m
tpm
dn = m

t′k−1
up).

(2) If (v, t′0, t
′
1, . . .) /∈ Q∗s∞(K,Σ) then we take the first k such that nor[t′k] ≤

m
t′k
dn and we ask if there is 〈t′′0 , t′′1 , . . .〉 ∈ PC(K,Σ) such that

(v, tpN0
, tpN0+1, . . .) ≤ (v, t′′0 , t

′′
1 , . . .) ∈ Q∗s∞(K,Σ), and for some ` ≤ k

z(v, 〈t′′0 , t′′1 , . . .〉) ∈ pos(v, t′′0 , . . . , t
′′
`−1) and 〈t′0, . . . , t′`−1〉 = 〈t′′0 , . . . , t′′`−1〉.

If the answer is “yes” then we choose such a sequence 〈t′′0 , t′′1 , . . . 〉 and we
let

z(v, 〈t′0, t′1, . . . 〉) = z(v, 〈t′′0 , t′′1 , . . . 〉)
(note that this does not depend on the choice of the particular 〈t′′0 , t′′1 , . . . 〉;
see the previous case). If the answer is “no” then z(v, 〈t′0, t′1, . . .〉) is the
first element of pos(v, t′0, . . . , t

′
k).

This z is a canonical example of a decision function for p, N0, (K,Σ); we will call
it z(p,N0, τ̇) (assuming that (K,Σ) is understood).

Definition 4.3.1. Let (K,Σ) be a creating pair.

(1) Let p ∈ Q∗∅(K,Σ), N0 ∈ ω. We say that a function

z : pos(wp, tp0, . . . , t
p
N0−1)× PC(K,Σ) −→

⋃
k≥N0

pos(wp, tp0, . . . , t
p
k−1)

is a decision function for p, N0, (K,Σ) if:
(∗)4.3.1 for every v ∈ pos(wp, tp0, . . . , t

p
N0−1) and 〈t′0, t′1, . . .〉 ∈ PC(K,Σ) such

that 〈tpN0
, tpN0+1, . . .〉 ≤ 〈t′0, t′1, . . .〉, there is k ∈ ω such that:

z(v, 〈t′0, t′1, . . .〉) ∈ pos(v, t′0, . . . , t
′
k−1)

and if 〈tpN0
, tpN0+1, . . .〉 ≤ 〈t′′0 , t′′1 , . . .〉 ∈ PC(K,Σ) is such that t′′i ∼Σ t′i

for all i < k, then

z(v, 〈t′′0 , t′′1 , . . .〉) = z(v, 〈t′0, t′1, . . .〉).
(2) We say that (K,Σ) is of the AB-type whenever the following two condi-

tions are satisfied:
(~)0

AB if (t0, . . . , tn−1) ∈ PFC(K,Σ), k < n then there is t ∈ Σ(t0, . . . , tn−1)
such that

nor[t] ≥ min{nor[t`] : ` < n}
and if (w, t0, . . . , tn−1) ∈ FC(K,Σ), t′ ∈ Σ(t), nor[t′] > 0, then there
is t′′ ∈ Σ(tk) such that nor[t′′] > 0 and

(∃u′ ∈ pos(w, t0, . . . , tk−1))(∀u′′ ∈ pos(u, t′′))(∃v ∈ pos(w, t′))(u′′ E v);

(~)1
AB if p ∈ Q∗∅(K,Σ), N0 ∈ ω, nor[tpi] > 2 for i ≥ N0 and

z : pos(wp, tp0, . . . , t
p
N0−1)× PC(K,Σ) −→

⋃
k≥N0

pos(wp, tp0, . . . , t
p
k−1)

is a decision function for p,N0, (K,Σ)
then there are N1 > N0 and t∗ ∈ Σ(tpN0

, . . . , tpN1−1) such that

nor[t∗] ≥ 1

2
min{nor[tpN0

], . . . ,nor[tpN1−1]} and

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

4.3. OLD REALS ARE UNBOUNDED 73

for each v ∈ pos(wp, tp0, . . . , t
p
N0−1) and t ∈ Σ(t∗) with nor[t] > 0

there is 〈t′0, t′1, . . .〉 ∈ PC(K,Σ) such that 〈tpN0
, tpN0+1, . . .〉 ≤ 〈t′0, t′1, . . .〉

and
(α) if t′i ∈ Σ(tpN0+k, . . . , t

p
N0+k+`) (i, k, ` < ω)

then nor[t′i] ≥ 1
2 min{nor[tpN0+k], . . . ,nor[tpN0+k+`]}, and

(β) (∃w ∈ pos(v, t))(z(v, 〈t′0, t′1, t′2, . . .〉) E w).
(3) We say that (K,Σ) is condensed if for every (w, t0, . . . , tn−1) ∈ FC(K,Σ)

with nor[ti] > 0 for i < n, and t ∈ Σ(t0, . . . , tn−1), nor[t] > 0, there exist
k < n, a creature s ∈ Σ(tk) and v ∈ pos(w, t0, . . . , tk−1) such that

nor[s] > 0 and (∀u ∈ pos(v, s))(∃u∗ ∈ pos(w, t))(u E u∗).

Remark 4.3.2. Note that the condition (~)0
AB is easy to satisfy: e.g. if (K,Σ)

is omittory and has the property that for every t ∈ K:

if m0 ≤ mt
dn < mt

up ≤ m1 then Σ(t � [m0,m1)) = {s � [m0,m1) : s ∈ Σ(t)}

then it satisfies this requirement (the (~)0
AB for (t0, . . . , tn−1), k < n is witnessed

by tk � [mt0
dn,m

tn−1
up)).

Theorem 4.3.3. Suppose that (K,Σ) is a finitary, growing and condensed cre-
ating pair of the AB–type. Then the forcing notion Q∗s∞(K,Σ) is almost ωω-
bounding.

Proof. Let us start with the following claim which will be used later too.

Claim 4.3.3.1. Let (K,Σ) be as in the assumptions of 4.3.3. Suppose that τ̇ is
a Q∗s∞(K,Σ)–name for a function in ωω, q ∈ Q∗s∞(K,Σ) and n ∈ ω. Then there
are a condition p = (wp, tp0, t

p
1, . . .) ∈ Q∗s∞(K,Σ) and a strictly increasing function

g ∈ ωω such that q ≤s∞
n p and for every ` ∈ ω

(�∗`) for each v ∈ pos(wp, tp0, . . . , t
p
n−1, . . . , t

p
n+`−1) and t ∈ Σ(tpn+`) with nor[t] >

0 there is w ∈ pos(v, t) such that the condition (w, tpn+`+1, t
p
n+`+2, . . .) de-

cides the value of τ̇(g(`)) and the decision is smaller than g(`+ 1).

Proof of the claim: We define inductively conditions p` ∈ Q∗s∞(K,Σ) and the values
g(`) for ` ∈ ω such that g(0) = 0, q = p0 ≤s∞

n p1 ≤s∞
n+1 . . . ≤s∞

n+` pn+` ≤s∞
n+`+1 . . .

and p`+1, g(`), g(` + 1) have the property stated in (�∗`). It should be clear that
then the limit condition p = lim

`
p` (see 1.2.13(3)) is as required in the claim.

Suppose we have defined p`, g(`). Using 2.1.3 and 2.1.4 we find a condition
p∗` ∈ Q∗s∞(K,Σ) such that

p` ≤n+` p
∗
` , nor[t

p∗`
k] > 2 ·mt

p∗`
k + 2 for all k ≥ n+ ` and

p∗` approximates τ̇(g(`)) at each t
p∗`
k for k ≥ n+ `.

Let z` = z(p∗` , n + `, τ̇(g(`))) be the canonical decision function as defined before
4.3.1 (remember the choice of p∗`). Thus

z` : pos(wq, t
p∗`
0 , . . . , t

p∗`
n+`−1)× PC(K,Σ) −→

⋃
m≥n+`

pos(wq, t
p∗`
0 , . . . , t

p∗`
m−1)

is a decision function such that

if w ∈ pos(wq, t
p∗`
0 , . . . , t

p∗`
n+`−1), (w, t′0, t

′
1, . . .) ∈ Q∗s∞(K,Σ),

(w, t
p∗`
n+`, t

p∗`
n+`+1, . . .) ≤ (w, t′0, t

′
1, . . .)

then z`(w, 〈t′0, t′1, . . .〉) ∈ pos(w, t′0, t
′
1, . . . , t

′
m−1) (for some m ∈ ω)

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

74 4. OMITTORY WITH HALVING

is such that the condition (z`(w, 〈t′0, t′1, . . .〉), t
p∗`
M , t

p∗`
M+1, . . .) gives a

value to τ̇(g(`)), where M is such that m
t′m−1
up = m

t
p∗`
M−1

up .

Now apply (~)1
AB to p∗` , n+ ` and z` to find N > n+ ` and t∗ ∈ Σ(t

p∗`
n+`, . . . , t

p∗`
N−1)

such that

nor[t∗] ≥ 1

2
min{nor[t

p∗`
n+`], . . . ,nor[t

p∗`
N−1]} > mt

p∗n+`

dn + 1

and for each v ∈ pos(wq, t
p∗`
0 , . . . , t

p∗`
n+`−1) and t ∈ Σ(t∗) with nor[t] > 0 there is

w ∈ pos(v, t) for which (w, t
p∗`
N , t

p∗`
N+1, . . .) decides τ̇(g(`)). For this note that if

〈t′0, t′1, . . .〉 ∈ PC(K,Σ) is given by (~)1
AB for z`, t, v then, as for some ki ≤ `i < ω

t′i ∈ Σ(t
p∗`
n+`+ki

, . . . , t
p∗`
n+`+`i

), and

nor[t′i] ≥ 1
2 min{nor[t

p∗`
n+`+ki

], . . . ,nor[t
p∗`
n+`+`i

]} > m
t′i
dn,

the condition (v, t′0, t
′
1, . . .) ∈ Q∗s∞(K,Σ) is stronger than (v, t

p∗`
n+`, t

p∗`
n+`+1, . . .). Thus

our requirements on zk apply. Finally we define

p∗`+1 = (wq, t
p∗`
0 , . . . , t

p∗`
n+`−1, t

∗, t
p∗`
N , t

p∗`
N+1, . . .) and

g(`+ 1) = 1 + g(`)+

+ max{i<ω : (∃v∈pos(wq, t
p∗`
0 , . . . t

p∗`
n+`−1, t

∗))((v, t
p∗`
N , t

p∗`
N+1, . . .) τ̇(g(`)) = i)}.

Clearly they are as required. This finishes the inductive construction and the proof
of the claim.

Now we are going to show that Q∗s∞(K,Σ) is almost ωω–bounding. For this
suppose that τ̇ is a name for a strictly increasing function in ωω and q ∈ Q∗s∞(K,Σ).
Applying claim 4.3.3.1 to τ̇ , q and n = 0 we get a condition p ≥ q and an increasing
function g ∈ ωω as there (so they satisfy (�∗`) for ` ∈ ω). Note that, as τ̇ is (forced
to be) increasing, for every ` ∈ ω we have

if v ∈ pos(wp, tp0, . . . , t
p
`−1) and t ∈ Σ(tp`) is such that nor[t] > 0

then (w, tp`+1, t
p
`+2, . . .) “τ̇(`) < g(`+ 1)”, for some w ∈ pos(v, t).

We will be done when we show the following claim.

Claim 4.3.3.2. For each A ∈ [ω]ω there is p′ ≥ p such that

p′ Q∗s∞(K,Σ) (∃∞k ∈ A)(τ̇(k) < g(k + 1)).

Proof of the claim: Let A ∈ [ω]ω . Choose 0 = n0 < n1 < . . . < ω and creatures
ti ∈ Σ(tpni , . . . , t

p
ni+1−1) and ki ∈ A such that

(1) ni ≤ ki < ni+1, nor[ti] ≥ min{nor[tpk] : ni ≤ k < ni+1},
(2) if w ∈ pos(wp, tp0, . . . , t

p
ni−1), t′ ∈ Σ(ti), nor[t′] > 0 then there is t′′ ∈

Σ(tpki) such that nor[t′′] > 0 and

(∃u′ ∈ pos(w, tpni , . . . , t
p
ki−1))(∀u′′ ∈ pos(u′, t′′))(∃v ∈ pos(w, t′))(u′′ E v)

(possible by (~)0
AB). Now let p′ = (wp, t0, t1, . . .). Plainly, p′ ∈ Q∗s∞(K,Σ), p ≤ p′.

We want to show that

p′ Q∗s∞(K,Σ) (∃∞k ∈ A)(τ̇(k) < g(k + 1)).

So assume not. Thus we find a condition p+ ≥ p′ and k∗ ∈ ω such that

p+ Q∗s∞(K,Σ) (∀k ∈ A)(k∗ ≤ k ⇒ τ̇(k) ≥ g(k + 1)).

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

4.3. OLD REALS ARE UNBOUNDED 75

Let i ∈ ω be such that wp
+ ∈ pos(wp, t0, t1, . . . , ti−1). As we may pass to an

extension of p+ we may assume that k∗ < ki and `g(wp
+

) > 1. Let j > i be such

that tp
+

0 ∈ Σ(ti, . . . , tj−1). Since (K,Σ) is condensed we find ` ∈ [i, j), s ∈ Σ(t`)

and v ∈ pos(wp
+

, ti, . . . , t`−1) such that

nor[s] > 0 and (∀u ∈ pos(v, s))(∃u∗ ∈ pos(wp
+

, tp
+

0))(u E u∗).

Now look at our choice of t`: since v ∈ pos(wp, tp0, . . . , t
p
n`−1) and s ∈ Σ(t`), nor[s] >

0, therefore we find t′′ ∈ Σ(tpk`) and u′ ∈ pos(v, tpn` , . . . , t
p
k`−1) such that nor[t′′] > 0

and
(∀u′′ ∈ pos(u′, t′′))(∃u+ ∈ pos(v, s))(u′′ E u+).

But now look at the choice of p: since u′ ∈ pos(wp, tp0, . . . , t
p
k`−1), t′′ ∈ Σ(tpk`) and

nor[t′′] > 0, we find w ∈ pos(u′, t′′) such that the condition (w, tpk`+1, t
p
k`+2, . . .)

forces that τ̇(k`) < g(k` + 1). But now, going back, we know that there is u+ ∈
pos(v, s) such that w E u+. Further we find u∗ ∈ pos(wp

+

, tp
+

0) such that u+ E u∗.

So look at the condition (u∗, tp
+

1 , tp
+

2 , . . .). It is stronger than p+ and it forces that
τ̇(k`) < g(k` + 1), contradicting the choice of p+ and k∗ < ki ≤ k`. This finishes
the proof of the claim and the theorem. �

Lemma 4.3.4. Suppose that (K,Σ) is a strongly finitary and omittory creating
pair with the weak Halving Property which is saturated with respect to nice pre–
norms with values in ω (see 4.2.4(2)). Further suppose that for each t ∈ K

(⊗1) (∀s ∈ Σ(t))(val[s] ⊆ val[t]) and
(⊗2) if m0 ≤ mt

dn < mt
up ≤ m1, s ∈ Σ(half(t))

then s � [m0,m1) ∈ Σ(half(t � [m0,m1))).

Assume that p ∈ Q∗∅(K,Σ), N0 ∈ ω, nor[tpi] > 2 for i ≥ N0, m ≥ 1 and

z : pos(wp, tp0, . . . , t
p
N0−1)× PC(K,Σ) −→

⋃
n≥N

pos(wp, tp0, . . . , t
p
n−1)

is a decision function for p,N0, (K,Σ).

Then there are a nice pre–norm H : [ω]<ω −→ ω (so (K,Σ) is saturated with
respect to H) and d ∈ DH (see 4.2.4) such that ud = [N0, N1), H([N0, N1)) ≥ m
and

if t ∈ Σ
(
Σsum
d,ud

(half(tpN0
), . . . ,half(tpN1−1))

)
, v ∈ pos(wp, tp0, . . . , t

p
N0−1), and

nor[t] > 0
then there is 〈t′0, t′1, . . .〉 ∈ PC(K,Σ) such that for each i ∈ ω, for some k ≤

` < ω

t′i ∈ Σ(tpN0+k, . . . , t
p
N0+`) & nor[t′i] ≥

1

2
min{nor[tpN0+k], . . . ,nor[tpN0+`]}

and (∃w ∈ pos(v, t))(z(v, 〈t′0, t′1, . . .〉) E w).

Proof. This is essentially [Sh 207, 2.14].
First note that if i0 < . . . < ik, j ≤ j0 < . . . < j` < ω, {i0, . . . , ik} ⊆ {j0, . . . , j`}
(and k ≤ ` < ω), w ∈ pos(wp, tp0, . . . , t

p
j−1) and sjn ∈ Σ(tpjn) (for n ≤ `) then

〈w, v〉 ∈ val[Σsum(si0 � [m
tpj
dn,m

si0
up), si1 , . . . , sik)]

implies

〈w, v_0
[m

sik
up ,m

si`
up)
〉 ∈ val[Σsum(sj0 � [m

tpj
dn,m

sj0
up), sj1 , . . . , sj`)].

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

76 4. OMITTORY WITH HALVING

Why? Suppose that 〈w, v〉 ∈ val[Σsum(si0 � [m
tpj
dn,m

si0
up), si1 , . . . , sik)]. If j0 = i0

this immediately implies 〈w, v�msj0
up 〉 ∈ val[sj0 � [m

tpj
dn,m

sj0
up)]. Otherwise necessar-

ily j0 < i0 and v�[m
tpj
dn,m

sj0
up) is constantly zero. Now, w ∈ pos(wp, tp0, . . . , t

p
j−1),

so using the assumptions that (K,Σ) is omittory and (⊗1) we get 〈w, v�msj0
up 〉 ∈

val[sj0 � [m
tpj
dn,m

sj0
up)]. Proceeding in this fashion further we get the desired con-

clusion.
Note that above we use “val[Σsum(. . .)]” and not “pos(w,Σsum(. . .))” as we do

not claim that Σsum(. . .) is in K.

Let us define the function H : [ω]<ω −→ ω by:

H(u) ≥ 0: always,
H(u) ≥ 1: if |u \N0| > 1, u \N0 = {i0, . . . , ik−1} (the increasing enumera-

tion), and
if s` ∈ Σ(half(tpi`)), nor[s`] > 0 (for ` < k) and v ∈ pos(wp, tp0, . . . , t

p
N0−1)

then there exists 〈t′0, t′1, . . .〉 ∈ PC(K,Σ) such that for each i ∈ ω, for some
k ≤ ` < ω

t′i ∈ Σ(tpN0+k, . . . , t
p
N0+`) & nor[t′i] ≥

1

2
min{nor[tpN0+k], . . . ,nor[tpN0+`]}

and for some w

〈v, w〉 ∈ val[Σsum(s0 � [m
tpN0

dn ,m
tpi0
up), s1, . . . , sk−1)] & z(v, 〈t′0, t′1, t′2, . . .〉) E w,

H(u) ≥ n+ 1: if for every u′ ⊆ u either H(u′) ≥ n or H(u \ u′) ≥ n (for
n > 0).

Note that this defines correctly a nice pre–norm on [ω]<ω ; for monotonicity use
the remark we started with. Thus (K,Σ) is saturated with respect to H.

Now it is enough to find N1 > N0 such that H([N0, N1)) ≥ m and then
take d ∈ DH with ud = [N0, N1). Why? Suppose that we have such an N1

(and the respective d) and let t ∈ Σ(Σsum
d,ud

(half(tpN0
), . . . ,half(tpN1−1))), nor[t] >

0. By 4.2.4(2) (the second demand) we have that there are d∗ ∈ DH and si ∈
Σ(half(tpi)) (for i ∈ [N0, N1)) such that ud∗ ⊆ ud and nor[si] > 0 for i ∈ ud∗ , and
val[Σsum

d∗,ud∗
(si : N0 ≤ i < N1)] ⊆ val[t]. But now look at the definition of H (and

remember the definitions of Σsum, Σsum
d∗,ud∗

; note H(ud∗) > 0).

As H is monotonic, it is enough to find a set u ∈ [ω \N0]<ω with H(u) ≥ m.
We will do this by induction on m for all p,N0, z.

Case 1: m = 1
For t ∈ Σ(half(tpN0+i)) with nor[t] > 0, i ∈ ω fix s(t) ∈ Σ(tpN0+i) such that

nor[s(t)] ≥ 1

2
nor[t] and (∀w ∈ basis(t))(pos(w, s(t)) ⊆ pos(w, t))

(possible by 2.2.7(2)(b−)). We may additionally require that if t ∼Σ t′ then s(t) =
s(t′). Let

X def
= {〈t′0, t′1, . . .〉 ∈ PC(K,Σ) : (∀i ∈ ω)(t′i ∈ Σ(half(tpN0+i)) & nor[t′i] > 0)}.

As (K,Σ) is strongly finitary each Σ(half(tpN0+i)) is finite (up to ∼Σ–equivalence,
but we may consider representatives only) and thus the space X equipped with the
product topology (of discrete Σ(half(tpN0+i))’s) is compact.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

4.3. OLD REALS ARE UNBOUNDED 77

For w ∈ pos(wp, tp0, . . . , t
p
N0−1) and 〈t′0, t′1, . . .〉 ∈ X let M(w, 〈t′0, t′1, . . .〉) be the

unique M < ω such that

z(w, 〈s(t′0), s(t′1), . . .〉) ∈ pos(w, s(t′0), . . . , s(t′M−1)).

Note that the function M : pos(wp, tp0, . . . , t
p
N0−1)× X −→ ω is continuous. Why?

Look at the definition of decision functions: if 〈t′′0 , t′′1 , . . .〉 ∈ X is such that t′′i ∼Σ t′i
for all i < M(w, 〈t′0, t′1, . . .〉) then

z(w, 〈s(t′0), s(t′1), . . .〉) = z(w, 〈s(t′′0), s(t′′1), . . .〉).

Hence, by compactness of X , the function M is bounded. Let N ′1 > 1 be such that
rng(M) ⊆ N ′1 and let N1 = N0+N ′1. We want to show H([N0, N1)) ≥ 1. So suppose
that s` ∈ Σ(half(tpN0+`)), nor[s`] > 0 (for ` < N ′1) and v ∈ pos(wp, tp0, . . . , t

p
N0−1).

Look at 〈s0, . . . , sN ′1−1,half(tpN1
),half(tpN1+1), . . .〉 ∈ X , and let

s̄ = 〈s(s0), . . . , s(sN ′1−1), s(half(tpN1
)), s(half(tpN1+1)), . . .〉 ∈ PC(K,Σ).

By the choice of N ′1 we know that for some k < N ′1:

z(v, s̄) ∈ pos(v, s(s0), . . . , s(sk)) ⊆ pos(v, s0, . . . , sk)

(by the choice of s(t)’s). Take w∗ ∈ pos(v, s0, . . . , sN ′1−1) such that z(v, s̄) E w∗.
Applying (⊗1) we get 〈v, w∗〉 ∈ val[Σsum(s0, . . . , sN ′1−1)]. To finish this case note

that nor[s(s`)] ≥ 1
2nor[tpN0+`] for ` < N ′1 and nor[s(half(tpk))] ≥ 1

2nor[tpk] for
k ≥ N1.

Case 2: m′ = m+ 1 ≥ 2
Now suppose that we always can find a finite subset of ω of the pre–norm H at
least m. Thus we find an increasing sequence N0 = `0 < `1 < . . . < ω such that
H([`i, `i+1)) ≥ m for each i. Consider the space of all increasing functions ψ ∈ ωω
such that ψ�N0 is the identity and (∀i ∈ ω)(ψ(N0 + i) ∈ [`i, `i+1)) - it is a compact
space. For each ψ from the space we may consider a condition

(wp, tp0, . . . , t
p
N0−1, t

p
ψ(N0) � [m

tp`0
dn ,m

tp
ψ(N0)

up), tpψ(N0+1) � [m
tp
ψ(N0)

up ,m
tp
ψ(N0+1)

up), . . .)

(and call it pψ) and the respective pre–norm Hψ defined like H but for pψ, N0, z
(note that p ≤ pψ ∈ Q∗∅(K,Σ), so z may be interpreted as a decision function for
pψ).

Claim 4.3.4.1. For each finite set u ⊆ ω:

Hψ(u) ≤ H({ψ(k) : k ∈ u}).

Proof of the claim: Suppose Hψ(u) ≥ 1. We may assume that u ⊆ ω \ N0. Let
sk ∈ Σ(half(tpψ(k))), nor[sk] > 0 for k ∈ u and v ∈ pos(wp, tp0, . . . , t

p
N0−1). By the

assumption (⊗2) we know that

s∗k
def
= sk � [m

t
pψ
k

dn ,m
t
pψ
k

up) ∈ Σ
(
half(tpψ(k) � [m

t
pψ
k

dn ,m
t
pψ
k

up))
)

= Σ(half(t
pψ
k)).

So, as Hψ(u) ≥ 1, we find 〈t′0, t′1, . . .〉 ∈ PC(K,Σ) such that

(1) t′i ∈ Σ(t
pψ
ki
, . . . , t

pψ
ni) (for some N0 ≤ ki ≤ ni < ω),

(2) nor[t′i] ≥ 1
2 min{nor[t

pψ
ki

], . . . ,nor[t
pψ
ni]}, and

(3) for some w

〈v, w〉 ∈ val
[
Σsum(s∗k : k ∈ u) � [m

t
pψ
N0

dn ,m
t
pψ
max(u)

up)
]

& z(v, 〈t′0, t′1, . . .〉) E w.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

78 4. OMITTORY WITH HALVING

But then also 〈v, w〉 ∈ val
[
Σsum(sk : k ∈ u) � [m

tpN0

dn ,m
tp
ψ(max(u))

up)
]
. As

min{nor[t
pψ
ki

], . . . ,nor[t
pψ
ni]} ≥ min{nor[tpψ(ki−1)+1], . . . ,nor[tpψ(ni)

]}

and t′i ∈ Σ(tpψ(ki−1)+1, . . . , t
p
ψ(ni)

), we may conclude that 1 ≤ H({ψ(k) : k ∈ u}).
Next we easily proceed by induction, finishing the proof of the claim.

By the induction hypothesis for each suitable function ψ we find Nψ > N0 such
that Hψ([N0, Nψ)) ≥ m. By the compactness of the space of all these functions
we find one n such that Hψ([N0, N0 + n)) ≥ m (for each ψ). Look at the interval
[N0, `n) – we claim that its H-norm is greater or equal than m + 1. Why? By
the choice of `i’s we have that H([N0, `n)) ≥ m. Suppose that u ⊆ [N0, `n). If
u ∩ [`k, `k+1) 6= ∅ for each k < n then we may take a function ψ from our space
such that ψ[[N0, N0 + n)] ⊆ u. But Hψ([N0, N0 + n)) ≥ m and by 4.3.4.1

m ≤ H({ψ(k) : N0 ≤ k < N0 + n}) ≤ H(u).

If u ∩ [`k, `k+1) = ∅ for some k < n then necessarily

m ≤ H([`k, `k+1)) ≤ H([N0, `n) \ u).

This finishes the induction and the proof of the lemma. �

Theorem 4.3.5. Assume that (K,Σ) is a strongly finitary and omittory creat-
ing pair with the weak Halving Property. Further suppose that (K,Σ) is saturated
with respect to nice pre–norms with values in ω and for each t ∈ K:

(⊗1) (∀s ∈ Σ(t))(val[s] ⊆ val[t]),
(⊗2) if m0 ≤ mt

dn < mt
up ≤ m1, s ∈ Σ(half(t))

then s � [m0,m1) ∈ Σ(half(t � [m0,m1))),
(⊕3) Σ(t � [m0,m1)) = {s � [m0,m1) : s ∈ Σ(t)}.

Then the creating pair (K,Σ) is of the AB–type. Consequently if (K,Σ) is addi-
tionally condensed then the forcing notion Q∗s∞(K,Σ) is almost ωω-bounding.

Proof. By 4.3.2, 4.3.4 and 4.3.3. �

Remark 4.3.6. The assumptions of 4.3.5 may look very complicated, but in
the real examples they are relatively easy to check and appear naturally. Sometimes
it is easy to check directly that a creating pair is of the AB–type, but then it may
happen that it is not condensed (this happens e.g. for (K2.4.5,Σ2.4.5); see 4.4.1). To
get that Q∗s∞(K,Σ) is almost ωω–bounding we do not have to require that (K,Σ)
is condensed, but then we should strengthen the demands of 4.3.1(2) a little bit.

Definition 4.3.7. We say that a creating pair (K,Σ) is of the AB+–type if it
satisfies the demand (~)0

AB of 4.3.1 and the following strengthening of (~)1
AB:

(~+)1
AB if p ∈ Q∗s∞(K,Σ), N0 ∈ ω, and

z : pos(wp, tp0, . . . , t
p
N0−1)× PC(K,Σ) −→

⋃
k≥N0

pos(wp, tp0, . . . , t
p
k−1)

is a decision function for p,N0, (K,Σ) then there are N1 > N0 and t∗ ∈
Σ(tpN0

, . . . , tpN1−1) such that

nor[t∗] ≥ 1

2
min{nor[tpN0

], . . . ,nor[tpN1−1]}

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

4.3. OLD REALS ARE UNBOUNDED 79

and for each v ∈ pos(wp, tp0, . . . , t
p
N0−1, t

∗) such that

(∃k ∈ [mt∗

dn,m
t∗

up))(v(k) 6= 0)

there is 〈t′0, t′1, . . .〉 ∈ PCs∞(K,Σ) such that 〈tpN0
, tpN0+1, . . .〉 ≤ 〈t′0, t′1, . . .〉

and z(v�mt∗

dn, 〈t′0, t′1, t′2, . . .〉) E v.

Theorem 4.3.8. Suppose that (K,Σ) is a finitary and omittory creating pair
of the AB+–type such that for each t ∈ K

(⊕0) if nor[t] > 1 and u ∈ basis(t) then |pos(u, t)| > 2 and
(⊕3) Σ(t � [m0,m1)) = {s � [m0,m1) : s ∈ Σ(t)}.

Then the forcing notion Q∗s∞(K,Σ) is almost ωω–bounding.

Proof. It is fully parallel to 4.3.3. First one proves that

Claim 4.3.8.1. If τ̇ is a Q∗s∞(K,Σ)–name for an element of ωω, q ∈ Q∗s∞(K,Σ)
and n ∈ ω, then there are a condition p ∈ Q∗s∞(K,Σ) and an increasing g ∈ ωω
such that q ≤s∞

n p and for every ` ∈ ω

(�+
`) if w ∈ pos(wp, tp0, . . . , t

p
n−1, . . . , t

p
n+`) is such that w�[m

tpn+`

dn ,m
tpn+`
up) 6= 0

then the condition (w, tpn+`+1, t
p
n+`+2, . . .) decides the value of τ̇(g(`)) and

the decision is smaller than g(`+ 1).

Proof of the claim: Repeat the proof of 4.3.3.1.

Next, assuming that τ̇ is a name for a strictly increasing function in ωω , n = 0,
and q ∈ Q∗s∞(K,Σ), we take the condition p ≥0 q and the function g ∈ ωω given
by 4.3.8.1. They have the property that for each ` ∈ ω

if v ∈ pos(wp, tp0, . . . , t
p
`) is such that (∃k ∈ [m

tp`
dn,m

tp`
up))(v(k) 6= 0)

then (v, tp`+1, t
p
`+2, . . .) “τ̇(`) < g(`+ 1)”.

To show that for every A ∈ [ω]ω there is p′ ≥ p such that

p′ Q∗s∞(K,Σ) (∃∞k ∈ A)(τ̇(k) < g(k + 1))

we slightly modify the proof of 4.3.3.2. So suppose A ∈ [ω]ω . Choose 0 = n0 < n1 <

. . . < ω and ki ∈ A such that ni ≤ ki < ni+1 and let tp
′

i = tpki � [m
tpni
dn ,m

tpni+1

dn). Look

at the condition p′ = (wp, tp
′

0 , t
p′

1 , . . .). Assume that p+ ≥ p′, k∗ ∈ ω, `g(wp
+

) > 1

and ki > k∗, where i is such that wp
+ ∈ pos(wp, tp

′

0 , . . . , t
p′

i−1). Take j > i such

that tp
+

0 ∈ Σ(tp
′

i , . . . , t
p′

j−1). Choose v ∈ pos(wp
+

, tp
+

0) such that v(`) 6= 0 for some

` ∈ [m
tp

+

0

dn ,m
tp

+

0
up) (exists by (⊕0)). Let i∗ ∈ [i, j) be such that ` ∈ [m

tp
′
i∗

dn ,m
tp
′
i∗

up). By

smoothness we know that v�m
tp
′
i∗

up ∈ pos(v�m
tp
′
i∗

dn , t
p′

i∗), and therefore, by (⊕3) and the

choice of tp
′

i∗ we get

v�m
tpki∗
dn ∈ pos(wp, tp0, . . . , t

p
ki∗

) and m
tpki∗
dn ≤ ` < m

tpki∗
up .

Hence (v�m
tpki∗
up , tpki∗+1, t

p
ki∗+2, . . .) τ̇(ki∗) < g(ki∗ + 1), so we are done. �

Let us finish this section by proving a parallel of 4.3.5 for the tree–like forcing
notions.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

80 4. OMITTORY WITH HALVING

Theorem 4.3.9. Suppose that
⋃
i∈ω

H(i) is countable and (K,Σ) is a t-omittory

tree creating pair for H. Then the forcing notion Qtree
0 (K,Σ) is almost ωω-bounding.

Proof. Let p ∈ Qtree
0 (K,Σ) and let ḟ be a Qtree

0 (K,Σ)–name for a function
in ωω . For simplicity we may assume that for every t ∈ T p we have |pos(t)| = ω

or at least that above each ν ∈ T p we find may an infinite front of T p
[ν]

(compare
3.1.1(2)).

Like in 2.3.6(2) we may construct a condition q ∈ Qtree
0 (K,Σ) stronger than p

and fronts Fn of T q such that for all n ∈ ω:

(1) Fn = {νs : s ∈ ωn+ 1} (just a fixed enumeration), and for each s ∈
ωn+1:

(2) if m ∈ ω then νs C νs
_〈m〉,

(3) {νs_〈m〉 : m ∈ ω} is a front of T q
[νs]

and nor[tqνs] ≥ n+ 1,

(4) the condition q[νs] decides the value of ḟ�
(
n+ 1 +

∑
k≤n

s(k)
)
.

For m ∈ ω let g(m) be

1 + max{` < ω : (∃s ∈ ω≤m+1)
(∑
k<`g(s)

s(k) ≤ 4m & q[νs] “ ḟ(m) = ` ”
)
}.

Let A ∈ [ω]ω . For s ∈ ω<ω choose m(s) ∈ A such that `g(s) +
∑

k<`g(s)

s(k) < m(s)

and let c(s) = s_〈m(s)〉. Note that q[νc(s)] ḟ(m(s)) < g(m(s)). Now build

inductively a condition p′ ∈ Qtree
0 (K,Σ) such that q ≤0

0 p
′, F0 ⊆ T p

′
and for each

n ∈ ω:

if s ∈ ω2n+ 1, νs ∈ F2n ∩ T p
′

then

tp
′

νs ∈ Σ
(
tpρ : (∃η ∈ F2n+1)(νs E ρ E η)

)
, pos(tp

′

νs) ⊆ pos(tq
νc(s)

) and

nor[tp
′

νs] ≥ 2n+ 1

(possible as (K,Σ) is t-omittory and by the third requirement on Fn’s). We claim
that

p′ Qtree
0 (K,Σ) (∃∞m ∈ A)(ḟ(m) < g(m)).

To see this suppose that p′′ ≥ p′, N ∈ ω. Choose s ∈ ω2N + 1 such that νs ∈
F2N ∩dcl(T p

′′
). Then necessarily pos(tp

′

νs)∩dcl(T p
′′
) 6= ∅ so we may choose η ∈ T p′′

such that some initial segment of η is in pos(tp
′

νs) ⊆ pos(tq
νc(s)

) (see the construction
of p′). But now we conclude

(p′′)[η] Qtree
0 (K,Σ) ḟ(m(s)) < g(m(s))

what finishes the proof as N < m(s) ∈ A. �

4.4. Examples

Let us start with noting that the Blass–Shelah forcing notionQ∗s∞(K∗2.4.5,Σ
∗
2.4.5)

is a good application of the notions introduced in this section.

Proposition 4.4.1. The creating pair (K∗2.4.5,Σ
∗
2.4.5) (see the end of the con-

struction for 2.4.5) is meagering, of the AB+–type and satisfies the demands (⊕0),
(⊕3) of 4.3.8. Consequently, the forcing notion Q∗s∞(K∗2.4.5,Σ

∗
2.4.5):

(α) makes ground model reals meager,

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

4.4. EXAMPLES 81

(β) adds an unbounded real,
(γ) is almost ωω–bounding,
(δ) does not add Cohen reals.

Proof. To show that (K∗2.4.5,Σ
∗
2.4.5) is meagering assume that (t0, . . . , tn−1) ∈

PFC(K∗2.4.5,Σ
∗
2.4.5), t ∈ Σ∗2.4.5(t0, . . . , tn−1) and 〈ki : i < n〉 are such that nor[ti] ≥

2, mti
dn ≤ ki < mti

up (for i < n) and nor[t] ≥ 2. Fix u ∈
∏

i<m
t0
dn

H(i). By the

definition of K∗2.4.5 (see clause (γ) there) we know that 2 ≤ nor[t] ≤ dp1
0(Atu).

Moreover, by the definition of Σ∗2.4.5 we know that no element of Atu is included in
{ki : i < n} (by clause (α) of 2.4.5; remember a ∩ [mti

dn,m
ti
up) ∈ Ati

u∪(a∩mtidn)
∪ {∅}

for all a ∈ Atu). Consequently, if Asu = {a ∈ Atu : a ∩ {ki : i < n} = ∅}, then
dp1(Asu) ≥ dp1(Atu) − 1 and dp1

0(Asu) ≥ nor[t] − 1. This determines a condition
s ∈ Σ∗2.4.5(t) which is as required in 4.1.2(1).

It should be clear that (K∗2.4.5,Σ
∗
2.4.5) satisfies the conditions (⊕0), (⊕3) of

4.3.8 (actually, (⊕3) is satisfied if interpreted “modulo ∼Σ∗2.4.5
”, but this makes no

problems). The proof that (K∗2.4.5,Σ
∗
2.4.5) is of the AB+–type follows exactly the

lines of [BsSh 242, 2.6] (see [BaJu95, 7.4.20] too) and is left to the reader.
Consequently, the assertion (α) follows from 4.1.3(1), clause (β) is a conse-

quence of 4.1.1 and (γ) follows from 4.3.8. To show (δ) one uses 2.2.6, or see
6.3.8.

Note, that if Ẇ is interpreted as a name for an infinite subset of ω, then

Q∗s∞(K∗2.4.5,Σ
∗
2.4.5) (∀X ∈ [ω]ω ∩V)(|Ẇ ∩X| < ω or |Ẇ \X| < ω).

Thus forcing with Q∗s∞(K∗2.4.5,Σ
∗
2.4.5) makes ground model reals null too. �

Now we will present an application of forcing notions determined by omittory
creating pairs with the weak Halving Properties to questions coming from localizing
subsets of ω. These problems were studied in [RoSh 501] and our example is
built in a manner similar to that of the forcing notion constructed in [RoSh 501,
2.4]. Moreover, all these examples are relatives of the forcing notion presented in

[Sh 207]. The creating pair constructed there can be build like (Kψ
4.4.2,Σ

ψ
4.4.2) for

ψ ≡ 1.

Example 4.4.2. Let ψ ∈ ωω be a non-decreasing function, ψ(0) > 0. We

construct a creating pair (Kψ
4.4.2,Σ

ψ
4.4.2) which:

(α) is strongly finitary, forgetful and omittory,
(β) has the weak Halving Property,
(γ) is saturated with respect to nice pre-norms with values in ω,
(δ) is condensed and satisfies the demands (⊗1), (⊗2) and (⊕3) of 4.3.5

[thus, by 4.3.5, (Kψ
4.4.2,Σ

ψ
4.4.2) is of the AB–type],

(ε) is anti-big and meagering.

Construction. Let H(m) = 2 for m ∈ ω. First we describe which creatures

t ∈ CR[H] are taken to be in Kψ
4.4.2. So, t = (nor[t],val[t],dis[t]) ∈ Kψ

4.4.2 if:

• dis[t] = (T [t], L[t], R[t], D[t],NOR[t],mt
dn,m

t
up), where, letting T = T [t],

L = L[t], R = R[t], D = D[t] and NOR = NOR[t]:
(a) T is a finite tree, D ⊆ {ν ∈ T : succT (ν) 6= ∅} and

(i) (∀ν ∈ T \D)(succT (ν) = ∅ or |succT (ν)| = ψ(L(ν))),

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

82 4. OMITTORY WITH HALVING

(ii) if ν ∈ T \D and η ∈ succT (ν) then either η ∈ D or succT (η) =
∅,

(b) L,R : T −→ [mt
dn,m

t
up) are such that for each ν ∈ T

(i) L(ν) ≤ R(ν),
(ii) if η ∈ succT (ν) then L(ν) ≤ L(η) ≤ R(η) ≤ R(ν),

(iii) if succT (ν) = ∅ then L(ν) = R(ν),
(iv) if η0, η1 ∈ succT (ν), η0 6= η1 then

[L(η0), R(η0)] ∩ [L(η1), R(η1)] = ∅,

(c) NOR is a function on D such that for each ν ∈ D, NOR(ν) is a nice
pre-norm on succT (ν) with values in ω,

• if 〈〉 /∈ D and (∃ν ∈ succT (〈〉))(succT (ν) = ∅), or D = ∅ then nor[t] = 0,
otherwise nor[t] = min{NOR(ν)(succT (ν)) : ν ∈ D},

• val[t] = {〈u, v〉 ∈ 2m
t
dn × 2m

t
up : u C v & {i ∈ [mt

dn,m
t
up) : v(i) = 1} ⊆

{L(ν) : ν ∈ T & succT (ν) = ∅}}.
For t ∈ Kψ

4.4.2 we define

nor0[t] =

{
min{NOR[t](ν)(succT [t](ν)) : ν ∈ D[t]} if D[t] 6= ∅,
0 otherwise.

Note that nor[t] ≤ nor0[t] and in most cases they agree. One could use nor0[t] as
the norm of t and get the same forcing notion. We take nor[t] for technical reasons

only. Now we are going to describe a composition operation Σψ4.4.2 on Kψ
4.4.2 by

giving basic operations which may be applied to creatures from Kψ
4.4.2.

(1) For a creature t ∈ K4.4.2 let half(t) ∈ Kψ
4.4.2 be such that

• if nor[t] < 2 then half(t) = t,
• if nor[t] ≥ 2 then val[half(t)] = val[t], T [half(t)] = T [t], L[half(t)] = L[t],
R[half(t)] = R[t], D[half(t)] = D[t] and

if ν ∈ D[half(t)], A ⊆ succT [half(t)](ν) then

NOR[half(t)](ν)(A) = max{0,NOR[t](ν)(A)− bnor[t]

2
c}.

[Thus m
half(t)
dn = mt

dn, m
half(t)
up = mt

up and nor[half(t)] = nor[t] − bnor[t]
2 c when

nor[t] ≥ 2.]

(2) For t ∈ Kψ
4.4.2, m0 ≤ mt

dn, m1 ≥ mt
up let s = Sm0,m1

(t) ∈ Kψ
4.4.2 be a creature

such that dis[s] = (T [t], L[t], R[t], D[t],NOR[t],m0,m1), nor[s] = nor[t] and

val[s] =
{
〈u, v〉 ∈ 2m0 × 2m1 : u C v & v�[m0,m

t
dn) = 0 & v�[mt

up,m1) = 0 &
& 〈v�mt

dn, v�m
t
up〉 ∈ val[t]}.

Thus, essentially, Sm0,m1(t) = t � [m0,m1), the small difference in the definition of
dis is immaterial.
(3) For t ∈ K4.4.2 let Σ∗4.4.2(t) consist of all s ∈ Kψ

4.4.2 such that

(i) ms
dn = mt

dn, ms
up = mt

up, T [s] ⊆ T [t], D[s] = D[t] ∩ T [s],
(ii) (∀ν ∈ T [s])(succT [s](ν) = ∅ ⇔ succT [t](ν) = ∅) (thus if ν ∈ T [s] \D[s]

then succT [s](ν) = succT [t](ν)),
(iii) L[s] = L[t]�T [s] and R[s] = R[t]�T [s],
(iv) if ν ∈ D[s], A ⊆ succT [s](ν) then NOR[s](ν)(A) = NOR[t](ν)(A).

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

4.4. EXAMPLES 83

(4) Suppose that t0, . . . , tk−1 ∈ Kψ
4.4.2 are such that k = ψ(L[t0](〈〉)), mti

up ≤ m
ti+1

dn

(for i < k − 1) and

(∀i < k)(〈〉 ∈ D[ti] or succT [ti](〈〉) = ∅).

Let s = S∗(t0, . . . , tk−1) ∈ Kψ
4.4.2 be a creature such that

(i) ms
dn = mt0

dn, ms
up = m

tk−1
up and T [s] is a tree such that |succT [s](〈〉)| = k

and for every ν ∈ succT [s](〈〉) there is a unique i = i(ν) < k such that

{η ∈ T [s] : ν E η} = {ν_η∗ : η∗ ∈ T [ti]} & L[s](ν) = L[ti](〈〉) & R[s](ν) = R[ti](〈〉),
(ii) D[s] = {ν_η∗ : ν ∈ succT [s](〈〉) & η∗ ∈ D[ti(ν)]},
(iii) L[s](〈〉) = L[t0](〈〉), R[s](〈〉) = R[tk−1](〈〉) and for all ν ∈ succT [s](〈〉)

(∀η∗ ∈ T [ti(ν)])(L[s](ν_η∗) = L[ti(ν)](η
∗) & R[s](ν_η∗) = R[ti(ν)](η

∗)),

(iv) if ν ∈ succT [s](〈〉), η∗ ∈ D[ti(ν)] and A ⊆ succT [ti(ν)](η
∗) then

NOR[s](ν_η∗)({ν_η′ : η′ ∈ A}) = NOR[ti(ν)](η
∗)(A).

(5) Suppose that H : P(m) −→ ω is a nice pre-norm and t0, . . . , tm−1 ∈ Kψ
4.4.2

are such that mti
up ≤ m

ti+1

dn for i < m− 1. Let s = S∗∗H (t0, . . . , tm−1) ∈ Kψ
4.4.2 be a

creature such that

(i) ms
dn = mt0

dn, ms
up = m

tm−1
up and T [s] is a tree such that |succT [s](〈〉)| = m

and for every ν ∈ succT [s](〈〉) there is a unique j = j(ν) < m such that

{η ∈ T [s] : ν E η} = {ν_η∗ : η∗ ∈ T [tj]} & L[s](ν) = L[tj](〈〉) & R[s](ν) = R[tj](〈〉),
(ii) D[s] = {〈〉} ∪ {ν_η∗ : ν ∈ succT [s](〈〉) & η∗ ∈ D[tj(ν)]},

(iii) L[s](〈〉) = L[t0](〈〉), R[s](〈〉) = R[tm−1](〈〉) and for every ν ∈ succT [s](〈〉)
(∀η∗ ∈ T [tj(ν)])(L[s](ν_η∗) = L[tj(ν)](η

∗) & R[s](ν_η∗) = R[tj(ν)](η
∗)),

(iv) if A ⊆ succT [s](〈〉) then NOR[s](〈〉)(A) = H({j(ν) : ν ∈ A}),
(v) if ν ∈ succT [s](〈〉), η∗ ∈ D[tj(ν)] and A ⊆ succT [tj(ν)](η

∗) then

NOR[s](ν_η∗)({ν_η′ : η′ ∈ A}) = NOR[tj(ν)](η
∗)(A).

Note that, under the respective assumptions, the procedures described in (1)–(5)

above determine creatures in Kψ
4.4.2, though (in cases (4) and (5)) not uniquely:

there is some freedom in defining succT [s](〈〉). However, this freedom becomes
irrelevant when we identify creatures that look the same. The last operation (Σ∗∗4.4.2
below) is a way to describe which creatures are identified.

(6) For t ∈ Kψ
4.4.2, let Σ∗∗4.4.2(t) consist of all creatures s ∈ Kψ

4.4.2 such that
ms

dn = mt
dn, ms

up = mt
up and there is an (order) isomorphism π : T [s] −→ T [t]

which preserves L,R,D and NOR.

Finally, if t0, . . . , tm−1 ∈ Kψ
4.4.2 are such that mti

up = m
ti+1

dn (for i < m − 1)

then Σψ4.4.2(t0, . . . , tm−1) consists of all creatures s ∈ Kψ
4.4.2 such that ms

dn = mt0
dn,

ms
up = m

tm−1
up and s may be obtained from t0, . . . , tm−1 by use of the operations

half, Sm0,m1
, S∗, S∗∗H , Σ∗4.4.2 and Σ∗∗4.4.2 (with suitable parameters).

Let us check that (Kψ
4.4.2,Σ

ψ
4.4.2) has the required properties. It should be

clear that (Kψ
4.4.2,Σ

ψ
4.4.2) is a finitary, forgetful and omittory creating pair. The

relation ∼Σψ4.4.2
(see 1.1.4(3)) is an equivalence relation on Kψ

4.4.2 and Σψ4.4.2 depends

on ∼Σψ4.4.2
–equivalence classes only (remember the definition of Σ∗∗4.4.2; note that

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

84 4. OMITTORY WITH HALVING

Σψ4.4.2(t0) = Σψ4.4.2(t1) implies that t0, t1 are the same up to the isomorphism of

the trees T [t0], T [t1]). Thus the value of Σψ4.4.2(t0, . . . , tm−1) does not depend
on the particular representation of the trees T [ti] (for i < m). Hence, if t ∈
Σψ4.4.2(t0, . . . , tm−1) then we may think that T [t] is a tree built of T [t0], . . . , T [tm−1]
in the following sense. There are si ∈ Σ∗4.4.2(ti) (for i < m), a front F of T [t] and
a one-to-one mapping ϕ : F −→ m such that for ν ∈ F

{η ∈ T [t] : ν E η} = {ν_η′ : η′ ∈ T [sϕ(ν)]}

and the L[t], R[t], D[t] above ν in T [t], ν ∈ F , look like L[sϕ(ν)], R[sϕ(ν)], D[sϕ(ν)]
(but the norms given by NOR may be substantially different, still their values

may be only smaller). Now it should be clear that (Kψ
4.4.2,Σ

ψ
4.4.2) is strongly

finitary. The pair (Kψ
4.4.2,Σ

ψ
4.4.2) has the weak Halving Property as witnessed

by the function half defined in (1) above. [Why? Note that if t0 ∈ Kψ
4.4.2,

nor[t0] ≥ 2, t ∈ Σψ4.4.2(half(t0)), nor[t] > 0 (so nor[t] ≥ 1) then t is obtained
from t0 by alternate applications of half and shrinking (i.e. Σ∗4.4.2). Look at the
tree T [t] with L[t], R[t], D[t]: necessarily the last three objects are the restrictions
of L[t0], R[t0], D[t0] to T [t]. Let s ∈ Σ∗4.4.2(t0) be such that T [s] = T [t] (it should be
clear clear that there is one; actually the s is uniquely determined by the tree T [s]).
Since in the process of building t the norms were decreased only, and we started with
half(t0), we may conclude that nor[s] ≥ nor[t] + b 1

2nor[t0]c ≥ 1
2nor[t0]. Clearly

val[s] = val[t].]
Suppose that H0 : P(ω) −→ ω is a nice pre-norm, d ∈ DH0 (see 4.2.4). Note

that Σsum
d,ud

(ti : n0 ≤ i < n1) (for 〈ti : n0 ≤ i < n1〉 ∈ PFC(Kψ
4.4.2,Σ

ψ
4.4.2),

ud ⊆ [n0, n1)) corresponds to a creature t obtained from tn0
, . . . , tn1−1 by suit-

able applications of Sm0,m1
and S∗∗H (the last for the pre-norm H = H0�P(ud),

the first is to omit creatures ti for i ∈ [n0, n1) \ ud). The difference is in dis, but
this causes no real problem as we may read H0�P(ud) from the resulting creature
(and it is essentially the NOR[t](〈〉)). We could have changed the definition of

(Kψ
4.4.2,Σ

ψ
4.4.2) to make this correspondence more literal, but that would result in

unnecessary complications in the definition. Now note that

if t ∈ Σψ4.4.2(Σsum
d,ud

(t0, . . . , tm−1)), nor[t] > 0 and d∗ ∈ DH0
is such

that ud∗ ≈ succT [t](〈〉) and si ∈ Σ∗4.4.2(ti) for i < m are such that

ν ∈ succT [t](〈〉) ⇒ {ν_η′ : η′ ∈ T [sj(ν)]} = {η ∈ T [t] : ν E η},

then val[t] = val[Σsum
d∗,ud∗

(s0, . . . , sm−1)]. Moreover, if nor[ti] > 0

for i < m then nor[si] > 0 for i ∈ ud∗ .
This shows that (Kψ

4.4.2,Σ
ψ
4.4.2) is saturated with respect to nice pre-norms with

values in ω.
Suppose that t ∈ Σψ4.4.2(t0, . . . , tn−1), nor[t] > 0, nor[ti] > 0 (for i < n). Then

for some i < n and ν ∈ T [t] we find s ∈ Σ∗4.4.2(ti) such that

{η ∈ T [t] : ν E η} = {ν_η′ : η′ ∈ T [s]}

and L[t], R[t] and D[t] above ν are like L[s], R[s], D[s], but remember that NOR[t]
may have nothing in common with NOR[s]: the operation half may be involved.
However, by the definition of nor[t], we know that if η′ ∈ D[s] then

NOR[t](ν_η′)(succT [t](ν
_η′)) > 0,

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

4.4. EXAMPLES 85

and this is enough to conclude that NOR[s](η′)(succT [s](η
′)) > 0. Moreover D[s] 6=

∅ as nor[ti] > 0. Consequently nor[s] > 0. Since

v�[mt0
dn,m

s
dn) = 0 & 〈v, u〉 ∈ val[s] ⇒ (∃u∗)(〈v, u∗〉 ∈ val[t] & u E u∗)

we conclude that (Kψ
4.4.2,Σ

ψ
4.4.2) is condensed.

One easily checks that the demands (⊗1), (⊗2) and (⊕3) of 4.3.5 are satisfied
(remember that t � [m0,m1) is, basically, Sm0,m1

(t)).

Finally, let us check that (Kψ
4.4.2,Σ

ψ
4.4.2) is meagering and anti-big. For the first

note that if t ∈ Kψ
4.4.2, nor[t] > 2 and ν ∈ T [t] is a maximal node of T [t] then

there is s ∈ Σ∗4.4.2(t) such that ν /∈ T [s] and nor[s] ≥ nor[t] − 1. [Why? Take the
shortest η C ν such that η ∈ D[t] – there must be one as nor[t] > 0 – and choose
s ∈ Σ∗4.4.2 so that T [s] = {ρ ∈ T [t] : η C ρ ⇒ ¬(ν∗ E ρ)}, where ν∗ ∈ succT [t](η)
is such that ν∗ E ν. Since NOR[t](η) is a nice pre-norm we have

NOR[t](η)(succT [s](η)) ≥ NOR[t](η)(succT [t](η))− 1

and hence s is as required.] Now suppose that (t0, . . . , tn−1) ∈ PFC(Kψ
4.4.2,Σ

ψ
4.4.2),

nor[ti] > 2, ki ∈ [mti
dn,m

ti
up) and t ∈ Σψ4.4.2(t0, . . . , tn−1), nor[t] > 2. Then there is

a front F of T [t] such that for every ν ∈ F , for a unique i = i(ν) < n and some
s ∈ Σ∗4.4.2(ti):

{η ∈ T [t] : ν E η} = {ν_η∗ : η∗ ∈ T [si]}
andD[t], L[t], R[t] above ν look likeD[si], L[si], R[si] (but NOR[t] might be different
than that of si: the values may be smaller). Now apply the previous remark to
choose s∗i ∈ Σ∗4.4.2(si) such that nor[s∗i] ≥ nor[si] − 1 and ki /∈ {L[s∗i](η) : η ∈
T [s∗i] & succT [s∗i](η) = ∅}. Finally let s ∈ Σ∗4.4.2(t) be such that F ⊆ T [s] and for
each ν ∈ F

{η ∈ T [s] : ν E η} = {ν_η∗ : η∗ ∈ T [s∗i(ν)]}.
It is easy to check that this determines a creature s as required in 4.1.2(1) for
〈ki, ti : i < n〉, t.

To verify that (Kψ
4.4.2,Σ

ψ
4.4.2) is anti-big define colourings

ct :
⋃

u∈basis(t)

pos(u, t) −→ 3

for t ∈ Kψ
4.4.2 by:

ct(v) =

0 if |{k ∈ [mt

dn,m
t
up) : v(k) = 1}| is even > 0,

1 if |{k ∈ [mt
dn,m

t
up) : v(k) = 1}| is odd ,

2 if v�[mt
dn,m

t
up) = 0[mtdn,m

t
up).

Suppose (t0, . . . , tn−1) ∈ PFC(Kψ
4.4.2,Σ

ψ
4.4.2), t ∈ Σψ4.4.2(t0, . . . , tn−1), nor[ti] > 1

and nor[t] > 1. Clearly for some i < n

|{L[t](η) : L[ti](〈〉) ≤ L[t](η) ≤ R[ti](〈〉) and succT [t](η) = ∅}| ≥ 2.

Let u ∈ basis(t0) =
∏

i<mtdn

2. Take v0, v1 ∈
∏

i<mtup

2 such that for ` = 0, 1

u C v, |{k ∈ [mt
dn,m

t
up) : v`(k) = 1}| = `+ 1, and

{k ∈ [mt
dn,m

t
up) : v`(k) = 1} is contained in

{L[t](η) : L[ti](〈〉) ≤ L[t](η) ≤ R[ti](〈〉) & η ∈ T [t] & succT [t](η) = ∅}.
Now check that the v0, v1 are as required in 4.1.2(2) for 〈ti : i < n〉, t. �

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

86 4. OMITTORY WITH HALVING

Corollary 4.4.3. Q∗s∞(Kψ
4.4.2,Σ

ψ
4.4.2) is a proper almost ωω–bounding forcing

notion which makes ground reals meager and adds a Cohen real.

Proof. By 4.4.2, 4.3.5 and 4.1.3. �

Definition 4.4.4. (1) For an infinite set X ∈ [ω]ω let µX : ω −→ X be
the increasing enumeration of X.

(2) Let ψ ∈ ωω be non-decreasing. We define relations Sψdn, S
ψ
up ⊆ [ω]ω× [ω]ω

by

(X,Y) ∈ Sψdn if and only if
(∃∞n ∈ ω)(∀i < ψ(µY (n)))(|[µY (n+ i), µY (n+ i+ 1)) ∩X| ≥ 2),
(X,Y) ∈ Sψup if and only if
(∃∞n ∈ ω)(∀i < ψ(µY (n+ 1)))(|[µY (n+ i), µY (n+ i+ 1)) ∩X| ≥ 2).

If ψ is a constant function, say ψ ≡ k, then Sψ∗ may be called Sk.

Remark 4.4.5. We will consider the notions of Sψdn– and Sψup–localizations as
given by 0.2.2 for these relations as well as the corresponding dominating numbers

d(Sψdn) and d(Sψup). Note that for a non-decreasing ψ ∈ ωω , Sψup–localization implies

Sψdn–localization (and d(Sψdn) ≤ d(Sψup)). If (∀∞n ∈ ω)(ψ(n) ≤ ϕ(n)) then Sϕ∗ –

localization implies Sψ∗ –localization and for eventually constant ψ, Sψup–localization

is the same as Sψdn–localization.

Proposition 4.4.6. Suppose ϕ,ψ ∈ ωω are non-decreasing functions such that

(∀∞n ∈ ω)(1 ≤ ψ(n) < ϕ(n)). Then the forcing notion Q∗s∞(Kψ
4.4.2,Σ

ψ
4.4.2) does

not have the Sϕup–localization property.

Proof. This is parallel to [RoSh 501, 2.4.3]. The main step is done by the
following claim, which is essentially a repetition of [RoSh 501, 2.4.2].

Claim 4.4.6.1. Suppose that t ∈ Kψ
4.4.2 is such that nor0[t] ≥ 11. Let Y ∈ [ω]ω.

Then there is s ∈ Σ∗4.4.2(t) such that nor0[s] ≥ nor0[t] − 10 and for every n ∈ ω
there is i ≤ ψ(µY (n+ 1)) such that

{L(s)(ν) : ν ∈ T [s] & succT [s](ν) = ∅} ∩ [µY (n+ i), µY (n+ i+ 1)) = ∅.

Proof of the claim: The proof is by induction on the height of the tree T [t].
One could try just to apply the inductive hypothesis to creatures determined by
{η ∈ T [t] : ν E η} for each ν ∈ succT [t](〈〉). However, this would not be enough.
What we need to do is to shrink t to separate the sets

{L[t](η) : ν E η & η ∈ T [t] & succT [t](η) = ∅}

for distinct ν ∈ succT [t](〈〉) by intervals [µY (m), µY (m+1)). This will prevent “bad
events” occurring above distinct ν ∈ succT [t](〈〉) from accumulating. The shrinking
procedure depends on the character of 〈〉 in T [t], so the arguments brake into two
cases.

Case 1: 〈〉 ∈ D[t].
Let

A0 = {ν ∈ succT [t](〈〉) : (∃m ∈ ω)(µY (2m) ≤ L[t](ν) ≤ R[t](ν) < µY (2m+ 1))},
A1 = {ν ∈ succT [t](〈〉) : (∃m ∈ ω)(µY (2m− 1) ≤ L[t](ν) ≤ R[t](ν) < µY (2m))},
A2 = {ν ∈ succT [t](〈〉) : (L[t](ν), R[t](ν)] ∩ Y 6= ∅}.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

4.4. EXAMPLES 87

Note that A0 ∪ A1 ∪ A2 = succT [t](〈〉) and NOR[t](〈〉)(succT [t](〈〉)) ≥ nor0[t]. As
NOR[t](〈〉) is a nice pre-norm, at least one of the following holds:

(0) NOR[t](〈〉)(A0) ≥ nor0[t]− 2,
(1) NOR[t](〈〉)(A1) ≥ nor0[t]− 2,
(2) NOR[t](〈〉)(A2) ≥ nor0[t]− 2.

Suppose that (0) holds. Let s ∈ Σ∗4.4.2(t) be a creature such that

T [s] = {η ∈ T [t] : (∃ν ∈ A0)(η E ν or ν C η)}.
[It should be clear that this uniquely defines the creature s and nor0[s] ≥ nor0[t]−
2.] Note that by the definition of the set A0, if ν1, ν2 ∈ A0 are distinct and
R[t](ν1) ≤ L[t](ν2) then there are m1 < m2 < ω such that

µY (2m1) ≤ L[s](ν1) ≤ R[s](ν1) < µY (2m1 + 1) < µY (2m2) ≤
L[s](ν2) ≤ R[s](ν2) < µY (2m2 + 1).

Hence we may conclude that for every n ∈ ω there is i < 2 such that

{L[s](η) : η ∈ T [s] & succT [s](η) = ∅} ∩ [µY (n+ i), µY (n+ i+ 1)) = ∅,
and thus s is as required in the assertion of the claim.
If (1) holds then we may proceed in the same manner (considering the set A1).
So suppose that (2) holds true. Divide the set A2 into three sets A0

2, A
1
2, A

2
2 such

that for each i < 3 and ν1, ν2 ∈ Ai2 with R[t](ν1) < L[t](ν2), there is m ∈ ω such
that

R[t](ν1) < µY (m) < µY (m+ 1) < L[t](ν2)

[e.g. each Ai2 contains every third element of A2 counting according to the values
of L[t](ν)]. For some i < 3 we have

NOR[t](〈〉)(Ai2) ≥ NOR[t](〈〉)(A2)− 2 ≥ nor0[t]− 4.

Fix ν ∈ Ai2 for a moment and let Tν = {η ∈ T [t] : ν C η or η E ν}. If Tν∩D[t] = {〈〉}
then necessarily Tν does not contain sequences of length > 2 (remember clause

(a)(ii) of the definition of Kψ
4.4.2) and

|{η ∈ Tν : succT [t](η) = ∅}| ∈ {1, ψ(L[t](ν))}.
Let n∗ ∈ ω be maximal such that µY (n∗) ≤ L[t](ν) (if there is no such n∗ the we
let n∗ = −1). Then, for every n ≥ n∗, ψ(µY (n+ 1)) ≥ ψ(µY (n∗ + 1)) ≥ ψ(L[t](ν))
(as ψ is non-decreasing). Hence, letting T ∗ν = Tν we have that for each n ∈ ω there
is i ≤ ψ(µY (n+ 1)) such that

{L[t](η) : η ∈ T ∗ν & succT [t](η) = ∅} ∩ [µY (n+ i), µY (n+ i+ 1)) = ∅.

If Tν ∩ D[t] 6= {〈〉} then we may look at a creature t∗ ∈ Kψ
4.4.2 such that T [t∗] =

{η′ : ν_η′ ∈ T [t]} and L[t∗], R[t∗], D[t∗],NOR[t∗] are copied in a suitable manner
from t (so they are restrictions of the corresponding objects to Tν) and mt∗

dn = mt
dn,

mt∗

up = mt
up. Clearly nor0[t∗] ≥ nor0[t] and the height of T [t∗] is smaller than that

of T [t]. Thus we may apply the inductive hypothesis and we find s∗ ∈ Σ∗4.4.2(t∗)
such that nor0[s∗] ≥ nor0[t∗] − 10 ≥ nor0[t] − 10 and for all n ∈ ω there is
i ≤ ψ(µY (n+ 1)) such that

{L[s∗](η) : η ∈ T [s∗] & succT [s∗](η) = ∅} ∩ [µY (n+ i), µY (n+ i+ 1)) = ∅.
Let T ∗ν = {ν_η′ : η′ ∈ T [s∗]}.
Look at the tree T ∗ =

⋃
ν∈Ai2

T ∗ν . It determines a creature s ∈ Σ∗4.4.2(t) (i.e. s is such

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

88 4. OMITTORY WITH HALVING

that T [s] = T ∗, D[s] = D[t]∩T ∗ etc). Clearly nor0[s] ≥ nor0[t]− 10 and it is easy
to check that s is as required (remember the choice of the Ai2 and the T ∗ν ’s).

Case 2: 〈〉 /∈ D[t].
Since T [t] 6= {〈〉} (as nor0[t] > 0) we have |succT [t](〈〉)| = ψ(L[t](〈〉)). Moreover,
for each ν ∈ succT [t](〈〉)

either ν ∈ D[t] or succT [t](ν) = ∅

(remember the demand (a)(ii) of the definition of Kψ
4.4.2). Note that necessarily

D[t] ∩ succT [t](〈〉) 6= ∅ (as nor0[t] > 0). Fix ν ∈ D[t] ∩ succT [t](〈〉).
Choose a set Aν ⊆ succT [t](ν) such that NOR[t](ν)(Aν) ≥ nor0[t] − 5 and one of
the following holds:

• (∃m ∈ ω)(∀η ∈ Aν)(µY (m) ≤ L[t](η) ≤ R[t](η) < µY (m+ 1)),
• there are m0 < m1 < m2 < m3 < ω such that

(∀η ∈ Aν)(µY (m1) ≤ L[t](η) ≤ R[t](η) < µY (m2)) and
(∃η ∈ succT [t](ν))(L[t](η) ≤ µY (m0)) and
(∃η ∈ succT [t](ν))(R[t](η) ≥ µY (m3)).

Why is the choice of Aν possible? For m ∈ ω let

Bm0 = {η ∈ succT [t](ν) : µY (m) ≤ L[t](η) ≤ R[t](η) < µY (m+ 1)}.
If there is m such that NOR[t](〈〉)(Bm0) ≥ nor0[t]− 5 then we may take the respec-
tive Bm0 as Aν . So suppose that

(∀m ∈ ω)(NOR[t](〈〉)(Bm0) < nor0[t]− 5).

Let B0 =
⋃
m∈ω

Bm0 and suppose that NOR[t](ν)(B0) ≥ nor0[t]−1. Let k0, k1 be the

two smallest elements of {m : Bm0 6= ∅} and let k2, k3 be the two largest elements
of this set (note that |{m : Bm0 6= ∅}| ≥ 6; remember that NOR[t](ν) is a nice
pre-norm). We let

Aν = {η ∈ succT [t](ν) : µY (k1 + 1) ≤ L[t](η) ≤ R[t](η) < µY (k2)},
and m0 = k0 + 1, m1 = k1 + 1, m2 = k2, m3 = k3. Easily NOR[t](ν)(Aν) ≥
NOR[t](ν)(B0)− 4 ≥ nor0[t]− 5 and since Bk0

0 6= ∅, B
k3
0 6= ∅ we see that Aν is as

required. So we are left with the possibility that NOR[t](ν)(B0) < nor0[t]− 1. In
this case we have

NOR[t](ν)({η ∈ succT [t](ν) : (L[t](η), R[t](η)] ∩ Y 6= ∅}) ≥ nor0[t]− 1.

Let η0, η1, η2, η3 ∈ succT [t](ν) \B0 be such that L[t](η0) < L[t](η1) are the first two
members of {L[t](η) : η ∈ succT [t](ν) \B0} and L[t](η2) < L[t](η3) are the last two
members of this set. Let mi be such that µY (mi) ∈ (L[t](ηi), R[t](ηi)] (for i < 4)
and let

Aν = {η ∈ succT [t](ν) \B0 : µY (m1) ≤ L[t](η) ≤ R[t](η) < µY (m2)}.
Since

NOR[t](ν)(succT [t](ν) \B0 \ {η0, η1, η2, η3}) ≥ nor0[t]− 5,

one easily checks that Aν is as required.

Let T ν = {η∗ : ν_η∗ ∈ T [t] & (∃η ∈ Aν)(η C ν_η∗ or ν_η∗ E η)}. We would
like to apply the inductive hypothesis to the creature determined by T ν (with
L,R,D and NOR copied in a suitable way from t). However, this creature may
have too small norm: it may happen that NOR[t](ν)(Aν) < 11. But we may repeat

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

4.4. EXAMPLES 89

the procedure of Case 1, noticing that the inductive hypothesis was applied there
above some elements of succ(〈〉). Here, this corresponds to applying the inductive
hypothesis to creatures determined by {η∗ : η_η∗ ∈ T [t]} for some η ∈ Aν , and
these creatures have norms not smaller than nor0[t]. Consequently we will get a
tree

T ν∗ ⊆ {η′ : ν C η′ & (∃η ∈ Aν)(η E η′)}
corresponding to a creature sν with nor0[sν] ≥ nor0[t]− 10 and such that for each
n ∈ ω, for some i ≤ ψ(µY (n+ 1)) we have

{L[t](η′) : η′ ∈ T ν∗ & succT [t](η
′) = ∅} ∩ [µY (n+ i), µY (n+ i+ 1)) = ∅.

[Note that the procedure of Case 1 may involve further shrinking of Aν and drop-
ping the norm by 4. Still, 5 + 4 < 10 so the norm of sν is above nor0[t]− 10.] Next
let

T ∗ =
⋃
{T ν∗ : ν ∈ succT [t](〈〉) ∩D[t]} ∪ succT [t](〈〉) ∪ {〈〉},

and let s be the restriction of the creature t to T ∗. Check that s ∈ Σ∗4.4.2(t) is as
required. This finishes the proof of the claim.

Now we may prove the proposition. We are going to show that, in the model

VQ∗s∞(Kψ
4.4.2,Σ

ψ
4.4.2), the set {m ∈ ω : Ẇ (m) = 1} witnesses that the Sϕup–localization

fails. So suppose that p = (w, t0, t1, t2 . . .) ∈ Q∗s∞(Kψ
4.4.2,Σ

ψ
4.4.2) and Y ∈ [ω]ω .

Since (Kψ
4.4.2,Σ

ψ
4.4.2) is omittory we may assume that ψ(k) < ϕ(k) for k ≥ `g(w)

and for each i ∈ ω
(α) nor[ti] ≥ 11 + i+mti

dn, 〈〉 ∈ D[ti] and
(β) |(R[ti](〈〉), L[ti+1](〈〉)) ∩ Y | > 2, |(`g(w), L[t0]) ∩ Y | > 2.

Apply 4.4.6.1 to get si ∈ Σ∗4.4.2(ti) such that nor0[si] ≥ nor0[ti]− 10 and for every
n ∈ ω there is j ≤ ψ(µY (n+ 1)) such that

{L[si](ν) : ν ∈ T [si] & succT [si](ν) = ∅} ∩ [µY (n+ j), µY (n+ j + 1)) = ∅.

Note that by (α) and the definition of Σ∗4.4.2 and nor0 we have

nor0[ti] = nor[ti], nor0[si] = nor[si].

Hence, letting q = (w, s0, s1, s2, . . .) we will have p ≤ q ∈ Q∗s∞(Kψ
4.4.2,Σ

ψ
4.4.2) and

for every n > `g(w)

q (∃j < ϕ(µY (n+ 1)))([µY (n+ j), µY (n+ j + 1)) ∩ {m ∈ ω : Ẇ (m) = 1} = ∅);

remember that q forces that {m ∈ ω : Ẇ (m) = 1} is a subset of

{m < ms0
dn : w(m) = 1} ∪ {L[si](ν) : i < ω & ν ∈ T [si] & succT [si](ν) = ∅}.

This finishes the proof. �

Proposition 4.4.7. Let ϕ,ψ ∈ ωω be non-decreasing, ϕ(0), ψ(0) > 0 and
lim
n→∞

ϕ(n) ≤ lim
n→∞

ψ(n). Suppose that N ≺ (H(χ),∈, <∗χ) is countable, p ∈ N ∩

Q∗s∞(Kψ
4.4.2,Σ

ψ
4.4.2), ϕ,ψ ∈ N and Y ∈ [ω]ω is such that

(∀X ∈ [ω]ω ∩N)(∃∞n ∈ ω)(∀i < ϕ(µY (n)))(|[µY (n+ i), µY (n+ i+ 1)) ∩X| ≥ 2).

Then there is an (N,Q∗s∞(Kψ
4.4.2,Σ

ψ
4.4.2))–generic condition q stronger than p and

such that

q “for every X ∈ [ω]ω ∩N [ΓQ∗s∞(Kψ
4.4.2,Σ

ψ
4.4.2)],

(∃∞n ∈ ω)(∀i < ϕ(µY (n)))(|[µY (n+ i), µY (n+ i+ 1)) ∩X| ≥ 2)”.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

90 4. OMITTORY WITH HALVING

Consequently, if ψ is unbounded then the forcing notion Q∗s∞(Kψ
4.4.2,Σ

ψ
4.4.2) has

the Sϕdn–localization property for every non-decreasing ϕ. If ψ is bounded, say

lim
n→∞

ψ(n) = k, then Q∗s∞(Kψ
4.4.2,Σ

ψ
4.4.2) has the Sk-localization property.

Proof. This is like [RoSh 501, 2.4.5]. We will deal with the case lim
n→∞

ψ(n) =

∞ (if ψ is bounded then the arguments are similar).
Suppose that ϕ,ψ,N, p, Y are as in the assumptions. Let 〈σ̇n : n < ω〉 enu-

merate all Q∗s∞(Kψ
4.4.2,Σ

ψ
4.4.2)–names from N for ordinals and let 〈Ẋn : n < ω〉 list

all names for infinite subsets of ω. Further, for n ∈ ω, let τ̇n ∈ N be a name for a
function in ωω such that

Q∗s∞(Kψ
4.4.2,Σ

ψ
4.4.2) (∀m ∈ ω)(∀i ≤ n)(|[m, τ̇n(m)) ∩ Ẋi| > 2).

We inductively construct sequences 〈pn, p∗n : n < ω〉, 〈gn : n < ω〉 and 〈in : n < ω〉
such that for each n ∈ ω:

(a) pn, p
∗
n ∈ Q∗s∞(Kψ

4.4.2,Σ
ψ
4.4.2)∩N , gn ∈ ωω∩N is strictly increasing, in ∈ ω,

(b) p ≤s∞
0 pn ≤s∞

n p∗n ≤s∞
n+1 pn+1 ≤s∞

n+1 p
∗
n+1, in < in+1,

(c) pn approximates σ̇n at each tpn+` for ` ∈ ω,

(d) for each ` ∈ ω and v ∈ pos(wp, tpn0 , . . . , tpnn+`−1),

if t ∈ Σψ4.4.2(tpnn+`), nor[t] > 0 then there is w ∈ pos(v, t) such that

(w, tpnn+`+1, t
pn
n+`+2, . . .) “τ̇n(gn(`)) < gn(`+ 1)”,

(e) ϕ(gn(`)) < ψ(L[tpnn+`](〈〉)) for every ` ∈ ω,
(f) 〈〉 ∈ D[tpnm] for all m ∈ ω,
(g) in is such that (∀i < ϕ(µY (in)))(|[µY (in+i), µY (in+i+1))∩rng(gn)| ≥ 2),

(h) t
p∗n
m = tpnm for m < n,

(i) for i < ϕ(µY (in)) let jn(i) = min{j ∈ ω : gn(j) ∈ [µY (in + i), µY (in + i+
1))} and for i ∈ [ϕ(µY (in)), ψ(L[tpnn+jn(0)](〈〉))) let jn(i) = jn(ϕ(µY (in))−
1) + i;

then t
p∗n
n = Sm0,m1

(S∗(tpnn+jn(i) : i < ψ(L[tpnn+jn(0)](〈〉)))) (see clauses (2),

(4) of the definition of (Kψ
4.4.2,Σ

ψ
4.4.2) in 4.4.2, remember (f) above), where

m0 = m
tpnn−1
up , m1 = m

tpnk
up , k = n+ jn(ψ(L[tpnn+jn(0)](〈〉))− 1),

(j) t
p∗n
n+1+m = tpnk+1+m for every m ∈ ω (where k is as in (i) above).

The construction is quite straightforward and essentially described by the require-
ments (a)–(j) above. Having defined p∗n we first choose a condition p′n+1 ∈ N
such that it approximates σ̇n+1 at each m ≥ n + 1 and p∗n ≤s∞

n+1 p
′
n+1 (by 2.1.4).

Then we use 4.3.3.1 inside N to find a condition pn+1 ≥n+1 p
′
n+1, pn+1 ∈ N and

a function gn+1 ∈ N such that the demands (a), (d)–(f) are satisfied. Note here,
that the creatures tp` constructed in the proof of 4.3.3.1 came from the application
of ~1

AB of 4.3.1. This condition, in turn, is exemplified in our case by the use of

the operation S∗∗H (see item (5) of the definition of (Kψ
4.4.2,Σ

ψ
4.4.2), see 4.3.4, 4.3.9).

Consequently we may ensure that (f) holds. As far as (e) is concerned, note that
in the inductive construction of the condition p in 4.3.3.1, when choosing p∗` , we

may require additionally that ϕ(g(`)) < ψ(L[t
p∗`
`](〈〉)) (remember (Kψ

4.4.2,Σ
ψ
4.4.2) is

omittory, ψ is unbounded). Thus we have defined pn+1, gn+1 satisfying (a)–(f).
By the assumptions on Y we know

(∃∞m ∈ ω)(∀i < ϕ(µY (m)))(|[µY (m+ i), µY (m+ i+ 1)) ∩ rng(gn+1)| ≥ 2)

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

4.4. EXAMPLES 91

(remember rng(gn+1) ∈ [ω]ω ∩N). Hence we may choose in+1 > in as required in
(g). Clauses (h)–(j), (b) fully describe the condition

p∗n+1 = (wp, t
pn+1

0 , . . . , tpn+1
n , t

p∗n+1

n+1 , t
p∗n+1

n+2 , . . .) ≥n+1 pn+1.

Note here that

ϕ(µY (in+1)) ≤ ϕ(gn+1(jn+1(0))) < ψ(L[t
pn+1

n+1+jn+1(0)](〈〉))

(by (e); remember φ is non-decreasing), so there are no problems with the definition

of t
p∗n+1

n+1 in clause (i). Moreover, t
p∗n+1

n+1 ∈ Σψ4.4.2(t
pn+1

n+1 , . . . , t
pn+1

k), where k = n+ 1 +

jn+1(ψ(L[t
pn+1

n+1+jn+1(0)](〈〉))− 1, and nor[t
p∗n+1

n+1] > m
t
p∗n+1
n+1

dn . Clearly p∗n+1 ∈ N .

Now let q = lim
n
pn = lim

n
p∗n ∈ Q∗s∞(Kψ

4.4.2,Σ
ψ
4.4.2) (see 1.2.13). We claim that

q is as required in the assertion of the proposition. Clearly it is stronger than p (by

(b)) and is (N,Q∗s∞(Kψ
4.4.2,Σ

ψ
4.4.2))–generic (by (c) and 1.2.10). The proof will be

finished if we show that for each k ∈ ω

q (∃∞m ∈ ω)(∀i < ϕ(µY (m)))(|[µY (m+ i), µY (m+ i+ 1)) ∩ Ẋk| ≥ 2).

To this end suppose that k, ` ∈ ω, q′ ∈ Q∗s∞(Kψ
4.4.2,Σ

ψ
4.4.2), q ≤ q′. Passing to an ex-

tension of q′ we may assume that for some n > k we have wq
′ ∈ pos(wq, tq0, . . . , t

q
n−1)

and ` < in (remember (b)). Let m ≥ n be such that tq
′

0 ∈ Σψ4.4.2(tqn, . . . , t
q
m). Since

nor[tq
′

0] ≥ m
tq
′

0

dn > 0 we find n0 ∈ [n,m] and s ∈ Σψ4.4.2(tpn0
) such that nor[s] > 0

and

{L[s](η) : η ∈ T [s] & succT [s](η) = ∅} ⊆ {L[tq
′

0](η) : η ∈ T [tq
′

0] & succ
T [tq

′
0]

(η) = ∅}

(compare the proof that (Kψ
4.4.2,Σ

ψ
4.4.2) is condensed). Look at the creature tqn0

: it

is t
p∗n0
n0 . So look at the clause (i): the creature t

p∗n0
n0 was obtained from t

pn0

n0+jn0 (i)

(for i < ψ(L[t
pn0

n0+jn0 (0)](〈〉))) by applying the operation S∗ and Sm0,m1
. Since

s ∈ Σψ4.4.2(tqn0
) we have

|succT [s](〈〉)| = ψ(L[t
pn0

n0+jn0 (0)](〈〉)) = ψ(L[s](〈〉))

and for each ν ∈ succT [s](〈〉) for unique i = i(ν) < ψ(L[t
pn0

n0+jn0 (0)](〈〉)), the tree

T [s] above ν and L[s], R[s] and D[s] look exactly like T [si], L[si], R[si] and D[si]
for some si ∈ Σ∗4.4.2(t

pn0

n0+jn0 (i)) with nor[si] > 0. Now, applying successively clause

(d) to each t
pn0

n0+jn0 (i), si (for i < ψ(L[s](〈〉))) we find w ∈ pos(wq
′
, tq
′

0) such that

for every ν ∈ succT [s](〈〉)

(w, t
pn0
j , t

pn0
j+1, . . .) Q∗s∞(Kψ

4.4.2,Σ
ψ
4.4.2) “ τ̇n0

(gn0
(jn0(i(ν)))) < gn0

(jn0(i(ν)) + 1) ”,

where j is such that m
t
pn0
j

dn = m
tq
′

0
up . By the definition of the name τ̇n0

and the fact
that k < n ≤ n0 we get that for each ν ∈ succT [s](〈〉)

(w, t
pn0
j , t

pn0
j+1, . . .) “ |[gn0

(jn0(i(ν))), gn0
(jn0(i(ν)) + 1) ∩ Ẋk| ≥ 2 ”.

By the choice of in0
, jn0(i) we know that

µY (in0
+ i) ≤ gn0

(jn0(i)) < gn0
(jn0(i) + 1) < µY (in0

+ i+ 1)

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

92 4. OMITTORY WITH HALVING

for each i < ϕ(µY (in0
)) ≤ ϕ(gn0

(jn0(0))) ≤ ψ(L[s])(〈〉). Therefore

(w, t
pn0
j , t

pn0
j+1, . . .) “(∀i<ϕ(µY (in0

)))(|[µY (in0
+ i), µY (in0

+ i+ 1)) ∩ Ẋk| ≥ 2)”.

We finish noticing that (w, t
pn0
j , t

pn0
j+1, . . .) ≤ (w, tq

′

1 , t
q′

2 , . . .) and ` < in ≤ in0 . �

Corollary 4.4.8. The following is consistent with ZFC:

d = cov(M) = non(M) = ℵ2 +
for every non-decreasing unbounded ψ ∈ ωω, d(Sψup) = ℵ2 +

for every non-decreasing ϕ ∈ ωω, d(Sϕdn) = ℵ1.

Proof. Start with a model for CH and build a countable support iteration
〈Pα, Q̇α : α < ω2〉 and a sequence 〈ψ̇α : α < ω2〉 such that

(a) ψ̇α is a Pα–name for a non-decreasing unbounded function in ωω ,

(b) Pα “ Q̇α = Q∗s∞(Kψ̇α
4.4.2,Σ

ψ̇α
4.4.2) ”,

(c) for each Pω2
–name ψ̇ for a non-decreasing unbounded function in ωω , for

ω2 many α < ω2, Pα “ ψ̇ = ψ̇α ”.

By 4.4.3 we have

Pω2
“ cov(M) = non(M) = ℵ2 = c & b = ℵ1 ”

and by 4.4.6 we get

Pω2
“ d = ℵ2 + for each non-decreasing unbounded ψ ∈ ωω, d(Sψup) = ℵ2 ”.

To show that

Pω2
“ d(Sϕdn) = ℵ1 for every non-decreasing ϕ ∈ ωω ”

we use 4.4.7 and [Sh:f, Ch XVIII, 3.6] and we show that the property described in
4.4.7 is preserved in countable support iterations.

So suppose that ϕ ∈ ωω is non-decreasing and define a context (Rϕ, Sϕ,gϕ)
(see [Sh:f, Ch XVIII, 3.1]) as follows. First, for η ∈ ωω let Xη ∈ [ω]ω be such that
µXη (n) =

∑
i≤n

(η(i) + 1). Next we let (in the ground model V):

• Sϕ is the collection of all N ∩ H(ℵ1) for N a countable elementary sub-
model of (H(χ),∈, <∗χ),

• for each a ∈ Sϕ, d[a] = c[a] = ω = d′[a] = c′[a],
• α∗ = 1,
• Rϕ = Rϕ0 is the relation determined by the Sϕdn–localization:

η Rϕ g if and only if (η, g ∈ ωω and)
(∃∞n ∈ ω)(∀i < ϕ(µXg (n)))(|[µXg (n+ i), µXg (n+ i+ 1)) ∩Xη| ≥ 2)
(remember that α∗ = 1 so we have Rϕ0 only),

• gϕ = 〈ga : a ∈ Sϕ〉 ⊆ ωω is such that for every a ∈ Sϕ, for each η ∈ a∩ωω
we have η Rϕ ga (exists as each a is countable, e.g. one may take as ga
any real dominating a).

By the choice of (Rϕ, Sϕ,gϕ) we know that it covers in V (see [Sh:f, Ch XVIII,
3.2]).

Claim 4.4.8.1. Let P be a proper forcing notion such that

P “ (Rϕ, Sϕ,gϕ) covers”.

Then:

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

4.4. EXAMPLES 93

(1) P“ (Rϕ, Sϕ,gϕ) strongly covers by Possibility B” (see [Sh:f, Ch XVIII,
3.3]),

(2) for every P-name ψ̇ for a non-decreasing unbounded function in ωω,

P “ the forcing notion Q∗s∞(Kψ̇
4.4.2,Σ

ψ̇
4.4.2) is (Rϕ, Sϕ,gϕ)–preserving”.

Proof of the claim: 1) As α∗ = 1 it is enough to show that the second player
has an absolute (for extensions by proper forcing notions) winning strategy in the
following game Ga (for each a ∈ Sϕ).

The play lasts ω moves.
Player I, in his nth move chooses functions fn0 , . . . , f

n
n ∈ ωω such

that

fn` �bn−1 = fn−1
` �bn−1 for ` < n and fn` R

ϕ ga for each ` ≤ n.

Player II answers choosing a finite set bn ⊆ ω, bn−1 ⊆ bn.
At the end the second player wins if and only if for each ` ∈ ω⋃

n≥`

fn` �bn R
ϕ ga.

But it should be clear that Player II has a (nice) winning strategy in this game. In
his nth move he chooses as bn a sufficiently long initial segment of ω to provide new
“witnesses” for the quantifier (∃∞n ∈ ω) in the definition of Rϕ (for all fn0 , . . . , f

n
n).

2) Since α∗ = 1 what we have to prove is exactly the statement of 4.4.7 (see [Sh:f,
Ch XVIII, 3.4A]), so we are done with the claim.

Now we may use [Sh:f, Ch XVIII, 3.5, 3.6] (and 4.4.8.1) to conclude that Pω2

“(Rϕ, Sϕ,gϕ) covers” and hence immediately

Pω2
d(Sϕdn) = ℵ1.

As every function from ωω ∩VPω2 appears in ωω ∩VPα for some α < ω2 we finish
the proof. �

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

CHAPTER 5

Around not adding Cohen reals

The starting point for this chapter was the following request of Bartoszyński
(see [Ba94, Problem 4]): construct a proper forcing notion P such that:

(1) P is ωω–bounding,
(2) P preserves non–meager sets,
(3) P makes ground reals to have measure zero,
(4) P has the Laver property,
(5) countable support iterations of P with Laver forcing, random real forcing

and Miller’s rational perfect set forcing do not add Cohen reals.

A forcing notion with these properties would correspond to the invariant non(N)
(the minimal size of a non-null set; see [BaJu95, 7.3C]). Forcing notions with prop-
erties (1)–(4) were known. The fourth property is a kind of technical assumption
and might be replaced by

4−. P is (f, g)–bounding for some f, g ∈ ωω (with g(n)� f(n), of course).

At least we believe that that was the intension (see an example presented in
[BaJu95, 7.3C], see 5.4.3 here too). However it was not clear how one should
take care of the last required property. The problem comes from the fact that we
do not have any good (meaning: iterable and sufficiently weak) condition for “not
adding Cohen reals”. The difficulty starts already at the level of compositions of
forcing notions: adding first a dominating real and then “infinitely often equal real
below it” one produces a Cohen real. Various iterable properties implying “no Co-
hen reals” are in use, but the point is to find one capturing as many of them as
possible. The first section deals with (f, g)–bounding property. We generalize this
property in the following section (a special case of the methods developed there is
presented in [BaJu95, 7.2E], however not fully). The “(t̄, F̄)–bounding” property
seems to be still not weak enough to capture the measure algebra. So we weaken
this further and we present a good candidate for a property “responsible” for not
adding Cohen reals in the third part of this chapter (see 5.4.2 too). The tools
developed in this section are very general and will be used later too.

5.1. (f, g)-bounding

Let us recall that a proper forcing notion P is (f, g)–bounding (for some in-
creasing f, g ∈ ωω) if

P (∀x ∈
∏
i∈ω

f(i))(∃S ∈ V ∩
∏
i∈ω

[ω]<ω)(∀i ∈ ω)(|S(i)| ≤ g(i) & x(i) ∈ S(i)).

It is almost obvious that (f, g)–bounding forcing notions add neither Cohen reals
nor random reals (see e.g. [BaJu95, 7.2.15]). For the treatment of this property in
countable support iterations see [Sh 326, A2.5] or [Sh:f, Ch VI, 2.11A-C].

94

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

5.1. (f, g)-BOUNDING 95

Definition 5.1.1. Let f ∈ ωω . We say that a weak creating pair (K,Σ) for
H is essentially f -big if

(⊗f5.1.1) for every weak creature t ∈ K and u ∈ basis(t) such that 0 < `g(u) and
nor[t] > f(0) and each function h : pos(u, t) −→ f(`g(u)) there is s ∈ Σ(t)

such that u ∈ basis(s), h�pos(u, s) is constant and nor[s] ≥ nor[t]− f(0)
`g(u) .

Remark 5.1.2. Definition 5.1.1 may be thought of as a kind of strengthening
of 2.2.1 and 2.3.2.

Lemma 5.1.3. Let f ∈ ωω be increasing. Suppose that (K,Σ) is a finitary
essentially f -big tree-creating pair, p ∈ Qtree

1 (K,Σ) and τ̇ is a Qtree
1 (K,Σ)-name

such that

p Qtree
1 (K,Σ) “τ̇ ∈ ωω is such that (∀n ∈ ω)(τ̇(n) < f(n))”.

Then there is a condition q ∈ Qtree
1 (K,Σ) stronger than p and such that for every

ρ ∈ T q the condition q[ρ] forces a value to τ̇�(`g(ρ) + 1).

Proof. First note that the essential f–bigness of (K,Σ) implies that if t ∈ K,
nor[t] > f(0) and `g(root(t)) > f(0) + 1 then the tree creature t is 2-big. This is
more than enough to carry out the proofs of 2.3.6(2) and 2.3.7(2) and thus we find
a condition q0 ≥ p, `g(root(q0)) > f(0) + 1, and fronts F0, F1, F2, . . . of T q0 such
that

(∀n ∈ ω)(∀η ∈ Fn)(`g(η) > n and q
[η]
0 decides τ̇(n))

and (∀η ∈ T q0)(nor[tq0η] > 2 · f(0) + 1). For each n ∈ ω we have a function
hn : Fn −→ f(n) such that

(∀η ∈ Fn)(q
[η]
0 Qtree

1 (K,Σ) τ̇(n) = hn(η)).

Suppose that ν ∈ T q0 is such that pos(tq0ν) ⊆ Fn and `g(ν) ≥ n (note that there are

ν ∈ T q0 such that pos(tq0ν) ⊆ Fn as Fn is finite). Then we may apply (⊗f5.1.1) and

we find s ∈ Σ(tq0ν) such that hn�pos(s) is constant and nor[s] ≥ nor[tq0ν] − f(0)
`g(ν) .

Repeating this process downward and for all n ∈ ω we find a quasi tree T ∗ ⊆ T q0

and sν ∈ Σ(tq0ν) for ν ∈ T ∗ such that

(α) root(T ∗) = root(q0),

(β) nor[sν] ≥ nor[tq0ν]− (`g(ν) + 1) · f(0)
`g(ν) ≥ nor[tq0ν]− (f(0) + 1),

(γ) pos(sν) = succT∗(ν),
(δ) if ν, η0, η1 ∈ T ∗, n ≤ `g(ν), ν C η0, ν C η1, η0, η1 ∈ Fn then hn(η0) =

hn(η1).

This defines a condition q∗ ∈ Qtree
1 (K,Σ). Clearly it is stronger than q0 and, by (δ)

above, it has the required property. �

Remark 5.1.4. If (K,Σ) is a local tree-creating pair (see 1.4.3), p ∈ Qtree
e (K,Σ)

then
(∀ν ∈ dcl(T p))(root(p) E ν ⇒ ν ∈ T p).

Conclusion 5.1.5. Suppose that f ∈ ωω is increasing, (K,Σ) is essentially
f -big finitary and local tree creating pair. Then the condition q ∈ Qtree

1 (K,Σ)
provided by the assertion of 5.1.3, gives at most |T q ∩

∏
m<n

H(m)| possible values

to τ̇�(n + 1) (for each n). Hence, if g(n) =
∏
m<n
|H(m)| then Qtree

1 (K,Σ) is (f, g)-

bounding.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

96 5. AROUND NOT ADDING COHEN REALS

Definition 5.1.6. A weak creating pair is reducible if for each t ∈ K with

nor[t] > 3 there is s ∈ Σ(t) such that nor[t]
2 ≤ nor[s] ≤ nor[t]− 1.

Definition 5.1.7. Let h : ω × ω −→ ω. We say that a weak creating pair
(K,Σ) is h–limited whenever

if t ∈ K, u ∈ basis(t), `g(u) ≤ m0 and nor[t] ≤ m1 then |pos(u, t)| ≤ h(m0,m1).

If the function h does not depend on the first coordinate (i.e. h(m0,m1) = h0(m1))
then we say that (K,Σ) is h–norm-limited. We may say then that (K,Σ) is h0–
norm-limited or just h0–limited.

Theorem 5.1.8. Suppose that f, g ∈ ωω are increasing, h : ω × ω −→ ω and

(∀∞n ∈ ω)(
∏
m<n

h(m,m) < g(n) < f(n)).

Assume that (K,Σ) is a reducible finitary tree creating pair which is h-limited and
essentially f -big. Then the forcing notion Qtree

1 (K,Σ) is (f, g)-bounding.

Proof. Let N be such that (∀n ≥ N)(
∏
m<n

h(m,m) < g(n) < f(n)). Suppose

that p Qtree
1 (K,Σ) τ̇ ∈

∏
n<ω

f(n). By 5.1.3 we find q ≥ p such that for every η ∈ T q

the condition q[η] decides τ̇�(`g(η) + 1). As (K,Σ) is reducible we may assume that
(∀η ∈ T q)(nor[tqη] ≤ `g(η)) and `g(root(q)) > N . For n ∈ ω let

F ∗n
def
= {η ∈ T q : `g(η) ≥ n and (∀ν ∈ T q)(ν C η ⇒ `g(ν) < n)}.

Clearly each F ∗n is a front of T q and if η ∈ F ∗n then q[η] decides the value of τ̇(n).
Now note that |F ∗n | = 1 for n ≤ `g(root(q)) and |F ∗n | ≤

∏
m<n

h(m,m) < g(n) for all

other n. This allows us to finish the proof. �

Theorem 5.1.9. Assume that (K,Σ) is a finitary and reducible creating pair
which is h–limited for some function h. Further suppose that (K,Σ) is either grow-
ing and big or omittory and omittory–big. Then the forcing notion Q∗s∞(K,Σ) is
(f, g)–bounding for any strictly increasing functions f, g ∈ ωω.

Proof. Suppose that τ̇ is a Q∗s∞(K,Σ)–name for a function in
∏
n∈ω

f(n) and

p ∈ Q∗s∞(K,Σ). Applying repeatedly 2.2.3 (or 2.2.6 in the second case) we may
construct inductively an increasing sequence n0 < n1 < . . . < ω and a condition
q = (wq, tq0, t

q
1, . . .) ∈ Q∗s∞(K,Σ) such that p ≤s∞

0 q (so wq = wp) and for all k ∈ ω:

(⊕0) g(nk) >
∏
i≤k

h(m
tqi
dn, 2 ·m

tqi
dn + 1),

(⊕1) nor[tqk] ≤ 2 ·mtqk
dn + 1, and

(⊕2) if w ∈ pos(wq, tq0, . . . , t
q
k−1) then the condition (w, tqk, t

q
k+1, . . .) decides the

value of τ̇�(nk + 1).

This is straightforward; to get (⊕1) we use the assumption that (K,Σ) is reducible.
Now we note that for each k:

|pos(wq, tq0, . . . , t
q
k)| ≤

∏
i≤k

h(m
tqi
dn, 2 ·m

tqi
dn + 1)

and so the condition q allows less than g(nk) candidates for values of τ̇ on the
interval (nk, nk+1]. �

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

5.1. (f, g)-BOUNDING 97

Theorem 5.1.10. Let (K,Σ) be a reducible and finitary creating pair. Suppose
that increasing functions f, g ∈ ωω and a function h : ω × ω −→ ω are such that

(1) (K,Σ) is h–limited,
(2) (K,Σ) is essentially f–big,
(3) (∀∞n)(

∏
m<n

h(m,m) < g(n) < f(n)).

Lastly assume that (K,Σ) captures singletons. Then the forcing notion Q∗w∞(K,Σ)
is (f, g)–bounding.

Proof. Take N ∈ ω such that
∏
m<n

h(m,m) < g(n) < f(n) for all n ≥ N .

Let τ̇ be a Q∗w∞(K,Σ)–name for a function in
∏
n∈ω

f(n), and let p ∈ Q∗w∞(K,Σ).

First note that, as (K,Σ) captures singletons, for each t ∈ K we may find s ∈ Σ(t)
such that for some u ∈ basis(s) (equivalently: for each u, remember (K,Σ) is
forgetful) we have |pos(u, s)| = 1. Using this remark and 2.1.12 we find a condition
(wp, s0, s1, s2, . . .) ∈ Q∗w∞(K,Σ) and a sequence 0 ≤ `0 < `1 < `2 < . . . < ω such
that:

(α) nor[s`0] ≥ 2 ·f(0)+2, nor[s`i+1
] ≥ 2 ·f(0) · |pos(wp, s0, . . . , s`i)|+2(i+1),

(β) if n ∈ ω\{`0, `1, `2, . . .} then for some u ∈ basis(sn) we have |pos(u, sn)| =
1,

(γ) N + 4 < m
s`0
dn , p ≤ (wp, s0, s1, s2, . . .),

(δ) for each i ∈ ω, u ∈ pos(wp, s0, . . . , s`i) the condition (u, s`i+1, s`i+2, . . .)

decides τ̇�(m
s`i
up + 1).

Next we slightly correct creatures s`i to ensure that the value of τ̇�(m
s`i
dn + 1) is

decided by any u ∈ pos(wp, s0, . . . , s`i−1). For this we use the procedure similar to
that in the proof of 5.1.1 (and based on the assumption that (K,Σ) is essentially
f–big). Thus we get creatures t`i ∈ Σ(s`i) such that (for i ∈ ω):

(∀u ∈ pos(wp, s0, . . . , s`i−1))
(
(u, t`i , s`i+1, s`i+2, . . .) decides τ̇�(m

s`i
dn + 1)

)
and

nor[t`i] ≥ nor[s`i]− (m
s`i
dn + 1) · f(0)

m
s`i
dn

· |pos(wp, s0, . . . , s`i−1)|.

Note that |pos(wp, s0, . . . , s`0−1)| = 1 and hence nor[t`0] ≥ 1. Moreover, for
each i ∈ ω, |pos(wp, s0, . . . , s`i)| = |pos(wp, s0, . . . , s`i , . . . , s`i+1−1)| and therefore
nor[t`i+1

] ≥ 2(i + 1). Finally, as (K,Σ) is reducible, we may choose t∗`i ∈ Σ(t`i)

(for i ∈ ω) such that i+2
2 ≤ nor[t∗`i] ≤ m

t∗`i
dn . Now we let

wq = wp, tpm =

{
sm if m ∈ ω \ {`0, `1, . . .},
t∗`i if m = `i, i ∈ ω.

This defines a condition q ∈ Q∗w∞(K,Σ) stronger than p and such that for each
i ∈ ω:

(a) (∀u ∈ pos(wq, tq0, . . . , t
q
`i−1))

(
(u, tq`i , t

q
`i+1, . . .) decides τ̇�(m

tq`i
dn + 1)

)
,

(b) |pos(wq, tq0, . . . , t
q
`i+1−1)| ≤

∏
j≤i

h(m
tq`j
dn ,m

tq`j
dn) < g(m

tq`i
dn + 1),

(c) |pos(wq, tq0, . . . , t
q
`0−1)| = 1.

Now we easily finish. �

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

98 5. AROUND NOT ADDING COHEN REALS

Definition 5.1.11. Let H be finitary, F ∈ ωω be increasing. A function
f : ω × ω −→ ω is called (H, F)–fast if it is H–fast (see 1.1.12) and additionally

(∀n, ` ∈ ω)(f(n+ 1, `) > f(n, `) + F (`) · ϕH(`) · `).

Theorem 5.1.12. Suppose that (K,Σ) is a finitary local and 2̄–big creating
pair for H which has the (weak) Halving Property. Let F ∈ ωω be increasing and
f : ω × ω −→ ω be (H, F)–fast. Then the forcing notion Q∗f (K,Σ) is (F,ϕH)–
bounding.

Proof. Suppose that τ̇ is a Q∗f (K,Σ)–name for an element of
∏
m<ω

F (m) and

p ∈ Q∗f (K,Σ). By 2.2.11 we find a condition q ≥ p which essentially decides all

the values τ̇(m) (for m ∈ ω). We may assume that (∀i ∈ ω)(nor[tqi] > f(2,m
tqi
dn)).

Applying, in a standard by now way, the bigness (like in 2.2.3 or 5.1.1) we build

a condition r ≥0 q such that tri ∈ Σ(tqi), nor[tri] ≥ nor[tqi] − F (m
tri
dn) · ϕH(m

tri
dn) ·

m
tri
dn and for each i ∈ ω and u ∈ pos(wp, tr0, . . . , t

r
i−1) the condition (u, tri , t

r
i+1, . . .)

decides the value of τ̇�(`g(u) + 1). Now we easily finish (remembering that (K,Σ)
is local). �

5.2. (t̄, F̄)–bounding

Here we introduce and deal with a property which, in our context, is a natural
generalization of the notion of (f, g)–bounding forcing notions. This is a first step
toward handling “not adding Cohen reals” and, in some sense, it will be developed
in the next parts of this chapter. After we formulate and prove some basic results
we show how one may treat this property in countable support iterations.

A particular case of this machinery was presented in [BaJu95, 7.2E].

Definition 5.2.1. Let (K,Σ) be a creating pair, t̄ = 〈tn : n ∈ ω〉 ∈ PC(K,Σ).

(1) For a function h ∈ ωω we define Uh(t̄) as the set

{s̄ = 〈sn : n ∈ ω〉∈PC(K,Σ): t̄ ≤ s̄ & (∀n∈ω)(nor[sn] ≤ h(msn
dn))}.

For n ∈ ω and h ∈ ωω we let

V nh (t̄) = {s ∈ Σ(tn) : nor[s] ≤ h(ms
dn)}.

(2) Let h1, h2 ∈ ωω . We say that a forcing notion P is (t̄, h1, h2)–bounding if

P (∀s̄ ∈ Uh1
(t̄))(∃s̄∗ ∈ Uh2

(t̄) ∩V)(s̄∗ ≤ s̄).

Remark 5.2.2. (1) We will be interested in the notions introduced in
5.2.1 only for t̄ ∈ PC∞(K,Σ) (i.e. lim

n→∞
nor[tn] =∞) and (∀∞n)(h1(n) <

h2(n)), lim
n→∞

h1(n) = lim
n→∞

h2(n) =∞.

(2) Note that if (K,Σ) is nice and simple (see 2.1.7) then

Uh(t̄) =
∏
n∈ω

V nh (t̄).

Definition 5.2.3. For a creating pair (K,Σ) on H we say that:

(1) (K,Σ) is monotonic if for each t ∈ K, s ∈ Σ(t) we have val[s] ⊆ val[t].

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

5.2. (t̄, F̄)–BOUNDING 99

(2) (K,Σ) is strictly monotonic if it is monotonic and for all n ∈ ω, t0, . . . , tn ∈
K and s ∈ Σ(t0, . . . , tn) such that nor[s] ≤ max{nor[t`] − 1 : ` ≤ n} we
have:

(∀u ∈ basis(t0))
(
pos(u, s) pos(u, t0, . . . , tn)

)
.

(3) (K,Σ) is spread if for each t ∈ K, u ∈ basis(t) and v ∈ pos(u, t) there is
s ∈ Σ(t) such that

nor[s] ≤ 1

2
nor[t] and v ∈ pos(u, s).

Proposition 5.2.4. Let (K,Σ) ∈ H(ℵ1) be a strictly monotonic and spread
creating pair for H. Suppose that t̄ = 〈tn : n ∈ ω〉 ∈ PC∞(K,Σ) and h1, h2 ∈ ωω
are such that

(∀n)(0 < h1(mtn
dn) ≤ h2(mtn

dn) ≤ nor[tn]) and (∀∞n)(h2(mtn
dn) ≤ nor[tn]− 1).

Then every (t̄, h1, h2)–bounding forcing notion does not add Cohen reals.

Proof. Let w ∈ basis(t0) be such that

(∀n ∈ ω)
(
pos(w, t0, . . . , tn−1) ⊆ basis(tn)

)
.

Look at the space

X = {x ∈
∏
m∈ω

H(m) : (∀n ∈ ω)(x�mtn
up ∈ pos(w, t0, . . . , tn))}

equipped with the natural (product) topology. It is a perfect Polish space (note that
as (K,Σ) is strictly monotonic and spread, by lim

n→∞
nor[tn] = ∞, for sufficiently

large n, for each u ∈ basis(tn) we find two distinct v0, v1 ∈ pos(u, tn)). Thus, if
a forcing notion P adds a Cohen real then it adds a Cohen real c ∈ X . In V[c],
choose (e.g. inductively) a sequence s̄ = 〈sn : n ∈ ω〉 ∈ Uh1(t̄) such that

(∀n ∈ ω)
(
sn ∈ Σ(tn) & c�msn

dn ∈ pos(w, s0, . . . , sn−1) ⊆ basis(sn)
)

(possible by 5.2.3(3), remember that (K,Σ) is nice). We claim that there is no
s̄∗ ∈ Uh2

(t̄) ∩V with s̄∗ ≤ s̄. Why? Suppose that s̄∗ ∈ Uh2
(t̄) ∩V. Working in V,

consider the set

O def
= {x ∈ X : (∃n ∈ ω)(x�ms∗n

dn /∈ pos(w, s∗0, . . . , s
∗
n−1))}.

This set is open dense in X (for the density use strict monotonicity of (K,Σ);

remember that for sufficiently large n ∈ ω, nor[s∗n] ≤ h2(m
s∗n
dn) ≤ nor[tm] − 1,

where m is such that mtm
dn = m

s∗n
dn). Consequently, in V[c], c ∈ O and s̄∗ 6≤ s̄. �

Definition 5.2.5. Let (K,Σ) be a weak creating pair.

(1) We say that a weak creature t ∈ K is (n,m)–additive if for all t0, . . . , tn−1 ∈
Σ(t) such that nor[ti] ≤ m (for i < n) there is s ∈ Σ(t) such that

t0, . . . , tn−1 ∈ Σ(s) and nor[s] ≤ max{nor[t`] : ` < n}+ 1.

(2) m–additivity of a weak creature t ∈ K is defined as

addm(t) = sup{k < ω : t is (k,m)–additive}.

[Note that each t is at least (1,m)–additive.]

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

100 5. AROUND NOT ADDING COHEN REALS

(3) We say that (K,Σ) is (g, h)–additive (for g, h ∈ ωω) if addh(mdn(t))(t) ≥
g(mdn(t)) for all t ∈ K.
Similarly, if (K,Σ) is a creating pair and t̄ ∈ PC(K,Σ) then we say that
t̄ is (g, h)–additive if (∀n ∈ ω)(addh(mtndn)(tn) ≥ g(mtn

dn)).

(4) If the function g is constant, say g ≡ n, then instead of “(g, h)–additive”
we may say “(n, h)–additive” etc.

[Note that for creatures we have mdn(t) = mt
dn.]

Remark 5.2.6. The notion of additivity of a weak creature is very close to that
of bigness: in most applications they coincide. One can easily formulate conditions
under which (k,m)–additivity is equivalent to k–bigness.

Let us recall that a forcing notion P has the Laver property if it is (f, g∗)–
bounding for every increasing function f ∈ ωω , where g∗(n) = 2n (g∗ may be
replaced by any other fixed increasing function in ωω).

Proposition 5.2.7. Assume that (K,Σ) is a strongly finitary (see 3.3.4) and
simple (see 2.1.7) creating pair, t̄ = 〈tn : n < ω〉 ∈ PC(K,Σ) and h1, h2 ∈ ωω are
such that

(∀n ∈ ω)(h1(mtn
dn) ≤ h2(mtn

dn)) and (∀∞n)(h1(mtn
dn) + 1 ≤ h2(mtn

dn)).

(1) If f ∈ ωω is such that (∀n ∈ ω)(|V nh1
(t̄)| ≤ f(mtn

dn)), g ∈ ωω is strictly in-
creasing and t̄ is (g, h1)–additive then every (f, g)–bounding forcing notion
is (t̄, h1, h2)–bounding.

(2) If t̄ is (g∗, h1)–additive (where g∗(n) = 2n) then every forcing notion with
Laver property is (t̄, h1, h2)–bounding.

Proof. 1) Suppose that 〈ṡn : n ∈ ω〉 is a P-name for an element of Uh1(t̄),
p ∈ P. Since (K,Σ) is simple we know that p ṡn ∈ Σ(tn). Consequently, we may
apply the assumption that P is (f, g)–bounding (remember the property of f) and
we get a condition p0 ≥ p and a sequence 〈s+

n,` : ` < g+(mtn
dn), n < ω〉 such that

(∀n < ω)(∀` < g(mtn
dn))

(
s+
n,` ∈ V nh1

(t̄)
)

and

p0 P (∀n ∈ ω)(ṡn ∈ {s+
n,` : ` < g+(mtn

dn)}),

where g+ ∈ ωω is such that for each n ∈ ω:

g+(mtn
dn) =

{
g(mtn

dn) if h1(mtn
dn) + 1 ≤ h2(mtn

dn),
1 otherwise.

Since t̄ is (g, h1)-additive we find 〈s∗n : n ∈ ω〉 ∈ Uh2
(t̄) such that for each n ∈ ω

(∀` < g+(mtn
dn))(s+

n,` ∈ Σ(s∗n)).

Clearly, p0 〈s∗n : n < ω〉 ≤ 〈ṡn : n < ω〉.
2) Similarly. �

Definition 5.2.8. Let (K,Σ) be a creating pair and t̄ = 〈tn : n ∈ ω〉 ∈
PC∞(K,Σ).

(1) We say that a partial ordering F̄ = (F , <∗F) on F ⊆ ωω is t̄–good if:
(a) F̄ is a dense partial order with no maximal and minimal elements,
(b) for each h ∈ F

(∀n ∈ ω)(1 < h(mtn
dn) ≤ nor[tn]) and lim

n→∞
[nor[tn]− h(mtn

dn)] =∞,

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

5.2. (t̄, F̄)–BOUNDING 101

(c) if h1, h2 ∈ F , h1 <
∗
F h2 then

(∀n ∈ ω)(h1(mtn
dn) ≤ h2(mtn

dn)) and lim
n→∞

[h2(mtn
dn)− h1(mtn

dn)] =∞.

(2) Let F̄ be a t̄–good partial order (on F ⊆ ωω). We say that a forcing
notion P is (t̄, F̄)–bounding if P is (t̄, h1, h2)–bounding for all h1, h2 ∈ F
such that h1 <

∗
F h2.

It should be clear that if F̄ is t̄–good, t̄ ∈ PC∞(K,Σ) then the composition of
(t̄, F̄)–bounding forcing notions is (t̄, F̄)–bounding. To deal with the limit stages
(in countable support iterations) we have to apply the technique of [Sh:f, Ch VI,
§1]. Theorem 5.2.9 below fulfills the promise of [BaJu95, 7.2.29].

Theorem 5.2.9. Let (K,Σ) ∈ H(ℵ1) be a simple and reducible creating pair
and let t̄ = 〈tn : n < ω〉 ∈ PC∞(K,Σ), nor[tn] ≥ 2. Suppose that F̄ = (F , <∗F)
is a t̄–good partial order such that t̄ is (2, h)–additive for all h ∈ F . Assume that

〈Pα, Q̇α : α < β〉 is a countable support iteration of proper forcing notions such that
for each α < β:

Pα “Q̇α is (t̄, F̄)–bounding”.

Then Pβ is (t̄, F̄)–bounding.

Proof. We are going to use [Sh:f, Ch VI, 1.13A] and therefore we will closely
follow the notation and terminology of [Sh:f, Ch VI, §1], checking all necessary

assumptions. First we define a fine covering model (DF̄,t̄, RF̄,t̄, <F̄,t̄) (see [Sh:f,
Ch VI, 1.2]).

For h ∈ F and n ∈ ω we fix a mapping ψhn : ω
onto−→ V nh (t̄). Next, for h ∈ F

and η ∈ ωω we let ψh(η) = 〈ψhn(η(n)) : n < ω〉. Note that, as (K,Σ) is nice,
ψh(η) ∈ Uh(t̄) (for all η ∈ ωω). Further, for h ∈ F and for s̄ = 〈sn : n < ω〉 ≥ t̄ we
let

Ts̄,h = {ν ∈ ω<ω : (∀n < `g(ν))(ψhn(ν(n)) ∈ Σ(sn))}.
Clearly each Ts̄,h is a subtree of ω<ω and any node in Ts̄,h has a proper extension
in Ts̄,h (remember that (K,Σ) is reducible). We define:

• DF̄,t̄ isH(ℵ1) = H(ℵ1)V (we want to underline here that – in the iteration

– DF̄,t̄ is fixed and consists of elements of the ground universe),

• for x, T ∈ DF̄,t̄ we say that x RF̄,t̄ T if and only if
x = 〈h∗, h〉 and T = Ts̄,h∗ for some h∗, h ∈ F , h∗ <∗F h, s̄ ∈ Uh(t̄) ∩

DF̄,t̄,
• for 〈h∗, h〉, 〈h∗∗, h′〉 ∈ dom(RF̄,t̄) we say that 〈h∗, h〉 <F̄,t̄ 〈h∗∗, h′〉 if and

only if h∗ = h∗∗ <∗F h <
∗
F h
′.

Claim 5.2.9.1. (DF̄,t̄, RF̄,t̄) is a weak covering model in V (see [Sh:f, Ch VI,
1.1]).

Proof of the claim: The demand (a) of the definition [Sh:f, Ch VI, 1.1] of weak

covering models holds by the way we defined RF̄,t̄. The clause (b) there is satisfied
as for each η ∈ ωω and x = 〈h∗, h〉 such that h∗, h ∈ F , h∗ <∗F h, we have

ψh
∗
(η) ∈ Uh∗(t̄) ⊆ Uh(t̄), x RF̄,t̄ Tψh∗ (η),h∗ and η ∈ lim(Tψh∗ (η),h∗).

Claim 5.2.9.2. A forcing notion P is (t̄, F̄)–bounding if and only if

it is (DF̄,t̄, RF̄,t̄)–preserving (see [Sh:f, Ch VI, 1.5]).

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

102 5. AROUND NOT ADDING COHEN REALS

Proof of the claim: Suppose P is (t̄, F̄)–bounding. Let η̇ be a P–name for an

element of ωω and x = 〈h∗, h〉 ∈ dom(RF̄,t̄) (so h∗, h ∈ F and h∗ <∗F h). Then

P ψ
h∗(η̇) ∈ Uh∗(t̄) and, as by 5.2.8(2) P is (t̄, h∗, h)–bounding,

P (∃s̄ ∈ Uh(t̄) ∩V)(s̄ ≤ ψh
∗
(η̇))

and hence
P (∃T ∈ DF̄,t̄)(x RF̄,t̄ T & η̇ ∈ lim(T))

(so (DF̄,t̄, RF̄,t̄) covers in VP).

On the other hand suppose that P is (DF̄,t̄, RF̄,t̄)–preserving. Take h∗, h ∈ F
such that h∗ <∗F h and let ˙̄s be a P–name for an element of Uh∗(t̄). Let η̇ be a

P–name for an element of ωω such that P ψ
h∗(η̇) = ˙̄s. As, in VP, (DF̄,t̄, RF̄,t̄)

still covers (and x = 〈h∗, h〉 ∈ dom(RF̄,t̄)) we have

P (∃s̄ ∈ DF̄,t̄)(s̄ ∈ Uh(t̄) & η̇ ∈ lim(Ts̄,h∗)).

Hence we may conclude that P is (t̄, h∗, h)–bounding.

Claim 5.2.9.3. (DF̄,t̄, RF̄,t̄, <F̄,t̄) is a fine covering model (see [Sh:f, Ch VI,
1.2]).

Proof of the claim: We have to check the requirements of [Sh:f, Ch VI, 1.2(1)].
We will comment on each of them, referring to the enumeration there.

(α) (DF̄,t̄, RF̄,t̄) is a weak covering model (by 5.2.9.1).

(β) <F̄,t̄ is a partial order on dom(RF̄,t̄) = {〈h∗, h〉 ∈ F ×F : h∗ <∗F h} such
that:
(i) there is no minimal element in <F̄,t̄,

(ii) <F̄,t̄ is dense as <∗F is such,

(iii) if x1 <
F̄,t̄ x2 (so x1 = 〈h∗, h1〉, x2 = 〈h∗, h2〉 and h∗ <∗F h1 <

∗
F h2)

and x1 RF̄,t̄ T then there is T ∗ ∈ DF̄,t̄ such that T ⊆ T ∗ and
x2 R

F̄,t̄ T – namely T itself may serve as T ∗,
(iv) if x1, x2 ∈ dom(RF̄,t̄), x1 <

F̄,t̄ x2 and x1 R
F̄,t̄ T1, x1 R

F̄,t̄ T2

then there is T ∈ DF̄,t̄ such that

x2 R
F̄,t̄ T, T1 ⊆ T, and (∃n ∈ ω)(∀ν ∈ T2)(ν�n ∈ T1 ⇒ ν ∈ T).

For (β)(iv) we use the assumption that t̄ is (2, h)–additive for h ∈ F . Let x1 =
〈h∗, h1〉, x2 = 〈h∗, h2〉 (so h∗ <∗F h1 <

∗
F h2) and let s̄` = 〈s`,m : m < ω〉 ∈ Uh1(t̄)

be such that T` = Ts̄`,h∗ (for ` = 1, 2). By 5.2.8(1c) we find n < ω such that

(∀m ≥ n)(h1(mtn
dn) + 1 < h2(mtn

dn)).

For each m ≥ n we choose sm ∈ Σ(tm) such that

s1,m, s2,m ∈ Σ(sm) and nor[sm] ≤ max{nor[s1,m],nor[s2,m]}+ 1 < h2(mtn
dn)

(remember that tm is (2, h1(mtm
dn))–additive). For m < n we let sm = s1,m ∈

V mh1
(t̄) ⊆ V mh2

(t̄). Finally let s̄ = 〈sm : m < ω〉. As (K,Σ) is nice, and by the

choice of the sm’s we have s̄ ∈ Uh2
(t̄). Look at T

def
= Ts̄,h∗ ∈ DF̄,t̄. By definitions,

x2 R
F̄,t̄ T , T1 ⊆ T (remember that Σ(s1,m) ⊆ Σ(sm) for all m ∈ ω) and if ν ∈ T2,

ν�n ∈ T1 then ν ∈ T (as Σ(s2,m) ⊆ Σ(sm) for m ≥ n and sm = s1,m for m < n).

Now comes the main part: conditions (γ) and (δ) of [Sh:f, Ch VI, 1.2(1)]. As
the second one is stronger, we will verify it only. Let us state what we have to
show.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

5.2. (t̄, F̄)–BOUNDING 103

(δ) If V∗ is a generic extension of V and, in V∗, (DF̄,t̄, RF̄,t̄) is a weak
covering model (i.e. it still covers) then the following two requirements
are satisfied (in V∗).

(a) If x, x+, xn ∈ dom(RF̄,t̄) and Tn ∈ DF̄,t̄ are such that for each n ∈ ω:

xn <
F̄,t̄ xn+1 <

F̄,t̄ x+ <F̄,t̄ x and xn R
F̄,t̄ Tn

then there are T ∗ ∈ DF̄,t̄ and W ∈ [ω]ω such that x RF̄,t̄ T ∗ and

{η ∈ ωω : (∀i∈W)(η�min(W \ (i+1)) ∈
⋃
j<i,
j∈W

Tj ∪ T0)} ⊆ lim(T ∗).

(b) If η, ηn ∈ ωω are such that η�n = ηn�n for every n ∈ ω and x ∈
dom(RF̄,t̄) then

(∃T ∈ DF̄,t̄)(∃∞n)
(
x RF̄,t̄ T & ηn ∈ lim(T)

)
.

So suppose that V ⊆ V∗ is a generic extension and V∗ |=“(DF̄,t̄, RF̄,t̄) covers”.
We work in V∗.

(δ)(a) Let h∗, hn, h
+, h ∈ F be such that xn = 〈h∗, hn〉, x = 〈h∗, h〉, x+ =

〈h∗, h+〉 and h∗ <∗F hn <
∗
F hn+1 <

∗
F h+ <∗F h. Choose inductively an increasing

sequence 0 < n0 < n1 < . . . < ω such that

(∀m ≥ n0)(h0(mtm
dn) + 1 < h1(mtm

dn) ≤ h+(mtm
dn)) and

(∀i ∈ ω)(∀m ≥ ni+1)(hni(m
tm
dn) + i+ 2 < hni+1(mtm

dn) ≤ h+(mtm
dn))

(possible by 5.2.8(1c)). Let s̄n = 〈sn,m : m < ω〉 ∈ Uhn(t̄) ∩ DF̄,t̄ be such that
Tn = Ts̄n,h∗ . (Note: each s̄n, hn is in V but the sequences 〈s̄n : n < ω〉, 〈hn : n < ω〉
do not have to be there.) Using (2, h+)–additivity of t̄ we choose s+

m ∈ Σ(tm) such
that for all m ∈ ω we have nor[s+

m] ≤ h+(msm
dn) and

if m < n1 then s+
m = s0,m (so s0,m ∈ Σ(s+

m)),

if ni+1 ≤ m < ni+2, i < ω then s0,m, sn0,m, . . . , sni,m ∈ Σ(s+
m)

(remember the choice of the ni’s). As (K,Σ) is nice we have s̄+ = 〈s+
m : m < ω〉 ∈

Uh+(t̄). Since h+ <∗F h and V∗ |=“(DF̄,t̄, RF̄,t̄) covers” we find s̄ ∈ Uh(t̄) ∩ DF̄,t̄

such that s̄ ≤ s̄+ (compare the proof of 5.2.9.2). Look at T ∗
def
= Ts̄,h∗ ∈ DF̄,t̄. By

the definitions, x RF̄,t̄ T ∗. Let W
def
= {ni : i ∈ ω}. Suppose that η ∈ ωω is such

that

(∀i ∈ ω)(η�ni+1 ∈
⋃
j<i

Tnj ∪ T0).

This means that for each m ∈ ω:

if m < n1 then η�(m+ 1) ∈ T0 = Ts̄0,h∗ and so

ψh
∗

m (η(m)) ∈ Σ(s0,m) ⊆ Σ(s+
m) ⊆ Σ(sm),

if ni+1 ≤ m < ni+2, i ∈ ω then η�(m + 1) ∈ T0 ∪ Tn0 ∪ . . . ∪ Tni
and so

ψh
∗

m (η(m)) ∈ Σ(s0,m) ∪ Σ(sn0,m) ∪ . . . ∪ Σ(sni,m) ⊆ Σ(s+
m) ⊆ Σ(sm).

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

104 5. AROUND NOT ADDING COHEN REALS

Hence (∀m ∈ ω)(ψh
∗

m (η(m)) ∈ Σ(sm)) what implies that η ∈ lim(Ts̄,h∗) = lim(T ∗),
finishing the proof of (δ)(a).

(δ)(b) This is somewhat similar to (δ)(a). Let h∗, h ∈ F be such that x = 〈h∗, h〉
(so h∗ <∗F h). As F̄ is a dense partial order we may take h+ ∈ F such that
h∗ <∗F h

+ <∗F h. Choose 0 < n0 < n1 < . . . < ω such that

(∀i ∈ ω)(∀m ≥ ni)(h∗(mtm
dn) + i+ 2 < h+(mtm

dn)).

Now take s+
m ∈ Σ(tm) such that for m ∈ ω we have nor[s+

m] ≤ h+(msm
dn) and

if m < n0 then s+
m = ψh

∗

m (ηn0(m)) (so ψh
∗

m (ηn0(m)) ∈ Σ(s+
m)), and

if ni ≤ m < ni+1, i < ω then ψh
∗

m (ηn0
(m)), . . . , ψh

∗

m (ηni+1
(m)) ∈

Σ(s+
m)

(possible as t̄ is (2, h+)–additive; remember the choice of the ni’s). Note that, since
η�n = ηn�n for all n ∈ ω, we have that

(∀i ∈ ω)(∀m ∈ ω)(ψh
∗

m (ηni(m)) ∈ Σ(s+
m)).

Let s̄+ = 〈s+
m : m < ω〉. Thus s̄+ ∈ Uh+(t̄) and, as (DF̄,t̄, RF̄,t̄) covers in V∗ and

h+ <∗F h, we find s̄ = 〈sm : m < ω〉 ∈ Uh(t̄)∩DF̄,t̄ such that s̄ ≤ s̄+. Now we have

(∀i ∈ ω)(∀m ∈ ω)(ψh
∗

m (ηni(m)) ∈ Σ(sm)),

and therefore (∀i ∈ ω)(ηni ∈ lim(Ts̄,h∗)). As x RF̄,t̄ Ts̄,h∗ , we finish the proof of
the claim.

Now, to finish the proof of the theorem we put together 5.2.9.2, 5.2.9.3 and
[Sh:f, Ch VI, 1.13A]. �

5.3. Quasi-generic Γ and preserving them

Here we will develop the technique announced in [Sh:f, Ch XVIII, 3.14, 3.15],
putting it in a slightly more general setting, more suitable for our context. We will
get a reasonably weak, but still easily iterable, condition for not adding Cohen reals
– this will be used in 5.4.3, 5.4.4. But the general schema presented here will be
applied in the next chapter too (to preserve some ultrafilters on ω).

Definition 5.3.1. Suppose that (K,Σ) is a creating pair, t̄ = 〈tk : k < ω〉 ∈
PC(K,Σ).

(1) A function W : ω × ω × ωω^ −→ P(K) is called a t̄–system for (K,Σ) if:
(a) if k ≤ ` < ω and σ : [mtk

dn,m
t`
up) −→ ω then W (mtk

dn,m
t`
up, σ) ⊆

Σ(tk, . . . , t`), in all other instances W (m0,m1, σ) is empty,
(b) if s ∈ Σ(tk, . . . , t`), k ≤ ` < ω then there is n = nW (s) ∈ [k, `] such

that for each σ0, σ1 : [mtk
dn,m

t`
up) −→ ω

if σ0�[m
tn
dn,m

tn
up) = σ1�[m

tn
dn,m

tn
up)

then s ∈W (ms
dn,m

s
up, σ0) ⇔ s ∈W (ms

dn,m
s
up, σ1),

(c) if k0 < k1 < . . . < ki, sj ∈ Σ(tkj , . . . , tkj+1−1) for j < i, s ∈
Σ(s0, . . . , si−1) and j0 < i is such that nW (s) ∈ [kj0 , kj0+1) (see
(b) above) and σ : [ms

dn,m
s
up) −→ ω then

sj0 ∈W (m
sj0
dn ,m

sj0
up , σ�[m

sj0
dn ,m

sj0
up)) ⇒ s ∈W (ms

dn,m
s
up, σ),

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

5.3. QUASI-GENERIC Γ AND PRESERVING THEM 105

(d) for some unbounded non-decreasing function G : (1,∞) −→ R≥0

(called sometimes the weight of W), for every s ∈ Σ(tk, . . . , t`), k ≤
` < ω, nor[s] > 1, and each σ : [mtk

dn,m
t`
dn) −→ ω there is t ∈

W (mtk
dn,m

t`
up, σ) such that

t ∈ Σ(s) and nor[t] ≥ G(nor[s]).

If the function G might be G(x) = x − 1 then we call the t̄–system
W regular.

(2) For a norm condition C(nor) we let

P∗C(nor)(t̄, (K,Σ))
def
= {s̄ ∈ PCC(nor)(K,Σ) : t̄ ≤ s̄}.

It is equipped with the partial order ≤ inherited from PCC(nor)(K,Σ).
We introduce another relation �C(nor) on P∗C(nor)(t̄, (K,Σ)) letting

s̄0 �C(nor) s̄1 if and only if
there is s̄2 ∈ P∗C(nor)(t̄, (K,Σ)) such that s̄0 ≤ s̄2 and the

sequence s̄2 is eventually equal to s̄1.
If the norm condition C(nor) is clear we may omit the index to �.

(3) For a t̄–system W (for (K,Σ)) and Γ ⊆ P∗C(nor)(t̄, (K,Σ)) we say that Γ

is quasi-W -generic in P∗C(nor)(t̄, (K,Σ)) if

(a) (Γ,�) is directed (i.e. (∀s̄0, s̄1 ∈ Γ)(∃s̄ ∈ Γ)(s̄0 � s̄ & s̄1 � s̄)) and
countably closed (i.e. if 〈s̄n : n < ω〉 ⊆ Γ is �–increasing then there
is s̄ ∈ Γ such that (∀n ∈ ω)(s̄n � s̄)),

(b) for every function η ∈ ωω there is s̄ = 〈sm : m < ω〉 ∈ Γ such that

(∀∞m)(sm ∈W (msm
dn ,m

sm
up , η�[m

sm
dn ,m

sm
up))).

Remark 5.3.2. The demand 5.3.1(1d) is to ensure the existence of quasi-W -
generic sets Γ (see 5.3.4(2) below). Conditions 5.3.1(1b) and 5.3.1(1c) are to pre-
serve quasi-W -genericity in countable support iterations. As formulated, they will
be crucial in the proof of 5.3.12.2(2).

Natural applications of the notions introduced in 5.3.1 will be when (K,Σ) is
simple or “simple plus at most omitting”. In both cases it will be easy to check
demands 5.3.1(1b,c). In the first case they are trivial, see 5.3.3 below.

Proposition 5.3.3. Suppose that (K,Σ) is a creating pair and t̄ ∈ PC(K,Σ).

(1) If (K,Σ) is simple then the condition 5.3.1(1b) is empty (so may be omit-
ted) and the condition 5.3.1(1c) is equivalent to

(c)− if t ∈W (mtn
dn,m

tn
up, σ), σ : [mtn

dn,m
tn
up) −→ ω and s ∈ Σ(t)

then s ∈W (mtn
dn,m

tn
up, σ).

(2) If W is a t̄–system for (K,Σ), η ∈ ωω and s̄` = 〈s`,m : m < ω〉 ∈
P∗∅(t̄, (K,Σ)) (for ` < 2) are such that

s0 � s1 and (∀∞m)(s0,m ∈W (m
s0,m
dn ,ms0,m

up , η�[ms0,m
dn ,ms0,m

up)))

then

(∀∞m)(s1,m ∈W (m
s1,m
dn ,ms1,m

up , η�[ms1,m
dn ,ms1,m

up))).

Proposition 5.3.4. Suppose that (K,Σ) is a creating pair, C(nor) is one of
the norm conditions introduced in 1.1.10 (i.e. it is one of (s∞), (∞), (w∞) or (f)
for some fast function f) and t̄ ∈ PCC(nor)(K,Σ).

(1) (P∗C(nor)(t̄, (K,Σ)),�C(nor)) is a countably closed partial ordering.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

106 5. AROUND NOT ADDING COHEN REALS

(2) Assume CH. Further suppose that if C(nor) ∈ {(s∞), (w∞)} then (K,Σ)
is growing. Let W : ω × ω × ωω^ −→ P(K) be a t̄–system which is regular
if C(nor) = (f) (for some fast function f). Then there exists a quasi-W -
generic Γ in P∗C(nor)(t̄, (K,Σ)).

Proof. We will show this for C(nor) = (∞). In other instances the proof is
similar and requires very small changes only.

1) It should be clear that � is a partial order on P∗∞(t̄, (K,Σ)). To show that it is
countably closed suppose that s̄n = 〈sn,m : m < ω〉 ∈ P∗∞(t̄, (K,Σ)) are such that
s̄n � s̄n+1 for all n ∈ ω. Choose an increasing sequence m0 < m1 < . . . < ω such
that (∀i ∈ ω)(∃m ∈ ω)(mi = m

si,m
dn) and for each n ≤ i < ω:

if m < ω, mi ≤ m
sn,m
dn then nor[sn,m] ≥ i and

if m < ω, mi ≤ m
si,m
dn then (∃m′ < m′′ < ω)(si,m ∈ Σ(sn,m′ , . . . , sn,m′′−1)).

Now choose s̄ = 〈sm : m < ω〉 ∈ PC(K,Σ) such that
if m ∈ ω, ms0,m

dn < m1 then sm = s0,m,
if m ∈ ω, m

sk+1,m
dn ∈ [mk+1,mk+2) then sk+1,m = sm∗ for some m∗ ∈ ω.

Clearly the choice is possible (and uniquely determined) and, by the niceness, we
are sure that s̄ ∈ PC(K,Σ). Moreover, by the choice of mi’s, we have that s̄ ∈
PC∞(K,Σ) and so s̄ ∈ P∗∞(t̄, (K,Σ)). Plainly, s̄n � s̄ for all n ∈ ω.

2) First note that if s̄ ∈ P∗∞(t̄, (K,Σ)), η ∈ ωω then there is s̄∗ = 〈s∗m : m < ω〉 ∈
P∗∞(t̄, (K,Σ)) such that s̄ ≤ s̄∗ and (∀∞m)(s∗m ∈W (m

s∗m
dn ,m

s∗m
up , η�[m

s∗m
dn ,m

s∗m
up))) (by

5.3.1(1d), remember that the weight of W is unbounded and non-decreasing).
Using this remark, (1) above, and the assumption of CH we may build a �-

increasing sequence 〈s̄α : α < ω1〉 ⊆ P∗∞(t̄, (K,Σ)) such that

(∀η ∈ ωω)(∃α < ω1)(∀∞n)(sα,n ∈W (m
sα,n
dn ,msα,n

up , η�[msα,n
dn ,msα,n

up))).

This sequence gives a quasi-W -generic Γ = {s̄α : α < ω1}.
Note that proving (2) for C(nor) ∈ {(s∞), (w∞)} we have to assume something
about the creating pair (K,Σ). The assumption that it is growing is the most
natural one (in our context). It allows us to obtain the respective version of the
first sentence of the proof of (2) for (∞). Similarly, if C(nor) is (f) then we need
too assume something about the weight of the system W . The assumption that W
is regular is much more than really needed. �

Remark 5.3.5. If Wi are t̄–systems (for i ∈ ω1) then we may construct in a
similar way (under CH) Γ which is quasi-Wi-generic for all i < ω1.

Definition 5.3.6. Let (K,Σ) be a creating pair, t̄ ∈ PCC(nor)(K,Σ) (where
C(nor) is a norm condition). Suppose that W : ω×ω×ωω^ −→ P(K) is a t̄–system
for (K,Σ), and Γ ⊆ P∗C(nor)(t̄, (K,Σ)) is quasi-W -generic. We say that a proper

forcing notion P is (Γ,W)–genericity preserving (or Γ–genericity preserving if W is
clear) if P “ Γ is quasi-W -generic”.

Remark 5.3.7. (1) Note that if P is a proper forcing notion and Γ ⊆
P∗C(nor)(t̄, (K,Σ)) is quasi-W -generic then

P “(Γ,�) is directed and countably closed”.

Which may fail after the forcing is condition 5.3.1(3b), so the real meaning
of 5.3.6 is that this condition is preserved.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

5.3. QUASI-GENERIC Γ AND PRESERVING THEM 107

(2) The composition of Γ–genericity preserving forcing notions is clearly Γ–
genericity preserving. To handle the limit stages in countable support
iterations we use the main result of [Sh:f, Ch XVIII, §3], see 5.3.12 below.

Definition 5.3.8. Let (K,Σ) be a creating pair, t̄ ∈ PC(K,Σ). We say that a
t̄–system W : ω × ω × ωω^ −→ P(K) is

(1) Cohen–sensitive if for all sufficiently large m′ ≤ m′′ < ω

(∀s ∈ Σ(tm′ , . . . , tm′′))(∃σ : [ms
dn,m

s
up) −→ ω)(s /∈W (ms

dn,m
s
up, σ)),

(2) directed if for every m′ ≤ m′′ < ω, σ0, . . . , σm : [m
tm′
dn ,m

tm′′
up) −→ ω

(m < ω) there is σ : [m
tm′
dn ,m

tm′′
up) −→ ω such that

W (m
tm′
dn ,m

tm′′
up , σ) ⊆

⋂
`≤m

W (m
tm′
dn ,m

tm′′
up , σ`).

Proposition 5.3.9. Suppose that (K,Σ) is a creating pair, t̄ ∈ PCC(nor)(K,Σ),
W : ω × ω × ωω^ −→ P(K) is a t̄–system and Γ ⊆ P∗C(nor)(t̄, (K,Σ)) is quasi-W -

generic. Let P be a proper forcing notion.

(1) If W is Cohen–sensitive and P is Γ–genericity preserving then P does not
add Cohen reals.

(2) If W is directed, (K,Σ) is simple and P is ωω–bounding then P is Γ–
genericity preserving.

Proof. 1) Note that if η ∈ ωω is a Cohen real over V, W is Cohen–sensitive
and s̄ = 〈sm : m < ω〉 ∈ PC(K,Σ) ∩V then

(∃∞m)(sm /∈W (msm
dn ,m

sm
up , η�[m

sm
dn ,m

sm
up))).

2) Suppose that η̇ is a P–name for a real in ωω , p ∈ P. As P is ωω–bounding we
find a function η ∈ ωω and a condition q ≥ p such that q P (∀n < ω)(η̇(n) < η(n)).
Since W is directed we can find η∗ ∈ ωω such that for each m < ω

W (mtm
dn ,m

tm
up , η

∗�[mtm
dn ,m

tm
up)) ⊆

⋂
{W (mtm

dn ,m
tm
up , σ) : σ ∈

∏
mtmdn ≤k<m

tm
up

η(k)}.

Next, as Γ is quasi-W -generic, we find s̄ = 〈sm : m < ω〉 ∈ Γ such that

(∀∞m)(sm ∈W (msm
dn ,m

sm
up , η

∗�[msm
dn ,m

sm
up))).

We finish noting that (∀m < ω)(sm ∈ Σ(tm)), as (K,Σ) is simple. �

Definition 5.3.10. Suppose that (K`,Σ`) are simple creating pairs and t̄` =

〈t`,m : m < ω〉 ∈ PC(K`,Σ`) (for ` < 2) are such that (∀m < ω)(m
t0,m
dn = m

t1,m
dn).

(1) Let h0, h1 ∈ ωω . We say that t̄1–systems W0,W1 : ω×ω×ωω^ −→ P(K1)
(for (K1,Σ1)) are (t̄0, h0, h1)–coherent if there are functions ρ0, ρ1 (called
(t̄0, h0, h1)–coherence witnesses) such that
(a) ρ0, ρ1 : ωω^ −→

⋃
{Σ0(t0,m) : m < ω},

(b) if σ : [m
t1,m
dn ,m

t1,m
up) −→ ω, m < ω then ρ`(σ) ∈ Σ0(t0,m) and

nor[ρ`(σ)] ≤ h`(mt0,m
dn) (for ` = 0, 1),

(c) for sufficiently large m < ω, for every σ0 : [m
t1,m
dn ,m

t1,m
up) −→ ω, there

is σ∗0 : [m
t1,m
dn ,m

t1,m
up) −→ ω such that

W1(m
t1,m
dn ,mt1,m

up , σ1) ⊆W0(m
t1,m
dn ,mt1,m

up , σ0)

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

108 5. AROUND NOT ADDING COHEN REALS

whenever σ1 : [m
t1,m
dn ,m

t1,m
up) −→ ω is such that ρ0(σ∗0) ∈ Σ0(ρ1(σ1));

the sequence σ∗0 , as well as ρ0(σ∗0), will be called a ρ0–cover for σ0,

(d) for each s ∈ Σ0(t0,m), m < ω, if nor[s] ≤ h1(m
t0,m
dn) then there is

σ : [m
t1,m
dn ,m

t1,m
up) −→ ω such that ρ1(σ) = s.

(2) Suppose that F̄ = (F , <∗F) is a t̄0–good partial order (see 5.2.8). We say
that a family 〈W k

h : h ∈ F , k ∈ ω〉 of t̄1–systems for (K1,Σ1) is (t̄0, F̄)–
coherent if for every k ∈ ω and h0 ∈ F there is h1 ∈ F such that h0 <

∗
F h1

and the systems W k
h0
,W k+1

h1
are (t̄0, h0, h1)–coherent.

Theorem 5.3.11. Let (K0,Σ0), (K1,Σ1) be simple creating pairs and let

t̄0 ∈ PC∞(K0,Σ0), t̄1 ∈ PCC(nor)(K1,Σ1)

be such that (∀m < ω)(m
t0,m
dn = m

t1,m
dn). Assume that F̄ = (F , <∗F) is a t̄0–good

partial order and 〈W k
h : h ∈ F , k ∈ ω〉 is a (t̄0, F̄)–coherent family of t̄1–systems for

(K1,Σ1). Further suppose that Γ ⊆ P∗C(nor)(t̄1, (K1,Σ1)) is quasi-W k
h -generic for

all h ∈ F , k ∈ ω. Then every (t̄0, F̄)–bounding proper forcing notion is (Γ,W k
h)–

genericity preserving for all h ∈ F , k ∈ ω.

Proof. Let P be a proper (t̄0, F̄)–bounding forcing notion. We have to show
that for all h ∈ F , k ∈ ω

P “Γ is quasi-W k
h -generic”.

For this suppose that η̇ is a P–name for a real in ωω , p ∈ P, k ∈ ω and h0 ∈ F .
Take h1 ∈ F such that h0 <∗F h1 and the systems W k

h0
, W k+1

h1
are (t̄0, h0, h1)–

coherent and let functions ρ0, ρ1 : ωω^ −→
⋃
{Σ0(t0,m) : m ∈ ω} witness this fact.

Let ˙̄s = 〈ṡm : m < ω〉 be a P–name for an element of Uh0
(t̄0) such that for some

N ∈ ω

p P “ (∀m ≥ N)(ṡm is a ρ0–cover for η̇�[mt1,m
dn ,mt1,m

up)) ” (see 5.3.10(1c))

(remember clause 5.3.10(1b)). Now, as P is (t̄0, F̄)–bounding and h0 <
∗
F h1, we

find a condition q ≥ p and s̄∗ = 〈s∗m : m < ω〉 ∈ Uh1
(t̄0) such that q P s̄

∗ ≤ ˙̄s.
Since (K0,Σ0) is simple this means that q P (∀m ∈ ω)(ṡm ∈ Σ0(s∗m)). Let

η ∈ ωω be such that for each m ∈ ω we have ρ1(η�[mt1,m
dn ,m

t1,m
up)) = s∗m (remember

nor[s∗m] ≤ h1(m
s∗m
dn); see clause 5.3.10(1d)). We know that Γ is quasi-W k+1

h1
-generic,

so there is s̄ = 〈sm : m < ω〉 ∈ Γ such that

(∀∞m)(sm ∈W k+1
h1

(msm
dn ,m

sm
up , η�[m

sm
dn ,m

sm
up))).

But (K1,Σ1) is simple too, so msm
dn = m

s∗m
dn , msm

up = m
s∗m
up . Thus we may apply

5.3.10(1c) and conclude that for sufficiently large m

q P sm ∈W k+1
h1

(msm
dn ,m

sm
up , η�[m

sm
dn ,m

sm
up)) ⊆W k

h0
(msm

dn ,m
sm
up , η̇�[m

sm
dn ,m

sm
up)),

so we are done. �

Theorem 5.3.12. Suppose that (K,Σ) ∈ H(ℵ1) is a creating pair and C(nor)
is a norm condition. Assume that

t̄ = 〈tk : k < ω〉 ∈ PCC(nor)(K,Σ),
W : ω × ω × ωω^ −→ P(K) is a t̄–system and
Γ ⊆ P∗C(nor)(t̄, (K,Σ)) is a quasi-W -generic for (K,Σ).

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

5.3. QUASI-GENERIC Γ AND PRESERVING THEM 109

Let 〈Pα, Q̇α : α < β〉 be a countable support iteration of proper forcing notions such
that for each α < β:

Pα “ Q̇α is Γ–genericity preserving ”.

Then Pβ is Γ–genericity preserving.

Proof. We will use the preservation theorem [Sh:f, Ch XVIII, 3.6] and there-
fore we will follow the notation and terminology of [Sh:f, Ch XVIII, §3], checking
all necessary details. First we have to define our context (R̄Γ,W , SΓ,W ,gΓ,W) (see
[Sh:f, Ch XVIII, 3.1]).

For each m ∈ {mtk
dn : k ∈ ω} we fix a mapping

ψm : ω
onto−→ {s ∈ K : (∃k ≤ ` < ω)(s ∈ Σ(tk, . . . , t`) & mtk

dn = m)}.

Next, for η ∈ ωω we let ψ(η) = 〈ψm0(η(0)), ψm1(η(1)), . . .〉, where mt0
dn = m0 <

m1 < m2 < . . . < ω are chosen in such a way that m
ψmk (η(k))
up = mk+1. Note that

ψ(η) ∈ P∗∅(t̄, (K,Σ)), though it does not have to be in P∗C(nor)(t̄, (K,Σ)) (we do not

control the norms).
Now we choose (R̄Γ,W , SΓ,W ,gΓ,W) such that:

• SΓ,W is, in the ground model V, the collection of all intersections N ∩
H(ℵ1), where N is a countable elementary submodel of (H(χ),∈, <∗χ); so

SΓ,W ⊆ ([H(ℵ1)V]≤ ℵ0)V is stationary (we could replace SΓ,W by any
stationary subset),

• for each a ∈ SΓ,W we let d[a] = c[a] = ω (so d′[a] = c′[a] = ω),
• α∗ = ω,
• for n < α∗ and η, g ∈ ωω we let

η Rn g if and only if

if ψ(g) = 〈sgm : m < ω〉 and m ∈ ω is such that m
sgm
up ≥ n then

sgm ∈W (m
sgm
dn ,m

sgm
up , η�[m

sgm
dn ,m

sgm
up)),

• R̄Γ,W is a three place relation such that (η, n, g) ∈ R̄Γ,W if and only if
η, g ∈ ωω , n ∈ ω and η Rn g
(note: this is a definition of a relation, not a fixed object from V),

• gΓ,W = 〈ga : a ∈ SΓ,W 〉 ⊆ ωω is such that for every a, a′ ∈ SΓ,W :
(α) ψ(ga) = 〈gψa,m : m < ω〉 ∈ Γ,

(β) (∀η ∈ a ∩ ωω)(∀∞m)(gψa,m ∈W (m
gψa,m
dn ,m

gψa,m
up , η�[m

gψa,m
dn ,m

gψa,m
up))),

(γ) if a′ ∈ a ∩ SΓ,W , s̄ ∈ a ∩ Γ then ψ(ga′) � ψ(ga) and s̄ � ψ(ga).

Note that we may choose ga by ∈–induction for a ∈ SΓ,W considering all a′ ∈
a ∩ SΓ,W , s̄ ∈ a ∩ Γ and η ∈ a ∩ ωω . So, before we choose ga, we first take
s̄η = 〈sη,m : m < ω〉 ∈ Γ for η ∈ a ∩ ωω such that

(β∗) (∀∞m)(sη,m ∈W (m
sη,m
dn ,m

sη,m
up , η�[msη,m

dn ,m
sη,m
up)))

(possible by 5.3.1(3b)). Next, as (Γ,�) is directed and countably closed (by
5.3.1(3a)) we may find s̄0 ∈ Γ such that

(∀η ∈ a ∩ ωω)(∀a′ ∈ a ∩ SΓ,W)(∀s̄ ∈ a ∩ Γ)(ψ(ga′) � s̄0 & s̄ � s̄0 & s̄η � s̄0).

Let ga ∈ ωω be such that ψ(ga) = s̄0. It is easy to check that ga is as required (in
(α)–(γ) above; for (β) we use 5.3.3(2)).

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

110 5. AROUND NOT ADDING COHEN REALS

Claim 5.3.12.1. (1) (R̄Γ,W , SΓ,W ,gΓ,W) covers in V (see [Sh:f, Ch XVIII,
3.2]), i.e.:

if x ∈ V then there is a countable elementary submodel N of

(H(χ),∈, <∗χ) such that a
def
= N∩H(ℵ1)V ∈ SΓ,W , (R̄Γ,W , SΓ,W ,gΓ,W),

x ∈ N and (∀η ∈ N ∩ ωω)(∃n < ω)(η Rn ga).
(2) Let P be a proper forcing notion. Then the following conditions are equiv-

alent:
(⊕)1 P“(R̄Γ,W , SΓ,W ,gΓ,W) covers”,
(⊕)2 P is Γ-genericity preserving,
(⊕)3 if p ∈ P and N is a countable elementary submodel of (H(χ),∈, <∗χ)

such that p,P, SΓ,W ,gΓ,W ∈ N , a
def
= N ∩ H(ℵ1) ∈ SΓ,W then there

is an (N,P)–generic condition q ∈ P stronger than p and such that

q P “(∀η ∈ ωω ∩N [ΓP])(∃n < ω)(η Rn ga)”.

Proof of the claim: 1) By the choice of (R̄Γ,W , SΓ,W ,gΓ,W) (see condition (β) of
the choice of gΓ,W).

2) Assume (⊕)1. Let η̇ be a P-name for a real in ωω , p ∈ P. By the assumption

we find q ≥ p, a ∈ SΓ,W and a P-name Ṅ for an elementary submodel such that

q P “Ṅ ∩H(ℵ1)V = a & η̇ ∈ Ṅ & (∀η ∈ ωω ∩ Ṅ)(∃n < ω)(η Rn ga)”.

But, as ψ(ga) ∈ Γ, this is enough to conclude (⊕)2 (see the definitions of Rn,
R̄Γ,W).

Now, suppose that (⊕)2 holds true. Let N, p be as in the assumptions of (⊕)3 (so

a
def
= N ∩H(ℵ1) ∈ SΓ,W). Let q ∈ P be any (N,P)–generic condition stronger than

p. Then, by (⊕)2, the condition q forces in P that

(∀η∈ωω∩N [ΓP])(∃〈sm : m<ω〉∈Γ∩N)(∀∞m)(sm ∈W (msm
dn ,m

sm
up , η�[m

sm
dn ,m

sm
up)))

(note that rng(gΓ,W) ∈ N is a cofinal subset of Γ). But now, using 5.3.3(2) and
clause (γ) of the choice of gΓ,W , we conclude

q P (∀η ∈ ωω ∩N [ΓP])(∃n < ω)(η Rn ga).

The implication (⊕)3 ⇒ (⊕)1 is straightforward.

Claim 5.3.12.2. Suppose that P is a proper forcing notion such that

P “(R̄Γ,W , SΓ,W ,gΓ,W) covers”.

Then:

(1) If Q̇ is a P-name for a proper Γ-genericity preserving forcing notion then

P “Q̇ is (R̄Γ,W , SΓ,W ,gΓ,W)–preserving (for Possibility A∗)”

(see [Sh:f, Ch XVIII, 3.4]).
(2) P“(R̄Γ,W , SΓ,W ,gΓ,W) strongly covers in the sense of Possibility A∗” (see

[Sh:f, Ch XVIII, 3.3]).

Proof of the claim: 1) We have to show that the following condition holds true
in VP:

(∗) Assume
(i) χ1 is large enough, χ > 2χ1 ,

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

5.3. QUASI-GENERIC Γ AND PRESERVING THEM 111

(ii) N is a countable elementary submodel of (H(χ),∈, <∗χ), a
def
= N ∩

H(ℵ1)V ∈ SΓ,W , and Q̇, SΓ,W ,gΓ,W , χ1, . . . ∈ N ,
(iii) (∀η ∈ ωω ∩N)(∃n < ω)(η Rn ga),

(iv) η̇0 ∈ N is a Q̇-name for a real in ωω ,
(v) η∗0 ∈ ωω ,

(vi) p, pn ∈ Q̇ ∩N are such that p ≤Q̇ pn ≤Q̇ pn+1 for all n ∈ ω,

(vii) η∗0 , 〈pn : n < ω〉 ∈ N ,
(viii) (∀x ∈ ω)(∀∞n)(pn Q̇ η̇0(x) = η∗0(x)),

(ix) n0 < ω is such that η∗0 Rn0 ga,
(xi) there is a countable elementary submodel N1 of (H(χ1),∈, <∗χ1

) such

that Q̇, SΓ,W ,gΓ,W ∈ N1 ∈ N , and for every open dense subset I of
Q̇, I ∈ N1 for some n ∈ ω we have pn ∈ I ∩N1 (i.e. 〈pn : n ∈ ω〉 is a
generic sequence over N1).

Then there is an (N, Q̇)–generic condition q ∈ Q̇ stronger than p and such
that
(a) q Q̇“η̇0 Rn0 ga” and

(b) q Q̇“(∀η ∈ ωω ∩N [ΓQ̇])(∃n < ω)(η Rn ga)”.

So suppose that χ1, χ,N,N1, a, η̇0, η
∗
0 , n0, p and pn (for n ∈ ω) are as in the assump-

tions of (∗). Passing to a subsequence (in N) we may assume that pn Q̇“η̇0�n =

η∗0�n”. Remember that we work in VP.
So, as (R̄Γ,W , SΓ,W ,gΓ,W) covers and N ≺ (H(χ),∈, <∗χ), we find a countable

elementary submodel N2 of (H(χ1),∈, <∗χ1
) such that

Q̇, SΓ,W ,gΓ,W , η̇0, η
∗
0 , 〈pn : n < ω〉, N1, . . . ∈ N2 ∈ N, a2

def
= N2 ∩H(ℵ1)V ∈ SΓ,W

and (∀η ∈ ωω ∩N2)(∃n < ω)(η Rn ga2).

By the choice of gΓ,W we know that ψ(ga2
) � ψ(ga) (as a2 ∈ a) and hence we find

m∗ ∈ [n0, ω) such that

if m < ω, m
gψa,m
up ≥ m∗ then for some m′ ≤ m′′ < ω we have

gψa,m ∈ Σ(gψa2,m′
, . . . ,gψa2,m′′

).

Now, working in N , we inductively choose sequences 〈n` : ` < ω〉, 〈k` : ` < ω〉,
〈m` : ` < ω〉, 〈q` : ` < ω〉 and 〈σ` : ` < ω〉, all from N .

Step ` = 0.

The n0 is given already. Let m0 be the first such that m∗ ≤ m
gψa2,m0

dn and let

k0 = n0, q0 = pn0
, σ0 = η∗0�m

gψa2,m0
up .

Step `+ 1.

Suppose we have defined n`, k`,m`, q`, σ`. We let n`+1 = m
gψa2,m`
up and we choose

an (N2, Q̇)–generic condition q`+1 ≥ pn`+1
, integers k`+1 ∈ [n`+1, ω) and m`+1 ∈

(m`, ω), and a finite function σ`+1 : [n`+1,m
gψa2,m`+1
up) −→ ω such that:

(α) q`+1 Q̇“(∀η ∈ ωω ∩N2[ΓQ̇])(∃n < ω)(η Rn ga2)”,

(β) q`+1 Q̇“η̇0 Rk`+1
ga2

”,

(γ) m`+1 is the first such that k`+1 ≤ m
gψa2,m`+1

dn ,

(δ) q`+1 Q̇“η̇0�[n`+1,m
gψa2,m`+1
up) = σ`+1”

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

112 5. AROUND NOT ADDING COHEN REALS

(possible as, in VP, Q̇ is a proper Γ-genericity preserving forcing notion, remember
5.3.12.1(2)). Note that all parameters needed for the construction are in N . After
it we have

n0 = k0 ≤ m
gψa2,m0

dn < m
gψa2,m0
up = n1 ≤ k1 ≤ m

gψa2,m1

dn < m
gψa2,m1
up = n2 ≤ k2 ≤ . . .

and σ0 : [0, n1) −→ ω, σ`+1 : [n`+1, n`+2) −→ ω. Let η
def
= σ0

_σ1
_σ2

_. . . ∈ N∩ωω .
By (iii), we find ` > 0 such that η Rn` ga. We claim that q` Q̇“η̇0 Rn0 ga”. If

not, then we find a condition q ≥ q` and m < ω such that m
gψa,m
up ≥ n0 and

q Q̇ “gψa,m /∈W (m
gψa,m
dn ,m

gψa,m
up , η̇0�[m

gψa,m
dn ,m

gψa,m
up))”.

Let n = nW (gψa,m) (see 5.3.1(1b)) and let m′ < ω be such that m
gψ
a2,m

′

dn ≤ mtn
dn <

mtn
up ≤ m

gψ
a2,m

′
up . Consider the following three possibilities.

Case 1: m
gψ
a2,m

′

dn ≥ k`.

By the choice of m0 and m∗ (remember ` > 0, so m
gψa,m
up > m

gψ
a2,m

′

dn ≥ k1 > m∗) we
know that for some m′′ ≤ m′′′ < ω

gψa,m ∈ Σ(gψa2,m′′
, . . . ,gψa2,m′′′

)

and by the choice of k` we know that

q` Q̇ “gψa2,m′
∈W (m

gψ
a2,m

′

dn ,m
gψ
a2,m

′
up , η̇0�[m

gψ
a2,m

′

dn ,m
gψ
a2,m

′
up))”.

By 5.3.1(1c) we conclude that

q` Q̇ “gψa,m ∈W (m
gψa,m
dn ,m

gψa,m
up , η̇0�[m

gψa,m
dn ,m

gψa,m
up))”

(remember the choice of m′, note m′′ ≤ m′ ≤ m′′′), a contradiction.

Case 2: m
gψ
a2,m

′

dn < n`.

Then, by the choice of n` (remember ` > 0), we have m
gψ
a2,m

′
up ≤ n` (and m′ ≤ m`).

As q` Q̇“η̇0�n` = η∗0�n`” and η∗0 Rn0
ga we immediately get a contradiction

(remember 5.3.1(1b) and the choice of m′). So we are left with the following
possibility.

Case 3: n` ≤ m
gψ
a2,m

′

dn < k` (so m′ < m`).
Now the choice of η, n` and clause (δ) of the choice of q` work: we know that

m
gψ
a2,m

′
up ≤ m

gψa2,m`

dn < m
gψa2,m`
up = n`+1,

q` Q̇ “ η̇0�[n`, n`+1) = η�[n`, n`+1) ” and η Rn` ga.

Consequently we get a contradiction like in the previous cases.
Now, choosing an (N, Q̇)–generic condition q ≥ q` such that

q Q̇ “(∀η ∈ ωω ∩N [ΓQ̇])(∃n < ω)(η Rn ga)”

(possible by 5.3.12.1(2)) we finish.

2) Work in VP. We know that (R̄Γ,W , SΓ,W ,gΓ,W) covers. Clearly each Rn (for
n < ω) is (a definition of) a closed relation on ωω . So what is left are the following
two requirements:

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

5.3. QUASI-GENERIC Γ AND PRESERVING THEM 113

⊗ if a1, a2 ∈ SΓ,W , a1 ∈ a2 then for every η ∈ ωω we have

(∃n < ω)(η Rn ga1
) ⇒ (∃n < ω)(η Rn ga2

);

⊕1 if Q̇, η̇0, p, N , N1, G1, n0 are such that (in VP):

(a) Q̇ is a proper forcing notion,

(b) N ≺ (H(χ),∈, <∗χ) is countable, a
def
= N ∩H(ℵ1)V ∈ SΓ,W ,

(∀η ∈ ωω ∩N)(∃n < ω)(η Rn ga),

Q̇, SΓ,W ,gΓ,W , χ1, . . . ∈ N , p ∈ Q̇ ∩N ,
(c) η̇0 ∈ N is a Q̇–name for a function in ωω ,
(d) χ1 < χ (χ1 large enough), N1 ∈ N , N1 ≺ (H(χ1),∈, <∗χ1

) is count-

able, Q̇, p, SΓ,W ,gΓ,W , η̇0, . . . ∈ N1, and G1 ∈ N is a Q̇–generic filter
over N1, p ∈ G1,

(e) η̇0[G1] Rn0 ga,
then for every y ∈ N ∩ H(χ1) there are N2, G2 satisfying the parallel of
clause (d) and such that y ∈ N2 and η̇0[G2] Rn0

ga.

Now, concerning ⊗, look at our choice of ga’s: by (γ) we know that

a1 ∈ a2 ⇒ ψ(ga1
) � ψ(ga2

).

Thus we may use 5.3.3(2) and the definition of R̄Γ,W to get ⊗.

To show ⊕1 we proceed similarly as in the proof of (1) above. So suppose that Q̇,
η̇0, p, N , N1, G1, n0 are as in the assumptions of ⊕1 and y ∈ N ∩H(χ1). We work

in the universe VP. Choose a ≤Q̇–increasing sequence 〈pn : n ∈ ω〉 ∈ N , Q̇–generic

over N1, such that {pn : n ∈ ω} ⊆ G1 and pn decides the value of η̇0�n. Let N2 ∈ N
be a countable elementary submodel of (H(χ1),∈, <∗χ1

) such that N1, y, . . . ∈ N2

and then choose a countable N+
2 ≺ (H(χ1),∈, <∗χ1

) such that N2 ∈ N+
2 ∈ N ,

a2
def
= N+

2 ∩H(ℵ1) ∈ SΓ,W and

(∀η ∈ N+
2 ∩ ωω)(∃n ∈ ω)(η Rn ga2

)

(remember that (R̄Γ,W , SΓ,W ,gΓ,W) covers in VP). Let m∗ ≥ n0 be such that

(∀m ∈ ω)
(
m

gψa,m
up ≥ m∗ ⇒ (∃m′ ≤ m′′ < ω)(gψa,m ∈ Σ(gψa2,m′

, . . . ,gψa2,m′′
))
)
.

Next, working in N , construct inductively sequences 〈n` : ` < ω〉, 〈σ` : ` < ω〉,
〈G` : ` < ω〉 (all from N) such that

(α) G` is Q̇–generic over N2, pn` ∈ G` ∈ N
+
2 (so η̇0[G`] ∈ N+

2),

(β) η̇0[G`] Rn`+1
ga2 , n`+1 > n` +m∗ and n`+1 = m

gψa2,k

dn for some k ∈ ω,

(γ) σ` = η̇0[G`]�[n`, n`+1).

Finally let η = η̇0[G1]�n0
_σ0

_σ1
_σ2 . . . ∈ ωω ∩ N and let ` > 0 be such that

η Rn` ga. As in (1), one shows now that η̇0[G`] Rn0 ga.

Claim 5.3.12.3. The forcing notion Pβ is (R̄Γ,W , SΓ,W ,gΓ,W)–preserving and
hence

Pβ “(R̄Γ,W , SΓ,W ,gΓ,W) covers”.

Proof of the claim: Due to 5.3.12.2, we may apply [Sh:f, Ch XVIII, 3.6(1)] to get
the conclusion.

Putting together 5.3.12.3 and 5.3.12.1(2) we finish the proof of the theorem. �

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

114 5. AROUND NOT ADDING COHEN REALS

5.4. Examples

Example 5.4.1. Let F ∈ ωω be strictly increasing.
There are increasing functions fF = f, gF = g ∈ ωω , and (KF

5.4.1,Σ
F
5.4.1) =

(K5.4.1,Σ5.4.1), (K`,F
5.4.1,Σ

`,F
5.4.1) = (K`

5.4.1,Σ
`
5.4.1), t̄F = t̄, t̄F` = t̄`, F̄F` = F̄` =

(F`, <∗`) (for ` < ω) and 〈W k
`,h : h ∈ F`, k, ` < ω〉 such that for every ` < ω:

(1) (K5.4.1,Σ5.4.1), (K`
5.4.1,Σ

`
5.4.1) are simple, strongly finitary and forgetful

creating pairs for H5.4.1, H`
5.4.1, respectively;

(2) t̄ ∈ PC∞(K5.4.1,Σ5.4.1), t̄` ∈ PC∞(K`
5.4.1,Σ

`
5.4.1);

(3) F̄` is a countable t̄`–good partial order;
(4) t̄` is (2g, h)–additive for each h ∈ F`;
(5) 〈W k

`,h : h ∈ F`, k ∈ ω〉 is a (t̄`, F̄`)–coherent sequence of regular t̄–systems;

(6) each W k
`,h (for h ∈ F`, k ∈ ω) is Cohen sensitive;

(7) (∀h ∈ F`)(∀∞m)(|V mh (t̄`)| < f(m));
(8) (∀m ∈ ω)(g(m+ 1) = F (f(m))).

Moreover, the sequence 〈W k
`,h : h ∈ F`, k, ` < ω〉 has the following property:

(~)5.4.1 if Γ ⊆ P∗∞(K5.4.1,Σ5.4.1) is quasi-W k
`,h-generic for every k, ` < ω, h ∈ F`

and B is a measure algebra (i.e. adding a number of random reals) then
B is (Γ,W k

`,h)–genericity preserving for all k, ` < ω, h ∈ F`.

Construction. Let F ∈ ωω be a strictly increasing function. We inductively
define f, g ∈ ωω , 〈n∗i , `∗i , k∗i : i < ω〉 ⊆ ω and a function ψ : ω × ω −→ ω such that:

(α) g(0) = F (1), n∗0 > 22g(0) satisfies 22g(0)+1 <
(n∗0)n

∗
0

(n∗0)! ,

(β) `∗i is such that n∗i < `∗i and

(`∗i · n∗i)n
∗
i · (`∗i · n∗i − n∗i)!

(`∗i · n∗i)!
≤ 2,

(γ) k∗i = n∗i (`
∗
i)
n∗i + n∗i + 1,

(δ0) ψ(i, 0) = 2g(i)(i+1) · (n∗i)k
∗
i ,

(δ1) ψ(i, `+ 1) = [22g(i)(i+1)+ψ(i,`) · (ψ(i, `)!)]g(i)+1 · (n∗i)k
∗
i ,

(ε) f(i) = 2ψ(i,i), g(i+ 1) = F (f(i)),
(ζ) n∗i+1 is such that 22g(i+1) · k∗i < n∗i+1 and

22g(i+1)(i+1)2+1 <
(n∗i+1)n

∗
i+1

(n∗i+1)!
.

Why is the choice possible? For clauses (α), (ζ) remember that lim
n→∞

nn

n! =∞. For

clause (β) note that

Nn∗i · (N − n∗i)!
N !

=
Nn∗i

N · (N − 1) · . . . · (N − (n∗i − 1))

N→∞−→ 1.

Now, we define H5.4.1,H
`
5.4.1. For i ∈ ω we let

H5.4.1(i) =

{e ⊆ P([(n∗i , k
∗
i)]n

∗
i) :

⋃
e = (n∗i , k

∗
i) & (∀u, u′ ∈ e)(u 6= u′ ⇒ u ∩ u′ = ∅)},

H`
5.4.1(i) = {(j, x) : j < ψ(i, `) & x : (n∗i , k

∗
i) −→ n∗i }.

A creature t ∈ CR[H5.4.1] is in K5.4.1 if for some m ∈ ω, B ⊆ P([(n∗m, k
∗
m)]n

∗
m):

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

5.4. EXAMPLES 115

• val[t] = {〈u,w〉 ∈
∏
i<m

H5.4.1(i)×
∏
i≤m

H5.4.1(i) : u C w & B ⊆ w(m)},

• nor[t] =
log2

(
1+

k∗m−n
∗
m−1

n∗m
−|B|

)
log2(`∗m) =

log2

(
1+(`∗m)n

∗
m−|B|

)
log2(`∗m) ,

• dis[t] = B.

The composition operation Σ5.4.1 on K5.4.1 is given by

Σ5.4.1(t) = {s ∈ K5.4.1 : ms
dn = mt

dn & dis[t] ⊆ dis[s]} for t ∈ K5.4.1.

Now we define (K`
5.4.1,Σ

`
5.4.1) for ` < ω. The family K`

5.4.1 consists of all creatures
t ∈ CR[H`

5.4.1] such that for some m ∈ ω and a nonempty set C ⊆ H`
5.4.1(m) such

that (∀(j, f), (j′f ′) ∈ C)(j = j′ ⇒ f = f ′) we have:

• val[t] = {〈u,w〉 ∈
∏
i<m

H`
5.4.1(i)×

∏
i≤m

H`
5.4.1(i) : u C w & w(m) ∈ C},

• nor[t] = log2(|C|)
g(m) ,

• dis[t] = C.

The composition operation Σ`5.4.1 on K`
5.4.1 is such that for t ∈ K`

5.4.1:

Σ`5.4.1(t) = {s ∈ K`
5.4.1 : ms

dn = mt
dn & dis[s] ↪→ dis[t]},

where dis[s] ↪→ dis[t] means that there is an embedding

i : {j < ψ(m, `) : (∃x)((j, x) ∈ dis[s])} 1−1−→ {j < ψ(m, `) : (∃x)((j, x) ∈ dis[t])}
such that (∀j ∈ dom(i))(∀x)((j, x) ∈ dis[s] ⇒ (i(j), x) ∈ dis[t]). Later we
may identify elements s0, s1 ∈ Σ`5.4.1(t) such that dis[s0] ↪→ dis[s1] and dis[s1] ↪→
dis[s0]. Therefore we may think that we have the following inequality:

|Σ`5.4.1(t)| ≤ 2dis[t].

It should be clear that (K5.4.1,Σ5.4.1), (K`
5.4.1,Σ

`
5.4.1) are strongly finitary, simple

and forgetful creating pairs. Now we have to define t̄, t̄`. The first is the minimal
member of PC(K5.4.1,Σ5.4.1):

t̄ = 〈tm : m < ω〉 is such that (∀m ∈ ω)(mtm
dn = m & dis[tm] = ∅).

Next, for each m ∈ ω (and ` ∈ ω), we choose t`,m ∈ (K`
5.4.1,Σ

`
5.4.1) such that

m
t`,m
dn = m and

(∀x : (n∗m, k
∗
m) −→ n∗m)

(
|{j < ψ(m, `) : (j, x) ∈ dis[t`,m]}| = ψ(m, `)

(n∗m)k
∗
m−n∗m−1

)
.

Then we let t̄` = 〈t`,m : m < ω〉. Note that

nor[tm] =
log2

(
1 + (`∗m)n

∗
m

)
log2(`∗m)

−→∞ and nor[t`,m] =
log2(ψ(m, `))

g(m)
−→∞

(when m goes to ∞, ` is fixed). Moreover, if n is such that

2g(m)(n+1) <
ψ(m, `)

(n∗m)k
∗
m−n∗m−1

(where m, ` < ω)

then the creature t`,m is (2g(m), n)–additive. Why? Note that if nor[si] ≤ n, si ∈
Σ`5.4.1(t`,m) then

∑
i<2g(m)

|dis[si]| ≤ 2g(m)(n+1) and it is smaller than ψ(m,`)

(n∗m)k
∗
m−n

∗
m−1 ,

which is the number of repetitions of each function from (n∗m)(n
∗
m, k

∗
m) in dis[t`,m].

For each ` ∈ ω we choose a countable t̄`–good partial order F̄` = (F`, <∗`) such
that for every h ∈ F`:

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

116 5. AROUND NOT ADDING COHEN REALS

(i) g(m)(h(m) + 1) < log2

(
ψ(m,`)

(n∗m)k
∗
m−n

∗
m−1

)
for all m ∈ ω,

(ii) there is h∗ ∈ F` such that

h <∗` h
∗ and (∀m ∈ ω)(h∗(m) ≤ h(m) +m),

(iii) there is a function h⊗` ∈ F`+1 such that

h⊗` (m) ≥ g(m)(m+ 1) + ψ(m, `) + log2(ψ(m, `)!) (for all m ∈ ω).

There should be no problems in carrying the construction of the F`. Note that we
may do this inductively, building a linear order (and so it will be isomorphic to
rationals). The clause (iii) is not an obstacle (in the presence of (i)) as ψ(m, ·) is
increasing fast enough:

(n∗m + 1) log2(n∗m) + g(m)(g(m)(m+ 1) + ψ(m, `) + log2(ψ(m, `)!) + 2) <
(n∗m + 1) log2(n∗m) + (g(m) + 1)(2g(m)(m+ 1) + ψ(m, `) + log2(ψ(m, `)!)) =

log2

(
ψ(m,`+1)

(n∗m)k
∗
m−n

∗
m−1

)
.

Note that the clause (i) and the previous remark imply that t̄` is (2g, h)–additive
for each h ∈ F`. Moreover, by the choice of the function f we have that for every
` ≤ m < ω and h ∈ F`

|V mh (t̄`)| < |Σ(t`,m)| ≤ 2|dis[t`,m]| = 2ψ(m,`) ≤ 2ψ(m,m) = f(m).

Finally, we are going to define t̄–systems W k
`,h for k, ` ∈ ω and h ∈ F`. First, for

each ` ∈ ω, h ∈ F` we fix a function ρ`h : ωω^ −→
⋃
m∈ω

V mh (t̄`) such that for m ∈ ω:

ρ`h�ω
[m,m+ 1) : ω[m,m+ 1) onto−→ V mh (t̄`).

Next, for m ∈ ω and σ : [m,m+ 1) −→ ω (and `, k ∈ ω, h ∈ F`) we let:
if m ≤ k then W k

`,h(m,m+ 1, σ) = Σ5.4.1(tm),
if m > k then

W k
`,h(m,m+ 1, σ) =

{
s ∈ Σ5.4.1(tm) : for some u ∈ dis[s] we have

|{(j, x) ∈ dis[ρ`h(σ)] : x[u] = n∗m}| <
|dis[ρ`h(σ)]|

2g(m)(m+1)(k+1)

}
(in all other instances we let W k

`,h(m′,m′′, σ) = ∅).

Claim 5.4.1.1. For each k, ` ∈ ω and h ∈ F`, the function W k
`,h is a Cohen–

sensitive regular t̄–system.

Proof of the claim: First we have to check that W k
`,h is a t̄–system. Immediately

by its definition we have that 5.3.1(1a-c) are satisfied (remember (K5.4.1,Σ5.4.1) is
simple; see 5.3.3(1)). What might be problematic is 5.3.1(1d). So suppose that
k, `,m ∈ ω, m > k (otherwise trivial), h ∈ F`, σ : [m,m+ 1) −→ ω, s ∈ Σ5.4.1(tm),
nor[s] > 1. The last means that

k∗m − n∗m − 1

n∗m
− |dis[s]| > `∗m − 1.

Let N = `∗m ·n∗m. Choose a set X ⊆ (n∗m, k
∗
m) such that |X| = N and X∩

⋃
dis[s] =

∅. Note that for each (j, x) ∈ dis[ρ`h(σ)] we have

|{u ∈ [X]n
∗
m : x[u] = n∗m}|
|[X]n

∗
m |

=
|x−1[{0}] ∩X| · . . . · |x−1[{n∗m − 1}] ∩X|(

N
n∗m

) ≤

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

5.4. EXAMPLES 117∑
i<n∗m

|x−1[{i}] ∩X|
n∗m

n∗m

· (n∗m)! · (N − n∗m)!

N !
= Nn∗m · (N − n∗m)!

N !
· (n∗m)!

(n∗m)n
∗
m
.

Now look at clause (β) of the choice of `∗m. It implies that Nn∗m · (N−n∗m)!
N ! ≤ 2 and

hence

|{u ∈ [X]n
∗
m : x[u] = n∗m}|
|[X]n

∗
m |

≤ 2
(n∗m)!

(n∗m)n
∗
m
<

1

22g(m)m2 ≤
1

2g(m)(m+1)(k+1)

(the second inequality follows from clause (ζ) of the choice of n∗m, remember m > k).

Consequently, applying the Fubini theorem, we find u0 ∈ [X]n
∗
m such that

|{(j, x) ∈ dis[ρ`h(σ)] : x[u0] = n∗m}|
|dis[ρ`h(σ)]|

<
1

2g(m)(m+1)(k+1)
.

Thus, choosing s∗ ∈ Σ5.4.1(s) such that dis[s∗] = dis[s] ∪ {u0} we will have
nor[s∗] ≥ nor[s] − 1 and s∗ ∈ W k

`,h(m,m + 1, σ). This shows that each W k
`,h

is a regular t̄–system.
Finally we show that W k

`,h is Cohen–sensitive. Suppose that s ∈ Σ5.4.1(tm),

m > k. Choose a function x∗ : (n∗m, k
∗
m) −→ n∗m such that (∀u ∈ dis[s])(x∗[u] =

n∗m). Next take σ : [m,m + 1) −→ ω such that dis[ρ`h(σ)] = {(j0, f∗)} for some
j0 < ψ(m, `). It should be clear that s /∈W k

`,h(m,m+ 1, σ).

Claim 5.4.1.2. For each ` ∈ ω, the sequence 〈W k
`,h : h ∈ F`, k ∈ ω〉 is (t̄`, F̄`)–

coherent.

Proof of the claim: Let h0 ∈ F`, k ∈ ω. By the demand (ii) of the choice of F` we
find h1 ∈ F` such that

h0 <
∗
` h1 and (∀m ∈ ω)(h1(m) ≤ h0(m) +m).

We want to show that the systems W k
`,h0

and W k+1
`,h1

are (t̄`, h0, h1)–coherent and

that this is witnessed by the functions ρ`h0
, ρ`h1

. Clearly these functions satisfy the
demands (1a), (1b) and (1d) of 5.3.10, so what we have to check is 5.3.10(1c) only.

Suppose thatm > k+1, σ0 : [m,m+1) −→ ω. Look at the creature s = ρ`h0
(σ0).

We know that nor[s] ≤ h0(m) and hence |dis[s]| ≤ 2g(m)h0(m). Since 2g(m)h0(m) <
ψ(m,`)

(n∗m)k
∗
m−n

∗
m−1 (remember clause (i) of the choice of F`) we find a creature s∗ ∈

Σ`5.4.1(t`,m) such that dis[s] ↪→ dis[s∗], nor[s∗] = h0(m) (i.e. |dis[s∗]| = 2g(m)h0(m))
and for each function x∗ : (n∗m, k

∗
m) −→ n∗m we have

|{(j, x) ∈ dis[s] : x = x∗}|
|dis[s]|

≤ 2
|{(j, x) ∈ dis[s∗] : x = x∗}|

|dis[s∗]|
.

How? We just “repeat” each (j, x) from dis[s] successively, till we get the required
size. We have enough space for this as the number of the required repetitions for
each function from (n∗m, k

∗
m) to n∗m is less than 2g(m)h0(m).

Take σ∗0 : [m,m + 1) −→ ω such that ρ`h0
(σ∗0) = s∗. We want to show that this

σ∗0 is a ρ`h0
–cover for σ0. So suppose that σ1 : [m,m + 1) −→ ω is such that

ρ`h0
(σ∗0) ∈ Σ`5.4.1(ρ`h1

(σ1)). Let t ∈ W k+1
`,h1

(m,m + 1, σ1). This means that we can

find u ∈ dis[t] such that

|{(j, x) ∈ dis[ρ`h1
(σ1)] : x[u] = n∗m}| <

|dis[ρ`h1
(σ1)]|

2g(m)(m+1)(k+2)
≤ 2g(m)h1(m)

2g(m)(m+1)(k+2)
.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

118 5. AROUND NOT ADDING COHEN REALS

Hence, remembering that dis[s∗] ↪→ dis[ρ`h1
(σ1)] and the choice of h1, we get

|{(j, x) ∈ dis[s∗] : x[u] = n∗m}| <

<
2g(m)h0(m)

2g(m)(m+1)(k+1)
· 2mg(m)

2g(m)(m+1)
=

1

2g(m)
· |dis[s∗]|

2g(m)(m+1)(k+1)
.

But we are interested in s. By the choice of s∗ we have

|{(j, x) ∈ dis[s] : x[u]=n∗m}|
|dis[s]|

≤ 2
|{(j, x) ∈ dis[s∗] : x[u]=n∗m}|

|dis[s∗]|
<

1

2g(m)(m+1)(k+1)

and therefore t ∈W k
`,h0

(m,m+ 1, σ0). Thus we have proved

W k+1
`,h1

(m,m+ 1, σ1) ⊆W k
`,h0

(m,m+ 1, σ0)

whenever ρ`h0
(σ∗0) ∈ Σ`5.4.1(ρ`h1

(σ1)). This finishes the claim.

Claim 5.4.1.3. Suppose that Γ ⊆ P∗∞(K5.4.1,Σ5.4.1) is quasi-W k
`,h-generic for

all k, ` ∈ ω, h ∈ F`. Let B be a measure algebra. Then

B “Γ is quasi-W k
`,h-generic for all k, ` ∈ ω, h ∈ F`”.

Proof of the claim: Let µ be a σ-additive measure on the complete Boolean algebra
B. Let k, ` ∈ ω, h ∈ F`. Suppose that η̇ is a B–name for a real in ωω , b ∈ B+

(i.e. µ(b) > 0). To simplify notation let us define, for m ∈ ω,

Km = |V mh (t̄`)|, Mm = 2g(m)(m+1) ·Km, Nm = ψ(m, `)!

and let h⊗` ∈ F`+1 be the function given by the clause (iii) of the choice of F̄`+1.
Fix m ∈ ω for a moment.
For s ∈ V mh (t̄`) choose a creature t(s) ∈ Σ`+1

5.4.1(t`+1,m) such that

• |dis[t(s)]| = Nm,
• for each x∗ : (n∗m, k

∗
m) −→ n∗m

|{(j, x) ∈ dis[s] : x = x∗}|
|dis[s]|

=
|{(j, x) ∈ dis[t(s)] : x = x∗}|

|dis[t(s)]|

(possible be the choice of Nm and the fact that each x∗ is repeated more than Nm
times in dis[t`+1,m]). Further, we choose integers g(m, s) < Mm for s ∈ V mh (t̄`)
such that∑
s∈Vmh (t̄`)

g(m, s) = Mm and |
µ
(
[[ρ`h(η̇�[m,m+ 1)) = s]]B · b

)
µ(b)

− g(m, s)

Mm
| ≤ 1

Mm

(where [[·]]B stands for the Boolean value). Take a creature t∗m ∈ Σ`+1
5.4.1(t`+1,m) such

that for some sequence 〈As : s ∈ V mh (t̄`)〉 of disjoint subsets of ψ(m, `+ 1) we have

• |As| = g(m, s) ·Nm,
•
⋃
{As : s ∈ V mh (t̄`)} = {j < ψ(m, `+ 1) : (∃x)((j, x) ∈ dis[t∗m])},

• for some bijection πs : g(m, s)× dis[t(s)] −→ As we have

(∀k < g(m, s))(∀(j, x) ∈ dis[t(s)])
(
(πs(k, (j, x)), x) ∈ dis[t∗m]

)
.

Why is the choice of the t∗m possible? Note that our requirements imply that

|dis[t∗m]| = Mm ·Nm = 2g(m)(m+1) · |V mh (t̄`)| · ψ(m, `)! <
ψ(m, `+ 1)

(n∗m)k
∗
m−n∗m−1

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

5.4. EXAMPLES 119

and the last number says how often each function is repeated in dis[t`+1,m]. More-
over

nor[t∗m] =
g(m)(m+1)+log2(|Vmh (t̄`)|)+log2(ψ(m,`)!)

g(m) <
g(m)(m+1)+ψ(m,`)+log2(ψ(m,`)!)

g(m) ≤ h⊗` (m)

g(m) < h⊗` (m).

Thus t∗m ∈ V mh⊗`
(t̄`+1).

Let η ∈ ωω be such that ρ`+1

h⊗`
(η�[m,m + 1)) = t∗m. Since Γ is quasi-W k+1

`+1,h⊗`
-

generic, we find s̄ = 〈sm : m < ω〉 ∈ Γ such that for some m∗ > k + 4

(∀m ≥ m∗)(sm ∈W k+1

`+1,h⊗`
(m,m+ 1, η�[m,m+ 1)).

Fix m ≥ m∗ for a moment. We know that for some u ∈ dis[sm] we have

|{(j, x) ∈ dis[t∗m] : x[u] = n∗m}| <
|dis[t∗m]|

2g(m)(m+1)(k+2)
.

For s ∈ V mh (t̄`) let

Ym(s)
def
=
|{(j, x) ∈ dis[s] : x[u] = n∗m}|

|dis[s]|
=
|{(j, x) ∈ dis[t(s)] : x[u] = n∗m}|

|dis[t(s)]|
and note that

∑
s
Ym(s) · g(m, s) ·Nm = |{(j, x) ∈ dis[t∗m] : x[u] = n∗m}|. Let

Xm = {s ∈ V mh (t̄`) : Ym(s) ≥ 1

2g(m)(m+1)(k+1)
}

(so ρ`h(σ) /∈ Xm implies sm ∈W k
`,h(m,m+ 1, σ)). Note that∑

s∈Xm

g(m, s) ·Nm
2g(m)(m+1)(k+1)

≤
∑
s∈Xm

Ym(s) · g(m, s) ·Nm ≤
Mm ·Nm

2g(m)(m+1)(k+2)

and therefore
∑

s∈Xm

g(m,s)
Mm

≤ 1
2g(m)(m+1) . Hence

∑
s∈Xm

µ
(
[[ρ`h(η̇�[m,m+ 1)) = s]]B · b

)
µ(b)

≤
∑
s∈Xm

(
g(m, s)

Mm
+

1

Mm

)
≤ 1

2g(m)m+g(m)−1
.

Let bm =
∑B
s∈Xm [[ρ`h(η̇�[m,m + 1)) = s]]B · b. By the above estimations we have

µ(bm) ≤ µ(b)
2m+4 (remember m ≥ m∗ > k + 4 ≥ 4). Look at the condition b∗ =

b− (
∑B
m≥m∗ bm). Clearly µ(b∗) > 0 and

b∗ B (∀m ≥ m∗)(ρ`h(η̇�[m,m+ 1) /∈ Xm))

and therefore

b∗ B (∀m ≥ m∗)(sm ∈W k
`,h(m,m+ 1, η̇�[m,m+ 1))).

This finishes the proof of the claim and thus checking that the construction is as
required. �

Conclusion 5.4.2. Let F ∈ ωω be strictly increasing and f, g, (K5.4.1,Σ5.4.1),
(K`

5.4.1,Σ
`
5.4.1), t̄, t̄`, F̄` = (F`, <∗`) (for ` < ω) and 〈W k

`,h : h ∈ F`, k, ` < ω〉 be

given by 5.4.1 (for F). Suppose that Γ ⊆ P∗∞(K5.4.1,Σ5.4.1) is quasi-W k
`,h-generic

for every k, ` < ω, h ∈ F` (exists e.g. under CH, see 5.3.4(2), 5.3.5).

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

120 5. AROUND NOT ADDING COHEN REALS

(1) Countable support iterations of proper forcing notions which are (Γ,W k
`,h)–

genericity preserving for all k, ` ∈ ω, h ∈ F` is (Γ,W k
`,h)–genericity pre-

serving (for k, ` ∈ ω, h ∈ F) and hence does not add Cohen reals.
(2) Every (f, g)-bounding proper forcing notion (this includes proper forcing

notions with the Laver property) and random real forcing are (Γ,W k
`,h)–

genericity preserving (for k, ` ∈ ω, h ∈ F`),
(3) Assume CH. Then any countable support iteration of proper forcing no-

tions of one of the following types:
(f, g)–bounding, Laver property, random forcing

does not add Cohen reals.

Proof. By 5.4.1, 5.3.9(1), 5.3.11, 5.2.7 and 5.3.12. �

Example 5.4.3. We define a strictly increasing function F ∈ ωω and a creating
pair (K5.4.3,Σ5.4.3) which: captures singletons, is strongly finitary, reducible, for-
getful, simple, essentially fF –big and h–limited for some function h : ω × ω −→ ω
such that (∀∞n)(

∏
m<n

h(m,m) < gF (n) < fF (n)), where fF , gF are given by

5.4.1 for F .

Construction. For N < ω we define a nice pre-norm HN on P(P(N) \ {N})
by:

HN (A) = log2(1 + max{k < ω : (∀x ∈ [N]k)(∃a ∈ A)(x ⊆ a)})
(for A ⊆ P(N) \ {N}). Note that if B ⊆ C ⊆ P(N) \ {N}, HN (C) > 1 then:

(1) max{k < ω : (∀x ∈ [N]k)(∃a ∈ C)(x ⊆ a)} ≥ 2,
(2) HN (B) ≤ HN (C),
(3) max{HN (B), HN (C \B)} ≥ HN (C)− 1.

For 3) above note that if it fails then we find k0 ∈ ω such that

1 + max{HN (B), HN (C \B)} ≤ log2(2k0) < HN (C).

By the first inequality we find x0, x1 ∈ [N]k0 such that

(∀a ∈ B)(x0 6⊆ a) and (∀a ∈ C \B)(x1 6⊆ a).

But the second inequality implies that there is a ∈ C such that x0 ∪ x1 ⊆ a, what
gives a contradiction.
As clearly HN ({a}) = 0 for a ∈ P(N) \ {N}, HN is really a nice pre–norm.

Let F ∈ ωω be defined by F (m) = 2(m+1)3·22m

(for m ∈ ω) and let fF , gF be from

5.4.1 (for F). To simplify notation let Mn = 2f
F (n), Nn = (n+1)2 ·2Mn (for n ∈ ω).

Let H : ω −→ P([ω]<ω) be given by H(n) = [Nn]2
Mn

.
Let K5.4.3 consist of creatures t ∈ CR[H] such that, letting m = mt

dn,

(a) dis[t] is a subset of H(m),
(b) val[t] = {〈w, u〉 ∈

∏
i<m

H(i)×
∏
i≤m

H(i) : w C u & u(m) ∈ dis[t]},

(c) nor[t] =
HNm (dis[t])

(m+1)·fF (m)
.

The composition operation Σ5.4.3 is the trivial one: it gives a nonempty result for
singletons only and then Σ5.4.3(t) = {s ∈ K5.4.3 : ms

dn = mt
dn & dis[s] ⊆ dis[t]}.

Now, we have to check that (K5.4.3,Σ5.4.3) has the required properties. Clearly

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

5.4. EXAMPLES 121

it is a strongly finitary, simple and forgetful creating pair. Plainly, it captures
singletons. Note that if tm ∈ K5.4.3 (for m ∈ ω) is such that dis[tm] = H(m) then

nor[tm] =
HNm(H(m))

(m+ 1) · fF (m)
=

log2(1 + 2Mm)

(m+ 1) · fF (m)
>

2f
F (m)

(m+ 1) · fF (m)

m→∞−→ ∞.

Consequently the forcing notions Q∗∞(K5.4.3,Σ5.4.3), Q∗w∞(K5.4.3,Σ5.4.3) etc will be
non-trivial.
To verify that (K5.4.3,Σ5.4.3) is reducible use the fact that HN is a nice pre-norm
on P(P(N) \ {N}): if a ∈ C ∈ P(P(N) \ {N}), HN (C) > 1 then HN (C) − 1 ≤
HN (C \ {a}). For similar reasons (K5.4.3,Σ5.4.3) is essentially fF –big, remember
that we divide the respective value of HNm by (m+ 1) · fF (m) (where m = mt

dn).

Finally, let h(m, k) = 2Nm for m, k ∈ ω. Then |H(m)| =
(
Nm

2Mm

)
< 2Nm for all

m ∈ ω, so (K5.4.3,Σ5.4.3) is h–limited (actually much more). Moreover, for every
m ∈ ω:

gF (m+1) = F (fF (m)) > 2(m+1)3·22f
F (m)

= 2(m+1)3·2Mm >
∏
k≤m

2Nk =
∏
k≤m

h(k, k).

Thus (K5.4.3,Σ5.4.3) is as required. �

Conclusion 5.4.4. The forcing notion Q∗w∞(K5.4.3,Σ5.4.3):

(1) is proper and ωω–bounding,
(2) preserves non-meager sets,
(3) is (fF , gF)–bounding,
(4) makes the ground model reals have measure zero.

Moreover, assuming CH, countable support iterations of Q∗w∞(K5.4.3,Σ5.4.3) with
Laver’s forcing notion, Miller’s forcing notion and random forcing do not add Cohen
reals.

Proof. The first required property is a consequence of 2.1.12 and 3.1.3. The
second follows from 3.2.6 and the third property is a consequence of 5.1.10. The
“moreover” part holds true by 5.4.2.

Let X =
∏
m∈ω

Nm be equipped with the product measure. Of course, this space

is measure isomorphic to the reals, so what we have to show is the following claim.

Claim 5.4.4.1. Q∗w∞(K5.4.3,Σ5.4.3) “ V ∩ X is a null set”.

Proof of the claim: Let Ẇ be the Q∗w∞(K5.4.3,Σ5.4.3)–name for the generic real

(see 1.1.13) and let Ȧ be a Q∗w∞(K5.4.3,Σ5.4.3)–name for a subset of X such that

Q∗w∞(K5.4.3,Σ5.4.3) “Ȧ = {x ∈ X : (∃∞n)(x(n) ∈ Ẇ (n))}”.

Note that “ (∀m ∈ ω)(Ẇ (m) ∈ [Nm]2
Mm

)” and 2Mm

Nm
= 1

(m+1)2 . Consequently,

“ Ȧ is a null subset of X”. By the definition of (K5.4.3,Σ5.4.3) (remember the

definition of HN) one easily shows that “ V ∩X ⊆ Ȧ”, what finishes the proof of
the claim and the conclusion. �

One may consider tree versions of 5.4.3.

Example 5.4.5. Let F ∈ ωω , h : ω × ω −→ ω and H : ω −→ P([ω]<ω) be as
defined in 5.4.3. There are finitary tree–creating pairs (K`

5.4.5,Σ
`
5.4.5) (for ` < 3)

for H such that

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

122 5. AROUND NOT ADDING COHEN REALS

(a) (K0
5.4.5,Σ

0
5.4.5) is local, reducible, h–limited and essentially fF –big (where

fF is given by 5.4.1),
(b) (K1

5.4.5,Σ
1
5.4.5) is t-omittory, reducible and essentially fF –big,

(c) (K2
5.4.5,Σ

2
5.4.5) is reducible, h–limited and essentially fF –big,

(d) the forcing notions Qtree
0 (K0

5.4.5,Σ
0
5.4.5), Qtree

1 (K1
5.4.5,Σ

1
5.4.5) and

Qtree
1 (K2

5.4.5,Σ
2
5.4.5) are equivalent,

(e) the forcing notion Qtree
1 (K0

5.4.5,Σ
0
5.4.5) is proper, ωω-bounding, makes

ground model reals meager and null (even more), is (fF , g+)–bounding,
where g+(n) =

∏
i<n

|H(i)|,

(f) the forcing notionsQtree
1 (K1

5.4.5,Σ
1
5.4.5) andQtree

1 (K2
5.4.5,Σ

2
5.4.5) are proper,

ωω–bounding, preserve non-meager sets, make ground model reals null
and are (fF , gF)–bounding.

Construction. Let F,Nm,Mm,H, h be as in 5.4.3.
A tree creature t ∈ TCRη[H] is in K0

5.4.5 if

• dis[t] ⊆ H(`g(η)),
• val[t] = {〈η, ν〉 : η C ν & `g(ν) = `g(η) + 1 & ν(`g(η)) ∈ dis[t]},
• nor[t] =

HN`g(η)
(dis[t])

(`g(η)+1)·fF (`g(η))
.

The tree composition Σ0
5.4.5 on K0

5.4.5 is trivial: Σ0
5.4.5(t) = {s ∈ K0

5.4.5 : val[s] ⊆
val[t]}.
The family K1

5.4.5 consists of these tree–creatures t ∈ TCR[H] that for some η E
η∗ ∈

⋃
n<ω

∏
i<n

H(i) we have

• dis[t] ⊆ H(`g(η∗)),
• val[t] = {〈η, ν〉 : η∗ C ν & `g(ν) = `g(η∗) + 1 & ν(`g(η∗)) ∈ dis[t]},
• nor[t] =

HN`g(η∗) (dis[t])

(`g(η∗)+1)·fF (`g(η∗))
.

The tree composition Σ1
5.4.5 is such that

Σ1
5.4.5(tν : ν ∈ T̂) = {t ∈ K1

5.4.5 : dom(val[t])={root(T)} & rng(val[t]) ⊆ max(T)}.
In a similar manner we define (K2

5.4.5,Σ
2
5.4.5). A tree creature t ∈ TCRη[H] is in

K2
5.4.5 if

• dis[t] = (At, 〈νtx : x ∈ At〉), where At ⊆ H(`g(η)) and νtx ∈
⋃
n<ω

∏
i<n

H(i)

(for x ∈ At) are such that η C η_〈x〉 E νtx,
• val[t] = {〈η, νtx〉 : x ∈ At},
• nor[t] =

HN`g(η)
(At)

(`g(η)+1)·fF (`g(η))
,

and the tree composition Σ2
5.4.5 is defined like Σ1

5.4.5.
Checking that (K`

5.4.5,Σ
`
5.4.5) have the desired properties is straightforward and

similar to 5.4.3 (remember 5.1.5, 5.1.8, 3.2.2, 3.2.8). �

Corollary 5.4.6. Let F ∈ ωω be an increasing function, f,H be as defined in
2.4.6 (for F) and let F ∗(n) = F (ϕH(n)). Then the forcing notion Q∗f (K2.4.6,Σ2.4.6)

(defined as in 2.4.6 for F) is proper, ωω–bounding, (F ∗, ϕH)–bounding and makes
ground model reals meager.

Proof. By 3.1.2, 5.1.12 and 3.2.8(2). �

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

CHAPTER 6

Playing with ultrafilters

This chapter originated in the following question of Matet and Pawlikowski.
Are the cardinals m1, m2 equal, where

m1 is the least cardinality of a set Z ⊆
⋃
E⊆ω

ωE such that

(i) (∃F ∈ ωω)(∀f ∈ Z)(∀n ∈ dom(f))(f(n) < F (n)),
(ii) the family {dom(f) : f ∈ Z} has the finite intersection property, and

(iii) (∀x ∈
∏
n∈ω

[ω]≤ n)(∃f ∈ Z)(∀∞n ∈ dom(f))(f(n) /∈ x(n));

m2 is defined in a similar manner, but (iii) is replaced by
(iii)− (∀g ∈ ωω)(∃f ∈ Z)(∀∞n ∈ dom(f))(f(n) 6= g(n))?

It was known that m2 ≤ λ ≤ m1, where λ is the least size of a basis of an ideal on
ω which is not a weak q-point (see Matet Pawlikowski [MaPa9x]). We answer the
Matet – Pawlikowski question in 6.4.6, showing that it is consistent that λ = ℵ1

(and so m2 = ℵ1) and m1 = ℵ2. On the way to this result we have to deal with
preserving some special ultrafilters on ω. The technology developed in the previous
section is very useful for this (both to describe the required properties and to
preserve them at limit stages of countable support iterations).

In the first part of the chapter we present the framework: ultrafilters gener-
ated by quasi-W -generic Γ. Then we introduce several properties of ultrafilters and
discuss relations between them. The third section shows how forcing notions con-
structed according to our schema may preserve some special ultrafilters. Finally, in
the last part, we apply all these tools to answer the Matet – Pawlikowski question.

6.1. Generating an ultrafilter

Definition 6.1.1. We say that a creating pair (K,Σ) generates an ultrafilter
if

(⊗6.1.1) for every k < ω there is k∗ < ω such that
if t ∈ K, nor[t] ≥ k∗ and c : [mt

dn,m
t
up) −→ 2,

then for some s ∈ Σ(t) and i∗ < 2 we have nor[s] ≥ k and

[u ∈ basis(s) & v ∈ pos(u, s) & mt
dn ≤ m < mt

up & v(m) 6= 0] ⇒ c(m) = i∗

and if nor[t] > 0, u ∈ basis(t) then there is v ∈ pos(u, t) such that for some
m ∈ [mt

dn,m
t
up) we have v(m) 6= 0.

Proposition 6.1.2. Assume that (K,Σ) is an omittory and monotonic (see
5.2.3) creating pair which generates an ultrafilter. Then

Q∗s∞(K,Σ) “{m : Ẇ (m) 6= 0} induces an ultrafilter on the algebra P(ω)V /Fin”.

123

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

124 6. PLAYING WITH ULTRAFILTERS

Proof. For k ∈ ω, let g(k) be the k∗ given by (⊗6.1.1) (for k). Let Ż be a
Q∗s∞(K,Σ)-name such that

Q∗s∞(K,Σ) Ż = {m ∈ ω : Ẇ (m) 6= 0}.

Clearly Q∗s∞(K,Σ) Ż ∈ [ω]ω (by the second requirement of 6.1.1). We have to show

that for each A ∈ [ω]ω

Q∗s∞(K,Σ) “either Ż ∩A or Ż \A is finite”.

So suppose that p ∈ Q∗s∞(K,Σ), A ∈ [ω]ω are such that

p Q∗s∞(K,Σ) “both Ż ∩A and Ż \A are infinite”.

Since (K,Σ) is omittory we may assume that p = (wp, t0, t1, . . .) where nor[t`] ≥
g(`+mt`

dn) (see 2.1.3.(2)). Let c` : [mt`
dn,m

t`
up) −→ 2 be the characteristic function

of A ∩ [mt`
dn,m

t`
up). Applying the condition (⊗6.1.1) and the choice of g for each

` < ω we find s′` ∈ Σ(t`) such that nor[s′`] ≥ `+m
s′`
dn and for some i` < 2 we have

(⊗∗) if u ∈ basis(s′`), v ∈ pos(u, s′`), m
s′`
dn ≤ m < m

s′`
up and v(m) 6= 0

then c`(m) = i`.

Now choose i∗ < 2 and an increasing sequence 〈`k : k < ω〉 ⊆ ω such that i`k = i∗

(for k < ω) and take s0 = s′`0 � [m
s′0
dn,m

s′`0
up), sk+1 = s′`k+1

� [m
s′`k
up ,m

s′`k+1
up). Once

again, since (K,Σ) is omittory we get q
def
= (wp, s0, s1, s2, . . .) ∈ Q∗s∞(K,Σ) and

it is stronger than p. Suppose i∗ = 0. We claim that in this case q Q∗s∞(K,Σ)

Ż ∩ A ⊆ ms0
dn (contradicting the choice of p, A). If not then we find k < ω,

w ∈ pos(wp, s0, . . . , sk) and n ∈ [ms0
dn,m

sk
up)∩A such that w(n) 6= 0. By smoothness

we may additionally demand that, if k > 0 then n ∈ [msk
dn,m

sk
up) = [m

s′`k−1
up ,m

s′`k
up).

By the smoothness and monotonicity of (K,Σ) we have

w ∈ pos(w�msk
dn, sk) = {v : 〈w�msk

dn, v〉 ∈ val[sk]}.
Now, by the choice of sk we may conclude that

w�[msk
dn,m

s′`k
dn) = 0

[m
sk
dn ,m

s′
`k

dn)
and thus n ∈ [m

s′`k
dn ,m

s′`k
up).

Moreover 〈w�m
s′`k
dn , w〉 ∈ val[s′`k] so we may apply (⊗∗) (to `k) and conclude that

c`k(n) = i∗ = 0, a contradiction. Similarly one shows q Ż \A ⊆ ms0
dn if i∗ = 1. �

Definition 6.1.3. Suppose that (K,Σ) is a creating pair, t̄ ∈ PCC(nor)(K,Σ)
and W : ω × ω × ωω^ −→ P(K) is a t̄–system (see 5.3.1). Let Γ ⊆ P∗C(nor)(K,Σ) be

quasi-W -generic.

(1) We define D(Γ) as the family of all sets A ⊆ ω such that: for some
s̄ = 〈sn : n < ω〉 ∈ Γ and N < ω, for every w ∈ basis(s0) and u ∈
pos(w, s0, . . . , sN) we have

(∀m > N)(∀v ∈ pos(u, sN+1, . . . , sm))({k ∈ [`g(u), `g(v)) : v(k) 6= 0} ⊆ A).

(2) We say that Γ generates a filter (an ultrafilter, respectively) on ω if D(Γ)
is a filter (an ultrafilter, resp.).

Remark 6.1.4. Note the close relation of 6.1.3 and 6.1.2. Below it becomes
even closer.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

6.1. GENERATING AN ULTRAFILTER 125

Definition 6.1.5. A creating pair (K,Σ) is interesting if for each creature
t ∈ K such that nor[t] > 0 and every u ∈ basis(t) we have

|{m ∈ [mt
dn,m

t
up) : (∃v ∈ pos(u, t))(v(m) 6= 0)}| > 1.

Proposition 6.1.6. Let (K,Σ) be a forgetful creating pair, t̄ ∈ PC∞(K,Σ)
and W : ω × ω × ωω^ −→ P(K) be a t̄–system.

(1) If Γ ⊆ P∗∞(t̄, (K,Σ)) is quasi-W -generic then D(Γ) is a filter on ω contain-
ing all co-finite sets. If, additionally, (K,Σ) is interesting and condensed
(see 4.3.1(3)) and A ⊆ ω is such that

(∀∞n)(|A ∩ [mtn
dn,m

tn
up)| ≤ 1)

then A /∈ D(Γ).
(2) If Γ is quasi-W -generic in P∗∞(t̄, (K,Σ)) then D(Γ) is a p-point (see 6.2.1).
(3) Assume CH. Suppose that, additionally, (K,Σ) is finitary, omittory, mono-

tonic and generates an ultrafilter. Then there exists a quasi-W -generic
Γ ⊆ P∗∞(K,Σ) such that D(Γ) is an ultrafilter on ω.

Proof. 1), 2) Should be obvious.
3) Modify the proof of 5.3.4(2), noting that if s̄ ∈ PC∞(K,Σ), A ⊆ ω then there is
s̄∗ = 〈s∗n : n < ω〉 ∈ PC∞(K,Σ) such that s̄ ≤ s̄∗ and either

(∀u∈basis(s∗0))(∀n<ω)(∀v∈pos(u, s∗0, . . . , s
∗
n))({k∈ [`g(u), `g(v)) : v(k) 6=0} ⊆ A)

or a similar requirement with ω\A instead of A holds. (Compare the proof of 6.1.2,
remember (K,Σ) is forgetful.) �

Conclusion 6.1.7. Suppose that (K,Σ) is a forgetful and monotonic creating
pair, t̄ ∈ PC∞(K,Σ) and W is a t̄–system. Assume that Γ ⊆ P∗∞(t̄, (K,Σ)) is quasi-

W -generic and D(Γ) is an ultrafilter. Let δ be a limit ordinal and 〈Pα, Q̇α : α < δ〉
be a countable support iteration of proper forcing notions such that for each α < δ:

(a) Pα“Γ is quasi-W -generic”,
(b) Pα“D(Γ) is an ultrafilter”.

Then

(1) Pδ“Γ is quasi-W -generic”,
(2) Pδ“D(Γ) is an ultrafilter”.

Proof. 1) It follows from 5.3.12.
2) Since, by 6.1.6(2), D(Γ) is a p-point we may use [Sh:f, Ch VI, 5.2] (another
presentation of this result might be found in [BaJu95, 6.2]). �

Remark 6.1.8. (1) If t̄ = 〈tn : n < ω〉 ∈ PC∞(K,Σ), W is a t̄–system
and Γ is quasi-W -generic generating a filter then we make think of D(Γ)
as a filter on

⋃
i∈ω
{i} × (mti

up −m
ti
dn) (just putting the intervals [mti

dn,m
ti
up)

vertically). This will be our approach in the further part, where we will
consider ultrafilters on

⋃
i∈ω
{i} × (i+ 1).

(2) We may treat D(Γ) as a canonical filter on ω with a property described by
Γ (or, more accurately, by the t̄–system W). This is the way we are going
to use 6.1.7 later: it will allow us to claim that the additional property of
an ultrafilter is preserved at limit stages of an iteration.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

126 6. PLAYING WITH ULTRAFILTERS

6.2. Between Ramsey and p-points

Here we recall some definitions of special properties of ultrafilters on ω and we
introduce more of them. Then we comment on relations between these notions.

Definition 6.2.1. Let D be a filter on ω. We say that:

(1) D is Ramsey if for each colouring F : [ω]2 −→ 2 there is a set A ∈ D
homogeneous for F .

(2) D is a p-point if for every partition 〈An : n ∈ ω〉 of ω into sets from the
dual ideal (i.e. ω \An ∈ D) we find a set A ∈ D with

(∀n ∈ ω)(|An ∩A| < ω).

(3) D is a q-point if for every partition 〈An : n ∈ ω〉 of ω into finite sets there
is a set A ∈ D with

(∀n ∈ ω)(|An ∩A| ≤ 1).

(4) D is a weak q-point if for each set B ⊆ ω such that ω \ B /∈ D and a
partition 〈An : n ∈ ω〉 of B into finite sets there is a set A ⊆ B such that

ω \A /∈ D and (∀n ∈ ω)(|An ∩A| ≤ 1).

Remark 6.2.2. Clearly, if D is an ultrafilter on ω which is a weak q-point then
D is a q-point. (So the two notions coincide for ultrafilters).

Definition 6.2.3. (1) For a filter D on ω let GR(D) be the game of two
players, I and II, in which Player I in his nth move plays a set An ∈ D
and Player II answers choosing a point kn ∈ An. Thus a result of a play
is a pair of sequences 〈〈An : n ∈ ω〉, 〈kn : n ∈ ω〉〉 such that kn ∈ An ∈ D.
Player I wins the play of the game GR(D) if and only if
the result 〈〈An : n ∈ ω〉, 〈kn : n ∈ ω〉〉 satisfies: {kn : n ∈ ω} /∈ D.

(2) Similarly we define the game Gp(D) allowing the second player to play
finite sets an ⊆ An (instead of points kn ∈ An).
Player I wins if

⋃
n∈ω

an /∈ D

Remark 6.2.4. Let us recall that if D is an ultrafilter on ω then the following
conditions are equivalent (see [Sh:f, Ch VI, 5.6] or [BaJu95, 4.5]):

(a) D is Ramsey,
(b) D is both a p-point and a q-point,
(c) Player I does not have a winning strategy in the game GR(D).

Similarly, an ultrafilter D is a p-point if and only if Player I does not have a winning
strategy in Gp(D).

As we are interested in ultrafilters which are not q-points (see the discussion of
the Matet — Pawlikowski problem at the beginning of this chapter) it is natural
to fix a partition of ω which witnesses this. Thus, after renaming, we may consider
ultrafilters on

⋃
i∈ω
{i}×(i+1) instead (compare with the last remark of the previous

section).

Definition 6.2.5. Let D be a filter on
⋃
i<ω

{i} × (i+ 1).

(1) We say that the filter D is interesting if for each function h ∈
∏
i∈ω

(i + 1)

the set {(i, h(i)) : i ∈ ω} is not in D.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

6.2. BETWEEN RAMSEY AND P-POINTS 127

(2) Let GsR(D) be the game of two players in which Player I in his nth move
plays a set An ∈ D and the second player answers choosing an integer in
and a set an ∈ [An ∩ {in} × (in + 1)]≤n.
Finally, Player I wins the play if

⋃
n∈ω

an /∈ D.

(3) The game GaR(D) is a modification of GsR(D) such that now, the first
Player (in his nth move) chooses a set An ∈ D, Ln < ω and a function

fn :
⋃
i<ω

[{i} × (i+ 1)]≤ n −→ Ln.

Player II answers playing in ∈ ω and a set an ∈ [An ∩ {in} × (in + 1)]≤n

homogeneous for fn (i.e. such that fn�[an]k is constant for k ≤ n).
Player I wins the play if

⋃
n∈ω

an /∈ D.

(4) We say that the filter D is semi–Ramsey if the first player has no winning
strategy in the game GsR(D).

(5) The filter D is almost Ramsey if it is semi–Ramsey and for every colouring

f :
⋃
i<ω

[{i} × (i+ 1)]≤ n −→ L, (n,L < ω)

there is a set A ∈ D which is almost homogeneous for f in the following
sense:

(∀i ∈ ω)(f�[A ∩ ({i} × (i+ 1))]k is constant for each k ≤ n).

Proposition 6.2.6. Suppose D is a non-principal ultrafilter on
⋃
i<ω

{i}×(i+1).

(1) If D is interesting then it is not a q-point.
(2) If D is Ramsey then D is almost Ramsey.
(3) If D is semi–Ramsey then it is a p-point.
(4) If D is semi–Ramsey then

D∗ def
= {A ⊆ ω :

⋃
i∈A
{i} × (i+ 1) ∈ D}

is a Ramsey ultrafilter.

Proof. Compare the games and definitions. �

Theorem 6.2.7. Assume CH. There exists an ultrafilter D on
⋃
i<ω

{i}× (i+ 1)

which is semi–Ramsey but not almost Ramsey.

Proof. For i ∈ ω let ki be the integer part of the square root of i+ 1. Choose
partitions 〈emi : m < ki〉 of {i} × (i + 1) such that (∀m < ki)(|emi | ≥ ki). Let

f :
⋃
i∈ω

[{i} × (i+ 1)]2 −→ 2 be such that

f((i, `0), (i, `1)) = 1 if and only if (∀m < ki)((i, `0) ∈ emi ⇔ (i, `1) ∈ emi).

Assuming CH, we will construct a semi–Ramsey ultrafilter containing no almost
homogeneous set for f . To this end we choose an enumeration {ϕα : α < ω1} of all
functions from ω to [

⋃
i∈ω
{i} × (i + 1)]ω . By induction on α < ω1 define sequences

〈iαn : n < ω〉 and 〈aαn : n < ω〉 such that for α < β < ω1:

(a) iα0 < iα1 < iα2 < . . . < ω,

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

128 6. PLAYING WITH ULTRAFILTERS

(b) aαn ∈ [{iαn} × (iαn + 1)]≤ n (for n ∈ ω),
(c) either (∃m ∈ ω)(∀n ∈ ω)(aαn ∩ ϕα(m) = ∅) or (∀n ∈ ω)(aαn+1 ⊆ ϕα(iαn)),
(d) lim

n→∞
|{m < kiαn : emiαn ∩ a

α
n 6= ∅}| =∞,

lim
n→∞

min{|aαn ∩ emiαn | : m < kiαn & aαn ∩ emiαn 6= ∅} =∞,

(e) |
⋃
n∈ω

aβn \
⋃
n∈ω

aαn| < ω.

There should be no problems with carrying out the construction. Let Aα =
⋃
n∈ω

aαn.

Clearly the sequence 〈Aα : α < ω1〉 generates a non-principal ultrafilter D on⋃
i∈ω
{i}× (i+1) (remember that the constant functions are among the ϕα’s). By the

demand (d), no set Aα is almost homogeneous for f , so D is not almost Ramsey.
To show that D is semi–Ramsey suppose that σ is a winning strategy for the
first player in the game GsR(D). Then σ is a function defined on finite sequences
x̄ = 〈(i0, a0), . . . , (in−1, an−1)〉 such that i0 < . . . < in1

and

(∀` < n)(a` ∈ [{i`} × (i` + 1)]≤ `)

and with values in D. For j < ω put

ϕ(j) =
⋂{

σ((i0, a0), . . . , (in−1, an−1)) : i0 < . . . < in−1 ≤ j and

a` ∈ [{i`} × (i` + 1)]≤ `
}
.

Thus ϕ : ω −→ D, so for some α < ω1 we have ϕ = ϕα. But now look at the
sequence ā = 〈(iα0 , aα0), (iα1 , a

α
1), (iα2 , a

α
2), . . .〉. Since Aα ∈ D and ϕα(m) ∈ D for all

m ∈ ω we necessarily have

(∀n ∈ ω)(aαn+1 ⊆ ϕα(iαn) ⊆ σ((iα0 , a
α
0), . . . , (iαn, a

α
n))).

This means that the sequence ā is a result of a legal play of the second player
against the strategy σ. Hence Aα =

⋃
n∈ω

aαn /∈ D, a contradiction. �

Theorem 6.2.8. Suppose that D is a semi–Ramsey ultrafilter on
⋃
i<ω

{i}×(i+1).

Then the following conditions are equivalent.

(a) D is almost Ramsey,
(b) the first player has no winning strategy in the game GaR(D),

(c) for each m,L ∈ ω and a colouring f :
⋃
i<ω

[{i} × (i + 1)]≤ m −→ L, the

first player has no winning strategy in the following modification GsRf (D)

of the game GsR(D): rules are like in GsR(D) but the sets an chosen by
the second player have to be homogeneous for f .

Proof. The implications (b) ⇒ (c) ⇒ (a) are immediate by the definitions.
The implication (a)⇒ (b) is easy too: suppose that σ is a strategy for the first

player in the game GaR(D). Let σ∗ be a strategy for Player I in GsR(D) such that
if σ((i0, a0), . . . , (in−1, an−1)) = (fn, An) then σ∗((i0, a0), . . . , (in−1, an−1)) ∈ D is
an almost fn–homogeneous subset of An (exists by the assumption (a)). Now, σ∗

cannot be the winning strategy for Player I as D is semi–Ramsey. But then the
play witnessing this shows that σ is not winning in GaR(D). �

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

6.3. PRESERVING ULTRAFILTERS 129

Theorem 6.2.9. Assume that D is a semi–Ramsey ultrafilter on
⋃
i<ω

{i}×(i+1).

Suppose that P is a proper ωω–bounding forcing notion such that

P “ D generates an ultrafilter ”.

Then
P “ D generates a semi–Ramsey ultrafilter ”.

Proof. This is very similar to [Sh:f, Ch VI, 5.1]. We know that, in VP,
D generates an ultrafilter. What we have to show is that Player I has no winning
strategy in the game GsR(D) (in VP). So suppose that σ ∈ VP is a winning strategy
of the first player in GsR(D). We may assume that the values of σ are elements
of D (so from the ground model). But now, as P is proper and ωω–bounding, we

find a function σ+ ∈ V such that dom(σ+) = dom(σ), rng(σ+) ⊆ [D]< ω and
σ(ā) ∈ σ+(ā) for all ā ∈ dom(σ). Letting σ∗(ā) =

⋂
σ+(ā) for ā ∈ dom(σ) we will

get, in V, a winning strategy for Player I in GsR(D), a contradiction. �

Remark 6.2.10. One may note that we did not mention anything about the
existence of almost Ramsey ultrafilters. Of course it is done like 6.2.7, under CH.
However we want to have an explicit representation of the ultrafilter as D(Γ) for
some quasi-generic Γ. This will give us the preservation of the “colouring” part of
the definition of almost Ramsey ultrafilters at limit stages. As the representation
is very specific we postpone it for a moment and we will present this in Examples
(see 6.4.1, 6.4.2).

6.3. Preserving ultrafilters

In this section we show when forcing notions of the type Qtree
1 preserve ultra-

filters introduced in the previous part. The key property of a tree–creating pair
needed for this is formulated in the following definition.

Definition 6.3.1. Let D be a filter on ω. We say that a tree creating pair
(K,Σ) is of the UP(D)tree–type if the following condition is satisfied:

(~)tree
UP(D) Assume that 1 ≤ m < ω, p ∈ Qtree

∅ (K,Σ), nor[tpν] > m + 1 for each

ν ∈ T p, and F0, F1, . . . are fronts of T p such that

(∀n ∈ ω)(∀ν ∈ Fn+1)(∃η ∈ Fn)(η C ν).

Further suppose that un ⊆ Fn (for n ∈ ω) are sets such that there is no

system 〈sν : ν ∈ T̂ 〉 ⊆ K with:
(a) T ⊆ {ν ∈ T p : (∃η ∈ Fn)(ν E η)} is a (well founded) quasi tree with

max(T) ⊆ un and root(T) = root(T p),

(b) for each ν ∈ T̂ :
root(sν) = ν, pos(sν) = succT (ν), nor[sν] ≥ m and

sν ∈ Σ(tpη : η ∈ Ŝν) for some (well founded) quasi tree Sν ⊆ T p.
Then there is a condition q ∈ Qtree

∅ (K,Σ) such that
(α) p ≤ q,
(β) the set

Z
def
= {n ∈ ω : un ∩ dcl(T q) = ∅}

is not in the ideal Dc dual to D,
(γ) (∀ν ∈ T q)(nor[tqν] ≥ min{nor[tpη]−m : ν E η ∈ T p}).

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

130 6. PLAYING WITH ULTRAFILTERS

If we may additionally demand that the condition q ∈ Qtree
∅ (K,Σ) above satisfies

(δ) root(q) = root(p) and (∀n ∈ Z)(Fn ∩ T q is a front of T q)

then we say that (K,Σ) is of the sUP(D)tree–type.
If D is the filter of all co-finite subsets of ω then we say that (K,Σ) is of the UPtree–
type (sUPtree–type, respectively) instead of UP(D)tree–type (sUP(D)tree–type,
resp.).

Theorem 6.3.2. Let D be a Ramsey ultrafilter on ω. Suppose that (K,Σ) is a
finitary 2–big tree–creating pair of the UP(D)tree–type. Then:

Qtree
1 (K,Σ) “ D generates an ultrafilter on ω ”.

Consequently, Qtree
1 (K,Σ)“ D generates a Ramsey ultrafilter on ω ”.

Proof. Let Ẋ be a Qtree
1 (K,Σ)–name for a subset of ω, p0 ∈ Qtree

1 (K,Σ).
Consider the following strategy for Player I in the game GR(D):

in the nth move he chooses a condition pn+1 ∈ Qtree
1 (K,Σ) such

that pn ≤1
n pn+1 and pn+1 kn ∈ Ẋ (where kn is the last point

played so far by Player II). Then he plays the set

B(pn+1, n+ 1)
def
= {k ∈ ω : (∃q ∈ Qtree

1 (K,Σ))(pn+1 ≤1
n+1 q & q k ∈ Ẋ)}.

As D is Ramsey, this strategy cannot be the winning one for Player I and therefore
there is a play (determined by k0, k1, k2, . . .) according to this strategy in which
Player I looses. This means that one of the following two possibilities holds:

Case A In the course of the play all sets B(pn+1, n + 1) are in the ultrafilter D
and {k0, k1, . . .} ∈ D.
In this situation we look at the sequence 〈pn : n ∈ ω〉. By 1.3.11 it has the limit

p∗ = lim
n∈ω

pn. Clearly p∗ {k0, k1, . . .} ⊆ Ẋ and we are done.

Case B In the course of the play it occurs that for some n ∈ ω the set B(pn+1, n+
1) is not in the ultrafilter.
Take q ∈ Qtree

1 (K,Σ), pn+1 ≤1
n+1 q and fronts F ∗, Fk of T q such that the condition

q[η] decides the truth value of “k ∈ Ẋ” for each η ∈ Fk and k ∈ ω and

(∀ν ∈ F ∗)(∀η ∈ T q)(ν E η ⇒ nor[tqη] > n+ 3),

(∀k ∈ ω)(∀ν ∈ Fk)(∀η ∈ T q)(ν E η ⇒ nor[tqη] > 2k + n+ 3)

(possible by 2.3.7(2) and 2.3.11). Of course we may assume that

(∀k ∈ ω)(∀ν ∈ Fk+1)(∃η ∈ Fk)(η C ν)

and that the fronts Fk are “above” F ∗ and F ∗ is “above” F 1
n+1(q). Further let

uk = {η ∈ Fk : q[η] Qtree
1 (K,Σ) k ∈ Ẋ}.

Look at the set C = ω \ B(pn+1, n + 1) ∈ D. If k ∈ C then necessarily for some

ρ ∈ F ∗ there is no 〈sν : ν ∈ T̂ 〉 ⊆ K with:

(1) T ⊆ {ν ∈ T q[ρ]

: (∃η ∈ Fk)(ν E η)} is a (well founded) quasi tree with
max(T) ⊆ uk and root(T) = ρ

(2) for each ν ∈ T̂ :
root(sν) = ν, pos(sν) = succT (ν), nor[sν] ≥ n+ 2 and
sν ∈ Σ(tqη : η ∈ Sν) for some (well founded) quasi tree Sν ⊆ T q.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

6.3. PRESERVING ULTRAFILTERS 131

(Otherwise we could build a condition ≤1
n+1–stronger than q (and thus than pn+1)

and forcing that k ∈ Ẋ, contradicting k /∈ B(pn+1, n+ 1).) As F ∗ is finite we have
one ρ ∈ F ∗ for which the above holds for all k ∈ C0 for some C0 ∈ D, C0 ⊆ C.

But now we may apply the fact that (K,Σ) is of the UP(D)tree–type (see
6.3.1, remember the choice of F ∗): we get q∗ ∈ Qtree

∅ (K,Σ) such that q[ρ] ≤ q∗,

Z
def
= {k ∈ C0 : uk ∩ dcl(T q

∗
) = ∅} ∈ D and

nor[tq
∗

ν] ≥ min{nor[tqη]− (n+ 2) : ν E η ∈ T q}.

Now we easily see that in fact q∗ ∈ Qtree
1 (K,Σ) (by the norm requirement and the

choice of q and Fk’s) and q∗ Qtree
1 (K,Σ) Z ∩ Ẋ = ∅.

For the “consequently” part, note that, by 3.1.1, the forcing notion Qtree
1 (K,Σ)

is proper and ωω–bounding. Therefore we may apply [Sh:f, Ch VI, 5.1]. This
finishes the proof of the theorem. �

Definition 6.3.3. We say that a tree creating pair (K,Σ) for H is rich if:

for every system 〈sν : ν ∈ T̂ 〉 ⊆ K, n ∈ ω and u such that

(1) T ⊆
⋃
k∈ω

∏
m<k

H(m) is a well founded quasi tree, u ⊆ max(T),

(2) root(sν) = ν, pos(sν) = succT (ν), nor[sν] > n+ 3,

(3) there is no 〈s∗ν : ν ∈ T̂ ∗〉 ⊆ K such that

T ∗ ⊆ T, max(T ∗) ⊆ u, root(T ∗) = root(T), root(s∗ν) = ν,
pos(s∗ν) = succT∗(ν), nor[s∗ν] > n+ 1, and

s∗ν ∈ Σ(sη : η ∈ T̂ν) for some Tν ⊆ T

there is 〈s+
ν : ν ∈ T̂+〉 ⊆ K such that

T+ ⊆ T, max(T+) ⊆ max(T) \ u, root(T+) = root(T), root(s+
ν) = ν,

pos(s+
ν) = succT+(ν), nor[s+

ν] ≥ min{nor[sη] : η ∈ T} − (n+ 2),

and s+
ν ∈ Σ(sη : η ∈ T̂ν) for some Tν ⊆ T.

Theorem 6.3.4. Assume (K,Σ) is a finitary 2-big rich tree–creating pair of the
sUPtree–type. Let D be an almost Ramsey interesting ultrafilter on

⋃
i∈ω
{i}× (i+1).

Then

Qtree
1 (K,Σ) “ D generates an interesting ultrafilter on

⋃
i∈ω
{i} × (i+ 1) ”.

Proof. First note that if we show that, in VQtree
1 (K,Σ), D generates an ultra-

filter then the ultrafilter has to be interesting (remember that D is interesting).

Let Ẋ be a Qtree
1 (K,Σ)–name for a subset of

⋃
i∈ω
{i} × (i+ 1).

We say that a condition p ∈ Qtree
1 (K,Σ) is (Ẋ, n)–special if:

there is a set C ∈ D such that:
for every i ∈ ω and a ∈ [C ∩{i}× (i+ 1)]≤ n there are a condition

p′ ≥ p and a front F of T p
′

such that

root(p) = root(p′), (∀ν ∈ T p
′
)(nor[tp

′

ν] > n+ 1),

(∀ν∈T p
′
)(∀η∈F)(η E ν ⇒ tpν = tp

′

ν) and p′ Qtree
1 (K,Σ) a ⊆ Ẋ.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

132 6. PLAYING WITH ULTRAFILTERS

The condition p is n–special if it is either (Ẋ, n)–special or (ω \ Ẋ, n)–special.
Note that the part of the definition of special conditions concerning the exis-

tence of a front F (of T p
′
) is purely technical and usually easy to get (once we have

the rest):

If the condition p is such that (∀ν ∈ T p)(nor[tpν] > n+ 1) and the

values of Ẋ ∩ {i} × (i+ 1) are decided on some fronts Fi of T p

then if we have a condition p′ ≥0 p such that

(∀ν ∈ T p
′
)(nor[tp

′

ν] > n+ 1)

and p′ a ⊆ Ẋ, then we may find one (weaker than p′) which has
this property and a front F as there. Moreover, in this situation,
if p ≤0 p1 and p1 is (Ẋ, n)–special then p is (Ẋ, n)–special.

Note that if n ≥ m and p is (Ẋ, n)–special then it is (Ẋ,m)– special.

Claim 6.3.4.1. Let n < ω. Suppose that p ∈ Qtree
1 (K,Σ) is such that

(∀ν ∈ T p)(nor[tpν] > (22n + 1)(n+ 3))

and there are fronts Fi of T p (for i ∈ ω) with

(∀i ∈ ω)(∀ν ∈ Fi)(p[ν] decides Ẋ ∩ {i} × (i+ 1)).

Then p is n-special.

Proof of the claim: Let f+, f− :
⋃
i∈ω

[{i} × (i+ 1)]n −→ 2 be such that

f+(v) = 1 if and only if there are q ≥0 p and a front F of T q

such that q Qtree
1 (K,Σ) v ⊆ Ẋ and

(∀ν∈T q)(∀η∈F)(η E ν ⇒ tqν = tpν) & (∀ν∈T q)(nor[tqν] > n+ 1),

and f− is defined similarly replacing “Ẋ” by “ω \ Ẋ”.
As D is almost Ramsey and interesting we find j+, j− < 2 and a set C ∈ D

such that for each i ∈ ω :

if C ∩ {i} × (i+ 1) 6= ∅
then |C ∩ {i} × (i+ 1)| ≥ 2n, f+�[C ∩ {i} × (i+ 1)]n = j+ and
f−�[C ∩ {i} × (i+ 1)]n = j−.

If either j+ = 1 or j− = 1 then plainly p is n-special. So suppose that j+ = j− = 0
(and we want to get a contradiction).

Take i ∈ ω such that |C ∩ {i} × (i+ 1)| ≥ 2n (remember the choice of C) and

fix v ∈ [C ∩ {i} × (i+ 1)]2n. For each v1 ⊆ v let

uiv1,v = {ν ∈ Fi : p[ν] Qtree
1 (K,Σ) v ∩ Ẋ = v1}.

Since (K,Σ) is rich we find v1 and 〈s+
ν : ν ∈ T̂+〉 ⊆ K such that

T+ ⊆ T p, max(T+) ⊆ uiv1,v, root(T+) = root(p), pos(s+
ν) = succT+(ν),

root(s+
ν) = ν, nor[s+

ν] > n+ 1 and s+
ν ∈ Σ(sη : η ∈ T̂ν) for some Tν ⊆ T p.

[How? We try successively each v1 ⊆ v. If we fail with one, we use 6.3.3 to pass to
a subtree with the minimum of norms dropping down by at most n+ 2 and we try
next candidate. For some v1 ⊆ v we have to succeed.]

Now look at this v1 (and suitable 〈s+
ν : ν ∈ T̂+〉). Since j+ = 0 we necessarily have

|v1| < n: if not then we may take v2 ∈ [v1]n and then f+(v2) = 1 as witnessed

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

6.3. PRESERVING ULTRAFILTERS 133

by the condition q starting with 〈s+
ν : ν ∈ T̂+〉. Similarly, by j− = 0, we have

|v \ v1| < n. Together contradiction to |v| = 2n. Thus the claim is proved.

Now, let p ∈ Qtree
1 (K,Σ). By 2.3.12 and 2.3.7(2) we find p1 ≥ p and fronts Fn

of T p1 such that for n ∈ ω:

(1) (∀ν ∈ Fn+1)(∃η ∈ Fn)(η C ν),
(2) (∀ν ∈ Fn)(∀η ∈ T p1)(ν E η ⇒ nor[tp1

η] > (22n+1 + 5)(n+ 3)),

(3) (∀ν ∈ Fn)(p
[ν]
1 decides Ẋ ∩ {n} × (n+ 1)).

Then, by 6.3.4.1, for each ν ∈ Fn the condition p
[ν]
1 is n–special. Let

un = {ν ∈ Fn : p
[ν]
1 is (Ẋ, n)–special}.

Now we consider two cases.

Case A: There are n ∈ ω, ν ∈ Fn such that for each m > n there is no system
〈sη : η ∈ T̂ 〉 ⊆ K with:

T ⊆ T p1 , max(T) ⊆ um, root(T) = ν, root(sη) = η, pos(sη) = succT (η),

nor[sη] ≥ (22n + 2)(n+ 3) and sη ∈ Σ(tp1
ρ : ρ ∈ T̂η) for some Tη ⊆ T p1 .

Since (K,Σ) is of the sUPtree–type and

(∀η ∈ T p1)(ν E η ⇒ nor[tp1
η] > (22n+1 + 5)(n+ 3)),

we find a condition q ∈ Qtree
1 (K,Σ) such that

(α) p
[ν]
1 ≤1

0 q,

(β) Z
def
= {m > n : um ∩ dcl(T q) = ∅} ∈ [ω]ω,

(γ) (∀η ∈ T q)(nor[tqη] ≥ min{nor[tp1
ρ] : η E ρ ∈ T p1} − (22n + 2)(n+ 3)),

(δ) (∀m ∈ Z)(Fm ∩ T q is a front of T q).

Let m ∈ Z (so then Fm∩T q is a front of T q and um∩T q = ∅) and let η ∈ Fm∩T q.
By (γ) and (2) above we know that

(∀ρ ∈ T q)(η E ρ ⇒ nor[tqρ] > (22m + 1)(m+ 3)).

Consequently we may use 6.3.4.1 to conclude that q[η] is m–special. It cannot be

(Ẋ,m)–special as then the condition p
[η]
1 would be (Ẋ,m)–special (compare the

remark after the definition of special conditions) contradicting η /∈ um. Thus q[η]

is (ω \ Ẋ,m)–special.

For m ∈ Z and η ∈ Fm ∩ T q fix a set Cmη ∈ D witnessing the fact that “ q[η] is

(ω \ Ẋ,m)–special ”. Let Bm =
⋂

η∈Fm∩T q
Cmη ∈ D (for m ∈ Z).

Consider the following strategy for Player I in the game GsR(D):

at position number 0:
Player I writes down to the side: m0 = minZ, q0 = q and he plays: Bm0 .

[Note that he is (trivially) sure that if (i0, a0) is an answer of Player II then he may

find q1 ≥0 q0 such that q1 a0 ⊆ ω \ Ẋ and for some front F of q1, (∀ρ ∈ F)(∀η ∈
T q1)(ρ E η ⇒ tq1η = tqη).]

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

134 6. PLAYING WITH ULTRAFILTERS

at position number k + 1:
Player I looks at the last move (ik, ak) of his opponent. He chooses a condition
qk+1 ≥k qk and a front F of T qk+1 such that

(∀ρ ∈ F)(∀η ∈ T qk+1)(ρ E η ⇒ tqk+1
η = tqη) and qk+1 ak ⊆ ω \ Ẋ.

Now he takes mk+1 ∈ Z so large that mk+1 > mk and the front Fmk+1
is “above”

both F and F 1
k+2(qk+1). Finally:

Player I writes down to the side: mk+1, qk+1 and he plays: Bmk+1
.

[After this move he is sure that if (ik+1, ak+1) is a legal answer of the second player

then he may find a condition qk+2 ≥k+1 qk+1 such that qk+2 ak+1 ⊆ ω \ Ẋ and
for some front F of T qk+2 , ρ E η ⇒ t

qk+2
η = tqη whenever ρ ∈ F , η ∈ T qk+2 . Why?

Remember the choice of Z,mk+1, Bmk+1
and Fmk+1

; see 2.3.1, clearly mk+1 ≥ k+1.]

The strategy described above cannot be the winning one. Consequently there is a
sequence 〈(i0, a0), (i1, a1), . . .〉 such that (in, an) are legitimative moves of Player II
against the strategy and

⋃
k∈ω

ak ∈ D. But in this play, Player I constructs (on a side)

a sequence p ≤ q = q0 ≤0 q1 ≤1 q2 ≤2 . . . of conditions such that qk ak ⊆ ω \ Ẋ.

Take the limit condition q∞ = lim
k∈ω

qk; it forces that
⋃
k∈ω

ak ⊆ ω \ Ẋ, finishing the

proof of the theorem in Case A.

Case B: Not Case A.

Thus for every ν ∈ Fn, n ∈ ω we find m > n and 〈sη : η ∈ T̂ 〉 ⊆ K such that:

T ⊆ T p1 , max(T) ⊆ um, root(T) = ν, root(sη) = η, pos(sη) = succT (η),

nor[sη] ≥ (22n + 2)(n+ 3) and sη ∈ Σ(tp1
ρ : ρ ∈ T̂η) for some Tη ⊆ T p1 .

If 〈sη : η ∈ T̂ 〉, m > n are as above then we will say that 〈sη : η ∈ T̂ 〉 is (m,n)–good
for ν. For each n ∈ ω and ν ∈ un fix a set Cnν ∈ D witnessing the fact that “the

condition p
[ν]
1 is (Ẋ, n)–special”. Now consider the following strategy for Player I

in the game GsR(D):

at position number 0:
For each ν ∈ F0, Player I chooses n(ν) > 0 and 〈sνη : η ∈ T̂ν〉 ⊆ K which is
(n(ν), 0)–good. He builds a condition q0 which starts like these sequences. Thus q0

is such that:

(a) root(q0) = root(p1),
(b) if η ∈ T p1 is below the front F0 then η ∈ T q0 , tq0η = tp1

η ,

(c) if η ∈ T̂ν for some ν ∈ F0 then η ∈ T q0 , tq0η = sνη ,
(d) if η ∈ T p1 and there are ν ∈ F0 and ρ ∈ max(Tν) such that ρ E η then

η ∈ T q0 , tq0η = tp1
η .

Note that F ∗0
def
=

⋃
ν∈F0

max(Tν) is a front of T q0 above F 0
2 (q0).

Now, Player I writes down to the side: q0, F ∗0 and he plays:

A0 =
⋂
{Cn(ν)

η : ν ∈ F0, η ∈ max(Tν)}.

[Thus Player I knows that F ∗0 is a front of T q0 above F 0
2 (q0), and for each ν ∈ F ∗0

the condition p
[ν]
1 = q

[ν]
0 is (Ẋ, 1)–special and the set A0 witnesses this fact.]

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

6.3. PRESERVING ULTRAFILTERS 135

at the position number k + 1:
Player I looks at the last move (ik, ak) of his opponent. He chooses a condition

qk+1 ≥k qk and a front F ∗k+1 of T qk+1 such that qk+1 ak ⊆ Ẋ, the front F ∗k+1 is

above F 0
k+3(qk+1) and for each ν ∈ F ∗k+1 the condition q

[ν]
k+1 = p

[ν]
1 is (Ẋ, k + 2)–

special. How does he find qk+1 and F ∗k+1? He has qk and F ∗k and he knows that

F ∗k is a front of T qk above F 0
k+2(qk) and for each ν ∈ F ∗k , the condition q

[ν]
k = p

[ν]
1

is (Ẋ, k + 1)-special and the set Ak (played by Player I before) witnesses this fact
(this is our inductive hypothesis). Now, as ak ⊆ Ak, for each ν ∈ F ∗k the first

player may choose a condition q+
ν ≥0 q

[ν]
k = p

[ν]
1 which forces that ak ⊆ Ẋ and such

that (∀η ∈ T q+
ν)(nor[t

q+
ν
η] > k + 1) and for some front F+

ν of q+
ν , if η E ρ ∈ T p1 ,

η ∈ F+
ν then ρ ∈ T q

+
ν , t

q+
ν
ρ = tp1

ρ . We may assume that the fronts F+
ν are such

that F+
ν ⊆ Fm+(ν) for some m+(ν) > k + 2 and F+

ν is above F 0
k+3(q+

ν). For each

ρ ∈ F+
ν , ν ∈ F ∗k we may choose m(ρ) > m+(ν) and 〈sρη : η ∈ T̂ρ〉 ⊆ K such that

〈sρη : η ∈ T̂ρ〉 is (m(ρ),m+(ν))–good. Let

F ∗k+1 =
⋃
{max(Tρ) : (∃ν ∈ F ∗k)(ν C ρ ∈ F+

ν)}.

The condition qk+1 is such that:

(a) below F ∗k it agrees with qk,

(b) if ν E η C ρ ∈ F+
ν , ν ∈ F ∗k , η ∈ T q+

ν then η ∈ T qk+1 , t
qk+1
η = t

q+
ν
η ,

(c) if ν C ρ E η ∈ T̂ρ, ν ∈ F ∗k , ρ ∈ F+
ν then η ∈ T qk+1 , t

qk+1
η = sρη,

(d) if ν C ρ C η0 E η1, ν ∈ F ∗k , ρ ∈ F+
ν , η0 ∈ max(Tρ), η1 ∈ T p1 then

η1 ∈ T qk+1 and t
qk+1
η1 = tp1

η1
.

Thus qk+1 ≥k qk, F ∗k+1 is a front of T qk+1 , and if ν C ρ C η ∈ F ∗k+1, ν ∈ F ∗k , ρ ∈ F+
ν

then q
[η]
k+1 = p

[η]
1 is (Ẋ,m(ρ))–special, m(ρ) > m+(ν) > k + 2 (so m(ρ) > k + 3).

Now the first player writes down to the side qk+1, F ∗k+1 and he plays:

Ak+1 =
⋂
{Cm(ρ)

η : (∃ν ∈ F ∗k)(ρ ∈ F+
ν & ν C ρ C η ∈ um(ρ))}.

[Note that for each ν ∈ F ∗k+1, the set Ak+1 witnesses that the condition q
[ν]
k+1 = p

[ν]
1

is (Ẋ, k + 2)-special; the front F ∗k+1 is above F 0
k+3(qk+1).]

The strategy described above cannot be the winning one. Consequently, there
is a play according to this strategy in which Player I loses. Thus we have moves
(i0, a0), (i1, a1), . . . of Player II (legal in this play) for which

⋃
k∈ω

ak ∈ D. But in the

course of the play the first player constructs conditions p1 ≤ q0 ≤0 q1 ≤1 q2 ≤2 . . .
such that qk ak ⊆ Ẋ. Then the limit condition q∞ = lim

k∈ω
qk forces that

⋃
k∈ω

ak ⊆

Ẋ. This finishes the proof of the theorem. �

Definition 6.3.5. For n, k,m ∈ ω let Rn(k,m) be the smallest integer such

that for every colouring f : [Rn(k,m)]≤n −→ k there is a ∈ [Rn(k,m)]m homoge-
neous for f (so this is the respective Ramsey number).

Theorem 6.3.6. Let D be an almost Ramsey ultrafilter on
⋃
i∈ω
{i} × (i + 1).

Suppose that (K,Σ) is a finitary 2-big rich tree–creating pair such that

Qtree
1 (K,Σ) “ D generates an ultrafilter on

⋃
i∈ω
{i} × (i+ 1) ”.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

136 6. PLAYING WITH ULTRAFILTERS

Then Qtree
1 (K,Σ)“ the ultrafilter D̃ generated by D is almost Ramsey ”.

Proof. Due to 3.1.1(1) we may apply 6.2.9 and get that

Qtree
1 (K,Σ) “ D generates a semi–Ramsey ultrafilter on

⋃
i∈ω
{i} × (i+ 1) ”.

So, what we have to do is to show that, in VQtree
1 (K,Σ), the ultrafilter D̃ generated by

D has the colouring property of 6.2.5(5). Suppose that a condition p ∈ Qtree
1 (K,Σ),

n,L < ω and a Qtree
1 (K,Σ)–name ϕ̇ are such that p “ϕ̇ :

⋃
i∈ω

[{i}×(i+1)]n −→ L”.

Note that if D is not interesting and it is witnessed by h ∈
∏
i∈ω

(i+ 1) then the set

{(i, h(i)) : i ∈ ω} is almost homogeneous for ϕ̇ and it is in D. Consequently, we
may assume that D is interesting.

We say that a condition q ∈ Qtree
1 (K,Σ) is m-beautiful (for m ∈ ω) if:

there is a set C ∈ D such that:
for every i ∈ ω and a ∈ [C ∩ {i} × (i+ 1)]m there are a condition

q′ ≥ q and a front F of T q
′

such that

root(q) = root(q′), (∀ν ∈ T q
′
)(nor[tq

′

ν] > m+ 1),

q′ “a is ϕ̇–homogeneous” and (∀ν∈T q
′
)(∀η∈F)(η E ν ⇒ tqν = tq

′

ν).

Clearly, if q is m-beautiful and k ≤ m then q is k-beautiful.
Let R∗(m) = Rn(L,m) (see 6.3.5).

Claim 6.3.6.1. Let m < ω, q ∈ Qtree
1 (K,Σ). Assume that

(∀ν ∈ T q)(nor[tqν] > (

(
R∗(m)

m

)
+ 1)(m+ 3))

and there are fronts Fi of T q (for i ∈ ω) such that conditions q[ν] (for ν ∈ Fi,
i ∈ ω) decide the value of ϕ̇�[{i} × (i+ 1)]n. Then the condition q is m–beautiful.

Proof of the claim: Look at the following colouring f :
⋃
i∈ω

[{i} × (i+ 1)]m −→ 2:

f(v) = 1 if and only if there are q′ ≥0 q and a front F of T q
′

such that

q′ Qtree
1 (K,Σ) “v is homogeneous for ϕ̇” and

(∀ν ∈ T q
′
)(∀η ∈ F)(η E ν ⇒ tq

′

ν = tqν) & (∀ν ∈ T q
′
)(nor[tq

′

ν] > m+ 1).

Since D is almost Ramsey and interesting we find j < 2 and a set C ∈ D such that
for each i ∈ ω:

if C ∩ {i} × (i+ 1) 6= ∅
then |C ∩ {i} × (i+ 1)| ≥ R∗(m), f�[C ∩ {i} × (i+ 1)]m = j.

If j = 1 then easily the condition q is m-beautiful. Thus we have to exclude the
other possibility. So assume j = 0. Take i ∈ ω such that C ∩ {i} × (i+ 1) 6= ∅ and

choose v ∈ [C ∩ {i} × (i+ 1)]R
∗(m). For v1 ∈ [v]m put

uiv1,v = {ν ∈ Fi : q[ν] Qtree
1 (K,Σ) “v1 is ϕ̇–homogeneous”}.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

6.3. PRESERVING ULTRAFILTERS 137

Note that, by the definition of R∗(m), for each ν ∈ Fi we find v1 ∈ [v]m such that
ν ∈ uiv1,v. Consequently we may apply the assumption that (K,Σ) is rich and we

find v1 ∈ [v]m and 〈s+
ν : ν ∈ T̂+〉 ⊆ K such that

T+ ⊆ T q, max(T+) ⊆ uiv1,v, root(T+) = root(q), pos(s+
ν) = succT+(ν),

root(s+
ν) = ν, nor[s+

ν] > m+ 1 and s+
ν ∈ Σ(sη : η ∈ T̂ν) for some Tν ⊆ T q.

[Exactly like in 6.3.4.1.] But with this in hands we easily conclude that f(v1) = 1,
contradicting v1 ∈ [C ∩ {i} × (i+ 1)]m and the choice of j, C.

Choose a condition q ≥ p such that for some fronts Fm of T q (for m ∈ ω) we
have

(1) (∀ν ∈ Fm+1)(∃η ∈ Fm)(η C ν),

(2) (∀ν ∈ Fm)(∀η ∈ T q)(ν E η ⇒ nor[tqη] > (
(
R∗(m)
m

)
+ 1)(m+ 3)),

(3) (∀ν ∈ Fm)(q[ν] decides ϕ̇�[{m} × (m+ 1)]n)

(possible by 2.3.12 and 2.3.7(2)). By 6.3.6.1 we know that for each ν ∈ Fm, m ∈ ω
the condition q[ν] is m–beautiful. So for every m < ω and ν ∈ Fm we may fix a set
Cmν ∈ D witnessing “q[ν] is m–beautiful”.

Consider the following strategy of the first player in the game GsR(D):

at position number 0:
Player I writes down to the side q0 = q, F ∗0 = F0. He plays

⋂
{C0

ν : ν ∈ F0} ∈ D.

arriving at position k + 1:
Player I has a condition qk and a front F ∗k of T qk such that qk above F ∗k agrees with

q. Moreover, the set played by him before witnesses that each q[ν] is k-beautiful
(for ν ∈ F ∗k). He looks at the last move (ik, ak) of his opponent. For each ν ∈ F ∗k ,

Player I can find a condition qν ≥0 q
[ν]
k = q[ν] such that

(a) (∀η ∈ T qν)(nor[tqνη] > k + 1),
(b) for some fronts Fν of T qν , qν above Fν agrees with q and
(c) qν Qtree

1 (K,Σ)“ak is ϕ̇–homogeneous”.

We may think that for some m > ik the fronts Fν are contained in Fm (for ν ∈ F ∗k).
Now let qk+1 be such that

(α) below F ∗k it agrees with qk,
(β) if ν E η C ρ ∈ Fν , ν ∈ F ∗k , η ∈ T qν then η ∈ T qk+1 , t

qk+1
η = tqνη ,

(γ) if ν C ρ E η ∈ T qν , ν ∈ F ∗k , ρ ∈ Fν then η ∈ T qk+1 , t
qk+1
η = tqνη = tqη.

Let F ∗k+1 =
⋃
{Fν : ν ∈ F ∗k }. Clearly F ∗k+1 is a front of T qk+1 contained in Fm,

qk+1 ≥k qk and qk+1 forces that ak is ϕ̇-homogeneous. Now:
Player I writes down to the side qk+1, F

∗
k+1 and he plays the set⋂

{Cmη : η ∈ F ∗k+1} ∈ D.

[Note that for every ν ∈ F ∗k+1 the condition q
[ν]
k+1 = q[ν] is k + 1-beautiful and the

set played by Player I witnesses it.]

This strategy cannot be winning for the first player. Consequently he loses some
play according to it. Let 〈(i0, a0), (i1, a1), . . .〉 be the sequence of the respective
moves of the second player (so

⋃
k∈ω

ak ∈ D) and let q0, q1, q2, . . . be the sequence of

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

138 6. PLAYING WITH ULTRAFILTERS

conditions written down by the first player during the play. Let q∞ be the limit
condition lim

k∈ω
qk. Then we have:

q∞ Qtree
1 (K,Σ) (∀k ∈ ω)(ak is ϕ̇–homogeneous).

This finishes the proof of the theorem. �

Let us finish this section with a theorem showing how several types of forcing
notions built according to our scheme may preserve Γ–genericity in the context of
ultrafilters. The proof of theorem 6.3.8 below resembles the proof that Blass–Shelah
forcing notion preserves p–points (see [BsSh 242, 3.3]).

Definition 6.3.7. (1) A creating pair (K,Σ) is simple except omitting if
it is omittory, |pos(u, t)| > 1 whenever t ∈ K, nor[t] > 0 and u ∈ basis(t),
and for every (t0, . . . , tn−1) ∈ PFC(K,Σ) and s ∈ Σ(t0, . . . , tn−1) there is
k < n such that s ∈ Σ(tk � [ms

dn,m
s
up)).

(2) Suppose that (K,Σ) is an omittory creating pair, t̄ = 〈tk : k < ω〉 ∈
PC∞(K,Σ) and W : ω × ω × ωω^ −→ K is a t̄–system. We say that W is
omittory compatible if
(α) k ≤ ` < n < ω and s ∈ Σ(t` � [mtk

dn,m
tn
dn)) imply nW (s) = ` (where

nW (s) is as in 5.3.1(1b,c)), and
(β) k ≤ ` < ω, σ : [mtk

dn,m
t`
up) −→ ω imply

W (mtk
dn,m

t`
up, σ) =

⋃
{s� [mtk

dn,m
t`
up) : s ∈W (mtn

dn,m
tn
up, σ�[m

tn
dn,m

tn
up)), k≤n≤`}.

Theorem 6.3.8. Suppose that a creating pair (K0,Σ0) is simple except omit-
ting, forgetful and monotonic. Let t̄ ∈ PC∞(K,Σ) and W be an omittory–compatible
t̄–system. Assume that Γ ⊆ PC∞(K0,Σ0) is quasi-W -generic and generates an ul-
trafilter.

(1) If (K0,Σ0) is strongly finitary, (K,Σ) is a finitary, monotonic, omittory
and omittory–big creating pair then the forcing notion Q∗s∞(K,Σ) is Γ–
genericity preserving.

(2) If (K,Σ) is a finitary creating pair which captures singletons then the
forcing notion Q∗w∞(K,Σ) is Γ–genericity preserving.

(3) If (K,Σ) is a finitary t–omittory tree creating pair then the forcing notion
Qtree

1 (K,Σ) is Γ–genericity preserving.

Proof. 1) We have to show that, in VQ∗s∞(K,Σ), the demand 5.3.1(3b) is
satisfied (as we know that Q∗s∞(K,Σ) is proper). So suppose that η̇ is a Q∗s∞(K,Σ)–
name for an element of ωω and p ∈ Q∗s∞(K,Σ). Since (K0,Σ0) is strongly finitary
we may repeatedly use 2.2.6 and we get a condition q ≥ p such that for each n < ω
and v ∈ pos(wq, tq0, . . . , t

q
n−1) the condition (v, tqn, t

q
n+1, . . .) decides the value of

W (mtn
dn,m

tn
up, η̇�[m

tn
dn,m

tn
up)), where t̄ = 〈t0, t1, t2, . . .〉. Fix v ∈ pos(wq, tq0, . . ., t

q
n−1),

n < ω for a moment. For k ≥ n let vk = v_0
[`g(v),m

t
q
k

up)
∈ pos(v, tqn, . . . , t

q
k)

(remember that (K,Σ) is omittory). Note that, for each k ≥ n, the condition

(vk, tqk+1, t
q
k+2, . . .) decides the value of W (m

tk+1

dn ,m
tk+1
up , η̇�[mtk+1

dn ,m
tk+1
up)). Thus

we find a function η(v) ∈ ωω such that, for each ` ≤ n,

(v, tqn, t
q
n+1, . . .) W (mt`

dn,m
t`
up, η̇�[m

t`
dn,m

t`
up)) = W (mt`

dn,m
t`
up, η(v)�[mt`

dn,m
t`
up))

and for each k ≥ n the condition (vk, tqk+1, t
q
k+2, . . .) forces that

“ W (m
tk+1

dn ,mtk+1
up , η̇�[mtk+1

dn ,mtk+1
up)) = W (m

tk+1

dn ,mtk+1
up , η(v)�[mtk+1

dn ,mtk+1
up)) ”.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

6.3. PRESERVING ULTRAFILTERS 139

Since Γ is quasi-W -generic we find s̄ = 〈sm : m < ω〉 ∈ Γ such that for every n < ω
and v ∈ pos(wq, tq0, . . . , t

q
n−1) we have

(∀∞m ∈ ω)(sm ∈W (msm
dn ,m

sm
up , η(v)�[msm

dn ,m
sm
up)))

(remember (Γ,�) is directed countably closed). Next we choose inductively an
increasing sequence `(0) < `(1) < `(2) < . . . < ω such that

if v ∈ pos(wq, tq0, . . . , t
q
n−1), mtn

up ≤ m
s`(i)
up , n, i ∈ ω

then (∀m ≥ `(i+ 1))(sm ∈W (msm
dn ,m

sm
up , η(v)�[msm

dn ,m
sm
up))).

For j < 4 let Yj =
⋃
i∈ω

[m
s`(4i+j)
dn ,m

s`(4i+j+1)

dn). Since Γ generates an ultrafilter,

exactly one of these sets is in D(Γ). Without loss of generality we may assume that
Y2 ∈ D(Γ) (otherwise start the sequence of the `(i)’s from `(1), or `(2) or `(3)).
This means that we find s̄∗ = 〈s∗m : m < ω〉 ∈ Γ such that s̄ ≤ s̄∗ and for sufficiently
large m (say m ≥ m∗), there are i = i(m) and k = k(m) such that

m
s`(4i+2)

dn ≤ mtk
dn < mtk

up ≤ m
s`(4i+3)

dn and s∗m ∈ Σ(tk � [m
s∗m
dn ,m

s∗m
up))

(remember (K0,Σ0) is simple–except–omitting and monotonic). Let x(i) ∈ ω

be such that m
tx(i)

dn = m
s`(4i+3)

dn (for i ∈ ω). Now we define a condition q∗ =

(wq
∗
, tq
∗

0 , t
q∗

1 , . . .):

wq
∗

= wq, tq
∗

0 = tqx(0) � [`g(wq),m
tq
x(0)

up), and tq
∗

i+1 = tqx(i+1) � [m
tq
x(i)

up ,m
tq
x(i+1)

up).

Plainly, this defines a condition in Q∗s∞(K,Σ) stronger than q. We claim that

q∗ (∀m > m∗)(s∗m ∈W (m
s∗m
dn ,m

s∗m
up , η̇�[m

s∗m
dn ,m

s∗m
up))).

Assume not. Then we find q′ ≥ q∗ and m > m∗ such that

q′ s∗m /∈W (m
s∗m
dn ,m

s∗m
up , η̇�[m

s∗m
dn ,m

s∗m
up))).

Of course we may assume that `g(wq
′
) ≥ m

tq
∗
i(m)

up . Let k0, k1, k2 be such that m
t
k`

dn =

m
s`(4i(m)+`)

dn and let v = wq
′
�m

tq
k0

dn . Clearly

m
tq
∗
i(m)

dn < m
tq
k0

up < m
tq
k1

up < m
tq
k2

up ≤ m
tq
k(m)

up < m
tq
x(i(m))

up = m
tq
∗
i(m)

up ,

v ∈ pos(wq, tq0, . . . , t
q
k0−1) (by smoothness) and wq

′
�[m

tq
k0

dn ,m
tq
x(i(m))

dn) ≡ 0 (by the

definition of tq
∗

i(m), remember (K,Σ) is monotonic). Consequently for each k ∈
[k0, x(i(m))) we have vk E wq

′
. Since k0 < k(m) < x(i(m)) we conclude that the

condition q′ forces

“ W (m
tk(m)

dn ,m
tk(m)
up , η̇�[m

tk(m)

dn ,m
tk(m)
up)) = W (m

tk(m)

dn ,m
tk(m)
up , η(v)�[m

tk(m)

dn ,m
tk(m)
up)) ”.

Since m
tk0
up < m

s`(4i(m)+1)
up , for each i ∈ [`(4i(m) + 2), `(4i(m) + 3)) we have si ∈

W (msi
dn,m

si
up, η(v)�[msi

dn,m
si
up)) (remember that choice of the sequence of the `(i)’s).

Now look at the condition 5.3.1(1c). Since W is omittory–compatible we have

nW (s∗m)=k(m)∈ [k2, x(i(m))) and therefore s∗m ∈W (m
s∗m
dn ,m

s∗m
up , η(v)�[ms∗m

dn ,m
s∗m
up)).

Hence, by 6.3.7(2β), we easily get

q′ “ s∗m ∈W (m
s∗m
dn ,m

s∗m
up , η̇�[m

s∗m
dn ,m

s∗m
up)) ”,

a contradiction.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

140 6. PLAYING WITH ULTRAFILTERS

2) Repeat the proof of 1) noting that we do not have to assume that (K0,Σ0)
is strongly finitary as we use 2.1.12 instead of 2.2.6. (Defining vk we use fixed
sequences un (for n ∈ ω) such that un ∈ pos(u, tqn) for each u ∈ basis(tqn).)

3) Similarly (remember that (K,Σ) is finitary). �

Remark 6.3.9. In 6.3.8(3) we need the assumption that the tree creating pair
(K,Σ) is finitary. The forcing notion Dω of [NeRo93], in which conditions are trees

⊆ ω<ω such that each node has an extension which has all possible successors in
the tree, adds a Cohen real (see [NeRo93, 2.1]). This forcing may be represented
as Qtree

1 (K ′,Σ′) for some t–omittory (not finitary) tree creating pair (K ′,Σ′).

6.4. Examples

Example 6.4.1. Let H(m) = 2 for m < ω. We construct a creating pair
(K6.4.1,Σ6.4.1) for H, t̄ ∈ PC∞(K6.4.1,Σ6.4.1) and t̄-systems Wn

L (for n,L < ω)
such that

(1) (K6.4.1,Σ6.4.1) is simple except omitting, finitary, forgetful, monotonic,
interesting, condensed and generates an ultrafilter, the systems Wn

L are
omittory–compatible,

(2) if Γ ⊆ P∗∞(t̄, (K6.4.1,Σ6.4.1)) is quasi-Wn
L -generic then D(Γ) is a filter on⋃

i∈ω
{i}× (i+ 1) such that for every colouring f :

⋃
i∈ω

[{i}× (i+ 1)]n −→ L

there is a set A ∈ D(Γ) almost homogeneous for f ,
(3) if Γ ⊆ P∗∞(t̄, (K6.4.1,Σ6.4.1)) is �-directed and countably closed and D(Γ)

is a filter such that for every colouring f :
⋃
i∈ω

[{i} × (i + 1)]n −→ L

(n,L < ω) there is a set A ∈ D(Γ) almost homogeneous for f then Γ is
quasi-Wn

L -generic for all n,L.

Construction. A creature t ∈ CR[H] is in K6.4.1 if for some non-empty
subset at of [mt

dn,m
t
up) we have nor[t] = log2(|at|) and

val[t] = {〈u, v〉 ∈ 2m
t
dn×2m

t
up : (∀n∈ [mt

dn,m
t
up))(v(n) = 1 ⇒ n ∈ at)}.

We define Σ6.4.1 by:

if t0, . . . , tn ∈ K6.4.1 are such that mt`
up = m

t`+1

dn (for ` < n) then

Σ6.4.1(t0, . . . , tn) = {s ∈ K6.4.1 : mt0
dn = ms

dn & mtn
up = ms

up & (∃` ≤ n)(as ⊆ at`)}.

It should be clear that (K6.4.1,Σ6.4.1) is a finitary, forgetful, monotonic and simple
except omitting creating pair. It is interesting as nor[t] > 0 implies |at| > 1
(for t ∈ K6.4.1). By the definition of Σ6.4.1, one easily shows that (K6.4.1,Σ6.4.1) is
condensed and generates an ultrafilter. Moreover, (K6.4.1,Σ6.4.1) is strongly finitary
modulo ∼Σ6.4.1

. Now, let t̄ = 〈ti : i < ω〉 ∈ PC∞(K6.4.1,Σ6.4.1) be such that for
i ∈ ω:

mti
dn =

i(i+ 1)

2
, mti

up =
(i+ 1)(i+ 2)

2
, ati = [mti

dn,m
ti
up)

(so nor[ti] = log2(i+1)). We will identify the interval [mti
dn,m

ti
up) with {i}× (i+1)

(for i ∈ ω). Thus, if Γ ⊆ P∗∞(t̄, (K6.4.1,Σ6.4.1)) is quasi-W -generic for some t̄–
system W , then we may think of D(Γ) as a filter on

⋃
i∈ω
{i} × (i + 1). The filter

D(Γ) is interesting by 6.1.6(1).

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

6.4. EXAMPLES 141

Fix n,L < ω. For each i ∈ ω choose a mapping

ψi : ω[mti
dn,m

ti
up) onto−→ {f : f is a function from [[mti

dn,m
ti
up)]n to L}.

Next, for i ≤ j < ω and σ : [mti
dn,m

tj
up) −→ ω define

Wn
L (mti

dn,m
tj
up, σ) = {t ∈ Σ6.4.1(ti, . . . , tj) : if i ≤ k ≤ j, at ⊆ atk

then at is homogeneous for ψk(σ�[mtk
dn,m

tk
up))}

(in all other instances we let Wn
L (m′,m′′, σ) = ∅).

Claim 6.4.1.1. Wn
L is an omittory–compatible t̄–system.

Proof of the claim: The requirement 5.3.1(1a) is immediate by the definition
of Wn

L . For 5.3.1(1b,c) remember the way we defined the composition operation
Σ6.4.1: if s ∈ Σ6.4.1(s0, . . . , sk) then as ⊆ as` for some 0 ≤ ` ≤ k. Finally note
that if s ∈ Σ6.4.1(tk, . . . , t`), k ≤ ` < ω, nor[s] > log2(Rn(L,m)) (see 6.3.5) and
σ : [ms

dn,m
s
up) −→ ω then there is t ∈ Wn

L (ms
dn,m

s
up, σ) such that t ∈ Σ6.4.1(s)

and nor[t] ≥ log2(m) (by the definition of Rn(L,m)). This gives the suitable for
5.3.1(1d) function G. Thus we have verified that Wn

L is a t̄–system. It should be
clear that W is omittory–compatible.

Note that if Γ ⊆ P∗∞(t̄, (K6.4.1,Σ6.4.1)) is �–directed then D(Γ) is the filter

generated by all sets ANs̄
def
=

⋃
N≤n

asn , for s̄ = 〈sn : n < ω〉 ∈ Γ and N < ω.

Therefore we easily check that the systems Wn
L (for n,L < ω) are as required in 2,

3 of 6.4.1, noting that each colouring f :
⋃
i∈ω

[{i} × (i+ 1)]n −→ L corresponds via

〈ψi : i < ω〉 to some function η ∈ ωω . �

Proposition 6.4.2. Assume CH. Then there exist Γ ⊆ P∗∞(t̄, (K6.4.1,Σ6.4.1))
which is quasi-Wn

L -generic for all n,L < ω and such that D(Γ) is a semi–Ramsey
ultrafilter on

⋃
i∈ω
{i}× (i+ 1). Consequently, D(Γ) is an interesting almost Ramsey

ultrafilter on
⋃
i∈ω
{i} × (i+ 1).

Proof. This is somewhat similar to 6.1.6(3) (and so to 5.3.4(2)), but we have
to be more careful to ensure that D(Γ) is semi–Ramsey. For this, as a basic step
of the inductive construction of Γ, we use the following observation.

Claim 6.4.2.1. Suppose that s̄ ∈ P∗∞(t̄, (K6.4.1,Σ6.4.1)), n,L < ω, η ∈ ωω

and ϕ : ω −→ [
⋃
i∈ω
{i} × (i + 1)]ω. Then there exists s̄∗ = 〈s∗m : m < ω〉 ∈

P∗∞(t̄, (K6.4.1,Σ6.4.1)) such that s̄ ≤ s̄∗ and

(1) (∀∞m)(s∗m ∈Wn
L (m

s∗m
dn ,m

s∗m
up , η�[m

s∗m
dn ,m

s∗m
up))),

(2) (∀m ∈ ω)(|as∗m | ≤ m+ 1),

(3) if i∗m < ω (for m ∈ ω) are such that as∗m ⊆ {i
∗
m}×(i∗m+1) ∼= [m

ti∗m
dn ,m

ti∗m
up)

then

either (∃k ∈ ω)(∀m ∈ ω)(as∗m ∩ ϕ(k) = ∅) or (∀m ∈ ω)(as∗m+1
⊆ ϕ(i∗m)).

Proof of the claim: Let s̄ = 〈sm : m < ω〉 and let im be such that asm ⊆
{im} × (im + 1) (remember t̄ ≤ s̄, see the definition of (K6.4.1,Σ6.4.1)). We know
that lim

m→∞
|asm | = ∞, so we may choose m0 < m1 < m2 < . . . < ω such that

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

142 6. PLAYING WITH ULTRAFILTERS

(∀k ∈ ω)(|asmk | ≥ Rn(L, k)) (see 6.3.5). Choose bk ∈ [asmk]k homogeneous for the

colouring of [{imk} × (imk + 1)]n (with values in L) coded by η�[m
timk
dn ,m

timk
up).

Next choose k(0) < k(1) < . . . < ω and c` ∈ [bk(`)]
`+ 1 (for ` < ω) such that

either (∃k ∈ ω)(∀` ∈ ω)(c` ∩ ϕ(k) = ∅) or (∀m ∈ ω)(c`+1 ⊆ ϕ(imk(`)
)).

Let s∗0 ∈ K6.4.1 be such that m
s∗0
dn = ms0

dn, m
s∗0
up = m

smk(0)
up , as∗0 = c0 and let

s∗`+1 ∈ K6.4.1 (for ` ∈ ω) be such that m
s∗`+1

dn = m
smk(`)
up , m

s∗`+1
up = m

smk(`+1)
up and

as∗`+1
= c`+1. Easily, the sequence s̄∗ = 〈s∗n : n < ω〉 is as required.

Assume CH. Using 6.4.2.1, we may construct a sequence 〈s̄α : α < ω1〉 ⊆
P∗∞(t̄, (K6.4.1,Σ6.4.1)) such that

(α) α < β < ω1 ⇒ s̄α � s̄β ,
(β) for each n,L < ω we have

(∀η ∈ ωω)(∃α < ω1)(∀∞m)(sα,m ∈Wn
L (m

sα,m
dn ,msα,m

up , η�[msα,m
dn ,msα,m

up))),

(γ) for each function ϕ : ω −→ [
⋃
i∈ω
{i} × (i+ 1)]ω there is α < ω1 such that

if asα,m ⊆ {iα,m} × (iα,m + 1) (for m ∈ ω) then

either (∃k ∈ ω)(∀m ∈ ω)(asα,m ∩ ϕ(k) = ∅) or (∀m ∈ ω)(asα,m+1
⊆ ϕ(iα,m)).

Like in 6.2.7 and 5.3.4(2) we check that Γ
def
= {s̄α : α < ω1} is quasi-Wn

L -generic for
all n,L < ω and D(Γ) is a semi–Ramsey ultrafilter on

⋃
i∈ω
{i} × (i+ 1). �

Conclusion 6.4.3. Assume CH. Let (K6.4.1,Σ6.4.1), t̄, Wn
L be given by 6.4.1,

and let Γ ⊆ P∗∞(t̄, (K6.4.1,Σ6.4.1)) be quasi-Wn
L -generic for all n,L < ω such that

D(Γ) is a semi–Ramsey ultrafilter on
⋃
i∈ω
{i} × (i + 1) (see 6.4.2). Suppose that δ

is a limit ordinal and 〈Pα, Q̇α : α < δ〉 is a countable support iteration of proper
ωω–bounding forcing notions such that for each α < δ:

Pα “Γ generates an interesting almost Ramsey ultrafilter”.

Then Pδ“Γ generates an interesting almost Ramsey ultrafilter”.

Proof. By 6.4.1(3) we have

Pα “Γ is quasi-Wn
L -generic for all n,L < ω”

(for each α < δ). Hence, by 6.1.7, we get

Pδ “Γ is quasi-Wn
L -generic for each n,L < ω and generates an ultrafilter”.

As Pδ is ωω–bounding (by [Sh:f, Ch VI, 2.3, 2.8]) we may apply 6.2.9 to conclude
that

Pδ “D(Γ) is a semi–Ramsey ultrafilter”.

Consequently, by 6.4.1(2), we have

Pδ “D(Γ) is an interesting almost Ramsey ultrafilter”.

�

Example 6.4.4. Let ψ ∈ ωω be such that (∀n ∈ ω)(ψ(n) > (n+ 1)2).

We build a tree creating pair (Kψ
6.4.4,Σ

ψ
6.4.4) which is: finitary, 2-big, rich (see 6.3.3)

and of the sUP(D)tree-type (see 6.3.1) for every Ramsey ultrafilter D on ω.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

6.4. EXAMPLES 143

Construction. Let H(n) = [ψ(n)]n+ 1.
For ν ∈

∏
m<n

H(m) (n ∈ ω) and A ⊆
⋃
m<ω
{m} × ψ(m) we will write A ≺ ν if

(∀m < n)(∀k < ψ(m))((m, k) ∈ A ⇒ k ∈ ν(m)).

Now we define (Kψ
6.4.4,Σ

ψ
6.4.4). A tree–like creature t ∈ TCRη[H] is in Kψ

6.4.4 if:

(1) val[t] is finite and
(2) nor[t] = log2(min{|A| : A ⊆

⋃
m≥`g(η)

{m} × ψ(m) & (∀ν ∈ pos(t))(A 6≺

ν)}).
By the definition, Kψ

6.4.4 is finitary. The tree composition Σψ6.4.4 is generated simi-

larly to Σtsum of 4.2.6 but with norms as above. Thus, if 〈tν : ν ∈ T̂ 〉 ⊆ Kψ
6.4.4 is a

system of tree-creatures such that T is a well founded quasi tree, root(tν) = ν, and

rng(val[tν]) = succT (ν) (for ν ∈ T̂) then we define S∗(tν : ν ∈ T̂) as the unique

creature t∗ in Kψ
6.4.4 with rng(val[t∗]) = max(T), dom(val[t∗]) = {root(T)} and

dis[t∗] = 〈dis[tν] : ν ∈ T̂ 〉. Now we let

Σψ6.4.4(tν : ν ∈ T̂) = {t ∈ Kψ
6.4.4 : val[t] ⊆ val[S∗(tν : ν ∈ T̂)]}.

Clearly, Σψ6.4.4 is a tree-composition on Kψ
6.4.4. Note that if t ∈ Kψ

6.4.4 then we may

identify elements of Σψ6.4.4(t) with subsets of pos(t): for each non-empty u ⊆ pos(t),

tu is the unique creature in Kψ
6.4.4 with pos(tu) = u and root(tu) = root(t). More

general, if p ∈ Qtree
∅ (Kψ

6.4.4,Σ
ψ
6.4.4), F is a front of T p, u ⊆ F then there is a unique

creature t(p, u) ∈ Kψ
6.4.4 such that

pos(t(p, u))=u, root(t(p, u))=root(p) and t(p, u) ∈ Σψ6.4.4(tpν : (∃η∈F)(ν C η)).

Claim 6.4.4.1. nor[S∗(tν : ν ∈ T̂)] ≥ min{nor[tν] : ν ∈ T̂}.

Proof of the claim: Suppose that m < 2min{nor[tν]:ν∈T̂}, but there is a set A ⊆⋃
k≥n0

{k} × ψ(k) (where n0 = `g(root(T))) such that |A| = m and A 6≺ ν for each

ν ∈ max(T). Now we build inductively a bad ν ∈ max(T): since m < 2nor[troot(T)]

we find ν0 ∈ pos(troot(T)) such that A ≺ ν0. Next we look at A1 = A∩
⋃

k≥`g(ν0)

{k}×

ψ(k). Since m < 2nor[tν0] we find ν1 ∈ pos(tν0
) such that A1 ≺ ν1. Continuing in

this fashion, after finitely many steps, we get νk ∈ max(T) such that A ≺ νk, a
contradiction.

Claim 6.4.4.2. (Kψ
6.4.4,Σ

ψ
6.4.4) is 2-big.

Proof of the claim: Let t ∈ Kψ
6.4.4, nor[t] > 0 and let pos(t) = u0 ∪ u1. Take sets

A0, A1 ⊆
⋃

m≥n0

{m} × ψ(m) (where n0 = `g(root(t))) such that for i = 0, 1:

(∀ν ∈ ui)(Ai 6≺ ν) and log2(|Ai|) = nor[tui].

Look at A = A0 ∪A1. Clearly (∀ν ∈ pos(t))(A 6≺ ν). Hence, for some i < 2:

nor[t] ≤ log2(|A|) ≤ log2(|Ai|) + 1 = nor[tui] + 1.

Claim 6.4.4.3. (Kψ
6.4.4,Σ

ψ
6.4.4) is rich.

Proof of the claim: Suppose that 〈sν : ν ∈ T̂ 〉 ⊆ Kψ
6.4.4, n ∈ ω and u are such that

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

144 6. PLAYING WITH ULTRAFILTERS

(1) T ⊆
⋃
k∈ω

∏
m<k

H(m) is a well founded quasi tree, u ⊆ max(T),

(2) root(sν) = ν, pos(sν) = succT (ν), nor[sν] > n+ 3,

(3) there is no system 〈s∗ν : ν ∈ T̂ ∗〉 ⊆ Kψ
6.4.4 such that

T ∗ ⊆ T, max(T ∗) ⊆ u, root(T ∗) = root(T), pos(s∗ν) = succT∗(ν)
root(s∗ν) = ν, nor[s∗ν] > n+ 1, and

s∗ν ∈ Σψ6.4.4(sη : η ∈ T̂ν) for some Tν ⊆ T.

Let t = S∗(sν : ν ∈ T̂). By 6.4.4.1 we have nor[t] > n + 3 (remember 2. above).
But now, considering tu (defined as before) we note that necessarily nor[tu] ≤
n + 1 < nor[t] − 1. Let v = pos(t) \ u. By the bigness (see 6.4.4.3) we have
nor[tv] ≥ nor[t]− 1, finishing the claim (remember 6.4.4.1).

Claim 6.4.4.4. Let D be a Ramsey ultrafilter on ω. Then (Kψ
6.4.4,Σ

ψ
6.4.4) is of

the sUP(D)tree–type.

Proof of the claim: Assume that 1 ≤ m < ω, p ∈ Q∗∅(K
ψ
6.4.4,Σ

ψ
6.4.4), nor[tpν] > m+1

for each ν ∈ T p and F0, F1, . . . are fronts of T p such that

(∀n ∈ ω)(∀ν ∈ Fn+1)(∃η ∈ Fn)(η C ν).

Further suppose that un ⊆ Fn are such that there is no system 〈sν : ν ∈ T̂ 〉 with

pos(S∗(sν : ν ∈ T̂)) ⊆ un, root(T) = root(T p), and nor[sν] ≥ m.
In particular, this means that nor[t(p, un)] < m for each n ∈ ω (t(p, un) is as
defined earlier). Thus, for each n ∈ ω, we find a set

An ⊆
⋃

k≥`g(root(p))

{k} × ψ(k)

such that
|An| = 2m and (∀ν ∈ un)(An 6≺ ν).

Now we use the assumption that D is Ramsey: we find sets Z0 ∈ D and A∗ ⊆⋃
i∈ω
{i} × ψ(i) such that

(∀n0, n1 ∈ Z0)(n0 < n1 ⇒ An0
∩An1

= A∗).

[How? Just consider the colouring f of [ω]2 such that f(n0, n1) codes the trace
of An0 on An1 (for n0 < n1, in the canonical enumerations of An’s) and take an
f -homogeneous set.] Now choose Z ⊆ Z0, Z ∈ D such that if n0 < n1, n0, n1 ∈ Z
then

min{i : (An1
\A∗) ∩ {i} × ψ(i) 6= ∅} > max{`g(ν) : ν ∈ Fn0

}.
[How? Consider the following strategy for Player I in the game GR(D):
at stage k+ 1 of the game he looks at the last move ik of the second player and he
chooses N such that if n ≥ N , n ∈ Z0 then

(An \A∗) ∩
⋃{
{i} × ψ(i) : i ≤ max{`g(ν) : ν ∈ Fik}

}
= ∅.

Now he plays Z0 ∩ (N,ω). This strategy cannot be the winning one.] Using the set

Z we build the suitable condition q ∈ Qtree
∅ (Kψ

6.4.4,Σ
ψ
6.4.4). It will be constructed

in such a way that p ≤1
0 q, T q ⊆ {root(q)} ∪

⋃
`∈Z

F` and each F` ∩ T q will be a

front of T q (for ` ∈ Z). Let `0 = minZ and v`0 = {ν ∈ F`0 : A`0 ≺ ν}. By
the choice of A`0 we know that v`0 ∩ u`0 = ∅. Let tqroot(q) = t(p, v`0). Note that

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

6.4. EXAMPLES 145

2nor[t(p,v`0)] + 2m ≥ 2nor[t(p,F`0)], and hence, as nor[t(p, F`0)] > m+ 1 (see 6.4.4.1),
we have

nor[t(p, v`0)] ≥ nor[t(p, F`0)]−m ≥ min{nor[tpν] : root(p) E ν ∈ T p} −m.
We put tqroot(q) = t(p, v`0). Suppose that we have defined T q up to the level of F`,

` ∈ Z (thus we know T q∩F` already). Let η ∈ T q∩F` and let `′ = min(Z \ (`+1)).
By the first step of the construction we know that A∗ ≺ η. By the choice of Z we
have that

(A`′ \A∗) ∩
⋃

i<`g(η)

{i} × ψ(i) = ∅.

We take vη,`′ = {ν ∈ F`′ : η C ν & A`′ ≺ ν}. As before, vη,`′ ∩ u`′ = ∅ and

nor[t(p[η], vη,`′)] ≥ nor[t(p[η], F`0 ∩ T p
[η]

)]−m ≥ min{nor[tpν] : η E ν ∈ T p} −m
(remember 6.4.4.1).

Now we easily check that the condition q constructed above is as required by

6.3.1 to show that (Kψ
6.4.4,Σ

ψ
6.4.4) is of the sUP(D)tree–type. �

One easily checks that the forcing notion Qtree
1 (Kψ

6.4.4,Σ
ψ
6.4.4) is non-trivial

(i.e. Kψ
6.4.4 contains enough tree like creatures with arbitrarily large norms). Let us

show another property of the tree creating pair (Kψ
6.4.4,Σ

ψ
6.4.4).

Proposition 6.4.5. Let (Kψ
6.4.4,Σ

ψ
6.4.4) be the tree creating pair of 6.4.4. Then:

(1) Qtree
1 (Kψ

6.4.4,Σ
ψ
6.4.4) (∀m ∈ ω)(Ẇ (m) ∈ [ψ(m)]m+ 1) and

(2) if h is a partial function, dom(h) ∈ [ω]ω and (∀m ∈ dom(h))(h(m) <
ψ(m)) then

Qtree
1 (Kψ

6.4.4,Σ
ψ
6.4.4) (∃∞m ∈ dom(h))(h(m) ∈ Ẇ (m))

(where Ẇ is the generic real added by Qtree
1 (Kψ

6.4.4,Σ
ψ
6.4.4), see 1.1.13).

Proof. 1) Should be clear.

2) Let p ∈ Qtree
1 (Kψ

6.4.4,Σ
ψ
6.4.4) and let h be as in the assumptions. We may

assume that (∀η ∈ T p)(nor[tpη] > 5). Let m0 = min
(
dom(h) \ `g(root(p))

)
. Take

a front F of T p such that (∀η ∈ F)(`g(η) > m0) and look at the set u = {η ∈ F :
h(m0) ∈ η(m0)}. Plainly, nor[t(p, u)] ≥ nor[t(p, F)]− 1 ≥ 4. Let q be a condition

in Qtree
1 (Kψ

6.4.4,Σ
ψ
6.4.4) such that root(q) = root(p), T q ⊆ T p, tqroot(q) = t(p, u) and

if η ∈ u, η E ν ∈ T p then ν ∈ T q, tqν = tpν . Clearly q ≥ p and q h(m0) ∈ Ẇ (m0).
Now we may easily finish. �

Conclusion 6.4.6. The following is consistent with ZFC:

(1) there is an almost Ramsey interesting ultrafilter on
⋃
i∈ω
{i}× (i+ 1) which

is generated by ℵ1 elements (so m2 = λ = ℵ1, see the introduction to this
chapter) and

(2) m1 = ℵ2, and even more: for each function ψ ∈ ωω and a family F of ℵ1

partial infinite functions h : dom(h) −→ ω such that

(∀m ∈ dom(h))(h(m) < ψ(m))

there is W ∈
∏
m∈ω

[ψ(m)]m+ 1 such that

(∀h ∈ F)(∃∞m ∈ dom(h))(h(m) ∈W (m)).

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

146 6. PLAYING WITH ULTRAFILTERS

Proof. Start with V |= CH. By 6.4.2 we have an interesting almost Ram-
sey ultrafilter D = D(Γ) on

⋃
i∈ω
{i} × (i + 1) generated by a quasi generic Γ ⊆

P∗∞(t̄, (K6.4.1,Σ6.4.1)) as there. Build a countable support iteration 〈Pα, Q̇α : α <

ω2〉 and a list 〈ψ̇α : α < ω2〉 such that for each α < ω2:

(1) ψ̇α is a Pα–name for a function in ωω such that (∀n ∈ ω)(ψ̇α(n) > (n +
1)2),

(2) Q̇α is the Pα–name for the forcing notion Qtree
1 (Kψ̇α

6.4.4,Σ
ψ̇α
6.4.4),

(3) 〈ψ̇β : β < ω2〉 lists with ω2–repetitions all (canonical) Pω2–names for
functions ψ ∈ ωω such that (∀n ∈ ω)(ψ(n) > (n+ 1)2).

We claim that if G ⊆ Pω2
is a generic filter over V, then, in V[G], the two sentences

of the conclusion hold true. Why? One can inductively show that for each α ≤ ω2:

Pα “Γ generates an almost Ramsey interesting ultrafilter on
⋃
i∈ω
{i} × (i+ 1)”

(at successor stages use 6.3.4, 6.3.6 and 6.4.4; at limit stages use 6.4.3). Hence, in
V[G], the ultrafilter D(Γ) witnesses the first property. For the second assertion use
6.4.5. �

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

CHAPTER 7

Friends and relatives of PP

In this chapter we answer a question of Balcerzak and Plewik, showing that the
cardinal number κBP (see 7.1.1) may be smaller than the continuum (7.5.3) and
that it may be larger than the dominating number (7.5.2). As this cardinal turns
out to be bounded by a cardinal number related to the strong PP–property, we
take this opportunity to have a look at several properties close to the PP–property.

7.1. Balcerzak–Plewik number

For an ideal J of subsets of 2ω it is natural to ask if it has the following
property (P):

(P)J every perfect subset of 2ω contains a perfect set from J .

The property (P) has numerous consequences and applications (see e.g. Balcerzak
[Ba91], some related results and references may be found in Balcerzak Ros lanowski
[BaRo95]) and it is usually easy to decide if (P)J holds. However, that was not
clear for some of Mycielski’s ideals M∗2,K.

Suppose that K ⊆ [ω]ω is a non-empty family such that

(⊕) (∀X ∈ K)(∃X0, X1 ∈ K)(X0, X1 ⊆ X & X0 ∩X1 = ∅).
Let M∗2,K consist of these sets A ⊆ 2ω that

(∀X ∈ K)(∃f : X −→ 2)(∀g ∈ A)(¬f ⊆ g).

It is easy to check thatM∗2,K is a σ–ideal of subsets of 2ω . These ideals are relatives

of the ideals from Mycielski [My69] and were studied e.g. in Cichoń Ros lanowski
Steprāns Wȩglorz [CRSW93] and [Ro94]. If the family K is countable than easily
the idealM∗2,K determined by it has the property (P). Dȩbski, Kleszcz and Plewik

[DKP92] showed that the idealM∗
2,[ω]ω does not satisfy (P). Then Balcerzak and

Plewik defined the following cardinal number κBP (see Balcerzak Plewik [BaPl96]).

Definition 7.1.1. The Balcerzak–Plewik number κBP is the minimal size of a
family K ⊆ [ω]ω such that

for some perfect set Q ⊆ 2ω , for every perfect subset P of Q there
is X ∈ K such that

P �X
def
= {f ∈ 2X : (∃g ∈ P)(f ⊆ g)} = 2X.

[Note that κBP is the minimal size of K ⊆ [ω]ω satisfying (⊕) for which the ideal
M∗2,K does not have the property (P).]

They proved that d ≤ κBP and asked if

• it is consistent that κBP < c,
• it is consistent that d < κBP.

147

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

148 7. FRIENDS AND RELATIVES OF PP

A full answer to these questions will be given in the final part of this chapter. Now
we want to give an upper bound to κBP.

Definition 7.1.2. Let X be the space of all sequences w̄ = 〈wi : i ∈ B〉 such

that B ∈ [ω]ω and (∀i ∈ B)(wi ∈ [ω]i). We define a relation RsPP ⊆ ωω ×X by

(η, w̄) ∈ RsPP if and only if η ∈ ωω, w̄ ∈ X , and (∀i ∈ dom(w̄))(η(i) ∈ wi).

Note that the space X carries a natural Polish topology (inherited from the
product space of all w̄ = 〈wi : i < ω〉 such that for each i ∈ ω, either wi = ∅ or
|wi| = i). The relation RsPP describes the strong PP–property of [Sh:f, Ch VI,
2.12E]: a proper forcing notion P has the strong PP–property if and only if it has
the RsPP–localization property (see 0.2.2).

Theorem 7.1.3. κBP ≤ d(RsPP).

Proof. Construct inductively a perfect tree T ⊆ 2<ω and an increasing se-
quence 0 = k0 < k1 < k2 < . . . < ω such that for every i ∈ ω:

(α) (∀ν ∈ T ∩ 2ki)(∃η0, η1 ∈ T ∩ 2ki+1)(ν C η0 & ν C η1 & η0 6= η1),

(β) for each colouring f : T ∩ 2ki −→ 2 there is n ∈ [ki, ki+1) such that

(∀η ∈ T ∩ 2ki+1)(η(n) = f(η�ki)).

The construction is straightforward. It is not difficult to check that if P ⊆ [T] is a

perfect set then there is X ∈ [ω]ω such that P �X = 2X (or see [DKP92]).
Let D ⊆ X be such that |D| = d(RsPP) and

(∀η ∈ ωω)(∃w̄ ∈ D)((η, w̄) ∈ RsPP).

Let N be an elementary submodel of H(χ) such that D,T, 〈ki : i < ω〉 ∈ N , D ⊆ N
and |N | = |D|. We are going to show that

for each perfect set P ⊆ [T] there is X ∈ N ∩ [ω]ω such that P �X = 2X

(what will finish the proof of the theorem). To this end suppose that T ∗ ⊆ T is
a perfect tree. Since N ∩ ωω is a dominating family (as the strong PP–property
implies ωω–bounding) we may choose an increasing sequence 〈ni : i < ω〉 ∈ N ∩ωω
such that

(∀i ∈ ω)(∀ν ∈ T ∗ ∩ 2kni)(|{η ∈ T ∗ ∩ 2kni+1 : ν C η}| > 2(i+ 1)).

As we may encode (in a canonical way) subsets of 2n as integers, we may use the
choice of D and N and find a sequence 〈wi : i ∈ B〉 ∈ N such that for each i ∈ B:

(i) 0 < |wi| ≤ i,
(ii) a ∈ wi ⇒ a ⊆ T ∩ 2kni ,

(iii) T ∗ ∩ 2kni ∈ wi.
By shrinking each wi if necessary, we may additionally demand that |a| ≥ 2·min(B)
for each a ∈ wmin(B) and if i < j both are from B, a ∈ wj then

(iv) for each ν ∈ a the set {η ∈ a : ν�kni = η�kni} has at least 2j elements

(remember the choice of the ni’s). Now, working inN , we inductively build a perfect

tree T+ ⊆ T . First for each a ∈ wmin(B) we choose η
〈〉
a,0, η

〈〉
a,1 ∈ a such that there

are no repetitions in 〈η〈〉a,` : a ∈ wmin(B), ` < 2〉 (possible as |wmin(B)| ≤ min(B)

and |a| ≥ 2 ·min(B) for a ∈ wmin(B)). We declare that

T+ ∩ 2
knmin(B) = {η〈〉a,` : a ∈ wmin(B), ` < 2}.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

7.2. AN ITERABLE FRIEND OF THE STRONG PP–PROPERTY 149

Suppose that we have defined T+ ∩ 2kni , i ∈ B and j = min(B \ (i+ 1)). For each

ν ∈ T+ ∩ 2kni and a ∈ wj we choose ηνa,0, η
ν
a,1 ∈ T ∩ 2knj such that

(1) there are no repetitions in 〈ηνa,0, ηνa,1 : a ∈ wj〉,
(2) if a ∈ wj is such that (∃η ∈ a)(ν C η) then ηνa,0, η

ν
a,1 ∈ a.

Again, the choice is possible by (iv). We declare that

T+ ∩ 2knj = {ηνa,` : ν ∈ T+ ∩ 2kni , a ∈ wj , ` < 2}.

This fully describes the construction (in N) of the tree T+ ⊆ T . Next, working
still in N , we choose integers mj ∈ [knj , knj+1) such that for each j ∈ B:

(+) if ν ∈ T+ ∩ 2kni , i ∈ B is such that j = min(B \ (i+ 1)) (or ν = 〈〉 and

j = min(B)) and a ∈ wj and ηνa,` C η ∈ T ∩ 2knj+1 then η(mj) = `

(possible by (β) of the choice of the tree T and the first demand of the choice of
the ηνa,`’s). Let X = {mj : j ∈ B} ∈ [ω]ω ∩N . Suppose f : X −→ 2. By clause (iii)

we know that for each j ∈ B, bj
def
= T ∗ ∩ 2knj ∈ wj . Consequently we may build

inductively an infinite branch η ∈ [T ∗] such that η�knmin(B)
= η
〈〉
bmin(B),f(mmin(B))

and

for each i ∈ B, if j = min(B \ (i+ 1)), νi = η�kni then η�knj = ηνibj ,f(mj)
. It follows

from (+) that f ⊆ η. �

Remark 7.1.4. Note that a sequence 〈wi : i ∈ B〉, where wi ∈ [ω]i, may
be interpreted as a sequence 〈vi : i ∈ B〉, where |vi| = i and members of vi
are functions from the interval [i(i+1)

2 , (i+1)(i+2)
2) to ω. Consequently, considering

suitable diagonals, we may use Bartoszyński–Miller’s characterization of non(M)
(see [BaJu95, 2.4.7]) and show that non(M) ≤ d(RsPP). As clearly d ≤ d(RsPP)
we conclude that cof(M) ≤ d(RsPP) (by [BaJu95, 2.2.11]). On the other hand,
it follows from Bartoszyński’s characterization of cof(N) (see [BaJu95, 2.3.9])
that d(RsPP) ≤ cof(N) (just note that the Sacks property implies the strong PP–
property).

7.2. An iterable friend of the strong PP–property

The PP–property is preserved in countably support iterations of proper forcing
notions (see [Sh:f, Ch VI, 2.12]). However, it is not clear if the strong PP–property
is preserved. Here, we introduce a property stronger then the strong PP which is
preserved in countable support iterations.

Definition 7.2.1. Let D be a filter on ω, x ∈ ωω be a non-decreasing function
and let F̄ = (F , <F) be a partial order on F ⊆ ωω .

(1) The filter D is weakly non-reducible if it is non-principal and for every
partition 〈Xn : n < ω〉 of ω into finite sets there exists a set Y ∈ [ω]ω

such that
⋃

n∈ω\Y
Xn ∈ D.

If above we allow partitions into sets from the dual ideal Dc then we
say that D is non-reducible.

(2) The partial order F̄ is PP–ok if it is dense, has no maximal and mini-
mal elements, each member of F is non-decreasing, the identity function
belongs to F and

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

150 7. FRIENDS AND RELATIVES OF PP

(⊗) if h0, h1 ∈ F , h0 <F h1 then (∀n ∈ ω)(1 ≤ h0(n) ≤ h1(n)) and

lim
n→∞

h1(n)
h0(n) =∞ and there is h ∈ F such that

(∀∞n ∈ ω)(h(n) ≤ h1(n)

h0(n)
).

(3) We say that a proper forcing notion P has the (D, x)–strong PP–property
if

P “ for every η ∈ ωω there are B ∈ D ∩V and 〈wi : i ∈ B〉 ∈ V such that
(∀i ∈ B)(|wi| ≤ x(i) & η(i) ∈ wi) ”.

(4) A proper forcing notion P has the (D, F̄)–strong PP–property if it has the
(D, x)–strong PP–property for every x ∈ F .

Remark 7.2.2. (1) Each non-principal ultrafilter on ω is non-reducible.
Clearly non-reducible filters are weakly non-reducible.

(2) One can easily construct a countable partial order F̄ which is PP–ok and
such that x ∈ F for any pregiven non-decreasing unbounded function
x ∈ ωω .

Theorem 7.2.3. Suppose that D is a non-principal p-filter on ω (see 6.2.1(2))
and F̄ = (F , <F) is a PP–ok partial order. Then:

(1) every proper forcing notion which has the (D, F̄)–strong PP–property has
the strong PP–property,

(2) the (D, F̄)–strong PP–property is preserved in countable support iterations
of proper forcing notions.

Proof. 1) Should be clear.
2) We will apply [Sh:f, Ch VI, 1.13A], so we will follow the terminology of [Sh:f,
Ch VI, §1]. However, we will not quote the conditions which we have to check, as
that was done in the proof of 5.2.9 (and the proof here is parallel to the one there).
We will present the proof in a slightly more complicated way than needed, but later
we will be able to refer to it in a bounded context (in 7.3.6). Moreover, in this way
the analogy to 5.2.9 will be more clear.

For each m ≥ 1 we fix a function ψm : ω
onto−→ [ω]≤m and for h ∈ F we define

ψh : ωω −→
∏
n∈ω

[ω]<ω by ψh(η)(n) = ψh(n)(η(n)). Further, for h∗, h ∈ F , B ∈ D

and w̄ = 〈wi : i ∈ B〉 such that h∗ <F h and (∀i ∈ B)(wi ∈ [ω]≤h(i)) we put

Tw̄,h∗ = {ν ∈ ω<ω : (∀i ∈ B ∩ `g(ν))(ψh
∗(i)(ν(i)) ⊆ wi)}.

Each Tw̄,h∗ is a perfect subtree of ω<ω . Now we define:

• DD,F̄ is H(ℵ1)V,
• for x, T ∈ DD,F̄ we say that x RD,F̄ T if and only if
x = 〈h∗, h〉 and T = Tw̄,h∗ for some h∗, h ∈ F and w̄ = 〈wi : i ∈ B〉 ∈
DD,F̄ such that h∗ <F h, B ∈ D, and (∀i ∈ B)(wi ∈ [ω]≤h(i)),

• for 〈h∗, h〉, 〈h∗∗, h′〉 ∈ dom(RD,F̄) we say that 〈h∗, h〉 <D,F̄ 〈h∗∗, h′〉 if and
only if h∗ = h∗∗ <F h <F h

′.

Claim 7.2.3.1. (1) (DD,F̄ , RD,F̄) is a weak covering model in V.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

7.2. AN ITERABLE FRIEND OF THE STRONG PP–PROPERTY 151

(2) In any generic extension V∗ of V in which (DD,F̄ , RD,F̄) covers, a forcing

notion P is (DD,F̄ , RD,F̄)–preserving if and only if it has the (D, F̄)–strong
PP–property.

[Compare 5.2.9.1, 5.2.9.2.]

Proof of the claim: 1) Check.
2) Suppose that (DD,F̄ , RD,F̄) covers in V∗ and P ∈ V∗ is a forcing notion with

the (D, F̄)–strong PP–property. Let 〈h∗, h〉 ∈ dom(RD,F̄) and η ∈ ωω ∩ (V∗)P.

Choose h0, h1 ∈ F such that h0 <F h1 and (∀∞n ∈ ω)(h1(n) ≤ h(n)
h∗(n)) (possible by

7.2.1(2)). Take w̄∗ = 〈w∗i : i ∈ B∗〉 ∈ V∗ such that B∗ ∈ D ∩V and

(∀i ∈ B∗)(w∗i ∈ [ω]≤h0(i) & η(i) ∈ w∗i).

Let η∗ ∈ ωω ∩V∗ be such that ψh0(i)(η∗(i)) = w∗i (for i ∈ B∗). Since (DD,F̄ , RD,F̄)
covers in V∗ and 〈h0, h1〉 ∈ dom(DD,F̄), we find w̄ = 〈wi : i ∈ B〉 ∈ DD,F̄ such

that η∗ ∈ lim(Tw̄,h0) and (∀i ∈ B)(wi ∈ [ω]≤h1(i)). Let B+ = B ∩ B∗ ∈ D ∩V,

w+
i =

⋃
k∈wi

ψh
∗(i)(k) for i ∈ B+. Note that for sufficiently large i ∈ B+

|w+
i | ≤ |wi| · h

∗(i) ≤ h1(i) · h∗(i) ≤ h(i)

and we may assume that this holds for all i ∈ B+. Letting w̄+ = 〈w+
i : i ∈ B+〉 we

will have 〈h∗, h〉 RD,F̄ Tw̄+,h∗ and η ∈ lim(Tw̄+,h∗), and hence (DD,F̄ , RD,F̄) covers

in (V∗)P.

The converse implication is even simpler.

Claim 7.2.3.2. (DD,F̄ , RD,F̄ , <D,F̄) is a fine covering model.
[Compare 5.2.9.3.]

Proof of the claim: Immediately by the definition of (DD,F̄ , RD,F̄ , <D,F̄) one sees
that the demands (α), (β)(i)–(iii) of [Sh:f, Ch VI, 1.2(1)] are satisfied. To verify
the condition (β)(iv) of [Sh:f, Ch VI, 1.2(1)] suppose that 〈h∗, h〉 <D,F̄ 〈h∗, h′〉 and

〈h∗, h〉 RD,F̄ Tw̄`,h∗ , w̄` = 〈w`i : i ∈ B`〉, B` ∈ D (for ` = 1, 2). Take n ∈ ω such that
(∀m ≥ n)(2 ·h(m) < h′(m)) (possible by 7.2.1(2)) and let B = B1∩B2∩ [n, ω) ∈ D.
Put wi = w1

i ∪w2
i for i ∈ B and look at the tree Tw̄,h∗ . Clearly 〈h∗, h′〉 RD,F̄ Tw̄,h∗

and Tw̄1,h∗ ∪ Tw̄2,h∗ ⊆ Tw̄,h∗ (so more than needed).
Checking clauses (γ) and (δ) of [Sh:f, Ch VI, 1.2(1)] we restrict ourselves to

the stronger condition (δ). So suppose that V∗ is a generic extension (via a proper
forcing notion) of V such that V∗ |= “(DD,F̄ , RD,F̄) covers”.

(a) Assume that x, x+, xn ∈ dom(RD,F̄), Tn ∈ DD,F̄ are such that for n ∈ ω

xn <D,F̄ xn+1 <D,F̄ x
+ <D,F̄ x and xn RD,F̄ Tn.

Let x = 〈h∗, h〉, xn = 〈h∗, hn〉, x+ = 〈h∗, h+〉 (so h∗ <F hn <F hn+1 <F h
+ <F h)

and let w̄n = 〈wni : i ∈ Bn〉 ∈ DD,F̄ be such that Tn = Tw̄n,h∗ (so Bn ∈ D ∩ V
and |wni | ≤ hn(i)). Look at the sequence 〈Bn : n ∈ ω〉 ⊆ D ∩ V. It does not
have to belong to V, but it may be covered by a countable set from V (as V∗ is a
proper forcing extension of V). Hence, as D is a p-filter, we find a set B ∈ D such
that (∀n ∈ ω)(|B \ Bn| < ω). Take h−0 , h

−
1 ∈ F such that h−0 <F h

−
1 and (∀∞n ∈

ω)(h−1 (n) ≤ h(n)
h+(n)) (remember (⊗) of 7.2.1(2)) and choose an increasing sequence

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

152 7. FRIENDS AND RELATIVES OF PP

m0 < m1 < m2 < . . . < ω such that (∀i ≥ m0)(h−1 (i) ≤ h(i)
h+(i)), B \ B0 ⊆ m0 and

for n ∈ ω:

B \Bmn ⊆ mn+1 and (∀i ≥ mn+1)((n+ 2) · hmn(i) < h+(i)).

Let η ∈ ωω∩V∗ be such that if i ∈ B∩[mn,mn+1) then ψh
+(i)(η(i)) = w0

i∪
⋃
k<n

wmki ,

and let η∗ ∈ ωω ∩ V∗ be such that ψh
−
0 (i)(η∗(i)) = {η(i)} for each i ∈ ω. Since

(DD,F̄ , RD,F̄) covers in V∗ we find Tw̄−,h−0
∈ DD,F̄ such that η∗ ∈ lim(Tw̄−,h−0

) and

〈h−0 , h
−
1 〉 RD,F̄ Tw̄−,h−0

. Let B∗
def
= B ∩ dom(w̄−) \ m0 ∈ D. By the choice of η,

Tw̄−,h−0
and h−1 we find w̄∗ = 〈w∗i : i ∈ B∗〉 ∈ DD,F̄ such that |w∗i | ≤ h

−
1 (i) ·h+(i) ≤

h(i) and w0
i ∪

⋃
k<n

wmki ⊆ w∗i whenever i ∈ B∗ ∩ [mn,mn+1), n ∈ ω. Clearly

Tw̄∗,h∗ ∈ DD,F̄ and 〈h∗, h〉 RD,F̄ Tw̄∗,h∗ . Put W
def
= {m0,m1,m2, . . .} and suppose

that ρ ∈ ωω ∩V∗ is such that for every n ∈ ω, ρ�mn+1 ∈
⋃
k<n

Tmk ∪ T0. If i ∈ B∗,

mn ≤ i < mn+1 then, by the assumptions on ρ, ψh
∗(i)(ρ(i)) ⊆ w0

i ∪
⋃
k<n

wmki ⊆ w∗i .

Hence ρ ∈ lim(Tw̄∗,h∗) (remember B∗ ⊆ [m0, ω)).
(b) Assume that x = 〈h∗, h〉 ∈ dom(RD,F̄), ηn, η ∈ ωω are such that η�n = ηn�n
for n ∈ ω. Take h′ ∈ F such that h∗ <F h

′ <F h and choose an increasing sequence
0 = m0 < m1 < m2 < . . . < ω such that for each n ∈ ω

(∀m ≥ mn+1)((n+ 2) · h∗(m) < h′(m)).

Let η∗ ∈ ωω (in V∗) be such that

if m ∈ [mn,mn+1), n ∈ ω, 0 < k < n+ 1

then ψh
∗(m)(ηmk(m)) ⊆ ψh′(m)(η∗(m))

(remember the choice of the mn’s). Since (DD,F̄ , RD,F̄) covers in V∗ we find
w̄ = 〈wi : i ∈ B〉 such that 〈h′, h〉 RD,F̄ Tw̄,h′ (so in particular B ∈ D and
|wi| ≤ h(i)) and η∗ ∈ lim(Tw̄,h′). But now look at the tree Tw̄,h∗ . Clearly it satisfies
〈h∗, h〉 RD,F̄ Tw̄,h∗ . Moreover, one can inductively show that ηmn+1

∈ lim(Tw̄,h∗)

for each n ∈ ω. [Why? Plainly for each m ∈ B we have ψh
∗(m)(ηm1(m)) ⊆

ψh
′(m)(η∗(m)) ⊆ wm, so ηm1 ∈ lim(Tw̄,h∗). Looking at ηmn+1 , n > 0, note

that ηmn+1�mn = ηmn�mn and for each m ≥ mn we have ψh
∗(m)(ηmn+1(m)) ⊆

ψh
′(m)(η∗(m)).] Thus Tw̄,h∗ is as required, finishing the proof of the claim.

Finally, due to 7.2.3.1, 7.2.3.2 we may apply [Sh:f, Ch VI, 1.13A] to conclude
the theorem. �

Theorem 7.2.4. Let D be a weakly non-reducible filter on ω, x ∈ ωω be an
unbounded non-decreasing function.

(1) If (K,Σ) is a finitary t-omittory tree–creating pair then the forcing notion
Qtree

1 (K,Σ) has the (D, x)–strong PP–property.
(2) If (K,Σ) is a finitary creating pair which captures singletons then the

forcing notion Q∗w∞(K,Σ) has the (D, x)–strong PP–property.

Proof. 1) Suppose that η̇ is a Qtree
1 (K,Σ)–name for an element of ωω ,

p ∈ Qtree
1 (K,Σ). Choose a condition q ≥ p and fronts Fn of T q such that for each

n ∈ ω
(1) if ν ∈ Fn then the condition q[ν] decides the value of η̇(n),

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

7.3. BOUNDED RELATIVES OF PP 153

(2) (∀ν ∈ Fn)(nor[tqν] > n+ 1),
(3) (∀ν ∈ Fn+1)(∃ν′ ∈ Fn)(ν′ C ν)

(possible by 2.3.7(2), 2.3.5). Next choose an increasing sequence 0 = n0 < n1 <
n2 < . . . < ω such that for each k ∈ ω

|
⋃
{pos(tqν) : ν ∈ Fnk}| < x(nk+1).

Since D is weakly non-reducible we find Y ∈ [ω]ω such that B
def
=

⋃
k∈ω\Y

[nk, nk+1) ∈

D. Now construct inductively a condition q∗ ≥ q such that root(q∗) = root(q) and

(a) T q
∗ ⊆ {root(q)} ∪

⋃
{pos(tqν) : ν ∈ Fnk & k ∈ Y },

(b) if ν ∈ T q∗ then pos(tq
∗

ν) ⊆ pos(tqν∗) and nor[tq
∗

ν] ≥ nor[tqν∗] − 1 for some
ν∗ ∈

⋃
k∈Y

Fnk .

It should be clear that one can build such q∗ (remember (K,Σ) is t-omittory). Note
that if k0, k1 ∈ Y , k0 < k1 and (k0, k1) ⊆ ω \Y then for each n ∈ (nk0 , nk1] we have

|dcl(T q
∗
) ∩ Fn| = |dcl(T q

∗
)∩Fnk0+1

| ≤ |
⋃
{pos(tqν) : ν∈Fnk0

}| < x(nk0+1) ≤ x(n).

For n ∈ B let wn = {m ∈ ω : (∃ν ∈ Fn∩dcl(T q
∗
))(q[ν] η̇(n) = m)}. By the above

remark we have |wn| ≤ x(n) (for n ∈ B) and clearly q∗ (∀n ∈ B)(η̇(n) ∈ wn).

2) Similar. �

7.3. Bounded relatives of PP

In the following definition we introduce relations which determine localization
properties (see 0.2.2(2)) close to the PP–property when restricted to functions from∏
n∈ω

f(n). Not surprisingly they include (the relation responsible for) the (f, g)–

bounding property too.

Definition 7.3.1. Let f, g ∈ ωω be non-decreasing functions such that (∀n ∈
ω)(0 < g(n) < f(n)). Define:

(1) Sf,g =
∏
n∈ω

[f(n)]g(n), S∗f,g = Sf,g × [ω]ω ,

(2) R∃f,g, R
∀
f,g ⊆

∏
n∈ω

f(n)× Sf,g are given by

η R∃f,g Ā if and only if

η ∈
∏
n∈ω

f(n), Ā = 〈An : n ∈ ω〉 ∈ Sf,g and (∃∞n ∈ ω)(η(n) ∈ An),

η R∀f,g Ā if and only if

η ∈
∏
n∈ω

f(n), Ā = 〈An : n ∈ ω〉 ∈ Sf,g and (∀∞n ∈ ω)(η(n) ∈ An),

(3) a relation R∗f ⊆
∏
n∈ω

f(n)×
∏
n∈ω

f(n) is defined by

η0 R∗f η1 if and only if η0, η1 ∈
∏
n∈ω

f(n) and (∃∞n ∈ ω)(η0(n) =

η1(n)),
(4) a relation R∗∗f,g ⊆

∏
n∈ω

f(n)× S∗f,g is such that

η R∗∗f,g (Ā,K) if and only if

η ∈
∏
n∈ω

f(n), Ā = 〈An : n ∈ ω〉 ∈ Sf,g, K = {k0, k1, k2, . . .} ∈ [ω]ω (the

increasing enumeration) and (∀m ∈ ω)(∃n ∈ [km, km+1))(η(n) ∈ An).

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

154 7. FRIENDS AND RELATIVES OF PP

Remark 7.3.2. (1) The spaces Sf,g, S
∗
f,g and

∏
n∈ω

f(n) carry natural (prod-

uct) Polish topologies.
(2) The relation R∀f,g corresponds to the (f, g)–bounding property, of course.

The cardinal number d(R∀f,g) is the c(f, g) of [GoSh 448] (see there for
various ZFC dependencies between the cardinals determined by different
functions as well as for consistency results).

(3) Note that the relation R∗∗f,g (or actually the corresponding localization

property) is really very close to the PP–property. The cardinal numbers
d(R∗f) and d(R∗∗f,g) appear naturally in [BRSh 616].

(4) There are other natural variants of relations introduced in 7.3.1. We
will deal with them (and the corresponding cardinal invariants) in the
continuation of this paper.

Below we list some obvious relations between the localization properties intro-
duced in 7.3.1 and the corresponding cardinal numbers.

Proposition 7.3.3. Let f, g, h ∈ ωω be non-decreasing functions such that
0 < g(n) < f(n) for each n ∈ ω. Then:

(1) The R∀f,g–localization implies the R∃f,g–localization and d(R∃f,g) ≤ d(R∀f,g).

(2) Suppose that for some increasing sequence m0 < m1 < m2 < . . . < ω we
have

(∀n ∈ ω)(g(n) ≤ mn+1 −mn & f(n) ≥
∏

k∈[mn,mn+1)

h(k)).

Then the R∃f,g–localization implies the R∗h–localization and d(R∗h) ≤ d(R∃f,g).

(3) The R∗f–localization implies the R∃f,g localization and d(R∃f,g) ≤ d(R∗f).

(4) The R∃f,g–localization plus ωω–bounding imply the R∗∗f,g–localization. The

R∗∗f,g–localization implies the R∃f,g–localization. Hence d(R∃f,g) ≤ d(R∗∗f,g) ≤
max{d, d(R∃f,g)}.

(5) If g is unbounded then the strong PP–property implies the R∃f,g–localization,

and d(R∃f,g) ≤ d(RsPP).

(6) Assume ground model reals are not meager. Then the extension has the
R∗f–localization property and thus d(R∗f) ≤ non(M).

(7) The R∗∗f,g–localization implies that there is no Cohen real over the ground

model, and thus cov(M) ≤ d(R∗∗f,g).

For getting the R∀f,g–localization (i.e. (f, g)–bounding property) for forcing no-
tions built according to our schema see 5.1. Let us note that the other properties
appear naturally too.

Proposition 7.3.4. Let f, g ∈ ωω. Suppose that P is a forcing notion one of
the following type

• Q∗s∞(K,Σ) for a finitary creating pair (K,Σ) which is either growing and
big or omittory and omittory–big,

• Q∗w∞(K,Σ) for a finitary creating pair which captures singletons,
• Qtree

0 (K,Σ) for a finitary t-omittory tree–creating pair (K,Σ).

Then P has the R∗∗f,g–localization property.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

7.3. BOUNDED RELATIVES OF PP 155

Proof. It should be clear, so we will sketch the proof for the first case only. Let
η̇ be a Q∗s∞(K,Σ)–name for a function in

∏
n∈ω

f(n) and let p ∈ Q∗s∞(K,Σ). Using

2.2.3 or 2.2.6 construct a condition q ∈ Q∗s∞(K,Σ), an enumeration 〈uk : k ∈ ω〉 of⋃
n∈ω

pos(wq, tq0, . . . , t
q
n−1) and a sequence 〈mk : k < ω〉 such that

(1) p ≤0 q, m0 < m1 < . . . < ω,
(2) if uk ∈ pos(wq, tq0, . . . , t

q
n−1) then the condition (uk, t

q
n, t

q
n+1, . . .) decides

the value of η̇(mk).

Plainly the construction is possible and easily it finishes the proof. �

It may be not clear how one can preserve (in countable support iterations)
the localization properties introduced in 7.3.1. To deal with the R∃f,g–localization
property we may adopt the approach of 7.2.3. It slightly changes the meaning of
this notion but the change is not serious and makes dealing with compositions much
easier.

Definition 7.3.5. Let h0, h1, f ∈ ωω be non-decreasing unbounded functions,
D be a filter on ω and F̄ = (F , <F) be a partial order on F ⊆

∏
n∈ω

f(n). We say

that a proper forcing notion P:

(1) has the D-R∃f,h0,h1
–localization property if

P “ for every η ∈
∏
n∈ω

[f(n)]≤h0(n) there are B ∈ D ∩V and 〈wi : i ∈ B〉 ∈ V

such that (∀i ∈ B)(|wi| ≤ h1(i) & η(i) ⊆ wi) ”,

(2) has the (D, F̄)–R∃f–localization property if it has theD-R∃f,h0,h1
–localization

property for every h0, h1 ∈ F such that h0 <F h1.

Proposition 7.3.6. Suppose that D is a non-principal p-filter on ω, f ∈ ωω
is non-decreasing unbounded and F̄ = (F , <F) is a PP–ok partial order on F ⊆∏
n∈ω

f(n) (see 7.2.1(2), except that it does not have to contain the identity function).

Let 〈Pα, Q̇α : α < δ〉 be a countable support iteration such that for each α < δ

Pα “ Q̇α is a proper forcing notion which has
the (D, F̄)–R∃f–localization property”.

Then the forcing notion Pα has the (D, F̄)–R∃f–localization property.

Proof. Repeat the proof of 7.2.3 making suitable adjustments to the fact that
we are “below the function f”. No real changes are required. �

Remark 7.3.7. Note that with no serious changes we may formulate and prove
a variant of 7.3.6 which would be an exact reformulation of 5.2.9 for the current
context.

Proposition 7.3.8. Let f, h0, h1 ∈ ωω be non-decreasing unbounded functions

such that (∀n ∈ ω)(1 ≤ h0(n) ≤ h1(n) ≤ f(n)) and lim
n→∞

h1(n)
h0(n) = ∞. Assume D

is a non-reducible p-filter on ω. Suppose that (K,Σ) is a finitary, omittory and
omittory–big creating pair. Then the forcing notion Q∗s∞(K,Σ) has the D-R∃f,h0,h1

–
localization property.

Proof. Like 7.2.4 plus 7.3.4. �

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

156 7. FRIENDS AND RELATIVES OF PP

Remark 7.3.9. Note that if x(n) ≤ h1(n)
h0(n) for n ∈ ω then the (D, x)–strong

PP–property implies the D-R∃f,h0,h1
–localization property. Consequently we may

use 7.2.4 to get the conclusion of 7.3.8 for the two types of forcing notions specified
in 7.2.4.

7.4. Weakly non-reducible p-filters in iterations

One could get an impression that 7.2.3, 7.3.6 together with 7.2.4 and 7.3.8 are
everything we need: the properties involved are iterable and we may get them for
various forcing notions. However, to be able to make a real use of 7.2.4 or 7.3.8
we have to know that if we start with a weakly non-reducible p-filter and then we
iterate suitable forcing notions, the filter remains weakly non-reducible. One could
start with a p-point and consider forcing notions which are p-point preserving only.
However this is much too restrictive: we may iterate forcing notions mentioned in
7.2.4 and 7.3.8 and the iterations will preserve the fact that the filter is weakly
non-reducible. The first step in proving this is the following observation.

Proposition 7.4.1. Suppose that D is a weakly non-reducible filter on ω. Let
P be an almost ωω-bounding forcing notion. Then

P “ (The filer generated by) D is weakly non-reducible ”.

[Note that this covers ωω-bounding forcing notions.]

Proof. Suppose that 〈Ẋn : n ∈ ω〉 is a P–name for a partition of ω into finite

sets. Let ḟ be a P–name for a function in ωω such that

P “ (∀n ∈ ω)(∃m ∈ ω)(Ẋm ⊆ [n, ḟ(n))) ”.

Suppose p ∈ P. Since P is almost ωω-bounding we find an increasing function
g ∈ ωω such that

(∀A ∈ [ω]ω)(∃q ≥ p)(q P “ (∃∞n ∈ A)(ḟ(n) < g(n)) ”).

Let 0 = n0 < n1 < n2 < . . . < ω be such that g(nk) < nk+1. As the filter D is

weakly non-reducible, we find Y ∈ [ω]ω such that Z
def
=

⋃
k∈ω\Y

[nk, nk+1) ∈ D. Let

A = {nk : k ∈ Y }. By the choice of the function g, there is a condition q ≥ p such
that

q P “ (∃∞n ∈ A)(ḟ(n) < g(n)) ”.

Now look at the choice of ḟ – necessarily

q P “ (∃∞m ∈ ω)(Ẋm ∩ Z = ∅) ”,

which is enough to conclude the proposition. �

Note that 7.4.1 captures almost all forcing notions mentioned in 7.2.4, 7.3.8.
So what is needed more is that “D is weakly non-reducible” is preserved at limit
stages of countable support iterations of proper forcing notions. This is done like
preserving unbounded families (i.e. by [Sh:f, Ch VI, §3]).

Theorem 7.4.2. Let D be a weakly non-reducible p-filter on ω. Suppose that
〈Pα, Q̇α : α < δ〉 is a countable support iteration of proper forcing notions such that
δ is limit and for each α < δ

Pα “ (The filter generated by) D is weakly non-reducible ”.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

7.5. EXAMPLES 157

Then Pδ“ (The filter generated by) D is weakly non-reducible ”.

Proof. We will use [Sh:f, Ch VI, 3.13] and thus we will follow the notation
there. Let F ⊆ ωω be the family of all increasing enumerations of elements of
D (i.e. F = {µX : X ∈ D}, see 4.4.4). Let R be (a definition of) the following
two–place relation on ωω :

g R f if and only if (g, f ∈ ωω and)
(∃∞k)([ngk, n

g
k+1)∩ rng(f) = ∅), where ng0 = 0, ngk+1 = ngk + g(k) + 1 for k ∈ ω.

As D is weakly non-reducible, the family F is R–bounding (i.e. (∀g ∈ ωω)(∃f ∈
F)(g R f)).

Claim 7.4.2.1. (F,R) is S–nice (see [Sh:f, Ch VI, 3.2]; here S ⊆ [F]ω is
arbitrary).

Proof of the claim: We have to show that for each N ∈ S there is g ∈ F such that
for each m0 ∈ ω (the n0 of [Sh:f, Ch VI, 3.2.3(β)] is irrelevant here) the second
player has an absolute winning strategy in the following game.

At the stage k of the game, Player I chooses fk ∈ ωω and gk ∈
F ∩N such that fk�m`+1 = f`�m`+1 for all 0 ≤ ` < k and fk R gk.
Then Player II answers playing an integer mk+1 > mk.
Player II wins the game if (

⋃
k∈ω

fk�mk) R g.

But this is easy: let g ∈ F be such that rng(g) ⊆∗ rng(f) for all f ∈ F ∩ N
(remember D is a p-filter). Then

fk R gk implies (∃∞` ∈ ω)([nfk` , n
fk
`+1) ∩ rng(g) = ∅).

Thus, at stage k of the game, the second player may choose mk+1 > mk such that

[nfk` , n
fk
`+1) ∩ rng(g) = ∅ for some ` ∈ (mk,mk+1).

As we iterate proper forcing notions, countable subsets of F from VPα can be
covered by countable subsets of F from V. By our assumptions, F is R–bounding
in each VPα (for α < δ) and it is nice there (like in the claim above). Consequently
we may apply [Sh:f, Ch VI, 3.13(3)] and we conclude that

Pδ “ F is R–bounding ”.

But this is exactly what we need. �

7.5. Examples

Example 7.5.1. Let P ⊆ 2ω be a perfect set. We construct a finitary function
HP , an HP –fast function fP : ω × ω −→ ω and a 2̄–big trivially meagering simple
creating pair (KP

7.5.1,Σ
P
7.5.1) for HP with the (weak) Halving Property such that

Q∗
fP

(KP
7.5.1,Σ

P
7.5.1) “ there is a perfect set Q ⊆ P such that

(∀K ∈ [ω]ω ∩V)(Q�K 6= 2K) ”.

Construction. The creating pair (KP
7.5.1,Σ

P
7.5.1) will be constructed in a way

slightly similar to (K1
2.4.12,Σ

1
2.4.12). For positive integers i,m let Ri2(2,m) be the

minimal integer k such that for every function ϕ :
∏̀
<i

[k]2 −→ 2 there are sets

a0, . . . , ai−1 ∈ [k]m such that ϕ�[a0]2 × . . .× [ai−1]2 is constant. [Thus this is the
Ramsey number for polarized partition relations; R1

2(2,m) is essentially R2(2,m)
of 6.3.5.]

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

158 7. FRIENDS AND RELATIVES OF PP

Define inductively Zi2(k) for k∈ω by Zi2(0)=Ri2(2, 4), Zi2(k+1)=Ri2(2, 2·Zi2(k)),
and for a finite set X let

Hi(X)
def
= min{k ∈ ω : |X| ≤ Zi2(k)}.

Let T ⊆ 2<ω be a perfect tree such that P = [T]. Now construct inductively
functions HP = H and fP = f and an increasing sequence n̄ = 〈ni : i ∈ ω〉 such
that

(i) f(0, `) = `+ 1, f(k + 1, `) = 2ϕH(`)+1 · (f(k, `) + ϕH(`) + 2) (compare
1.1.12),

(ii) n0 = 0, ni+1 is the first such that for every ν ∈ T ∩ 2ni

H2i({η ∈ T ∩ 2ni+1 : ν C η}) ≥ 2f(i,i),

(iii) H(i) is the family of all non-empty subsets of T ∩ 2ni+1 .

It should be clear that the clauses (i)–(iii) uniquely determine H, f and n̄.
Call a sequence u ∈

∏
i<m

H(i) acceptable if for each i0 < i1 < m

|u(0)| = 2, u(i0) = {η�ni0+1 : η ∈ u(i1)}, and
(∀ν ∈ u(i0))(|{η ∈ u(i0 + 1) : ν C η}| = 2).

Note that if W ∈
∏
m∈ω

H(m) is such that each W �m is acceptable then the sequence

W determines a perfect tree

TW
def
= {ν ∈ T : (∃m ∈ ω)(∃η ∈W (m))(ν E η)} ⊆ T

with the property that |TW ∩ 2ni | = 2i and each node from TW ∩ 2ni has a
ramification below ni+1.

A creature t ∈ CR[H] is in KP
7.5.1 if mt

up = mt
dn + 1 = i+ 1 and

• dis[t] = 〈mt
dn, 〈Btν : ν ∈ T ∩ 2ni〉, rt〉, where rt is a non-negative real and

Btν ⊆ {η ∈ T ∩ 2ni+1 : ν C η} (for all ν ∈ T ∩ 2ni ; remember i = mt
dn),

• val[t] = {〈u, v〉 ∈
∏

k<mtdn

H(k) ×
∏

k≤mtdn

H(k) : u C v both are acceptable

and
if η ∈ v(mt

dn) then η ∈ Btη�ni},
• nor[t] = max{0, min{H2i(B

t
ν) : ν ∈ T ∩ 2ni} − rt}.

The operation ΣP7.5.1 is defined by

ΣP7.5.1(t) = {s ∈ KP
7.5.1 : mt

dn = ms
dn & (∀ν ∈ T ∩ 2ni)(Bsν ⊆ Btν) & rs ≥ rt}.

It should be clear that (KP
7.5.1,Σ

P
7.5.1) is a simple finitary creating pair and the

forcing notion Q∗f (KP
7.5.1,Σ

P
7.5.1) is not trivial.

To check that (KP
7.5.1,Σ

P
7.5.1) is 2̄–big suppose that t ∈ KP

7.5.1, nor[t] > 1, u ∈
basis(t) and c : pos(u, t) −→ 2 (note that basis(t) = dom(val[t]) and pos(u, t) =
{v ∈ rng(val[t]) : u C v}). Then u is acceptable and, if `g(u) > 0, |u(`g(u)− 1)| =
2`g(u). Let i = `g(u) = mt

dn. Let k = min{H2i(B
t
ν) : ν ∈ u(i − 1)}. By the

definition of the norm of t we know that k ≥ nor[t] + rt > 1, so necessarily k ≥ 2.

Note that under natural interpretation
∏

ν∈u(i−1)

[Btν]2 ⊆ pos(u, t), so we may restrict

our colouring c to this set and use the definition of H2i (and the choice of k). Thus

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

7.5. EXAMPLES 159

we find sets B∗ν ⊆ Btν (for ν ∈ u(i− 1)) such that

(∀ν ∈ u(i− 1))(|B∗ν | = 2 · Z2i

2 (k − 2)) and c�(
∏

ν∈u(i−1)

B∗ν) is constant.

Note that H2i(B
∗
ν) ≥ k − 1 ≥ nor[t] − 1 + rt > rt. Let s ∈ KP

7.5.1 be a creature
determined by

ms
dn = mt

dn, rs = rt, Bsν = B∗ν if ν ∈ u(i− 1), and Bsν = Btν otherwise.

Clearly s ∈ ΣP7.5.1(t), nor[s] ≥ nor[t]− 1 and c�pos(u, s) is constant.
Plainly (KP

7.5.1,Σ
P
7.5.1) is trivially meagering, as if x, y ∈ X then

Hi(X \ {x, y}) ≥ Hi(X)− 1.

Let half : KP
7.5.1 −→ KP

7.5.1 be such that if nor[t] ≥ 2 then

dis(half(t)) = 〈mt
dn, 〈Btν : ν ∈ T, `g(ν) = nmtdn

〉, rt +
1

2
nor[t]〉,

and half(t) = t otherwise. Exactly like in 2.4.12 one checks that the function half
witnesses the fact that (KP

7.5.1,Σ
P
7.5.1) has the (weak) Halving Property.

To show the last assertion of 7.5.1 we prove that

Q∗f (KP
7.5.1,Σ

P
7.5.1) “ (∀K ∈ [ω]ω ∩V)([T Ẇ]�K 6= 2K) ”,

where Ẇ is the name for the generic real (see 1.1.13) and T Ẇ is the tree defined
before. To this end suppose that p ∈ Q∗f (KP

7.5.1,Σ
P
7.5.1) and K ∈ [ω]ω . We may

assume that `g(wp) = j0 > 0 and (∀i ∈ ω)(nor[tpi] > fP (0,m
tpi
dn) ≥ 2). Choose

j1 ∈ ω such that |[nj0 , nj1) ∩K| ≥ 2j0 and fix one-to-one mapping

k : wp(j0 − 1) −→ [nj0 , nj1) ∩K : ν 7→ k(ν)

(remember that wp is acceptable, so |wp(j0− 1)| = 2j0 and wp(j0− 1) ⊆ T ∩ 2nj0).
Fix ν ∈ wp(j0 − 1) for a moment. Let i(ν) = i < j1 − j0 be such that

k(ν) ∈ [nj0+i, nj0+i+1). For each η ∈ T ∩2nj0+i such that ν E η choose cj0+i(η) ∈ 2

such that the set Bνη
def
= {ρ ∈ Bt

p
i
η : ρ(k(ν)) = cj0+i(ν)} has at least 1

2 |B
tpi
η | elements

(so then H2j0+i(Bνη) ≥ H2j0+i(B
tpi
η) − 1). If η = ν then we finish the procedure.

Otherwise, for each ρ ∈ T ∩2nj0+i−1 such that ν E ρ we choose cj0+i−1(ρ) ∈ 2 such

that the setBνρ
def
= {η ∈ Bt

p
i−1
ρ : cj0+i−1(ρ) = cj0+i(η)} has at least 1

2 |B
tpi−1
ρ | elements

(and so H2j0+i−1(Bνρ) ≥ H2j0+i−1(B
tpi−1
ρ)−1). Continuing this procedure downward

till we arrive to ν we determine sets 〈Bνη : ν E η ∈ T ∩ 2nj , j0 ≤ j ≤ j0 + i(ν)〉 and
cj0(ν) ∈ 2 such that

(α)ν if ν E η ∈ T ∩ 2nj , j0 ≤ j ≤ j0 + i(ν)

then Bνη ⊆ B
tpj−j0
η and H2j (B

ν
η) ≥ H2j (B

tpj−j0
η)− 1,

(β)ν if ν E η ∈ T ∩ 2nj1 is such that (∀j ∈ [j0, j0 + i(ν)))(η�nj+1 ∈ Bνη�nj)
then η(k(ν)) = cj0(ν).

For each i < j1 − j0 choose a creature si ∈ ΣP7.5.1(tpi) such that rsi = rt
p
i and

for every η ∈ T ∩ 2nj0+i

if i(η�nj0) ≤ i then Bsiη = B
η�nj0
η , otherwise Bsiη = B

tpi
η .

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

160 7. FRIENDS AND RELATIVES OF PP

Clearly nor[si] ≥ nor[tpi] − 1 and thus q = (wp, s0, . . . , sj1−j0−1, t
p
j1−j0 , . . .) is a

condition in Q∗fP (KP
7.5.1,Σ

P
7.5.1) stronger than p. Let σ : K ∩ [nj0 , nj1) −→ 2 be

such that σ(k(ν)) = 1− cj0(ν) for each ν ∈ wp(j0 − 1). Note that

u ∈ pos(wp, s0, . . . , sj1−j0−1) ⇒ (∀η ∈ u(j1 − 1))(η�(K ∩ [nj0 , nj1) 6= σ)),

what finishes the proof. �

Conclusion 7.5.2. It is consistent that κBP = non(M) = d(RsPP) = c = ℵ2

and d = ℵ1.

Proof. Start with a model for CH and build inductively (with a suitable

bookkeeping) a countable support iteration 〈Pα, Q̇α : α < ω2〉 and a sequence

〈Ṗα : α < ω2〉 such that

(α) 〈Ṗα : α < ω2〉 lists with ω2–repetitions all Pω2
–names for perfect subsets

of 2ω ; each Ṗα is a Pα–name,

(β) Q̇α is a Pα–name for the forcing notion Q∗
f Ṗα

(KṖα
7.5.1,Σ

Ṗα
7.5.1).

By 2.2.12 and 3.1.2 we know that each Q̇α is a (name for) proper ωω–bounding
forcing notion and hence Pω2

“d = ℵ1”. By 3.2.8(2) we easily conclude that Pω2

“non(M) = ℵ2” and finally we note that by the last property of Q∗fP (KP
7.5.1,Σ

P
7.5.1)

stated in 7.5.1, and by the choice of 〈Ṗα : α < ω2〉, we have Pω2
“κBP = ℵ2”. To

finish remember 7.1.3. �

Conclusion 7.5.3. It is consistent that κBP = d(RsPP) = ℵ1 and non(N) =
c = ℵ2.

Proof. Force over a model of CH with countable support iteration, ω2 in
length, of forcing notions Q∗w∞(K5.4.3,Σ5.4.3).

By 7.2.4(2) we know that the forcing notion Q∗w∞(K5.4.3,Σ5.4.3) has the (D, x)-
strong PP–property for any weakly non-reducible filter D on ω and an unbounded
non-decreasing x ∈ ωω . Consequently, if (in V) we take a p-point D and a PP–
ok partial order F̄ then the iteration will have the (D, F̄)-strong PP–property, so
in particular the strong PP–property (by 7.2.3; remember that by 7.4.1+7.4.2 the
filter generated by D in the intermediate universes is weakly non-reducible). Hence,
in the resulting model we have d(RsPP) = ℵ1 and thus κBP = ℵ1 (by 7.1.3). Finally,
it follows from 5.4.4 that in this model non(N) = c = ℵ2.

Note that one can use the forcing notion Qtree
1 (K1

5.4.5,Σ
1
5.4.5) of 5.4.5 as well. �

Let us recall the following notions from [Sh 326].

Definition 7.5.4. Let F ⊆ ωω and g ∈ ωω .

(1) We say that the family F is g–closed if

(∀f ∈ F)(∃f+, f∗ ∈ F)(∀∞n ∈ ω)(f(n)g(n) ≤ f∗(n) &
∏
m<n

(f(m) + 1) ≤ f+(n)).

(2) We say that a proper forcing notion P has the (F , g)–bounding property
if it has the (f, gε)–bounding property for each ε > 0 and f ∈ F .

These notions are important when we want to iterate (f, g)–bounding forcing
notions: if F is a g–closed family then each countable support iteration of proper
(F , g)–bounding forcing notions is (F , g)–bounding (see [Sh 326, A2.5], compare
to 5.2.9).

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

7.5. EXAMPLES 161

Proposition 7.5.5. Suppose that F ⊆ ωω is a g–closed family and ϕ ∈ ωω is
an increasing function. Let gϕ = g ◦ ϕ and let Fϕ = {f ◦ ϕ : f ∈ F}. Then Fϕ is
gϕ–closed.

Proof. Check. �

Conclusion 7.5.6. Let g(n) = nn for n ∈ ω and let F ⊆ ωω be a countable
g–closed family. Suppose that F ∈ ωω is an increasing function which dominates
all elements of F (i.e. (∀f ∈ F)(∀∞n ∈ ω)(f(n) < F (n))) and let H = HF , f = fF

(and ϕH) be as defined in 2.4.6 for F . Next, let f0 ∈ F and 〈mk : k ∈ ω〉 ⊆ ω
and h ∈ ωω be such that m0 = 0, mk+1 = mk + ϕH(k)ϕH(k), h is non-decreasing
and h(mk+1) ≤ f0(ϕH(k)) (for k ∈ ω). Assume that Pω2 is the countable support
iteration of the forcing notions Q∗f (K2.4.6,Σ2.4.6). Then

Pω2
“ d(R∗H) = ℵ2 & d = d(R∗h) = d(R∀f0◦ϕH,g◦ϕH

) = ℵ1 ”.

Proof. We know that FϕH
= {f ′ ◦ ϕH : f ′ ∈ F} is gϕH

–closed, where
gϕH

= g ◦ ϕH. By 5.4.6 and the choice of g, F we have that the forcing no-
tion Q∗f (K2.4.6,Σ2.4.6) is proper, ωω–bounding, (FϕH

, gϕH
)–bounding and so is the

iteration. Hence, for each f1 ∈ F , Pω2
“d(R∀f1◦ϕH,g◦ϕH

) = d = ℵ1”. Next note
that for the function h defined in the assumptions and for sufficiently large k we
have ∏

n∈[mk,mk+1)

h(n) ≤ h(mk+1)ϕH(k) ≤ ((f0 ◦ ϕH)(k))ϕH(k) ≤ (f∗0 ◦ ϕH)(k),

where f∗0 ∈ F is such that (∀∞n ∈ ω)(f0(n)g(n) ≤ f∗0 (n)). Use 7.3.3(2) to conclude

that Pω2
“d(R∗h) = ℵ1”. Finally, note that if Ẇ is the name for the generic real

then

Q∗f (K2.4.6,Σ2.4.6) (∀x ∈
∏
n∈ω

H(n) ∩V)(∀∞n ∈ ω)(Ẇ (n) 6= x(n))

and therefore Pω2
“d(R∗H) = ℵ2”. �

Conclusion 7.5.7. It is consistent that non(M) = d = ℵ2 and cov(M) =
b = ℵ1 = d(R∃f,g) for every non-decreasing unbounded g ∈ ωω and any f ∈ ωω

such that lim
n→ω

f(n)
g(n) =∞ .

Proof. Start with a model of CH and iterate ω2 times with countable sup-
port the Blass-Shelah forcing notion Q∗s∞(K∗2.4.5,Σ

∗
2.4.5). By 4.4.1 we immediately

conclude that the iteration forces “non(M) = d = ℵ2 & b = ℵ1”. As each
function in ωω appears in an intermediate model we may restrict our attention to
f, g ∈ ωω ∩ V. By 7.3.8 and 7.3.6 we conclude that the iteration has the R∃f,g–

localization property (just build a suitable PP–ok partial order F̄ and take any
p-point D ∈ V; by 7.4.2, 7.4.1 and 4.4.1 we know that D generates a non-reducible
p-filter in the intermediate universes). Hence we get that in the resulting model
cov(M) = d(R∃f,g) = ℵ1. �

Example 7.5.8. We construct a finitary 2–big tree–creating pair (K7.5.8,Σ7.5.8)
of the NMP–type (see 3.2.3(2)) such that the forcing notion Qtree

1 (K7.5.8,Σ7.5.8)
does not have the strong PP–property.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

162 7. FRIENDS AND RELATIVES OF PP

Construction. This example is similar to that of 6.4.4 (what is not surprising
if you notice some kind of duality between m1 and d(RsPP)).

Let H(n) = nn. Let A be the family of all pairs (n, x) such that x ∈ [H(n)]n.
For ν ∈

∏
k<m

H(k), m0 < m and A ⊆ A we will write ν ≺∗m0
A if

(∃(n, x) ∈ A)(m0 ≤ n < m & ν(n) ∈ x).

Now we define (K7.5.8,Σ7.5.8). A tree–like creature t ∈ TCRη[H] is taken to be in
K7.5.8 if:

• val[t] is finite, and
• nor[t] = log2(min{|A| : A ⊆ A & (∀ν ∈ rng(val[t]))(ν ≺∗`g(η) A)}).

The tree composition Σ7.5.8 is defined like in 6.4.4: if 〈tν : ν ∈ T̂ 〉 ⊆ K7.5.8 is
a system such that T is a well founded quasi tree, root(tν) = ν, and rng(val[tν]) =

succT (ν) (for ν ∈ T̂) then we define S∗(tν : ν ∈ T̂) as the unique creature t∗ inK7.5.8

with rng(val[t∗]) = max(T), dom(val[t∗]) = {root(T)} and dis[t∗] = 〈dis[tν] : ν ∈
T̂ 〉. Next we put

Σ7.5.8(tν : ν ∈ T̂) = {t ∈ K7.5.8 : val[t] ⊆ val[S∗(tν : ν ∈ T̂)]}.

It should be clear that (K7.5.8,Σ7.5.8) is a finitary tree–creating pair and the forcing
notion Qtree

1 (K7.5.8,Σ7.5.8) is non-trivial.

Claim 7.5.8.1. (K7.5.8,Σ7.5.8) is 2–big.

Proof of the claim: Let t ∈ K7.5.8, nor[t] > 0 and suppose that pos(t) = u0 ∪ u1.
Let s` ∈ Σ7.5.8(t) be such that pos(s`) = u` (for ` = 0, 1). Take A` ⊆ A such that

|A`| = 2nor[s`] and (∀ν ∈ pos(s`))(ν ≺∗m0
A`),

where m0 = `g(root(s`)) = `g(root(t)). Clearly (∀ν ∈ pos(t))(ν ≺∗m0
A0 ∪ A1) and

thus

nor[t] ≤ log2(|A0|+ |A1|) ≤ 1 + max{nor[s0],nor[s1]}.

Claim 7.5.8.2. (K7.5.8,Σ7.5.8) is of the NMP–type (see 3.2.3(2)).

Proof of the claim: Suppose that 〈tη : η ∈ T 〉 ∈ Qtree
∅ (K7.5.8,Σ7.5.8) is such that

(∀η ∈ T)(nor[tη] > 1) and F0, F1, F2, . . . are fronts of T such that

(∀ν ∈ Fi+1)(∃ν′ ∈ Fi)(ν′ C ν).

Clearly these fronts are finite (as (K7.5.8,Σ7.5.8) is finitary). Further suppose that
g :

⋃
i∈ω

Fi −→
⋃
i∈ω

Fi+1 is such that ν C g(ν) ∈ Fi+1 for ν ∈ Fi.

Let r = min{2nor[tη] : η ∈ T}. Choose increasing sequences 〈nk : k ≤ rr + r〉,
〈ik, jk : k < rr + r〉 such that for each k < rr + r:

(i) ik < jk < ik+1 and if k ∈ [r, r + rr) then jk = ik + 1,
(ii) if k < r, ν ∈ Fik then |{ρ ∈ Fjk : ν C ρ}| ≥ r,

(iii) nk < min{`g(ν) : ν ∈ Fik} < max{`g(ν) : ν ∈ Fjk} < nk+1.

Choose a mapping π : Fjr−1
−→ rr such that

(∗)0 if ν C η0 ∈ Fjr−1 , ν C η1 ∈ Fjr−1 , ν ∈ Fjk , k < r
then π(η0)(k) = π(η1)(k),

(∗)1 for each ν ∈ Fik , k < r and ` < r there is η ∈ Fjr−1
such that ν C η and

π(η)(k) = `.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

7.5. EXAMPLES 163

(It is easy to define such a mapping if you remember clause (ii) above.) Let π∗ :
rr −→ rr be the isomorphism of rr equipped with the lexicographical order and
rr with the natural order of integers. Take a tree–creature s ∈ Σ7.5.8(tη : (∃ν ∈
Fjrr+r−1

)(η C ν)) such that

rng(val[s]) = {ν ∈ Fjrr+r−1
: if ν�m0 ∈ Fjr−1

, m0 ∈ ω and k = π∗(π(ν�m0))
and ν�m1 ∈ Fir+k , m1 ∈ ω then g(ν�m1) C ν}.

(Note that we may find a suitable s by the definition of Σ7.5.8.) By the choice, this
s satisfies the demand (β)tree of 3.2.3(2). But why does it have large enough norm?
Suppose that A ⊆ A is such that |A| < r. Let k0 < r be such that

(n, x) ∈ A ⇒ n /∈ [nk0 , nk0+1).

Since |A| < 2nor[tη] for each η ∈ T we may inductively build a sequence ν0 ∈ Fik0

such that

(∀(n, x) ∈ A)(`g(root(T)) ≤ n < `g(ν0) ⇒ ν0(n) /∈ x).

Let σ0 : k0 −→ r be such that σ0(k) is the value of π(η)(k) for each η ∈ Fjr−1
,

ν0 C η. Take ` < r such that

if σ ∈ rr, σ0
_〈`〉 E σ

then there is no (n, x) ∈ A with nπ∗(σ)+r ≤ n < nπ∗(σ)+r+1

(remember the choice of π∗ and that |A| < r). Now take ν1 ∈ Fjk0
such that

ν0 C ν1 and

(∀η ∈ Fjr−1
)(ν1 E η ⇒ π(η)(k0) = `)

(possible by (∗)0 + (∗)1). By the choice of k0 we know that

(∀(n, x) ∈ A)(`g(root(T)) ≤ n < `g(ν1) ⇒ ν1(n) /∈ x)

(look at (iii)). Next continue like at the beginning to get η ∈ Fjr−1
such that ν1 E η

and ¬(η ≺∗`g(root(T)) A). We are sure that σ0
_〈`〉 E π(η) and therefore there is no

(n, x) ∈ A with nπ∗(π(η))+r ≤ n < nπ∗(π(η))+r+1. Consequently we may continue
the procedure applied to build η and we construct η∗ ∈ Fjrr+r−1

such that
η C η∗, if η∗�m ∈ Fir+π∗(π(η))

then g(η∗�m) C η∗, and ¬(η ≺∗`g(root(T)) A).

Since, by its construction, the sequence η∗ is in rng(val[s]), it exemplifies that A
cannot witness the minimum in the definition of nor[s]. Consequently, nor[s] ≥
log2(r) and thus the tree–creature s satisfies the demand (α)tree of 3.2.3(2).

Claim 7.5.8.3. The forcing notion Qtree
1 (K7.5.8,Σ7.5.8) does not have the strong

PP–property.

Proof of the claim: We will show that the generic real Ẇ shows that the strong
PP–property fails for Qtree

1 (K7.5.8,Σ7.5.8). So suppose that 〈wi : i ∈ B〉 is such that

B ∈ [ω]ω and (∀i ∈ B)(wi ∈ [ω]i) and let p ∈ Qtree
1 (K7.5.8,Σ7.5.8). We may assume

that nor[tpη] > 1 for each η ∈ T p. Take i0 ∈ B \ `g(root(p)) and build inductively
a condition q ≥ p such that for each η ∈ T q and ν ∈ pos(tqη)

tqη ∈ Σ7.5.8(tpη) and nor[tqη] ≥ nor[tpη]− 1 and (i0 < `g(ν) ⇒ ν(i0) /∈ wi0)

(remember the definition of the norm of elements of K7.5.8). Now clearly q “

Ẇ (i0) /∈ wi0 ”, finishing the proof of the claim and the construction. �

Conclusion 7.5.9. It is consistent that cof(M) < d(RsPP).

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

164 7. FRIENDS AND RELATIVES OF PP

Proof. Start with a model of CH and force with countable support iteration of
length ω2 of forcing notions Qtree

1 (K7.5.8,Σ7.5.8). We know that Qtree
1 (K7.5.8,Σ7.5.8)

is proper, ωω–bounding and Cohen–preserving (by 3.2.5 + 3.1.1). Consequently
the iteration is of the same type (see [BaJu95, 6.3.21, 6.3.22]) and, by standard
arguments, in the final model we have non(M) = d = ℵ1. But this implies that
cof(M) = ℵ1 too (see [BaJu95, 2.2.11]). Finally, as Qtree

1 (K7.5.8,Σ7.5.8) does
not have the strong PP–property we easily conclude that the iteration forces that
d(RsPP) = ℵ2. �

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

List of definitions

1.1.1 weak creatures, WCR[H];
1.1.3 finitary H, finitary K;
1.1.4 sub-composition operation, weak creating pair, the relation ∼Σ;
1.1.6 basis basis(t), possibilities pos(w,S);
1.1.7 forcing notion QC(nor)(K,Σ) (for a weak creating pair (K,Σ) and a

norm condition C(nor));
1.1.10 mdn(t), norm conditions and corresponding forcing notions Qs∞(K,Σ),

Q∞(K,Σ), Qw∞(K,Σ), Qf (K,Σ), Q∅(K,Σ);
1.1.12 fast function, H-fast function f : ω × ω −→ ω;
1.1.13 name for the generic real Ẇ ;
1.2.1 mt

dn, mt
up, creatures, CR[H];

1.2.2 composition operation on K, creating pairs (K,Σ);
1.2.4 finite candidates FC(K,Σ), pure finite candidates PFC(K,Σ), pure can-

didates PC(K,Σ), C(nor)–normed pure candidates PCC(nor)(K,Σ) and
partial orders on them;

1.2.5 creating pairs which are: nice, smooth, forgetful, full;
1.2.6 forcing notions Q∗C(nor)(K,Σ) for creating pairs (K,Σ);

1.2.9 when a condition p essentially decides a name τ̇ , approximates τ̇ ;
1.2.11 partial orders ≤apr, ≤s∞

n , ≤∞n , ≤w∞
n , ≤fn;

1.3.1 quasi trees, well founded quasi trees, downward closure dcl(T), succes-

sors succT (η) of η in T , T [η], split(T), max(T), T̂ , lim(T), fronts of a quasi
tree T ;

1.3.3 tree–creatures, TCR[H], tree–composition, bounded tree–composition;
1.3.5 forcing notions Qtree

e (K,Σ) for e < 5, Qtree
∅ (K,Σ), condition p[η] for

p ∈ Qtree
e (K,Σ), η ∈ T p;

1.3.7 e-thick antichains in T p for p ∈ Qtree
e (K,Σ);

1.3.10 partial orders ≤en (for e < 3);
1.4.3 local weak creating pairs;
2.1.1 creature t � [m0,m1), for a creating pair (K,Σ) we say when it is

omittory, growing;
2.1.7 creating pairs which are: gluing, simple;

2.1.10 creating pairs which capture singletons;
2.2.1 big creating pairs;
2.2.5 omittory–big creating pairs;
2.2.7 Halving Property and weak Halving Property;
2.3.2 big tree–creating pairs;
2.3.4 t–omittory tree creating pairs;
2.4.1 pre–norm on P(A), nice pre-norm;

2.4.2 pre–norms dpi, dpin (for i < 3, n ∈ ω);

165

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

166 LIST OF DEFINITIONS

3.2.1 Cohen–preserving proper forcing notions;
3.2.3 creating pairs of the NMP–type, tree creating pairs of the NMPtree–

type;
3.2.7 trivially meagering weak creating pairs;
3.3.1 weak creating pairs of the NNP–type;
3.3.2 gluing and weakly gluing tree creating pairs;
3.3.4 strongly finitary creating pairs;
3.4.1 when a weak creating pair (K,Σ) strongly refuses Sacks property;
4.1.2 creating pairs which are: meagering, anti–big;
4.2.1 Σsum;
4.2.3 (d, u)–sum Σsum

d,u ;
4.2.4 when a creating pair is saturated with respect to a family of pre–norms;
4.2.6 Σtsum;
4.3.1 decision functions, creating pairs of the AB-type, condensed creating

pairs;
4.3.7 creating pairs of the AB+–type;
5.1.1 essentially f -big weak creating pairs;
5.1.6 reducible weak creating pairs;
5.1.7 h–limited weak creating pairs;

5.1.11 (H, F)–fast function;
5.2.1 Uh(t̄), V nh (t̄), (t̄, h1, h2)–bounding forcing notions;
5.2.3 creating pairs which are monotonic, strictly monotonic, spread;
5.2.5 m–additivity addm(t) of a weak creature t, (g, h)-additive weak creating

pairs;
5.2.8 t̄–good families of functions, (t̄,F)–bounding forcing notions;
5.3.1 t̄–systems, regular t̄–systems, P∗C(nor)(t̄, (K,Σ)) and the partial order �

on it, quasi-W -generic Γ;
5.3.6 (Γ,W)–genericity preserving forcing notions;
5.3.8 Cohen sensitive t̄–systems, directed t̄–systems;

5.3.10 (t̄0, h1, h2)–coherent t̄–systems, (t̄0, F̄)–coherent sequences of t̄–systems;
6.1.1 creating pair which generates an ultrafilter;
6.1.3 when Γ generates a filter (ultrafilter), D(Γ);
6.1.5 interesting creating pair;
6.2.1 Ramsey filter, p–point, q–point, weak q–point;
6.2.5 interesting ultrafilters, games GsR(D), GaR(D), semi–Ramsey ultrafil-

ters, almost Ramsey ultrafilters;
6.3.1 tree creating pairs of the UP(D)tree, sUP(D)tree –types;
6.3.3 rich tree creating pairs;
6.3.5 Rn(k,m);
6.3.7 simple except omitting creating pairs, omittory–compatible t̄–systems;
7.1.1 κBP ;
7.1.2 RsPP;
7.2.1 non-reducible filters, PP–ok partial orders, forcing notions with (D, x)-

strong PP–property, (D, F̄)-strong PP–property;
7.3.1 R∃f,g, R

∀
f,g, R

∗
f , R∗∗f,g;

7.3.5 (D, F̄)-R∃f–localization property.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

Bibliography

[Ba91] Marek Balcerzak. Some properties of ideals of sets in Polish spaces. Habilitation

Thesis. Lódź University Press, 1991.
[BaPl96] Marek Balcerzak and Szymon Plewik. Property (P) and game ideals. Tatra Moun-

tains Mathematical Publications, 8:153–158.

[BaRo95] Marek Balcerzak and Andrzej Ros lanowski. Coinitial families of perfect sets. Journal
of Applied Analysis, 1:181–204, 1995.

[Ba94] Tomek Bartoszyński. Some old and new problems. Circulated notes of November

1994.
[BaJu95] Tomek Bartoszyński and Haim Judah. Set Theory: On the Structure of the Real Line.

A K Peters, Wellesley, Massachusetts, 1995.
[BJSh 368] Tomek Bartoszyński, Haim Judah, and Saharon Shelah. The Cichoń diagram. Journal

of Symbolic Logic, 58:401–423, 1993.

[BRSh 616] Tomek Bartoszyński, Andrzej Ros lanowski, and Saharon Shelah. After all, there are
some inequalities which are provable in ZFC. Journal of Symbolic Logic, submitted.

[BsSh 242] Andreas Blass and Saharon Shelah. There may be simple Pℵ1
- and Pℵ2

-points and

the Rudin-Keisler ordering may be downward directed. Annals of Pure and Applied
Logic, 33:213–243, 1987.

[CRSW93] Jacek Cichoń, Andrzej Ros lanowski, Juris Steprans, and Bogdan Wȩglorz. Combina-

torial properties of the ideal P2. Journal of Symbolic Logic, 58:42–54, 1993.
[CiSh 653] Krzysztof Ciesielski and Saharon Shelah. A model with no magic sets. Preprint, 1997.

[DKP92] Wojciech Dȩbski, Jan Kleszcz, and Szymon Plewik. Perfect sets of independent func-

tions. Acta Universitatis Carolinae – Mathematica et Physica, 33:31–33, 1992.
[FrSh 406] David H. Fremlin and Saharon Shelah. Pointwise compact and stable sets of measur-

able functions. Journal of Symbolic Logic, 58:435–455, 1993.
[GoSh 448] Martin Goldstern and Saharon Shelah. Many simple cardinal invariants. Archive for

Mathematical Logic, 32:203–221, 1993.

[J] Thomas Jech. Set theory. Academic Press, New York, 1978.
[JRSh 373] Haim Judah, Andrzej Ros lanowski, and Saharon Shelah. Examples for Souslin Forc-

ing. Fundamenta Mathematicae, 144:23–42, 1994.

[MaPa9x] Pierre Matet and Janusz Pawlikowski. Ideals over ω and cardinal invariants of the
continuum. Preprint, 1997.

[My69] Jan Mycielski. Some new ideals of sets on the real line. Colloquium Mathematicum,

XX:71–76, 1969.
[NeRo93] Ludomir Newelski and Andrzej Ros lanowski. The ideal determined by the unsymmet-

ric game. Proceedings of the American Mathematical Society, 117:823–831, 1993.
[Ro94] Andrzej Ros lanowski. Mycielski ideals generated by uncountable systems. Colloquium

Mathematicum, LXVI:187–200, 1994.

[RoSh 670] Andrzej Ros lanowski and Saharon Shelah. Norms on possibilities III: strange subsets
of the real line. in preparation.

[RoSh 672] Andrzej Ros lanowski and Saharon Shelah. Norms on possibilities IV: ccc forcing no-

tions. in preparation.
[RoSh 501] Andrzej Ros lanowski and Saharon Shelah. Localizations of infinite subsets of ω.

Archive for Mathematical Logic, 35:315–339, 1996. A special volume dedicated to

Prof. Azriel Levy.
[RoSh 628] Andrzej Ros lanowski and Saharon Shelah. Norms on possibilities II: more ccc ideals

on 2ω . Journal of Applied Analysis, 3:103–127, 1997.

167

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

168 BIBLIOGRAPHY

[Sh 630] Saharon Shelah. Non-elementary proper forcing notions. Journal of Applied Analysis,

submitted.

[Sh 669] Saharon Shelah. Non-elementary proper forcing notions II: iterations. in preparation.
[Sh:f] Saharon Shelah. Proper and improper forcing. Perspectives in Mathematical Logic.

Springer-Verlag, 1998.

[Sh:b] Saharon Shelah. Proper forcing, volume 940 of Lecture Notes in Mathematics.
Springer-Verlag, Berlin-New York, xxix+496 pp, 1982.

[Sh 207] Saharon Shelah. On cardinal invariants of the continuum. In Axiomatic set theory

(Boulder, Colo., 1983), volume 31 of Contemp. Mathematics, pages 183–207. Amer.
Math. Soc., Providence, RI, 1984. Proceedings of the Conference in Set Theory, Boul-

der, June 1983; ed. Baumgartner J., Martin, D. and Shelah, S.

[Sh 326] Saharon Shelah. Viva la difference I: Nonisomorphism of ultrapowers of countable
models. In Set Theory of the Continuum, volume 26 of Mathematical Sciences Re-

search Institute Publications, pages 357–405. Springer Verlag, 1992.

Paper Sh:470, version 1998-06-21 10. See https://shelah.logic.at/papers/470/ for possible updates.

	Annotated Content
	Chapter 0. Introduction
	0.1. The content of the paper
	0.2. Notation

	Chapter 1. Basic definitions
	1.0. Prologue
	1.1. Weak creatures and related forcing notions
	1.2. Creatures
	1.3. Tree creatures and tree–like forcing notions
	1.4. Non proper examples

	Chapter 2. Properness and the reading of names
	2.1. Forcing notions Q*s(K,), Q*w(K,)
	2.2. Forcing notion Q*f(K,): bigness and halving
	2.3. Tree–creating (K,)
	2.4. Examples

	Chapter 3. More properties
	3.1. Old reals are dominating
	3.2. Preserving non-meager sets
	3.3. Preserving non-null sets
	3.4. (No) Sacks Property
	3.5. Examples

	Chapter 4. Omittory with Halving
	4.1. What omittory may easily do
	4.2. More operations on weak creatures
	4.3. Old reals are unbounded
	4.4. Examples

	Chapter 5. Around not adding Cohen reals
	5.1. (f,g)-bounding
	5.2. (,)–bounding
	5.3. Quasi-generic and preserving them
	5.4. Examples

	Chapter 6. Playing with ultrafilters
	6.1. Generating an ultrafilter
	6.2. Between Ramsey and p-points
	6.3. Preserving ultrafilters
	6.4. Examples

	Chapter 7. Friends and relatives of PP
	7.1. Balcerzak–Plewik number
	7.2. An iterable friend of the strong PP–property
	7.3. Bounded relatives of PP
	7.4. Weakly non-reducible p-filters in iterations
	7.5. Examples

	List of definitions
	Bibliography

