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Abstract. We answer a long-standing open question by proving in ordinary

set theory, ZFC, that the Kaplansky test problems have negative answers for
ℵ1-separable abelian groups of cardinality ℵ1. In fact, there is an ℵ1-separable

abelian group M such that M is isomorphic to M⊕M⊕M but not to M⊕M .

We also derive some relevant information about the endomorphism ring of M .

Introduction

Kaplansky [15, pp. 12f] posed two test problems in order to “know when we
have a satisfactory [structure] theorem. ... We suggest that a tangible criterion
be employed: the success of the alleged structure theorem in solving an explicit
problem.” The two problems were:

(I) If A is isomorphic to a direct summand of B and conversely, are
A and B isomorphic?

(II) If A⊕A and B⊕B are isomorphic, are A and B isomorphic?

In fact, he says ([15, p. 75]) that he invented the problems “to show that Ulm’s
theorem [a structure theory for countable abelian p-groups] could really be used”.
For some other classes of abelian groups, such as finitely-generated groups, free
groups, divisible groups, or completely decomposable torsion-free groups, the exis-
tence of a structure theory leads to an affirmative answer to the test problems. On
the other hand, negative answers are taken as evidence of the absence of a useful
classification theorem for a given class; Kaplansky says “I believe their defeat is
convincing evidence that no reasonable invariants exist” [15, p. 75]. Negative an-
swers to both questions have been proven, for example, for the class of uncountable
abelian p-groups and for the class of countable torsion-free abelian groups.

Of particular interest is the method developed by Corner (cf. [1], [2],[4]) which,
by realizing certain rings as endomorphism rings of groups, provides negative an-
swers to both test problems (for a given class) as special cases of an even more
extreme pathology. More precisely, Corner’s method — where applicable — yields,
for any positive integer r, an abelian group Gr (in the class) such that for any
positive integers m and k, the direct sum of m copies of Gr is isomorphic to the
direct sum of k copies of Gr if and only if m is congruent to k mod r. (See, for
example, [2] or [11, Thm 91.6, p. 145].) Then we obtain negative answers to both
test problems by letting A = G2 (∼= G2 ⊕G2 ⊕G2) and B = G2 ⊕G2.
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Our focus here is on the class of ℵ1-separable abelian groups (of cardinality ℵ1).
We will prove, in ordinary set theory (ZFC), that both test problems have negative
answers by deriving the Corner pathology:

Theorem 0.1. For any positive integer r there is an ℵ1-separable group M = Mr

of cardinality ℵ1 such that for any positive integers m and k, Mm is isomorphic to
Mk if and only if m is congruent to k mod r.

(Here Mm denotes the direct sum of m copies of M .) We do not determine the
endomorphism ring of M , even modulo an ideal. However, we can derive a property
of the endomorphism ring of M which is sufficient to imply the Corner pathology:
see section 3.

A group M is called ℵ1-separable [10, p. 184] (respectively, strongly ℵ1-free)
if it is abelian and every countable subset is contained in a countable free direct
summand of M (resp., contained in a countable free subgroup H which is a direct
summand of every countable subgroup of M containing H). Obviously, an ℵ1-
separable group is strongly ℵ1-free, so a negative answer to one of the test problems
for the class of ℵ1-separable groups implies a negative answer to the problem for
the class of strongly ℵ1-free groups. (It is independent of ZFC whether these classes
are different for groups of cardinality ℵ1: the weak Continuum Hypothesis (2ℵ0 <
2ℵ1) implies that there are strongly ℵ1-free groups of cardinality ℵ1 which are
not ℵ1-separable; on the other hand, Martin’s Axiom (MA) plus the negation of
the Continuum Hypothesis (¬CH) implies that every strongly ℵ1-free group of
cardinality ℵ1 is ℵ1-separable; cf.[16] )

Dugas and Göbel [5] proved that ZFC + 2ℵ0 < 2ℵ1 implies that the Corner
pathology exists for the class of strongly ℵ1-free groups of cardinality ℵ1; in fact,
they showed that there is a strongly ℵ1-free group G whose endomorphism ring is
an appropriate ring (the ring A = Ar of the next section). (See also [12].) This
group G cannot be ℵ1-separable since the endomorphism ring of an ℵ1-separable
group has too many idempotents. However, Thomé ([20] and [21]) showed that ZFC
plus V = L (Gödel’s Axiom of Constructibility) implies the Corner pathology for
ℵ1-separable groups of cardinality ℵ1; he did this by constructing an ℵ1-separable
G such that End(G) is a split extension of A by I (in the sense of [3, p. 277]),
where I is the ideal of endomorphisms with a countable image.

It follows from known structure theorems for the class of ℵ1-separable groups of
cardinality ℵ1 under the hypothesis MA + ¬CH that the Dugas-Göbel and Thomé
realization results are not theorems of ZFC (cf. [7] or [17]). The fact that there are
positive structure theorems for the class of ℵ1-separable groups assuming MA +
¬CH or the stronger Proper Forcing Axiom (PFA) — see, for example, [8] or [18] —
led to the question of whether the Kaplansky test problems could have affirmative
answers for this class assuming, say, PFA. Thomé [21] gave a negative answer to the
second test problem in ZFC, using a result of Jónsson [14] for countable torsion-free
groups; however, till now, the first test problem as well as the Corner pathology
were open (in ZFC).

Our construction of the Corner pathology involves a direct construction of the
pathological group M using a tree-like ladder system and a “countable template”
which comes from the Corner example for countable torsion-free groups. A key role
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is played by a paper of Göbel and Goldsmith [13] which — while it does not itself
prove any new results about the Kaplansky test problems for strongly ℵ1-free or
ℵ1-separable groups — provides the tools for creating a suitable template from the
Corner example.

1. The countable template

Fix a positive integer r. For this r, let A = Ar be the countable ring constructed
by Corner in [2]. (See also [11, p. 146].) Specifically, A is the ring freely generated
by symbols ρi and σi (i = 0, 1, ..., r) subject to the relations

ρjσi =

{
1 if i = j
0 otherwise

and
r∑
i=0

σiρi = 1.

Then A is free as an abelian group, and σ0ρ0, ..., σrρr are pairwise orthogonal
idempotents. Moreover, if M is a right A-module, then M = Mσ0ρ0 ⊕Mσ1ρ1 ⊕
...⊕Mσrρr and Mσiρi ∼= M because σiρiσi : M →Mσiρi and ρiσiρi : Mσiρi →M
are inverses; therefore M ∼= Mr+1.

Our construction will work for any countable torsion-free ring A whose additive
subgroup is free; but hereafter A will denote the ring Ar just defined.

Corner shows that there is a torsion-free countable abelian group G whose en-
domorphism ring is A; thus G is an A-module and hence G ∼= Gr+1. Furthermore,
he shows that G` is not isomorphic to Gn if 1 ≤ ` < n ≤ r, and hence Gm is not
isomorphic to Gk if m is not congruent to k mod r. We shall require these and
further properties of G, which we summarize in the following:

Proposition 1.1. There are countable free A-modules B ⊆ H such that G ∼= H/B
and B is the union of a chain of free A-modules, B =

⋃
n∈ω Bn, such that B0 = 0

and for all n ∈ ω, H/Bn and Bn+1/Bn are free A-modules of rank ω. Moreover for

any positive integers m and k, if m is not congruent to k mod r, then Gm ⊕ Z(ω)

is not isomorphic to Gk ⊕ Z(ω).

The main work in proving Proposition 1.1 will be done in two lemmas from [13].
For the first one, we give a revised proof (cf. [13, p. 343]). We maintain the
notation above.

Lemma 1.2. The group G is the union, G =
⋃
n≥1Gn, of an increasing chain of

free A-modules.

Proof. By [1, p. 699] G is the pure closure 〈G1〉∗ in Â of a free A-module G1 =⊕
i∈I eiA ⊕ A containing A. Here Â is the natural, or Z-adic, completion of A

(cf. [1, p. 692]). We will define inductively Gn =
⊕

i∈I ei,nA ⊕ A such that
Gn ⊇ Gn−1 and for all i ∈ I, nei,n + A = ei,n−1 + A. Let ei,1 = ei for all i ∈ I.

If Gn−1 ⊆ G has been defined for some n > 1, then since A is dense in Â, there

exists ei,n ∈ Â such that nei,n + A = ei,n−1 + A; say nei,n = ei,n−1 + ai. By
the definition of G, ei,n ∈ G. We need to show that {ei,n : i ∈ I} ∪ {1} is A-
linearly independent. Suppose that Σi∈Iei,nci+1 · c0 = 0 for some c0, ci ∈ A. Then
Σi∈Inei,nci + nc0 = 0, so Σi∈Iei,n−1ci + 1 · (Σi∈Iaici + nc0) = 0. By the A-linear
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independence of {ei,n−1 : i ∈ I} ∪ {1}, we can conclude that each ci equals 0 and
hence also c0 equals 0. This completes the definition of Gn.

It remains to prove that G ⊆
⋃
n≥1Gn. Let g ∈ G \ G1. For some n > 1,

ng ∈ G1. We claim that g ∈ Gn. Since ng ∈ Gn−1, ng = Σi∈Iei,n−1ci+ c0 for some
ci, c0 ∈ A. Then

ng = Σi∈I(nei,n − ai)ci + c0 = nΣi∈Iei,nci + a′

for some a′ ∈ A. Since A is pure in Â, a′ = na′′ for some a′′ ∈ A. Thus g =
Σi∈Iei,nci + a′′ ∈ Gn. �

The second lemma is proved in [13, Lemma 2.5] generalizing a result in [9, Lemma
XII.1.4]. We state it here for the sake of completeness.

Lemma 1.3. Let G be a countable A-module which is the union, G =
⋃
n≥1Gn,

of an increasing chain of free A-modules, then there exist countable free A-modules
B ⊆ H such that G ∼= H/B and B is the union of a chain of free A-modules,
B =

⋃
n≥1Bn, such that for all n ≥ 1, H/Bn and Bn+1/Bn are free A-modules. �

proof of Proposition 1.1. The existence of H, B, and the Bn is now an
immediate consequence of Lemmas 1.2 and 1.3. All that is left to show is that if m
is not congruent to k mod r, then Gm⊕Z(ω) is not isomorphic to Gk⊕Z(ω). Since
Gm is not isomorphic to Gk, it is enough to show that RZ(Gl ⊕Z(ω)) = Gl for any
l ∈ ω. Here RZ(N) is the Z-radical of N , that is, RZ(N) = ∩{ker(ϕ) : ϕ : N → Z}.
(See, for example, [9, pp. 289f].) To show that RZ(Gl ⊕ Z(ω)) = Gl it is enough
to show that Hom(Gl,Z) = 0, or, equivalently, Hom(G,Z) = 0. This follows
from Observation 2.7 of [13], but we give here a self-contained argument based
on the notation of Lemma 1.2. Suppose ψ ∈ Hom(G,Z); we can regard ψ as
an endomorphism of G by identifying Z with the subgroup 〈1〉 of A ⊆ G which
is generated by the unit 1 of A. Since the endomorphism ring of G is A, there is
a ∈ A such that ψ(g) = ga for all g ∈ G. By considering ψ(1) = 1a = a, we see that
a ∈ 〈1〉. Now consider ψ(ei) for any ei; since ψ(ei) = eia and since eiA∩ 〈1〉 = {0}
we see that a = 0. �

2. The main construction

Fix a positive integer r and let A,H,B,Bn and G be as in Proposition 1.1. For
each n ∈ ω, fix a basis {bn,i + Bn : i ∈ ω} of Bn+1/Bn (as A-module). Also, fix a
set of representatives {hi : i ∈ ω} for H/B where h0 = 0; thus each coset h + B
equals hi +B for a unique i ∈ ω.

Fix a stationary subset E of ω1 consisting of limit ordinals and a ladder system
{ηδ : δ ∈ E}. That is, for every δ in E, ηδ : ω → δ is a strictly increasing function
whose range is cofinal in δ; we shall also choose ηδ so that its range is disjoint
from E. Furthermore, we choose a ladder system which is tree-like, that is, for all
δ, γ ∈ E and n,m ∈ ω, ηδ(n) = ηγ(m) implies that m = n and ηδ(l) = ηγ(l) for all
l < n (cf. [9, pp. 368, 386]).

Inductively define free A-modules Mβ (β < ω1) as follows: if β is a limit ordinal,
Mβ =

⋃
α<βMα; if β = α+ 1 where α /∈ E, let

Mβ = Mα ⊕
⊕
i∈ω

xα,iA.
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If β = δ + 1 where δ ∈ E, define an embedding ιδ : B → Mδ by sending the basis
element bn,i to xηδ(n),i. Essentially Mδ+1 will be defined to be the pushout of

Mδ

↑ ιδ
B ↪→ H

but we will be more explicit in order to avoid the necessity of identifying isomorphic
copies. Let yδ,0 = 0 and let {yδ,i : i ∈ ω\{0}} be a new set of distinct elements (not
in Mδ). Then define Mδ+1 to be {yδ,i + u : u ∈ Mδ, i ∈ ω} where the operations
on Mδ+1 extend those on Mδ and are otherwise determined by the rules

yδ,i + yδ,j = yδ,k + ιδ(b) if hi + hj = hk + b
yδ,ia = yδ,` + ιδ(b) if hia = h` + b

where b ∈ B and a ∈ A. Then there is an embedding θδ : H →Mδ+1 extending ιδ
which takes hi to yδ,i and induces an isomorphism of H/B with Mδ+1/Mδ.

This completes the inductive definition of the Mβ . Let M =
⋃
β<ω1

Mβ . Note
that it follows from the construction that every element of M has a unique repre-
sentation in the form

s∑
j=1

yδj ,nj +

t∑
`=1

xα`,i`a`

where δ1 < δ2 < ... < δs are elements of E, nj ∈ ω \ {0}, α` ∈ ω1 \ E, i` ∈ ω,
a` ∈ A, and the pairs (α`, i`) (` = 1, ..., t) are distinct.

Since M is constructed to be an A-module, M is isomorphic to Mr+1. We claim
that

(†) M is ℵ1-separable; in fact for all α < ω1, Mα+1 is a free direct
summand of M .

Assuming this for the moment, we can show that

(††) Mm is not isomorphic to Mk if m is not congruent
to k mod r.

In brief this is because Mm and Mk are not quotient-equivalent (cf. [9, pp. 251f])
since for all δ ∈ E, (Mδ+1/Mδ)

m ⊕ Z(ω) is not isomorphic to (Mδ+1/Mδ)
k ⊕ Z(ω)

by Proposition 1.1. In more detail, if there is an isomorphism ϕ : Mm →Mk, then
there is a closed unbounded subset C of ω1 such that for β ∈ C, ϕ[Mm

β ] = Mk
β .

Since E is stationary in ω1, there exist δ ∈ C ∩ E; choose β > δ such that β ∈ C.
Then ϕ induces an isomorphism of Mm

β /M
m
δ with Mk

β/M
k
δ . Since Mβ/Mδ+1 is free

(of infinite rank) by (†), we can conclude that

(Mδ+1/Mδ)
m ⊕ Z(ω) ∼= (Mm

δ+1/M
m
δ )⊕ (Mm

β /M
m
δ+1) ∼= Mm

β /M
m
δ
∼= Mk

β/M
k
δ

∼= (Mk
δ+1/M

k
δ )⊕ (Mk

β/M
k
δ+1) ∼= (Mδ+1/Mδ)

k ⊕ Z(ω)

which contradicts Proposition 1.1.
We are left with the task of proving (†). First we shall show that each Mα+1

is a direct summand of M by defining a projection πα of M onto Mα+1 (that
is, πα|Mα+1 is the identity). For every integer k there is a projection ρk : H →
Bk+1 since H/Bk+1 is free. Given α, for each δ ∈ E with δ > α, let kδ be the
maximal integer k such that ηδ(k) ≤ α. For each δ ∈ E, we let πα act like ρkδ
on the isomorphic copy, θδ[H], of H. More precisely, for each element z of θδ[H],
define πα(z) to be θδ(ρkδ(θ

−1
δ (z))); if ν /∈

⋃
{ran(ηδ) : δ ∈ E} and ν > α, define

πα(xν,i) = 0. Extend to an arbitrary element of M by additivity; this will define
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a homomorphism on M provided that πα is well-defined. It is easy to see, using
the unique representation of elements, that the question of well-definition reduces
to showing that the definition of πα(xβ,i) for xβ,i ∈ θδ[H] is independent of δ. If
β ≤ α, then πα(xβ,i) = xβ,i. Say β > α and β = ηδ(n) = ηγ(n); by the tree-like
property, ηδ(m) = ηγ(m) for all m ≤ n, and hence kδ = kγ . Hence πα(xβ,i) is

well-defined because ρkδ = ρkγ and thus θδ(ρkδ(θ
−1
δ (xβ,i))) = θγ(ρkγ (θ−1γ (xβ,i))).

It remains to prove that each Mβ is ℵ1-free (as abelian group). Since A is free
as abelian group, it suffices to show that Mδ+1 is a free A-module for every δ ∈ E.
We will inductively define Sn so that

B =
⋃
n∈ω

Sn ∪ {xν,i : ν ∈ δ \ (E ∪
⋃
{ran(ηµ) : µ ∈ E ∩ (δ + 1)}), i ∈ ω}

is an A-basis of Mδ+1. Let S0 be the image under θδ of a basis of H. Fix a
bijection ψ : ω → E ∩ δ; also, for convenience, let ψ(−1) = δ. Suppose that Sm has
been defined for m ≤ n so that

⋃
m≤n Sm is A-linearly independent and generates⋃

{θψ(m)[H] : −1 ≤ m < n}. Let γ = ψ(n) and let k = kn be maximal such that
ηγ(k) = ηψ(m)(k) for some −1 ≤ m < n. Notice that {xηγ(`),i : ` ≤ k, i ∈ ω} is
contained in the A-submodule generated by

⋃
m≤n Sm. Since H/Bk+1 is A-free,

we can write H = Bk+1 ⊕ Ck for some A-free module Ck (= ker(ρk)); let Sn+1 be
the image under θγ of a basis of Ck. This completes the inductive construction.
One can then easily verify that B is an A-basis of Mδ+1; indeed, the fact that⋃
m≤n Sm is A-linearly independent can be proved by induction on n, using the

unique representation of elements of M to show that if
∑r
i=1 ziai ∈

〈⋃
m≤n Sm

〉
,

where z1, ..., zr are distinct elements of Sn+1, then ai = 0 for all i = 1, ..., r.

3. The endomorphism ring of M

While we cannot show that End(M) is a split extension of A by an ideal, we
can obtain enough information about End(M) to imply the negative results on the
Kaplansky test problems. (A similar idea is used in [19, p. 118].)

The ring A is naturally a subring of End(M). We say that A is algebraically
closed in End(M) when every finite set of ring equations with parameters from A
(i.e., polynomials in several variables over A) which is satisfied in End(M) is also
satisfied in A.

Proposition 3.1. If A = Ar is as in section 1, and A is algebraically closed in
End(M), then for any positive integers m and k, Mm is isomorphic to Mk if and
only if m is congruent to k mod r.

Proof. Since M is an A-module, M ∼= Mr+1. If M ` is isomorphic to Mn where

1 ≤ ` < n ≤ r, then
∑`
i=1Mσiρi ∼=

∑n
i=1Mσiρi, so by Lemma 2 of [2], there are

elements x and y of End(M) such that xy =
∑`
i=1 σiρi and yx =

∑n
i=1 σiρi. So by

hypothesis, such elements x and y exist in A. We then obtain a contradiction as in
[2, p. 45]. �

Proposition 3.2. If M is defined as in section 2, then A is algebraically closed in
End(M).

Proof. For any σ ∈ End(M), there is a closed unbounded subset Cσ of ω1 such
that for all α ∈ Cσ, σ[Mα] ⊆ Mα. For any σ1, ..., σn in End(M), choose α < β
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in Cσ1
∩ ... ∩ Cσn so that also α ∈ E. Then each σi induces an endomorphism,

also denoted σi, of Mβ/Mα. The endomorphism ring of Mβ/Mα is End(G⊕ Z(ω))

and restriction to G defines a natural homomorphism, π, of End(G ⊕ Z(ω)) onto
End(G) ∼= A because Hom(G,Z(ω)) = 0. If σi = a ∈ A (regarded as an element of
End(M)), then π(a) = a. Hence if σ1, ..., σm satisfy some ring equations over A,
then so do π(σ1), ..., π(σm). �

Propositions 3.1 and 3.2 provide an alternative proof of (††).
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