
ORDER POLYNOMIALLY COMPLETE LATTICES
MUST BE LARGE

MARTIN GOLDSTERN AND SAHARON SHELAH

Abstract. If L is an o.p.c. (order polynomially complete) lattice,

then the cardinality of L is a strongly inaccessible cardinal. In

particular, the existence of o.p.c. lattices is not provable in ZFC,

not even from ZFC+GCH.

Introduction

Let (L1,≤) and (L2,≤) be partial orders. We call a map f : L1 → L2

“monotone” if x ≤ y implies f(x) ≤ f(y).

Notice that if (L,∧,∨,≤) is a lattice, then every polynomial function

(i.e., function induced by a lattice-theoretic polynomial) is monotone.

We call a lattice L n-order polynomially complete (o.p.c.) if

(∗) every monotone n-ary function is a polynomial function

and we say that L is order polynomially complete if L is n-order poly-

nomially complete for every n.

The question whether there can be an infinite o.p.c. lattice has been

the subject of several papers. Kaiser and Sauer [?] remarked that such

a lattice cannot be countable, and Haviar and Ploščica showed in [?]
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2 MARTIN GOLDSTERN AND SAHARON SHELAH

that such a lattice would have to be at least of size iω. (Here, i0 = ℵ0,
in+1 = 2in , iω = sup{in : n ∈ ω}.

We show here that the size of an infinite o.p.c. lattice (if one exists

at all) must be a strongly inaccessible cardinal.

In particular, the existence of such a lattice cannot be derived from

the “usual” axioms of mathematics, as codified in the Zermelo-Fraenkel

axioms for set theory. Moreover, also certain additional assumptions

such as the (generalized) continuum hypothesis are not sufficient to

prove the existence of an o.p.c. lattice, or in other words, the theory

ZFC+GCH+“there is no infinite o.p.c. lattice” is consistent1. In fact,

the well-known consistent1 theory ZFC+“there is no inaccessible cardi-

nal”, a natural extension of ZFC, proves that there is no o.p.c. lattice.

We still do not know whether the existence of an o.p.c. lattice can

be refuted in ZFC alone.

In [?] we showed that if we change the original question by relaxing

“lattice” to “partial order”, and “polynomial” to “definable”, then we

get (consistently) a positive answer, already for a partial order of size

ℵ1.
Acknowledgement. We are grateful to Lutz Heindorf for his thought-

ful comments on an earlier version of this paper, and for alerting us to

[?].

1. Preliminaries

We define here some of the notation that we will use, and we quote

several well-known theorems and corollaries from the calculus of parti-

tions.

1.1. Definition. We fix a set R = {<,>,=,‖} of 4 symbols. For any

p.o. (L,≤) we define R : L× L→ R in the obvious way: R(x, y) = <

iff x < y, etc.

1.2. Definition. Let (L,≤) be a partial order.

1Pedants are invited to insert the necessary disclaimer themselves.
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(1) We say that a set A ⊆ L is “co-well-ordered” iff (A,≥) is a

well-ordered set.

(2) We call a set A ⊆ L “uniform” iff A is either an antichain, or a

well-ordered chain, or a co-well-ordered chain.

(3) If A is well-ordered we say that the type of A is “<”. Similarly

we define the types “>” and “‖”. [This notation is ambiguous if

A is finite. However, we are mainly interested in (large) infinite

sets anyway, so this ambiguity will not cause any problems.]

(4) Let Ai ⊆ L for i ∈ I. We call (Ai : i ∈ I) “canonical” if the

following conditions hold:

(a) each Ai is uniform, all Ai are of the same type,

(b) there is a function F : I × I → R such that:

∀i, j ∈ I : i 6= j ⇒ ∀a ∈ Ai ∀b ∈ Aj : R(a, b) = F (i, j).

Loosely speaking, this says that whenever i 6= j, then ei-

ther Ai lies “completely above” Aj, or conversely, or Ai is

“completely incomparable” with Aj.

1.3. Definition. For any set A, [A]2 is the set of unordered pairs from

A:

[A]2 = {{x, y} : x, y ∈ A, x 6= y}

When we consider a set A together with an 1-1 enumeration A = {ai :

i < κ}, we usually identify the unordered pair {ai, aj} ∈ [A]2 with the

ordered pair (ai, aj) whenever i < j.

1.4. Definition. Let κ, λ and c be cardinals. The “partition symbol”

λ→ (κ)2c

means: Whenever F : [L]2 → C, where |L| = λ, |C| = c, then there

is an “F -homogeneous set” K ⊆ L of cardinality κ, i.e., a set K such

that F �[K]2 is constant.

(In other words, whenever the edges of the complete graph on λ many

vertices are colored with c colors, then there is a complete subgraph

with κ many vertices all of whose edges have the same color.)
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1.5. Definition. Let (L,≤) be a partial order. We will try to get

some information on the structure of L by considering certain “cardinal

characteristics” µ(L) and ν(L), which are defined as follows:

(1) We let µ(L) be the smallest cardinal µ such that there is no

uniform set A ⊆ L of cardinality µ. In other words, κ < µ(L)

iff there is a uniform subset A ⊆ L of size κ.

(2) We let µn(L) = µ(Ln) for n > 0.

(3) We let ν(L) be the smallest cardinal ν such that there is no

family (fi : i < ν) of ν many pairwise incomparable monotone

functions from L to L. (Functions are ordered pointwise.)

(4) νn(L) is the smallest cardinal ν such that there are no pairwise

incomparable monotone functions (fi : i < ν) from Ln to L.

(5) More generally, ν(L1, L2) is the the smallest cardinal ν such

that there are no pairwise incomparable monotone functions

(fi : i < ν) from L1 to L2.

(6) µ∞ = sup{µn : n ∈ ω}, ν∞ = sup{νn : n ∈ ω}. (Note that

trivially µn ≤ µn+1 and νn ≤ νn+1 for all n ∈ ω.)

1.6. Fact. Let L be infinite. Then µn(L) ≤ |L|+ and ν(L) ≤ (2|L|)+.

1.7. Theorem (Ramsey). For any natural number k, ℵ0 → (ℵ0)2k.

Proof. See [?, 10.2]. �

1.8. Theorem (Erdős+Rado). For any infinite κ, (2κ)+ → (κ+)2κ.

Proof. See [?, 17.11(32)]. �

1.9. Theorem (Erdős+Rado). (1) If κ is an infinite cardinal, k fi-

nite, then (2<κ)+ → (κ)2k.

(2) If κ is a strong limit cardinal, then

κ+ → (κ)24

Proof. [?, 15.2] proves a theorem that is stronger than (1). (2) is a

special case of (1). �
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1.10. Corollary. Let (L,≤) be a partial order.

(a) If κ is an infinite cardinal, |L| > 2κ, then µ(L) > κ. (In fact,

µ(L) > κ+.)

(a’) |L| ≤ 2µ(L).

(b) If L is infinite, then µ(L) > ℵ0.
(c) If κ is a strong limit cardinal, then κ ≤ µ(L) iff κ ≤ |L|.
(d) If κ is a strong limit cardinal, then |L| > κ implies µ(L) > κ,

(e) If κ is a strong limit cardinal, then µ(L) = κ implies |L| = κ.

Proof. (a) Write ρ for (2κ)+. Let (ai : i < ρ) be distinct elements of

L, and define F : [ρ]2 → R by requiring F (i, j) = R(ai, aj) whenever

i < j. The Erdős-Rado theorem 1.8 promises us an F -homogeneous

set {iζ : ζ < κ+} of size κ+, which will naturally induce a uniform set

{aiζ : ζ < κ+} of the same cardinality.

(a’) follows from (a).

The proofs of (b) and (d) are similar, using 1.7 and 1.9, respectively,

instead of 1.8.

(c) follows easily from 1.6. (e) follows from (c) and (d).

�

1.11. Canonization Theorem (Erdős+Hajnal+Rado). Let λ be an

infinite cardinal, (Ai : i < λ) be a family of pairwise disjoint sets. Let

(κi : i < λ) be infinite cardinals satisfying 2κi < 2κj whenever i < j,

and assume |Ai| > 2κi. Let f be a function with domain [A]2, where

A =
⋃
i<λAi, and let the range of f be small (say: finite). Moreover,

assume κ0 ≥ 2λ.

For α ∈ A write iα for the unique i such that α ∈ Ai.
Then there are sets (A′i : i < λ), |A′i| = κi, A

′
i ⊆ Ai, such that for

α, β ∈ A′ (:=
⋃
i<λA

′
i), f(α, β) depends only on iα and iβ.

That is, there is a function F with domain [λ]2 ∪ λ such that for all

α 6= β in A′, f(α, β) = F (iα, iβ).

Proof. See [?, 28.1]. �
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1.12. Corollary. Let λ = cf(κ) < κ, κ a strong limit cardinal, |L| = κ,

(L,≤) a partial order. Then there is is a family (Aζ : ζ < λ) of subsets

of L satisfying

(1) (Aζ : ζ < λ) is canonical. (See 1.2(4).)

(2) The sequence (|Aζ | : ζ < λ) is strictly increasing.

(3) sup{|Aζ | : ζ < λ} = κ.

(4) For all ζ < λ: |Aζ | > λ.

Proof. Find an increasing sequence (κi : i < λ) of cardinals such that

2κi < κi+1 for all i. Let (aα : α < κ) be distinct elements, and let

Ai := {aα : κi+3 < α < κi+4} for i < λ. Thus, A :=
⋃
i<λAi is a

disjoint union, and |Ai| = κi+4 > 2κi . (Note that in this enumeration

each set Ai comes “before” Aj for i < j.)

Define f : [A]2 → R by letting f({aα, aβ}) = R(aα, aβ) for α < β,

and apply the canonization theorem 1.11.

The resulting sets (A′i : i < λ) will be canonical. �

1.13. Remark. If (κi : i < λ) is increasing with limit κ, then
∏

i κi = κλ.

If moreover (as in our case) κ is a strong limit cardinal, then κλ = 2κ.

Proof. See [?, 6.4] �

2. Partial maps

We want to give lower estimates for ν(L), and then translate them

to lower estimates for µ(L). (See 1.5 for the definitions of µ and ν.)

Since we will typically only construct many partial functions that are

pairwise incomparable, we have to give a sufficient condition that allows

us to extend partial monotone functions to total monotone functions.

2.1. Fact. Let L1, L2 be partial orders. If f : L1 → L2 is a partial

monotone function whose range is contained in a complete partial order

L′2 ⊆ L2, then f can be extended to a total monotone function f̂ : L1 →
L2.

Proof. Let f̂(x) = supL′2{f(y) : y ∈ dom(f), y ≤ x}. �
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2.2. Corollary. Let L be a partial order, Ā ⊆ L a complete partial

order. (Note: We only require that least upper bounds exist in (Ā,≤),

we do not care if these bounds are also least upper bounds in L.)

Then for any A ⊆ Ā we have ν(L) ≥ ν(A).

Proof. Every monotone map f : A→ A can be extended to a monotone

map f̂ : L→ Ā. If f, g are incomparable, then so are f̂ , ĝ. �

So we will show that ν(L) is large by showing that ν(A) is large, for

some sufficiently “nice” A.

In our treatment, “nice” means in particular “complete” (as a partial

order), or at least “contained in a complete p.o.” Here the following

lemma, due to Kaiser and Sauer [?] will be helpful:

2.3. Lemma. If (L,≤) is an o.p.c. lattice, then L is bounded (i.e., has

a greatest and a smallest element).

Proof. See [?]. �

Our method to make ν(A) large will be multiplication: If A1, A2, . . .

are sufficiently “independent” (in a sense to be made precise below),

and fi : Ai → Ai are monotone, then we will show that they can be

combined to give a monotone function from A :=
⋃
iAi to A.

2.4. Independence Lemma. Let L be a partial order, A =
⋃
i<λAi ⊆

L and assume that (Ai : i < λ) is canonical. Then:

(1) Whenever (fi : i < λ) is a family of functions, each fi : Ai →
Ai monotone, then the function f :=

⋃
i<λ fi is a monotone

function from A to A.

(2) If B is a partial order, (fi : i < λ) is a family of functions, each

fi : Ai → B monotone, and if
⋃
iAi is an antichain, then

⋃
i fi

is monotone from A to B.

(3) Moreover, if (fi : i < λ) and (f ′i : i < λ) are both as in (1) or

(2), and for some j the functions fj and f ′j are incomparable,

then also
⋃
i fi and

⋃
i f
′
i are incomparable.

(4) If κi < ν(Ai) for i < λ, then ν(A) >
∏

i<λ κi.
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(5) If κi < ν(Ai, B) for i < λ, and A =
⋃
i<λAi is an antichain,

then ν(A,B) >
∏

i<λ κi (where B is an arbitrary partial order)

Proof. (1) Let F : I × I → R witness that (Ai : i ∈ I) is canonical. To

check that f is monotone, consider an arbitrary pair a ≤ b in A.

Now either there is a single i with a, b ∈ Ai then f(a) ≤ f(b) (because

f�Ai = fi is monotone), or we have i 6= j, a ∈ Ai, b ∈ Aj. But then we

must have F (i, j) = <, so (since f(a) ∈ Ai, f(b) ∈ Aj), we again have

f(a) ≤ f(b).

(2) and (3) are easy.

(4) follows from (1) and (3), and (5) follows from (2) and (3). �

Now that we know how to get pairwise incomparable functions by

multiplication, we have to look more closely at the factors in this prod-

uct. The factors are of the form ν(A), where A is a uniform set. The

computation of this cardinal characteristic turns out to be easy:

2.5. Fact. (a) If A uniform, |A| > 2, then ν(A) > 2.

(b) If A is uniform, |A| = κ ≥ ℵ0, then ν(A) > 2κ, i.e., there are

2κ many pairwise incomparable monotone functions from A to

A.

(c) If A is an antichain, |A| = κ ≥ ℵ0, then 2κ < ν(A, {0, 1}),

i.e., there are 2κ many incomparable (necessarily monotone)

functions from A into the two-element lattice {0, 1}.

Proof. (a) Left to the reader.

(b) This is is trivial if A is an antichain. So wlog assume that A

is well-ordered. Write A as a union of κ many disjoint convex sets⋃
i<κAi, each Ai of cardinality > 2. Then (Ai : i ∈ I) is canonical. So

we can apply (a) and the independence lemma 2.4(4), and get ν(A) >∏
i<κ 2 = 2κ.

(c): Let A =
⋃
iAi, where each Ai is of size > 2, and the Ai are

pairwise disjoint. Clearly ν(Ai, {0, 1}) > 2, so by the independence

lemma 2.4 ν(A, {0, 1}) > 2κ.

�
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3. µ and ν

We now turn our attention to the number µn(L).

3.1. Fact. If A ⊆ Ln is well-ordered of order type κ, then there is

A′ ⊆ L, also well-ordered of order type κ.

Proof. Let āi = (ai(1), . . . , ai(n)) for i < κ, and i < j ⇒ āi < āj. For

each k ∈ {1, . . . , n} the sequence (ai(k) : i < κ) is weakly increasing.

If the sequence (ai(k) : i < κ) does not contain a strictly increasing

sequence of length κ, then it must be eventually constant. However,

this cannot happen for every k ∈ {1, . . . , n}. �

Now we finally investigate the relation between µ and ν. It turns

out to be slightly simpler if we look at µ∞ and ν∞ first.

First we show in 3.2 that the existence of many incomparable mono-

tone functions from Ln to L (κ < νn(L)) implies the existence of a large

antichain in some Lm (κ < µm(L)), assuming that L is o.p.c. (This is

actually the only place in the whole proof where we talk about lattices

rather than general partial orders.)

Then we show in 3.3 that a large (anti)chain in Lm (κ < µm(L))

implies the existence of ∗very∗ many incomparable monotone functions

from Lm to L (2κ < νm(L)).

These two lemmata are (with minor modifications) taken from [?].

Finally in 3.4 we combine 3.2 and 3.3 to show that µ = µ∞ must be

a strong limit cardinal.

3.2. Lemma. Let (L,≤) be an o.p.c. lattice, κ a cardinal of uncountable

cofinality. If κ < νn(L), then κ < µ∞(L). In particular:

(A) ν∞ ≤ µ+
∞

(B) ν∞ ≤ µ∞, if µ∞ has uncountable cofinality.

Proof. Assume κ < νn(L). Let (fi : i < κ) be pairwise incomparable

functions from Ln to L. Since L is o.p.c., each of these functions is a

polynomial function. Thus, for each i there is some natural number

ki and a lattice-theoretic term ti(x1, . . . , xn, y1, . . . , yki) and a ki-tuple
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b̄i = (bi1, . . . , b
i
ki

) such that for all a1, . . . , an we have fi(a1, . . . , an) =

ti(a1, . . . , an, b1, . . . , bki).

Since there are only countably many pairs (ti, ki) and we have as-

sumed cf(κ) > ℵ0, we may assume that they all are equal, say to

(t∗, k∗). But then (b̄i : i < κ) must be pairwise incomparable in Lk
∗
,

because b̄i ≤ b̄j would imply fi ≤ fj. Hence we have found an antichain

of size κ in Lk
∗
.

To get (A), let κ := µ+
∞, so cf(κ) > ℵ0 and therefore “κ < ν∞” is

impossible. To get (B), let κ = µ∞.

�

From now on we can forget about lattices as long as we only consider

partial orders having properties 3.2(A) and 3.2(B).

3.3. Lemma. Let (L,≤, 0, 1) be a bounded partial order, κ an infinite

cardinal. If κ < µn(L), then 2κ < νn(L). In particular, κ < µ∞ implies

2κ < ν∞.

Proof. Let A ⊆ Ln be uniform of size κ.

Case 1: A is a chain, so by 3.1 wlog n = 1. Let Ā = A ∪ {0, 1}. By

fact 2.5, ν(A) > 2κ. Since Ā is a complete partial order, we may apply

fact 2.1 to get ν(L) ≥ ν(A). Hence ν(L) > 2κ.

Case 2: A is an antichain. Use 2.5(c).

�

3.4. Conclusion. If L is infinite and o.p.c., (or, slightly more gener-

ally, if L is an infinite bounded partial order satisfying the conclusion

of 3.2), then

(a) µ∞(L) must be a strong limit cardinal,

(b) µ(L) = µ∞(L)

(c) |L| = µ(L).

(d) ν(L) = |L|.

Proof. (a) If κ < µ∞(L), then 2κ < ν∞(L) by 3.3. Now 2κ always

has uncountable cofinality, so we get 2κ < µ∞(L) by 3.2.
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(b) Assume that µ(L) < µ∞(L). Let λ = 22µ(L)
< µ∞(L). By 1.10,

|L| ≤ 2µ(L) < λ, so µn(L) ≤ |L|+ ≤ λ for all n ∈ ω, hence

µ∞(L) ≤ λ, a contradiction.

(c) Use 1.10(e).

(d) 3.2(B) implies ν(L) ≤ ν∞(L) ≤ µ(L), and 3.3 implies µ1(L) ≤
ν1(L).

�

4. The main lemma

We have already shown that for an o.p.c. lattice L the cardinal char-

acteristic µ(L) must be a strong limit cardinal. In this section we show

that µ(L) must be regular.

Letting κ := µ(L) we first show that the singularity of κ would imply

the existence of� κ many incomparable monotone functions, and then

show that this would imply µ(L) > κ.

4.1. Main Lemma. Let (L,≤, 0, 1) be a bounded partial order, and let

κ be a singular strong limit cardinal, κ ≤ |L|.
Then ν(L) > κ.

If moreover cf(κ) = ℵ0, then we get even ν(L) > 2κ.

Proof. Let λ = cf(κ). The first step in the proof of 4.1 is to find a

canonical family (Ai : i < λ) which is large, i.e., |
⋃
iAi| = κ, and∏

i<λ |Ai| = κλ = 2κ. If the set A :=
⋃
iAi happens to be a chain

or antichain , we easily get 2κ many pairwise incomparable monotone

functions. Using the independence lemma we will show that already

the canonicity of A is sufficient to get many monotone functions.

In step 3 we will exhibit many pairwise incomparable (partial) func-

tions from A to A, so in step 2 we may have to massage (Ai : i < λ) a

bit to guarantee that these functions can be extended to total functions

on L.

What actually happens in steps 2 and 3 depends on whether λ is

countable or not.
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Step 1. Let A = {ai : i < κ} be distinct elements of our partial order.

For i < j < κ let f(i, j) = R(ai, aj). (Recall 1.1.)

By the canonization theorem (or rather, by its corollary 1.12) we may

(after thinning out our set A) wlog assume that A =
⋃
ζ<λAζ , where

the cardinalities |Aζ | are increasing with supremum κ, λ < |Aζ | < κ,

and (Aζ : ζ < λ) is canonical. Let ξ : κ → λ be such that for all

i < κ, ai ∈ Aξi . So there is a function F : [λ]≤2 → {<,>,‖} such that

R(ai, aj) = F ({ξi, ξj}) for all i < j < κ.

We may assume {0, 1} ∩ A = ∅. Let Ā = A ∪ {0, 1}.
Note that ∏

ξ<λ

|Aξ| = κcf(κ) = 2κ.

Step 2, case a. Let us asume λ = ℵ0 for the moment. So we have a

canonical sequence (An : n ∈ ω), witnessed by F : [ω]2 → {<,>,‖}.
By Ramsey’s theorem 1.7 there is an infinite set X ⊆ ω such that

F is constant on [X]2. By dropping some elements of the sequence

(An : n ∈ ω) [i.e., replacing (An : n ∈ ω) by (An : n ∈ X), and then

for notational simplicity only pretending that X = ω] we may assume

that F is constant, say

∀n∀k : n < k ⇒ ∀a ∈ An ∀b ∈ Ak : R(a, b) = c

There are (at most) 9 possible types of our family (An : n ∈ ω): Each

An can be well-ordered, co-well-ordered, or an antichain, and there are

also 3 possible values for c. For example, if c =“<”, then set A has

one of the 3 forms given in the figure 1.

However, our construction of a large family of incomparable functions

will be “uniform”, i.e., be the same in all cases. Note that if c ∈ {<,>}
and each An is an antichain (leftmost possibility in the above picture),

then
⋃
nAn is not a complete partial order, since every element of An+1

is a minimal upper (or maximal lower) bound for any nontrivial subset

of An.

For each k we let A′2k+1 be a singleton subset of A2k+1, and we let

A′2k = A2k. Now let B :=
⋃
nA
′
n ∪ {0, 1}.
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Step 3, case a. We are still assuming λ = ℵ0. It is easy to see (by

considering cases — one of them is sketched in figure 2) that the set

B defined in step 2 (case a) is a complete partial order. We leave the

details to the reader.
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Note that we still have
∏

n<ω |A′n| =
∏

n∈ω |A′2n| = κλ = 2κ, since the

cardinalities (|A2n| : n ∈ ω) are also increasing to κ.

By 2.2 and the independence lemma 2.4, ν(L) ≥ ν(A) > 2κ. This

concludes the discussion of the case λ = ℵ0.

Step 2, case b. Now we assume λ > ℵ0. Note that now we are only

aiming for κ many pairwise incomparable monotone functions. Again

let F : λ× λ→ {<,>,‖} witness canonicity.

By dropping some of the sets Aζ we may assume that the func-

tion ζ 7→ F (0, ζ) is constant, say with some value c0. Thinning out

three more times we may assume that there are constants c0, c1, c2, c3 ∈
{<,>,‖} such that

(a) ∀ζ > 0, F (0, ζ) = c0

(b) ∀ζ > 1, F (1, ζ) = c1

(c) ∀ζ > 2, F (2, ζ) = c2

(d) ∀ζ > 3, F (3, ζ) = c3

Choose i0 < i1 ∈ {0, 1, 2, 3} such that ci0 = ci1 , write A∗ for Ai0 , let

a∗ be any element of Ai1 , and let c∗ = ci0 .

Depending on the value of c∗ we now have one the following possi-

bilities:

(a) either every element of A∗ is incompatible with every element

of any Aζ , ζ > 4,

(b) or we have for all ζ > 4:

∀x ∈ A∗ ∀y ∈ Aζ : x < a∗ < y

(c) or the dual of (b) is true.

Step 3, case b. Since all sets Aζ are infinite, we have ν(Aζ) > |Aζ |, so

we can find pairwise incomparable monotone functions (fζ,i : i ∈ Aζ)
from Aζ to Aζ .

Let f ∗ be the identity function on {a∗}, and let (f∗,ζ : 4 < ζ < λ) be

a family of pairwise incomparable monotone functions from A∗ to A∗.
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(Recall that all our sets Aζ had cardinality λ, so it is possible to find

that many functions.)

Note that for 4 < ζ the family (A∗, {a∗}, Aζ) is canonical, so by the

independence lemma we can conclude that f∗,ζ ∪f∗∪fζ,i is a monotone

function. Moreover, {0, 1, a∗, } ∪ A∗ ∪ Aζ is a complete partial order

(again we leave the easy task of checking this fact to the reader), so

by 2.1 the function f∗,ζ ∪ f∗ ∪ fζ,i can be extended to a total monotone

function f̂ζ,i : L→ L.

Clearly any two functions f̂ζ,i, f̂ζ′,i′ are incomparable: If ζ 6= ζ ′ then

this is due to the incomparability of f∗,ζ and f∗,ζ′ , and for ζ = ζ ′ we

use the incomparability of fζ,i and fζ,i′ .

Note that the cardinality of the index set {(ζ, i) : 4 < ζ < λ, i ∈ Aζ}
is κ.

This concludes the discussion of the case λ > ℵ0, and hence also the

proof of the main lemma. �

4.2. Conclusion. If (L,≤) is an o.p.c. lattice (or, slightly more gen-

erally, if L is a partial order satisfying the conclusion of 3.2), then

µ(L) = |L| is an inaccessible cardinal.

Proof. Let κ = µ(L). From 3.4 we know that κ is a strong limit, and

that |L| = κ. Assume that κ is singular.

First assume that cf(κ) is uncountable. The main lemma tells us

that ν(L) > κ, so by 3.2 we conclude µ∞(L) > κ, a contradiction.

Now we consider the second case: cf(κ) = ℵ0. Here the main lemma

tells us ν(L) > 2κ. Since 2κ has uncountable cofinality, we can again

apply 3.2 and again get µ∞(L) > 2κ > κ, a contradiction.

�

4.3. Remark. Note that the cardinality of an o.p.c. lattice cannot be a

weakly compact cardinal.
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