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Abstract

Let K be the class of structures (\, <, A), where A C X is disjoint
from a club, and let K)l\ be the class of structures (\, <, A), where
A C )\ contains a club. We prove that if A = A<" is regular, then no
sentence of Ly+, separates K and K. On the other hand, we prove
that if A\ = T, p = p<#, and a forcing axiom holds (and R = Ny if
i = Np), then there is a sentence of Ly which separates KS and K)l\

One of the fundamental properties of L, is that although every count-
able ordinal itself is definable in L, the class of all countable well-ordered
structures is not. In particular, the classes

K° = {{w,R): R well-orders w}
K' = {(\R): (w, R) contains a copy of the rationals}

cannot be separated by any L, ,-sentence. In this paper we consider infinite
quantifier languages Ly, A > w. Here well-foundedness is readily definable,
but we may instead consider the class

Ty = {(\,R) : (\, R) is a tree with no branches of length A}.

*Research partially supported by ? Publication number 7.
TResearch partially supported by grant 1011049 of the Academy of Finland



Paper Sh:657, version 1997-06-08_10. See https://shelah.logic.at/papers/657/ for possible updates.

If A\ = A<*, then a result of Hyttinen [1] implies that T cannot be defined
in L AT
The main topic of this paper is the question whether the classes

K = {(\ <, A): Ais disjoint from a club of \}
Ky = {(\ <, A): A contains a club of A}

can be separated in Ly+) and related languages. Note that a set A C A con-
tains a club if and only if the tree T(A) of continuously ascending sequences
of elements of A has a branch of length \. We show (Theorem 1) that the
classes K and K} cannot be separated by a sentence of Ly+,, if A = A\<" is
regular. The proof of this result uses forcing in a way which seems to be new
in the model theory of infinitary languages. It follows from this result that
the class
Sy ={(\, <, A) : Ais stationary on A},

that separates K\ and K}, is undefinable in Ly+,, if A = A<" is regular. We
complement this result by showing (Theorem 10) that if either A\ = pu* and
= p~* > wor A\ = w; and additionally a forcing axiom holds, then there is
a sentence of Ly, which defines Sy and thereby separates K) and K}.

Hyttinen [1] actually proves more than undefinability of Ty in Ly+y.
He shows that T) is undefinable - assuming A\ = A<* - in PC(Ly+y). We
show (Theorems 5 and 6) that the related statement that S, is definable in
PC(Ly,w,) is independent of ZFC+CH.

1 The case )\ = \°~,

Theorem 1 If A = \<* is reqular, then the classes KY and K} cannot be
separated by a sentence of L+, .

Proof. Assume A = A\<* is regular and ¢ € Ly+,.. Let P be the forcing
notion for adding a Cohen subset to A\. Thus p € P if p is a mapping
p: oy — 2 for some a;, < A. A condition p extends another condition ¢, in
symbols p > ¢, if o, > o, and p|a, = gq. Let G be P-generic and g = UG.
Thus
V[G] = g7*(1) is bi-stationary on .

Now either ¢ or =1 is true in (\,<,¢7 (1)) in V[G]. We may assume, by
symmetry, that it is ¢. Let p € G such that

pli=p (X, <,57'(1) ¥,
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where g is the canonical name for ¢g. It is easy to use A = A<" and regularity
of A to construct an elementary chain (M : £ < ) such that

(i) Me < (H(bethz(X)), €, <*), where <* is a well-ordering of H (beth7(X)).
(i) A+ 1U{p} U{PIUTC({v}) € Mo.

My, :n<§) € Mgy,

(i) (
M, = Ug¢<, M for limit v.

(iv

)
)
)
)
(v) (Mg)™" C Mgy

i)

(vi) [Me] = A

Let M = Ugy M. Note, that M <" C M because \ is regular. We shall
construct two P-generic sets, G® and G', over M. For this end, list open
dense D C P with D € M as (Dg : £ < A). Define G' = {p}; : £ < A} so that

Po =P Per = Pe with peyy € DenN M, peyy(ayr) = 1 and py, = Uge, pf for
limit v. Clearly, G' is P-generic over M and

MG [(A <, (6)7' (1) = 2,

where ¢g' = JG!. Note also that M[G'|<* C M[G'], because M <% C M and
P is < k-closed.

Lemma 2 If o(Z) € Ly+, such that TC({p(Z)}) C M, X € M, and d €
A<F then

(A <. X) @) <= MG E [\ < X) (@)

Proof. Easy induction on ¢(%). O

By the lemma, (\, <, (¢')7*(1)) | ¢. By construction, (\, <, (¢")7(1)) €
K!. Now we can finish the proof. Suppose K9 C Mod(¢)) and K/{ﬂMod(@/)) =
(). This contradicts the fact that (\, <, (¢")~(1)) € K} N Mod(). Suppose
K} C Mod(v) and K N Mod(y)) = (. This contradicts (), <, (¢°)7'(1)) €
KON Mod(v). 0

Corollary 3 If A = A\<" is reqular, then there is no @ € Ly+, such that for
al ACX: (N, <, A) Ep < A is stationary.
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Theorem 1 gives a new proof of the result, referred to above, that if
A = A< then T) is not definable in Lyy. Our proof does not give the
stronger result that 7 is not definable in PC(L,,), and there is a good
reason: S, may be PC(L,,.,)-definable, even if 2% = N;. This is the topic
of the next section.

2 An application of Canary trees.

A tree C is a Canary tree if C has cardinality < 2, C has no uncountable
branches, but if a stationary subset of w; is killed by forcing which does not
add new reals, then this forcing adds an uncountable branch to C. By [4],
this is equivalent to the statement that

(x) For every co-stationary A C w; there is a mapping f with Rng(f) CC
such that for all increasing closed sequences s, s’ of elements of A, if s
is an initial segment of &', then f(s) <¢ f(s').

Theorem 4 (i) Con(ZF)— Con(ZFC + CH + there is a Canary tree) [3]
(ii)) V=L — there are no Canary trees [6].

Thus the non-existence of Canary trees is consistent with CH, relative to
the consistency of ZF. This result was first proved in [3] by the method of
forcing.

Theorem 5 Assuming CH and the existence of a Canary tree, there is a ® €
PC(Lyyw, ) such that for all A Cwy: (wy, <, A) | ® <= A is stationary.

Proof. Let C be a Canary tree. It is easy to construct a PC/(L,,,,,, )-sentence
U such that the following conditions are equivalent for all A C wy:

(i) <w17<7"4> ): v

(ii) There is a mapping f with Rng(f) C C such that for all increasing
closed sequences s, s’ of elements of A, if s is an initial segment of s,

then f(s) <¢ f(¢).

We allow predicate symbols with w-sequences of variables in the PC(Ly,.w, )-
sentence W. Now the claim follows from the property (%) of Canary trees.
0
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Theorem 6 Con(ZF) implies Con(ZFC + CH + there is no ® € PC(Ly,.w,)
such that for all A C wy: (w1, <, A) E ® <= A is stationary).

Proof. We start with a model of GCH and add N, Cohen subsets to wy. In
the extension GCH continues to hold. Suppose there is in the extension a
¢ € PC(Ly,w,) such that for all A C wy:

(w, <, A) E® <= A is stationary.

Since the forcing to add Ny Cohen subsets of w; satisfies the Ry-c.c., & belongs
to the extension of the universe by N; of the subsets. By first adding all but
one of the subsets we can work in V[A] where A is a Cohen subset of w; and
® is in V. Note that A is a bi-stationary subset of w;. Let P be in V the
forcing for adding a Cohen generic subset of w; and let A be the P-name for
A. Let p force (wy,<,A) = ®. By arguing as in the proof of Theorem 1,
we can construct in V' a model M of cardinality N; containing P such that
MY C M, 3
Mk [pll- (w1, <, A) = @),

and, furthermore, we can extend p to a P-generic set H C w; over M such
that H is non-stationary. Thus M[H] satisfies

(w1, <, H) = @. (1)

Now (1) is true in V', because M[H]¥ C M[H]. Since P is countably closed,
we have (1) in V[A], whence H is stationary in V[A], contrary to the fact
that H is non-stationary in V. O

3 An application to the topological space “1w;.

Let NV, denote the generalized Baire space consisting of all functions f : w; —
w1, with the sets

Ny ={f € Ni: f|Dom(s) = s},
where s € <*1wy, as basic open sets. We call open sets ¥{ and closed sets
I19. A set of the form Ug.,, A¢, where each Ag is in Ug., 113, is called X
Respectively, a set of the form M., A¢, where each A is in U, E%, is
called Hg. In N it is natural to define Borel sets as follows: A subset of N
is Borel if it is X2 or T2 for some o < wy. A set A C A is II] if there is an
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open set B C N x N such that Vf(f € A <= Vg((f,g) € B). A set is ]
if its complement is IT7.

Let CUB be the set of characteristic functions of closed unbounded sub-
sets of wy, and NON-STAT the set of characteristic functions of non-stationary
subsets of wy. Clearly, CUB and NON-STAT are disjoint 3{. It was proved
in [4] that, assuming CH, CUB and NON-STAT are II; if and only if there is
a Canary tree. Another result on [4] says that the sets CUB and NON-STAT
cannot be separated by any II3 or 39 set.

Theorem 7 Assuming CH, the sets CUB and NON-STAT cannot be sepa-
rated by a Borel set.

Proof. Let {s, : @ < w;i} enumerate all s € ““wy. Let C = Uyey, Cas
where

CO = {0,1}><N1
Cs = {23} x“ (| Ca).

a<d

Now we define a Borel set B, for each ¢ € C as follows:

Bop= U Nejy » Bap= 1 M\ Ny

a<wi a<wi
Bop= U Bre) » Bep= () Biw-
a<wi a<wi

Clearly, every Borel subset X of N is of the form B, for some ¢ € C. Then
we call ¢ a Borel code of X.

Assume A is a Borel set which separates CUB and NON-STAT. Let ¢ be
a Borel code of A. Let P be the forcing notion for adding a Cohen subset to
wi. Let G be P-generic and ¢ = JG. Thus

V[G] E g7 (1) is bi-stationary.

Now either g7!(1) € B. or g *(1) € B. in V[G]. We may assume, by sym-
metry, that ¢~'(1) € B.. Let p € G such that

p||_77 g_l(l) € Bc:

where g is the canonical name for g. Let M < (H (bethz(w)), €, <*), where
<* is a well-ordering of H (beth;())), such that wy+1U{p}U{PIUTC({c}) C
M, M<r C M and |M| = w;.
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We shall construct two P-generic sets, G° and G, over M. For this end,
list open dense D C P with D € M as (D¢ : £ < wy). Define G' = {p} :
£ < wp} so that p} = p, plngl > pi» with péH € DenM, plgﬂ(apé) = [, and
P, = Ue<r plg for limit v. Clearly, G is P-generic over M and

MG (¢) (1) € B.,

where ¢g' = UG'. Note also that M[G']<* C M[G'], because M<* C M and
P is w-closed.

Lemma 8 Ifc € C such that TC({c}) C M, and f € M, then
f€B. <= M[G'[E|f € BlJ.

Proof. Easy induction on c. O

By the lemma, (¢')~!(1) € B.. By construction, (¢°)~!(1) € NON-STAT
and (¢g')~*(1) € CUB. Now we can finish the proof. Suppose CUB C A and
NON-STATNA = (. This contradicts the fact that (¢°)71(1) € NON-STATN
A. Suppose NON-STAT C A and CUB N A = (). This contradicts the fact
that (¢')~'(1) e CUBN A. O

4 The case \* > ).

Let p be a cardinal. Sets A, B C p are called almost disjoint (on p) if
sup(AN B) < p. An almost disjoint A\-sequence of subsets of u is a sequence
B = (B, : @ < \) such that for all o # 3, |B,| = p and the sets B, and
By are almost disjoint. The sequence B is said to be definable on L, if there
is a sequence (0, : o < A) such that limsup,., d, = A and the predicates
xr € By Ny <d,and x =0, Nz < aAy < « are definable on every structure
(Lo, €), where oo < ), that is, there is a first order formula ¢g(z,y) of the
language of set theory such that for z,y < a < A:

x€ByNYy <y < (Lo, €)E @olz,y).

Lemma 9 IfXF =N, then there is an almost disjoint w,-sequence of subsets
of w1, which is definable on Ly, .
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Proof. There is a set {B; : i < wf} of almost disjoint subsets of w in L.
Since R = N, this set is really of cardinality R;. Let 8(x,y) be a ¥;-formula
of set theory such that for all & and x,y € L,, © < y <= L, E 0(z,vy),
where < is the canonical well-ordering of L. The claim follows easily. O

Theorem 10 Suppose
(i) A= put.

(ii) There is an almost disjoint A\-sequence B = (B, : o« < ) of subsets of
i which is definable on L.

(11i) For all club subsets C' of X there is a subset X of p such that for all
a < \ we have
a€C < sup(B,\C) < pu.

Then there is a sentence @ € Lyy so that for all A C \:
(A, <,A) Ep < A is stationary.

Proof. Suppose ¢y defines the almost disjoint sequence, as above. We define
a sequence of formulas of Lyy. The variable vectors & in these formulas are
always sequences of the form (z; : i < p). Let ® be the conjunction of a large
but finite number of axioms of ZFC +V = L. If ¢(2) is a formula of set
theory, let ¢'(Z, &, @, ¥') be the result of replacing every quantifier Vy ... in @
by Yy(Vi<, ¥ = ; — ...), every quantifier 3y ... in ® by Iy(V,., vy = ziA...),
and y € z everywhere in ® by V,,(y = w; A z = v;). The following formulas
pick p from (A, <):

Oan(y) = FT((Nicjep i <35) ANV2(2 <y & Vi, 2 = 14)),
Peu(y) = Vu(pxpu(u) =y <u),
wEM(g> — /\i<u @E,u(yi)SOB,l(x? ’Ja Ua Z, y)

The following formulas are needed to refer to well-founded models of set
theory:

\/i<# _'Soeps(f7 ﬁu 17) Yit1, yl))
Vs(s < z «» V,-<M(S =u; Nz =)

Ouni (T, 2) = Vicuz =1
eps (T, U, U, 2,Y) = Puni(T,2) N Quni(T, ) AVicp (2 = us ANy = vy)
Qwa(l',u,’U — (I)/(I,U,U) /\vy((/\z<,u ()Oum(xvy1>> —

<~
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Let
op(z,y) <<= 3T3UV( Py (Z, U, T) A\ Qeor(Z, U, U, 2)A

Peor (T, U, U, y) N ¢4(2,y, T, 4, 0)).
The point is that if @ € g and § € A, then a € Bg if and only if (A, <) =

vp(a, B). The following formula says that the element y of u is in the subset
of A coded by 7:

pe(y,T) == Fulpeu(u) ANV2((05(2,Y) AN Nicy 2 # 1) = 2 <),
Finally, if:
ow(T) <= Vydz(y < z A p.(2,7)),
wua(?) <= Yy(Vz(z<y— Julz<uAhu<yAe(u,)) —
ey, 7))
<~

Qpcub(f) Pub (f) A Qpcl(f)
Pstat = VI(Veu(@) A pen(T)) = Fy(A(y) A ¢e(y, 2))),

then (A, <, A) = @gq if and only if A is stationary. O

Corollary 11 If2% > R;, RE =R, and MA, then there is a ¢ € Ly, such
that for all A C wy:

(w1, <, A) =@ <= A is stationary.

Proof. We choose A = w; and 1 = wy in Theorem 10. Condition (ii) holds
by Lemma 9. Condition (iii) is a consequence of MA + =CH by [2]. O

Note. The proof of Corollary 11 shows that we actually get the following
stronger result: If 2% > N;, R = N; and MA, then the full second order
extension LI of Ly, is reducible to Ly, in expansions of (wy, <). Then,
in particular, Ty, is PC(Ly,w, )-definable. This kind of reduction cannot hold
on all models. For example, w;-like dense linear orders with a first element
are all L, -equivalent, but not LI -equivalent.

For o < A = u™, let (a% : i < p) be a continuously increasing sequence of
subsets of a with a = U;, af and |aff| < p. Define fo : pp — p by

fa(i) = Otp(a?).

Let D, be the club-filter on p. Define for f,g € #p;
f o~y g = {i: 1) =g} € D,.

9
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Lemma 12 f,/D, is independent of the choice of the sequence (a$ : i < p).
Theorem 13 Suppose

(i) A= pt, where p = =t > Ny.

(ii) For every club C C X there is some X C p X p such that

acC — {i<p:(ifa(i)) € X} contains a club
agC — {i<p:(i,fa(i)) € X} contains a clud.
Then there is a sentence p € Lyy such that for all A C \:
(A, <,A) E o < A is stationary.

Proof. This is like the proof of Theorem 10. One uses Lemma 12 to refer
to the functions f,. We leave the details to the reader. O

The Generalized Martin’s Aziom for p (GMA,,) from [5] is the following
principle:

Suppose P is a forcing notion with the properties:

(GMA1) Every descending sequence of length < g in P has a
greatest lower bound.

(GMA2) If p, € P for a < p*, then there is a club C' C p* and

a regressive function f : ut — pT such that if @« € C and
cf(a) = p, then the set

A={ps : ck(P) =, fla) = f(B)}
is well-met (i.e. p,g € A —pVq€a).

Then for any dense open sets D, C P, a < kK, where k < 2*, there
is a filter in P which meets every D,,.

Proposition 14 Suppose A = p*, where pp = p~* > Xy, and GMA,,. Then
for every club C C X there is some X C p X p such that

aecC — {i<p:(i fu(i)) € X} contains a club
agC — {i<p:(i,fa(i)) € X} contains a clud.

10



Paper Sh:657, version 1997-06-08_10. See https://shelah.logic.at/papers/657/ for possible updates.

Proof. Let a club C C A be given. For a < 8 < A, let C,3 € D,, so that
falCap < f8|Cap. Let P consist of conditions

p=(B", fF,c g"),
where
(i) B* C \. |B?| < p.

(ii) f? is a partial mapping with Dom(f?) C u x p, |Dom(f?)| < u, and
Rng(f*) € {0,1}.

(iii) If o € BP, then {i < p: (4, fo(i)) € Dom(f?)} is an ordinal ;2.

(iv) ¢ = (& : a € BP), where ? is a closed subset of j2. We denote
max(cP) by 6”.

(v) If a € BPNC and i € CP, then fP(i, fo(i)) = 1. If « € B\ C and
i € CP, then fP(i, f,(i)) = 0.

(vi) g* is a partial mapping with Dom(g?) C [BP]* and Rng(g*) C p.
(vii) If o < 8 € Dom(g?), then @ # &\ g(a, B) C Cip.
The partial ordering “q extends p” is defined as follows:

p<q & BPCBIfPC[lg"Cy,
Va € BP(cP is an initial segment of %),
and if 67 < §7, then Dom(g?) 2 [BF]?.

We show now that P satisfies conditions (GMA1) and (GMAZ2).
Lemma 15 P satisfies (GMA1).

Proof. Let p, < ... <p; < ...(i <) in P with v < u. We may assume
oP0 < 0Pt < ... Let § = sup{o” : i < 7v}. Let B = U,., B". We extend
U; fP* to f by defining

650 =1 ) tachc

We have to check that this definition is coherent, i.e., if « € B N C and
B € B\ C, then f,(5) # fs(0). Suppose o € BP* and € BP* with o < f3

11
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and ¢ < 7. Since 7 < 0P, g(«, B) is defined and 2 \ g(a, B) C C,p. Hence
d € Cup, whence f,(0) < f3(6).

Let ¢ = (¢o : @ € B) where ¢, = U; & U {d}. Let j = U; 77 U {d}. Now
the condition p = (B, f, ¢, g) is the needed Lu.b. of (pi)icy. O

Lemma 16 P satisfies (GMAZ2).

Proof. Suppose p,, o < A, are in P. Let h be a one-one mapping from
P to odd ordinals < A\. By p~* = p there is a club C' C X such that if
a € O, cf(a) = p, and BP C a, then h(p) < a, and if o < 3, o, f € C, then
BPe C 3. Choose a regressive function g from the complement of C' to the
even ordinals that is one-one on ordinals of cofinality p. Suppose cf(a) = p.
Let f(a) = g(a) if o € C, and f(a) = h(pa|a) if « € C. Suppose now
a < f, cf(a) = cf(B) = pu, and f(a) = f(5). W.log «,8 € C. Thus
h(pala) = h(pg|B), whence p,|a = pg|B. It follows that p, and pg have a
Lub. O

Let
D.s={p€P:aec B’ and ¢’ > g}

where a@ < A\, B < p. We show that D,z is dense open. Suppose therefore
p € P is given. We construct ¢ € D,z with p < ¢. Let B? = B? U{a}. Let

E=({Cey €1 € B€ < (e D,).
Let 67 € E'\ 3. Define c? = (c{ : { € B?) by

LU, ifE#a

4:{6% if ¢ = a.
Let _
pr{{ (7),1) : 4P < j <49}, ?fOéEC
{(( (7)),0): 7 <5<}, faégC.
Let g?(&,n) = o7 for (§,n) € [ P>\ Dom(g”). Let ¢ = (BY, f1, g% 67). Then

q € Dyp, and p < gq.
Let G be a filter that meets every D,s. Let

B = | {B":pe G}
f=U{ffpeay
c = Ulhiped)

12
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Then B = X and each ¢, is a club of u. Let X = {(o,5) € ux pu: f(e, 5)
1}. Suppose o € C and i € ¢,. Then f(i, fo(7)) = 1 whence (i, f,(i)) € X
Suppose a € C and ¢ € ¢,. Then f(i, f,(i)) = 0 whence (i, fo (7)) € X. O

Corollary 17 Suppose A = p*, where pp = p=* > Ny, and GMA,,. Then
there is a sentence @ € Ly such that for all A C \:

(A, <,A) = p < A is stationary.

Proof. The claim follows from Theorem 13 and Proposition 14. O
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