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Abstract. We show that in contrast with the Cohen version of Solovay’s
model, it is consistent for the continuum to be Cohen-measurable and for
every function to be continuous on a non-meagre set.

1. Introduction

In [?], Gitik and Shelah answered a question of Fremlin’s ([?, P1]). They showed
that it is possible to construct a model of set theory in which the continuum is real-
valued measurable in a way that is different from Solovay’s original construction
of such a model ([?]). Solovay used a measurable-length sequence of random reals.
Fremlin’s general question is, what properties of Solovay’s model are artefacts of
the construction, and which follow from the fact that the continuum is real-valued
measurable. The paper [?] extends this line of investigation. It gives yet another
construction of a model with the continuum being real-valued measurable, and
isolates a measure-theoretic property which differentiates between this model and
Solovay’s.

It is natural to ask what happens when measure is replaced by category. The
analogue of Solovay’s forcing is the addition of a measurable-length sequence of
Cohen reals, equivalently forcing with the open subsets of the product space 2κ for
κ measurable. The analogue of real-valued measurability, which holds in this model
is the following.

Definition 1.1. A cardinal κ is Cohen measurable if there is a κ-complete ideal I
on κ such that Ppκq{I is isomorphic to a Cohen algebra.

Here a Cohen algebra is the completion of a notion of forcing adding a certain
amount of Cohen reals (the finite support product of copies of 2ăω), equivalently,
the Boolean algebra of regular open subsets of a space 2X for some X.

One would expect that a modification of the notion of forcing from [?] would yield
a model in which the continuum is Cohen measurable. This follows the intuition
that category is easier than measure. It turns out however that this is not easily
done; that construction heavily relies on the existence of measures on measure
algebras. In other words, with category we have fewer tools because we cannot say
“how much more or less meagre” is one open set compared to another; there is no
real number value that can answer such a question.

In this paper we give a new construction of a model in which the continuum is
Cohen measurable. Rather than drawing on [?], we adopt a technique from [?].
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2 NOAM GREENBERG AND SAHARON SHELAH

Whereas the statement in [?] differentiating the new model from Solovay’s was
somewhat ad-hoc, we now obtain a natural property of the continuum, which was
first shown to be consistent in [?].

Theorem 1.2. Let κ be a measurable cardinal such that 2κ “ κ`. Then in a
forcing extension, κ “ 2ℵ0 is Cohen measurable, and every function f : 2ω Ñ 2ω is
continuous on a non-meagre set.

In contrast, in [?], Shelah showed that in a model obtained by adding Cohen
reals, some function from 2ω to 2ω will not be continuous on any non-meagre set.

1.1. Proof of Theorem ??. The general idea is to use a finite-support forcing
iteration P̄ “ xPα,Qαy of length κ (where κ is a measurable cardinal) which is
“mostly Cohen”. We will specify a stationary subset S of Sκℵ1

“ tα ă κ : cfpαq “
ℵ1u. This will be the set of locations α at which we can choose Qα to be a notion
of forcing other than Cohen forcing. The intention is to use a carefully chosen
variant of Shelah’s notion of forcing from [?], to add instances of continuity on a
non-meagre set. Exactly how we choose them will be determined using a diamond
sequence on S. The guessing power of the diamond sequence will be sufficient to
guess, for each function F : 2ω Ñ 2ω in V Pκ , sufficiently much about F , so that
at some point α P S, Qα will add both the definition Ψ of a continuous function,
and a non-meagre set A on which F will equal Ψ. The fact that the iteration P̄ is
mostly Cohen will be also used to show that the non-meagreness of A is preserved
from step α ` 1 all the way up to step κ. Further, S will be made sufficiently
sparse, so that the deviations on S from Cohen forcing do not aggregate too badly
to prevent us from making κ Cohen measurable. One aspect of this is that Qα will
be determined by only few of the Qβ (β ă α). We will call these “iterations with
restricted memory”.

The proper definition of what we do at steps α P S actually relies on a structural
analysis of what we have done up to that stage. For that reason we define for
each ordinal δ, classes PδpSq of forcing iterations of length δ which could be the
one chosen up to stage δ. Once we develop the general theory of these iterations,
we can then use the diamond sequence and give non-circular instructions at each
step, how to choose the next Qδ. In the construction of P̄ we will only use the
fixed stationary set S Ă κ and naturally use only ordinals δ ď κ. However in
the verification that in V Pκ , κ is Cohen measurable, we also need to consider the
extension of P̄ by an elementary embedding j witnessing the measurability of κ.
In particular we will need to consider PjpκqpjpSqq, where in our ambient universe
jpκq will not even be inaccessible and jpSq will not be a stationary subset of jpκq.
Hence we will give a general definition of the classes PδpSq, for any ordinal δ and
any subset S Ď Sδℵ1

(Definition ??). The restriction S Ă δ does not conflict with
the plan for the recursive definition of the eventual P; for S Ă κ and δ ă κ, PδpSq
will only depend on S X δ.

We will show the following. For (??) below, we say that a set S reflects nowhere
at a set of ordinals A if for all limit γ P A of uncountable cofinality, S X γ is not
stationary in γ. We note that if S Ď Sδℵ1

and γ ď δ has countable cofinality then
there is an ω-sequence cofinal in γ and disjoint from S, so “non-reflection” at γ is
automatic.

Proposition 1.3. Let δ be an ordinal and let S Ď Sδℵ1
.
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(1) Suppose that V Ď W are transitive models of set theory, and that ℵV1 “

ℵW1 . Then membership in PδpSq is upward absolute between V and W :
pPδpSqq

V
Ď pPδpSqq

W .
(2) If δ is an inaccessible cardinal, then for all P̄ P PδpSq:

(a) Pδ Ă Hδ.
(b) In V Pδ , δ “ 2ℵ0 .

(3) If δ is an inaccessible cardinal and 3pSq holds, then there is some P̄ P PδpSq
such that in V Pδ , every function f : 2ω Ñ 2ω is continuous on a non-meagre
set.

(4) If α ă δ, α R S and S reflects nowhere in the interval pα, δs, then for all
P̄ P PδpSq, Pδ{Pα is equivalent to a Cohen algebra.

(5) If κ is a measurable cardinal and 2κ “ κ`, then there is a forcing extension
W of V , preserving the measurability of κ, in which there is a stationary
subset S Ď Sκℵ1

and a normal ultrafilter embedding j : W Ñ N with critical
point κ such that:
(a) 3pSq holds; and
(b) in W , jpSq reflects nowhere in the interval pκ, jpκqs.

Note that (??) means that for δ P pκ, jpκqs of uncountable cofinality, there is,
in W , a club of δ disjoint from S. Such a club will often not exist in N .

Theorem ?? is then proved as follows. Obtain a forcing extension W given
by (??) of the proposition, and work in W . Pick an iteration P̄ P PκpSq given
by (??). The desired model is W Pκ . By (??), in W Pκ , κ “ 2ℵ0 ; and by (??), in
W Pκ , every function f : 2ω Ñ 2ω is continuous on a non-meagre set.

Since Pκ Ă Hκ (??), j æPκ is the identity on Pκ and the iteration jpP̄q is an
extension of the iteration P̄, so for α ď jpκq we write Pα for jpPqα; we note that
jpPκq “ Pjpκq. We conclude that Pκ Ì Pjpκq. Now in N , jpP̄q P PjpκqpjpSqq, so
by (??), jpP̄q P PjpκqpjpSqq in W as well. Since κ is regular in W and jpSq Ď S

jpκq
ℵ1

,
κ R jpSq. Since jpSq reflects nowhere in the interval pκ, jpκqs, by applying (??) inW
to κ, jpκq, jpSq and jpP̄q, we see that in W Pκ , Pjpκq{Pκ is equivalent to a Cohen
algebra. However, as is well known (but see Proposition ?? for completeness),
because j is a normal ultrafilter embedding, in W Pκ there is a κ-complete ideal I
such that Ppκq{I is isomorphic to the completion of Pjpκq{Pκ, and hence to a
Cohen algebra. Thus in W Pκ , κ is Cohen measurable. This completes the proof of
Theorem ??.

1.2. Structure of the paper. In Section ?? we settle notation, give basic defini-
tions and recall some facts about forcing iterations, equivalence to Cohen algebras,
and the forcing from [?], which as we mentioned will be one of the important in-
gredients of this paper.

In Section ?? we define a broad class of forcing iterations, from which elements
of the collections PδpSq will be taken. These are the iterations with “restricted
memory”.

In Section ?? we define the classes PδpSq. We easily observe that (??) and (??)
of Proposition ?? hold. In this section we also prove (??).

In Section ?? we deviate a little from the proof of Theorem ??. Apart from
giving a proof of the isomorphism of jpPq{P and Ppκq{I (Proposition ??), which is
mostly given for completeness, we show how to obtain the conclusion of Theorem ??
if we are willing to start with a supercompact cardinal, equipped with a suitable
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4 NOAM GREENBERG AND SAHARON SHELAH

stationary subset. In this case we do not need the preparation forcing which gives
us (??).

In Section ?? we prove (??) of Proposition ??. In Section ?? we prove (??) of
Proposition ??.

2. Preliminaries

We fix some notation and recall some basics.

2.1. Complete embeddings. Let P Ď Q be partial orderings. A restriction of Q
to P is a function i : Q Ñ P such that: (1) i is order-preserving; (2) for all q P Q,
q ď ipqq; (3) i æP“ idP; and (4) for all q P Q, every p ď ipqq in P is compatible
with q in Q.

Note that if there is a restriction of Q to P then for all p, q P P, p KP q if and
only if p KQ p; and every dense set D Ď P is pre-dense in Q. In this paper we write
P Ì Q if there is a restriction from Q to P. This is equivalent to the usual notion
in case P and Q are complete Boolean algebras and P is a sub-algebra of Q.

If P Ď Q then we let Q{P be the P-name for the sub-ordering of Q on Q{GP “
tq P Q : for all p P GP, p MQ qu. For q P Q and p P P, p , q P Q{P if and only if
every r ď p in P is compatible with q in Q. Thus, if i is a restriction of Q to P
then for all q P Q, ipqq ,P q P Q{P. Also note that p ,P q R Q{P if and only if
p KQ q. Further, for p P P and q P Q, if p ,P q P Q{P then p ,P ipqq P GP (every
p1 ď p is compatible with q in Q, and so (by applying i) compatible with ipqq in
P.) Thus ipqq is essentially the weakest condition forcing that q P Q{P (only lack of
separativity could cause it to not literally be the greatest such condition). Thus, if
G Ă P is generic, then for all q P Q, q P Q{G if and only if ipqq P G.

Fact 2.1. Let i : QÑ P be a restriction. If D Ď Q is dense, then in V P, DX pQ{Pq
is dense in Q{P. In particular, for every g P GP and every q P Q{P “ Q{GP there is
some q̄ ď q, g in Q{P.

Fact 2.2. Suppose that P Ì Q Ì R; let i be a restriction of Q to P and j be a
restriction of R to Q. Then i ˝ j is a restriction of R to P. In V P, Q{P Ì R{P.

For the following fact, recall that a map i : Q Ñ P is called a dense homomor-
phism if it preserves order and incompatibility, and its range is a dense subset of
P. If there is such a map, then P and Q are forcing-equivalent.

Fact 2.3. Let P Ď Q, and suppose that i : Q Ñ P is a dense homomorphism.
Suppose that i is an idempotent: iæP“ idP. Then i is a restriction of Q to P.

Fact 2.4. Let P Ď Q, and suppose that i : Q Ñ P is dense. If Q Ì R then in
V Q “ V P, R{Q “ R{P.

2.2. Embeddings into a Cohen algebra. For a set X, we let CpXq be the finite
support product, indexed by X, of one-dimensional Cohen forcing C “ p2ăω,ďq.
We let CpXq be the completion of CpXq (the complete Boolean algebra of which
CpXq is a dense subset). For disjoint sets X,Y we write CpX,Y q for CpX Y Y q.
We let C “ Cp1q.

We say that a partial ordering (a notion of forcing) P is equivalent to a Co-
hen algebra if there is a dense embedding of P into CpXq for some X. We write
P „ CpXq.
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If X Ď Y then there is a natural embedding of CpXq into CpY q, which is
complete. It induces a complete embedding of CpXq into CpY q.

We will make use of the following Lemma. It is surely known; we include a proof
for completeness.

Lemma 2.5. Let P Ì Q, and suppose that P „ CpXq. Let Y be a set. The
following are equivalent:

(1) ,P Q{P „ CpY q;
(2) Every dense embedding of P into CpXq can be extended to a dense embedding

of Q into CpX,Y q.
(3) There is a dense embedding of P into CpXq which can be extended to a

dense embedding of Q into CpX,Y q.

We will be imprecise and write “Q{P is (equivalent to) a Cohen algebra” when
we mean that for some Y P V ,

,P “Q{GP is equivalent to CpY q”.

Proof. In this proof, for neatness, let R “ 2ω be Cantor space.
Assume (1), we show (2). Let j be a P-name for a dense embedding of Q{P into

CpY q. Let q ÞÑ qæP be a restriction map. For q P Q and p ď qæP, let Upp, qq be the
supremum of the set

Upp, qq “

CpY q
ÿ

 

D Ď RY is clopen, and p ,P D Ď
˚ jpqq

(

where we think of the elements of CpY q as regular open subsets of RY , and A Ď˚ B
means that AzB is meagre.

Let i : PÑ CpXq be a dense embedding. For q P Q, let

kpqq “
ÿ

tippq ˆ Upp, qq : p ď qæPu .

Let q0, q1 P Q. Say q1 ď q0. Then q1 æPď q0 æP, and for all p ď q1 æP, Upp, q1q Ď

Upp, q0q. Hence kpq1q Ď kpq0q.
Suppose that kpq0q and kpq1q are compatible; let E Ď RX and D Ď RY be clopen

such that EˆD Ď kpq0qXkpq1q. First find p0 ď q0 æP such that EX ipp0q ‰ H and
DXUpp0, q0q ‰ H. Find E0 and D0 clopen such that E0ˆD0 Ď pEˆDqXpipp0qˆ

Upp0, q0qq. Find p1 ď q1 æP such that E0 X ipp1q ‰ H and D0 X Upp1, q1q ‰ H. So
p0 and p1 are compatible in P; let p P P extend both; p forces that jpq0q and jpq1q

are compatible, so p forces that q0 and q1 are compatible in Q{GP, and so q0 and
q1 are compatible.

Let E ˆD be clopen. There is some p P P such that ippq Ď˚ E. There is some
p̄ ďP p and some q P Q such that p̄ , q P Q{GP & jpqq Ď˚ D. In particular,
p̄ MQ q; let q̄ ďQ p̄, q. Then q̄æPď p̄æP“ p̄. For any r ď q̄æP we have iprq Ď˚ E and
r ,P jpq̄q Ď

˚ D, so Upr, q̄q Ď˚ D. It follows that kpq̄q Ď˚ E ˆD.
Let p P P. Then p forces that p is compatible with every q P Q{GP. It follows

that Upp, pq “ RY . For let D Ď RY be clopen. In P, densely below p we can find p1
for which we can find some q1 P Q with p1 , q1 P Q{GP and p1 , jpq1q Ď˚ D. Since
p1 also forces that p and q1 are compatible, it forces that jppq X D is nonempty.
Hence p forces that jppq is dense, i.e. that jppq “˚ RY . Hence kppq “ ippq ˆ RY .

Assume (3), we show (1). Let i : P Ñ CpXq be a dense embedding, and let
k : Q Ñ CpX,Y q extend i. Let G be P-generic, and let r̄G be the Cohen generic
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6 NOAM GREENBERG AND SAHARON SHELAH

sequence in RX . In V rGs, for q P Q{G let jpqq be the section kpqqr̄G which is an
open subset of RY .

Let q0, q1 P Q{G. If q1 ďQ q0 then kpq1q Ď kpq0q (we use maximal representatives,
i.e., regular open sets) and so jpq0q Ď jpq1q.

We show that if p , q P Q{G and p , D Ď jpqq (for some clopen D) then
ippqˆD Ď˚ kpqq. Suppose not; find some clopen E and C such that EˆC Ď ippqˆD
but EˆC is disjoint from kpqq. Find some p̄ ď p such that ipp̄q Ď E. Since p̄ forces
that r̄G P E, it forces that C is disjoint from jpqq, which is impossible.

Suppose that jpq0q and jpq1q are compatible; let p P G force that D Ď jpq0q X

jpq1q for some nonempty clopen subset D of RY , and that q0, q1 P Q{G. Then
ippq ˆD Ď kpq0q X kpq1q. For densely many p̄ ď p (in P) there is some q ďQ q0, q1

such that p̄ , q P Q{G. For let p1 ď p. Let q ďQ q0, q1 such that kpqq X pipp1q ˆDq
is nonempty. Let p̄ ď p1 such that ipp̄q ˆ D1 Ď kpqq for some nonempty clopen
D1 Ď D. Then p̄ , q P Q{G.

Let D Ď RY be clopen. Given p P P, find some q P Q such that kpqq Ď ippq ˆD.
Find some p̄ ď p and some D1 Ď D such that ipp̄q ˆ D1 Ď kpqq. So p̄ , q P Q{G
and jpqq Ď D. �

2.3. A restricted form for iterations. All partial orderings have a greatest
element, usually denoted by 1.

We restrict ourselves to two-step iterations of the following form: P is a par-
tial ordering, pR,ďq is some partial ordering, and S is a P-name for a non-empty
upward-closed subset of R (in particular, ,P 1R P S); we assume that as a name,
S Ď P ˆ R. We then let P˚ S be the collection of pairs pp, sq P P ˆ R such that
p , s P S, ordered as a sub-ordering of P ˆ R. We note that if P Ì Q (with
restriction i), then Q{P is a P-name for an upward-closed subset of Q. The map
q ÞÑ pipqq, qq is a dense embedding of Q into P˚ pQ{Pq, so these notions of forcing
are equivalent.

Fact 2.6. Suppose that P Ì Q with i : Q Ñ P a restriction. Let S Ď Q ˆ R be
a Q-name for an upward-closed subset of a partial ordering R. Then the map
pq, sq ÞÑ ipqq is a restriction of Q˚ S to P.

Under the hypothesis of Fact ??, P Ì Q˚ S. Here we identify P with its image
in Q˚ S under the map p ÞÑ pp, 1q. In particular, of course, Q Ì Q˚ S.

For the following note that if P Ì Q and S Ď P ˆ R is a P-name for a subset
of R, then S is also a Q-name for a subset of R.

Fact 2.7. Suppose that P Ì Q with i : Q Ñ P a restriction. Let S Ď P ˆ R be a
P-name for an upward-closed subset of a partial ordering R. Then:

(1) For all q P Q and s P R, q ,Q s P S if and only if ipqq ,P s P S. In
particular, for p P P, p ,P s P S if and only if p ,Q s P S.

(2) S is also a Q-name for an upward-closed subset of R.
(3) The map pq, sq ÞÑ pipqq, sq is a restriction of Q˚ S to P˚ S.

2.4. Forcing continuity on a non-meagre set. We fix notation for the notion of
forcing from [?]. In full generality, let P be a notion of forcing, and let η̄ “ xηiyiăω1

and ζ̄ “ xζiyiăω1
be two sequences of P-names for reals (in this paper, elements of

Cantor space 2ω). We let Shpη̄, ζ̄q be the P-name for the notion of forcing which adds
the definition of a continuous function which makes the map ηi ÞÑ ζi continuous on
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a non-meagre set. Technically, the conditions in P ˚ Shpη̄, ζ̄q will be pairs pp, a,Ψq,
where:

‚ p P P;
‚ a is a finite subset of ω1;
‚ Ψ is a finite, (strict) order-preserving map from 2ăω to 2ăω, and:

(1) p forces that every element of dom Ψ is an initial segment of ηi for
some i P a; and

(2) If i P a, pσ, τq P Ψ and p ,P σ ă ηi then p ,P τ ă ζi.
A condition pq, b,Φq extends a condition pp, a,Ψq if q extends p in P, a Ď b,

and Ψ Ď Φ. Note that this is an example of a two-step iteration which obeys the
restrictions above: Shpη̄, ζ̄q is a P-name for an upward closed subset of R where R
consists of pairs pa,Ψq where a is a finite subset of ω1 and Ψ is a finite, (strict)
order-preserving map from 2ăω to 2ăω, ordered by Ď on both coordinates. Note
that R Ă Hpω1q and |R| “ ℵ1.

Shelah’s notion of forcing starts with P “ Cpω1q. Letting ηi be the name for
the Cohen real added by Cpt2iuq and ζi be the name for the Cohen real added by
Cpt2i` 1uq, Shelah uses Cpω1q˚ Shpη̄, ζ̄q. We denote this simply by Cpω1q˚ Sh.

Proposition 2.8 ([?]).
(1) In V Cpω1 q̊ Sh there is a non-meagre subset of tηi : i ă ω1u on which the

map ηi ÞÑ ζi is continuous.
(2) For all i ă ω1, Cp2iq Ì pCpω1q˚ Shq and pCpω1q˚ Shq {Cp2iq is equivalent

to a Cohen algebra (of dimension ℵ1).

3. Iterations with restricted memory

Let P̄ “ xPα,Qαyαăδ be a finite support iteration. For α ď δ, we think of the
elements of Pα as sequences of length α. As above, we suppose that all successor
steps are “V -based”, in the sense that for all α ă δ there is some partial ordering
pRα,ďq in V such that Qα is a Pα-name for an upward-closed subset of Rα, and the
ordering on Pα`1 “ Pα˚Qα is inherited from the one on PαˆRα. It follows that Pδ
is a subset of the finite-support product

À

αăδ Rα of the Rα’s, with the inherited
ordering. That is, for p, q P Pδ, p ďPδ q if and only if for all α ă δ, ppαq ďRα qpαq.
Below, we will always assume the existence of such ambient orderings Rα.

For u Ď δ we let

Pu “ tp P Pδ : for all α P δzu, ppαq “ 1u ,

with order inherited from Pδ. Technically we should have called this Pu,δ. However,
if u Ď α ă δ then Pu,α and Pu,δ are naturally isomorphic by appending a sequence of
ones, so we ignore the difference between them. Under this identification there is no
conflict between the two meanings of Pα for α ă δ. Note that Pu is upward-closed
in Pδ. If u Ď v Ď δ then Pu Ď Pv.

Now the main point is that usually, unless u “ α is an initial segment of δ, Pu
will not contain much. For example, if 0 R u, but to define each Qα (for α ą 0) we
need access to Q0, then Pu will contain very little, since each condition in Pu knows
nothing about Q0. In the other extreme, if the iteration is actually a product, no Qα
needs any information about any other Qβ , and in this case, for any u Ď δ, Pu is just
the product restricted to u, which behaves perfectly nicely; in particular, Pu Ì Pδ.
As we mentioned in the introduction, we will be using iterations which are not
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8 NOAM GREENBERG AND SAHARON SHELAH

quite products but for which each Qα needs information from “not so many” Qβ for
β ă α, and so for many sets u Ď δ we will have Pu Ì Pδ. In other words, each Qβ
will have “restricted memory”. A memory template for the iteration P̄ specifies, for
each α, which Qβ (for β ă α) are needed to compute Qα.

Definition 3.1. A memory template (of length δ) is a sequence u “ xuαyαăδ such
that for all α ă δ,

‚ uα Ď α; and
‚ if β P uα then uβ Ă uα.

The second condition is a natural transitivity requirement: if Qβ is needed to
compute Qα, and Qγ is needed to compute Qβ , then certainly Qγ is needed to
compute Qα. Note that if u is a memory template of length δ and α ă δ, then uæα
is a memory template of length α.

Definition 3.2. Let u be a memory template of length δ. A finite support iteration
P̄ “ xPα,Qαyαăδ is a u-iteration if for all α ă δ, Qα is a Puα -name. (We will show
below that in this case, Puα Ì Pδ, which means that this definition makes sense.)

Here we assume as above that as a name, Qα is a subset of Puα ˆRα (where Rα
is the ambient partial ordering for Qα mentioned above).

Definition 3.3. Let u be a memory template of length δ. A subset u of δ is
u-closed if for all α P u, uα Ă u.

So each uα is u-closed. Note that each α ă δ is u-closed, indeed if u Ď δ is
u-closed and α ă δ then uXα is u-closed. A subset of α ă δ is u-closed if and only
if it is uæα-closed.

Let P̄ be an iteration of length δ, and let u Ď δ. For p P Pδ we define a δ-sequence
pæu by letting, for α ă δ,

pæu pαq “

#

ppαq, if α P u;

1, if α R u.

Note that for all p P Pu, p æu“ p. In general, p æu may not be an element of Pδ,
again, because erasing part of its head may cause us to lose the evidence for its tail
being in Pδ.

Lemma 3.4. Let u be a memory template of length δ, let P̄ be a u-iteration, and
let u Ď v Ď δ be u-closed. Then for all q P Pv, qæuP Pu, and the map q ÞÑ qæu is a
restriction of Pv to Pu (so Pu Ì Pv).

Proof. By induction on δ. First, suppose that δ is a limit ordinal and that the lemma
holds for all α ă δ. That the lemma holds for δ follows from the fact that P̄ is of
finite support, so viewed as sequences of length below δ, we have Pv “

Ť

αăδ PvXα,
and Pu “

Ť

αăδ PuXα; and noting again that for all α ă δ, u X α and v X α are
uæα-closed subsets of α.

Next let δ be any ordinal and suppose that the lemma holds for δ; we show it
holds for δ` 1. Of course the point is that if w Ď δ` 1 is u-closed and δ P w, then
uδ Ă w. Then wXδ is uæδ-closed, and by induction and by Fact ??, Qδ Ď PwXδˆRδ
is also a PwXδ-name for an upward-closed subset of Rδ.

Let u Ď v Ď δ ` 1 be u-closed. There are three cases:
‚ If δ R v then the lemma for u and v follows from the fact it holds at stage δ.
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‚ If δ P v but δ R u then the lemma for u and v follows from Fact ?? applied
to P “ Pu and Q “ PvXδ.

‚ If δ P u then the lemma for u and v follows from Fact ?? applied to P “ PuXδ
and Q “ PvXδ. �

For the rest of this section, let u be a memory template (of length δ) and let P̄
be a u-iteration.

Porism 3.5. Let u Ď δ be u-closed and suppose that u has a greatest element α.
Then Pu “ PuXα˚Qα.

Let p, q P
À

αRα and suppose that for all α ă δ, ppαq and qpαq are comparable
in Rα. Then we can define p ^ q “ minpp, qq P

À

Rα by taking at every α the
smaller of the two values ppαq and qpαq; p^ q is the greatest lower bound of p and
q in

À

Rα. An induction on δ shows that if p, q P Pδ then p^ q P Pδ as well, and so
p^ q is the greatest lower bound of p and q in Pδ, similarly in Pu for any u-closed
u such that p, q P Pu.

In particular, in the situation above (u Ď v Ď δ are u-closed), if q P Pv, p P Pu
and p ď qæu, then p^ q P Pv is the greatest lower bound of p and q in Pv.

For the next lemma, note that if u, v Ď δ are u-closed, then uX v and uY v are
also u-closed. The map from PuYv to Pu ˆ Pv given by q ÞÑ pqæu, qævq is injective,
and preserves both order and non-order.

Lemma 3.6. Let u, v Ď δ be u-closed. In V PuXv , the map q ÞÑ pq æu, q ævq is a
dense embedding of PuYv{PuXv into pPu{PuXvq ˆ pPv{PuXvq.

Proof. Let H Ď PuXv be generic; work in V rHs. Certainly if q P PuYv{H then
as q æuXvP H and pq æuq æuXv“ q æuXv (and similarly for v), again we have q æuP
Pu{H and q ævP Pv{H. So the map jpqq “ pq æu, q ævq is indeed from PuYv{H to
pPu{Hq ˆ pPv{Hq.

We show that the range of j is dense. Let pp, qq P pPu{Hq ˆ pPv{Hq. Then
p æuXv, q æuXvP H; find some g P H extending both. Then g ^ p P Pu and so
pg^pq^q P PuYv; since its restriction to uXv is g, we see that pg^pq^q P PuYv{H.
And jpg ^ p^ qq “ pg ^ p, g ^ qq extends pp, qq.

We show that j preserves incompatibility. Let q0, q1 P PuYv{H, and suppose
that jpq0q and jpq1q are compatible in pPu{Hq ˆ pPv{Hq; let phu, hvq ď jpq0q, jpq1q

witness this. Find some s P PuYv{H with jpsq ď phu, hvq. So sæuď hu ď q0 æu, q1 æu

and sævď hv ď q0 æv, q1 æv, and we conclude that s ď q0, q1. �

Thus, the filters K Ă PuYv generic over V correspond to the filters G Ă Pu and
H Ă Pv with G generic over V , H generic over V rGs and G X PuXv “ H X PuXv,
with K “ tg ^ h : g P G & h P Hu.

Porism 3.7. Let u, v Ď δ be u-closed and let H Ď PuXv be generic. If pp, qq P
pPu{Hq ˆ pPv{Hq then there is some h P H such that ph^ pq ^ q P PuYv.

Lemma 3.8. Let u, v Ď δ be u-closed. In V Pu , the map q ÞÑ q æv is a dense
embedding of PuYv{Pu into Pv{PuXv.

Proof. Let G Ď Pu be generic, and let H “ G X PuXv. Since PuYv{G Ď PuYv{H,
and we noticed that if q P PuYv{H then q ævP Pv{H, the map i defined on PuYv{G
defined by q ÞÑ qæv is indeed into Pv{H. It is order-preserving.
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10 NOAM GREENBERG AND SAHARON SHELAH

The map i is onto Pv{H. For let p P Pv{H; so p æu“ p æuXvP H Ď G, so
p P PuYv{G, and p “ ippq. It remains to show that i preserves incompatibility.

Let j : PuYv{H Ñ pPu{HqˆpPv{Hq be the dense embedding q ÞÑ pqæu, qævq. For
q P PuYv{H, we have q æuP G if and only if q P PuYv{G and so j´1rGˆ pPv{Hqs “
PuYv{G.

Let r0, r1 P PuYv{G, and suppose that ipr0q and ipr1q are compatible in Pv{H.
Since r0 æu, r1 æuP G, it follows that jpr0q and jpr1q are compatible in Gˆ pPv{Hq;
let pg, pq P G ˆ pPv{Hq extend both jpr0q and jpr1q. By Porism ?? there is some
h P H such that r “ ph ^ gq ^ p P PuYv. Since ph ^ gq P G, r P PuYv{G extends
both r0 and r1. �

Corollary 3.9. Let u Ď v Ď δ be u-closed, let α ă δ and suppose that uX rα, δq “
v X rα, δq. Then in V Pu , Pv{Pu is equivalent to PvXα{PuXα.

Proof. Immediate from Lemma ??, since v “ uYpvXαq and uXα “ uXpvXαq. �

Corollary 3.10. Let u Ď v Ď δ be u-closed. Let β ă δ. Then in V Pu , PvXβ{PuXβ Ì
Pv{Pu and in V PuYpvXβq ,

Pv{Pu
PvXβ{PuXβ

“
Pv

PuYpvXβq
.

Proof. For neatness, let v̄ “ v X β and ū “ u X β “ u X v̄. First, let G Ă Pu be
generic and H “ GXPū. The previous lemmas show that in V rGs, Pv̄{H Ì Pv̄Yu{G
and Pv̄{H „ Pv̄Yu{G. Since Pu Ì PuYv̄ Ì Pv, Fact ?? shows that Pv̄Yu{G Ì Pv{G,
so overall, Pv̄{H Ì Pv{G. But also, Fact ?? shows that in V rGsPv̄Yu,

Pv{G
Pv̄Yu{G

“
Pv{G
Pv̄{H

.

Let K Ă Pv̄Yū{G be generic over V rGs, and let K̄ “ K X Pv̄. Then interpreted in
V rG,Ks,

Pv{G
Pv̄{H

“ Pv{K̄,

and
Pv{G

pPv̄Yu{Gq
“ Pv{K.

So Pv{K “ Pv{K̄, and this is what needs to be shown. �

Finally, we show:

Lemma 3.11. Suppose that c Ď δ is unbounded in δ. Let u Ď v Ď δ be u-closed.
Then in V Pu ,

Pv{Pu “
ď

βPc

PvXβ{PuXβ .

Proof. This is only interesting if δ is a limit ordinal. Let G Ă Pu be generic; for
β P c, let Gβ “ GX PuXβ . We already know that PvXβ{Gβ Ď Pv{G. Let p P Pv{G.
Since Pv “

Ť

βPc PvXβ , for some β P c we have p P PvXβ . Since pæuXβ“ ppæuqæuXβ
and pæβP G, we have pæuXβP Gβ and so p P PvXβ{Gβ . �
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4. S-iterations

Fix an ordinal δ and a set S Ď Sδℵ1
. We wish to define the class PδpSq of

iterations of length δ which are “mostly Cohen” but on elements of S are allowed
to deviate from being precisely Cohen.

Definition 4.1. A memory template u of length δ is an S-memory template if:
(1) For all α P δzS, uα “ H;
(2) For all α, |uα| ď ℵ1; and
(3) For all α P S, every β P S X α which is a limit point of uα is an element

of uα.

Definition 4.2. Let u be an S-memory template of length δ. A u-iteration P̄ is a
u-quasi-Cohen iteration if:

(1) For all α P δzS, Qα “ C is 1-dimensional Cohen forcing;
(2) For all α ă δ, Rα Ă Hω1 and |Rα| ď ℵ1 (where recall that Rα is the

ambient partial ordering from which Qα is taken as a subset); and
(3) For all α P S, for all β P αzS, PuαYtαu{PuαXβ is equivalent to a Cohen

algebra.
We let PδpSq denote the set of iterations P̄ of length δ which are u-quasi-Cohen
iterations for some S-memory template u.

Having definedPδpSq, we note that the definition is upward absolute provided ℵ1

does not change; this gives us (??) of Proposition ?? (note that in an extension in
which ℵ1 is collapsed, S is no longer a subset of Sκℵ1

, and so in that universe PδpSq

is not defined). Let P̄ P PδpSq. If δ is an inaccessible cardinal then the fact that
Rα Ă Hω1

for all α ă δ implies that Pδ Ă Hδ. Further, since in this case |δzS| “ δ,
and each Qα for α R S adds a Cohen real, in V Pδ , 2ℵ0 ě δ. To show that 2ℵ0 ď δ
in V Pδ we prove a general lemma which will be useful later as well.

Lemma 4.3. Let δ be any ordinal and S Ď Sδℵ1
. Let P̄ P PδpSq, and let η be a

Pδ-name for a real. Then there is some u-closed set u Ă δ of size at most ℵ1 such
that η is a Pv-name.

Proof. Let u be an S-memory template which witnesses that P̄ P PδpSq. Let M ă

V (you know what we mean) of size ℵ1 such that ω1 Ă M , with δ, S,u, P̄, η P M .
Let u “ M X δ. First, observe that u is u-closed. If α P u then α P M and so
uα PM . Since ω1 ĂM and |uα| ď ℵ1, uα ĂM , so uα Ă u.

We claim that Pu “ PδXM . In one direction, let p P PδXM . Then the support
suppppq of p is finite and is an element of M , and so suppppq Ă M . In the other
direction, let p P Pu. Since suppppq is finite and is a subset of M , it is an element
of M . For each α P u, Rα P M and since |Rα| ď ℵ1, Rα Ă M , and so, for all
α P suppppq, ppαq PM . It follows that pæsupppαq (restriction as a function) is in M ,
whence p PM .

For n ă ω, let An be the set of conditions p P Pδ such that p ,Pδ σ ă η for some
σ P 2n. Then An is dense in Pδ, and so AnXM is dense in PδXM . Since Pu Ì Pδ,
we see that An X Pu is dense in Pδ, whence η is a Pu-name. �

In order to show that (??) of Proposition ?? holds, we prove something stronger,
which is necessary elsewhere but also for the inductive proof.
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12 NOAM GREENBERG AND SAHARON SHELAH

Definition 4.4. Let u be an S-memory template of length δ.
(1) Let u Ď v Ď δ be u-closed. We say that v is a u-straight extension of u if

for all β P v X S, if uX β is unbounded in β then β P u. We write u ďu v.
(2) A u-closed set u Ď δ is u-straight if every u-closed set v Ě u is a u-straight

extension of u.

Note that:
‚ ďu is a transitive relation. Also, if u Ď v Ď w are u-closed and u ďu w

then u ďu v.
‚ A u-closed set u Ď δ is u-straight if and only if u ďu δ, i.e., if and only if
for all β P S, if uX β is unbounded in β then β P u.

‚ For all α P S, uα Y tαu is u-straight.
‚ If u Ď δ is u-closed and α P δzS then u X α ďu u. In particular, every
α P δzS is u-straight.

We also remark that in Lemma ?? we can require u to be u-straight, not merely
u-closed. This is because every u-closed subset of δ of size ℵ1 is contained in a
u-straight subset of ℵ1 of the same size; there are at most ℵ1-many δ P S which
are limit points of u; adding each of those, and for each such δ, adding uδ, results
in a set of size ℵ1 (as every uδ has size at most ℵ1); repeating ω times gives the
desired u-straight set.

Proposition 4.5. Let P̄ P PδpSq, witnessed by u. Let u Ď v Ď δ be u-closed.
Suppose that:

‚ u ďu v; and
‚ S does not reflect at any limit point of vzu.

Then Pv{Pu is equivalent to a Cohen algebra.

Note that Proposition ?? implies (??) of Proposition ??.

Proof. By induction on δ.
First suppose that δ is a limit ordinal. Fix u Ď v Ď δ satisfying the hypotheses

of the proposition.
Suppose that vzu is bounded below δ; let α “ suppvzuq. By Corollary ??, in

V Pu , Pv{Pu is equivalent to PvXα{PuXα. The conditions of the proposition hold for
the pair pu X α, v X αq and so by induction, PvXα{PuXα is equivalent to a Cohen
algebra.

Suppose then that vzu is unbounded below δ. Then S does not reflect at δ.
Let c be a closed, unbounded subset of δ disjoint from S (as mentioned above, this
is by definition if cfpδq ě ω1; otherwise, we use the fact that every element of S has
cofinality ℵ1). Let α ă β be elements of c. By Corollary ??, in V PpvXαqYpuXβq

PvXβ{PuXβ
PvXα{PuXα

“ PvXβ{PpvXαqYpuXβq.

Because α R S, pv X αq Y puX βq ďu pv X βq. By induction, in V PuXβ ,
PvXβ{PuXβ
PvXα{PuXα

is equivalent to a Cohen algebra. Further, if β is a limit point of c, then by
Lemma ??,

PvXβ{PuXβ “
ď

αPcXβ

PvXα{PuXα.
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Let G Ď Pu be generic; for α ă δ, let Gα “ G X PuXα. Using Lemma ??,
by induction on α P c Y tδu we define an increasing and Ď-continuous sequence
of sets xXαy and and increasing and continuous sequence of dense embeddings
θα : PvXα{Gα Ñ CpXαq.

Now suppose that the lemma is known for δ. Fix u Ď v Ď δ ` 1 satisfying
the hypotheses of the proposition. For brevity, let ū “ u X δ and v̄ “ v X δ. By
induction, Pv̄{Pū is equivalent to a Cohen algebra.

If δ R v then v “ v̄ and u “ ū. If δ P u then by Corollary ??, Pv{Pu „ Pv̄{Pū.
We suppose, then, that δ P vzu, so ū “ u.

Now there are two cases. If δ R S then Pv “ Pv̄ ˆ C, so Pv{Pu “ pPv̄{Puq ˆ C
and so is equivalent to a Cohen algebra.

Suppose that δ P S. Then u ďu v implies that u is bounded below δ. Find some
γ P rsupu, δqzS (recall that S does not, for example, contain successor ordinals).
Since v is u-closed, uδ Ă v. We analyse Pv{Pu in three steps. Let y “ uYuδ Ytδu.

(1) PyXγ{Pu is equivalent to a Cohen algebra: this follows from induction as
u ďu py X γq (since y X γ Ď v).

(2) Py{PyXγ is equivalent to a Cohen algebra: by Lemma ??, Py{PyXγ „
PuδYtδu{PuδXγ , because uδ X γ “ py X γq X puδ Y tδuq (by the definition of
y); we then use the assumption that P̄ is u-quasi-Cohen.

(3) Pv{Py is equivalent to a Cohen algebra: here we note that since u ďu v
and uδYtδu is u-straight, we have y ďu v. Certainly vzy is bounded below
ordinals at which S reflects as u Ď y. Since δ P y, v we are back in a previous
case. (Namely, by Corollary ??, Pv{Py „ Pv̄{Pȳ where ȳ “ y X δ.) �

Remark 4.6. One way to think of Proposition ?? is by thinking of “rearrangements”
or “relistings” of the coordinates. In the situation described, vzu can be re-ordered
so that every initial segment (together with u) is u-closed, and the corresponding
partial ordering is equivalent to a Cohen algebra. We do not pursue this formally
here.

5. Toward Cohen measurability

The following is known; we add a proof for completeness.

Proposition 5.1. Let j : V Ñ M “ UltpV, µq be a normal ultrafilter embedding
witnessing that κ is a measurable cardinal. Let P Ă Vκ be a notion of forcing, and
suppose that P Ì jpPq. Then in V P there is a κ-complete ideal I on κ such that
Ppκq{I „ jpPq{P.

Proof. Let G Ă P be generic over V . In V rGs, let B be a complete Boolean algebra
such that jpPq{G is a dense subset of B (technically, its separative quotient is, we
ignore this point).

For any sentence ϕ of the forcing language for jpPq (with names fromM jpPq), let

Y pϕq “
!

p P jpPq{G :
`

p ,jpPq ϕ
˘M

)

,

and let ypϕq “
řB

Y pϕq.
Fact ?? tells us that for any ϕ, yp ϕq “  Bypϕq. Further, we note that if g P G

and g P Y pϕq then ypϕq “ 1B, as g is compatible with every p P jpPq{G.
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For a P-name A for a subset of κ we consider ypκ P jpAqq. Let A and B be
such P-names, and suppose that g P G and g ,P A Ď B. Since jpgq “ g, we
see that in M , g ,jpPq jpAq Ď jpBq, so ypjpAq Ď jpBqq “ 1B. It follows that
ypκ P jpAqq ď ypκ P jpBqq. This shows that the map A ÞÑ ypκ P jpAqq induces an
order-preserving function ψ from PpκqV rGs to B.

The observation above shows that for all A P PpκqV rGs, ψpκzAq “  BψpAq.
Certainly ψpHq “ 0B and ψpκq “ 1B.

Let γ ă κ, and let xDiyiăγ be a sequence of subsets of κ in V rGs. We can fix a
sequence xAiy of P-names for Di; we also fix a P-name A_ for

Ť

iăγ Di. In V jpPq,
jpA_q “

Ť

iăγ jpAiq.
Since for each k ă γ, Ak Ď A_ in V P, we know that ψpDkq ď ψp

Ť

iăγ Diq, and
so

řB
ψpDiq ď ψp

Ť

iDiq. To get equality, note that by Fact ??,
Ť

iăγ Y pκ P jpAiqq

is dense below each p P Y pκ P jpA_qq (in jpPq{G).
This shows that ψ is a κ-complete Boolean homomorphism. So I “ kerpψq is a

κ-complete ideal on κ in V rGs, and ψ induces an embedding of Ppκq{I into B in
V rGs. It remains to show that ψ is dense.

Let p P jpPq{G. Recall that µ is the normal ultrafilter generating j; so p “ rp̄sµ
for some p̄ : κ Ñ P; write p̄ “ xpαyαăκ. Define a P-name A for a subset of κ by
letting A “ tppα, αq : α ă κu. Then for all α ă κ and q P P, q ,P α P A if and only
if q ,P pα P G. Hence in M , since κ “ ridsµ, for all q P jpPq{G, q ,jpPq κ P jpAq if
and only if q ,jpPq p P GjpPq if and only if in B, q ď p. Hence ψpArGsq “ p. �

For the following proposition, let P̄ P PκpSq and let j : V ÑM be an elementary
embedding with critical point κ. Write P for Pκ. Since every p P P has finite support
(in particular, support bounded below κ), we see that essentially j æP“ idP and that
in M , P “ jpPqκ. Hence P Ì jpPq (in M , but this is absolute).

Proposition 5.2. Suppose that κ is 2κ-supercompact. Suppose that S only reflects
at inaccessible cardinals. Let P̄ P PκpSq. Then there is an elementary embedding
j : V Ñ M given by a normal ultrafilter on κ such that jpPq{P is equivalent to a
Cohen algebra. Hence, in V P, κ is real-valued Cohen.

Note that the dense embedding of jpPq{P into a Cohen algebra is not necessarily
in MP.

Proof. Let i : V Ñ N be an elementary embedding with critical point κ such that
ipκq ą 2κ and N2κ Ă N . Let U be the ultrafilter on κ generated by i, i.e. A P U iff
κ P ipAq. Let M “ UltpV,Uq be the transitive collapse of V κ{U and let j : V ÑM
be the associated elementary embedding. The triangle can be completed by an
elementary embedding k : M Ñ N , defined by kprf sU q “ pipfqqpκq. So i “ k ˝ j.

Since κκ Ă N and U P N , we see that k æjpκqP N , and so v “ krjpκqs P N .
In N , |v| “ 2κ, so in N , vzκ is an Easton set (it is bounded below every inaccessible
cardinal). The set v is ipuq-closed, where u witnesses that P̄ P PκpSq. For let γ P v;
let α “ k´1pγq. Then kpjpuqαq “ ipuqγ , and since |jpuqα| “ ℵ1 ă κ, k æjpuqα is a
bijection between jpuqα and ipuqγ . It follows that ipuqγ Ă krjpκqs “ v.

Also note that κ R ipSq (κ is regular in N), and so κ ďipuq v. In N , ipSq
only reflects at inaccessible cardinals and vzκ is bounded below these. Hence, the
conditions of Proposition ?? hold and we conclude that in N , P Ì ipPqv and ipPqv{P
is a Cohen algebra; this is upwards absolute, so holds in V .
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We claim that jpPq and ipPqv are isomorphic over P. Certainly, krjpPqs Ď ipPq
and kæjpPq is order-preserving. However, since jpPq is a finite support iteration, for
each p P jpPq, k pointwise maps the support of p to the support of kppq, and so
kppq P ipPqv.

It remains to show that k is onto ipPqv. By induction on δ ď jpκq, we show that
k æjpPqδ is onto ipPqkrδs. This is preserved at limit stages since for limit δ ď ipκq,
ipPqvXδ “

Ť

αăδ ipPqvXα. Let δ ă jpκq and suppose that k æjpPqδ is onto ipPqkrδs “
ipPqvXkpδq.

As observed above, k æjpuqδ is a bijection between jpuqδ and ipuqkpδq. It follows
that kæjpPqjpuqδ is an isomorphism from jpPqjpuqδ to ipPqipuqkpδq

Recall that for some Rδ Ď Hω1
, jpPqδ`1 “ jpPqδ˚Qδ, where Qδ Ď jpPqjpuqδ ˆRδ

is a jpPqjpuqδ -name for an initial segment of Rδ, and jpPqδ`1 “ jpPqδ ˚ Qδ. Then
kpQδq “ krQδs is an ipPqipuqkpδq -name for an upward closed segment of kpRδq “ Rδ,
and ipPqvXkpδ`1q “ ipPqvXkpδq̊ kpQδq. For p P jpPqδ and s P R, p ,jpPqδ s P Qδ if and
only if kppq ,ipPqipuqkpδq s P kpQδq and this shows that k æjpPqδ`1

is an isomorphism
between jpPqδ`1 and ipPqkrδ`1s. �

6. Continuity on a non-meagre set

Definition 6.1. Let κ be an inaccessible cardinal and let S Ď κ be station-
ary. A ˆ̨pSq sequence is a sequence xfδ : δ P Sy of functions such that for each
δ P S, dom fδ Ď δ is unbounded in δ, range fδ Ă Vδ, and for every set T Ď κ un-
bounded in κ and every function F : T Ñ Vκ, for stationarily many δ P S we have
F ædom fδ“ fδ.

By replacing a function F : κÑ Vκ by the function α ÞÑ F æα we see that (since κ
is inaccessible), a ˆ̨pSq sequence exists if and only if 3pSq holds. We will use this
slight variant of the diamond because it is easier to construct such a sequence.

The aim of this section is to prove (??) of Proposition ??: if κ is inaccessible (in
fact κ ě ℵ3, 2

ℵ1 is sufficient), S Ď Sκℵ1
and 3pSq holds, then there is P̄ P PκpSq

such that in V Pκ , every function from 2ω to 2ω is continuous on a non-meagre set.

We fix such κ and S. Below, for brevity, for δ ă κ we write PδpSq for PδpSX δq.
The construction of P̄ (together with a witness template u) will be by induction, so
we explain how to obtain elements of PδpSq from PαpSq for α ă δ. The following
are immediate from the definition of PδpSq:

‚ Let δ ď κ be a limit ordinal. Then PδpSq is the set of all finite-support
iterations P̄ of length δ such that for some S X δ-memory template u of
length δ, for all α ă δ, uæα witnesses that P̄æαP PαpSq.

‚ Let δ ă κ and let P̄ P PδpSq, as witnessed by u. Then u x̂Hy witnesses
that P̄ˆ C P Pδ`1pSq.

For the rest of the section, recall that if j : P Ñ Q is a dense embedding and
ζ is a Q-name for a real then the pullback ξ “ j´1rζs is the P-name determined
by p ,P ξpnq “ i if and only if jppq ,Q ζpnq “ i. Similarly, if ξ is a P-name
for a real then the push-forward ζ “ jrξs is the Q-name for a real determined by
q ,Q ζpnq “ i if and only if the set of jppq such that p ,P ξpnq “ i is dense below q.

Lemma 6.2. Let δ P S, and let P̄ P PδpSq, witnessed by u. Suppose that:
(1) w Ď δ is u-straight, and |w| ď ℵ1;

Paper Sh:1039, version 2014-05-05 11. See https://shelah.logic.at/papers/1039/ for possible updates.



16 NOAM GREENBERG AND SAHARON SHELAH

(2) for some set X, j : Pw Ñ Cpω1, Xq is a dense embedding;
(3) c is an unbounded subset of δ which is disjoint from S;
(4) For all γ P c, j æPwXγ is a dense embedding of PwXγ into Cpεγ , Xγq for some

even εγ ă ω1 and some set Xγ Ă X.
For i ă ω1, let ηi be the Pw-name for a real which is the j-pullback of the Cohen
name given by Cpt2iuq, and similarly let ζi be the pullback of the name given by
Cpt2i` 1uq. Then u t̂wu witnesses that P̄˚ Shpη̄, ζ̄q P Pδ`1pSq.

Proof. We need to show that for all β P δzS, Pw ˚ Shpη̄, ζ̄q{PwXβ is equivalent
to a Cohen algebra. Fix such β. Find some γ P c greater than β. Since β R S,
wXβ ďu wXγ. Since |w| ď ℵ1 and S does not reflect at any ordinal of cofinality ℵ1

(as S Ď Sκℵ1
), w is bounded below any ordinal at which S reflects. Hence, by

Proposition ??, PwXγ{PwXβ is equivalent to a Cohen algebra.
It remains to show that Pw˚ Shpη̄, ζ̄q{PwXγ is equivalent to a Cohen algebra. As

εγ is an even ordinal, Proposition ?? says that pCpω1q˚ Shq{Cpεγq is equivalent to a
Cohen algebra. The names pη̄, ζ̄q are defined so that the dense embedding j extends
to a dense embedding of Pw˚Shpη̄, ζ̄q into CpX,ω1q˚Sh. Then Pw˚Shpη̄, ζ̄q{PwXγ is
equivalent to pCpX,ω1q˚ Shq{CpXγ , εγq. This in turn is equivalent to CpXzXγq ˆ

ppCpω1q˚ Shq{Cpεγqq, which is equivalent to a Cohen algebra. �

Lemma 6.3. Let P̄ P PκpSq, witnessed by u. Suppose that p P Pκ forces that
A Ă 2ω has size ℵ1 and is meagre. Then there is some u-closed w Ă κ of size ℵ1

such that p P Pw, A is a Pw-name and such that p ,Pw “A is meagre”.

Proof. This is similar to the proof of Lemma ??. There is a countable sequence
xTiy of Pκ-names for trees in Cantor space (subtrees of 2ăω) such that p forces
that no rTis contains a clopen set, and A Ď

Ť

irTis. We pass to an elemen-
tary submodel M of the universe of size ℵ1 containing all pertinent objects. Let
xηα : α ă ω1y be a sequence of Pκ-names for reals such that p forces that A “ tηα :
α ă ω1u. For each α and each n, the set of conditions q P Pκ for which there is
some finite binary string σ of length n such that q forces in Pκ that σ P

Ť

i Ti and
σ ă ηα is dense below p, and so dense below p in Pw “ Pκ XM where w “ κXM .
Since Pw Ì Pκ and these statements are absolute, forcing them in Pκ and in Pw
are equivalent. �

Lemma 6.4. Let P̄ P PκpSq, witnessed by the S-memory template u. Let v Ă κ be
u-straight and suppose that in V Pv , A Ď 2ω is non-meagre and has size ℵ1. Then
A is also non-meagre in V Pκ .

Proof. If not, then there is some p P Pκ which forces that A is meagre. By
Lemma ??, there is some u-closed w Ě v such that |wzv| ď ℵ1, p P Pw and
p ,Pw “A is meagre”. This is impossible, since Pw{Pv is a Cohen extension. �

For δ ď κ, P̄ P PδpSq (witnessed by u) and α P δzS, we let ρα be the name for
the Cohen real added by Qα “ Ptαu. Since ρα is a Ptαu-name, it is a Pv-name for
any u-closed set v containing α.

Lemma 6.5. Let δ P S, and let P̄ P PδpSq, witnessed by u.
Suppose that tαi : i ă ω1u is an increasing enumeration of an unbounded subset

of δ, disjoint from S, and that we have:
‚ for i ă ω1, u-straight sets wi of size ℵ1 such that αi P wi, wi Ă αi`1 and
wi X αi is a constant w˚;
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‚ sets Y, Z,W and dense embeddings ji of Pwi into CpY,Z,W q, such that
ji æPw˚ is constant, a dense embedding into CpY q; and ji æQαi is a dense
embedding into CpZq such that jirραis is the Cohen real added by CpZq;

‚ A Pwi-name ηi for a real such that the push-forward jirηis (which is a
CpY, Z,W q-name for a real) is a constant ν˚.

Let w “
Ť

i wi. Then w Y tδu is u-straight and there is a Pw-name Q for a notion
of forcing such that:

‚ P̄˚Q P Pδ`1pSq (witnessed by u x̂wy); and
‚ In V Pw˚Q there is a non-meagre subset A of tραi : i ă ω1u such that the
map ραi ÞÑ ηi is continuous on A.

Proof. Since CpY,Z,W q is c.c.c., there is a countable set X ĎW such that ν˚ is a
CpY,Z,Xq-name. We replace W by W zX. Also note that Z is countable.

We merge the embeddings ji as follows. We assume that Y and W are disjoint
from ω1. For i ă ω1 fix isomorphisms fi of CpZq with Cpt2iuq and gi of CpXq with
Cpt2i ` 1uq. Also fix sets Ai (pairwise disjoint, and disjoint from Y and ω1) and
isomorphisms hi of CpW q with CpAiq. Let Aăi “

Ť

i1ăiAi1 and A “ Aăω1
.

The product map ϕi “ pidCpY q, fi, gi, hiq is an isomorphism of CpY,Z,X,W q
with CpY, t2i, 2i ` 1u, Aiq. The composition ψi “ ϕi ˝ ji is a dense embedding of
Pwi into CpY, t2i, 2i ` 1u, Aiq. The map ψi æPw˚ equals ji æPw˚ (a constant, dense
embedding into CpY q). Letting νi be the name for the Cohen real added by Cptiuq,
we have ψirραis “ ν2i.
wYtδu is u-straight since every limit point of w (other than δ) is a limit point of

some wi. Let p P Pw. For all but finitely many i ă ω1 we have pæwiP Pw˚ . In other
words, Pw is the finite support product of the Pwi over the root Pw˚ . Thus, the se-
quence
ψppq “ xψippq : i ă ω1y is an element of the finite support product of
CpY, t2i, 2i ` 1u, Aiq over CpY q which equals CpY, ω1, Aq, and ψ is a dense em-
bedding of Pw into CpY, ω1, Aq. Further, for i ă ω1, ψæPwXαi is a dense embedding
of PwXαi “ PŤ

i1ăi wi1
into CpY, 2i, Aăiq.

The isomorphism ϕi carries the name ν˚ to a CpY, t2i, 2i ` 1uq-name for a real
ϕirν

˚s. In V CpY q there is a continuous function which in V CpY,ω1q maps the pair
pν2i, ν2i`1q to ϕirν˚s “ ψipηiq. Translating back, letting µi “ ψ´1rν2i`1s, in V Pw˚

there is a continuous function which in V Pw takes the pair pραi , µiq to ηi.
Let Q “ Shpxραiy, xµiyq. Then in V Pw˚Q there is a non-meagre subset A of

tραi : i ă ω1u on which the map ραi ÞÑ µi is continuous. On A, the map ραi ÞÑ
ηi is the composition of two continuous functions and so is continuous. Finally,
Lemma ?? shows that P̄æδ ˚Q P Pδ`1pSq. �

We now prove (??) of Proposition ??. Let xfδ : δ P Sy be a ˆ̨pSq-sequence.
By recursion we define P̄ P PκpSq with a witness template u. At step δ ă κ,

say we have already defined u æδ and P̄ æδ (taking limits at limit stages). In the
interesting case, suppose that δ P S. If dom fδ is a set increasingly enumerated as
tαi : i ă ω1u and fδpαiq “ pwi, Y, Z,W, ji, ηiq where the conditions of Lemma ??
hold, then we choose uδ “ w and Qδ “ Q for pw,Qq given by the lemma. Otherwise
we let uδ “ H and Qδ “ C.

This defines u and P̄ P PκpSq. Now let F be a Pκ-name for a function from 2ω

to 2ω. Again recall that for α P κzS, ρα is the Qα “ Ptαu-name for the Cohen real
added.
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18 NOAM GREENBERG AND SAHARON SHELAH

By Lemma ?? (and the discussion after Definition ??), for α P κzS let vα be
a u-straight set of size ℵ1 such that F pραq is a Pvα -name. By increasing, we may
assume that α P vα.

Since |vα| “ ℵ1, it is bounded below any ordinal at which S reflects. Then
PvαXα is equivalent to a Cohen algebra (of dimension at most ℵ1). Of course
PvαXpα`1q{PvαXα “ Ptαu is equivalent to a Cohen algebra (of dimension 1), and
since α` 1 R S, Pvα{PvαXpα`1q is equivalent to a Cohen algebra. We can therefore
find sets Yα, Zα,Wα P Vω1 (all of size at most ℵ1, and Zα countable (or a singleton))
and a dense embedding kα of Pvα into CpYα, Zα,Wαq such that kα æPvαXα is a dense
embedding into CpYαq and kα æPtαu is the canonical dense embedding into CpZαq
(so kαrραs is the Cohen real added by CpZαq). We let να “ kαrF pραqs.

Since κzS is stationary, there is some unbounded (indeed stationary) set T Ă κ
such that for α P T , Yα, Zα,Wα and να are constant Y, Z,W and ν˚; and further,
since κ is inaccessible, vα X α is a constant w˚ and jα æPw˚ is a constant j˚. By
induction we choose an unbounded T 1 Ă T such that for α ă β from T 1, vα Ă β.
For α P T 1, let hpαq “ pvα, Y, Z,W, jα, F pραqq.

There is some δ P S such that fδ “ h ædom fδ . By restricting to a subset we
may assume that dom fδ “ tαi : i ă ω1u (increasing enumeration). Then letting
wi “ vαi and ηi “ F pραiq, we see that the conditions of Lemma ?? hold, and so,
for the resulting w, in V PwYtδu there is a non-meagre set A Ď tραi : i ă ω1u on
which ραi ÞÑ ηi “ F pραiq is continuous. By Lemma ??, A is non-meagre in V Pκ as
well. This concludes the proof.

7. Consistency strength

We prove (??) of Proposition ??. Several ideas come from [?]. Let κ be a
measurable cardinal. We want to show that in a forcing extension W there are a
stationary S Ď Sκℵ1

and a normal ultrafilter embedding j : W Ñ N with critical
point κ such that:

(1) 3pSq holds; and
(2) in W , jpSq reflects nowhere in the interval pκ, jpκqs.

We first add S and its diamond sequence. As indicated above, it is more natural
to add a ˆ̨pSq-sequence.

Notation 7.1. Let I be the class of inaccessible cardinals and let Ī be its closure.
For α ă κ let α˙ be the least element of I greater than α.

Definition 7.2. Let Q consists of the pairs p “ pσ, F q such that:

‚ σ is a partial function from the ordinals to 2. The domain of σ is an Easton
set (bounded below each inaccessible cardinal). Further, for all δ P Ī, the
domain of σærδ,δ˙q is an initial segment of rδ, δ˙q.

‚ Every α P σ´1t1u has cofinality ℵ1.
‚ For all α ă κ of uncountable cofinality, if domσ is unbounded in α, then
σ´1t0u contains a club of α.

‚ F “
@

fα : α P σ´1t1u
D

is a sequence of functions such that for all α P

σ´1t1u, dom fα is a club of α of order-type ω1 and range fα Ă α.

Extension in Q is given by extension in both coordinates.
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As defined, Q is a class of conditions, and we will use only a set of these. For
an interval of ordinals A, we let QA be the set of conditions pσ, F q P Q such that
domσ Ď A. We will be mainly interested in the case A “ κ.

Definition 7.3. Let p “ pσ, F q P QA. We define a condition p̄ “ pσ̄, F q by defining
σ̄pβq “ 0 for all β P Azdomσ such that β X domσ is unbounded in β. Since we
are only adding to dom σ̄ limit points of domσ, it follows that the limit points of
domσ and dom σ̄ are the same, and so p̄ P QA.

Let γ be an ordinal, and suppose that xpiyiăγ is a decreasing sequence from Q.
If pi “ pσi, Fiq then we let σăγ “

Ť

iăγ σi, Făγ “
Ť

iăγ Fi, and păγ “ pσăγ , Făγq.
If pi P QA for all i ă γ, and cfpγq ă pminAq˙ it may still be the case that păγ R Q,
because of the non-reflection requirement. However, if in addition the sequence
witnesses non-reflection the we get closure.

Lemma 7.4. Let A be an interval of ordinals. Let γ ă pminAq˙, and let xpiyiăγ
be a decreasing sequence of conditions in QA. Further suppose that for all i ă γ, pi
extends păi. Then păγ P QA.
Proof. We only need to check the non-reflection condition. Let α have uncountable
cofinality and suppose that domσăγ is unbounded in α. We assume that for all
i ă γ, α X domσi is bounded below α; let βi “ suppdomσăi X αq. The sequence
xσăiy is continuous so tβi : i ă γu is a club of α. By restricting to a club of i P γ,
we may assume that βi R domσăi, and in this case σipβiq “ σăipβiq “ 0. Thus, a
club subset of the βi ensures that α does not prevent păγ from being in QA. �

This shows thatQA isă pminAq˙-strategically directed closed, and soă pminAq˙-
distributive. If λ ă κ is inaccessible, then |Qλ| “ λ, and Qκ “ Qλ ˆ Qrλ,κq.
Since Qrλ,κq is λ`-distributive, this shows that Qκ preserves all cofinalities (and
so, preserves all cardinals). Similarly, for any cardinal δ ă κ, since |Qδ| ă δ˙,
p2δqVQδ ă δ˙, and Qrδ,κq does not add subsets of δ. We conclude that any inacces-
sible cardinal in V is also inaccessible in V Qκ .

Proposition 7.5. Assume 2κ “ κ`. Then κ is measurable in V Qκ .

This is fairly standard (see for example [?, Claim 2.6]), but we include a proof
for completeness.

Proof. Let j : V Ñ M be a normal ultrafilter elementary embedding with critical
point κ; so Mκ ĂM . In M , jpQκq “ Qjpκq “ Qκ ˆQrκ,jpκqq, where Qκ is absolute
between V and M (and j is the identity on Qκ).

In V there is a list xDiyiăκ` of all dense open subsets of QM
rκ,jpκqq. [To see this

observe that in M , |QMjpκq| “ jpκq and 2jpκq “ jpκq`, whereas pjpκq`qM “ jpκ`q

and in V |jpκ`q| “ pκ`qκ “ κ`.] In V we can construct a filter H Ď QM
rκ,jpκqq

generic over M by building a sequence of conditions xpiyiăκ` , with pi meeting Di;
we can keep going by ensuring that pi extends păi, noting that păi PM sinceMκ Ă

M .
Let G Ă Qκ be generic over V . Since M rHs Ă V , G is also generic over M rHs

and so G ˆ H Ă QMjpκq is generic over M . We extend the embedding j to an

embedding j : V rGs ÑM rGˆHs: for x P V Qκ we have jpxq PMQMjpκq and we map
xrGs to jpxqrG ˆHs. The fact that jppq “ p for all p P G is used to show this is
well-defined and elementary. �
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If G Ă Qκ is a generic filter, we let S “ SrGs be the union of σ´1t1u where
pσ, F q P G for some F .

Lemma 7.6. In V Qκ , S is stationary and 3pSq holds.

Proof. The ˆ̨pSq sequence is a modification of the sequence given generically by the
second coordinate of the forcing conditions. Let xfδyδPS be the union of of F where
pσ, F q P G for some σ. We show that in V Qκ , for any function h from an unbounded
subset of κ to κ, there are stationarily many δ P S such that hædom fδ“ fδ. To then
capture functions into Vκ we compose the functions fδ with some fixed bijection
between κ and Vκ.

Let C be a Qκ-name for a club of κ, and let h be a Qκ-name for a function from
an unbounded subset of κ to κ.

Starting from an arbitrary p0 P Qκ, we define a decreasing sequence xpiyiăω1

with each pi extending păi, and three increasing sequences xαiyiăω1
, xζiyiăω1

and
xγiyiăω1

such that:
‚ αi ă γi ă αi`1 and ζi ă αi`1;
‚ pi ,Qκ αi P C;
‚ pi ,Qκ γi P domh & hpγiq “ ζi.

Let α˚ “ supiăω1
αi. Define p˚ by extending păω1

by letting σ˚pα˚q “ 1 and fα˚ “
xγi ÞÑ ζiy. Then p˚ forces that S intersects C at α˚ and that hædom fα˚

“ fα˚ . �

Lemma 7.7. In V Qκ , S only reflects at inaccessible cardinals.

Proof. Let α ă κ of uncountable cofinality be accessible in V Qκ ; then it is accessible
in V as well. Let p “ pσ, F q P Qκ. If domσ X α is unbounded in α, then since
σ´1t0u contains a club of α, p forces that S does not reflect at α. The collection
of condition p “ pσ, F q such that domσ X α is unbounded in α is dense in Qκ; we
can always extend any given condition by sufficiently many zeros (on an interval
if α is not a limit of inaccessible cardinals, and on a club of α of order-type cfpαq
otherwise). �

Our next step is to extend V Qκ to a model in which jpSq reflects nowhere in
pκ, jpκqs. As this is mirrored below κ, we look at λ ă κ first.

We work in V . Let λ ă κ. We let Rλ be the collection of all functions C
whose domain is I X pλ, κs such that for each δ P domC, Cpδq Ď pλ, δq is a closed
set, bounded below δ (so supCpδq P Cpδq). We order Rλ coordinatewise by end
extension. We define a Qrλ,κq-name Sλ for an upward-closed subset of Rλ. This
name consists of the pairs ppσ, F q, Cq P Qrλ,κq ˆRλ such that for all δ P I X pλ, κs,
Cpδq Ď σ´1t0u. Note that since Qκ “ Qλ ˆQrλ,κq, Sλ is also a Qκ-name.

Proposition 7.8. In V Qκ̊ Sλ , S reflects nowhere in the interval pλ, κs.

Proof. If δ P pλ, κs is an accessible ordinal of uncountable cofinality, then by
Lemma ??, in V Qκ , S is disjoint from a club of δ in V Qκ and hence also in any
extension of V Qκ .

Let δ P pλ, κs be inaccessible. As V Qrλ,κq̊ Sλ Ă V Qκ̊ Sλ , it is sufficient to show
that Srλ,κq (the generic subset of rλ, κq added by Qrλ,κq) does not reflect at δ in
V Qrλ,κq̊ Sλ . If G is a generic filter for Qrλ,κq˚Sλ over V then we let Dδ be the union
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of Cpδq where pp, Cq P G for some p. It is clear that Dδ is disjoint from Srλ,κq, and
that Dδ is a closed subset of supDδ. We need to show that supDδ “ δ.

We work in V . Let γ ă δ; let ppσ, F q, Cq be any condition in Qrλ,κq˚ Sλ. Since
δ X domσ is bounded below δ, it is easy to extend σ to σ1 by adding sufficiently
many zeros so that γ P domσ1 and extend C to C 1 so that C 1pδq intersects the
interval rγ, δq. �

Proposition 7.9. In V Qκ , Sλ is ă λ˙-distributive.

Proof. It suffices to show that Qrλ,κq˚ Sλ is ă λ˙ distributive in V . Then we argue
that it has the same property in V Qλ . This relies on the fact that |Qλ| “ λ. For
let f P V QλˆQrλ,κq̊ Sλ be a function from γ ă λ˙ to ordinals. We think of f as a
Qλ-name in V Qrλ,κq̊ Sλ . Define gpp, αq “ β if p ,Qλ fpαq “ β. The domain of g
has size less than λ˙ since |Qλ| ď λ. Hence g P V . With g, any Qλ-generic can
calculate f and so f P V Qλ as required.

In turn we observe that for γ ă λ˙, all sequences of ordinals of length γ in
V Qκ̊ Sλ in fact lie in V Qλ and so in V Qκ , proving the proposition.

Working in V , we show that Qrλ,κq˚ Sλ is ă λ˙ distributive. Given a condition
q “ pp, Cq in Qrλ,κq˚Sλ, we define q̄ “ pp̄, C̄q by taking p̄ as above, and defining, for
each limit point β of domσ (where p “ pσ, F q) which is not already in domσ, for
each inaccessible δ ą β such that domσXrβ, δq “ H, C̄pδq “ CpδqYtβu. Since for
such δ we have Cpδq Ď β, C̄pδq is indeed an end-extension of Cpδq, and it is clear
that q̄ P Qrλ,κq˚ Sλ.

We show that a dense subset of Qrλ,κq˚ Sλ is ă λ˙-strategically closed. Let T
be the set of conditions ppσ, F q, Cq P Qrλ,κq˚ Sλ such that:

‚ domσ is a closed subset of κ; and
‚ For all δ P I X pλ, κs, maxCpδq “ suppdomσ X δq.

Extending a given condition ppσ, F q, Cq from Qrλ,κq˚ Sλ to a condition ppσ1, F q, C 1q
in T is not difficult; for each δ P IXpλ, κs we add ε “ suppdomσX δq and also ε`1
to domσ1, and let σ1pε` 1q “ 0 and ε` 1 P C 1pδq.

Let γ ă λ˙ and let xqiyiăγ be a decreasing sequence of conditions from T such
that for all i ă γ, qi extends qăi. Then qăγ P T . �

We can now prove (??) of Proposition ??. Starting with the measurable car-
dinal κ such that 2κ “ κ`, we first work in V Qκ . Since κ is measurable in V Qκ

(Proposition ??), let µ be a normal ultrafilter on κ in V Qκ , and let j be the as-
sociated embedding from V Qκ into the transitive inner model P “

`

UltpV Qκ , µq
˘

of V Qκ . Using µ to average the notions of forcing Sλ for inaccessible λ ă κ (again,
thinking of these as elements of V Qκ), we see that in P there is some notion of
forcing S such that:

‚ in P , S is ă κ˙-distributive;
‚ in P S, jpSq reflects nowhere at the interval pκ, jpκqs.

Since P is an inner model of V Qκ , S is an element of V Qκ . The modelW we are after
is V Qκ̊ S. Because in V Qκ , P is closed under taking sequences of length κ, we see
that S is ă κ`-distributive in V Qκ as well. This means that pVκ`1q

Qκ “ pVκ`1q
W .

From this we conclude:
‚ In W , S is a stationary subset of κ and ˆ̨pSq holds.
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‚ µ is a normal ultrafilter on κ in W as well, and by taking the ultrapower
Wκ{µ, the embedding j can be extended in W to an embedding (which we
also call j) from W to an inner model N of W .

Finally, since P Ă V Qκ , P S Ă W . As non-reflection is upward absolute, jpSq
reflects nowhere at the interval pκ, jpκqs in W as well. This concludes the proof.
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