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Abstract. We discuss a range of open problems at the intersection of set

theory, model theory, and general topology, mainly around the construction of
ultrafilters. Along the way we prove a uniqueness theorem for a weak notion

of cut.

For Hugh Woodin on the occasion of his birthday.

Recently we discovered a surprising connection [15] between a model-theoretic
problem from the sixties known as Keisler’s order and a question about cardinal
invariants of the continuum arising from work of Rothberger in the forties [20],
whether p = t. Keisler’s order compares theories via the saturation properties
of their regular ultrapowers. Its study has brought certain connections of model
theory and set theory sharply into focus, which has been very helpful in illuminating
model-theoretic structure. Indications from continuing work on Keisler’s order are
that the connection of the two problems was more than a lucky coincidence, and
that the potential interest of the order and of regular ultrafilters for set theory and
general topology also goes potentially much beyond this one example.

We therefore present here a series of representative open problems in set the-
ory, motivated by these interactions with model theory, and mainly around the
construction of regular ultrafilters. Along the way we prove a uniqueness theo-
rem for a weak notion of cut, Theorem 2.4, and give a new sufficient condition for
goodness of an ultrafilter, Lemma 3.2. We note that the emphasis here on regular
ultrafilters reverses a long trend of emphasis in set theory: already by the 1960s,
the model-theoretic and set-theoretic use of ultrafilters had diverged, with model
theorists focusing on regular ultrafilters for their uniform saturation properties and
set theorists often focusing (over uncountable sets) on ultrafilters which were non
regular (e.g. were normal). We hope such a paper will help to centralize and com-
municate intuition and to stimulate work from both sides in this fascinating and
largely unexplored area.

We thank the referee for an attentive and very helpful reading.
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1. The cut spectrum

We begin with the problem of determining the possible cut spectrum of a regular
ultrafilter D. (After stating the problem, we will explain all of the terms used.)

General Problem 1.1 (cf. [15] 2.9). For λ ≥ ℵ0 and D a regular ultrafilter on I,
|I| = λ, determine the possible values of

C(D) ={(κ1, κ2) : κ1, κ2 are infinite and regular,

κ1 + κ2 ≤ |I| and (ω,<)I/D has a (κ1, κ2)-cut}.

First, say that a linearly ordered set has a (κ1, κ2)-pre-cut if there is a strictly
increasing sequence ā = 〈aα : α < κ1〉 of cofinality κ1 and a strictly decreasing
sequence b̄ = 〈bβ : β < κ2〉 of cofinality κ2 such that for α < α′ < κ1 and
β < β′ < κ2 we have aα < aα′ < bβ′ < bβ . We say the set has a (κ1, κ2)-cut if there
are ā, b̄ as above and in addition, there is no c such that for all α < κ1 and β < κ2,
aα < c < bβ . (Some authors use “gap” in place of “unfilled cut.” For us a cut is
always unfilled.) We say a filter D is “on I” to mean that D ⊆ P(I) and I ∈ D.

Recall that a filter D on I is called regular if there exist a family of |I| elements of
D, called a regularizing family, such that the intersection of any infinite subfamily
is empty. Equivalently, each t ∈ I belongs to at most finitely many elements of the
regularizing family. Such ultrafilters always exist: given an infinite cardinal λ, let
I = [λ]<ℵ0 and consider the family F = {Xβ : β < λ} where Xβ = {v ∈ I : β ∈ v}.
Then F has the desired regularity property and also the finite intersection property,
so it may be extended to an ultrafilter.1

Regularity of D entails that 1.1 would not change if we used an infinite linear
order other than ω. More precisely, we might have defined:

Definition 1.2. Given an ultrafilter D on I and a linear order X, let

C(D, X) ={(κ1, κ2) : κ1, κ2 infinite and regular,

κ1 + κ2 ≤ |I| and XI/D has a (κ1, κ2)-cut}.

Then by regularity we have the following. (Morally speaking, this fact is a
consequence of Keisler’s stronger result on saturation, [8] Theorem 2.1a, discussed
below. A proof is included in the Appendix.)

Fact 1.3. If D is a regular ultrafilter and (N,<N ), (M,<M ) are any two infinite
linearly ordered sets, then C(D, N) = C(D,M).

1Donder [2] proved that in the core model all uniform ultrafilters are regular, and these will
be our main focus here. Still, we note that one outcome of our recent investigations has been a
certain reuniting of work on regular and irregular ultrafilters (e.g. κ-complete ultrafilters where κ
is measurable or compact). Essentially, one can build a good regular filter D0 on I such that the
quotient P(I)/D0 is isomorphic to a certain complete Boolean algebra B. One can then build an

ultrafilter D∗ on B, which need not be regular, to have certain prescribed properties. Combining
D∗ and D0 one obtains a regular ultrafilter on I which inherits some of the given features. This
approach is outlined in [17] §1.3 p. 619 and Definition 2.11 p. 624 through the end of §2.2, p. 628.
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Discussion 1.4. Thus, we are justified in speaking of C(D) and using (ω,<) for
our computations.

In particular, if D is a regular ultrafilter on I, |I| = λ, no new gaps may appear
when replacing ω by other infinite ordinals, and we may use orders such as (Q, <)
to prove facts about C(D, ω). Moreover, we will have (κ, µ) ∈ C(D) if and only if
(µ, κ) ∈ C(D). So we will usually assume κ ≤ µ.

Some useful facts about regular ultrapowers of linear order: the regular ultra-
power (ω,<)I/D will have cofinality > λ, and will contain both strictly increasing
and strictly decreasing sequences of length λ by [8, Theorem 1.5a]. So for every
regular κ ≤ λ there is some θ ≤ 2λ such that XI/D contains a (κ, θ)-cut.2

In what follows we will assume all first-order languages are countable and all
theories complete unless otherwise stated. Given a model M , if M I/D is |I|+-
saturated let us say that “D saturates M .” The strong incompleteness visible
in the regularizing family gives regular ultrafilters an important model-theoretic
property, namely that if M ≡ N then D saturates M if and only if D saturates
N (see Keisler [8, Corollary 2.1a]). So when D is regular, it is well defined to say
that “D saturates T .” Keisler’s order is precisely the pre-order E on complete,
countable theories given by:

Definition 1.5 (Keisler’s order). T1 E T2 if for every regular ultrafilter D, if D
saturates T2 then D saturates T1.

Keisler’s order induces a dual pre-order on regular ultrafilters:

Definition 1.6. D1 Euf D2 if for every complete countable theory T , if D1 satu-
rates T then D2 saturates T .

We will keep Keisler’s order and its dual in mind throughout the paper.3

The real interest of C(D) now begins with the fact that there exist ultrafilters
for which C(D) = ∅. This is explained in some detail in [15] pps. 240-242. Briefly,
however, Keisler had defined and proved the existence of so-called good ultrafilters
under GCH [6], an assumption later eliminated by Kunen [10].

Definition 1.7. Say that the ultrafilter D on I is κ+-good if every monotonic
f : [κ]<ℵ0 → D has a multiplicative refinement, where monotonic means that u ⊆
v ∈ [λ]<ℵ0 implies f(u) ⊇ f(v) and a multiplicative refinement of f is a function
f ′ such that f(u) ⊇ f ′(u) ∈ D for all finite u and f ′(u) ∩ f ′(v) = f ′(u ∪ v) for all
finite u, v. Say that D is good if it is |I|+-good.

Keisler then proved that the maximum class in Keisler’s order exists and consists
precisely of those theories such that if D is regular and saturates T then D must
be good [8]. This implies that Euf has a maximum class consisting precisely of the
good regular ultrafilters. Shelah proved in [21] VI.2.6 that the theory of infinite
dense linear order belongs to the maximum Keisler class.4 Together with Fact

2It follows, in model theoretic terminology, that the only failures of |I|+-saturation in such an

ultrapower come from the cuts visible to C(D).
3The relation E is usually considered as a partial order on the equivalence classes. For further

information on the classification around Keisler’s order, the reader may consult the original paper
of Keisler 1967 [8] or the recent papers [13], [16].

4This was surprising: after all, Keisler’s proof of the existence of a maximal class essentially
shows that sufficiently rich theories, such as Peano arithmetic, may explicitly code failures of

goodness as failures of saturation. With the theory of linear ordering, there is no such coding.
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1.3, these theorems imply that if D is a regular ultrafilter on I, then (ω,<)I/D is
|I|+-saturated if and only if D is good. In other words,

Fact 1.8. If D is a regular ultrafilter, then C(D) = ∅ if and only if D is good.

Now, Fact 1.8 suggests that a first way to observe the strength of an ultrafilter
is to consider how far C(D) is from being empty: “the fewer the cuts in C(D), the
more powerful the ultrafilter.” This idea motivated many of our results in [15].
(A different5 way to measure the strength of an ultrafilter is by the set of theories
which it saturates, as in Euf .)

At this point, we remind the reader of the big picture question, 1.1. As stated,
this question is related to one of the most basic questions about regular ultrafilters:
the possible values of µ(D) for regular D, where for D an ultrafilter on I we define
µ(D) = min{κ : κ = |

∏
i ni/D| for some sequence 〈ni : i ∈ I〉 and κ ≥ ℵ0}, i.e.

the minimum element in the spectrum of infinite cardinals which are cardinalities
of ultraproducts of finite cardinals mod D. By [8], [21], [9], and [23] this and the
spectrum is fully understood.6

However, the general picture for cuts has proved much more elusive. The main
structure theorem of [15], in the context of ultrapowers, tells us that:

Theorem 1.9 ([15] Theorem 10.25). Let D be a regular ultrafilter on I, |I| ≥ λ.
Then the following are equivalent:

(a) C(D) = ∅.
(b) C(D) has no symmetric cuts, i.e. (κ, κ) /∈ C(D) for all κ ≤ λ.
(c) D is good.

Thus, “the first cut is symmetric”, meaning that if κ is minimal such that
(κ1, κ2) ∈ C(D) and κ1 + κ2 = κ then necessarily (κ, κ) ∈ C(D). Several immediate
questions arise. First, what other cuts may appear with that first symmetric cut?
Is every entry in C(D) witnessed by a corresponding symmetric cut?

Problem 1.10. Suppose that D is an ultrafilter on I and C(D) 6= ∅, so there is
some minimal κ ≤ |I| such that (κ, κ) ∈ C(D). For which, if any, other cardinals
µ < κ may it be the case that also (κ, µ) ∈ C(D)?

Problem 1.11. Suppose (κ1, κ2) ∈ C(D). Is (κ1 + κ2, κ1 + κ2) ∈ C(D)?

The paper [15] gave a new sufficient condition for the cut spectrum to be empty:
existence of upper bounds of paths through trees.

Theorem 1.12 ([15] Theorem 10.25). Suppose that D is a regular ultrafilter on
|I| and D has “|I|+-treetops,” meaning that if (T ,E) is any tree, in the ultrapower
N = T I/D any EN -strictly increasing sequence of cofinality κ < |I|+ has an upper
bound in N . Then C(D) = ∅.

In particular, we may add to Theorem 1.9 the equivalent condition

5Nonetheless, we do not know how different: for instance, whether every Keisler class corre-
sponds to a set of cuts, say, whether C(D) = C(D′) implies that D and D′ saturate the same

theories. Such questions motivated some recent work separating cut-like properties of ultrafilters
from other properties, as in (2) 6→ (3) of [13] Theorem 4.2. This appears to be a question about how
ultrafilters deal with the independence property in model theory, and progress on understanding
Keisler’s order on the simple unstable theories may help to illuminate this.

6Moreover, µ(D) is an indicator for whether or not MI/D is |I|+-saturated whenever Th(M)
is countable and stable with the fcp, see for instance [13] §1.1, especially Theorem D(2) there.

Paper Sh:1069, version 2016-02-15 11. See https://shelah.logic.at/papers/1069/ for possible updates.



OPEN PROBLEMS ON ULTRAFILTERS... 5

(d) D has λ+-treetops.

In that paper, we had motivated the connection to p and t by defining cardinals
pD = min{κ : (κ1, κ2) ∈ C(D) and κ1 + κ2 = κ} and tD = min{λ : in some D-
ultrapower of a tree there is a strictly increasing λ-indexed sequence which has
no upper bound}. Then Theorem 1.9 essentially follows from showing that for
regular D, the cardinals pD and tD are equal.7 It is natural to ask whether cuts
and unbounded paths have a similar relationship above the size of the index set.
By a tree we will mean a partially ordered set in which the set of predecessors of
any given node is well ordered.

Problem 1.13. Suppose κ1, κ2 are infinite and regular, λ ≤ κ1 + κ1 < 2λ, and
(ω,<)I/D has a (κ1, κ2)-cut. Let κ = κ1 + κ2. Is it necessarily the case that for
some tree T , in the ultrapower N = T λ/D there is a strictly increasing κ-indexed
sequence with no upper bound in N?

Some results on the case of (κ1, κ2)-cuts in ultrapowers where κ1 +κ2 > 2λ, and
the index model M is quite saturated, were obtained by Golshani and Shelah [4].

At this point in our discussion, a very interesting path opens up: the main proof
of [15] is amenable to axiomatic analysis. Namely, that proof proceeded via various
component lemmas analyzing the structure of C(D) under treetops (proving sym-
metry, uniqueness, and so forth). One can consider these component phenomena
in isolation and try to determine their strength.8 In particular, consider:

Definition 1.14 (Uniqueness). Say the regular ultrafilter D on I has uniqueness
for the regular cardinal κ when: if (κ, θ) ∈ C(D) and (κ, θ′) ∈ C(D) then θ = θ′.

Uniqueness was established in the case of regular ultrafilters for κ strictly below
the goodness of D, or equivalently, for D with κ+-treetops, in [15] Theorem 3.1.

Problem 1.15. Find necessary and sufficient conditions on a regular ultrafilter D
on I so that for all κ = cf(κ) ≤ λ = |I|, D has uniqueness for κ.

For example, any regular ultrafilter has uniqueness for ℵ0, but it is also possible
to construct certain failures of uniqueness, as is done in our paper [19]. Remarkably,
it is not known whether uniqueness is strictly weaker than goodness:

Problem 1.16. For which, if any, I does there exist a regular ultrafilter D on I
such that D has uniqueness for all regular κ ≤ |I| but C(D) 6= ∅?

We shall return to this question. However, it seems likely that Uniqueness is a
much more general phenomenon. Before discussing 1.16 further let us give some
new evidence for this statement.

7Connecting these cardinals to the true p and t requires several more steps. First, replace

the pair of a model and its ultrapower by the more general pair of a model and an elementary
extension satisfying certain pseudofiniteness and expansion properties; such a pair is called a

cofinality spectrum problem s. For any such s, there are corresponding cardinals ps and ts, which

specialize to the pD, tD mentioned above in the special case when the c.s.p. arises as a regular
ultrapower. A major theorem of [15] was a proof in ZFC that for any c.s.p. s, ps < ts is impossible.
Assume then for a contradiction that p < t. For a certain well chosen s arising as a model of set

theory and its generic ultrapower in some forcing extension, one can check that ps ≤ p and t ≤ ts,
so p < t would entail ps < ts, a contradiction.

8This is part of a broader question of examining that proof, for instance with the goal of
removing the forcing argument from the proof that p = t. A beginning in this direction appears

in our paper [19].
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2. A uniqueness theorem

In this section we prove Theorem 2.4, which leverages Bell’s Theorem (stated
below) to give uniqueness for a weak notion of cut. Recall that if S is a subset of
a partially ordered set, we say S is centered if every finitely many elements of S
have a common lower bound, and σ-centered if it is the union of countably many
centered subsets.

Theorem A (Bell [1]). p is the first cardinal κ for which MAκ(σ-centered) fails,
i.e., p = min{κ : there are a σ-centered poset P and a collection D of κ dense
subsets of P such that no filter on P meets all members of D}.

Let D be a filter on N, which we will always assume contains all co-finite subsets
of N. By “D + A” we mean the filter generated by D ∪ {A}, which is nontrivial
when A ∈ D+, i.e. A is not equivalent to ∅ mod D. We use

∧
and

∨
to mean

infinite conjunction and disjunction, respectively.

Definition 2.1. Let D be a filter on N and let δ, θ be limit ordinals, usually regular
cardinals. We omit D when D is the filter of cofinite subsets.

(1) A weakly peculiar (δ, θ)-D-cut in ωω is a pair (〈fα : α < δ〉, 〈gβ : β < θ〉)
of sequences of functions in ωω such that:
(a) (∀α < α′ < δ)(fα <D fα′)
(b) (∀β < β′ < θ)(gβ′ ≤D gβ)
(c) (∀α < δ)(∀β < θ)(fα <D gβ)
(d) for no A ∈ D+ and f ∈ ωω do we have

(∀α < δ)(∀β < θ)( fα <D+A f <D+A gβ ).

(2) A left peculiar (δ, θ)-D-cut in ωω is a weakly peculiar such cut which, in
addition, satisfies:
(e) if A ∈ D+ and f ∈ ωω and

∧
α<δ fα <D+A f then

∨
β<θ gβ ≤D+A f .

Definition 2.2. We define

C(D, ωω) = {(κ1, κ2) : κ1, κ2 regular and there is a left peculiar (κ1, κ2)-D-cut}.
As before, when D is the co-finite filter, we may omit it.

Note that Definition 2.2 differs from the same notation as used in [15, 14.12(2)].
Left peculiar is a nontrivial weakening of peculiar.9

The following cardinals will be useful in describing the uniqueness spectrum.

Definition 2.3. With C(ωω) as in 2.2, we define:

(a) specuq = {κ : if (κ, θ`) ∈ C(ωω) for ` = 0, 1 then θ1 = θ2}.
(b) uq = min{specuq \ℵ1} = {κ : κ ≥ ℵ1, κ ∈ specuq}.
(c) nuq = min{κ : κ = cf(κ) > ℵ0, κ /∈ specuq}.

In the following theorem, it will follow from the remark after equation (3) that
θ` ≤ 2ℵ0 for ` = 0, 1. However, the theorem does not follow from the construction
in [15] Section 14 because there we collapse the continuum to h which is ≥ p but
≤ b.

Theorem 2.4. p ≤ nuq.
9For example, it can be shown that if (f̄ , ḡ) is a left-peculiar and right-peculiar (κ1, κ2)-cut and

κ1 6= κ2 then some c.c.c. forcing notion forces that (f̄ , ḡ) is left peculiar but not right peculiar.
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Proof. Suppose that (κ, θ`) ∈ C(ωω) for ` = 0, 1, exemplified by (f
`
, g`) for ` = 0, 1.

Assume κ < p and we will prove that θ0 = θ1. Throughout the proof, let D denote
the co-finite filter.

We may assume there is a sequence 〈k∗n : n ∈ N〉 of integers such that for ` = 0, 1
and α < κ, f `α(n) ≤ k∗n for all but finitely many n and for ` = 0, 1 and β < θ`,
g`β ≤ k∗n for all but finitely many n. For instance, k∗n = g00(n)+g10(n)+1 will suffice.
We first consider whether, on infinitely many n ∈ N, we may adjust the spacing
of elements so that the increasing sequences of the two cuts (or cofinal subsets of
the same) strictly interlace. The claim asserts that this is sufficient to prove the
decreasing sequences must have the same cofinality.

Claim 2.5 (A sufficient condition). To show that θ0 = θ1 it would suffice to show
that there exist an infinite A ⊆ N, a club E of κ, a sequence k̄ = 〈kn : n ∈ A〉 ∈ AN,
and sequences of functions π̄0 = 〈π0

n : n ∈ A〉, π̄1 = 〈π1
n : n ∈ A〉 such that:

(a) for ` = 0, 1 and β < θ`, for all but finitely many n ∈ A, g`β(n) ∈ [0, kn).

(b) for ` = 0, 1 and every n ∈ A, the function π`n : [0, kn) → [0, kn) is nonde-
creasing and onto an initial segment.

(c) if α < β are from E then for all but finitely many n ∈ A,

max{π0
n(f0α(n)), π1

n(f1α(n))} < min{π0
n(f0β(n)), π1

n(f1β(n))}.

Proof of Claim 2.5. Suppose such objects exist. Renaming, without loss of gener-
ality E = κ. When n /∈ A, let π`n be the identity and let kn = k∗n.

First we give a name to each f `α after its movement by the maps π`n: for each
` = 0, 1 and α < κ let f `α ∈ ωω be the function defined (for all but at most finitely
many n) by

(1) f `α(n) = π`n(f `α(n)).

Define g`β analogously for β < θ`. By hypothesis (c) of the Claim,

(2) α < β < κ =⇒ f1α <D+A f0β ∧ f0α <D+A f1β .

Recall that f `α(n) < f `β(n) for all but finitely many n by definition of C(ωω), and

that π`n is nondecreasing and is the identity for n ∈ N \A. So for ` = 0, 1,

(3) α < κ ∧ β0 < β1 < θ` =⇒ f `α <D f `α+1 ≤D g`β1
≤D g`β0

.

Note that β < β′ < θ` implies only g`β′ ≤D g`β , not necessarily <D, however the

sequence cannot be eventually constant (mod D). If it were, then writing g`∗ for the
eventually constant value, the function defined by g`∗(n) − 1 for each n such that
g`∗(n) ≥ 1 (and 0 otherwise) would contradict 2.1(1)(d). So for ` = 0, 1,

(4) for every β < θ` there is β′ with β < β′ < θ` such that g`β′ <D g`β .

Let us check that for ` = 0, 1, and every infinite A′ ⊆ A,

(5) no h ∈ ωω satisfies: for all α < κ, β < θ` we have f `α ≤D+A′ h ≤D+A′ g`β .

Suppose for a contradiction there were such an h. Let hmax(n) = max{k ≤ kn :
π`n(k) ≤ h(n)} and hmin(n) = min

(
{k ≤ kn : π`n(k) ≥ h(n)} ∪ {kn}

)
. For each

α < κ, we have that f `α <D f `α+1 ≤D+A′ h, so f `α <D+A′ hmax. Likewise, recalling

(4), hmin <D+A′ g`β . As the πn are onto an initial segment, hmax = hmin =: h.

Then h and A′ contradict the fact that (f̄ `, ḡ`) is weakly peculiar, 2.1(1)(d). This
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proves (5). Let us check that moreover for ` = 0, 1, for any infinite A′ ⊆ A and any
h ∈ ωω,

(6) if
∧
α<κ

f `α <D+A′ h then
∨
β<θ`

g`β ≤D+A′ h.

Suppose h satisfies the “if” clause. As before we may define h = hmax, and by a
similar argument, for each α < κ, f `α <D+A′ h. As (f̄ `, ḡ`) is left peculiar10, using
A′ for A in 2.1(2)(e) there is γ < θ` such that g`γ ≤D+A′ h. Hence g`γ ≤D+A′ h,
which completes the check of (6).

Now we use the interlacing of the ascending sequences on A. Since θ0, θ1 are
regular cardinals, to prove the claim it will suffice to show that the descending
sequences also interlace on A, i.e. :

(I) if γ < θ0 then for some β < θ1 we have g1
β ≤D+A g0

γ , and

(II) if γ < θ1 then for some β < θ0 we have g0
β ≤D+A g1

γ .

As these are symmetric, it suffices to prove (I). Let γ < θ0 be given. For all α < κ,
by (2) and (3),

(7) f1α <D+A f0α+1 ≤D g0
γ .

Thus, f1α <D+A g0
γ for all α < κ. Applying equation (6) with the present A we find

β < θ1 such that g1
β ≤D+A g0

γ . This proves (I) and the claim. Claim 2.5. �

Continuing the proof of Theorem 2.4, we define a forcing notion Q as follows:

A. p ∈ Q iff p = (v,m, u, π0, π1, k̄) where:
(i) m ∈ N
(ii) v ⊆ N is finite, with max v ≤ m

(iii) u ⊆ κ is finite
(iv) for ` = 0, 1, 〈f `α � [m,ω) : α ∈ u〉 is increasing
(v) π` = 〈π`n : n ∈ v〉

(vi) k̄ = 〈kn : n ∈ v〉, with kn ≥ g00(n) + g10(n) + 1 for each n ∈ v, and
π`n : kn → kn is nondecreasing onto an initial segment.

B. p ≤Q q when:
(i) vp ⊆ vq, mp ≤ mq, up ⊆ uq, vq \ vp ⊆ [mp,mq),
(ii) π`n,p = π`n,q for n ∈ vp, and

(iii) if n ∈ vq \ vp and α < β are from up then

max{π0
n,q(f

0
α(n)), π1

n,q(f
1
α(n))} < min{π0

n,q(f
0
β(n)), π1

n,q(f
1
β(n))}.

Now we record some properties of Q. First, letting only u vary, we have that fixing
an appropriate five-tuple x, the set {p ∈ Q : (vp,mp, π

0
p, π

1
p, k̄p) = x} is directed.

This shows that Q is σ-centered. Second, if α < κ then the set

I1α = {p ∈ Q : α ∈ up}

is dense open. Third, if m ∈ N the set

I2m = {p ∈ Q : mp ≥ m}

10The hypothesis ‘left peculiar’ is essential in proving 2.5. If the cut is only assumed to be

weakly peculiar, it is possible to force a counterexample to the claim using κ > p, noting that
κ < p was not used in that proof. In fact, for weakly peculiar cuts, it is possible to force a

counterexample to the theorem.
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is dense open. Fourth, if m ∈ N the set

I3m = {p ∈ Q : vp 6⊆ {0, . . .m− 1}}
is dense open, since given p, we may choose i > mp such that 〈f `α(i) : α ∈ u〉 is
increasing for ` = 0, 1. Together, letting α < κ, m ∈ N vary, we have a collection
of no more than κ < p dense open subsets of Q, and Q is σ-centered.

By Bell’s theorem, there exists a filter G on Q which is generic for the collection
of dense open sets just built. Then A =

⋃
{vp : p ∈ G}, E = κ, and π`m = π`p,m

for some p ∈ G satisfy the hypotheses of Claim 2.5. This completes the proof of
Theorem 2.4. �

Informally, the connection of p to cuts in linear orders, especially in the context
of [15], may be described by saying: from our present perspective, p expresses some
kind of saturation (which is maximal from that perspective). There are natural
weaker notions corresponding to saturation of some combinatorially natural theo-
ries, such as Tfeq, the theory of an existentially closed model of a parametrized fam-
ily of independent equivalence relations, or the theory of the generic tetrahedron-
free three-hypergraph, called T3,2 in [18] Definition 0.2 . Do these weaker notions
also give rise to natural and interesting cardinal invariants? In the remainder of
the paper, we will touch only on a part of this question, having to do with Tfeq and
its relation to the existence of certain internal maps.

3. On internal maps

Returning to the context of regular ultrafilters, it turns out that the phenomenon
of Uniqueness in the p = t proof from [15] in fact hides something stronger. If
N = M I/D is an ultrapower and g : N → N a partial map, we call g internal (or
induced) if it genuinely comes from the index models, that is, if we could expand
the language of N by a new binary relation symbol R and for each t ∈ I, we could
choose Mt to be M expanded by the new symbol R interpreted as the graph of a
partial map from M to M , in such a way that in the ultraproduct (Mt)

I/D the
relation R is the graph of g.

What was shown in [15] was not only uniqueness, but the a priori stronger fact
that uniqueness is witnessed by internal order preserving maps.

Fact 3.1 ([15] Cor. 3.7). If D is a regular ultrafilter on I and D is good (or
equivalently: D has |I|+-treetops) then for any κ ≤ |I| the following holds:⊕

κ =
⊕

κ(D):
for any two strictly increasing κ-indexed sequences 〈aα : α < κ〉,
〈bα : α < κ〉 of elements of N = (ω,<)I/D, there is an internal
partial order-preserving map f : N → N extending aα 7→ bα.

We might have defined
⊕

κ,M =
⊕

κ,M (D) for M an infinite linear order, with⊕
κ =

⊕
κ,ω. However, by an argument similar to that of Fact 1.3, one can use

regularity of D to show that when κ ≤ |I| the property
⊕

κ,M does not depend on
the choice of linear order.

Curiously, this strengthening turns out to already be equivalent to goodness.

Lemma 3.2. Let D be a regular ultrafilter on I.

(a) Let κ ≤ |I| be regular. If
⊕

κ from 3.1 holds, then (κ, κ) /∈ C(D).
(b) In particular, if

⊕
κ holds for all regular κ ≤ |I| then D is good.
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Proof of Lemma 3.2. Clause (b) follows from clause (a) by Theorem 1.9.
To prove clause (a), recall from the remarks before the proof that having fixed D,

we have that
⊕

κ ⇐⇒
⊕

κ,Q and by Fact 1.3, C(D) = C(D,Q). So it will suffice to

show that if
⊕

κ,Q thenN = Mλ/D contains no (κ, κ)-cut. As ultrapowers commute

with reducts, we may further assume M = (Q; +, <), i.e. our Q has the usual
structure of an ordered additive group. Suppose then that (〈ai : i < κ〉, 〈bi : i < κ〉)
is a (κ, κ)-pre-cut of N . Without loss of generality, a is strictly increasing and b is
strictly decreasing. Using the available addition and subtraction, let d = b0 +1 and
define a sequence 〈b′i : i < κ〉 of elements of N by: b′i = d − bi. Clearly 〈b′i : i < κ〉
is a strictly increasing sequence.

By assumption, there is an internal order-preserving partial bijection f onN with
{ai : i < κ} ⊆ dom(f) and {b′i : i < κ} ⊆ range(f) such that i < κ =⇒ f(ai) = b′i.
(Actually, an internal map between cofinal subsequences would suffice.) In the
language with a symbol for f , clearly dom(f) is a definable set.

Let X = {a ∈ dom(f) : a < d − f(a)}. Clearly X is an internal set, since it is
definable from the internal functions +, f . First we check that X is nonempty. For
each i < κ, ai ∈ dom(f) and d−f(ai) = d−b′i = d−(d−bi) = bi. Since ai < bi by our
original choice of sequences, this shows that ai ∈ X for each i < κ. Second, since f is
order preserving, X is an initial segment of dom(f). Third, for each i < κ, consider
bi. If bi /∈ dom(f), clearly bi /∈ X. Otherwise, recalling that ai < bi and f is order
preserving, necessarily f(ai) < f(bi). Then d− f(bi) < d− f(ai) = d− b′i = bi. So
for each i < κ, bi /∈ X. We have shown that the pre-cut (〈ai : i < κ〉, 〈bi : i < κ〉) is
internally definable, therefore realized (=filled) in the ultrapowerN . This completes
the proof. �

Thus, if there exist ultrafilters satisfying Problem 1.16, uniqueness for such ul-
trafilters will not always be witnessed by internal order preserving maps.

This line of questioning leads us to recall an ultrafilter property, called “good for
equality,” from work of Malliaris. For simplicity, we focus here on the case λ = |I|
though the definition makes sense for any infinite λ ≤ |I|.

Fact 3.3 ([11], [12]). The regular ultrafilter D on I is good for equality if and
only if for any two sequences 〈ai : i < λ〉 and 〈bi : i < λ〉 of distinct elements of
N = ωI/D, there exists an internal bijection h : N → N such that h(ai) = bi for
all i < λ. Informally, say that D admits internal maps between small sets.

For simplicity, we focus here on the case λ = |I| though the definition makes
sense for any infinite λ ≤ |I|.

The original motivation for this property came from its interesting model-theoretic
content: for λ ≤ |I|, “D is λ-good for equality” is necessary and sufficient for D
to λ+-saturate the theory Tfeq mentioned in Section 2. A table connecting the
half-dozen known properties of ultrafilters and of the theories which require these
properties for saturation is in [13] Section 4.

Here is a very simply stated question: for a regular ultrafilter, can existence of
internal maps be separated from existence of internal order-preserving maps? This
is probably the most pressing ultrafilter construction problem from the point of view
of Keisler’s order, and is likely to require very new ideas in ultrafilter construction.

Problem 3.4. Let D be a regular ultrafilter on I, |I| ≥ λ. Suppose D admits
internal maps between sets of size λ. Must it be the case that for any two strictly
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increasing sequences 〈ai : i < λ〉, 〈bi : i < λ〉 of elements of N = ωI/D, there exists
an internal order-preserving partial function h with dom(h) ⊆ N and range(H) ⊆
N such that h(ai) = bi for all i < λ?

To summarize and restate the construction problem:

General Problem 3.5. Let D be a regular ultrafilter.
If D is good for equality, is C(D) = ∅?
Equivalently: if D is good for equality, must D be good?
Equivalently: if D admits internal maps between small sets in the sense captured

by ‘good for equality,’, must D admit internal order-preserving maps between small
sequences in the sense captured by Problem 3.4?

We note here that a negative answer to Problem 3.5, separating good for equality
from good in ZFC, is likely to also solve an old question of Dow from 1985 [3]. We
had given a positive answer to this question in [13] Corollary 1.11, assuming a
measurable cardinal. Again, we state the question before defining the terms.

Problem 3.6 (Dow 1985 [3]). Do there exist regular ultrafilters which are λ+-OK
but not λ+-good?

The connection of this problem to 3.5 is that any ultrafilter on I which is good
for equality is so-called flexible, therefore |I|-OK.11 The condition“D is λ-OK”
weakens “D is λ+-good” by asking that only the monotone functions f : [λ]<ℵ0 → D
such that |u| = |v| implies f(u) = f(v) have a multiplicative refinement. (It is
unfortunate that the cardinals are off by a plus sign, but for clarity in these brief
remarks, we retain the notation of the original sources. That is, Problem 3.6 asks
that all ‘nice’ maps from [λ+]<ℵ0 to D all have multiplicative refinements, despite
the fact that some maps from [κ]<ℵ0 to D do not, for some κ ≤ λ. One could
presumably solve Problem 3.5 using just κ = λ+, but we would expect such a
solution to also shed light on the case of κ ≤ λ.)

We may also consider a cardinal invariant analogue of 3.5. Recalling 2.3, define
specD,uqm = { κ : if (κ, θ`) ∈ C(D, ωω) for ` = 0, 1 , then θ1 = θ2 and there is
an internal order preserving partial map which witnesses it }. Here “uqm” is for
“unique mapping,” noting that the definition of internal map makes sense also for
reduced products.

Problem 3.7. Is specuq = specuqm? At the very least, are the derived cardinal
invariants equal?

To conclude the discussion of Problem 3.5, it is worth underlining that there is a
rich model theory related to these problems, and a successful ultrafilter construction
may provide the most direct way of illuminating this. It concerns the structure of
the so-called non-simple theories, the large region on the right in the diagram.

IMAGE GOES HERE

The picture, explained in [18], illustrates the known map of Keisler’s order. The
lines indicate dividing lines and the white regions are not yet mapped. The red
arrow indicates the location of a very surprising recent discovery, the existence of

11The original proof goes by showing: there is a minimal TP2 theory in Keisler’s order, [11]

Corollary 6.10; D is good for equality iff it saturates this minimal TP2 theory, [11] Lemma 6.7
plus [12] Theorem 5.21; if D saturates any theory with TP2, in particular the minimal theory,

then it is flexible, [11] Lemma 8.8; flexible implies OK, [11] Claim 8.4.
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12 M. MALLIARIS AND S. SHELAH

an infinite descending chain, [18] Theorem 6.6. The large shaded region on the
right is the maximum class; we don’t know whether it may encompass all non-
simple theories. This hinges precisely on the question of whether good and good
for equality coincide: this is because on one hand, as mentioned in the preceeding
footnote, there is a minimum Keisler class among the non-simple theories and its
members are precisely those theories T such that if D is regular and good for T then
D is good for equality, and on the other hand, there is a maximum Keisler class
whose members are precisely those theories T such that if D is regular and good
for T then D is good. Thus, progress on the set-theoretic problem of constructing
regular ultrafilters which are good for equality but not good would establish a
nontrivial gap in the model-theoretic complexity of theories in these two classes.12

4. Bases for goodness

In this section we describe one problem illustrative of the fact that model-
theoretic ‘patterns’ arising from realization or omission of types in ultrapowers
may usefully reflect back onto the structure of the underlying ultrafilter. To begin,
we explain a result mentioned above.

Fact 4.1 (Keisler [5]). If D is a regular ultrafilter on λ, then D is good if and only
if for every complete countable theory T and any M |= T , Mλ/D is λ+-saturated
(i.e. if and only if for every complete countable theory T , D is good for T ).

Why? Consider a complete, countable theory T and a regular ultrafilter D on
λ. Given an ultrapower N = Mλ/D, we fix in advance a lifting to Mλ so that the
coordinate projections a[t] are well defined for any a ∈ N and t ∈ λ. When ā is a
tuple, write ā[t] for 〈ai[t] : i < lg(ā)〉. The following fact gives a direct connection
between realization of types and multiplicative refinements for certain monotonic
functions. For a proof, see [13] 1.7-1.8.

Fact 4.2. Let M |= T and N = Mλ/D. Let 〈Xα : α < λ〉 be a regularizing family
for D. Let p(x) = {ϕα(x; āα) : α < λ} enumerate some consistent partial type in
the ultrapower N . Consider the map d on [λ]<ℵ0 given by:

s 7→ {t ∈ λ : M |= ∃x
∧
{ϕα(x; āα[t]) : α ∈ s} ∩

⋂
α∈s

Xα.

Then d is a monotonic map into D by  Los’ theorem, and p is realized if and only
if d has a multiplicative refinement.

Fact 4.1 then follows from showing that in any sufficiently rich theory (set theory,
Peano arithmetic) all relevant monotonic functions may be represented by appro-
priate types: one can directly code a failure of multiplicativity in the ultrafilter as
the omission of a type in the ultrapower.

From this discussion, the reader may already guess that Keisler’s order reflects a
certain structure on the family of all monotonic functions from [λ]<ℵ0 → D which
is largely invisible to current tools. For instance, as was discussed above, the theory
T∗ = Th(Q, <) is obviously much less expressive than Peano arithmetic. However,
T∗ and PA are in the same class, the maximum class, in Keisler’s order. This means

12In model-theoretic language, this would separate the Keisler-class of Tfeq (the minimum
class among theories with the tree property) and the Keisler-class of theories with the strong tree

property SOP2.
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that in order that every monotonic function from [λ]<ℵ0 to D have a multiplicative
refinement, it is sufficient to have multiplicative refinements for the functions arising
as codes for types describing cuts in linear order.

General Problem 4.3. Give an internal set-theoretic characterization of a family
F ⊆ [λ]<ℵ0 → D of monotonic functions which is in some sense minimal for the
property that if every f ∈ F has a multiplicative refinement then D is good.

The following rephrasing of Problem 3.5 may be a useful weakening of 4.3. H(µ)
are the sets hereditarily of cardinality less than µ for some sufficiently large µ.

Problem 4.4. Suppose D is a regular ultrafilter on λ such that N = (H(µ), ε)λ/D
is “λ+-saturated for functions,” i.e. if f is a partial function with domain of car-
dinality ≤ λ from N to N then there is an internal function which extends it. Is D
good?

Progress on the set-theoretic Problems 4.3 and 4.4 may help with a longstanding
model-theoretic problem: finding a model-theoretic characterization of the maximal
Keisler class. At present we have only the set-theoretic characterization given by
Keisler, i.e. T is E-maximum if and only if the regular ultrafilters which are good
for T are precisely the good regular ultrafilters. The most recent advance on this
question, a new sufficient model-theoretic condition for maximality given in [15]
Theorem 1.11, led to many of the results and ideas in the present paper, and surely
there is much more to be said.

Appendix

Proof of Fact 1.3. Suppose (κ, θ) ∈ C(D, N), witnessed by (〈aα : α < κ〉, 〈bβ : β <
θ〉) in the ultrapower N I/D. Fix a lifting N I/D → N , so that for each t ∈ I the
coordinate projections aα[t], bβ [t] are well defined. Let A = {aα : α < κ} and
B = {bβ : β < θ}. Since D is regular, we may find a regularizing family and choose
κ+θ distinct elements of this family which we index as {Xα : α < κ}∪{Xβ : β < θ}.
Define a map f : A ∪ B → D by aα 7→ Xα for α < κ and bβ 7→ Xβ for β < θ.
For each t ∈ I, let A[t] = {aα[t] : t ∈ f(aα)} and B[t] = {bβ [t] : t ∈ f(bβ)}. For
each t ∈ I, both A[t] and B[t] are finite, and so A[t] ∪ B[t] is a finite, discretely
ordered set in N . Let it : A[t] ∪ B[t] → M be an order preserving injection. (For
greater transparency, we may choose this map so that if x < y are from dom(it)
and N |= (∃z)(x < z < y) then M |= (∃z)(it(x) < z < it(y)); but this isn’t
necessary.) Fix an element 0 of M . For α < κ and t ∈ I, define cα,t to be it(aα[t])
if t ∈ Xα, and 0 otherwise. For β < θ and t ∈ I, define dβ,t to be it(bβ [t]) if
t ∈ Xβ , and 0 otherwise. Let cα := 〈cα,t : t ∈ I〉/D ∈ M I/D, and likewise let
dβ = 〈dβ,t : t ∈ I〉/D ∈ M I/D. By  Los’ theorem, (〈aα : α < κ〉, 〈bβ : β < θ〉) is a
cut in N I/D if and only if (〈bα : α < κ〉, 〈dβ : β < θ〉) is a cut in M I/D, and so
(κ, θ) ∈ C(D,M). �

By using M = N in Fact 1.3 and choosing each it in the proof of that Fact to
be order reversing, (κ, µ) ∈ C(D) if and only if (µ, κ) ∈ C(D).
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