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ABSTRACT. We shall deal comprehensively with Black Boxes, the intention
being that provably in ZFC we havea sequence of guesses of extra structure on
small subsets, the guesses are pairwise with quite little interaction, are far but
together are "dense”. We first deal with the simplest case, were the existence
comes from winning a game by just writing down the opponent’s moves. We
show how it help when instead orders we have trees with boundedly many
levels, having freedom in the last. After this we quite systematically look at
existence of black boxes, and make connection to non-saturation of natural
ideals and diamonds on them.
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2 SAHARON SHELAH

§ 0. INTRODUCTION

The non-structure theorems we have discussed in [Shef] rests usually on some
freedom on finite sequences and on a kind of order. When our freedom is related
to infinite sequences, and to trees, our work is sometimes harder. In particular, we
may consider, for A > x, x regular, and ¢ = ¢(Zo,. .., Ta; - - -)a<y I a vocabulary
T

(x) For any I C X=X we have a 7~model M; and sequences a,, (for n € X>\),
where
mav = a, # al, lyg(ay) = gg(jlg(n))v
such that for n € X\ we have:

MrE (... anlas---)a<y if and only if n € I.

(Usually, M7 is to some extend “simply defined” from I). Of course, if we do not
ask more from M, we can get nowhere: we certainly restrict its cardinality and/or
usually demand it is ¢-representable (see Definition [Shef, 2.4] clauses (c),(d)) in
(a variant of) ., .(I) (for suitable u, ). Certainly for 7" unsuperstable we have
such a formula ¢:

o(- s lnin, ) = (32) )\ on (T, @npn).

There are many natural examples.

Formulated in terms of the existence of I for which our favorite “anti-isomorphism”
player has a winning strategy, we prove this in 1969/70 (in proofs of lower bounds
of H(/\,Tl, T), T unsuperstable), but it was shortly superseded. However, eventu-
ally the method was used in one of the cases in [She78b, Ch.VIII,§2]: for strong
limit singular [She78b, Ch.VII1,2.6]. It was developed in [She84a], [She84b] for
constructing Abelian groups with prescribed endomorphism groups. See further a
representation of one of the results here in Eklof-Mekler [EM90], [EM02] a version
which was developed for a proof of the existence of Abelian (torsion free X;—free)
group G with

G =G"dA (G* := Hom(G, Z))

in a work by Mekler and Shelah. A preliminary version of this paper appeared
in [She87, Ch.III,54,85] but §3 here was just almost ready, and §4 on partitions of
stationary sets and ) was written up as a letter to Foreman in the late nineties
answering his question on what I know on this.
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§ 1. THE EASY BLACK BoxX AND AN EASY APPLICATION

In this section we do not try to get the strongest results, just provide some
examples (i.e., we do not present the results when A = AX is replaced by A = A<X).
By the proof of [She78b, Ch.VIIL,2.5] (see later for a complete proof):

Theorem 1.1. Suppose that
(1) (a) A=A

(b) T a vocabulary ¢ = ©(Zo,Z1,...,%a - )a<y i a formula in L(T) for
some logic £

(€)r,p For any I C XZ )\ we have a T-model M; and sequences ay, (forn €
X>\), where

av=a,#a),  Llg(ay) =Lg(Tigm)),
such that for n € X\ we have:
MpE (..., anas - - -)a<y if and only ifn € I

(¢) |Mp]| = X for every I satisfying x>\ C I C X=X, and lg(a,) < x or
Just A9(@n) = X,

Then (using X>X C I CXZ\):

1) There is no model M of cardinality X\ into which every My can be (+p)—-embedded
(i.e., by a function preserving ¢ and —p).

2) For any M; (fori < \), |M;|| < X, for some I satisfying X>X\ C I C X2\, the
model My cannot be (p)—embedded into any M;.

Example 1.2. Consider the class of Boolean algebras and the formula
Oy Xy n) = (an) =1
n

(i.e., there is no = # 0 such that = Nz, = 0 for each n).
For “>X C I C “Z), let M; be the Boolean algebra generated freely by x, (for
n € I) except the relations: for n € I, if n < lg(n) = w then x, Nz, = 0.

So | M;|| = |I]| € [\, A®] and in M; for n € “A we have: M; = (Jzy,) = 1 if

and only if ¢ I (work a little in Boolean algebras).
So

Conclusion 1.3. If A = \®o, then there is no Boolean algebra B of cardinality A
universal under o—embeddings (i.e., ones preserving countable unions).

Remark 1.4. This is from [She78b, Ch.VII],Ex.2.5,pg.464].

Proof of the Theorem 1.1. First we recall the simple black box (and a variant)
in 1.5, 1.6 below:

The Simple B.B. Lemma 1.5. There are functions f, (for n € X\) such that:

(1) Dom(fy) ={nla:a<x},
(ZZ) Rang(f”) g )\7
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(¢i2) if f:XZX — A, then for some n € X\ we have f, C f.

Proof. For n € XX let f, be the function (with domain {n]a : a < x}) such that:

fa(nla) = n(a).

So (fy : m € XA) is well defined. Properties (i), (ii) are straightforward, so let us
prove (iii). Let f: X>X — X\. We define 1, = (8; : © < ) by induction on a.

For a = 0 or « limit — no problem.

For o + 1: let B, be the ordinal such that 8, = f(74).

Son=:(B; i< x) is as required. O 5

Fact 1.6. In 1.5:

(a) we can replace the range of f, f, by any fixed set of power A\,

(b) we can replace the domains of f, f, by {a, : n € X> A}, {aya : @ < x},
respectively, as long as

a<BI<XANEXXN = Gy F -
Remark 1.7. We can present it as a game. (As in the book [She78b, Ch.VIII,2.5]).
Continuation of the Proof of Theorem 1.1.
It suffices to prove 1.1(2). Without loss of generality (|M;|: i < A) are pairwise

disjoint. Now we use 1.6; for the domain we use (a,, : 7 € X~ \) from the assumption
of 1.1, and for the range: J XZ|M;| (it has cardinality < X as | M;]| < A = \X).

i<A
We define
I=(X)U{neXX: forsomei< A\ Rang(f,) is a set of sequences
from |M;| and M; = —p(. .., fy(@nta), - )a<y}-
Look at M;. It suffices to show:
® for i < A there is no (+p)-embedding of M; into M;.

Why does ® hold?
If f: M; — M, is a (£¢)—embedding, then by Fact 1.6, for some n € X\ we
have

fHana 1 <K} = fy.
By the choice of f,

My ):go[...,an[a,...]a<x — M, ):gp[...,f(an[a),...}a<x,
but by the choice of I and M; we have

My ':@[""an(o‘""]a<x —= M, ':ﬁ(p[...,f,l(a7][a),...]a<x.

A contradiction, as by the choice of 7,

/\ f(@ma) = fn(dnra)-

a<x
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Discussion 1.8. We may be interested whether in 1.1, when AT < 2%, we may

(a) allow in (1) ||M]] = AT, and/or
(b) get > A** non-isomorphic models of the form M, assuming 2* > A*.

The following lemma shows that we cannot prove those better statements in ZFC,
though (see 1.11) in some universes of set theory we can. So this require (ele-
mentary) knowledge of forcing, but is not used later. It is here just to justify the
limitations of what we can prove and the reader can skip it.

Lemma 1.9. Suppose that in the universe V we have k < A = cf(\) = A<* and
(VA1 < A)[AF < A] and X\ < p = p?.

Then for some notion forcing P:

(a) P is A\-complete and satisfies the \* —c.c., and |P| = p,lFp “2* = p” (so

forcing with P collapses no cardinals, changes no cofinalities, adds no new
sequences of ordinals of length < X\, and lFp “A<* = \").

(b) We can find o, My (for ">\ C I C "Z)\) as in (x) of 72, so with |M;| =
A(T—models with |T| = k for simplicity) such that:

@ there are up to isomorphism exactly AT models of the form My (F>X C
ICA2)).

(c) In (b), there is a model M such that |M|| = AT and every model My can

be (+p)—embedded into M.

Remark 1.10. 1) Essentially My is (I, <), the addition of level predicates is im-
material, where I extends I “nicely” so that we can let a,, = n for n € I.

2) Clearly clause (c) also shows that weakening ||M|| = ), even when AT < 2* may
make 1.1 false.

Proof. Let 7 = {R¢ : ¢ < r} U{<} with R; being a monadic predicate, and <
being a binary predicate. For a set I, ®>X C I C “Z)\ let N; be the 7-model:

INi| = LR =1\, <MNM={(pv):nelvelnav},
and
Ploae, o Jeen = [\ (w¢ <@e & Re(x)) A By)[Ruly) & N ¢ <yl
(<E<k (<K
Now we define the forcing notion P. It is Py+, where
(P;,Qj 1 < AT, g < A

is an iteration with support < A, of A-complete forcing notions, where Q; is defined
as follows.
For j = 0 we add p many Cohen subsets to A:

Qo = {f : f is a partial function from g to {0,1}, |Dom(f)| < A},

the order is the inclusion.



Paper Sh:309, version 2019-04-22_12. See https://shelah.logic.at/papers/309/ for possible updates.

6 SAHARON SHELAH

For j > 0, we define Q; in V¥7. Let (I(j,a) : o < a(j)) list all sets I € V5,
B>\ C J C k) (note that the interpretation of 52 )\ does not change from V to
VFi as k < A but the family of such I-s increases).

Now

Q; = {f_’ f={fa:a<a(y)), foisa partial isomorphism

from Ni(ja) into Nee>y),

w(f):={a: fo # 0} has cardinality < A,

Dom(f,) has the form |J "Z8nN Ni(j,a) for some v < A;

By
and if a1, as < a(j) and 11,72 € ®A, and for every ¢ < k&,

Jor (M 1€), fas(n21¢) are defined and equal, then
m € I(j,a1) <= n2 € I(j,az)}-

The order is:

f1<f? ifandonlyif (Va<a(f)(fL C f2) and
for all a < f < a(j), fa # O A f5 # 0 implies
Rang(f3) N Rang(f3) = Rang(f,) N Rang(f3).

Then, Q; is A-complete and it satisfies the version of A*—c.c. from [She78a] (see
more [She00]), hence each P; satisfies the A*—c.c. (by [She78a]).
Now the P, i-name [;, (interpreting it in VPit1 we get I*e;) is:

Iy =rAu{ner\: for some fe Go,,a < a(j) and v € Ny a),
Lg(v) = k and f,(v) = n}.

This defines also f7 : I(j,a) — I}, which is forced to be a (+¢)-embedding and
also just an embedding.

So now we shall define for every I, >\ C I C "2\, a 7-model M;: clearly I
belongs to some VFi. Let j = j(I) be the first such j, and let a = a(I) be such
that I = I(j, ). Let My(j,o) = Ni+ (and a, = fi(p) for p € I(j,)).

We leave the details to the reader. g

On the other hand, consistently we may easily have a better result.

Lemma 1.11. Suppose that, in the universe V,

A=cf\) =\ =A< A<p=pt
For some forcing notion P:

(a) asin 1.9
(b) in VF, assume that @ and the function I — (Mp,(a} : n € "> X)) are as

required in clauses (a),(b),(c) of (x) of 1.1), ((x) < w, and N¢ (for ¢ < ((*))

is a model in the relevant vocabulary, > |N¢||* < p (if the vocabulary
¢<C(#)

is of cardinality < A and each predicate or relation symbol has finite arity,

then requiring just S{|N¢|| : ¢ < ((*)} < p suffices). Then for some I, the

model My cannot be (£p)—-embedded into any N¢.
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(¢) Assume p; = cf(p1),A < p1 < p and V = (Vx < m)[x* < p1]. Then
in VE, if (Mg, : i < py) are pairwise non-isomorphic, ">\ C I; C "2\,
and My,,a}, (n € I;) are as in (x) of 7?), then for some i # j, My, is not
embeddable into My, .

(d) In VF we can find a sequence (I : ¢ < p) (so ">\ C I C *2)\) such that
the My ’s satisfy that no one is (p)-embeddable into another.

Proof. P is Qg from the proof of 1.9. Let F be the generic function that is U{f :
f € Gay,}, clearly it is a function from p to {0,1}. Now clause (a) is trivial.

Next, concerning clause (b), we are given (N¢ : ¢ < ((x)). Clearly for some
A €V of size smaller than p, A C p, to compute the isomorphism types of N, (for
¢ < ((x)) it is enough to know F|A. We can force by {f € Qp : Dom(f) C A},
then f | B for any B C A\ A of cardinality A, (from V) gives us an I as required.

To prove clause (c) use A—system argument for the names of various My’s.

The proof of (d) is like that of (c). Ui
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§ 2. AN APPLICATION FOR MANY MODELS IN A

Discussion 2.1. Next we consider the following:

Assume A is regular, (Vu < A)[u<X < A]. Let %, C {6 < X : cf(d) = x} for
a < A be pairwise disjoint stationary sets.

For A C A, let

Us = | ) %.

i€EA

We want to define I4 such that x>\ C T4 C X2\ and

AgBiM[A%M[B.
We choose (M}, :i < X\ : A C A\ with My, = U Mj,, |Mj || < X Mj,
i<

increasing continuous.

Of course, we have to strengthen the restrictions on Mj;. For nn € I4 N X\, let
d(n) = U{n(i) +1:4 < x}, we are specially interested in n such that n is strictly
increasing converging to some (1) € %a; we shall put only such 7’s in I4. The
decision whether 1 € T4 will be done by induction on d(n) for all sets A. Arriving
to , we assume we know quite a lot on the isomorphism f : M;, — Mj,, specially
we know

fF U an[av
a<xy

which we are trying to “kill”, and we can assume §(n) ¢ %p and J belongs to a
thin enough club of A and using all this information we can “compute” what to do.
Note: though this is the typical case, we do not always follow it.

Notation 2.2. 1) For an ordinal o and a regular § > Vg, let 7%y («) be the smallest
set Y such that:

(1) i €Y fori< q,
(i) z €Y for x CY of cardinality < 6.

2) We can agree that ./ g(a) from [Shef, §2] is interpretable in (J#~¢(a), €) when
«a > A, and in particular its universe is a definable subset of J#%y(«), and also R
is, where:

R={(c*(ti i <),n): x€ Mp(?0),
c*isaTy,—termand 0 <A< a,z=0"({t; i <))}

Similarly .#\ ¢(I), where I C "~ X is interpretable in (L, (\*),€) if A < X*,0 <
Xo K <X
The main theorem of this section is:
Theorem 2.3. jEi¢(>\, K) = 2*, provided that:
(a) A= A%,

0) p=¢(..,Za,--)a<y s a formula in the vocabulary Tk,
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(¢) for every I such that X>X\ C I C X2\ we have a model M; € Ky and a
function fr, and @, € X=|Mj| for n € X>X with Lg(a,) = €g(Teg(y)) such
that:

() forn e XX we have M1 {= ¢(...,ayta,-..) if and only if n € I,
(B) fr: My — M, (I), where p <\, Kk = x", and:
(d) for I, X>X C I CXZ\ and b, € My,Lg(Zs) = Lg(ba) for a < X, fr(by) =

Fa(ta) we have: the truth value of My = ¢[...,ba,.. Jacy can be com-
puted from (G4 1 a0 < X), {ta : @ < X) (not just its q.f. type in I) and the
truth values of statements of the form

Fv e INXN[\ vie = ts, (i) lei]
<X

for a;, Biy Vi, € < X (i-e., in a way not depending on I, f1) [we can weaken

this].
We shall first prove 2.3 under stronger assumptions.
Fact 2.4. Suppose

() A =A%, (so cf(\) > x) and x > ~.

Then there are {(M*,n*) : @ < a(*)} such that:

(¢) for every model M with universe ., + () such that |7(M)| < x (and, e.g.,
T C Hy+(N)), for some a we have M < M,
(i) 1 € XA, (Vi <x)[n*Ti € M°], * ¢ M®, and o # B = n* # n”,
(iii) for every B < a(*) we have: {n®[i:i < x} € M7,
(iv) for B < aif {nPli:i < x} C M?, then |MP| C | M|,
(v) [[M]] = X

Proof. By 3.20 + 3.21 below with A, 2X, x here standing for A, x(x), 6 there.

Proof of 2.3 from the Conclusion of 2.4.
Without loss of generality the universe of Mj is A in 2.3.
We shall define for every A C \ a set I[A] satisfying X> \ C I[A] C X2\, moreover

ITAINXAC {(n® :a < afx)}.

For a < a(x), let % = {n € XX : {nli : i < x} € M“}. We shall define by
induction on «, for every A C A the set I[A] N %, so that on the one hand those
restrictions are compatible (so that we can define I[A] in the end, for each A C ),
and on the other hand they guarantee the non (+¢)-embeddability.

For each «: (essentially we decide whether n* € I[A] assuming M “guesses”
rightly a function ¢ : My, — My, (I, = I[As]), and A, N M® for ¢ = 1,2, and we
make our decision to prevent this)

Case I: there are distinct subsets A1, Ay of A and I, I» satisfying X> X C I, C X2,
and a (+p)-embedding g of My, into My, and

M < (%<X+()‘)7 evR7A17A2711a125M11aM127f117f127g)a

where
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R={{(0,04,2),(1+,t7,2)} : i < i, and x has the form o, ({t7 : i <i,))}

(we choose for each x a unique such term o), and Io N %, C I, N ( J %), and
B<a
I, I satisfy the restrictions we already have imposed on I[A,], I[As], respectively

for each 8 < a. Computing according to clause (d) of 2.3 the truth value for
M[2 |: (p[ Cey f(dna fi)’ .. '}i<X we get te.
Then we restrict:

(i) if BC A, BN|M®| = Ay N |M®|, then I[B]n(Z*\ U %*°) =0,

B<a
(i) if BC A, BN|M®*| = A; N|M®*| and t* is true, then
IBIn x>\ |J %) =0,
B<a

or just
n* ¢ I[B]

(#91) if BC A, BN|M%| = A; N|M®| and t* is false, then
1B\ |J #°) = {n}

B<a
or just
n® € I[B]
Case II: quad Not 1.
No restriction is imposed.
The point is the two facts below which should be clear. Os 4

Fact 2.5. The choice of Aj, Ay, I, I5, g is immaterial (any two candidates lead to
the same decision).

Proof. Use clause (d) of 2.3. Uas

Fact 2.6. M4 (for A C \) are pairwise non-isomorphic. Moreover, for A # B
(subsets of A) there is no (+¢)-embedding of M4 into My p).

Proof. By the choice of the I[A]’s and (i) of 2.4. Oos

* * *

Still the assumption of 2.4 is too strong: it does not cover all the desirable cases,
though it cover many of them. However, a statement weaker than the conclusion
of 2.4 holds under weaker cardinality restrictions and the proof of 2.3 above works
using it, thus we will finish the proof of 2.3.

Fact 2.7. Suppose A = \X.
Then there are {(M*, Ay, A3, n*) : o < a(*)} such that:
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(x) (i) for every model M with universe J#.,+(\) such that |7(M)| < x
and 7(M) C Fy~(N) (arity of relations and functions finite) and sets
A1 # Ay C A, for some a < a(x) we have (M, AT, AY) < (M, A1, As),
(i) n*€XX{n*lii<x}CIM®|,n* ¢ M* and a# B = n*#1”,
(iii)  for every B < a(x), if {n®|i :i < x} € MP, then a < 8+ 2X, and
a+2X = 3+ 2X implies A} N |M*| # Ag n|M,
(iv)  for every 8 < aif {n’li:i < x} € M, then |MP| C |M®|,
(v) [IM] = x.

Proof. See 3.46.

Proof of 2.3: Should be clear, We act as in the proof of 2.3 from the conclusion
of 2.4 but now we have to use the ”or just” version in (ii),(iii) there, 0o 7

Conclusion 2.8. 1) If T C Ty are complete first order theories, T in the vocabulary

7,k = cf(k) < K(T), hence T unsuperstable and X = A\X > |Ty|, then T.(\, Ty) = 2>

(I, — see Definition [Shef, 1.2(2)]).

2) Assume r = cf(k), ® is proper and almost nice for Kt, see [Shef, 1.7], 6% (i < k)

finite sequence of terms, T C To, pi(Z,7) first order in Z[r] and for v € '\, n € "\,

v < n we have EM("A, @) |= @i (07 (), 6" (2~ (a))) holds if and only if oo = n(i).
Then

n

2N = {EM,(S,®)/ =: "" A C S C"2)\}|.
Proof. 1) By [Shef, 1.10] there is a template ® proper for K{:, as required in part

(2).
2) By 2.3. Uas

Discussion 2.9. What about Theorem 2.3 in the case we assume only A = A<X?
There is some information in [She78b, Ch.VIIL§2].

Of course, concerning unsuperstable T', that is 2.8, more is done there: the
assumption is just A > |T.

Claim 2.10. In 2.3, we can restrict ourselves to I such that IS’X C I C X2\, where

IS)X =X"AU{n e XX:n(i) =0 for every i < x large enough}.

Proof. By renaming. U210



Paper Sh:309, version 2019-04-22_12. See https://shelah.logic.at/papers/309/ for possible updates.

12 SAHARON SHELAH

§ 3. BLACK BOXES

We try to give comprehensive treatment of black boxes, not few of them are
useful in some contexts and some parts are redone here, as explained in §0,81.

Note that “omitting countable types” is a very useful device for building models
of cardinality Ny and N;. The generalization to models of higher cardinality, \ or
AT, usually requires us to increase the cardinality of the types to A, and even so we
may encounter problems (see [Shee| and background there). Note we do not look
mainly at the omitting type theorem per se, but its applications.

Jensen defined square and proved existence in L: in Facts 3.1 — 3.8, we deal
with related just weaker principles which can be proved in ZFC. E.g., for A regular
> Ny, {§ < AT :cf(d) < A} is the union of X sets, each has square (as defined there).
You can skip them in first reading, particularly 3.1 (and later take references on
belief).

Then we deal with black boxes. In 3.12 we give the simplest case: A regular
> Ng, A = AX(); really A<? = A<X(*) is almost the same. In 3.12 we also assume
“S C{d < A:cf(0) =0} is a good stationary set”. In 3.16 we weaken this demand
such that enough sets S as required exists (provably in ZFC!). The strength of the
cardinality hypothesis (A = A<X(9) | \<0 = \<x(+) N0 = \<x(*)) yary the conclusion.
In 3.14 — 3.17 we prepare the ground for replacing “A regular” by “cf(A) > x(x)”,
which is done in 3.18.

As we noted in §2, it is much nicer to deal with (M#,1%), this is the first time
we deal with n?, i.e., for no a < f3,

{nrii<oyc| My
i<6
In 3.20, 3.21 (parallel to 3.12, 3.18, respectively) we guarantee this, at the price of
strengthening A<¢ = \<x(*) to

A = N (1) = x(5) + (< x (%))

Later, in 3.46, we draw the conclusion necessary for section 2 (in its proof the
function A, which may look redundant, plays the major role). This (as well as 3.20,
3.21) exemplifies how those principles are self propagating — better ones follow
from the old variant (possibly with other parameters).

In 3.22 — 3.27 we deal with the black boxes when 6 (the length of the game) is .
We use a generalization of the A-system lemma for trees and partition theorems
on trees (see Rubin-Shelah [RS87, §4], [She82, Ch.XI] = [She98, Ch.XI],[Shed,
1.10=L1.7],[Shed, 1.16=L1.15] and here the proof of 3.24; see history there, and
3.6). We get several versions of the black box — as the cardinality restriction
becomes more severe, we get a stronger principle.

It would be better if we can use for a strong limit x > Ry = cf(k),

kM0 =sup{\: for some k, < k and uniform ultrafilter D on w,
cf( I] kn/D) = A}
n<w

We know this for the uncountable cofinality case (see [She86b] or [She94b]), but
then there are other obstacles. Now [She94a] gives a partial remedy, but lately by
[She94c] there are many such cardinals.
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In 3.41, 3.42 we deal with the case cf(\) < 6. Note that cf(A<X(*)) > y(x) is
always true, so you may wonder why wouldn’t we replace A by A<X(*)? This is true
in quite many applications, but is not true, for example, when we want to construct
structures with density character \.

Several times, we use results quoted from [Shea, §2], but no vicious circle. Also,
several times we quote results on pef quoting [Shed, §3]. We end with various
remarks and exercises.

Fact 3.1. 1) If uX = pu < A < 2%y and A are regular uncountable cardinals, and
S C{d < A:cf(d) = x} is a stationary set, then there are a stationary set W C x
and functions hq, hy : A — pand (S¢ : 0 < ¢ < A) such that:

(a) S C S is stationary,
(0) £# ¢ = SenSc =0,
(¢) if § € Se, then for some increasing continuous sequence (a; : i < x) we have
0= U ai, hp(a;) =i, ha(a;) € {£,0}, and the set {i < x : hq(ay) = &} is
1< X
stationary, in fact is W.

2) If in (1), a sequence (Cs : 6 < A, cf(d) < x) satisfying

(Vo € Cs)[a limit = a = sup(an Cs)]

is given, Cjs is closed unbounded subset of § of order type cf(d), then in the con-
clusion we can get also S*, (C¥ : 6 € S*) such that (a), (b), (c) hold, and

(¢) in (c) we add Cs = {a; 1 i < x},
(d U SeCsS*C U Seu{d<A:cf(d) <x}s
0<E<A 0<€<A
(e) Wisa (> Ng)-closed, stationary in cofinality Ng, subset of x, which means:

(1) if i < x is a limit ordinal, ¢ = sup(i N W) has cofinality > N then
ie W,
(ii) {i € W : cf(i) = Ng} is a stationary! subset of x,

(f) foroe U S¢ we have
0<E<A

C5 ={a € Cs : otp(anN Cs) = sup(W Notp(a N Cs))}

(9) Cf is a club of ¢ included in Cs for 6 € S*, and if §(1) € C§, § € S*,0 €
U S¢,6(1) =sup(6(1) N C5) and cf(6(1)) > Ry then Cf ) € CF,
0<C<A

(h) if C is a closed unbounded subset of A, and 0 < £ < A then the set
{6 € S¢ : C; C C} is stationary.

Proof. 1) We can find {(h{, h7) : & < p} such that:
(a) for every & we have h% : A\ — p and hg A —

(b) if A C A, |A| < x, and h',h? : A — p, then for some &, h% [A = h', and
h21A = b2,

Lwe can ask ¢ I if I is any normal ideal on {i < x : cf(i) = Ro}
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This holds by Engelking-Karlowicz [EK65] (see for example [She90a, AP]).

For § < A let Cs be a closed unbounded subset of ¢ of order type cf(d). Now for
each & < p and a stationary a C x ask whether for every i < A for some j < A we
have

(*)ff the following subset of A is stationary:

St ={6e8S: (i)if o€ Cs,0tp(rN C5) ¢ a then hi(a) =0,
(ii) if a € Cs,0tp(aN Cs) € a then the h% (a)-th
member of C, belongs to [i, ),

(iti) if @ € C5 then hZ(a) = otp(a N Cs)}

Us.1

Subfact 3.2. For some £ < p and a stationary set a C x, for every i < A for some
J € (i, A), the statement (*)fja holds.

Proof. If not, then for every £ < p and a stationary a C x, for some i = (£, a) < A,
for every j < A, j > i(§,a), there is a closed unbounded subset C(¢,a,4,5) of A
disjoint from Sf]a
Let
i(x) = U{Z(E, a)+w:& < panda C y is stationary}.

Clearly (%) < A.

For i(x) < j < Alet C(j) = N{C(&, a,i(€,a),7) : a C x is stationary and
& < pu}n(i(x) +w,N), clearly it is a closed unbounded subset of A.

Let

C* = {6 < X:6>i(x) and (Vj < 8)[5 € C(j)]}.

So C* is a closed unbounded subset of A, too. Let CT be the set of accumulation
points of C*. Choose §(x) € C*t NS, and we shall define

h1 : Cg(*) — U, h2 : Cg(*) — U.
For o € Cyy) let h%(a) be:
Min{vy < x : 7 > 0 and the y—th member of C,, is > i(x)}
if a = sup(Cj(4) N ) > i(x), and zero otherwise. Clearly the set
{a € Cspy+ BO(a) =0}
is not stationary. Now we can define g : Cj(,) — 0(x) by:

g(a) is the h?(a)-th member of C,,.

Note that g is pressing down and {a € Cs, : g(a) < i(*)} is not stationary. So
(by the variant of Fodor’s Lemma speaking on an ordinal of uncountable cofinality)
for some j < sup(Cs(x)) = 6(*) the set

a:={a € Csuy NC™ 1i(*) < gla) < j}
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is a stationary subset of d(x), and let h' : C5(,) — p be

W (a) = 0 if otp(a N C}) ¢ a,

¥ = h(a) ifotp(anCi)€a. |-

Let h? : Csxy — p be h*(a) = otp(a N Cs(,y). By the choice of ((h¢, h) : € < p),
for some &, we have h}[Csy = h' and h2[Cj(,) = h?. Easily, 6(x) € S5 which
is disjoint to C(&,a,i(x), ), a contradiction to §(x) € C* by the definition of C(j)

and C*.
So we have proved the subfact 3.2. EP)

Having chosen ¢, a we define by induction on ¢ < A an ordinal ({) < A such
that (i(¢) : ¢ < A) is increasing continuous, (0) = 0, and (*)f(g) i(c1) Dolds.
Now, for v < A we define h,(a) as follows: it is ¢ if hj(a) > 0 and the hé (a)-th

member of C,, belongs to [i(1 4 (),i(1 + ¢ + 1)), and it is zero otherwise. Lastly,
let hy(a) =: hi(e) and W = a and

Se=:{6€S: (i) foraeCs otp(anCs) = hy(a),
(if) for a € Cs, hp(i) €a = hy(a) =¢,
(iii) for a € Cs, hy(i) ¢ a = ha(i) =0 }.
Now, it is easy to check that a, hq, hp, and (S¢ : 0 < ¢ < \) are as required.

2) In the proof of 3.1(1) we shall now consider only sets a C x which satisfy the
demand in clause (e) of 3.1(2) on W [i.e., in the definition of C(j) during the proof
of Subfact 3.2 this makes a difference]. Also in (*)fja in the definition of Sf”; we
change (iii) to:

(i51) if a € Cs, hg(a) codes the isomorphism type of, for example,

(05 U U Cﬁ, <,a,Cs, {<Z,,8> 11 € Cg})
BeCs

In the end, having chosen &, a we can define Cj and S* in the natural way.

Fact 3.3. 1) If X is regular > 2%,k regular, S C {§ < A : cf(§) = s} is stationary
and for § € S, CY, is a club of § of order type x (= cf(d)), then we can find a club c*
of K (see 3.4(1)) such that letting for § € S, Cs = Cs[c*] := {a € C§ : otp(C{Na) €
c*}, it is a club of 4 and

(%) for every club C C \ we have:
(a) if K > Ng, {6 € S:Cs C C} is stationary,
(b) if k = Ng, then the set
{6€S:Va,B)la<BAhaceCsABeCs = (a,8)NC #0]}

is stationary.

2) If X is a regular cardinal > 2%  then we can find ((C’g 20 € S¢) 1 ¢ <27) such
that:

(a) ULSc ¢ < 25 = {5 < A+ o < f(8) < r},
(b) Cg is a club of § of order type cf(d),
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(¢) if @ € S¢, cf(a) > 60 > N, then
{B€CS :cf(B) =0, Be S and C5 C CS}
is a stationary subset of a.

3) If A is regular, 2# > X > p”, then we can find <<C§ 10 € 8¢): ¢ < p) such that:

(@) U{Sc:¢ <2 ={d < X: Ny < cf(0) <k},
(b C§ is a club of § of order type cf(d),
(c) if € S, B € CS,cf(B) > No, then B € S¢ and C§ C C,
(d) moreover, if a, 8 € S¢, B € C§, then

{(otp(y N C§),0tp(y N CY)) : 7 € Cp}
depends on (otp(8 N C,),0tp(Cy,)) only.

o o O

4) We can replace in (1)(a) and (b) of (x) “stationary” by “¢ I” for any normal
ideal T on A.

Remark 3.4. 1) A club C of § where c¢f(§) = Ry means here just an unbounded
subset of 4.
2) In 3.3(1) instead of 2", the cardinal

Min{|Z#|: F C "k & (Vg € "k)(3f € F)(Va < k)[g(a) < f(a)]}

suffices.
3) In (b) above, it is equivalent to ask

{§€S: (Va,f)la<BAhacCsnpeCs = otp((la, /)N C) > o}
is stationary.

Proof. 1) If 3.3(1) fails, for each club ¢* of & there is a club C[c*] of A exemplifying
its failure. So Ct = N{C[c*] : ¢* C k a club} is a club of A\. Choose § € S which
is an accumulation point of CT and get contradiction easily.

2) Let A = cf(\) > 2%, C, be a club of « of order type cf(«), for each limit o < A.
Without loss of generality

BelCy & B>sup(BNC,) = [ is asuccessor ordinal.

For any sequence ¢ = (cg : Ng < 8 = cf(f) < k) such that each ¢ is a club of 0, for
deS*={a< A: Ny <cf(a) <k} we let:

C§ = {a € Cs: otp(Cs Na) € cors) }-

Now we define Sz, by defining by induction on § < A, the set Sz N ¢; the only
problem is to define whether o € Sz knowing Sz N J; now

a€eS; ifandonlyif (i) Rg<cf(a) <k,
(i) if Vg < =cf(h) < cf(a)
then the set {8 € CS : cf(8) =0, B € S-Na}

is stationary in a.
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Let (¢¢ : ¢ < 2%) list the possible sequences ¢, and let S; = Sz and Cg = Cgc. To
finish, note that for each § < X satisfying Ro < cf(d) < &, for some ¢, § € S¢.

3) Combine the proof of (2) and of 3.1.

4) Similarly. Os.4

We may remark

Fact 3.5. Suppose that A is a regular cardinal > 2%, k = cf(k) > Rg, a set

SC{d<A:cf(d) =k}

is stationary, and I is a normal ideal on A and S ¢ I. If I is A*—saturated (i.e., in
the Boolean algebra 92(\)/I, there is no family of AT pairwise disjoint elements),
then we can find (Cs : § € S), Cs a club of § of order type cf(d), such that:

(x) for every club C of A we have {§ € S: Cs\ C is unbounded in §} € I.

Proof. For 6 € S, let C§ be a club of § of order type cf(5). Call C = (Cs: 6 € S*)
(where S* C ) stationary, S* ¢ I, Cs a club of §) I-large if: for every club C of A
the set

{§ <A:6€ 8" and Cs \ C is bounded in 6}

does not belong to I.
We call C I-full if above {§ € S* : C5 \ C unbounded in §} € I.
3.3(4), for every stationary S’ C S, S’ ¢ I there is a club ¢* of k such that
(C5[c*] = 6 € §) is I-1arge.
Now note:
(x) if (Cs : § € ") is I-large, S C S, then for some S” C S’ S ¢ I,
(Cs : 5 €8") is I-ull (hence S ¢ I).

[Proof of (*): Choose by induction on o < AT, a club C* of X such that:
(a) for B < a, C*\ CF is bounded in A,
(b) if 8=a+1then Ag\ A, € I'", where
A, =:{6€ 8 :Cs\C is unbounded in 4}.

As clearly

B<a = Ag\A,isbounded in A

(by (a) and the definition of A,, Ag) and as I is AT—saturated, clearly for some «
we cannot define C“. This cannot be true for a = 0 or a limit «, so necessarily
a=pB+1. Now S\ Ag is not in I as C' was assumed to be I-large. Check that
S" =: 8"\ Ag is as required.]

Using repeatedly 3.3(4) and (x) we get the conclusion. Os.5
Claim 3.6. Suppose A\ = u™, u = pX, x is a reqular cardinal and S C {6 < X :

cf(d) = x} is stationary. Then we can find S*,(Cs: 6 € S*) and (S¢ : & < \) such
that:

(a) U SCQS*QSU{§<)\:cf(6)<x},
<p
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(b) ScNS is a stationary subset of A for each ¢ < p,

(¢) fora € 8* C, is a closed subset of o of order type < x, if « € S* is a limit
then Cy is unbounded in o (so is a club of o),

(d) (Cq v € 8;) is a square on Sc, i.e., (S¢ is stationary in sup(S¢) and):
(1) Cy is a closed subset of a,, unbounded if o is limit,
(i) if a € S¢, 1) € Cy then a(1) € S¢ and Cy(1y = Co Na(1),

(e) for each club C of X and ¢ < p, for some § € S¢, C5 C C.

Proof. Similar to the proof of 3.1 (or see [She86c]). Os6

We shall use in 3.27

Claim 3.7. Suppose A = u*, v a limit ordinal of cofinality x,
h:y—{0:0=1 orf=cf(0) <pu},

p=pl, and S C {6 < X:cf(6) = x} is stationary. Then we can find S*,(Cjs :
d € 5*) and (S¢ : ¢ < A) such that:

() U ScC8°C{0<Asef(d) < x},

<A
(b) S¢ NS is stationary for each { < A,
(¢) ford e S*,

(1) Cs is a club of § of order type <~y and

(it) otp(Cs) =~ iff § € SN S*,

(#it) a € Cs Asup(Cs Na) <a =« has cofinality hlotp(Cs N )],
(d) if 6 € S¢,6(1) a limit ordinal € Cs then 6(1) € S¢ and Cs1y = Cs N6(1),
(e) for each club C of X and ¢ < X for some § € S¢, Cs CC.

Proof. Like 3.6. Us.7

Claim 3.8. 1) Suppose X is regular > Ny, then {6 < At : cf(d) < A} is a good
stationary subset of Xt (i.e., it is in I[A*], see [Shed, 3.4=Lcd1.1] or [Sheb, 0.6,0.7]
or 3.9(2) below).

2) Suppose A is reqular > Ny. Then we can find (S¢ : ¢ < A) such that:

(@) U Se={a< At :cf(a) <A},
¢<A

(b) on each S; there is a square (see 3.6 clause (d)), say it is (CS : o € S¢)
with |CS| < A,

(c) if 6(x) < A, and k = cf(k) < A, then: for some ¢ < X for every club C
of AT, for some accumulation point § of C,cf(8) = k and otp(C'g NC) is
divisible by (),

(d) if cf(6(%)) = Kk, we can add in (c)’s conclusion:

Cg C C and otp(C§) = ().
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Remark 3.9. 1) For A = N; the conclusion of 3.8(1), (2)(a),(b) becomes totally
trivial; but for § < wy, it means something if we add: {a € S¢ : otp(CS) = 6} is
stationary and for every club C of A the set {a € S5 : otp(CS) = §,CS C C} is
stationary. So 3.8(2)(c,d) are not so trivial, but still true. Their proofs are similar
so we leave them to the reader (used only in [Shea, 2.7]).

2) Recall that for a regular uncountable cardinal p, the family I[u] of good subsets
of p is the family of S C p such that there are a sequence @ = (aq : @ < A) and a
club C' C p satisfying: a, C a of order type < a when A is a successor cardinal,
BE€ay, = ag=a,NpS and

(V6 € SNC)(sup(as) = § & otp(aq) = cf(9)).

We may say that the sequence a as above exemplifies that S is good; if C' = p we
say “explicitly exemplifies”.

Proof. Appears also in detail in [She91] (originally proved for this work but as its
appearance was delayed we put it there, too). Of course,

1) follows from (2).

2) Let S = {a < AT : cf(a) < A}. For each a € S choose A% such that:

() A% = (A% : i < A) is an increasing continuous sequence of subsets of « of

cardinality < A, such that |J A =ans,
i<

(B) if B € A¥ U{a} , B is a limit ordinal and cf(8) < A (the last actually
follows), then B = sup(A$ N fS),

(7) if B € AZ U{a} is limit and Ry < cf(8) < A then A% contains a club of §,

) 0eAf and BeS&pB+1eAfU{a} = peA?,

(¢) the closure of A" in « (in the order topology) is included in A .

There are no problems with choosing A® as required.
We define B (for i < A, a € S) by induction on « as follows:

closure(A%¥) N« if cf (o) # Ny,
B = N U BiB:Cadub of a} if cf(a) = Ny.
seC

For ¢ < X\ we let:

S¢={a€S: asatisfies (i) B¢ is a closed subset of a,
(ii) if B € BE, then Bf = B¢ N B and
(iif) if o is limit, then oo = sup(B¢) }

and for o € S¢ let C§ = Bg.
Now, demand (b) holds by the choice of S;. To prove clause (a) we shall show
that for any a € S, for some ( < A, a € S¢; moreover we shall prove

(%)% B :={¢ < A if ¢f(¢) = Ny then a € S} contains a club of A.

e

For a € § define B} = {¢ < X: if cf(¢) = Ny then BZ = closure(A?) N a}. We
prove by induction on a € S that E, N EY contains a club of A\ and we then choose
such a club E}.
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Arriving to «, let

E={C<\: if B € A then ¢ € B} and A? = A2 N 5}.

Clearly E is a club of A\. Let ¢ € E, cf({) = Ny, and we shall prove that a €
S¢ N E, N EY, this clearly suffices. By the choice of ¢ (and the definition of E) we
have: if 3 belongs to A then A? = AZ N A and B? = closure(A?) N3, so

()1 BEAZ = BCB = closure(Ag) N 3.

Let us check the three conditions for “a € S.” this will suffice for clause (a) of the
claim.

Clause (i): B¢ is a closed subset of a.
If cf(a) # Ry then B¢ = closure(A¢) N a, hence necessarily it is a closed subset

of a.
If cf(a) = Ny then B ={ U B? : C'is a club of 8}. Now, for any club C of
peC

B, CNAZ is aclub of « (see clause (v) above). By (x)1 above,

U BCB ) U BCB = closure(Ag) N 3.
pec peCnAY

Note that we have gotten
(*)2 o€ Eg
[Why? If cf(a) = Ny see above, if cf(«) # Ny this is trivial.]

noindent Clause (ii): If 8 € B¢ then BY = B& N .

We know that B¢ = closure(AZ) Na, by ()2 above. If 3 € AZ then (by (x)1) we
have B? = closure(A?) N B, so we are done. So assume [ ¢ Ag. Then, by clause
(€) necessarily

e<( = [>sup(A7Np)and sup(AZ NB) € AZ; C AZ.

But 8 € BZ = closure(Ag) by (*)2, hence together A contains a club of 3 and
cf(B) = cf(¢), but cf(¢) = Ry, so cf(8) = X;. Now, as in the proof of clause (i), we
get B? = U{BZ 1y € AZ N B}, so by the induction hypothesis we are done.

Clause (iii): If « is limit then o = sup(Ag).
By clause (v) we know A¢ is unbounded in a, but A¢ C B¢ (by (*)2) and we
are done.

So we have finished proving (¥)? by induction on a hence clause (a) of the claim.

For proving (c) of 3.8(2), note that above, if « is limit, C' is a club of a;, C' C S,
and |C| < A, then for every i large enough, C' C A, and even C C B{.

Now assume that the conclusion of (c) fails (for fixed 0(*) and ). Then for each
¢ < A we have a club EY exemplifying it. Now, E® =: () E{ is a club of AT,

¢<A

hence for some § € E°, otp(E° N d) is divisible by d(x) and cf(§) = k. Choose an
unbounded in § set e C E° N 4§ of order type divisible by §(x). Then, for a final

segment of ( < A we have enN§ C C§.
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Note that for any set Cy of ordinals, otp(C}) is divisible by d(x) if C; has an
unbounded subset of order type divisible by d(x), so we get a contradiction because
by (*)g(*)) for some ¢ € Ej(,) (so d(x) € S¢) by Eg N Cg DE’NdDe, suple) =46
and e has order type divisible by d(x).

We are left with clause (d) of 3.8(2). Fix k,d(x) and ¢ as above, we may add
< X new sequences of the form (C, : o € S¢) as long as each is a square. First
assume that for every v, 8 < A, such that cf(8) = k = cf(), v divisible by d(x) we
have

(>x<)%7 there is a club Eg  of AT such that for no 6 € S¢ do we have otp(C'g) =p
and otp(CS N Eg ) =7,

then let

E=: ﬂ{Egﬁ sy <A, B <A, cf(B) =k =cf(y), v divisible by d(x)}.

Applying part (c) we get a contradiction.

So for some 7, B < X, cf(8) = x = cf(y), v divisible by §(x) and (%)  fails.
Also there is a club E* of AT such that for every club E C E* for some § € Se,
otp(C’§) = 8, otp(C’g NE) =+ and C’g NE = CE/ N E* (by 3.10 below). Let
e C v = sup(e) be closed and such that otp(e) = §(*) and

€ € e is limit = e =sup(eNe).

We define *Cg (for 6 € S¢) as follows: if 6 ¢ E*
“C$ = C5 \ (max(6 N E*) + 1),
if 6 € E*,otp(Cg NE*) € eU{v} then
*C’§ ={ac CgﬁE* : otp(ozﬁC'gﬂE*) € e}

and if § € E*,otp(Cs N E*) ¢ e U {7} let
* ¢ _ S . ¢ *
Cs =C5 \ (max{a cotp(Cy NE*Na) €eU{y}} + 1) .

One easily checks that (d) and square hold for (*Cg 10 € S¢). So, we just have to
add <*C§ 10 € 8e)to {(Cg 10 € 8¢): ¢ <A} for any ¢,0(x), k (for which we choose
C and E*) |:|3.9

Claim 3.10. 1) Assume that g < rk = cf(k), kT < X = cf(\), S C {6 < X :

cf(8) = Kk} is stationary, Cs is a club of § (for 6 € S), and (V6 € S)(|Cs| = k), or

at least sup |Cs|T < . Then for some club E* C X, for every club E C E*, the set
6es

{6 € 5% : Cs N E* C E} is stationary, where

S*:={0€ 5:0 € acc(E")}.

2) Assume that k = cf(k), kT < X = cf(A\), S C {6 < X : cf(§) = K} is stationary,
Cs is a club of § (for § € S), sup|Cs|™ < A, Is is an ideal on Cs including the
0es
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bounded subsets, and for every club E of A for stationarily many § € S, CsNE ¢ I
(or Cs \ E € Is).

Then for some club E* of A, for every club E C E* of \ the set {§ € S* :
Cs N E* C E} is stationary, where

S*:={0€S: ¢ecacc(E*),d =sup(CsNE*) and
CsNE* ¢ Is (07” Cg\E* € I(s)}.

Remark 3.11. This also was written in [She94d].
Proof. 1) If not, choose by induction on i < p =: sup(|Cs|T) a club Ef C A,
0esS
decreasing with i, £}, ; exemplifies that E; is not as required, i.e.,
{0 €S*(E;):CsnE; CE;}=0.

Now, acc( () E}) is a club of A, so there is 6 € S Nacc( () Ef). The sequence

<[ i<p
(CsNE? : i < p) is necessarily strictly decreasing, and we get an easy contradiction.
2) Slmllarly Dg.lo
* * *

Now we turn to the main issue: black boxes.

Lemma 3.12. Suppose that \, 0 and x(x) are reqular cardinals and N\’ = A<X() g <
x(¥) <X\, and a set S C {6 < X : cf(N\) = 0} is stationary and in I[N (if & = N
this holds trivially; see [Shed, 3.4=Lcd1.1] or [Sheb, 0.6,0.7] or just 3.9(2)).

Then we can find

W = {(M*n%) :a < alx)}

(pedantically, W is a sequence) and functions ¢ : a(x) — S, and h : () — X
such that:

(a0) h(c) depends on ((a) only, and ¢ is non-decreasing function (but not nec-
essarily strictly increasing)

(al) We have
(@) M = (M :i < 0) is an increasing continuous chain, (T(M), the
vocabulary, may be increasing),
(B) each M is an expansion of a submodel of (J-y () (N), €, <) belonging
to Ao (+)(N) [s0 necessarily has cardinality < x(x), of course the order
mean the order on the ordinals and, for transparency, the vocabulary

belongs to %QX(*)(X(*))],

(v) M N x(x) is an ordinal, [x(*x) = xT = x+1 C M?], and M® €
f%ﬂ<x(*)(77a(i)):

(0) MFNACn™(d),

(e) (Ms:j<i)e My,

(C) n™ € X is increasing with limit {(a) € S,n*](i + 1) € Mg, .



Paper Sh:309, version 2019-04-22_12.

BLACK BOXES SH309 23

(a2) In the following game, O(0, A, x(x), W, h), player I has no winning strategy.
A play lasts 0 mowves, in the i-th move player I chooses a model M; €
Hr(x)(N), and then player II chooses v; < A. In the first move player I
also chooses B < \. In the end player II wins the play if (o) = (8) where
(a) the pair ((M; : i < 0),{y; : i < 0)) satisfies the relevant demands on

the pair * and M; expand a submodel of (H.y ) (N), €, <) (M| 6,17)
in clause (al)
(B) for some o < a(*),n* = (v : i < 0),M; = M (fori < 0) and
h(a) = B.
(b0) 7™ #1” for o # B,
(b1) if {n“li:i <0} C Meﬁ then o < B+(< x(%))?, see below, and ¢ (o) < {(B),

(b2) if also A<? = X<XU) then for every a < a(x) and i < 0, there is j < 0
such that: n“|j € MQB implies M € Mgﬁ (hence M C Mg),

(b3) if A= AXC) and n|(i+1) € M} then M € MY (and hence v € M =
x € Mf) and

i # 0l = 0@ # 0P )]
Remark 3.13. 1) If W (with (, h, A, 0, x(x)) satisfies (a0), (al), (a2), (b0), (b1) we
call it a barrier.
2) Remember, (< x)? =: > pf.

u<x
3) The existence of a good stationary set S C {J < A : cf(d) = 0} follows, for

example, from A = A<Y (see [Shed, 3.4=Lcd1.1] or [Sheb, 0.6,0.7]) and from “) is
the successor of a regular cardinal and A > 67", But see 3.16(1),(2),(3).
4) Compare the proof below with [She84b, Lemma 1.13,pg.49] and [She81].

Proof. First assume A = A<X(*),
Let (S, : v < A) be a sequence of pairwise disjoint stationary subsets of S,5 =

U S, and without loss of generality v < Min(S,). We define h* : § — X by
F<A

h*(o) = “the unique 7 such that a € S,”, and below we shall let h(a) := h*({(v)).

Let cd = cdy y(x) be a one-to-one function from J#Z,(,)()\) onto A such that:
cd({e, B)) is an ordinal > «, 3, but < |a + B[ or < w, and & € HL, (4 (cd(x)) for
every relevant . For £ € S let:

W :={(M,n): the pair (M,n) satisfies (al) of 3.12, sup{n(i) : i < 0} =¢,
and for every i < 0 for some y € AL (.)(A),

n(i) = cd((MTi,nli,y))}-

So (a0), (al), (b0), (b3) (hence (b2)) should be clear.

We can choose (M*,n%) : a < a(x)) an enumeration of ggs Wg to satisfy (b1)

(and ((a) = suprang(n®), of course) because:

%s0 (M; : j < i) is an increasing continuous chain, M; N x(*) an ordinal, x(x) = xT =
X+1C My (M : e <j) € Mjpr and (ye : € < j) € M4 for j <4, M; € Hy(4y(vi) and
(vi:j <1) € Mipya

See https://shelah.logic.at/papers/309/ for possible updates.
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(%) if (M*,n*) € LgJWg, then
{n €N {nli:i<0} C Mz} <|Mg||° < (< x(%)°.

This, in fact, defines the function ¢ as follows: we have ¢ (a) = & if and only if
(M,n*) € WY.

We are left with proving (a2). Let G be a strategy for player I.

Let (Cs: d < \) exemplify “S is a good stationary subset of \”, see 3.9(2), and
let R={(i,a) : 1 € Co,x < A}

Let (<7 : i < A) be a representation of the model

o = (%<X(*)()‘)7 SH G, R7 Cd)7
i.e. it is increasing continuous, ||%| < A, and |J &% = «; without loss of generality

of; < of and || N A is an ordinal for ¢ < .

Let G “tell” player I to choose $* < X in his first move. So there is § € Sg-
(hence 6 > B*) such that |e%| N A = §. Now, necessarily Cs N« € @ for o < 4.
Let {a; 4 < cf(d)} list Cs in increasing order.

Lastly, by induction on i, we choose M;,7n(i) as follows:

(i) = cd({({Mj = 7 <), (n(G) - 5 <), (e : § <)),

and M; is what the strategy G “tells” player I to choose in his i-th move if player
IT have chosen (n(j) : j < @) so far.

Now, for each ¢ < 6 the sequences (M; : j < i), (n(j) : j < i) are definable in .27
with (a; : j < i) as the only parameter, hence they belong to 2. So sup{n(j) :
j < 8} < 4; however, by the choice of n(i) (and cd), (i) > sup{e; : j < i} and
hence sup{n(j) : j < 0} is necessarily §. Now check.

The case A < A< = \<X(*) ig similar. For a set A C 6 of cardinality 6 we let
cd? = cdf’x(*) be a one-to-one function from J#,,)(\) onto A\ where:

Ax ={h: his a function from A to A}.
We strengthen (b2) to

(62) let A; := {cd(i,j) : § < 0} for i € [1,0) and Ag := 0\ U{A14; : i < 6} so
(A; = 1 < 0) is a sequence of pairwise disjoint subsets of 6 each of cardinality

6 with min(A4;) > i and we have

(¥) ™1 Ai = cd™ ((M°Ti, 0 Ti).
Us.1s

* * *

What can we do when S is not good? As we say in 3.13(3), in many cases a
good S exists, note that for singular A we will not have one.

The following rectifies the situation in the other cases (but is interesting mainly
for A\ singular). We shall, for a regular cardinal A, remove this assumption in
3.16(1)—(3), while 3.17 helps for singular A. (This is carried in 3.18).
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Definition 3.14. Let 9 be an ordinal and for o < 9 let K, be a regular uncountable
cardinal, S, C {0 < kq : cf(d) = 0)} be a stationary set. Assume 6, x are regular
cardinals such that for every a < @ we have 6 < y < Ko. Let S = (S, : a < 9),
F = (ko :a<0d). If 0 =1 we may write Sp, Ko.

We say that S is good for (&, 6, x) when: for every large enough 1 and model .«
expanding (%, (1), €), |7(&7)| < Ny, there are M; for ¢ < 6 such that:

° Mi<ngand5'6Mi
o (M;:j<i)€ M, |M|<x,.Minxex,x=x1 =x1+1C M, and

e a < 0,a € |J M; implies that sup[k N (|J M;)] belongs to S,.
j<0 <6

If 9 = 1, we may write Sp, ko instead S, &. If O < x then we can demand 9 C M,.

Definition 3.15. For regular uncountable cardinal A and regular 6 < \ let Jy[\]
be the family of subsets S of A such that ({§ € S : cf(§) = 0} is not good for
(AN, 0).

Claim 3.16. Assume 0 = cf(f) < x = cf(x) < k = cf(k).

1) Then {6 < k: cf(8) = 0} is good for (k,0,%), i.e. is not in Jo[\].

2) Any S C k good for (k,0,x) is the union of k pairwise disjoint such sets.

3) In 3.12 it suffices to assume that S is good for (X, 0,x).

4) Jo[N is a normal ideal on X and there is no stationary S C {5 < X : cf(6) = 6}
which belongs to Jp[\] N I[\].

5) In Definition 3.14, any p > A<X is O.K.; and we can preassign © € -y (p) and
demand x € M,;.

6) In 3.12 we can replace the assumption “S C {J < A : cf(d) = 0} is stationary
and in I[]\]” by “S C {6 < X : cf(6) = 0} is stationary not in Jg[\]” (which holds
for S ={6 < r:cl(d) =0}).

Proof. 1) Straightforward (play the game).
2) Similar to the proof of 3.1.

3) Obvious.

4) Easy.

5) Easy.

6) Follows. DS.IG

Claim 3.17. Assume that &, 0, x are as in 3.14 with |0| < x.
1) Then the sequence ({0 < k; : cf(d) =0} : i < ) is good for (R, 0, x).
2) If 9y < 0 and (S; : i < O1) 1s good for (R|01,0,x) then

<SZ’L<81>A<{§<IizCf(5)29}81SZ<8>

is good for (R, 0, x).
8) If (S; 1 i < O1) is good for (R,0,x) and i(x) < 0, then we can partition S;,) to
pairwise disjoint sets (Sj(.),c : € < ki) such that for each € < k;, the sequence

(Si i < i(¥)) (Sicuy.e) ({6 8 < ki, cf(8) = 0} 1 i(x) < i < O)

is good for (K, 0, ).
4) S good for (R, 0,x) implies that S; is a stationary subset of k; for each i < 1g(R).
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Proof. Like 3.16 [in 3.17(3) we choose for § € Sj), a club Cs of ¢ of order type
cf(0); for j < 0, € < Kj(a), let Sg(*) . =10 € Sj( : € is the j-th member of Cs}; for
some j and unbounded A C K;(4), <Sg(*) . 1 € € A) are as required]. Os.17
Now we remove from 3.12 (and subsequently 3.20) the hypothesis “\ is regular”
when cf(\) > x(x).

Lemma 3.18. Suppose N = \X<X(*) X\ is singular, 6 and x(x) are regular, 0 <

X (%) and ct(N) > x(x). Suppose further that A\ = > pu;, each u; is regular
i<cf(N)

> x(x) + 0. Then we can find W = {(M®,n%) : a < «a(x)} and functions

C:a(x) — cf(N),€ :alx) — A, and h : a(x) — A, and {p} : i < cf(N)} such

that ({ul : i <cf(N)} = {u; i <cf(N)} and):

(a0) h(c) depends only on (((a),
dot&(cv)),

[a <8 = ((a) <L) la < BAL(a) =((B) = &(a) <EB)),
and () < 'u/c‘(a)

(al) as in 3.12 except that: (n®(3i) : i < ) is strictly increasing with limit (c)
and (N*(3i + 1) : i < 0) is strictly increasing with limit (o) for i < 0,

sup(IME| 1 bl y) < E(0) = sup(IMg M i)
and for every i < 0,
sup(|M{| N ef(V)) < ¢() = sup(|Mg'| N ef(N)),

(a2) asin 3.12

(b0), (b1), (b2) as in 3.12 but in clause (b3) we demand i =2 mod 3.

Remark 3.19. To make it similar to 3.12, we can fix S*, S¢, Sf, Sf,m Wi as in the
first paragraph of the proof below.

Proof. First, by 3.16 [(1) + (2)], we can find pairwise disjoint S¢ C cf()) for

i < cf(A), each good for (cf(N), 0, x(x)) (and € S = a>i& cf( ) =46), and

let S*= |J S¢. We define u; € {; : j < i} such that for each i < cf(\) : [j €
i<cf(X)

S§ = = .

Then for each i, by 3.17 parts (2) (3) (with 1,2, S, ko, k1 standing for o1, o,
S, ef(X), pf), we can find pairwise disjoint subsets (S?, : a0 < pf) of {6 < pf :
cf(6) = 0} such that for each a < pul,, (S¢,S¢,) is good for ((cf(A), 1j), 0, x). Let
Sb = U{Szb,a sa< plt

Let cd be as in 3.12’s proof coding only for ordinals i = 2 mod 3, and for { € .S
€5 let

WY, = {(M,n): M satisfies (al) ¢ = sup{n(3i) : i < 0},
€ =sup{n(3i+1):i< 6} and
for each i < 0, for some y € L, () (N),
n(3i+2) = cd((M; : j < 3i+1),n[(3i +1),9)}.

See https://shelah.logic.at/papers/309/ for possible updates.
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The rest is as in 3.12’s proof. 0318

* * *

The following Lemma improves 3.12 when A satisfies a stronger requirement making
the distinct (M*,n®) interact less. Lemmas 3.20 + 3.18 were used in the proof of
2.4 (and 2.3).

Lemma 3.20. In 3.12, if A = X&) x(%)? = x(%), then we can strengthen clause
(b1) to

V)T ifa# B and {n®)i:i <0} C MP thena <3 and x € Mg =z € M) .

Proof. Apply 3.12 (actually, its proof) but using A, x(*)T, 6, instead of A, x(x), 6;
and get W = {(M*,7%) : @ < a(*))}, and the functions ¢, h.

Let cd be as in the proof of 3.12. Let <* be some well ordering of 7, . ()),
and let % be the set of ordinals a < a(x) such that for ¢ < 6, M has the form
(Niav 6?7 <a) and (|Nia|7 e?’ <a) = (%<X(*)()‘)7 S <*)'

Let aw € %, by induction on € < x(*) we define M, n>* as follows:

(A) no«(2) is cd((n™(7),€)), (which is an ordinal < A but > (i) and > €)
(B) MS® < N is the Skolem Hull of {n©*[(j + 1) : j < i} inside N, using as
Skolem functions the choice of the <*first element and making M;"* Ny (x)

an ordinal [if we want we can use 7% such that it fits the definition in the
proof of 3.12].

Note that x(x) = x* = x+1 C M and M“ is definable in M} as M € M5
(by the definition of W in the proof of 3.12). Similarly, (M;® : j <) is definable
in M2 ,. It is easy to check that the pair (M, n“*) satisfies condition (al) of
3.12.

Next we choose by induction on a € %, e(a)) < x(x) as follows:

(C) €(a) is the first € < x(x) such that: if 5 < a but 8+ x(x) > « then:
(6) {n™1j:j < 0} & My

This is possible and easy, as for (*) it suffices to have for each suitable 3, € ¢ M, 5 <8 ),
so each 8 “disqualifies” < x(*) ordinals as candidates for €(«), and there are < x(x)
such f’s, and x(x) is by the assumptions (see 3.12) regular.

Now

W' = (N pecl@)y o e o}, C\U b %

are as required except that we should replace % by an ordinal (and adjust (,h
accordingly). In the end replace N{* by N N, . (). 390

Claim 3.21. Ifin 3.18 we add “\ = AX(*)"” (or the condition from 3.20) 27 6 can
replace (b1) by

1) if {n™li:i < 0} C M) then o < 8.
Proof. The same as the proof of 3.20 combined with the proof of 3.18. Os.01
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* * *

Next we turn to the case (of black boxes with) § = Rg. We shall deal with several
cases.

Lemma 3.22. Suppose that

(¥) X is a reqular cardinal, § = Rg, p = p<X*) < X <20 8 C {§ < A:cf(0) =
Ro} is stationary and Ng < x(x) = cf(x(*)).

Then we can find

W = {(M°,7%) : a < a(x)}

and functions

Cia(x) — S and h: afx) — A
such that:

(a0) — (a2) as in 3.12,
(b0) — (b2) as in 3.12, and even
(b1)* a # B, {n*n:n < w} C MP implies a <  and even ((a) < C(B),
(c1) if {(a) = {(B) then |MZ|Np=|MP|Npu and there is an isomorphism he,
from M& onto MP, mapping n®(n) to n®(n), and Mg to MP for n < w,
and ho g [(|MS| N |ME|) is the identity,
(c2) there is C = (Cs : 6 € S), C5 an w-sequence converging to §, 0 ¢ Cs, and
letting (72 : n < w) enumerate {0} U C5 we have, when {(a) = 6:
(i) AN |ME| C 4541 but AN |M2| is not a subset of 73, (hence M N
oY1) # 0);
(i) Cs NV[MZ| = 0;
(iii) if C(B) = & too then, for each n, hop maps [M2| N [v2,73 1) onto
|MET0 [y ol
(i) if {(B) =6 = ((a) and A\ = XX then |MS| N~ = |ME| N~
Remark 3.23. 1) We use A < 2# only to get “h, g[(|]MY|N|MP|) = id” in condition

(c1).
2) Below we quote “guessing of clubs” that is clause (ii) in the proof, without this
we just get a somewhat weaker conclusion.

Proof. Let S be the disjoint union of stationary

Sagy (<, B <Ay <A).
For each «, 8, v let (C5 : § € Sq,5,4) satisfy

X (i) Cjs is an unbounded subset of § of order type w, and

(1)  for every club C of A, for stationarily many § € S, 3, we have
CsCC

(iii) 0¢ Cs
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(exists by [Shea, 2.2] or [She94d]). B
Let W* be the family of quadruples (6, M, n, C) such that:

() (M,n) satisfies the requirement (al) (so M = (M, :n < w));

(8) 0 ¢ C, and letting {7, : » < w} enumerate in increasing order C' U {0}
we have A N M, is a subset of 7,41 but not of v,, and |J vy, = ¢ and

n<w
cn(Um,) = 0;

(v) UIMn| C Hyy (1 + p);

(6) in 7(M,,) there are a two place relation R and a one place function cd (not
necessarily cd[M,, = cdMn similarly for R, see below recall that as usual,
T(My)) € () (x(¥)) for transparency.)

As p<X) =y clearly [W*| = pu, so let

W* = {(6j,<Mj7n 'n <w>,r]j,C'j) Dj < pl

If A = AX() Jet {N5 : B < A} list the models N € JZ, (. (\) with 7(N) €
Ay (X (%))

Also, let (A, : @ < A) be a sequence of pairwise distinct subsets of u, and define
the two place relation R on A by

MRyven<p&mei,l.
Lastly, for § € Sqo,5,4 let

W= {(M,n): M= {(M,:n<w), n€>, satisfy (al), so
7 is increasing with limit  and there is an isomorphism
h from |J M, onto |J Mg, mapping n(n) to n*(n) and
n<w n<w
M,, onto My, ,,, preserving €, R,cd(z) = y and their negations; (for R and cd :
in |J M, we mean the standard cd over |J M, , asin (0) above); and

nw n<w

(Ve < N[ee UM, = otp(CsNe) =otp(C* N h(e))].

Also, if A = K<X(*) then
Ng = (UMp){x € UM, : cd(z) < Min(Cs)}}.

We proceed as in the proof of 3.12 after W9 was defined (only ((a) = § €
Salﬁlfh = h(a) = 71)'

Suppose G is a winning strategy for player 1. So suppose that if player II has
chosen 7(0),7n(1),...,n(n — 1), player I will choose M,. So |M,| is a subset of
Her(+)(A) of cardinality < x(x) and Rang(n) € M,. For n € “A we define M, =

U M-
L<w

Let .7, be the set of n € "\ such that M, is well defined; so U{.7,, : n < w} is a
subtree of (¥~ \, <) with each node having A immediate successors.

We can find a function ¢, from .7, into u such that c,(n) = ¢, (v) iff there is an
isomorphism h from M, onto M, mapping My, onto M, for every k < n. By
[Shed, 1.10=L1.7] or the proof of 3.24 below, there is .7 such that
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T C¥>), T is closed under initial segments,

Ve, e = Fan (a)e 7).

cn (7 N.7,) is constant.

It follows that fixing any v, € lim(.7) we can find (h,;n € 7) such that h,, is
an isomorphism from M, 4y onto M, increasing with 7).

Note that above all those isomorphisms are unique as the interpretation of €
satisfies comprehension. Also clause (cl) follows from the use of R.
The rest should be clear. O3.09

Lemma 3.24. Let S, A\, u, 0 be as in (x) of 3.22 and in addition:

Ng <k =cf(r) <x(x),  (¥x < x(x) x> < x(+)].

Then we can find W = {(M*,n®) : a < a(*)} and functions ¢ : a(x) — S and
h:a(x) — X\ such that:

(02) as in 3.22 (i.e. asin 3.12),
(b1)*, (c1),(c2) as in 3.22,

* as (al) in 3.12 except that we omit “(M; : j < i) € Mjy1” and add:
la C|M;| & |a] <k = a € M;] and fori < j, M;NX is an initial segment
Of Mj N )\,

(a2)* for every expansion o/ of (Hy()(N), €, <) by x < x(*) relations, for some
a < a(x), for everyn, MY < o in fact, for stationarily many ¢ € S, there
is such « satisfying (o) = (.

Remark 3.25. We can retain (al1)* and add a C M; Ala| < k = a € M;.

Proof. Similar to 3.22, use the proof of [She86a], but for completeness we give
details.

We choose (Sq g~ 1 a < p,8 < A,y < A) as there. The main point is that
defining W* we have one additional demand:

(e) if n <w and u C M, has cardinality < x then u € M,,.

We then define WY and (N, : o < \) as there.

This gives the changed demand in (al)*, but it give extra work in verifying the
demand (a2)*.

So let a model &7 and cardinal x = x<% < x(x) as there be given; as usual,
() € Hy)(x(x)) and o expand (L) (A), €, <). For every x = (x, My, 1x, Cx) €
W* we define a family %, a function n : % — w and a function rank, from Fy
into Ord U {oo} as follows:

(o) FPx=U{Fxn:n<w}

(B) Fxn={f:fis an elementary embedding of M, into </}

(v) n(f) =k if and only if f € Pk

(0) rank(f) = U{e+ 1: for every a < A there is g € Fy ,,(y) extending f, such
that 8 = rankx(g) and Rang(g) N« = Rang(f) N A}.

-

Now

Case 1: for no x € W* and f € % do we have ranky(f) = oo
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For every x € W* and f € F let B(f,x) be the first ordinal @ < A such that
if ranky (f) = € then there is no g € .7y ,,(s)41 extending f with ranky(g) = € and
Rang(g) N a = Rang(f) N .

Next let (< : i < A) be an increasing continuous sequence of elementary sub-
models of ¢/, each of cardinality < A such that (<7} : j <) € 41

Easily the set E={i < X: o4 NA=1i> pu} is a club of A.

Choose by induction on n < w an ordinal 4, increasing with n such that ¢, € F
is of cofinality &, possible as 2<% < X as k < x(*) and a < X\ — |a|<X(*) < X hence
o is an elementary submodel of & of cardinality < A.

Choose M < & of cardinality Y, including {i,, : n < w} such that every u C M
of cardinality < x belongs to M.

Note that, if w C &, has cardinality < k then u € &, because i, € E and
ct(in) = k.

Let M} be o | (o, N M), easily M} € o, so [u C M} Au| < k= u € M}].
We can find x € W, and isomorphism f, from My , onto M, increasing with n.
Now clearly x € 7, , (why? as sW* € o7 and [W*| < pand u+1C < ). Also
fn € Fxnand f, € o, (as My, My, € ,) and the uniqueness of f,, as those
models expand a submodel of () (), €, <) and necessarily are transitive over
the ordinals). Similarly by the choice of x, we have f,, C fn4+1. So (rankx(f,) :n <
w) is constantly oo as otherwise we get an infinite decreasing sequence of ordinals.

But this contradict our case assumption.

Case 2: Not case 1

So we choose x € W* and f € F+ o such that ranky(f) = oo.

We easily get the desired contradiction and even a A-system tree of models.
How? Let (1, : & < A) list “> X such that 7, <7z implies o < S.

Now we choose a pair (f,,,7) by induction on o < A such that

(1) fu. € yx,fg(na)
(ii) Yo = supU{A N Rang(f,,) : B < a}
(i17) if ng <M and Lg(na) = (€g(ng) + 1 then v, N Rang(f,.) = AN Rang(f,,).

There is no problem to carry the induction. This finishes the proof. O3 .05

Lemma 3.26. 1) In 3.2/ if in addition A\ = u™ then we can add:

(e3) if {(a) = {(B), then |MZ|N|MPE|NX is an initial segment of |[M&| N\ and
of MBI N\, so when a # B it is a bounded subset of ((a).

2) In 3.24 (and 3.26), when k > Yg then it follows that:
(cd)* if a# B and {n®In:n < w} C MP then M, 7™ € MP.

3) Assume X = ut and p = p~ and S C {§ : 6 < A\, cf(8) = No} is a stationary
subset of A and (Cs : § € S) guess clubs (and Cs is an unbounded subset of 6 of
order type w, of course).

Then we can find (N, :n € T') such that:

(a) T'=U{Ts : 6 € S} where T's C {n : n in an increasing w-sequence of
ordinals < § with limit 0} and 6(n) = § whenn €5, € S
(b) N, is (Ny, :n <w) in <-increasing, and we let N,y = N, ,
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(¢) each N, is a model of cardinality r with vocabulary C 7 (k™) for notational
simplicity, and universe C ¢ := 6(n) and Ny, = N, v where 49 is the
n-the member of Cs and Ny N (v, 73, 1) # 0

(d) for every distinct n,v € I's where § € S, for somen < w we have N,NN, =
Nyn =Ny,

(e) for every n,v € T's the models Ny, N, are isomorphic, moreover there is
such isomorphism f which preserve the order of the ordinals and maps
Ny.n onto Ny

(f) if & is a model with universe A and vocabulary C (k™) then for station-
arily many 6 € S for some n € I's C I' we have N, < o/. Moreover, if

k% =k and h is a one to one function from 2\ into \ then we can add: if

p € 2(Ny.,) then h(p) € Ny

Proof. 1) Let g°, g* be two place functions from A x X to X such that for o € [, \] :
(¢°(av, i) 1 i < p) enumerate {j : j < u} without repetitions, and g'(«, ¢°(a, 1)) =i
for i < A.

Now we can restrict ourselves to M® such that each M (for i < w) is closed
under g%, g'. Then (c3) follows immediately from

[C(a) = {(B) = Mg N =|MS| 0 u)

(required in (c1)).
2) Should be clear.
3) This just rephrase what we have proved above. U306

Lemma 3.27. Suppose that A = ut, u = Y = 28 > 2% cf(k) = Ry and
S C{d < A:cf(d) = Ro} is stationary, 0 = Vo, Vg < x(x) = cf(x(*)) < r. Then
we can find W = {(M*,n%) : a < a(*)} and functions

Ciafx) — S, h:a(x) — A

and (Cs : § € S) with (v2 : n < w) listing Cs in increasing order such that:

(a0) — (al) asin 3.12,

(a2)* as in 8.24,

(b0) — (b2) as in 3.12 and even

(b1)* a# B, {n%n:n < w} C MP implies a < 8 and even ((a) < C(B),

(c1) = (c3) asin 3.22 + 3.26(1),

(c4) if é(a) = ((B) = 0 but a # B then for some ng > 1, there are no n > ny
and ay < Bo < ag satisfying:
ar € [MSIN [, Yps1)s
52 S |M£| N [727’72+1)a
as € [MZ1 N[y, Y0 41)s
i.e., either sup([yp,7541) N M) < min([y,97.44) 0 [ME])
or sup([v, Yng1) N IMZ]) < min(fyp,741) N MS]);
(¢5) if Y < Kk and there is B C “k, |B| = &0 which contains no perfect set with
density T (holds trivially if k is strong limit), then also {n® : a < a(*)}
does not contain such a set. (See 3.28).

See https://shelah.logic.at/papers/309/ for possible updates.
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Proof. We repeat the proof of 3.22 with some changes.

Let (Sag~:a<p, B<A, 7<) be pairwise disjoint stationary subsets of S.
Let g%, g' be as in the proof of 3.26. By 3.7 there is a sequence (Cs : § € S) such
that:

(i) Cs is a club of ¢ of order type &, not w!, 0 ¢ Cs,
(1) for o < p, B < A, v < A, for every club C of A, the set

{6 €Sap:Cs CC}
is stationary.

We then define W*, (67, (M; ,, : n < w),n;,C7) for j < p,A, for @ < A, and R as
in the proof of 3.22.

Now, for § € S, 5. let W} be the collection of all systems (M,,n, : p € “7k)
such that:

(i) m, is an increasing sequence of ordinals of length Ig(p),

(12) otp (Cs Nnp(£)) =1+ p(¢) for £ <1g(p),

(iii) there are isomorphisms (h, : p € “~ k) such that h, maps M, onto My 15,
preserving €, R, cd(z) =y, ¢°(z1,22) = y, g* (71, 22) = y (and their nega-
tions),

() if p<av then h, C hy,, M, < My, M, € M,,

(v) M,NCs =0, and M, N X C UNp)» Vpe)+1), Where ¢ is the ¢(-th member
[

of Cs,

(vi) if p € “”k, £ < lg(p), 7 is the (1 + p(£))-th member of Cs then M, N~
depends only on p[¢, and M,y < M,

(m’i) Ng = M().

Now clearly [W§| < p, so let Wi = {((MJ,1]) : p € “7r):j < p}. Let (pj 1 j < p)
be a list of distinct members of “«; for (c5) — choose as there.
Let

MZJ: UMZJM’ 7’}]:<772J[([+1)(£+1)€§w>
L<w

Now,

(M t<w):j<p)

is as required in (c4). Also (c5) is straightforward (as taking union for all &’s
change little), (of course, we are omitting §’s where we get unreasonable pairs).
The rest is as before. Usz.27

Remark 3.28. The existence of B as in (c5) is proved, for some Y for all strong
limit & of cofinality Rg in [She94b, Ch II,6.9,pg.104], really stronger conclusions
hold. If 2% is regular and belongs to {cf(Ilk,/D) : D an ultrafilter on w, K, < K}
or 2% is singular and is the supremum of this set, then it exists for T = (2%0)*.
Now, if above we replace D by the filter of co-bounded subsets of w, then we get it
even for T = Rg; by [Shec, Part D] the requirement holds, e.g., for Js for a club of
0 < wi.

See https://shelah.logic.at/papers/309/ for possible updates.
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Moreover, under this assumption on k we can demand (essentially, this is ex-
panded in 3.33)

(c4)* we strengthen clause (c4) to: if ((a) = ((8) = 6 but o # J then for some
ng > 1, we have either for every n € [ny,w) we have sup([v3, 75, 1)N|ME|) <
min([v3,73,1) N [MS]) or for every n € [n1,w) we have sup([73,75,1) N
| M| < min([y),7.41) N M)

Lemma 3.29. We can combine 3.27 with 3.24.

Proof. Left to the reader. Us.29

Lemma 3.30. Suppose Rg = 0 < x(x) = cf(x(*)) and: Mo = XX y(x) < A
and: A=\, and (¥)x, (see below) holds.
Then

(¥)a we can find W = {(M*, %) : a < a(+)} and functions ¢ : a(x) — S and
h:a(x) — X such that:
(a0) — (a2) as in 3.12,
(b0) — (b2) as in 3.12, and even
(¢3) if () = C(B) then |My| N |Mg| is a bounded subset of {(c).

Proof. Left to the reader. Us.30

Lemma 3.31. Suppose that A is a strongly inaccessible uncountable cardinal,

cf(A) = x(x) = cf(x(x)) > 6 = Ro,

and let S C A consist of strong limit singular cardinals of cofinality Ro and be
stationary. Then we can find W = {(M*,n*) : a < «a(x)} and functions ¢ :
a(x) — S and h : a(x) — X such that:

(a0) — (a2) of 3.12 (except that h(c) depends not only on ¢(av)),
(b0), (b3) of 3.12,
(b1)*+ of 3.20,
(€3)™ if {(a) = 6 = {(B) then |M2| N |MP| N6 is a bounded subset of 8.

Remark 3.32. 1) See [She75b] for essentially a use of a weaker version.
2) We can generalize 3.24.

Proof. See the proof of [Shea, 1.10(3)] but there sup(N¢y N A) < 4. Os.31
Lemma 3.33. 1) Suppose that A = puT, p=r% =25, 0 < cf(x(x)) = x(x) < K, &
is strong limit, k > cf(k) = 0 > Vo, S C {6 < A:cf(0) = 0} is stationary.

 Then we can find W = {(M®,1%) : a < a(*)} (actually, a sequence), functions
C:a(x) — S and h: a(x) — X and (Cs : § € S) such that:

(al) — (a2) as in 3.12,
(b0) 7™ #77‘3 for a # 3,
(1) iof {n>! z<0}CMﬁ and o # 3 then a < B and even (o) < C(B),
(b2) if n*(5 + )EM(f thenMJ‘?‘EMgﬁ,
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(c2) C = (Cs : 6 € S), Cs a club of 6 of order type 0, and every club of A
contains Cs for stationarily many § € S,

(e3) if 6 € S, Cs = {5 : © < 0} is the increasing enumeration, o < a*
satisfies (o) = 6, then there is ((v5 ;7o) : i < fodd) such that v ; €
Mg, MEOACAYY, Yoi < Vau < Ve < Vo.i+1 and
(%) ifC.(cv) = é(ﬂ), a < B then for every large enough odd i < 0, 'y;rl <75,

(hence [v5 i7va) N V075.0) = 0) and [yg ;75 ,) N Mg = 0.

2) In part (1), assume 6 = Ry and pp(k) =1 2%. Then the conclusion holds;
moreover, (¢3) (from 3.26).

Remark 3.34. The assumption pp(k) = 2" holds, for example, for k = s for a club
of § <w (see [?, §5]).

Proof. 1) By 3.6 we can find C = (Cs : § € S), Cs a club of §, of order type & such
that for any club C of X for stationarily many § € S, we have: C5 C C.

First Case: assume pu(= 2%) is regular.
By [She94b, Ch.I1,5.9], we can find an increasing sequence (k; : i < 0) of regular

cardinals > y(x) such that k = 3" £;, and [] k;/Jp9 has true cofinality x, and let
i< i<
(fe : € < p) exemplify this, which means:

e<(<p = fe<fe modJ}))d,

and for every f € [] ki, for some € < p we have f < f. mod Jp9. We may assume
i<
that if € is limit and f[e has <Jgdfl.u.b., then f. is a <J§)d71.u.b., and we know that

if cf(€) > 29 then this holds, and that without loss of generality A cf(f.(i)) = cf(e).
<6
Without loss of generality x; > fe(i) > | ;.
j<i B
We shall define W later. Let St be a strategy for player I. By the choice of C,
for some ¢ € S, for every o € Cjs of cofinality > 60, H#%, (.)() is closed under the
strategy St. Let Cs = {a; : i < k} be increasing continuous. For each € < p we
choose a play of the game, player I using St, (M5, 75 : j < ) such that:

(M= j < 1) € Aoy (s iy +1)s

nS5 = (cd(ay @y, (Mf i< j)) 1 j<7), and

M1 € Mjiy.
Then let g. € ] k; be:

<6
ge(i) = sup(k; N U M),
Jj<®
so for some S, € (e, 1), we have g. < f5, mod Jpd.
On the other hand, if cf(e) = (2%)", without loss of generality, cf(f(i)) = cf(e)

for every i < 6 (see [She94b, Ch.IL§1]), so there is 7. < € such that

he < fy, mod J§d  where h (i) = sup(fe(i) N U M;).
j<6
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So for some () < p we have:

S5[St] = {e < p:cf(e) = (2°)T, and v = y(x)} is stationary.

Now, for each § € S we can consider the set Cs of all possible such (M€, n¢ : € < u),
where M€ = (M]6 1 j < i), g are as above (letting St vary on all strategies of player
I for which a € C5 & cf(a) >0 = () (a) is closed under St).

A better way to write the members of Cs is <<Z\_l;,7]§ s j < 0):e < u), but
for j < 0,fylj = fuyli = MW = M &t =t actually it is a
function from {fc[j : € < p,j < 0} to H,(4)(d). But the domain has power x, the
range has power |[§] < p. So |Cs| < p* = (27)" =2 = p.

So we can well order Cs in a sequence of length p, and choose by induction on
€ < u a representative of each for W satisfying the requirements.

Second case: assume p is singular.
Solet p= > pe, pe regular, without loss of generality pe > (D {pe : € <
E<ef(p)
ENT + (cf(pn))T. We know that cf(u) > k, and again by [She94b, Ch.VIIL,§1] there

are (ke; @1 < #), (k; : i < ) such that:

tef ([ wei/ T8 = pe,  tef ([ mi/Tp?) = cf(n),

<6 <6

KE < Kei < K KE < Ry < K and i<j = K <K?

7

<

(we can even get k¢ > [] n? as we can uniformize on §).
J<i
Let (f¢ :e < pg), (fe : € < cf(u)) witness the true cofinalities. Now, for every
f € TI w: (for simplicity such that f(i) > > xj, Acf(f(i)) = (2°)*) and & we
i<f Jj<i i
can repeat the previous argument for (f + f& : e < ). After “cleaning inside”,

replacing by a subset of power p¢ we find a common bound below [] &; and below
<0
[/, and we can uniformize on &.
Thus we apply on every f., cf(e) = (2°)T and use the same argument on the
bound we have just gotten.

2) Should be clear. Us.33
Similarly to 3.22 with w? for 6, (not a cardinal!) we have

Claim 3.35. Suppose that

(*) X is a reqular cardinal, 0 = Ry, = p<X*) < A <208 C {5 < \:cf(0) =
No} is stationary and Ro < x(x) = cf(x(*)).

Then we can find
W = {(M*1%) s a < a()}
and functions
C:a(¥) — S and h:a(x) — A

such that:
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(a0) like 3.12,

(al) M® = (M :i < w?) is an increasing continuous elementary chain (t(Mf),
the vocabulary, may be increasing too and belongs to H. .y (x(x)), each M
is a model belonging to (. (\) [so necessarily has cardinality < x(*)],

Mo N x(x) is an ordinal, x(*) = xT = x+1C M, n™ € “*) s
increasing with limit (o) € S, n®li € M2, M belongs to ) (n*(i))
and (M7 :i < j) belongs to M3,
) like 3.12 (with w? instead 9),
(00), (b1), (b2) as in 3.12,
* as in 3.22,
cl) if {(a) = C(B) then MY N p = M52 N and there is an isomorphism
ha,g from MS, onto MfQ mapping n®(i) to n°(i), MY to Mf for i <
w?, ha gl (|M2%| N |M52|) is the identity,
(c2) as in 3.22 using (M2, :n < w),
(c3) as in 3.26 assuming \ = ut,
(e4) (i) > sup(ME] 1) (50 sup(My ] 01X) = U om +£)).

w

Proof. We use (M*° : a < a(x)) which we got in 3.22. Now for each o we look at
U Mg° as an elementary submodel of (2, (.)()), €) with a function St (intended

n<w
as strategy for player I, in the play for (a2) above).
Play in |J M2° and get

n<w

(ME, () £ < wn) € M,
sup{n®(i) : i <wn} € Mf;fl,
n*(wn) > sup(M0 N A).

Us 35
Lemma 3.36. Assume that A\ > x(x) > 6 are regular cardinals, S C {6 < X :

cf(8) = 0} is a stationary set, XX*) = X, and the conclusion of 3.33 holds for
them. Then it holds also for AT instead of \.

Proof. By [Shea, 2.10(2)] or see [She94d], we know

(%) there are (Cs : § < AT and cf(6) = 6), (eq : @ < A1) such that:
(1) Cs is a club of § of order type 0, a € Cs & a > sup(Cs Na) =
cf(a) = A,

(77) eq is a club of « of order type cf(a), e = {5 : i < cf(a)} (increasing
continuous),

(i73) if E is a club of AT then for stationarily many § < AT, cf(d) = 0,
Cs C F and the set

{i <X: forevery a € Cs, cf(a) =X = fj, € E}
is unbounded in A.

Now copying the black box of A on each § < AT, cf(§) = 0, we can finish easily.
Us.36
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Lemma 3.37. If A\, u, k, 0, x(%), S are as in 3.33, and

a<x(x) = laf’ <x()
then there is a stationary S* C {A C X : |A] < x(x)} and a one-to-one function cd
from S* to \ such that:
AeS*"&BeS"&A#4#B&ACB = cd(4)e€B.

Remark 3.38. This gives another positive instance to a problem of Zwicker. (See
[She86al.)

Proof. Similar to the proof of 3.33 only choose

cd: {A:ACXand |[A] < x(x)} — A

one-to-one, and then define

S*N{A: AC o |4 < x(%)}
by induction on a. 0s3.37
Problem 3.39. 1) Can we prove in ZFC that for some regular A > 0

(*)x,0,x(x) We can define for a € S3 = {0 < A : Ry < cf(d) = 0} a model M,
with a countable vocabulary and universe an unbounded subset of a of
power < x(x), Ms N x(*) is an ordinal such that: for every model M with
countable vocabulary and universe A, for some (equivalently: stationarily
many) § € S2, Ms C M.

2) The same dealing with relational vocabularies only (we call it (*)3’310,1)

Remark 3.40. Note that by 3.8 if (*)x0,x, pp = cf(u) > X then (x),+ g,

* * *

Now (3.41—3.45) we return to black boxes for singular A, i.e., we deal with the
case cf(\) < 4.

Lemma 3.41. Suppose that \? = X<X(*) ' X is a singular cardinal, 0 is reqular, and
X (%) is regular > 6.
Assume further

(a) cf(X) <0,
(B) A= pi, lwl <0, w COF (usually w = cf(X)) and [i <j = pi < pyl,
icew
and each p; s reqular < A and

cf(A) >Ny A cf(N) =60 = w=cf(N),

(v) w> A, pis a reqular cardinal, D is a uniform filter on w (so {a € w: a >
B} € D for each B € w), p is the true cofinality of [] (pi, <)/D (see [Shed,

1Ew
3.6(2)=Lc18] or [She94b]),
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(0) f = {fi/D :i < p) exemplifies “the true cofinality of H(,ui, <)/D is u”,
i.e., '
a<pB<\N = fo/D<fs/D,
Fellm = VI/D<fu/D,

(e) SC{6 < p:cf(d) =0} is good for (u,8,x(x)), and
(€) if 0 > cf(N), 6 € S, then for some As € D and unbounded Bs C § we have
a€Bs N BEB; N a<f Ni€eAs = [foli) < fs(d),

ie., {fa | As : @ € Bs) is <—increasing.

Then we can find W = {(M>,n%) : a < a(x)} (pedantically a sequence) and
functions ¢ from a(x) to S and h from a(x) to p such that:

(a0), (al), (a2) as in 3.12 except that we replace (x) of (al) by
() (i) n*€’x
(13)  if i < cf(X) then sup(p; N Rang(n®)) = sup(u; N M), and
(i1i) if € < {() then fe/E < (sup(ui N Mg) : i < cf(\)/E <
fg’(a)/E7

(b0) — (b3) as in 3.12.

Proof. For A C 0 of cardinality 6 let cdf,x(*) t Ay (A) — A\ be one-to-one,
and G : A — X be such that for v divisible by |y|, a < v < X\ (g > Ng), the set
{B <7 :G(B) = a} is unbounded in v and of order type v. Let A = (4; : i < 0)
be a sequence of pairwise disjoint subsets of 8 each of cardinality 6.

Let for § € S

WY ={(M,n): M,n satisfy (al), and for some y € A, (4 (),
for every i < 0 we have

(Gn(i) i € Aj) = cd}l o (M 15,15, 9))},
The rest is as before. Os .41

Claim 3.42. Suppose that N0 = X<X(*) | X is singular, 0, x(x) are regular, x(x) > 6.
1) If (Va < N)[|a|<X®) < A] then by X0 = X<X0) we know that either cf(X) > x(x)
(and so lemma 3.18 applies) or cf(N) < 0.
2) We can find regular p; (i < cf(X)) increasing with i, A=Y, ;.

i<cf(\)
8) For (u; : i € w) as in 3.41(8) we can find D,p, f as in 3.41(v),(5), D the
co-bounded filter plus one unbounded subset of w.
4) For {u; :i € w), D,u, f as in (B), (v), (8) of 3.41 we can find pu and pairwise
disjoint S C p as required in (¢), () of 3.41 provided that § > cf(\) = 2° < p
[equivalently < A].
5) If cf(\) > Rg, (Vo < N)[|a™) < ], XA < p = cf(p) < AN then we can find
(i =i < cf(N)), and the co-bounded filter D on cf(\) as required in (8), (v) of 3.31.

Proof. Now 1),2),3) are trivial, for (5) see [She90b, §9]. As for 4), we should recall
[She90b, §5] actually say: U342
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Fact 3.43. If (u; : i € w), f, D are as in 3.41, then

S={d<p: cf(6) =0 and there are A; € D, and unbounded Bs C §
such that o € Bs A € Bs Aa < BANi€ Asfa(i) < fs(i)]}
is good for (p, 0, x(*)).

Lemma 3.44. Let x(1) = x(x) + (< x(x))?.
In 8.41, if N = M) we can strengthen (b1) to (b1)T (of 3.20).

Proof. Combine proofs of 3.41, 3.20. Us.44

Lemma 3.45. 317 x 3.29 and 219 x 3.37 hold (we need also the parallel to 3.33).

Proof. Left to the reader. U345
* * *

Now we draw some conclusions.
The first, 3.46, gives what we need in 2.7 (so 2.3).

Conclusion 3.46. Suppose \? = X<X(*) cf(\) > x(x) + 01, 6 = cf(0) < x(*) =
cf(x(x)). Then we can find
W = {(M*n%) s a <a(x)}, M = (N7, A7, B}),

where

AP CANINT| BY C AN NP, AF # B,
and functions ¢, h such that:

(a0), (al) as in 3.12;
(a2) as in 3.12 except that in the game, player I can choose M;, only as above;
(b0), (b1), (b2) as in 3.12;
(b1)" if {n™1i i < 0} C MP but a < B (s0 B < a+ (< x(x))? then

Ag 0 (|Mg 0 IMé;I) 7# Beg N (Mg n IMfgI),
By N (IMg|n|Mgl) # Ay 0 (|Mg |0 [My]).

Proof. First assume A is regular, and W = {(M%, %) : a < ()}, ¢, h be as in the
conclusion of 3.12. Let w = {cd(e,8) : a, 8 < A}, and G1,Gs : w — X be such
that for a € E, a = ¢d(G1(a), G2(a)).

Let

Y ={a<a(x): M has the form (N&, A%, B®),
A&, B¢ distinct subsets of AN |N?| (equivalently,
monadic relations), h(a) € E, and
Ga(h(a)) =min{y: vy € A¥\ B¥ or v € B¥ \ A% }}.

Now we let

W* = {(M®n®) :aeY},(*=(|Y,h* =Gyoh.
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They exemplify that 3.46 holds.
What if X is singular? Still cf()\) > x(x) + 6* and we can just use 3.18 instead
3.12. Oz 46

Claim 3.47. 1) In 8.12, if X = AX®) | we can let h : S — H,(+)(\) be onto;

generally we can still make Rang(h) be C A, whenever |A| = A.

2) In 3.12, by its proof, whenever S' C S is stationary, and \(h=(¢) NS’ station-
¢

ary) then {(M®,1n%) : a < a(x), () € S'} satisfies the same conclusion.
3) For any unbounded a C 6 we can let player I choose also n(i) for i € 6\ a,
without changing our conclusions.

4) Similar statements hold for the parallel claims.

5) It is natural to have x(x) = xT.

Proof. Straightforward. Us.a7

Fact 3.48. We can make the following changes in (al), (a2) of 3.12 (and in all
similar lemmas here) getting equivalent statements:

(x) M € Ay ) (A+)); in the game, for some arbitrary A* > A (but fix during
the game) player I chooses the M € J#(\*) (of cardinality < x (%)), and
in the end instead “A M; = M?” we have “there is an isomorphism from

3
My onto Mg taking M; onto M and is the identity on Mg N H%, () ()
and maps |Mp|\ 72 () into S, () (A+ ) \ Hy(x)(A) and preserves € and
¢ and “being an ordinal” and “not being an ordinal”.

Exercise 3.49. If D is a normal fine filter on &2(u), A is regular, A < u, S C {§ <
A : cf(§) = 0} is stationary, moreover:

(x)p.s {a€ P(u):sup(anA) €S} #0 mod D

then we can partition S to A stationary disjoint subsets each satisfying (x).

[Hint: like the proof of 3.3.]

Notation 3.50. 1) Let x be an uncountable regular cardinal. We let seq%, (%),
where @/ is an expansion of a submodel of some #Z,,(\) with |7(47)| < x, be the
set of sequences (M; : i < «), which are increasing continuous, M; < &, ||M;|| < &,
MiNk €k, k=r = k1+1C M, (Mj:j<i)€ Mpyi. (If =4 is limit,
M5 = U Mz)

i<4
2)Ifk = nf, we may write < k1 instead < k.
We repeat the definition of filters introduced in [She75a, Definition 3.2].

Definition 3.51. 1) &2, (A) is the following filter on [A]<" : Y € &2, (A) if and
only if for (every) x large enough, for some x € 7 (x) the set {(J M;)NA: (M, :
<0

i < 0) €seq?, (#(x),€,x)} is included in Y.
Exercise 3.52. Let A, &, 6, and Y C [\]<" be given. Then

where
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(a) for some W = {(M®,n®) : @ < au(%)}, ¢, b satisty 3.12,

Y={MFnX:a<a(x},

and
(%) a#£ B A /\n?eMgﬂéa<ﬁ.
<0
(b) OEZK(A) holds.
(¢) Like (a) without (x).
Exercise 3.53. If A" =\, § < x then Ome, (main case: k =0).

Exercise 3.54. If A\ = put, \* = )\, § = R, k = &Y, then there is a coding set with
diamond (see [She86a]).

Exercise 3.55. Suppose that cf(A) > R, 2% = A () > 0 > cf()), (Va <
M[la]X*) < A], € is a model expanding (H#%, (. (N), €), |T(€)| < Ng. Then we can
find {M? : a < a()} such that:

(i) M* = (Mg :i <o), M € Hy)(N), MPNx(*) is an ordinal, M |7(€) <
¢ [i<j = M <M, (Mj:j<i)e M,

1) if f, is a k,—place function from A to S, (4 (A) then for some o, M$ <
X(*) o
(Q:a fn)n<w-

Exercise 3.56. Suppose 0 = cf(p) < p, (Va < p)[lal? < y], 2* = pf and X\ =
(2M)F, S C{d < A:cf(d) =0}. Let p= > pi, p; regular strictly increasing, and

<6
cf (] ni/E) = 2*. Then we can find

W= {(M*n%) :a<a(x)}, (:alx)—S, h:alx)— X
such that:
(x) for 6 € S there is a club Cs of § of order type 6 such that
acCsNotplanCs)=v+1 = cf(a) =p,.

Remark 3.57. We do not know if the existence of a Black Box for AT with h one-to-
one follows from ZFC (of course it is a consequence of <»). On the other hand, it is
difficult to get rid of such a Black Box (i.e., prove the consistency of non-existence).

If A = A<* then we have h: S — A, S C {6 < At : ¢f(6) < A} such that Cj is
a club of 4, otp(Cs) = cf(§) and

Y club (C C a € Cy)

. A
[cf(a) > Rog A o i o sup(h[C") = otp(C' N a)].

This is hard to get rid of, (i.e., hard to find a forcing notion making it no longer

a black box, without collapsing too many cardinals); compare with Mekler-Shelah

[MS8&9].
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§ 4. ON PARTITIONS TO STATIONARY SETS

We present some results on the club filter on [k]*° and [x]’ and some relatives,
and ¢ (see Definition [Shed, 4.6=Ld12] or 4.4(2) below). There are overlaps of the
claims hence redundant parts which still have some interest.

Claim 4.1. Assume k is a cardinal > Ny, then [k]¥0 can be partitioned to k™°
(pairwise disjoint) stationary sets.

Proof. Follows by 4.2 below, [in details, let 7 be the vocabulary {c, : n < w} where
each ¢, is an individual constant. By 4.2 below there is a sequence M = (M, :ue
[k]%°) of T-models, with M, having universe u such that M is a diamond sequence.

For each n € “\ let ., be the set u € [x]X° such that for every n < w we have

e =n(n)}. )
By the choice of M necessarily each set .7, is a stationary subset of []™°, and
trivially those sets are pairwise disjoint.] Ogq

Claim 4.2. Let k > R;. Then we have diamond on [k]¥° (modulo the filter of clubs
on it, see 4.4(2) or [Shed, 4.6=Ld12]), and we can find A, C [k]*° fora < X := 90
such that each is stationary but the intersection of any two is not.

Proof. The existence of the A,-s for a < A follows from the other result. Let 7 be
a countable vocabulary, 71 = 7 U {<}. First we prove it when x = Ry € [Ny, 2%0).
Let w \ {0} be the disjoint union of s, for n < w, each s, is infinite with the
first element > n + 3 when n > 0. Let (C5 : § € S2) be club guessing, where
S2 = {§ < wq : cf(8) = Vo}, such that C5 C § = sup(C;) has order type w.

Let (A, ac) : ¢ < 2%) list without repetitions the pairs (A, @), a model with
vocabulary 71 and universe a limit countable ordinal and @ = (o, : n < w) an
increasing sequence of ordinals with limit sup(2() and 2AJ«,, < A. Let E, be the
following equivalence relation relation on 2%0 : €E, ¢ iff (A¢]as,, a¢[n) is isomorphic
to (ASTaS,as | n) which means: there is an isomorphism f from 2 | af onto AS |
a% which maps 21 [ af, onto A | ozi for £ < n and is an order preserving function
(for the ordinals, alternatively we restrict ourselves to the case < is interpreted as
a well ordering).

We can find subsets t¢ of w such that:

(%) for ¢,e < 28 we have t€ N5, = 1< N s, iff A = A | af, and af = af
for k < n. Also t¢ N s, is infinite and € # ¢ = Ry > [t N t¢] for simplicity
(so t¢ N s, depend just on (/E,, in fact code it).

For ¢ < 2%0 let

Se=Ha€ [KJ]NO tte = {|Csup(a) N B| : B € a}},
and let

L= {a e H: otp(a) = otp(2A)},

and for a € 5”@1 let N, be the model isomorphic to 2A¢ by the function f,, where
Dom(fa) = a, fa(V) = Otp(’y Na).

Let % be the union of 5”(’ for ¢ < 2%, Clearly ( # ¢ = . N.% =0, and so
5”4’ N 5”5’ = (). Hence N, is well defined for a € .#.
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Let K, be the set of pairs (2, &) such that 2 is a tau;-model with universe
a countable subset of x with no last member, and & is an increasing sequence
of ordinals < k of length n such that aj < sup(A) and [ag, ap+1) NA # @ and
Alay, < A. So clearly there is a function cd,, : K,, — Z(s,) such that: if { < 2%
then cd,, (2, @) = ¢ N s,, iff the pairs (A, @), ((AS,a¢[n)) are isomorphic.

Let M be a 1i—model with universe k. Now (see [Shed, 1.16=L1.15], or history
in the introduction of §3, and the proof of 3.24) we can find a full subtree J of
“>(Ry) (i.e., it is non-empty, closed under initial segments and each member has N,
immediate successors) and elementary submodels N,, of M for n € 7 such that:

(a) Rang(n) C Ny,
(b) if n is an initial segment of p then N, is a submodel N,,, moreover N, NNy
is an initial segment of N, N N,.

Now let E be the set of § < R, satisfying: if p € J and p € 7§ then N, NN, is a
bounded subset of §, and § is a limit ordinal. Let E; be the set of § € E such that
if p € 7 N“>§ then for every 8 < ¢ there is y such that 8 <y < § and 5" (y) € 7.
So by the choice of (Cs : 6 € S) for some ¢ € S we have Cs C Fj.

Let (ask : k < w) list Cy in increasing order.

Now we choose by induction on n a triple (9, s, @, k,) such that:

(*) (a) nn € J has length n (so np is necessarily ())
(b) if n=m+ 1 then 5, is a successor of n,,
(¢) s} is cdn((Nn,,{(ae: € <n))) if the pair (N, , (ae : £ < n)) belongs to
K, and is s, otherwise; actually it is so,
(d) on =sup(N,,)+1
(e) k,=min{k:N,, Coasi}and kg =0 and n[0,k,] € |J s, U {0}
(

I<n

f) ifn=m+1 and k,, <k, then

(@) min(N,, \ Ny,.) > a5k, -1

(8)  (km, ky) is disjoint to | s}

L<n

(0) kneU{s;:l<n}

(¢) Kk, is minimal under those restrictions.
(9) ifn=m+1andk, =k, then we cannot find k € (k,,,w) satisfying
(8), () of clause (f).

There is no problem to carry the induction. In the end let n = |J#n, € lim(i7), so

we get a 7-model N,, =: U{N,,, : n < w}, and an increasing sequence (o, : n < w)
of ordinals with limit sup(2l). Now by the choice of ((A¢,a¢) : ¢ < 2%0) clearly
for some ¢ we have (N, @), (¢, a¢) are isomorphic, so necessarily (N, [ay,,&[n)
belongs to K, and necessarily cd,(Ny, (ag: £ <n)) = sk.

Also clearly sup(N,) =0 and {k, : n <w} ={|CsNB|: B € Ny} ={ask, :n<
wl}}.

Letting a be the universe of IV, it follows that a € # so N, is well defined
and isomorphic to A€ hence to N,, using <M we get N, = N,. But N, < M. So
(Ng : a € &) isreally a diamond sequence, well for 71-models rather then 7-models,
but this does no harm and will help for k > N,.

See https://shelah.logic.at/papers/309/ for possible updates.
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Second, we consider the case k > Ny. For each ¢ € [k]™°, if otp(c) = otp(c N
Wy, <Nenw2) et g. be the unique isomorphism from (c N ws, <Nenw2) onto (¢, <), <
the usual order, and let M. be the 7—model with universe ¢ such that g is an
isomorphism from Ngny, [T onto M.. Clearly it is an isomorphism and the M.’s
form a diamond sequence.

[Why? For notational simplicity 7 has predicates only. Let My = M be a 7-
model with universe k, let M; be an elementary submodel of M of cardinality Ng
such that wes C My, let h be a one-to-one function from M; onto wy let Ms be a
7-model with universe wo such that A is an isomorphism from M; onto M, and
let M3 be the 7i-model expanding Mo such that <M= {(h(a),h(B)) : a < 3 are
from M }.

So for some a € . C [k]®0 we have N, < M3 and h(a) = 8 € NyAa < ws = a €
a (the set of a-s satisfying this contains a club of [No]¥). Let ¢ = {a : h(a) € a},
so clearly cNws = a and M, < M; hence M, < M, so we are done.] Uao

Discussion 4.3. Some concluding remark are:
1) We can use other cardinals, but it is natural if we deal with D, <g x, (see below).
2) The context is very near to §3, but the stress is different.

Definition 4.4. Let x > 6 > o, 6 uncountable regular. If § = ™ we may write u
instead of < 6.
1) Let D= Dy = D} _y, be the filter [k]<? generated by {AL : z € #(x)} where

Al ={NnNk: N isan elementary submodel of (#(x), €) and
Nis |J N,, N, increasing and N,, € N, 41

n<w

and ||Ny,| < 6 and N, N6 € 0}.

2) Let D = Dy = D2 4, be the filter on [k]<¢ generated by {A2 : z € H#(x)}
where

A2 ={Nnk: Ntextisanelementarysubmodelof(H# (x),€) and
Nis |J N¢, N increasing and
(<o
(Ne:e <) € Neyqand N.NG €6}

3) For a filter D on [x]<? let {p mean: fixing any countable vocabulary 7 there
are S € D and N = (N, : a € S), each N, a 7-model with universe a, such that
for every 7—model M with universe A we have {a € S: N, C M} # () mod D.

4) Instead < 6 we may write 6.

Claim 4.5. Assume 6 <o and k> " and let D = D,; g x,-
1) [k] can be partitioned to o™ (pairwise disjoint) D-positive sets.
2) Assume in addition that o™ > 20 Then

() we can find Ay C [K]? for a < X\ := 2+ such that each is D—positive but
they are pairwise disjoint mod D,

(B) if A\ = kK% and T is a countable vocabulary then $Oa0,r,; moreover there are
S* C [N? and function N* with domain S* such that

(a) for distinct a,b from S* we have aN Kk # bN kK,
(b) for a € S* we have N*(a) = N is a T-model with universe a,
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(¢) for a T-model M with universe A, the set {a : N¥ = M | a} is sta-
tionary.

Proof. Similar to earlier ones : part (1) like Claim 4.1 case (a), part (2) like the
proof of Claim 4.2. Uas

Claim 4.6. 1) If 0 < ko < K1 and g, ie. ODKO,e,gSor where Sy is a subset of
[k0]? which is Dy, ¢.o—positive and Sy := {a € [k1] : aN ko € S}, then $s,, d.e.
$Dyy 0,051 -
2) In part (1), if in addition ko = (ko)? and ke = (k1)? then we can find So C [Ka)?
such that:

(a) a € Sy implies a N Ky € So,
(b) if b, ¢ are distinct members of Sy then bN k1, ¢cN Ky are distinct, and
(c) Oss-

3) If k = K% then $p, , -

Remark 4.7. This works for other uniform definition of normal filters.
Above, k?° = k can be replaced by: every tree with < € nodes has at most
#*~branches and % = k.

Proof. 1) Easy.
2) Implicit in earlier proof, 4.2.
3) See [She86d], [She86al Use
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