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Abstract

We give a new proof that there are arbitrarily large indecomposable
abelian groups; moreover, the groups constructed are absolutely indecom-
posable, that is, they remain indecomposable in any generic extension.
However, any absolutely rigid family of groups has cardinality less than
the partition cardinal κ(ω).
Added December 2004: The proofs of Theorems 0.2 and 0.3 are not
correct, and the claimed results remain open. (The ”only if” part assertion
in the last 3 lines before ”Proof of (II)” on p. 266 is not correct.) How-
ever, Theorems 0.1 and 0.4, which give upper bounds to the size of rigid
systems/groups, are valid. And the construction in the proof of Theorem
0.3 does yield an affirmative answer to Nadel’s question whether there is
a proper class of torsion-free abelian groups which are pairwise absolutely
non-isomorphic.

0 Introduction

Mark Nadel [11] asked whether there is a proper class of torsion-free abelian
groups {Aν : ν ∈ Ord} with the property that for any ν 6= µ, Aν and Aµ are
not L∞ω-equivalent; this is the same as requiring that Aν and Aµ do not become
isomorphic in any generic extension of the universe. In that case we say that Aν
and Aµ are absolutely non-isomorphic . This is not hard to achieve for torsion
abelian groups, since groups of different p-length are absolutely non-isomorphic.
(See section 1 for more information.)

Nadel’s approach to the question in [11] involved looking at known con-
structions of rigid systems {Ai : i ∈ I} to see if they had the property that
for i 6= j, Hom(Ai, Aj) remains zero in any generic extension of the universe.
We call these absolutely rigid systems. Similarly we call a group absolutely rigid
(resp. absolutely indecomposable) if it is rigid (resp. indecomposable) in any
generic extension. Nadel showed that the Fuchs-Corner construction in [4, §89]
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constructs an absolutely rigid system {Aν : ν < 2λ} of groups of cardinality
λ, where λ is less than the first strongly inaccessible cardinal. But he pointed
out that other constructions, such as Fuchs’ construction [5] of a rigid system
of groups of cardinality the first measurable or Shelah’s [13] for an arbitrary
cardinal involve non-absolute notions like direct products or stationary sets; so
the rigid systems constructed may not remain rigid when the universe of sets is
expanded. The same comment applies to any construction based on a version
of the Black Box.

Here we show that there do not exist arbitrarily large absolutely rigid sys-
tems. The cardinal κ(ω) in the following theorem is defined in section 2; it is an
inaccessible cardinal much larger than the first inaccessible, but small enough
to be consistent with the Axiom of Constructibility.

Theorem 1 If κ is a cardinal ≥ κ(ω) and {Aν : ν < κ} is a family of non-zero
abelian groups, then there are µ 6= ν in κ such that in some generic extension
V [G] of the universe, V , there is a non-zero (even one-one) homomorphism
f : Aν → Aµ.

This cardinal κ(ω) (called the “first beautiful cardinal” by the second author
in [14]) is the precise dividing line:

Theorem 2 If κ is a cardinal < κ(ω) and λ is any cardinal ≥ κ(ω), there is
a family {Aµ : µ < κ} of torsion-free groups of cardinality λ such that in any
generic extension V [G], for all µ ∈ κ, Aµ is indecomposable and for ν 6= µ,
Hom(Aν , Aµ) = 0.

Despite the limitation imposed by Theorem 1, the construction used to prove
Theorem 2 yields the existence of a proper class of absolutely different torsion-
free groups, in the following strong form. This answers the question of Nadel
in the affirmative, and also provides a new proof of the existence of arbitrarily
large indecomposables.

Theorem 3 For each uncountable cardinal λ, there exist 2λ torsion-free abso-
lutely indecomposable groups {Hi,λ : i < 2λ} of cardinality λ such that whenever
λ 6= ρ or i 6= j, Hi,λ and Hj,ρ are absolutely non-isomorphic.

We show that the groups Aµ in Theorem 2 and the groups Hi,λ in Theorem
3 are absolutely indecomposable by showing that in any generic extension the
only automorphisms they have are 1 and −1. (The proof of Theorem 3 does not
depend on results from [14].) However, we cannot make the groups absolutely
rigid:

Theorem 4 If κ is a cardinal ≥ κ(ω) and A is a torsion-free abelian group of
cardinality κ, then in some generic extension V [G] of the universe, there is an
endomorphism of A which is not multiplication by a rational number.
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1 Infinitary logic and generic extensions

We will confine ourselves to the language of abelian groups. Thus an atomic
formula is one of the form

∑n
i=0 cixi = 0 where the ci are integers and the xi

are variables.
Lωω consists of the closure of the atomic formula under negation (¬), fi-

nite conjunctions (∧) and disjunctions (∨), and existential (∃x) and universal
(∀x) quantification (over a single variable — or equivalently over finitely many
variables). L∞ω consists of the closure of the atomic formula under negation,
arbitrary (possibly infinite) conjunction (

∧
) and disjunction (

∨
), and under

existential and universal quantification (∃x,∀x). Rather than give formal defi-
nitions of other model-theoretic concepts, we will illustrate them with examples.
Thus the formula ϕ(y) :

∀x∃z(2z = x) ∧ (¬∃z(3z = y))

is a formula of Lωω with one free variable, y, which “says” that every element is
2-divisible, but y is not divisible by 3. More formally, if A is an abelian group
and a ∈ A we write A |= ϕ[a] and say “a satisfies ϕ in A”, if and only if every
element of A is divisible by 2 and there is no b ∈ A such that 3b = a.

Also, the formula ψ(x) :

∃y(py = x) ∧ (
∧
n≥1

∃z(pnz = y)) ∧ (x 6= 0)

is a formula of L∞ω with free variable x such that A |= ψ[a] if and only if
a ∈ pω+1A− {0}.

A sentence is a formula which has no free variables; if ϕ is a sentence of
L∞ω,we write A |= ϕ if and only if ϕ is true in A. We write A ≡∞ω B to
mean that every sentence of L∞ω true in A is true in B (and conversely because
¬ϕ true in A implies ¬ϕ true in B.) Obviously, if there is an isomorphism
f : A→ B, then A ≡∞ω B. A necessary and sufficient condition for A ≡∞ω B
is given by the following ([8], or see [1, pp. 13f]):

Lemma 5 A ≡∞ω B if and only if there is a set P of bijections p : Ap → Bp
from a finite subset Ap of A onto a finite subset Bp of B with the following
properties:

(i)[the elements of P are partial isomorphisms] for every atomic formula
ϕ(x1, ..., xm) and elements a1, ..., am of dom(p), A |= ϕ[a1, ..., am] if and only if
B |= ϕ[p(b1), ..., p(bm)];

(ii)[the back-and-forth property] for every p ∈ P and every a ∈ A (resp.
b ∈ B), there is p′ ∈ P such that p ⊆ p′ and a ∈ dom(p′) (resp. b ∈ rge(p′)).

It is an easy consequence that if A and B are countable, then A ≡∞ω B if
and only if A ∼= B. Also, this implies that if it is true in V that A ≡∞ω B,
then A ≡∞ω B remains true in V [G]. The converse is easy, and direct, since a
sentence of L∞ω which, in V , holds true in A but false in B has the same status
in V [G], since no new elements are added to the groups.
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(By a generic extension we mean an extension of the universe V of sets
defined by the method of forcing. In general, more sets are added to the universe;
possibly, for example, a bijection between an uncountable cardinal λ and the
countable set ω. So cardinals of V may not be cardinals in V [G]; but the ordinals
of V [G] are the same as the ordinals of V . Also, the elements of any set in V
are the same in V or V [G].)

There exist non-isomorphic uncountable groups A and B (of cardinality ℵ1
for example) such that A ≡∞ω B. (See for example [3].) However, for any
groups A and B in the universe, V , there is a generic extension V [G] of V in
which A and B are both countable (cf. [7, Lemma 19.9, p. 182]). Therefore we
can conclude that A ≡∞ω B if and only if A and B are “potentially isomorphic”,
that is, there is a generic extension V [G] of the universe in which they become
isomorphic. Barwise argues in [1, p. 32] that potential isomorphism (that
is, the relation ≡∞ω) is “a very natural notion of isomorphism, one of which
mathematicians should be aware. If one proves that A � B but leaves open the
question [of whether A and B are potentially isomorphic] then one leaves the
possibility that A and B are not isomorphic for trivial reasons of cardinality.
Or to put it the other way round, a proof that [A is not potentially isomorphic
to B ] is a proof that A � B for nontrivial reasons.”

As an example, consider reduced p-groups Aν (ν any ordinal) such that the
length of Aν is ν, that is, pνAν = 0 but for all µ < ν, pµAν 6= 0. Then for any
ν1 6= ν2, the groups Aν1 and Aν2 are not even potentially isomorphic: this is
because for any ν there is a formula θν(x) such that ∃x(θν(x) ∧ x 6= 0) is true
in a p-group A if and only if A has length ≥ ν. Indeed, we define, by induction,
θν to be

∃y(py = x ∧ θµ(y))

if ν = µ+ 1 and if ν is a limit ordinal define θν to be∧
µ<ν

∃y(py = x ∧ θµ(y)).

Thus there is a proper class of pairwise absolutely non-isomorphic p-groups.
Although there is not available a standard group-theoretic notion which will
serve the same purpose for torsion-free groups, we will prove in section 5 that
there is a proper class of indecomposable torsion-free abelian groups {Hλ : λ
a cardinal} such that for any λ 6= ρ, the groups Hλ and Hρ are not L∞ω-
equivalent.

2 Quasi-well-orderings and beautiful cardinals

A quasi-order Q is a pair (Q,≤Q) where ≤Q is a reflexive and transitive binary
relation on Q. There is an extensive theory of well-orderings of quasi-orders
developed by Higman, Kruskal, Nash-Williams and Laver among others (cf.
[12], [9]). A generalization to uncountable cardinals is due to the second author
([14]). The key notion that we need is the following: for an infinite cardinal
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κ, Q is called κ–narrow if there is no antichain in Q of size κ, i.e., for every
f : κ→ Q there exist ν 6= µ such that f(ν) ≤Q f(µ). (Note that this use of the
terminology “antichain” — in [10, p.32] for example — is different from its use
in forcing theory.)

A tree is a partially-ordered set (T,≤) such that for all t ∈ T , pred(t)= {s ∈
T : s < t} is a well-ordered set; moreover, there is only one element r of T ,
called the root of T , such that pred(r) is empty. The order-type of pred(t) is
called the height of t, denoted ht(t); the height of T is sup{ht(t) + 1 : t ∈ T}.

If Q is a quasi-order, a Q-labeled tree is a pair (T,ΦT ) consisting of a tree T of
height ≤ ω and a function ΦT : T → Q. On any set of Q-labeled trees we define
a quasi-order by: (T1,Φ1) � (T2,Φ2) if and only if there is a function θ : T1 → T2
which preserves the tree-order (i.e. t ≤T1

t′ implies θ(t) ≤T2
θ(t′)) as well as

the height of elements and also is such that for all t ∈ T1, Φ1(t) ≤Q Φ2(θ(t)).
One result from [14] that we will use implies that for sufficiently large cardi-

nals κ and sufficiently small Q, any set of Q-labeled trees is κ-narrow. In order
to state the result precisely we need to define a certain (relatively small) large
cardinal.

Let κ(ω) be the first ω-Erdös cardinal, i.e., the least cardinal such that
κ −→ (ω)<ω; in other words, the least cardinal such that for every function F
from the finite subsets of κ to 2 there is an infinite subset X of κ such that
there is a function c : ω → 2 such for every finite subset Y of X, F (Y ) = c(|Y |).
It has been shown that this cardinal is strongly inaccessible (cf. [7, p. 392]).
Thus it cannot be proved in ZFC that κ(ω) exists (or even that its existence is
consistent). If it exists, there are many weakly compact cardinals below it, and,
on the other hand, it is less than the first measurable cardinal (if such exists).
Moreover, if it is consistent with ZFC that there is such a cardinal, then it is
consistent with ZFC + V = L that there is such a cardinal ([15]). If κ(ω) does
not exist, then Theorem 6 is uninteresting. On the other hand, Theorem 7 then
applies to every cardinal κ, and its consequences, given in section 4, are still of
interest.

The following is a consequence of results proved in [14] (cf. Theorem 5.3, p.
208 and Theorem 2.10, p. 197):

Theorem 6 If Q is a quasi-order of cardinality < κ(ω), and S is a set of
Q-labeled trees, then S is κ(ω)-narrow.

On the other hand, it follows from results in [14] that for any cardinal smaller
than κ(ω), there is an absolute antichain of that size:

Theorem 7 If κ < κ(ω), there is a family T = {(Tµ,Φµ) : µ < κ} of ω-labeled
trees, each of cardinality < κ(ω), such that in any generic extension of V , for
all µ 6= ν, (Tµ,Φµ) � (Tν ,Φν).

Some commentary is needed on the absoluteness of the antichain T =
{(Tµ,Φµ) : µ < κ}, since this is not dealt with directly in [14]. T is constructed
in a concrete, absolute, way from a function F which is an example witnessing
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the fact that κ < κ(ω). First, a κ-D-barrier B and function q : B → ω is
constructed (B is a kind of elaborate indexing for an antichain cf. [14, proof
of 2.5, p. 195]). This gives rise ([14, proof of 1.12, pp. 192f]) to an example
showing that Pβ(ω) is not κ-narrow for some β < κ(ω); this example is em-
bedded into the quasi-order of ω-labeled trees, giving rise to T ([14, p. 221]).
The proof that T is an antichain reduces to the key property of F , a property
which is absolute by an argument of Silver [15]. Using an equivalent defini-
tion of κ(ω), F is taken to be a function from the finite subsets of κ to ω
such that there is no one-one function σ : ω → ω such that for all n ∈ ω,
F ({σ(0), ..., σ(n − 1)}) = F ({σ(1), ..., σ(n)}); this property of F is preserved
under generic extensions because it is equivalent to the well-foundedness of a
certain tree; more precisely, the tree of finite partial attempts at σ has no infinite
branch.

3 A bound on the size of absolutely rigid sys-
tems

In this section we will prove Theorems 1 and 4.. Suppose that {Aν : ν < κ} is
a family of non-zero abelian groups, where we can assume that κ = κ(ω). For
each ν < κ, let Tν be the tree of finite sequences of elements of Aν ; that is, the
elements of Tν are 1-1 functions s : ns → Aν for some ns ∈ ω and s ≤ t if and
only if ns ≤ nt and t � ns = s.

Let Qab be the set of all quantifier-free n-types of abelian groups; that is,
Y ∈ Qab if and only if for some abelian group G, some n ∈ ω, and some function
s : n→ G, Y is the set tpqf (s/G) of all quantifier-free formulas ϕ(x0, ..., xn−1)
of Lωω such that G � ϕ[s(0), ..., s(n− 1)]. Partially-order Qab by the relation of
inclusion.

Define Φν : Tν → Qab by letting Φν(s) = tpqf (s/Aν). Now we can apply
Theorem 6 to the family of Qab-labeled trees S = {(Tν ,Φν) : ν < κ}. (Note that
the cardinality of Qab is 2ℵ0 which is < κ(ω) since κ(ω) is strongly-inaccessible.)
Therefore there exists ν 6= µ such that (Tν ,Φν) � (Tµ,Φµ), say θ : Tν → Tµ is
such that s ≤ t implies θ(s) ≤ θ(t) and for all s ∈ Tν , Φν(s) ⊆ Φµ(θ(s)).

Now move to a generic extension V [G] in which Aν is countable. In V [G],
let σ : ω → Aν be a surjection. We will define an embedding f : Aν → Aµ by
letting f(σ(n)) = θ(σ � n+ 1)(n) for all n < ω. To see that f is an embedding,
note that f(σ(n)) = θ(σ � k)(n) for all k > n since θ preserves the tree ordering;
moreover, for any a, b, c ∈ Aν , there is a k such that a, b, c ∈ rge(σ � k) so since

Φν(σ � k) ⊆ Φµ(θ(σ � k)) = Φµ(〈f(0), ..., f(k − 1)〉)

every quantifier-free formula satisfied by a, b, c in Aν (e.g. a 6= 0, a−b = c, ab =
c) is satisfied by f(a), f(b), f(c) in Aµ. This completes the proof of Theorem 1

The argument is very general and could be applied to any family of struc-
tures (for example, to those in [6]). If we start with a torsion-free group A
of cardinality κ ≥ κ(ω), and apply the argument to the family of structures
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{〈A, av〉 : ν < κ(ω)} where {aν : ν < κ(ω)} is a linearly independent subset of
A, then we obtain ν 6= µ such that in a generic extension in which A becomes
countable we have an embedding f : A → A taking aν to aµ. This proves
Theorem 4.

Ernest Schimmerling has pointed out that there is a “soft” proof of these
results (not relying on Theorem 6) using a model of set theory (with {Aν :
ν < κ} as additional predicate) and a set of indiscernibles given by the defining
property of κ = κ(ω).

4 Existence theorem

In this section we will prove Theorem 2. So let κ < κ(ω) and let λ be a cardinal
≥ κ(ω). Let {(Tµ,Φµ) : µ < κ} be the family of ω-labeled trees as in Theorem
7. We can assume that each node of Tµ of height m is a sequence of length m
and the tree-ordering is extension of sequences; so the root of the tree is the
empty sequence <>.

Let 〈pn,m,j : n,m ∈ ω, j ∈ {0, 1}〉 and 〈qn,m,`,j : n,m, ` ∈ ω, j ∈ {0, 1}〉 be two
lists, with no overlap, of distinct primes.

For any ordinal α, Zα be the tree of finite strictly decreasing non-empty
sequences z of ordinals ≤ α such that z(0) = α. (Thus for some n ∈ ω,
z : n→ α such that α = z(0) > z(1) > ... > z(n− 1).)

For n ∈ ω let gn : λ→ P([λn, λ(n+ 1))) such that for each ν < λ, gn(ν) is a
subset of [λn, λ(n+1)) which is cofinal in λ(n+1) = λn+λ. (Here the operations
are ordinal addition and multiplication, so, in particular, λn is less than λ+, the
cardinal successor of λ.) We also require that for µ 6= ν, gn(µ)∩ gn(ν) = ∅. For
n > 0, let Yn =

⋃
rge(gn), and let Y0 = g0(0).

For µ < κ, let Wµ be the Q-vector space with basis
⋃
n∈ω An ∪ Bn,µ where

for n > 0

An = {aαz : α ∈ Yn−1, z ∈ Zα},
Bn,µ = {bαη,µ : α ∈ Yn−1, η ∈ Tµ − {<>}}

and A0 = {a0µ} = B0,µ. We are going to define Aµ to be a subgroup of Wµ.
Since µ is fixed throughout the construction, we will usually omit the subscript
µ from what follows (until we come to consider Hom(Aν , Aµ)).

For each n > 0, let hn be a bijection from An ∪ Bn onto λ; let h0(a0) = 0.
Then for any w ∈ An ∪ Bn, and any α ∈ gn(hn(w)), we will use aα<> or bα<> as

a notation for w. (So aα<> = bα<>; moreover, aα<> = aβ<> if and only if α and β
belong to the same member of the range of gn.) Now we can define A (= Aµ)
to be the subgroup of W generated (as abelian group) by the union of⋃

n≥0

{ 1

pkn,m,0
aαz : m, k ∈ ω, z ∈ Zα ∪ {<>}, α ∈ Yn,dom(z) = m} (1)

⋃
n≥0

{ 1

pkn,m,1
(aαz + aαz�m−1):m, k ∈ ω − {0}, z ∈ Zα, α ∈ Yn,dom(z) = m} (2)
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and

⋃
n≥0

{ 1

qkn,m,`
(bαη+bαη�m−1):m, k ∈ ω−{0}, η ∈ Tµ, α ∈ Yn,dom(η) = m,Φµ(η) = `}.

(3)

(where bαη�−1 = 0). We will use the sets (1) and (2) to prove that (I) Aµ is
absolutely indecomposable and the set (3) to prove that (II) Hom(Aµ, Aν) = 0
for all µ 6= ν.

If x ∈ Aµ, we will write p∞|x if for every k ∈ ω, there exists v ∈ Aµ such that
pkv = x. For example, if w ∈ An ∪ Bn and α ∈ gn(hn(w)) and Φµ(<>) = `0,
then p∞n,0,0|w and q∞n,0,`o |w. Assertions about divisibility in Aµ are easily checked
by considering the coefficients of linear combinations over Q of elements of the
basis

⋃
n∈ω An ∪ Bn of Wµ; for example, p∞n,m,0|x if and only if x =

∑r
i=1 cia

αi
zi

for some α1, ..., αr in Yn, zi of length m, and ci ∈ Q (with denominator a power
of pn,m,0).

Proof of (I)

We will show, in fact, that in any generic extension V [G] the only automor-
phisms of A (= Aµ) are the trivial ones, 1 and −1. This part of the proof does
not use the trees in T ; the absoluteness is a consequence of an argument using
formulas of L∞ω, which therefore works in any generic extension. We will use
the following claim:

(1A) there are formulas ψn,α(x) of L∞ω (n ∈ ω, α ∈ Yn) such that
for any u ∈ A, A |= ψn,α[u] if and only if there are w1, ..., wr ∈
An ∪ Bn, and c1, ..., cr ∈ Z − {0}, such that u =

∑r
i=1 ciwi and

α ∈
⋃r
i=1 gn(hn(wi)).

Assuming the claim for now, suppose that in V [G] there is an automorphism
F of A. For any n ∈ ω, consider any w ∈ An ∪ Bn; since w = aα<> for
α ∈ gn(hn(w)), p∞n,0,0|w; therefore p∞n,0,0|F (w), and hence F (w) =

∑r
i=1 ciwi

for some distinct wi ∈ An ∪ Bn. Moreover, by (1A), A |= ψn,α[w] if and only
if α ∈ gn(hn(w)) if and only if A |= ψn,α[F (w)]. Thus, since the elements of
the range of gn are disjoint, we must have that r = 1 and w1 = w, that is,
F (w) = cw for some c = c(w) ∈ Q.

If we can show that c(w) = c(a0) for all w ∈
⋃
n∈ω An ∪ Bn, then F is

multiplication by c(a0), and then it is easy to see that c(a0) must be ±1. It
will be enough to show that if w = aαz (resp. w = bαη ) for some α ∈ Yn−1, then
c(w) = c(aα<>), for then c(w) = c(w′) for some w′ ∈ An−1 ∪ Bn−1 (namely, the
unique w′ such that α ∈ gn−1(hn−1(w′))) and by induction c(w′) = c(a0).

So suppose w = aαz ; the proof will be by induction on the length of z that
c(aαz ) = c(aα<>). Suppose that the length of z = m > 0. Let c = c(aαz )
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and c′ = c(aαz�m−1). By induction it is enough to prove that c = c′. Since
p∞n,m,1|(aαz + aαz�m−1), it is also the case that p∞n,m,1 divides

F (aαz ) + F (aαz�m−1) = caαz + c′aαz�m−1 = c(aαz + aαz�m−1) + (c′ − c)aαz�m−1

so p∞n,m,1|(c′ − c)aαz�m−1, which is impossible unless c = c′ .
The proof is similar if w = bαη , but uses the primes qn,m,`. So it remains to

prove (1A). We will begin by defining some auxiliary formulas of L∞ω. First,
we will use p∞|x as an abbreviation for∧

k∈ω

∃vk(pkvk = x).

Define ϕn,m,0(y) to be p∞n,m,0|y. Then for u ∈ A, A |= ϕn,m,0[u] if and only

if u is in the subgroup (Z-submodule) generated by { 1
pkn,m,0

aαz : α ∈ Yn, k ∈
ω, z ∈ Zα,dom(z) = m}. Define ϕn,m,β(y) for each m > 0 by recursion on β: if
β = γ + 1, ϕn,m,β(y) is

ϕn,m,γ(y) ∧ ∃y′(ϕn,m+1,γ(y′) ∧ (p∞n,m+1,1|(y + y′)).

If β is a limit ordinal, let ϕn,m,β(y) be∧
γ<β

ϕn,m,γ(y).

Then for u ∈ A, A |= ϕn,m,β [u] if and only if u is in the subgroup generated by

{aαz : α ∈ Yn, z ∈ Zα,dom(z) = m and z(m− 1) ≥ β}.

In particular, for m = 1, recalling that z ∈ Zα satisfies z(0) = α, we have that
A |= ϕn,1,β [u] if and only if u is in the subgroup generated by

{aα<α> : α ∈ Yn, α ≥ β}.

Now define ψn,α(x) to be

ϕn,0,0(x) ∧ ∃y[p∞n,1,1|(x+ y) ∧ ϕn,1,α(y) ∧ ¬ϕn,1,α+1(y)].

If u =
∑r
i=1 ciwi, for some wi ∈ An∪Bn, then p∞n,1,1|(u+y) iff y =

∑r
i=1 cia

αi
<αi>

for some αi ∈ gn(hn(wi)); using the cofinality of members of the range of gn, it
follows easily that ψn,α(x) has the desired property.

Proof of (II)

Suppose that there is a non-zero homomorphism H : Aν → Aµ. We are going
to use H to define θ : Tν → Tµ showing that (Tν ,Φν) � (Tµ,Φµ), contrary to
the choice of the family of labeled trees. Now H(w) 6= 0 for some w ∈ An∪Bn,ν
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for some n ∈ ω. Thus for some α ∈ Yn, H(bα<>,ν) 6= 0. Fix such an α (which can
in fact be any member of gn(hn(w))). Let Φν(<>) = `0. Then q∞n,0,`0,0|b

α
<>,ν

so q∞n,0,`0,0|H (bα<>,ν), and hence H(bα<>,ν) must be of the form
∑r
i=1 cib

αi
<>,µ

where ci ∈ Q − {0}, and Φµ(<>) = `0. So letting θ(<>) = <> (as it must),
we have confirmed that Φµ(θ(η)) = Φν(η) for η =<>.

Now suppose that for some m ≥ 0, θ(η) has been defined for all nodes η
of Tν of height ≤ m such that Φµ(θ(η)) = Φν(η). Moreover, suppose that for
every η of height ≤ m, the coefficient of bαθ(η),µ in H(bαη,ν) is non-zero. Now

consider any node ζ of Tν of height m+ 1; let η = ζ � m. In Aν , for ` = Φν(ζ),
q∞n,m+1,`,1|bαη,ν +bαζ,ν so q∞n,m+1,`,1|H (bαη,ν)+H (bαζ,ν) in Aµ. Since the coefficient

— call it c — of bαθ(η),µ in H(bαη,ν) is non-zero, there must be a node ζ ′ in Tµ of

height m + 1 such that ζ ′ � m = θ(η) and the coefficient of bαζ′,µ in H(bαζ,ν) is

c, and moreover such that Φµ(ζ ′) = `. So we can let θ(ζ) = ζ ′. This completes
the proof of Theorem 2.

5 Absolutely non-isomorphic indecomposables

In this section we sketch how to modify the construction in the preceding section
in order to prove Theorem 3. (Note that this construction does not require the
trees Tµ of Theorem 7.) Let 〈pn,m,j : n,m ∈ ω, j ∈ {0, 1}〉 be a list of distinct
primes. Fix an uncountable λ; for any α < λω, let Zα be defined as before. Let〈
Si,λ : i < 2λ

〉
be a list of 2λ distinct subsets of λ, each of cardinality λ (and

hence cofinal in λ).
For n 6= 1, let gn : λ → P([λn, λ(n + 1))) be defined as before. For i < 2λ,

define g1,i : λ → P([λ, λ + λ))) as before but with the additional stipulation
that for all ν < λ, g1,i(ν) ⊆ {λ + γ : γ ∈ Si,λ}. (Here again the operation
is ordinal addition.) Let Y1,i =

⋃
rge(g1,i) we will also choose g1,i such that

Y1,i = {λ + γ : γ ∈ Si,λ}. For convenience, for n 6= 1 we let Yn,i denote Yn
(independent of i).

For each n > 0, let hn,i be a bijection from {aαz : α ∈ Yn−1,i, z ∈ Zα} onto
λ; use these bijections to make identifications as in the previous construction.

Then Hi,λ is defined to be the subgroup of the Q-vector space with basis

{a0} ∪ {aαz : n > 0, α ∈ Yn−1,i, z ∈ Zα}

which is generated (as abelian group) by the union of⋃
n≥0

{ 1

pkn,m,0
aαz : m, k ∈ ω, z ∈ Zα ∪ {<>}, α ∈ Yn,i,dom(z) = m}

and

⋃
n≥0

{ 1

pkn,m,1
(aαz + aαz�m−1):m, k ∈ ω − {0}, z ∈ Zα, α ∈ Yn,i,dom(z) = m}.
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As before, the groups Hi,λ are absolutely indecomposable. It remains to
show that for λ 6= ρ or i 6= j, Hi,λ and Hj,ρ are not L∞ω-equivalent (and hence
not isomorphic in any generic extension). For this we use the formulas ψ1,α(x).
If λ = ρ and i 6= j, without loss of generality there exists γ ∈ Si,λ − Sj,λ; let
α = λ+γ. If λ < ρ, let α = λ+γ for any γ in any Si,λ. In either case, ∃xψ1,α(x)
is true in Hi,λ but not in Hj,ρ.
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