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CHANGING CARDINAL CHARACTERISTICS WITHOUT
CHANGING w-SEQUENCES OR COFINALITIES

HEIKE MILDENBERGER AND SAHARON SHELAH

ABSTRACT. We show: There are pairs of universes Vi1 C V2 and there
is a notion of forcing P € V; such that the change mentioned in the
title occurs when going from Vi[G] to V2[G] for a P-generic filter G
over Vo. We use forcing iterations with partial memories. Moreover,
we implement highly transitive automorphism groups into the forcing

orders.
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0. INTRODUCTION

In [14] it is shown that some cardinal characteristics can be changed with-
out changing w-sequences or cardinalities, that is we can have two models
Vi C V, of ZFC such that (“V;)"2 C V; and such that V; and Vs have the
same cardinalities and such that, e.g., 92 < "1 (0 is the dominating num-
ber, the minimum size of a subset D C w* such that every function f € w¥
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is eventually dominated by some member of D). Since in such a situation
the covering theorem for (Vi,Va) fails, there is consistency strength of at
least a measurable cardinal. In [14] a change of a cofinality of a regular
cardinal in Vi was the main step when changing all the entries of Cichon’s
Diagram (for information on cardinal characteristics and Cichori’s Diagram
see e.g. [4, 2, 6, 22]) without changing cardinalities or the reals. In this work
we show that we do not need to change cofinalities in order to change b,
cov(M), cov(N), unif (M) or unif(N') and both additivities without chang-
ing cardinalities or the reals. These are all entries of Cichon’s Diagram that
are not norms of transitive relations. In order to cover all these cases we use
two different procedures.

In Section 1, we show how to change b, unif(M) and cov(N') and both
additivities starting from a bare set-theoretic situation. We use an iteration
with partial memory.

In [14] it is shown that 9, cof (M) and cof (N') cannot be changed if their
values in V; are regular in V5 and if V7 and V5 have the same cardinalities.
At the end of Section 1, we shall show that if V; and V5 have the same cofi-
nalities, then these characteristics (and some more, whose definition exhibits
a certain syntax) cannot be changed either when starting from a singular
value in V7.

In Sections 2 to 5, we show how to change unif(N'). We work with partial
random forcing as in [20, 18], however, as we need special instances of the
methods presented there, we (try to) make our present work self-contained.
We include some comments on the connections to [20, 18] and give references
to items we use almost literally, so that the reader may also read these. In
Section 6 we shall present a variation of the techniques for a case with
countable cofinality.

In Section 7, we show how to obtain the set-theoretic assumptions made
in Theorems 1.1 and 2.1 from Gitik’s work in [8, 9].

The authors would like to thank Andreas Blass for reading a section and
commenting.

Notation. Our notation is fairly standard, see [11, 13]. However, we adopt
the Jerusalem convention that the stronger forcing condition is the larger
one. We often use V¥ for V[G], where G is any P-generic filter over V. For
two forcing notions P, Q) we write P < () if P is a complete suborder of Q.
A forcing notion P is called o-linked if P = J, o, P, such that each P, is
linked, that is any two p, g € P, are compatible. Martin’s axiom for less than
A dense subsets of a o-linked partial order is denoted by MA . (c-linked).
We speak of w®, the set of all functions from w to w, as the reals. For
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fig € w? we write f <* g if InVk > n f(k) < g(k). The ideal of Lebesgue
null sets is denoted by A, and the ideal of meagre sets is denoted by M.
The bounding number, b, is the smallest size of a subset B C w* such that
for any f € w® there is some b € B such that b £* f. Let Z be an ideal
on the reals. The uniformity of Z C P(w), unif(Z), is the smallest size of a
subset of the reals that is not a member of Z. The covering number of Z,
cov(Z), is the smallest size of a subfamily of Z whose union covers the reals.
The additivity of Z, add(Z), is the smallest size of a subset of Z whose union
is not in Z.

1. CHANGING THE UNIFORMITY OF CATEGORY

In this section, we show how to change unif(M). Since add(M) < b <
unif(M) and add(N) < cov(N) < unif(M) (for proofs of these inequal-
ities, see [7], e.g.), and in the beginning, that is in V4[G], everything is
large because of an instance of Martin’s axiom, the other four mentioned
characteristics drop as well.

Theorem 1.1. Assume that we have
a) Vi C Vo, both models of ZFC, (“’Vl)v2 c W,

b) wis a cardinal in Vo, C C pu, C € Vo, T € Vo is an Wy-complete proper
ideal on P(C),

¢) 3N < p such that VB € Vi, if Vi = |B| < A, then BNC € Z,
d) Vi E XA >Ny and X is regular.
Then for some P

a) Vi |= P is a finite support iteration of o-linked forcing notions, and the
cardinality of P is u<*,

B) P is c.c.c. in Va.

For G C P generic over Vo we have

7) (WG cwal,

0) Vi[G] and Va|G] have the same cardinals if Vi and Va have,

e) Vi[G] and V2|G| have the same cofinality function if Vi and Va have,

¢) V1[G] E MA_)(o-linked),

n) in Va[G] there is (r;|i € C), r; € (@216 = (@VilCl such that
Vse WVl 3BCu, BeVy, |IBIY" <\ (soCNBeZ)VieC\B,
r; is Cohen over Va[s].

Proof. In V1 we build a finite support iteration

(P, Qjlj <aryi<ab)
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of length a* = p + u<* as follows. For B < u we let Qg = (<¥2, <), the
Cohen forcing.

For 8 < u<* we shall choose Q.+ such that it is a name built from only
part of P, 5. We first need some definitions in order to specify good parts of
the past. This forcing technique has also been applied in [19], [20], [18] and
their predecessors and in [21]. The part [21, 3.3 to 3.7] contains some lemmas
showing that there are complete embeddings from specified suborders of the
iteration that are not just initial segments. The organisation of our forcing
will be slightly different from that in [21] inasmuch as we have the initial
Cohen part here at once.

The support of a condition p € Py is supt(p) = {y € B|p(y) # 1o, },
where 1 is a name for the weakest element in ¢),. In addition to having
finite supports we shall require that the supports hereditarily stem only from
a part of the “past” Pg. These parts of the past can be called memories.

First we explain how to choose sequences (ag |8 € p<*) which will allow
us to define suitable memories. Given a sequence (ag|f € p=) = a of
subsets of an ordinal, we say c is a-closed, if

cCa*and VB €c ag Cc.

We regard p<* as an ordinal and as a set of sequences of length less than
A. The set of all subsets of a set A of size less than A is denoted by [A]<*.
For & € <" we can also regard z as a function from some ordinal less than
A to v and then write range(x) for its range, which is a subsets of p. This

will be used for referring to a part of the Cohen reals.
We show that there is some (ag | < p=*) such that
(1) Vb e [p=N<* 3B b C ag,
(2) ag C B,
(3) lag| <A,
(4) v € ag = ay C ag (i.e. each ag is a-closed).
This can be seen as follows: Let (bg |3 € p=*) enumerate [u<*]<*, where
bg C . By induction on 3 we now choose ag. Suppose a, is chosen for

v < B. Then we set

a%; = Uajubg,
jebg

agﬂ = UajUag,
ang

ag = Uag.

new
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This is still in [;z<*]<* because \ is regular and cf(\) > Rg. Now it is easy
to see that a fulfils 1. to 4., and we fix such a sequence.
In order to take care of the initial Cohen part, we need shifts and write

p® ag for {u+v|v € ag}.

For each 8 € u<* we define a suborder P*

i®ag of P, inductively by

Ploay = {p € Purs | supt(p) N o C | J{range(z) | 2 € ag}h
supt(p) N [, o+ 1<) C 1@ agh
Yy € supt(p) N [, o + =) p(7) is a P, -name}.

If b C a < p=* then p | (U{range(x) |z € b} U u @ b)) denotes the
1+ a-sequence defined by

(p I ((J{range(z) |z € b} U @ 1)))(7)

_ { p(v) if v € (Ufrange(z) |z € b} U p @ b)),
19W else.

Now we have for all & € p<*: If b C « is a-closed, then Plep < Puta-
If p € Puiq, then (p [ (U{range(z)|z € b} Up ®D))) € Py, and for
q > p | (U{range(z) |z € b} U pu @ b) (in the Jerusalem notation) we have
that qUp [ (a\ (U{range(z) |z € b} U pn @ b)) € P,yq. For proofs, see [21].

We choose Q1 such that [dom(Quip)| < A, Quip is a Plg,,

11 Ploag “Q/Hﬁ is o-linked”, and with some bookkeeping such that Q;Hrﬁ

-name,

ranges cofinally often over all Pj@aw—names for o-linked forcings for every
v € p<*. In order to allow such a bookkeeping, we assume that Vb €
[u<)‘]<)‘ EI“OB b C ag, which can easily be reached by starting with suitable
(bg | B € p=4).

Now we are in a position to check all the items of the theorem:

«) follows immediately from our definition of P.

g)If P= Unew P,, witnesses o-linkedness in V7 then it does so in V5 as
well. Thus in V5, P is a finite support iteration of o-linked forcing notions
and hence c.c.c.

7) (“W[G) "2l € W[G] follows from (“V;)Y2 C Vi and the countable
chain condition of P inV. (There are also proofs in [11, §37] and more
explicit in [5].)

0) and €) V; and V;[G] have the same cofinalities.

¢) Let @ be in V4[G] be a o-linked notion of forcing such that @ C N < A.

Let D = {D4|a < XN} be a set of dense sets in ). Since the supports are
finite and since we have c.c.c., there is some A C p + p<* of size less than
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A such that there is a name for (@, D) that contains only conditions whose
support is in A. Then we take o € u<* such that

x = U{range(af)\x € an} 2 AN and
Yy=ndas 2 AN p+p™).

P*
and have that that D,Q € V] "®**. Hence a Q-generic G C @ is added
at some stage in our iteration.

n) Let (r;|i € p) be the Cohen reals added by P,. We show that {r;|i €
C} is as claimed. Let s € (2¥)"11¢]. Say s was added by forcing with Q.4
(the case when s was added before stage p is similar), a P“@%-naume.~ We
take B = ag. Then B € Vi, B C p, and |IB|"* < X\. As C N B € Z, we have
C\ B # . For i € C\ B r; is Cohen over V;[s]. Proof: For Q; = (<¥2, <)
we have

Q; * P;@aﬁ =Q; P;@aﬁ.

Remark. This equation is very crucial: Note that there is “no time-dependence”,
i.e. the location of i in p + p<* as compared to the location of z Uy does

not have any influence. Neither Q; nor P’ is the “later” forcing, because

ubag
neither of them is influenced by the extension performed by the other. All
the work with the partial memory was done in order to get this equation.
Counting cardinalities of unions of supports of conditions appearing in nice

names seems not to suffice for it.

The analogue of the crucial equation is true for the subforcing of Pjg,,
that has s as a generic. Now in product forcing, the factors commute, hence
we have Vi[r;][s] = Vi[s][ri]. O

Putting things together we get

Corollary 1.2. (1) The following are equiconsistent (even (B) = (A), (A)
= (B) in some c.c.c. forcing extension):

(A)(a) there are Vi, Vo, u, 0, A, o, C, such that:
V1 C Vs,
Vi E A regular > W,
“V)'2 C vy,
=0, p>A>0 >y,
CCp,
IC"2 =9,
VBe Vi (|BI' <X —|BNC"2 < o).

(B) Vi and Va have the same cardinals.
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(v) Vi and Va have the same cofinality function on ordinals.
(B)(«) like (A)(a) but in addition
(x1) Vi |E MA )\ (o-linked)
(x2) in Va there are (ri|i € C), r; € 2¥ and a submodel V' such that
Vs € 2¥ 3B € [C]<7 such that (r;|i € C'\ B) is Cohen over V|s].

(B) as (B) above.

(v) as () above.
(2) We can leave out () or ((8) and (v)) in both (A) and (B).
(3) If we strengthen (A)(c) by adding

(“11)Y2 C Vi, then we can get MA -\ (ccc) in (B).

Proof. (A) is as the premise of 1.1 with Z = {C' c C'|C" € V&, |C’|"2 < o}.
Note that o as in (A)(«) is uncountable because we have the condition
(“V1)¥2 C V4. For (3), take all names for c.c.c forcing notions, not only the
for the o-linked ones. The additional premise ensures that (the new) P has
the c.c.c. in V5 as well. 0y 9

We get the following conclusion for cardinal characteristics in (B) of 1.2:

Theorem 1.3. Suppose that we have

(o) there are Vi, Va, i, 0, A\, o, C, such that:
Vi CVa,
Vi E A regular > N,
“v)2 c v,
w>0, p>XA>0> Ry,
CCu,
% =0,
VBe Vi (|BIt <X —|BNC|"2 <o),
Vi E MA_)(o-linked),
in Vo there are (r;|i € C), r; € 2¥ and a submodel V' such that Vs €
2 3B € [C]<7 such that (r;|i € C'\ B) is Cohen over Vs].

(B) Vi and Vs have the same cardinals.

(v) Vi and V, have the same cofinality function on ordinals.

Then: a) Y1 > X\, 6Y2 < ¢ (and in the construction from the proof of 1.1,
we have b = \. Moreover, if VB € ([[u]<*|<?)"2 3B’ € ([[u]<*|“")* B C
B', then the construction from 1.1 gives bY2 = o).

b) unif(M)"* > X, unif(M)*2 < o,
¢) cov(N)V1 > A, cov(N)*2 < o.



Paper Sh:684, version 2000-03-10_11. See https://shelah.logic.at/papers/684/ for possible updates.

8 HEIKE MILDENBERGER AND SAHARON SHELAH

Proof. The Vi-part of a), b), and ¢): MA_(o-linked) implies that the three
cardinal characteristics (and add(M), add(N')) are > A, because all of them
can be increased by o-linked notions of forcing (see e.g. [2]).

In order to show unif(M),b < o, we take {r;|i € C'}, C' C C, |C'| = 0.
This set is unbounded and not meagre in V3, because for any s € V5 (either
in w* or as a name for a meagre (F,-)set) there is some Bs € [C]<7 such
that for ¢ € C"\ Bs # ) we have the r; is Cohen over Va[s], hence it is not
bounded by s nor in a meagre set coded by s.

Proof of cov(N') < o: This follows from Rothberger’s inequality cov(N) <
unif (M) (see [16, 7]). In order to give a proof not using this inequality, we
can take {r; |i € C'} as above. We set M(r;) = {m|r; is Cohen over V[m]}.
Then (by Fubini) we have that M (r;) is a Lebesgue null set and for s € (2¢)"2
we have there is some By € [C']<7 such that for i € C’\ By the real r; is
Cohen over V[s], hence s € M(r;), so {M(r;)|i € C'} covers (2¥)"2.

Regarding the part of a) in parentheses: Any \ of the Cohen reals added in
the beginning are unbounded and show that 6¥* < X. Under the additional
premises, we have that b2 > o: Suppose that M C (¥2)"2 and |[M|"? < 0.
We take M; C p and My C ,u<)‘ such that each member of M has a name
containing only conditions from {C;|i € Mi} U{Pjg,, |8 € Mz}. Then
B = {{i}|i € Mi} U{ag|B € Ms} € ([¢=*]<7)"2. Hence there is some
B’ € ([u=“M)1 such that B’ O B. We take 3 such that ag 2 |J B’. Hence
at some later stage Hechler forcing over VP;@% will be done in the iteration
and add a real that dominates all reals in M.

Remark on the violation of covering. Assume that for some first order
sentence ¢ = ¢(P, €), where € is a two place predicate and P is a unary
predicate, we have that

F VaxPx — ¢,

¢ is preserved by increasing P.
Then we define

inv? = min{|A] | (H(N,), €, A) k ¢},
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H(u) is the set of all sets that are hereditarily of cardinality less that u.
Now, if we have two models Vi, V5 of set theory such that

Vi C Vs, and
V1 and V3 have the same cardinals and the same H (N;)
(which is the same as having the same reals), and

C' is of minimal cardinality such that (H(X;),€,C) | ¢ and
(inv)"1 = X > |C| > (inv?)"2,

then we have that C' is not covered by any set in Vj of cardinality less than
A

Remark on changing 0, cof (M) and cof (N'). Assume that for some first
order sentence ¢ = ¢(€), where € is a two place predicate, we have that

Vayz € H(N1) (¢(z,y) A d(y, 2) = o(z,2))A
Vo e HRy) Ty e HRy) é(z,y)

Then we define for B C H(N;), Be V:
inv(‘;’B = min{|A| [for all z € B exists y € A such that (H(Xy),€) = ¢(z,v)}.

Note that 9, cof (M) and cof(N) are characteristics of this type.
Now we have:

Theorem 1.4. If Vi and Vo are two models of ZFC, such that Vi C Vs and
such that they have the same cofinalities and the same reals, and if B € V7,
B C H(Xy), then

inv;fB < inv};?B.
Corollary 1.5. If V1 and Vs are two models of ZEC, Vi C V, and they have

the same cofinalities and the same reals then their dominating numbers and
their cofinalities of the ideals of Lebesgue null sets and meagre sets coincide.

Proof of Theorem 1.4. Given Vi and Va and ¢ we carry out an induction
over inv(‘;lB simultaneously for all B C H(X;), B € V].

If inv(‘;’lB = 1, then the premise H(R;)"* = H(X;)"2 and the requirements
on ¢ immediately yield the claim.

Now suppose that the claim is proved for all ¢, B such that invZ}B < K
and that we have some ¢, B such that inv;lB = K.

First case: k is regular in V; and hence in V5. In this case, Blass’ Prop. 2.3

of [14] applies. For completeness’ sake we repeat the argument here: Suppose
that invZQB =pu<kK
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Let Z = {zo | @ < Kk} witness inv(‘;lB =k, and Z' = {2, | @ < pu} witness

inv}fB = p. Since RY2 C RY1 | in V4 there is a function h: g — & such that
for a < k:
H(Nl) ): (;S(Z;, Zh(a))'
If pu were less than x, then range(h) would be bounded in &, say by a bound
B € k.
Then Va € R 3o € p ¢(a, 2,,) A ¢(2), 2p(a))- Hence {zq | < B} were a
witness for inVZ,IB < card(f) < k, which contradicts the premise.
Second case: k is singular in V7 and hence in V5.
Let £ = lim;_,cf(x) ki and k; < K.
Let Z = {zo |a < Kk} witness invZIB = K.
Set
Zi = {zq|a €Ki} and
B, = {beB|3z€Z ¢z}
Now we have that
ian}Bi < k4, and

sup inv};lB_ = K.
iect(k) '

K3

The second equation is easy to see: If supjcqg(s inVZIBi = 0 < Kk then we
would have that inv};lB =0-cf(k) < k.
By induction hypothesis

. Vi <3 Vo
11'1V¢,Bi ~ 111V¢7Bi .

Since any witness for the computation of inVZZB is a union of witnesses of

the computation of invZ?Bi, we get that inVZ?B > sup{invZ?Bi liecf(k)} =k
W

2. CHANGING THE UNIFORMITY OF LEBESGUE MEASURE

In this and the next three sections, we show how to change unif(N') (and
cov(M), which comes for free, because of the inequality cov(M) < unif(N),
see [7]) under our given side conditions. In this section we start to define
the forcings we are going to use and look at automorphisms of forcings. We
carry out the proof of the changing procedure up to some point in the proof
of item €) of our main Theorem 2.1 at which techniques about transferring
information about w-tuples of conditions (in [20] called “whispering”) are
needed. We try to give some motivation for this fact by proving a lemma
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about a pure Cohen situation (Lemma 2.12), of which a weakened analogue
for iterations of partial random reals and small c.c.c. forcings will be used
later. This weakened analogue is the statement (xx)g introduced in 2.11
and proved only by the end of Section 5.

These technical parts are then carried through in Sections 3, 4 and 5.

Theorem 2.1. Assume that we have

a) Vi C Va, both models of ZFC, (“V1)V2 C Vi [and (B) or ((v) + (B))
from 1.2(A)],

b) CeVa, [Cl <X CCp A<y,
c) VB eV, if Vi = |B| <A, thensup(C'\ B) = u),
d) ofVr () > Rg and cfV1(\) > Ry,
e) In Vi, there are uncountable cardinals x > 2" and k such that k < x
and 2% > x.
Then for some c.c.c. P in V; we have
a) Vi | P is a finite support iteration of o-linked forcing notions,
B) P is c.c.c. in Va, and

for G C P generic over Vo we have

v) (“WV[G)Y2IC) C VA[G], [and (B) or ((v) + (B)) from 1.2(A)],
§) unif(AV) 24 < || V2(C]
) unif (N)1E > .

Proof. We work in V; (and often write V instead of V7). For x > 2* we let

gy X — [p]=* increasing with y, that is for x < x’ we have that g,/ | X = gy,
and

VB € [u]<* Fa < x gy(a) = B.
For £ < p let

Ee = Ef={a<x|§¢gx(a)}, and
Al = EfUbox+9)

We take 1 and A as in the premises of 2.1. We also fix k > N; and some
X > 2" as above such that cf(y) > p (used in 2.11 on page 21) and 2" > x
and such that k < x (for our special iteration where all @, of cardinality
< k are already countable, k < y would suffice, see at 5.2 and the remarks
in 2.11, if you like to work with weaker premises). Note for use in 5.5: The
definition of g, and FEg, A§ +¢ makes sense also if 27 < x.
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Definition 2.2. 1) K is the class of sequences

Q= (Po,Qp, A, i, 7| < o™, B < )
satisfying:
(A) (Po,Qpla < a*, B < a*) is a finite support iteration of c.c.c. forcings.
We call o =1g(Q) the length of Q, and P is the limit.
(B) Ta C pa < K is a name of the generic of Qq, i.e. over VP from G,
we can compute T, and vice versa.
(C) A, Ca.

(D) Qu is a Py-name of a c.c.c. forcing notion that is computable from

(Ty[GP.] [7 € Aa).
(E) o > x and for a < x we have that Q. = (¥2,<) (the Cohen forcing)
and po = Vo (identify <“2 with w).
(F) For each a < a* one of the following holds (and the case is determined
inV):
() [Qal < K, [Aal < K and (just for notational simplicity) the set of
elements of Qo = QalGp,] s j1a < K (but the order not necessarily
the order of the ordinals) and Q. is separative (i.e. « IF [ €

(8) Qo = Random"[T[Crallv€dal ypq|4,| > k.

2)For the proof of 2.1 we shall be using the following instance of 1): For
X, b, A as above we define a finite support iteration

QX:<P§7QE7A§7NO7Iﬂ‘O[§X+H7,B<X+,LL>,
PX = pX

e For o < x we let QX = (<¥2,<), the Cohen forcing. For
a=x+E &< p, welet

X X
QX = Random" 75 18€4al
where Ig is Qg—genem’c over V5.

Thus, the QX from b) is a member of K (and of [20, Def. 2.2] and [18,
Definition 1.4]) of a special form: A, = 0 if & < x, and A}, = Ee¢U[x, x+€)
for £ < p.

The reader may wonder why we do not really fix y. The reason is that in
Section 5 we use a Lowenheim Skolem argument and work simultaneously
with x, xT, xT1, ..., xT Y, n the size of some heart of a A-system, in
order to expand QX to a richer structure that will be used for the proof of
part €) of 2.1.
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The Lebesgue measure is denoted by Leb and for a tree T C 2<% we define
Im(T)={f €2¥|¥ne€w f | neT} Similar to [20, 2.2], we specify dense
suborders of Random and call them Random again:

Definition 2.3. a)

Vlralo€d] — {p| there is in V a Borel function BP = B with vari-
ables ranging among {true, false} and range per-
fect subtrees r of <2 with Leb(lim(r)) > 0 such
that ¥y € r Leb(lim 7" > 0) (where v = {v €
rlv <nVvn dv}) and there are pairs (ve, () for
¢ € w, such that v, € A, (y € w, and such that
p = BP((truth value(Ge € 1,))eew)}-

b) In this case we let supt(p) = {v¢| ¢ € w}.

¢) Py, ={p € Pa|Vy € dom(p), if |Ay| <k, then p(y) € py

(not just a name for a member of ),
and if |A,| > &, then p(y) € Random" s [9€45]Y,
d) For A C «, we set

Random

Py = {p € P,| dom(p) C A AVy(y € dom(p) — supt(p(7)) C A)}.
e) A C a is called Q-closed or called (A |y € a*)-closed if
Va € A (|An| <k — A, C A).

So, in our situation of Definition 2.2, where all non-empty A, have size
X > k,any AC x+ pis (Ag | < x + p)-closed.

Fact 2.4. Let QX be in K from Definition 2.2.

1) Ifa < x+p and X is a Py-name of a subset of 0 < x+ p then there is
a set A C a such that |A| < 0 and IFp, “X € V[ry|v € A]”. Moreover for
each ( < 0 there is in V a Borel function B¢(xo,21,...) with domain and
range the set {true, false} and v, € A, {y < pg for £ € w such that

IFp, “C € X iff true = Be((truth value((e € 7+,[Gq,,]))eew) ™
2) For Q € K and A C « every real in V|7, |y € A] has the form

(B ((truth value((e € T, [GQWZ]))ZEUJ))HEOJ'
with By, as in 1), and “true” interpreted by 1 and “false” interpreted by 0.

Proof. 1) Let X be a name for a subset of 6. Let p be a regular cardinal,
and let the relation <7 be a well-ordering of H (p) such that x € y implies
that x <} y. Take p such that (Q,0,X) € H(p); let M be an elementary
submodel of H(p) = (H(p), €, <}) to which {Q, X, 0} belongs and such that
0 < H(p).
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Thus, IFp.. “M[Gp,.]NH(p) = M”. Since VI = V(rg| B € a] we have
that M[Gp,.] = M[(tg|B € anM)]. So X € M[(13|8 € an M)}, and we
may choose a name for X of the form X = {(¢,p)|¢ € p,p € C¢} where C¢
is a maximal antichain in V|7, |y € a N M] and from that we can build a
Borel function B¢ in V' such that

p, “C € X < Be((truth value(é € 75,) | € w)) =17,

where all the 8y € anN M.
Hence we have that IFp, “X € V7, |y € M Nal”.

2) is a special case of 1) with § = w. We may clue the B, n € w, together
to one Borel function is this case, and write all the arguments into all B,,.
Uz

We are going to combine the techniques of [20] and of [18]. We use

automorphisms of P,« that stem from permutations of lg(Q) = a*.

Definition 2.5. 1) For Q € K of the special form of 2.2 Part 2), a < o,
we let

AUT(Q [ o) = {f:a— alf is bijective, and ,

(VB € a)(Vy € [x, a))
(B < x 8) <A (B E A < F(B) € Ay}

2) We let for f: o — « the function f: P, — P/, be defined by p1 = f(po)
if dom(p1) = {f(8)|8 € dom(po)}, p1(f(B)) = Bpy((truth value(f(G;) €
T f(ve)) ) tew), where po(B) = Bgo((truth value(Cp € T+,))ecw). (Here, we write
B for (B¢)cep when Qg = p.) A

We can also naturally extend f onto the set of all P! -names and name
this extension f as well.

Now we have for Q € K:

Lemma 2.6. (cf. [18, Fact 1.6. parts 4) and 5)])
1) For f € AUT(Q | o) we have that f is an automorphism of P..
2) Let ® g 4y be the following:
For every oo € AN [x, x + ) and for every countable
B C « there is some f € AUT(Q | «) such that
® f1(AnB)=id,
f"(B) € A,
f"(BNAy) € AN A,.
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If A is Q-closed and ®q 4y, then Py < Pl/g(Q)’ and ¥q € llg(Q) we have
(a) ¢ A€ Py,
(b) Pl/g(Q) FqlA<g,

(c) ifgl A<pe Py, thend =pUq] (Ig(Q)\ A) belongs to Pl’g@) and 1is
the lub of p,q.

Proof. 1) is easy. 2) is carried out as in [18], but since we promised to write
the proofs in a self-contained style, we write down a proof here:

We prove by induction on 3 < 1g(Q) that for A’ = AN g and q € P},
clauses a), b), and c) hold.

In successor stages 8 =a+1,if a € A or A, = 0 it is trivial. So assume
that &« € A and A, # 0. By induction hypothesis, P}, < P, and the
analogues of a), b) and c) hold for stage «. It is enough to show
() if in VPana, T is a maximal antichain in Random? 7" , then in Ve

’
Aa

the set Z is a maximal antichain in Random"
By the c.c.c. this is equivalent to

()" if ¢* <wi, {pc[¢ <} C Pl P € Pl and

plp, “Apc(@) (< (" and pe [ a € Gpy_ }

P/
. ANnanA
is a predense subset of Random"’ o«

then

plepr pe(a) | ¢ < ¢Fand pe [ o€ Gpr }

Pha s,

is a predense subset of Random"

Assume that (%)’ fails. So we can find ¢ such that

p < qe€P,
q ”_P& “{pc(a)|C<C* andpgfaerA}

P/
. A
is not a predense subset of Random"” “*7.

So for some G p, -hame r
{e3

!

P
q H—Pga “r € Random" * (= Qo) and is incompatible with every p¢(a) € Qa”.
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Possibly increasing ¢ w.l.o.g. r = B((truth value(n, € 7)) ew) with a suit-
able countable w C A,. Now we choose

B = dom(q U dom(p¢ [ ) U U{supt )| 5 € dom(q)}
¢<¢*
Ul {supt(pc(8)) | 8 € dom(pe | @) and ¢ < ("} Uw.

Since B is a countable subset of o and since we have ®(3,4) there is an
f € AUT(Q | a) such that
fT(BNA) = the identity,
(B < A
f(BNA,) C AnA,.

As f is a automorphism of P/, and is the identity on Panp we have that

fo) = »
floe) = pe
S f(Q) € leélﬁou

f

1 (w

B((truth value(ny € Tf(y))) ew)

)
) f"(BNA,) CANA,,

N

hence  IFp; f(f) € RandomVPmAa,
f(q) lFpy  “in Qa, f(f) and p¢(a) are incompatible for ¢ < ¢*.

and thus get a contradiction to the fact that we started with a maximal
antichain. U

Lemma 2.7. For A= E:U|[x,x +¢), and for Q as in Definition 2.2 Part
2), we have that ®q 4y s true.

Proof. Let a € A and B C « be countable. W.l.o.g., we treat here the case
when a > y. We have to show that there in an f such that

f: a — «a bijective,
f T x: x — x bijective,
VB,7 <« (B € A'y AN f(/B) € Af('y))?

(These first three items ensure that f € AUT(Q | «), and next we write the
conditions in ®(g 4y:)

FT((EenB)U([x,§) N B)) = id,
f"(B) € E¢U[x, a),
Va € [x,x +§) /(BN (EayUlx,a))) € (EgNEay) Ulx,a).
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Next we require that the f preserves slightly more
f T [x,®) = id and hence
VB e [X, a] i EB*X: EB*X — Eﬂ*X‘

So, f has to map (B\ E¢) N Eq—y into E¢NEo_y and ((B\ E¢) \ Ea—y)NX
into E¢ \ Eq—y.

For v € x, & € £+ 1 we write tpy(y) = {8 € o/ |y € Eg} = {8 €
o' |g(y) # B} All subsets T C o such that |o/ \ T| < X are realised as
the type of x elements because for each B € [u]<* we have x many ~y such
that gy (7) = B. Since a — x < &, the relation E¢ does not play a role in
tPat+1—x(7) and so we have that for all such o + 1 — x-types T'

{7 [ tpat1i—x(7) =T} =
{y | tpari—x(v) =T Ay € E}| =
{7 [tpar1—x() =TAYE€ E}| = x.
Hence there is a bijection f’ of x preserving the a+1 — y-types and being
the identity on (E¢ N B) U [x, o) but mapping (B Nx) \ E¢ into E¢. Then
[ = f'Uidp ) is as required. Oa 7

Now we return to the conclusion of Theorem 2.1:
(v) If G C P is generic over Vs, then
- V1|G] and V5[G] have the same reals, indeed (“V;[G])"2l¢! € V4[G]
- V1|G] and V5[G] have the same cardinals if (7, V3) have
- V1]|G] and V3[G] have the same cofinality function if (V1, V2) have.

Since Cohen forcing and random forcing are o-linked, the proof of Theo-
rem 1.1 applies here as well. Uy

Next we show
(0" Valglkp,, “A7x+ili € C} is not null.”

Proof. Let N € V5 be a P4 ,-name for a Borel null set. Since (*V4)"? C V;
we may assume that N € Vi. By 2.4(2), for some Borel function B € V;
for some countable X = {xy|¢ € w} C x,Y ={y |l € w} C u, (¢ € w,
¢}, £ € w, we have that

N = B((truth value((s € Ts,))eew, (truth value(¢) € Ty+y,))cw)-

Let i(*) < g be such that i(x) > sup(Y). (Here we use that cf'1 () > Rg.)
Since cfV1(\) > Ry, we have that B := Ugex 9x(§) € ([1]<M"1.  Since
sup(C' \ B) = p, there is some ¢ > i(x), ¢ € C'\ B. We claim, that ry; is
random (in the sense of V; and hence also in the sense of V5 as Random and
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all maximal (countable) antichains of the random forcing are the same in
V1 and in V3) over an extension of V3, in which N[G] has a name. Then the
proof will be finished, because then r1; € N[G] in V1[G] and also in V5[G].
By our construction, we have

: , ; . Pyti
Ty+i is the RandomV [Te [ 0€EVXSa<x+]_geperic over |2

Since i € C'\ B, we have that V§ € X ¢,(§) # 4, hence V€ € X £ € E;, so
X C E;. Moreover x +Y C [x,x +1), as ¢ > i(x) > sup(Y). Since, by

Lemmas 2.6 and 2.7, P4, , < Py(g) the name NN is evaluated in the right

Pa
manner in V; ' Thus the claim is proved. O

(6) V2[G] = wnif (V) < |C].
This follows from (4").

Now comes the part whose proof will be finished only at the end of Sec-
tion 5.

(e) Vi[G] E unif(N) > A.
Proof. Suppose that not. In V; there is i(¥) < X and p € P, such that
plFp, “ni € “2fori <i(x) A{ni|i <i(+)} is not null.”
A name of a real in V1[G] is given by
ni = Bi((truth value((; e € 15, ,))rew)

for suitable (¢, jiv | ¢ € W), Civ € w, iy € X + L.
We set

X = {jieliei(x),Lewlny,

Vo= {jielici(), £ ewinx,x+p)
We show the main point:
In V1[G], (*2)VHze[€€XUYH g 5 Lebesgue null set.

Since I¥a gy(a) =Y — x we can fix such an v € x \ X that is not in E
for every £ € Y — x. It is important to note that therefore the premises of
2.8 and or 2.11 can be fulfilled for our any X,Y as above, with a suitable
choice of a.

Lemma 2.8. In lea*, the set (@2)V117e|€€XY] has Lebesque measure 0,
and a witness for a definition for a measure zero superset can be found in
Vet (a forcing name is already in V) for any a € x \ X that is not in
E¢ for every £ €Y — x.
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Proof. Explanation: This proof will be finished only with the proof of
Lemma 2.11, which will, as we already mentioned, only be finished by the
end of Section 5. The proof of this lemma requires reworking of almost the
whole [20]. The lemma is also stated in [18, 1.11 and 1.12], where a proof
assuming the knowledge of [20] is given.

First we introduce some paradigm null sets (see also [20, 2.4 and 2.5]):

Definition 2.9. 1) Suppose that a = {(ay|¢ € w) and n = (ng| ¢ € w) are
such that for ¢ € w
(a) ag C ™2,
(b) ne <mnepr <w,
|| 1

Then we set N[a] = {n € “2|3°¢Vv € ay v 4 n}.

2) For a as above and n € w, we let tree,(a) = {v € <¥2|n, >
max(n,lg(v)) — v [ ng € as}.

Then Nla] =2\ J, ¢, limtree,(a) and Leb(N[a]) = 0. The definitions
Nla] and lim tree, (@) may be intepreted in any model V' such that a € V. We
indicate the model of set theory in which we evaluate them by superscripts.

Definition 2.10. For 3 < x we identify QQg, the Cohen forcing, with

1
{{(ag,me) |0 < k) | k€Ew,ng<mnp1 <w,ap C "2, lac| >1-—1
2me 10
If G, is Qp-generic, let
o’ =a’[Gg,] = {(t.a)[3k >0+ 13((aj,ny)|j < k) € Gg,

3 <k (La) = (4, 45)},

and define n° [Gq,] analogously. We let a’ = <g? |0 € w) and 7P = (7}? RAS
w) be the names for the corresponding objects.

Lemma 2.11. If B € x \ X is such thatV§ € Y — x B & E¢, then
(wQ)V[Tg |£eXUY] C (N[dﬁ])V[G}.

Beginning of the proof. In this section, we shall only show that

in V|G|, for E € [X]”+ we have

(+)g ﬂ trees- (@) does not contain a perfect tree.
BeE
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is a sufficient condition for 2.11. For certain members Q of K, (xx)q
will be proved in the next three sections. Let 8 € x \ X be such that

VEeY —x B ¢ Eg.
We show by induction on v > x that

in VP, for E € [X]“+ we have
(**)QM ﬂ treeg*(aﬁ ) does not contain a perfect tree.
BEE
implies:
VX C X VY C [, x+p)
(*)QM VBex\X(VEeY —xB¢E:—
(w2>V[r5 | €e(XUY)m] C (N[(zﬁ])va).

Preliminary remarks: Assuming ﬁ(*)QW we get a Py-name b referring
only to r¢, £ € (X UY) N~ such that

plrp, b & N[a”]

Since V§ € Y — x f € E¢, we have for all ¢ = x+& €Y, 8 & E¢U
Pya,
X, X +p) = A?,. Since all rgr, ¢ € Y are Random" ° -generic there

are automorphisms fr € AUT(Q), ¢ € x, leaving b and every point from
[x, x + p) fixed and moving 3 to B¢ € {B¢ | ¢’ < (}. Hence we get

pe = felp) IFp, b & | ) N[a™]
¢ex

for x > k™ pairwise different S;’s.

Now we start the induction.
For v = x the proof is easy, because (‘“2)‘/[’"5 [€€(XUY)X] contains only Cohen
reals: If there is one real b|G,] not in (Jq¢,+ N[&ﬁé‘])va, then this real is Co-
hen and gives rise to a perfect tree of Cohen reals not in (Jyc,.+ NV [c‘zﬁf])va.
So we have that —(x)q,, implies = (x*)g, -

Now let v > x be a limit. Assuming _'(*)QM we get a P,-name b referring
only to r¢, £ € (X UY) N+ such that

plkp, b & N[a”|.
By automorphisms leaving b and moving 3 to ¢ and p to p; we get

pclkp, b ¢ U N(a™]
Cex

for x pairwise different 3;’s.
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Because of the induction hypothesis we may assume that p IFp, b ¢ Vs
for § < 7, and hence by the properties of c.c.c. iterations that cf(vy) = Np.

So for each ¢ < x there are p¢, m¢ such that
p<pc Py, plEbe limtreemg(@ﬁf).

By properties of c.c.c. forcing notions ({¢ < x|pc € FPs5}|d € ) is an
increasing sequence of subsets of y of length v < u. In the beginning on the
proof of 2.1 we chose u < . So for some y; < v there is E € [x]*" such
that p € P,, for ( € E and m¢ = m for ¢ € E. Note that for all but < x*

of the ordinals 7 € E' we have that
pyl-{C € Elpc € Gp, } = s

Fix such an 7, and let Gp, be Py -generic over V so that p, € Gp, .
In V[Gp, ], let E' = {¢ € E|p; € Gp,}, so |E'| = w*. Let T* =
Neerr tree,,(@’). In VP T* is a subtree of <“2 and by (#x)gpy» T con-
tains no perfect subtree. Hence lim(7™) is countable, so absolute: T™ is a
P, -name and (lim(T))V16r] = (lim(T*))V[GPM]. But p, IF b € lim(T™),
hence p, IF b € VP a contradiction.

Assume now that v = §+1 and that —=(x)g;,. Choose pc = px¢5(C) as in
the preliminary remark such that p; € Pj, ¢5(¢) € Qs, and additionally such
that the ¢s(¢) all coincide (because we may assume that f¢, chosen as in the
prelimine;ry remarks, does not move 4), say that all ¢5(¢) = ¢5. Choose E,
Py, Gp, analogous to the above. We have E' = {( cE | ¢ € Gp} ={C €
E |p’C * ¢y € Gp;}, and similarly to the above, together with (xx)q,
the contradiction p;, IF b € Vs,

4 We get

Since we have covered the cases v = x and v > x limit and v > x
successor, we have finished the proof that (+x); implies the statement in
Lemma 2.11.

Our proof of (x*)g will in some parts be similar to [20]. However, the
difference to [20] is that the our AY,« € [x,x + u) (from 2.2 Part2)) are
large in cardinality, namely the same as the iteration length, and hence
some techniques of [20] are not applicable here. We also take the technique
of automorphisms of Q taken from [18], and additionally, like there as well,
we are going to work QX for many x’s at the same time. Tomek Bartoszytiski
[1] gives a simplified exposition of some of the results of [20], that the reader
might want to consult first.

The proof of 2.11 will be finished only at the end of Section 5.

In the next lemma, which stems from Winfried Just, we show (+*)g in the
special case that all the p; are Cohen. It serves as a motivation for the rest
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of our work: it shows that the main point is to get something similar to the
premise no. 3 of Just’s lemma for the partial random conditions. We may
(and later do) weaken the conclusion of Just’s lemma: Instead of requiring
the intersection to be empty we derive only that the intersection does not
contain a perfect tree, that is (x)g.

Lemma 2.12. [Winfried Just [12]] Suppose that {p;|( € Z} is a set of
conditions in Py, such that

1. Z is infinite.

2. {dom(p¢)|¢ € Z} forms a A-system with root u.
3. dqvCeZp:u=q.

4. B¢ € dom(pe) \ u for all ¢, pc(B¢) is Cohen.

5

- 3k n* such that Y¢ € Z, if pe(Be) = ((n$,a) | £ € k¢) then ke = k*
and nic_l =n*.

We set E={¢ € Z|p: € G}. Then we have for every £* € w that

qlF ﬂ lim treeg- (a7¢) = 0.
ek

Proof. Suppose that not. Then there exist some ¢* and some ¢; > ¢ and
some name b for an infinite branch such that

qgl-be m limtreeg*(@&).
CeE

Let n > max{k* — 1,n*} and such that 27" < 107", There are some
r > ¢q1 and some v such that

riEFb[n=vr.

Now take some ¢ such that dom(p¢) Ndom(r) = u. Since Z is infinite and

*

all conditions are bounded in size by k*,n*, such a ( exists. Finally we set

ni* = n and af = 2" \ {v} and
p¢ = pc | (dom(pe) \ {Bc}) U{(Be, (n§, af | € < m))}.
Since v & a%, we get
pg I b € lim treeg- (@%) — b | n # v.

However, pzr and r are compatible. Contradiction. (o190
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3. ABouT FINITELY ADDITIVE MEASURES

In order to prove the existence of a condition p® that forces that many
of the p;’s (where the py, ¢ € w are the first w of some thinned out part
of the pe from 2.11) are in G4+ we use names (Ef)ieT,acy+pu for finitely

additive measures. We shall have that for every o < x + p, IFp, “El is a
finitely additive measure on P(w)”. The superscript ¢ ranges over some set
of blueprints (see 4.1) and indicates the type of the w conditions p, that are
=t

taken care of by =,

and there are some coherence requirements regarding
different a’s. The =, are an item in the class of forcing iterations K2 that
we are going to define in 4.2. Certain members of K can be expanded to
members of K3, and these expandible members of K are the notions of forcing

for which we show (xx)q is Sections 4 and 5.

For the expansion of a @ in K to a member of K3 some requirements
linking the A, and the Z¢, need to be fulfilled (called “whispering” in [20,
Def. 2.11 (i)]). By increasing the A, these can be satisfied. Another way
is to use the requirements only at finitely many points that are determined
at a later stage in a proof. We shall work according this latter method: In
our case, where we have also automorphisms as in 2.4, we shall first specify
som (py|¢ € w), and only thereafter we shall define sufficiently many =,
(see 5.5).

Anyway, the “sufficiently many Z¢” need the same lemmas about exten-
sions of finitely additive measures to longer iterations that are also used
to proof that our class K? of forcings has enough members. These will be

Lemmas 4.5, 4.6, and 4.7.

This short section collects some facts about finitely additive measures,
that can be presented separately before we return to the iterated forcings
in K and come to the mentioned lemmas. All statements of this section,
however only few of their proofs, can also be found in [20].

Definition 3.1. 1) M is the set of functions = from some Boolean subal-
gebra P of P(w) including the finite sets to [0, 1]r such that

o« 5(0) =0, Z(w) = 1,
e = is finitely additive, that is: If Y, Z € P are disjoint, then =(Y U
Z)=Z2(Y)+EZ(2).
e Z({n}) =0 forn cw.
Members of M are called partial finitely additive measures.

2) MM s the set of = € M whose domain is P(w), and the members of
MM gre called finitely additive measures.
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3) We write “=(A) = a” (or > a or whatever) if A € dom(Z) and Z(A) =
a (or > a or whatever).

For extending finitely additive measures we are going to use:

Theorem 3.2. [Hahn Banach] Suppose that Z is a partial finitely additive
measure on a algebra P and that X ¢ P. Let a € [0,1] be such that

sup{Z(A)|AC X,A € P} <a <inf{E(B)| B2 X,B ¢ P}.

Then there exists a finitely additive measure Z* extending = and such that

EX(X) = a. U

Proposition 3.3. Let a* be an ordinal. Assume that =y € M and that for
a<a*, Ay Cw and 0 < ay < by <1, an, by reals. Then we have that
° (1)=(2)
o (2)= ((3.A) with all by, = 1)
e (3.4A) & (3.B),
where

(1) If A* € dom(Zy), Zo(A*) >0 andn € w and a9 < -+ < ap—1 <
then A* N (\pep Aa, 7 0.

(2) Ve > 0, VA* € dom(Zy) such that Z9(A*) > 0, n € w, ap < -+ <
Qn_1 < o we can find a finite non-empty v C A* such that for £ € n

c S ’Aal mu"

o = [ul

(3.A) There is = € M™ extending Z¢ such that Ya < a* Z(Aa) € [aa, bal-

(3.B) for all e > 0, for all k € w, for all (Aj,... A}, _,) partition of w and
A € dom(Zg) such that Z9(Af) >0, n€w, ap < -+ < ap—1 < a* we
can find a finite non-empty u C w \ k such that for { € n and i € m

[Aa,Nu|

T# S bag+€7

IN

(o, — €

— * Aik — *
Z0(4]) —e < % < Eo(A4]) +e.
Proof. (1) = (2): Given ¢, A", g, a1,... 01 we take k € A* N[, Aa,

and u = {k}.
(2) = (3.B) with by = 1: Given ¢, k, A}, ... A}, _,, pairwise disjoint with

positive =g measure, ag, a1, ...q,—1 then we can find finite u;, ¢ < m such



Paper Sh:684, version 2000-03-10_11. See https://shelah.logic.at/papers/684/ for possible updates.

CHANGING CARDINAL CHARACTERISTICS 25
that

u; C w\k,

Il e (zoan) - sz o),

| Uiem u2|
| Ao, N

Tt S
T

It is now easy to check that u = u; is as required.

<m

(3.B) = (3.A): This is the special case of a symmetrized variant of (3.6
with af = 1 iff £ € A, and ay = 0 else). This is the most important
implication. Its proof is not circular, it just more economic to do 3.4, 3.5,

and 3.6 first.
(3.A) = (3.B): Fix &’ such that 2me’ < e. We put for i < m and £ < n

the first _
E(Af N Ay,)
6,
elements of A N A,, into u (and nothing else). It is important to see that
the tasks for the different A,, can be simultaneously fulfilled. Best look for
each i < m at the atoms in the Boolean algebra generated by the A,, N A7,

{ < n.
For a real x, [x] is the least integer greater than or equal x. Then it is an
. * Aq . . .
easy computation that the % and the % are in the right intervals
of width 2e. O3

In order to convey information to later stages of our forcing iteration, we
are going to use averages. These are integrals of functions from w to with
respect to finitely additive measures. If the average of some function is large
then we can go back to some finite subset of w where the function takes large
values.

Definition 3.4. 1) For 2 € M™"! and a sequence a = (as| £ € w) of reals
in [0,1]r (or just sup,e,, |ae| < 00) we let

Avz(a) =sup { Z E(Ag)inf({ae | € Ar}) | (A | k < k*) is a partition ofw}
k<k*

=inf { Z E(Ag)sup({ae |0 € Ai}) | (Ak | k < k™) is a partition ofw} .
k<k*

(Think of Ay = {£|as € [£,EEL)} and n — oo, then it is easy to see that
both are equal.)
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2) For= € M, A C w such that Z(A) > 0 define Z5(B) = E(ANB)/Z(A)
and Av=((ai | k € B)) = Avz, ((a}, | k € w)) with

a. — ak, ka‘ S B,
710, ifké¢B.
Proposition 3.5. Assume that = € MM gnd ay € [0,1]g fori < i* € w,
lew, BCw, E(B) >0 and Avz,((a)| ¢ < w)) =b; fori <i*, m* <w and
lastly € > 0. Then for some finite u C B\ m* we have: If i < i* then

o Sl

<b;+e.
|ul

Proof. Let j* € w and (B;|j < j*) be a partition of B such that for every
1 < i* we have

> sup{ap| L€ B}E(B;) | — [ D inf{aj | € Bj}E(By) | <

J<j* J<j*

DN ™

Now choose k* large enough such that there are k; satisfying k* =
and for j < j*

ki E(Bj)| e
k*  Z(B) 2
Let uj C Bj \ m*, |uj| = k; for j < j*. Now let u = J;_;. u; and calculate

Sl - S < slal e B)S

J<j* Leu; 7<j*

9

’ E(By) € e €
= y j <bi+5+5=b+¢g
< Zsup{'af'“Bﬂ}<a<B>+2j* b+ S4Sobite
J<j*
aé _ aé : i N
Zm = ZZWEme{aZ\ZEB]}E
leu J<j* leu; 7j<g*
) - =(B;j) € e €
> f{las| ¢ € B; — >b————=b; —¢.

Fact 3.6. Assume that = is a partial finitely additive measure and a® =
(aff | k € w) is a sequence of reals for o < o* such that limsupy,_,,, |af| < oo
for each a. Then (B) = (A).

(A) There is % D E, 2 € MM such that Av=«(a®) > b, for a < o*.
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(B) For every partition (By, ... Bp«—1) of w with By, € dom(Z) and e > 0,
E* >0 and ag < -+ < ap—1 < o there is a finite u € w \ k* such
that

(i) E(Bp) - < Bl < 5(B,,) + <.

(ii) \Tltl Y kew0p' > ba, —€ for £ < n.
Proof. We take

A = [{partitions (B, ... Bp_1) of dom(Z)} x (0,1] x w x [a*]<¥]<¥.

and take a filter 7 C P(A) such that for each

¢ € {partitions (By, ... By+_1) of dom(Z)} x (0,1] x w x [a*]<¥
we have that

{FeAl|lceF}eF.

For each F' € A we choose u(F) fulfilling the tasks (B) simultaneously for
all ¢ € F, i.e. (i) and (ii) of (B) hold for u(F) = u, ¢(0) = (By, ... Bmn*—1),
(1) =¢e,¢2) =k* ¢3) ={ap,...,an-1}.

Then we take an ultrafilter I/ O F and set for A in the algebra A generated
by {{k|af €[q,¢]} |a <a*,0<¢g<q¢ <1} Udom(E):

=" (4) = the standand purtof ( (5 (e a) fu).

By the Hahn Banach Theorem, there is an extension of Z* to P(w). s

An important application of 3.3 (and the hard part thereof, which is only
proved in 3.6) is:

Claim 3.7. Suppose that Q1,Qo are forcing notions in 'V, Zg € MM in
V, kg, ‘s is a finitely additive measure extending Zo for ¢ =1,2,”. Then
IFQ,xq, “there is a finitely additive measure extending =1 and 2o (and hence

50)77.

Proof. We are going to show, that IFg,xg, “ Z1 (in the role of Zy of 3.3)
and {A% | A% € V@2 NP(w)} (in the rdle of (A% |a < o) of 3.3) fulfil (3.B)
of 3.3”.

First we show that
gy x @, dom(Z1) Ndom(Zz) = dom(Zg) = V N P(w).

So assume that we have an @1-name X and a (Je-name Y such that
IFQix@, X =Y.
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Let Z ={n € w|dp € Q1 p kg, n € X}. The set Z is in V and
IFg, X C Z. It is easy to see that IFg, Z C Y. So we get

FQix@ X € Z2CY =X,

and our first claim is proved.

Now we check (3.B). Let ¢, k, (A* € V¥ |i < m) a partition of w and ay,
¢ < n be given. W.l.o.g. the 4,, € V@2 are a partition of w as well.

If for some i, ¢

IFo,xQ, A N Aq, is finite,

then A7 and A,, can be separated by some A € V. This is shown in a
manner similar to the proof of the first claim.

We choose a separator A** € V for each i,/ such that IFg,xg, AF N
Ag, is finite and let A7, j < j* be the partition of w in V that is gener:}ced

by all the A%

Then, we set ¢/ = —=£

mnj*

and put for each i, ¢, j such that
IFQux@s Af N Aa, N A7 is infinite,
in the forcing extension V@1X®@2 the first
[El(A;* N A7) x Eg(Aq, N Aﬂ
g/ x Zo(AY)

elements of A¥ N A,, N A7 (and no further points) into w.

Us.7

4. THE FIRST PART OF THE PROOF OF (#%)5: INTRODUCTION OF K?

In order to prove (x*)q, we need that for suitable Q = (P,, Qs Ap, T8, 1B |5 <

1g(Q),a < 1g(Q)) from K (see Definition 2.2) we have almost (in the sense
explained in the proof of 5.5) an expansion of the form

Qexp = <Pav 9,37 Aﬁa T8, 15,73, (53)1567' | /8 < lg(Q)v a < lg(Q)>
such that Q°*P is in a special class K3, which we shall define in Definition 4.2.

In order to introduce K3, we shall first define and (try to) explain the set
T of blueprints (Definition 4.1). For each blueprint ¢ and o < o* the Z¢,
will be P,-name for some finitely additive measure on P(w) that conveys
some information about w-tuples (py |k € w) of conditions that fit well to

the blueprint ¢, from stage « to later stages in the iteration.

Let us tell more about the ideas of the proof of (x*)5: In Lemma 2.12, if
the p¢ are not all Cohen, the premise 3 is hard to fulfil. Think of k+ many 28
being given, so that we can do many thinning out procedures and have them
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similar, i.e. similar partial random conditions and Cohen conditions. Then
we keep only the first w of the (’s and the first w conditions (p¢ | ¢ € w). We
try to strengthen them a little bit (to p’c) and then get that the strengthened
conditions allow to define one condition p® > p* such that

p® Ik« ﬂ treeg= (@“¢) has finitely many branches”
CeE={C|p€G}

and hence cannot contain a perfect tree. There are some requirements on
(p¢ | ¢ € w), as they have to predict some probabilities about the branches
of the tree,(@*¢) and about the subset of the {p}.[( € w}, that lies in G.

The technical means to allow these predictions is the use of finitely ad-
ditive measures and the properties (e) to (i) in the definition of K3. These
items in the definition have long premises by themselves. However the
premises are sufficiently often fulfilled if we start with x* many p¢, thin
out, and choose an appropriate t € T.

We embark with the definition of a blueprint ¢. The set of all blueprints
is denoted by T. The reader may think that ¢ describes some relevant
information about the chosen tuples (p;|( € w). Later it will turn out
that sequences described by the same ¢ are compatible forcing conditions
(though we have finite supports and are not interested in taking the union
of countably many conditions). This will be used in Lemma 4.8.

In the case of iterations where all Cohen forcings are just those forcings
in an initial segment of the iteration (as in 2.2 Part 2)), we can dispense
with the parameter m in the next definition. This simplification is not
worthwhile because the generality allows another application of the method:
In Section 6, we shall work with a type of iteration where Cohens are added
cofinally often.

However, we could simplify 4.2 slightly and leave out (f) there in the
special case that the f: of 2.11 move only one « in the Cohen part and leave
the indices at which partial randoms are attached fixed. We do not simplify
because we hope for future applications.

Definition 4.1. We fiz a k such that 2% > x (from 2.2). The set T of
blueprints is the set of tuples

= (wtv nt7 mta ﬁt7 h67 hi ) hg: ﬁt)
such that

(a) w' € [k]¥0. (What is the purpose? Think of the latter as [x]™° disquised.
Suppose that | dom(p¢)| = n* for all ¢, dom(p¢) = {’yé li<n'}, (i |k e
w) € x¥ for each fizedi < n', but x < 2% and we can fix an injection and
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keep as relevant information certain parts of k coming from of certain
[ €25, Look at the w' in Subclaim 5.3.)

(b) 0<n! <w,0<m!<n'. (' will be the cardinality of the heart of the
A-system built from many pc and m* will be the cardinality of the part
of the heart that is lying below x.)

(c) it =, In<n'kew),n, € w'y (mt . codes the nth element of the
support of px for k € w and these k are the first w of the ().

(d) hb is a partial function from [0,n) to k 1 (dom(hb) is the part of those
« in the heart of the A-system where Qo is the Cohen forcing. In the
somewhat simpler case of 2.2 Part 2),~thz’s domain coincides with the
part of the heart that lies below x.)

(e) R is a function from [0,n')\dom(hl) to <¥2. (Think of h giving some
information of a partial random condition attached at some point of the
heart.)

(f) k% is a function from [0,n') into the rational interval [0,1)q, such that
{n| R (n) # 0} C dom(hb). Furthermore we have thaty_, _ .. v/hi(n) <
1—10. (Think of hl giving some information about the Lebesque measure
of the limit of the a partial random condition attached at some point of
the heart intersected with dom(h}).)

(9) My py = Moyr, = M1 = ng (This is some compatibility requirement,
which is useful in 4.5.)

(h) For each n < n' we have that (n\, , |k € w) is either constant or with
no repetitions (that is: either in the heart of the system or among the
moved parts of the domains of the (pi | k € w)).

(i) at = (nj |k € w) where nj = 0, nj, < nj_; < w and the sequence
(nj, —np |k € w) goes to infinity. (This last ingredient does not

describe pg but is just an additional part handling the finitely additive

t

measures Zt,. The sequences n' shall allow to compute intersections of

sets of branches from lim tree, and for these computations (see 5.3) the
pe are grouped together for { € [nf, nzﬂ).)

There are k“ many blueprints. (Remember we also require that 2% > x,
otherwise the choice of the 7 in the following definition would fail.)

lWe do carry out the simplification suggested in a footnote in [20] and take x instead
of “k here. This does not bring any disadvantages, because when choosing (p¢ |{ € w)
we have initially x* many pc, and hence can thin out such that for each ¢, |dom p¢| is
the same, say n‘, and that for auch n < n®, the p;(nth element of dom(p})) = h{(n) are
independent of ¢, if they lie in some notion of forcing with conditions in some @, with
|Qal < k.
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Explanation: We continue the explanations begun in the parentheses in
order to explain how the conditions shall work together:

As mentioned, (%) follows from the fact that in V" if E € [x]*" and
m € w, then (), ¢ tree, (a®) is a tree with finitely many branches. Suppose
some p forces the contrary. We take p; > p such that p: IF “8, € E” for

¢ € k and such that ¢ & {B¢ | £ < (}.

We can assume that the p; are in some given dense set (will be Zz of
5.1 in our case) and that the (p;|¢{ € &™) form a A-system with some
additional thinning demands, putting x™ many objects into less than
many pigeonholes. (See our earlier remarks about working with x* many ¢
and the proof of Lemma 5.2.)

We assume that dom(p) = {n¢|n < n'}, yn ¢ is increasing in n and
Toe < x iff n < m'’ and that B¢ is one of the vy, . We let ;U’C be p¢ except
that p¢(B¢) is increased a little.

It suffices to find some p® > p such that p® I+ “A = {¢ € w ]p’c € G} is
‘large enough’ such that ﬂCe 4 tree, (%) has only finitely many branches”.

The ‘large enough’ is interpreted in terms of a Zf -measure.

The n < n’ such that Q¢ 1s a forcing notion of cardinality < x (in our
forcings, then it is just the Cohen forcing) do not cause problems because
hi(n) tells us exactly what the condition is. Still there are many cases of
such (p¢ |¢ € w) which fall into the same ¢, and we will get contradictory
demands if Yn, ¢, = Yny,c, and n; # ny. But the w’, * are built in order
to prevent this. That is we have to assume that 2 > y in order to be able
to choose (14 | @ € X), Na € 2 with no repetitions and such that for v C y,
|v] < Ny (in the applications, we shall have v = {an ¢ | € w}) there is some
w = w' € [K]N° such that (n, [ w|a € v) is without repetitions.

So the blueprint ¢ describes such a situation giving much information,
though the number of blueprints is k“.

If Qa, . is partial random, we get many different possibilities for Pc(Yn,c)s
too many to apply a pigeonhole principle. We want that many of them will
lie in the generic set. Using (h}(n),h4(n)) we know that in the interval
(«2)lP5™)] the set lim(pe(ya,c)) is of relative measure > 1— A (n). Still there
are too many (possibly incompatible) p¢(vn,¢c) and finally, in 5.2 and5.3, the
existence of many compatible candidates is ensured by the finitely additive
measures.

The 7' = (nf | k € w) are going to be used in the end of Section 5, where
we show that {(| p’C € G} is large by showing that for infinitely many & we
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have that . . )
H¢Ing, < (< N4 and D¢ € GH|

M1 = M,
is large, say > € > 0.

The nf will be chosen such that they are increasing fast enough with &
and (pi(1c)[C € [n},,nf,,1)) will be chosen such that for each ¢ > 0 there
is some s € w such that for k large enough: if the above fraction is above ¢
then

k2N m{treem(&ﬁé) |nf, > ¢ < nj,, and p, € G}
has < s members, hence the tree has fewer than s branches.

Comment on simplifications: Now we finally define the kind of iteration
we use for the proof of (+x)5. The reader who is longing for some simpli-
fication may omit the condition (f) in 4.2, 4.5 and 5.3 and work just with
conditions p¢ that do not differ at any index in the iteration where a partial
random real is attached to it, but only at those indices where a forcing of
size less than « is attached, or even work with with p. that differ only at
B¢ < x (from 2.11). A look at the beginning of 5.2, where the p; and p’C
are chosen, and a look AUT(Q) shows that the restriction to this simplified
situation is always possible when forcing with a member of the restricted
class described in Definition 2.2 Part 2.

Definition 4.2. K2 is the class of sequences

Q = (P, Qp, Ag, 113, 78,18, (Bher | a < o, B < )
(we write o = 1g(Q)) such that
(a)

Q = (PaagﬂvAﬁvuﬂvfﬁa |Oé < Oé*,ﬁ < Oé*>
is in KC from Definition 2.2.

(b) ng € "2 and for B < a < o we have that ng # 1.

(c) T is the set of all blueprints, and =%, is a Py-name for a finitely additive
measure in Ve increasing with a.

(d) We say the (ay|{ € w) satisfies (t,n) for Q, if

(Think of pe being the first w of the pc and (ay [ £ € w) = (Yn,c | € W),
and in particular, {(ay |l € wy = Be |l € w from 2.10. (oy is for some
n always the nth element in dom(py)) Further think that the following
items also mean that (pg|{ € w) being sufficiently described byt € T )
(1) {ullew) eV,

(2) teT,n<n,
(3) v < apy1 <o,
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(4) n <m!® & Vl(ay < x) & (ay < x) (the moved positions oy are
in the Cohen part),

(5) nfw = Na, | W' (Na, describes where oy really is, and nfhe describes
a part of it of size w. For a given t, the n such that Q satisfies
(t,n) is unique by 4.1 (g).),

(6) Ifn € dom(hy) then g, < kK andlFp,, “|Qa,| < k and (R (n))(¢) €
Qo "

(7) Ifn € dom(h!) then pa, > K, so Fp,, “Qa, has cardinality > r”
(hence it is partial random),

(8) If (nj s | k € w) is constant, then V¢ oy = a,

9) If <77$1,k: |k € w) is not constant, then V0 oy < auyyy.

(e) If @ = (o]l € w) satisfies (t,n) for Q, Nje,, (e < agi1), n € dom(h)
and
C={kcw|VleE [ngnp1) hi(n)(¥) € GQa, b
then
“_Pa* 5&* (Q) =1
(1) 1@ = {og|€ € w) satisfies (t,m) for G, Aseo(ar < ar41), m € dom(ht),
p = (pe|l € w) is such that p; is a Po,-name for a member of Qay, and
for every ¢,
Leb({n € “2|hi(n) <7 € lim(p,)})
2lg(hh(n))

(%) IFp,, 1= hi(n) <
and if € > 0 is such that
C:{kewwwembﬁﬂ>weemm

t ot
Mg — Ny

> (1= hi(m)(1—¢) } 7

then
Of*

Fp,. 24 (C) = 1.

(9) If @ = (ay |l € W) satisfies (t,n) for Q, Nocw ¢ = @, n € dom(h}), r
and T = (r¢ | € w) are P,-names for members of Q, such that

()

in VP v e Q, if v’ > r, then
Avze, ({ap(r') |k € w)) > 1 — hi(n), where

Leb(lim(r") N lim(ry)) 1
Leb(lim(r")) Ny —ny

ar(r') = a(r',7) = >

fG[nk,TLk_Fl)
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<< { € Dk k1) |10 € G, M

t t
Mgy — Ny

(i) Fort € T,a € a*: If lkp, |Qal > &, then 2, | P(w)VPA“ is a Pa,-
name.?

(h) P} < Pa,

Definition 4.3. 1. For Q € K3 and for o* < 1g(Q) let

Q1o = (Pa,Qs, A, 113, 73,03, (B )ie | < @, B < ).
2. For Q',Q? € K3 we say:
Q' <Q*if Q' =0 1g(Q").
In the next three steps, we show that I3 is sufficiently rich: That is, if we
have some @ in 3 then we can find an extension. The successor step and

the limit step of cofinality w require some work, whereas the limits of larger
cofinality are easy because no new reals are introduced in these limit steps.

Fact 4.4. (1) If Q € K2, a <1g(Q), then Q | a € K3.

(2) (K3, <) is a partial order.

(3) If a sequence (QS | ¢ < &) is increasing, cf(8) > No, then there is a unique
Q € K3 which is the least upper bound, 1lg(Q) = UC<51g(QC) and Q° < Q
for all ¢ < 9.

Proof. Easy.

Lemma 4.5. Suppose that Qn, < Qni1, Qn € K3, an, = 12(Qy), § =
sup(aw,). Then there is some Q € K3 such that 1g(Q) = & and Q, < Q
forn e w.

Proof. We have to define (2%)c7, such that (e) and (f) of the definitions of
IC3 hold. The items (g) and (i) do not produce no new tasks in the limit
steps, and we proved (h) in 2.6 and 2.7.
So, we look again at (e) and (f) of 4.2:
(e) If & = (oy | € € w) satisfies (t,n) for Q, Ae,,(ar < agy1), n € dom(hf)
and
C = {kcw|Vle [ng,nryp1) h(n)(£) € GQa, b

2This is where the information is whispered, showing that Qa, the random forcing over

Vrs | B € Aa), behaves in the sense of Zf, instead of the Lebesgue measure in a certain

sense generic: 1, hits sets of large Zf, measure.
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then
IFp,. Eh(C) = 1.
(f) If @ = (ou | £ € w) satisfies (¢,n) for Q, Ae,(qr < agq1), n € dom(hl),
p = (pe| ¢ € w) is such that
Leb({n e¥ 2|hb(n) <n € lim(py)})
2lg(hf(n)) ’

(%) Fp,, 1—hi(n) <

and € > 0 and

C:{kew

then

{€ € Inknjyd) Ipe € G, 3

t e
Npy1 — Ny

> (1= hi(n)(1—¢) } ,

Fp,. Ehe (C) = 1.
By 3.2 it suffices to show
Fp, i Be [Jdom(E)) = [J(P@)"™
a<d a<d

and =, (B) > 0 and j* € w and C;,j < j*, are sets

from (e) or (f) (whose measure is required to be 1 there),

then BN ﬂ C;#0.".

J<g*
Towards a contradiction, assume ¢ € Ps forces the negation. So possibly
increasing ¢ we have: For some B and for some j* € w, for each j < j* we

have e > 0, and n(j) < n?, <ag |4 € w), <pz | £ € w) involved in the definition
of C; (in (e) or (f) of Definition 4.2), and ¢ forces:

Be |JdomEh) = Pw"™,

a<d a<d

| dom (E4(B)) >0,
a<d

Cj comes from (e) or (f),
Bn () ¢C;=0.
j<j*
There is some a(*) < § such that B € dom(gta(*)) is a P, (,-name. The C;
have n(j) < n', (ag |l e w), <PZ | ¢ € w) as witnesses as required in (e) or (f)
above. W.l.o.g. ¢ € P, and q € GPa(*) C Py, Gpa(*) generic over V.
We can find k € B[Gp,, | such that A;_,. /\Ze[n};’ni“)(aé > a(*)) and

moreover such that n’,; 1 nj,‘/€ is large enough compared to 1/¢, 5%, in order
to allow us to apply the T'chebyshev inequality and the law of large numbers
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for nj_; — nj, random choices. (The nj, come from item (f) of the definition
of a blueprint, and are not the n.)

Let {ai!j < j* and £ € [nj,n}, )} be listed as {Bm|m < m*}, in
increasing order (so By > «(x)) (possibly ozZ = O(g A (J1,01) # (j2,02)).
We now choose by induction on m < m* a condition ¢, € Pg,, above g,
increasing with m and such that dom(g,,) = dom(q) U {50, B1, ... Bm-1}-
We stipulate 8, = 9.

During this definition we throw a dice and the probability of success (i.e.
q Ik “k € C;” for j < j*) is positive, and hence ¢y, will show that our
assumption on q is false.

Case A:m =10

Let go = q.

Case B: We are to choose ¢y, +1 and for some n < n! we have n € dom(ht)
and v and: if j < j* andﬂéwthen(ag—ﬂm:n(])—n A pg—y(

ho(n(3))(0)) € @p,.)-

In this case dom(gm+1) = dom(gy,) U {Bm}, and

am(B) i B < Bm,
Y if 6 = ﬁm

The choice of (4, ¢) is immaterial as for each (,, there is by the definition

amir(9) = {

of “satisfying (¢,n) for Q”, item 5, a unique n < n?, such that there is some
¢ such that ng, | w'= nfhg and conditions (g) of 4.1 and (d) 8 of 4.2 imply
that if 17;7[ is not constant then (3, = 042 = aZ — {1 = {3). Hence v = p%
is well-defined.

Case C: We are to choose ¢, +1 and for some n < n' we have n € dom(h!)
and: if j < j* and ¢ € w then az = Bm = n(j) = n.

Work first in V[Gp, |, gn € Gp, , Gp,, generic over V. The sets

{1m@(Gr,,]) | o = Bms€ € Inhonn).d < 5}

are subsets of (“2)[2(™] = {5 e¥ 2| h(n) < n}. We can define an equiva-
lence relation Ep, on (¢2)h2m)];

v iff (V(5,0) sth. of = B i 01 € lim(p)[Gp, ]) 2 € ()G, 1))

Clearly E,, has finitely many equivalence classes, call them (Z™ |i < i},).
All are Borel hence are measurable; w.l.o.g. Leb(Z™) = 0 > i € [1, ).
For i < ij; there is r = 1y, ; € Qp,,[Gp,, ] such that

lim(p)[Gp, ) 2 Z" = r>plGp, ],
lim(p)[Gp, NNZ" =0 = lim(r)Np)[Gp, |=0.
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We can also find a rational a,,; € (0,1)g such that
Leb(Z™)
Am,i < 57y —-
"t glg(hh(n)) 2i%,

We can find ¢;, € Gp, , gm < gy, such that g, forces all this information
(so for Z™, ry,; we shall have names, but a,,;, i, i, are actual objects.)
We then can find rationals by, ; € (@, i, am i +€/2) such that Zi<z’;‘2 b = 1.
Now we throw a dice choosing 4,, < i% with the probability of i,, = i

Qi +

being by, ;, and finally we choose g,,+1 as follows

dom(qm+1) = dom(Qm)U{ﬁm}y

¢, (B) i B < Bm,
Tmjim i B = Bm.

This covers all cases. Basic probability computation (for n}, 1 nt in-

gm+1

dependent experiments, using (%) of (f)) show that for each j coming from
clause (f), by the law of large numbers the probability of success, i.e. having
Gme1 Fpy k€ CjNB,is > (1—1/7*)(1—e2- (nf,, —n})~!). For j coming
from clause (e) we surely succeed. 04 s

In the following lemma, the whispering conditions (i) of 4.2 are crucial
for building 3.

Lemma 4.6. 1) Assume that

(a) Q€K? Q= (Pa,Qp, Ag, 113, 78,718, (Eb)reT | < a*, B < o),
(b) ACa”, k< |A]

(c) ne("2)" \{ng|B € a},

(d) Pa < Par, Qo+ is the Pyx-name from 2.2 (F)(B) and

ift €T then Z%. | V4 is a Pa-name.

Then there is QT = (Pa,gﬂ,Ag,uﬂ,fg,ng,(53)t€7-|a < a4+ 1,6 <
a* + 1) from K3, extending Q such that Agx = A, N = 1.

2) If clauses (a),(b),(c) of part 1) hold then we can find A" such that
A C A Caf |A| < (JAH number of blueprints )X such that Q,A’,n
satisfy (a),(b),(c),(d).

Proof. 1) As before the problem is to define Zf,. ;. We have to satisfy clause
(g) of Definition 4.2 for each fixed t € 7. Let n* be the unique n < n' such
that 7 [ w' =}, , for some £ € w. If n* € dom(hf) or if (n}. ,| £ € w) is not
constant or if there is no such n* then we have nothing to do.

So assume that ay = o for £ € w and that 77;*,2 =n | wfor € w.
Let I' be the set of all pairs (r, (r¢|¢ € w)) which satisfy the assumption
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(%) of 4.2(g). In VFPa*+1 we have to choose NEL*H taking care of all these
obligations.

We work in VFe*. By the assumption (d), which says that Z¢. | Pa
(hence in particular the E4+(X), where X is built from the r, r/) is a Pa-
name, and by Claim 3.7 it suffices to prove it for Zb. ., [ (Pa* Q) (as Z1
there) and for Zf. ., | Po» (as 22 there) separately, and for the latter there
is nothing to prove.

By 3.6 it is enough to prove condition (B) of 3.6. So suppose that
fails. Then there are (B,, |m < m*), a partition of w from V4 such that
EL+(Bm) > 0 for m < m* and (1, (r} | £ € w)) € T and n(i) = n* < n' for
1 <i" <wande* >0, k¥ € wandr € Qu which forces that there is no
finite u C w \ k* with (i) and (ii) of 3.6(B). W.L.o.g. r forces that 1’ € Gg,
for i < i*, otherwise we ignore such an 7. So r > r? for i < i*.

By our assumption (xx) of 4.2(g) we have that for each i < i* and r' > r

Avzr ({ai(r') [k € w)) > 1 = hi(n),

where

1 Z Leb(lim(r") N lim(ré))‘

ai() = Leb(lim(r))

t .t
Mgy — Ny tent nt

?c?nk-u)

Now V4 plays the role of the ground model (V in 3.6) and Random" [T« [@€4] —
Random" "™ is the full random forcing over this ground model. So by 3.6 is
suffices to prove:

Lemma 4.7. Assume that = is a finitely additive measure, (By, ... Bp+—_1)
a partition of w, Z(Bp) = am, i* <w and r, ry € Random for i < i*, { € w
are such that

(x) for every r’ € Random such that ' > r and for every i < i* we have
Ava({a () |k € w)) > b

where

') =

t-1 ,
1 i Leb(lim(r) N lim(r}))
A § :

k+1 k

3 /
pane’ Leb(lim(r"))

Then for each ¢ > 0, k* € w there is a finite u C w \ k* and v’ > r such
that

(1) am —e <|unBpl/|u| < am + ¢, for m <m*,
(2) for each i < i* we have

1 g oz
nt ., —nl -
ew k1 T
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Proof. Let for i < i*, m < m™*:
cim(r') = Avap,, ((ak (") | k € Byn)) € [0,1]p.
So clearly
bi < Avz((a(r) [k ew) = Y Avzip,((ah() |k € Bn)) - E(Bn)

m<m*
= Z Cim(T") - am.

m<m*

Since for each z € w\ {0} there are only finitely many equivalence classes
in the equivalence relation F, where

(Cim|i<i®,m<m®) E, <c§’m|i <iF,m<m®)
iff

, . - « 2 Z+1 , 2 Z+1
(for 2’ < z,i<i*,m<m")cime |—, © Cim € |7 ,

z z z z

we have that there is a condition 7} such that each class is is either dense
above r} or does not appear above r}.

We apply this with some z > % and get an 7* > r and a sequence (¢; , |1 <
i*,m < m*) such that

(a) cim € 0,1]R,
(b) Zm<m* Ci,m * Qm > bi’

(c) for every v’ > r* there is " > 1’ such that
(Vi <i*)(Ym < m*)[cim — € < cim(r") < cim +¢].

Let k* € w be given. We now choose s* € w large enough and try to choose
by induction on s < s* a condition r; € Random and natural numbers
(ms, ks) (flipping coins along the way) such that:

ro =1%,

Tst1 = Ts

Cim — € < Cim(rs) < ¢im + € for i <i*,m < m*,
ks > k* ksi1 > ks

ks € B, .

In stage s, given rs we define rsy1, is, ms, ks as follows: We choose
mg < m* randomly with the probability of mgs being m being a,,. Next we
can find a finite set us C B,,, \ max{k* + 1, ks, + 1|s1 < s} such that

(+) ifi<i* then ¢jm, —€/2 < |u—15‘ > keu, @ (Ts) < Cim, +€/2.

We define an equivalence relation es on lim(rs) by
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mesne it (Vi < i*)(Vk € u)(V0 € [n},n}_,))[m € lim(r)) < n €
lim(r})].

The number of equivalence classes is finite. If Y € lim(rs)/es satisfies
Leb(Y) > 0 choose 15y € Random such that lim(rsy) € Y. Now choose
re+1 among {rsy |Y € lim(rs)/es and Leb(Y') > 0} with the probability of
Ts+1 = s,y being Leb(Y"). Lastly choose ks € ug with all k € ug having the
same probability.

Now the expected value (in the probability space of the flipping coins),
assuming that mgs; = m of

; ! = x [{€|nj, < €< nf,y and repq >}
M1 = M,

belongs to the interval (¢;m —€/2, ¢;m +€/2) because the expected value of

1 1 '
T 2 X eI <2< nf and v 2 o)
S| peu, k1 k

belongs to this interval (which is straightforward).

Let ' = 7’5*, u = {ks |s < s*}. Hence the expected value of

Z x [{€|nf, < <nl,y and v’ > rp}|
nk+1
is > Zm<m* am(ci,m - 8/2) > b —¢e/2.

As s* is large enough with high probability (though just positive proba-
bility suffices), the (rg«,{ks|s < s*}) are as required for (r',u). Note: We
do not know the variance, but we have an upper bound for it not depending
on s. There is also a strong law of large numbers that does not require a
bound on the variance (see [3]). O4.7,4.6 Part1)

Ad 4.6, Part 2: The proof is an easy counting argument, just enrich A
successively such that everything required becomes an Pa-name. [y ¢ part2)

Remark: We do not use 4.6 2) in our work, nor do we need here that the
number of blueprints is small compared to x (which is important in [20]),
because we shall never use that 3 is not empty. In 5.3, 5.4 we need only
small parts of the properties of elements in 3. So we shall keep the parts
needed in mind and, in 5.5 we shall show that an arbitrary member @ of
the subclass of K given in 2.2 Part 2) behaves similarly to a member of K3
as far as (x*)g is concerned.

The following is needed later to show that sufficiently often the clause (g)
of Definition 4.2 is not trivial, that is, the premise (x*) there holds.
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Lemma 4.8. Assume
(a) Z is a finitely additive measure on w and b € (0, 1],
(b) nf <w forkew, nj, <nj, ., andlim(n , —nj}) = oo,

(c) r*, rp € Random are such that: (++) (V€ € w)[Leb(ﬁg)((qm)l?Th?)(”)) > b).

Then for some r® > r* we have that
®@(r®) For every v’ > r® we have Av=((a(r’, k) |k € w)) > b where: a(r') =
a(r’', k) = ax(im(r")) and for X C 2¥ we have that

1 Leb(X Nlim(ry))
nh. ., — Z Leb(X) '

ak(X) =

k EEni,n};rl)
Proof. Let
Z = {r € Random |r > r*, and Av=((ax(r') |k € w)) < b}.

If 7 is not dense above r* there is some ® > r* (in Random) such that for
every r > r®, r € T, so r® is as required.

So suppose that Z is dense above 7*. We take a maximal antichain {s; :
i < i*} C Z. Because T is dense above r* we have that {s; : i < i*} is
a maximal antichain above r*. Hence Leb(lim(r*)) = >_._,. Leb(lim(s;)).
Since Random has the c.c.c. we have that ¢* is countable and we assume

that * < w.
For any j < i* let 87 = Uie; si- Note that im(U,,-; sm) = U,,<,; lim(sm)
and
; Leb(s,)
ax(s?) = ax( U Sm) = Z ———ai(s;).
m<i i<j Leb(Um<j Sm)

Hence we compute

Avs((ap(s) [k e w)) = Ava({ar( | sm) |k € w))

m<j
Leb(s;)
— ——————— x Av=((ax(si) | k € w))
i<j Leb(Um<j Sm)
Leb(so) Leb(s;)
o Leb(so) _ols)
Leb(U;; s ) O;j b(U < j 5m)

= b — Leb(lim(sy)) - ¢,
where ¢ = b — Avz({ax(so) | k € w)), so € > 0.

Now let j be large enough such that LEb(Iimbgﬁz}iif;)(sj)) < Leb(lim(sp)) - €.
Then

Ava((ar(r?) [k € w)) =
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wam@ﬂ\mmyﬂ.A%«%mm@w\mm§»m6w»

Leb(lim(7*)) |
eb(lim(s’ .
m ~Ava({ap(lim(s”)) [k € w))
- Leb(i:;((ql}:f;(sj)) 1 Im (b — Leb(lim(so)) - )
< Leb(lim(sg)) - € + (b — Leb(lim(sp)) - ) = b
contradicting assumption (c). Ois

Lemma 4.5 took care of the successor step in the case of |A| > k. We close
this section with the successor step for |A| < k (which means empty A for
the iterations from 2.2 Part 2). Everything in this section applies to 2.2 Part
1). Only at the end of the next section we shall make use of the particularly
good additional features of the narrower class in 2.2 Part 2): Small forcing
conditions, orderly separation between Cohen part and random part etc.

Claim 4.9. Assume that

(a’) Q € K3r Q = <P067;Q3’A01):U’57I6’7757 (gta)tG'T’a < Oé*,ﬂ < O[*>,
(b) ACa* k>|A| and i <k,

(c) ne ("2)V \{ng|B € a},

(d) Q is the Po+-name for a forcing notion with set of elements fi, and is
definable in V(13| B € A)] from (15| B € A) and parameters from V.

Then there is

Q+ = <Pa’QﬁaAOu,uﬁ7l—ﬁa775a (Eg)te’r‘a < o + 1,5 < a* + 1>
from K3, extending Q such that Qor = Q, Agr = A, Nax =1, far = fi.

Proof. The Definition 4.2 gives no requirements on the =, 11 Cag

5. THE LAST PART OF THE PROOF OF (¥*)q

In this section we shall finish the proof of (xx)q for K3, and then we shall
finish the proof of 2.11 and 2.1.

We give an outline of the proof of (xx) for KC3: We assume that we have
a counterexample p*,T" (for a perfect tree C ([ ¢ plim tree,, (a$))VIEH, m
(for the tree,,), E to it. We thin out the p¢ that are forced to be in £. Thus
we get a in some sense indiscernible set of conditions. Some features the
first w of these indiscernibles are described well by a blueprint ¢t € T, and
this description allows us to define some p® > p* such that p® forces that
T = T'[G] cannot be a perfect tree because the subset A C E[G] over which
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we build the intersection is ‘too large’, and thus we have a contradiction.

t

Having =!-measure non zero ensures infinity, and indeed the measure =,

will lead to the notion of ‘too large’ that we are going use (see 5.2 and 5.3).

Then we show (x*)q for the members of the subclass of K that is given
in 2.2 Part 2). We start looking for finitely additive measures only after p¢,
( €wandteT (remember: T is the set of blueprints for x from 4.1) are
chosen and do it only for one suitable t. We want to have some = . that
satisfies just the requirements in 4.2 (with true premises in (e), (f), (g) for
our chosen (ay | € w)!) that speak about our p, in order to jump into the

proofs of 5.2 and of 5.3, which work with K3, and go on like there.

It turns out that only requirements about p/C(X + V), n < n* € w, n*
the size of the part of the heart of a A-system lying above y, are relevant.
We shall look at QX for several y (and the same ®, 1, Y0, .., Yn*—1) and
use a Lowenheim Skolem argument to provide the (ggn)n<n*¢€¢ good for
these requirements. Besides some elementary embedding, we shall use the
automorphisms for the Q from 4.2 Part 2) in order to make sufficiently many
instances of (e), (g), (i) of 4.2 true. (We already mentioned that (f) is ad
libitum.)

Lemma 5.1. Suppose that € = (/| ¢ € w) is a sequence of positive reals
and that Q € K3 has length a. Recall that P! was defined in 2.3c). Then
the following Iz C P, is dense:
I-={pe P, | there are m and ag, vy for £ < m such that:
(a) dom(p) ={ag,...am-1},a0 < a1 <+ < apm-1 < q,
(0)  if |Qa,| < K, then p(oy) is an ordinal,
(¢) if|Qa,| is partial random, then IFp,, “p(ag) C (w2)lv
and Leb(lim(p(ay))) > (1 — ;) /2800 7},

Proof. By induction on « for all possible £. Use the Lebesgue Density The-
orem [15]. Us.1

Lemma 5.2. If P, = 1im(Q), o = 1g(Q) and Q € K3, then (xx)g from 2.11
holds.

Proof. Suppose that p* IFp, “T',m, E form a counterexample to (**)Q”. Let
€ = (g¢| ¢ € w) be such that e, € (0,1)r and such that ), +/2e, < 1/10.
For each ¢ < k™ let p’C > p¢ > p* be such that pg € - is witnessed by

W lae dom(p}) A |Qal > k) and

p; kP, “Be is the (-th element such that T' C N[a"].
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Call the p/ now p; again. By thinning out we may assume that there are
¢ q
", vg, v1, A, z, 'yf, v;, s* such that

(1) dom(p¢) = {%C |i < i*} with 72.4 increasing with 4, let Ué ={i <
i | ’Qvg‘ < K}, then Ug = vy is fixed for all ¢, v1 = * \ vy,

(2) dom(p¢)(¢ < k™) form a A-system with heart A C dom(p*),

(3) B¢ € dom(pe), Be = ~¢ for a fixed z < i,

(4) (dom(p¢), A, x, <) are isomorphic for { < k¥,

(5) if i € vp, then pg(’yic) =; for ¢ < kT,

(6) if i € vy, then IJCC = v; (recall ucg € <2 is given by the definition

'Yi ’Yz'

Of Ig),

(7) pc(Be) = s* for ¢ < &T, s* = ((ng,ar) | € < m*), wlo.g. m* > m
(where m is from the counterexample to (x)g) and m* > 10 (this
is a similar but not the same as in Lemma 2.12),

8) for each i < i* the sequence ’yg € k1) is constant or strictly

(2

increasing,

9) the sequence ([ € k1) is with no repetitions (since, if p¢,, p¢, are

¢ C1) PG

compatible and (1 < (2 < x, then B¢, # fe,).

Now we keep only the first w conditions p¢, ( < w. For every such ¢ let
p’< > p¢ be such that dom(p’c) = dom(p¢), p’c(w) = p¢(y) except for v = f¢
in which case we extend p¢(8¢) = s* in the following way:

We put 1g(p}(8¢)) = lg(s*) + 1 = m* + 1 and set p,(8c) = s*((j¢s a¢))-

Before we define (jg,ag) we choose an increasing sequence of integers
§=(s¢|l € w), sp =0, such that

Skt — sk = |(270)@HET),

where
J =3nm—1+1
(recall from 7. that 7,1 is the first coordinate of the last pair in s*) and we
let jr = 7% + k!! and let jg = jr when ¢ € [sg, Sg+1). Now for ¢ € [sk, Sk+1)
define a¢ such that
{ac| ¢ € [sp spa)} = P2 057,

For ¢* > 0 we define a P,-name by
€ [sk, s € Gp,
Ag*z{kew ¢ € [sk, spt1) [ p¢ ~P}|>e*}.

Sk+1 — Sk
For the proof of 5.2 we need

Subclaim 5.3. There is a condition p® > p* that forces that for some
e* > 0 the set A~ is infinite.
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Ezplanation. The p® is an analogue to the premise no. 3 of Just’s Lemma 2.12.
The condition p® () is roughly spoken “as compatible as possible with many,

in the sense of the =! (A.+) > 0, of the (pe(7) | ¢ € w)”. The coding with the

nfLC and the n, | w', w' from (5.1), ensures that p® is well-defined by the

definition below.

Proof. We may choose any e* < 1 — ", +/2¢; (where the & = (¢/ |/ € w)
was chosen at the beginning of 5.2). First we define a suitable blueprint

teT,
t = (w',n’, m", 7', hl, Bt S, ).
We let
wt ={min{8 € k|1 (8) # 1.0 (8)} | (1), €(2) < w amd
(5.1) i(1) i(2)

06 <. nd o) %)

where the 7, come from the definition of 3. (w!

is well-defined because 1
is injective.)

Let n' = ¢*, dom(h{) = vy, dom(h}) = dom(h}) = v1 and n} = s;.

We set n%, ¢ =g I wt. Note that the nfmC satisfy the requirements from
4.1(g) and (h): By 5.2 item 4., we have that fyf, = 'ycl, implies n = n’. Hence

n
we have that 77;74 = 77;,70 implies that UNS Fwt = ¢ [ w! and hence by the

definition of w’, that 7§ = 'yfl/, and hence n = n’.

n

If n € vg, then h(n)(¢) =y, so it is constant independent of £.

If n € vy then h{(n) = &, and hh(n) = vy,. Finally we set m' =
max{k | V¢ ’yg <x}+1

Note that by our choice of ¢, (7§ | ¢ € w) satisfies (t,n) for Q for every
n <.

We now define a condition p® such that it will be in P,, dom(p®) = A,
p* < p®. Remember that dom(p*) C A, because for each ( we have that
p* < p¢. If v € A then for some n < n’, we have that Ncew N

Case: n € vg.

If n € vy we let p®(y) = hf(n), so in V

p® g, “NEEYH({C cEw| hé(n) € GQ’Y}) =1lifne dom(hf))”.

Case: n € v;.
If n € vy, then we define a P,-name for a member of ), as follows. Consider
¢ =pe(y) for ( <w. Letr = p*(’y)ﬁ(w2)[h§(n)} if v € dom(p*) and otherwise
we let 7 be just (¥2)"2M™)] Now the premise (¢) (++) of Lemma 4.8 is true
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with b = 1 — 2¢,. Thus by Lemma 4.8 there is some 7‘:'; > r such that for
every r' > r% in Q. we have that

Avz ((aR ()| k € w)) > 1 —2hf(n) = 1 — 2y, where

%) 2 non 1 Leb(lim(r") N lim(rf))
() ap(r') = —— Z Leb(lim(r7)) -

t t
n —n
k+1 k
+ e[ngm )

Since (fyﬁ\( € w) is constant since, by (#%),s - the assumption (xx) of
condition (g) of 4.2 holds, we get that in V'
ke w>) >1—2eq”.

For every ¢/ > 0 we have: If Avz({ax |k € w)) > 1 — &’ then for every € > 0
such that e +¢&’ < 1,

,,,,* ”_ “AV |£ € [n}fc?n]]fg+l) |p€(’7) € QQ7|
7" Qy 2l nt . _nt
k+1 k

E{llar<1—¢ —¢e})- 1—€ —-e)+Z{l]ag>1—€ —€})-1 >
Avz({ag|l e w)) > 1-¢,
and hence .
_ €
:({€|ag§1—5'—6})§6,+€.

Now we put ¢’ = 2e;, and get for every € > 0

€ [n},n} eqd
wmt {kEW 1€ [nf,nl 1) | pe(7) ~Qw|§1_2€n_€}< 2%n

*
Ty ”_Qw =v+1 nt . _nt
k+1 k

We take € = v/2e, — 26 and thus get

7 7
Mgy — Ny

¢ e nt, nt e
ko, ggﬂ{kew L€ o) [Pe0) € G| g1—\/2en}g pE

So there is a P,-name 1 of such a condition. In this case let p®(y) = r.
So we have finished the definition of p®, and it clearly has the right domain.

[Notice for later generalisation: The property (g) is used here only for ~
in the heart of a A-system. Moreover, in order to establish (g) for v as in
4.6, the property (i) is needed only for 7.

Now suppose that n < n! is such that ’yﬁ ¢ A. (Note that this case
can be avoided by an appropriate choice of p’c, see our earlier remarks on
simplifications.) Define 8 = (BelC € wy, Be = ’yﬁ, g = p’C(’yg) Then 3
satisfies (¢,n) for P,. If n € vy, by our assumption that p’c(v) € Z: and

en = h{(n), we get that the premise of clause (f) of 4.2 is fulfilled, hence in
Vha:
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For each € > 0

lh%“52<{k I{féhiﬂﬁ+ﬁipdvﬁéégﬁ}l>(1_€nxl_€)}>zzrt

M1 = M,
Putting both cases of n € vy (the one with 751 € A and the latter, comple-

mentary one) together and assuming that p® € G we get in V= for every
nec v

1—\2en > -

t
Ny — Ny

V2en > E ({k; Ew

Hﬂn2§5<nhlmﬂr?€GaH})

Let
Al ={kew|ifCe [”11;’”2“) and i € vy then p¢ [{’yf} eGp,}
Then, by 4.2 (e), =L (AL) = 1.

So
AU (w\ AL) D

{k‘Ew

llnt <l<nt dr}eqd
w\ U {kEw“{ |y, < Mgy ADA Ty P} c1- /—2%}‘

t 1
L

[{¢|n}, <€ <nj,,and r} € Gp,}|

if n € v; then ; n
nt,..—n
k+1 k

zl—ﬁ}z

nev;
Hence =, (A U (w\ AL)) > 1 =37 ¢, V20 > " >0, but
Eh(w\AL)=1-E,(4.)=1-1=0,

hence necessarily A.« is infinite. Os.3

Let p® be as in the Subclaim 5.3. Let Gp, be a generic subset of P, to
which p® belongs. So A = A.+[G] be infinite. For k € A, let b, = {¢ €
sk k1) | P € G}. We know that |by| > (sg41 — sg) -€*. Let T[G] =T

If £ € A, then there are (sg+1 — si) - €* many ¢ € [Sg, Sg+1) such that
pé € G and pg - TNJk2 C a¢, hence TN 2 C HCEbk ac as1g(s*) =m* > m.
To reach a contradiction it is enough to show that for infinitely many k& € A
there is a bound on the size of T'N #2 which does not depend on k.

124
Skt1—Sk

with 27% (1 —8~™") elements, it will include 7N *2. If k € A (and these are
infinitely many k, because A is infinite) this probability has a lower bound
£* not depending on k, and this implies that (|T'N 72| |k € w) is bounded
and that hence 7' is finite.

Now is at most the probability that if we choose a subset of 7+2
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More formally, for a fixed k € w we have

lbrl = Hac|C € [sk,8k+41),¢ € b}
< Hac|C € [sk, sk+1), TN *2 C ac}
< |{a T 2|TN*2Caand |a] = 27%(1 — 8 ™)}

= [{a S 2\ (T'n72)|]a] = 27 x 7™}
B 29k — | T N I#2|
o Jk . §—m"

Ik Ik
By definition we have that sx11—s, = < 2k . (1 —§-m") ) = < od . g—m" )

Hence
20k — | T N Jr2|
|| 20k .8~ 2ikg=m"
3k+1—5k§ 27k - H (1= 2J'k—i)'
( : * ) i<|TN k2|
2k . &M

Let ig(x) = min(|T N 7#2|, 2771 so

b 2kg=m"
ce Mo < ] <1—2jk->
Sk+1 — Sk i<|TN k2 !
20K87M7N i ()
< JI (1%>_(18 Y,
7,<’Lk(*)

So we can find a bound on it (*) not depending on k:

, log(e”)
< .
W) S e -
Remember m* > 10, so0 1 — 8™ ¢ (0,1)g. So for k large enough,

_ log(c")

TNk2| = < —

7092 = i) <€ o s

This finishes the proof. Os .0

So, how do we get a proof of 2.11 from 5.27 We have to show that
our members of K as defined in 2.2 Part 2) behave like members of K3 at
sufficiently many points in the domain of the iteration, that is we have to
define suitable Z¢, and 7.

Now we shall look at several iteration lengths x at the same time. Recall
the definitions of g,, E?, A§+§ from the beginning of the proof of 2.1.

For Q = QX as in 2.2 Part 2) we set QX = PX = P, (of length x + p!);
for A C x + p, we let P = P/ 4.
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Recall our choice of memories from the beginning of the proof of 2.1:
gy: X — (1)<} such that gy € gy for x < x’ and such that every point has
X preimages uner g,. From the g,’s we defined:

foréep Ef = {a<x[€&gy()},
Ale = EfUlox+9)

X _qxX
We have that AXJrg Ny = AX,JFE N x.
First we need the following
Lemma 5.4. 1. If £ <~ < u then in QX
/
< Px+§‘

/ /
(a) Py Ubex+6) PE%‘U[X7X+€)
(b) ifge P andq | (BEyU[x,x+¢§)) <p€ P;EWU[X,X-FE) then

pUq | (1gQ)\ (B, U[x,x +§)) € Py ¢

is the least upper bound of p and q.
2. If x < ¥/, then

/ /
Px’,xU[x’,x”ru) < Px’,x’ﬂu
! e q ; / h — pxx
and PX»X"F# is isomorphic to PX/7XU[X/»X/+M) by h where h = h 1s the

canonical mapping, i.e. h: x + p — X' + p be the identity below x and
hix +a) =X+ a for a < p.
Proof. 1) By 2.6 and 2.7. For 2): Like in 2.7, it is easy to see that P},

Pl
XX UIX X +€)

XUIX X +€) <

as enough types (see Lemma 2.7) are realised in . Os 4

Theorem 5.5. For QX as in Definition 2.2 Part 2) we have that (%) ox
holds.

Proof. Given p*,T,m,E as in 5.2, we choose £ and p’C as in 5.2 (at the
end of 5.2), t as in 5.3. We let we = dom(p}), and w be the heart of the
A-system. Note that we may choose p’C such that we \ x = w \ x, which
allows us to avoid 4.2(f). We now do so. We even might choose p’C such that
we \ {B¢} = w, but this does not lead to a further simplification.

Let

w\x={x+mlnen T}y <n < <m-1
We can replace x by xT* using EX™ and thus (by 5.4) get counterexam-
ples to (**)Qx+k with the same ¢, £, and with RXXTE (p’c),

k *
h]X:X+ H(w) \X+k = {X—‘rk +’Yn‘n eEn }770 < 'Yl <0 < ’YTL*—17

Nyt = A,

. +h+1
and with A§+k+1 TS x1F for v < p.

+y
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Now, fixing (v, |n < n*) and &, we prove by induction on n < n* that
for every k € w (k < n* would suffice), for QX™ and for o, ..., Ynr_1,

and (p} | ¢ € w) as above, we can find a suitable modifications P(n) of our

k
original forcing PX and P(n)g,wr,y 1

(5§C+k +yn+1 )tET such that

e demand (e) of Definition 4.2 holds for (ay|¢ € w) = (fp0--- 0
foo hX’XJrk(’yf) |0 € w), i < ¢* (from 5.2 1., only the part before

X is considered). The f; are the “shuffling” maps coming from the

-names for a finitely additive measures

Lowenheim Skolem argument below. and such that

o (f) and (g) of the Definition 4.2 hold for every n < n* for (ay|¢ €
w) = (x¥ 4+ 7, | £ € w) (so ay is constant) and thus to get the next
step in the iteration according to 4.6, and

e though 4.2 (b) is not fulfilled for o* = x** 4 u, k > 1, the original
ng € "2 are still strong enough to code the arguments of f, o---o
fo 0 X" (p’C), ¢ € w, according to the (5.1) in 5.3. Look at the ’yf

to be treated there and at fy,... f+_1 and at hX’XM, how they shift
the supports of the pé.

Then we can carry out the proof of 5.2 and of 5.3. In the end we shall
first show (#%) p(,+)x for some modified P(n*)* and mapped p/C, however with
ther same j, same g, ... Vn+—1, and possibly modified 3¢, T', t. Thereafter
we shall read the automorphisms and bijections in the reverse direction in
order to get (**)gx-

In order to proof the claim “for all k£ € w, Qx+k can be extended by
(EL) aex+k 4 ceT Tespecting the whispering conditions at X+, -,
X% + 4, and such that (o[£ € w) = (xTF + v, [ £ € w) satisfies (t,n,)
(for the same fixed t € T, n < n*, with n, = |A N x|+ n, not depending
on k) (let us call this: stage n 4+ 1)” , we shall use “for all k € w, QX"
can be extended by (Z},),ey+#+1.4, respecting the whispering conditions at
T 490, . xR 44,1 and such that (o | £ € w) = (xTF T 4y, [ £ € w)
satisfies (t,n,) for n < n* (let us call this stage n)”, a Lowenheim and
Skolem argument and the uniqueness of n in (d) of Definition 4.2.

To carry out the induction: For the stage n = 0, k € w (k = n* would
suffice, because we need to be able to descend n* steps in the k’s) we stipulate
that v—1 + 1 = 0 and just let 5; +r be a P tr-name for a finitely additive
measure on w such that the condition (e) of 4.2 is fulfilled for the blueprint ¢
and the interesting instances of (o | ( € w). In the step from stage n to stage
n + 1, for x™*, we apply the induction hypothesis to v9 < --- < ,—1 and
X and (fFF20. . o fhF2En—loprox i (pe) [ ¢ € w), (the 7 are got from

the induction hypothesis, see below, where we get fF+1

» 1) and thus we get a
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X+k:+1
X

1
required, i.e. the whispering conditions hold for A +kil by TS

,:t . o, .
_4y-hames (HX R 41)ter for finitely additive measures as

Though we only have 2% > y, the injective codlng of the indices in the
iteration length x + 1 by Ningez € 2% works not only for the original @Q
but also for f’C+2 .0 6”1*” o hxvx+k+1+n”(Q), which is isomorphic to a

complete suborder of QXK.

+k+1

There is a PX Ly, ThAme 2 for a finitely additive measure on w

X+k+1+’)’n

extending = .+ This is proved as in 4.5 and 4.6, because there are

X*’““Jrv
k

no “whispering tasks” ( ) of 4.2 about the Aiiki 4, In the stretch between

XA £ 4,1 +1 and xt*+! 44, and no new instances of (g) of 4.2 as well.

Now we come to the crucial step from xT**1 4+ 4, to x** 4+ 7, + 1. Let
Mo < My < (H(¥), €, <y),

where 1 = Jy(x )

For abbreviation, set f/ =
f! also for the function which arises by putting hats over all objects on the
right hand side.

_ +k+n+1
f’”2 -~-fé“+2+” Lo prox , and we use

+k +k+1

(W1 the objects (10, .1}, {gyet |1 € w), (X [k € w),
_ +k
s X (PR 1 € <) (@ [k € w), (B [k €w) (B iy DreT
J!(T) = B({truth value(f'(d¢) € T4:(y,)) | £ € w)) belong to M.

(*)2 | Mo = | M| = x**, x™F +1 C My, My € My, ™R (M) C M,
max(p,k) (Ml) C M.

Claim: There is an injective function f**! from (x**+! 4 4, + 1) N M,
to X% + 4, + 1 such that

(@) fEFL( R 4+ y) = xR 4 4 for v <y,

(b) [ maps (xTFt! 4 4,) N My onto AX and

+k+’y

(€) gy ( k() Ny, = Gy (@) N Vn for o € AtFHL N My, e, for v €
+k+1

Yn, & € )‘+k+1 N Ml: (f7]7{,7+1( ) g AX+k+'Y o g Ax+k+1+’y)

Proof of the claim: Since My € M; we have that |y ™1 0 (My \ Mp)| =
IxT*tl N My | = |x T+ N Mp|, and considering types as in the proof of 2.7
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we get for any ¢ €11 2, with B = E, B! = y**\ E,

Mo () @) = ] and
m<n+1
M @) = x™, and
m<n+1
‘Mom m (E%f;k)c(m) = X+k, and
m<n+1
‘MomerkJrl —

Hence we can find an f¥*! fulfilling the requirements (a), (b), and (c).
Hence the claim is proved.

+k +k

Now we change the forcing orders accordingly: We set P(0)* =~ = PX

As in 2.5 we can define a structure P(n)x+k by

—

L (P — D)X My 2 P(n)X
and can extend f¥T! onto the space of (P(n — 1)X+k+l) N M;i-names.

+k+n+1(

From fk+1o f/o pXX X +7m)) = xTF + 4 we get that (o[£ €
W) = (XTF + v [ £ € w) still satisfies (¢,1n,,) (see 4.2(d)) for P(n)x+k for
every m < n*. Moreover, f**1o f' o hX’XHHnH(X +9n) = XTF + 7, is the
argument where (f**1o f/ o hxvarH"H(p’C) | ¢ € w) is treated as in 5.2.

k
Now we prove that P(n)x+ satisfies the conditions at vg,71 ... Yn:

_ _ . Rt

First, for m = n, we have that 5;“14-% isin My a P(n—1)* N M-

+ht1
' o V}%n—ni+k+l+Wn ) x et
name, and its restriction to P(w) NM;isa P(n — 1)x+’“+1+%m
—_—

, k+1 =t —. ot _ =t

M;-name. We get that fi (bkaJr%) I My =: bxk+%+1(* Z' in the next

paragraphs) is as required: We write only f for f5*! in the proof of this
claim so that the notation be slightly less clumsy.

+k
We show that it is a P (n)i ey, 17RINE for a finitely additive measure on
+k

P(”)X +k
X +k
w such that its restriction to P(w) in V' Dt is a P(n)XXM -name,
o xTE+yn
so condition (i) of 4.2 is satisfied: Let A be a P(n)XX+k -name:

X+k+’Yn

~ A~

FENA) = FE)(flF1(A)),
where f~1(A) € M.
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Hence
FEY S (FH(A)) = FE(f(A))

and where Z!(f~1(4)) € Mo. Hence F(Z(F-1(4))) is an f"(Mpn (xH+1 +
+%
Tn)) = A§+k+%-name.

+k
P(n)X
: =t =t : +k
= = XTE+ym+1
Form < Zthe claimthat 2., =Z, | (P(w)inV mt1)
. + . - .
is a i’t’(11)>)§+,€+7 ,,-hame for a finitely additive measure on w such that its
m
+k
P(n)jxﬂc +k
restriction to P(w) in V' xthtym is a P(n)xx+k -name, follows from
ot o xTF+vm
1 X . X
fo(Al iy, ) = Aliny,, form <n.
H have = hich are P(n)X,, i
ence we have £ .y, ., which are (n)XMJWmH—names respecting

the whispering conditions 4.2(i) at x™* + 40,...,x™ + 4, (which where
needed in the premises of 4.6 1)), and the inductive proof is finished.

Now we perform the induction with starting point XX (P) and get f[?*,
e fL and k= L oo ff7, f i= kohXX" | After

Wn
n* induction steps, we have that the mapped forcing &/ PX™" = P(n*)X is

expanded by measures = n < n*.

§<+%+1’

So the proofs of 5.2 and 5.3 go through for the modified forcing and the
mapped objects: f(T), f(p’c), £(t) (blueprints), <f(’yf) |i < i*) (the domain
of f(p})). Hence the proofs of 5.2 and of 5.3 show that there is no perfect
tree in the intersection of the mapped trees. So f(T') is not perfect in the

. . *)X
generic extension V()Y

We have that X" is a complete embedding, and that in each step

P(n)Xk is isomoprhic to P(n — 1)X+k+1 N My, which is is a complete subor-
der of

k+1
P(n — 1)X+ ! (because M; < Hy and all antichains are countable and

“M; C M;.) Being a perfect tree is absolute for ZFC models and hence
n* + 1 applications of [13, VII Lemma 13] the condition

PIFpaeyx © f (T) is not perfect in the generic extension VI (n*)%»
implies that some condition in G forces that 7' is not a perfect tree in V7F.
Thus (*x)g is also proved for the original Q.

Us5.2.11,21
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6. THE CASE OF cf(pu) =w

In this section we show a version of Theorem 2.1 for the case of cf(u) = w.
The main technical point is: The part of the iteration as in 2.2 Part 2) lying
before x and the part thereafter now are going to take shifts w; often.

This means a slight increase of the complexity of our notation. We are
going to rework the previous three sections and benefit from the fact that
we did some (but not all) work for the class of forcings of 2.2 Part 1). We
shall often only hint to the parallels and give an informal description of the
modifications and strengthenings.

Theorem 6.1. In 2.1, we can replace (cf(p) > Rg and sup(C) = p) by

cf1(n) = w, and there is some X such that
w <012 < A< p, and
V1 (N) > wi, and
VB eV, (|IB"* < A= C Z B).

Proof. We first give an outline: We define a member of K (of 2.2) that we
are going to use. Then (after adapting 2.6 and 2.7) we get the items («)
to () of the conclusion of 2.1 and of 6.1. For item (¢), we begin with the
analogon of the end of Section 2. Then we slightly modify the blueprints.
Again we can deal with automorphisms of the iteration length. We take
those automorphisms moving only some element a within one of our w;
intervals [x -7, x - (7+1)). So we basically do the old proof in some interval

of the longer iteration. We use that we never required that there are only
partial random forcings after x.

We take x > 2* and k such that 2% > x. Then we define

QX = (PY,Qp, A}, g, 75| B < x - wi,a < x-wi) €K
as follows:
We take for x < x/
Gt X w1 = (X wi) <

Grwr (X7 +€) = 0 for p < & <x,

I o (XY +€) = gyan (X7 + ) for £ < x,7 € wn

Vyew YVBe (uxw)™ Mael %X -(7+1) gyw (@) =B.
Fora=yx-v+& v €w, &€ x weset

AX:{(D if’}/:OOI“f>;L7
¢ {B<x-71(&7) € gywn (B)}  else.
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e AX
Qu = (¥2, <), . if AY =0,
> Random" 7517 eAa]’ else.

We adopt 2.4 as follows

Definition 6.2. For Q € K of the special form of 6.1, a < x - w1, we let
AUT(QX [ a) = {f a — o f is bijective, and ,
(V3,6 € a)
((|Qa\ <K Qp] < K)A
(B € As > f(B) € Ags))) }-
Then we have that f is an automorphisms of P, and of P/, (from Defini-

tion 3.2 (c)), and Fact 2.5 holds for .

Now we get the analogues of 2.6 and of 2.7 (consider types, similarly to
there) and are ready to prove

(0) o= IFpw, “{7xa+ili € Coy € wi} is not null.”

Proof. Let N be a P,., -name for a Borel null set. Hence for some Borel
function B € V; and for some countable

X={x|tew}xu |J -v+mx (v+1),
y€w1\{0}

Y={pltewt< U b-rnx-r+m,
vyewi\{0}
Co, € € w, (j, L € w, we have that

N = B((truth value(¢s € T1,))eew, (truth value((; € 7y,))rew)-

Let i(*) < w; be such that y -i(*) > sup(Y). Since cf'1()\) > Rg, we have
that B := UgeXuY G (§) € ([1 x wi SN

Since C'\ m,(B) # 0, there is some i € p, i € C'\ 7,(B). We claim, that
Ty-i(x)+i 1 Tandom over a universe, in which N[G] has a name. (Moreover
regarding V7 and V5, the same remarks as in the proof of (¢’) of Theorem 2.1
apply.) Then the proof will be finished, because then 7.+ ¢ N[G] in
V2[G]. By our construction, we have

. Vira AX ) . , ,
Tx~i(*)+i is the Random [Talo€ X'Z(*)-‘rl]_generlc over VPX"L<*)+74.

Since i € C'\ m,(B), we have that V¢ € X UY Vv € w; that g, (&) Z (i,7),
hence V€ € X UY £ € Ay.yqi, 50 X UY C Ai_i(*)ﬂ.. Since Pa_, s < Pig(0)

the name N is evaluated in the right manner in v P4xi)+i. Thus the claim
is proved. O
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(0) V2[G] = wnif(NV) <

This follows from (4").
>

(€) Vi[G] = unif (A) > A.

Again the item (¢) will be the longest part. However, it is almost the

Cl.

same as our previous work. Put all the 5: of an analogue of 2.11 into one
[X -7+ x-(y+1)). Also the extension of x to x’ now can be done either
only in the relevant interval where the a¢ lie, or just all over, thus leading
to hxX'

More explicit, we start as in the corresponding proof in 2.1: Suppose that
(€) is not true. In Vj there is i(x) < A and p € P,.,, such that

plhp,, “ni € “2 for i <i(x) A{ni|i <i(+)} is not null.”
A name of a real in V1[G] is given by
n; = Bi({truth value((; ¢ € 15, ,) [ £ € w))

for suitable (¢, jiv | ¢ € W), Civ € w, iy € X + L.
We set

X = {ielici(),LewynxulJx-v+mx (v+1)]7€w \{0}},
Y = {elici),tewrn|Jx-vx-v+m)lyew \{0}}

We show the main point:
In V1[G], (+#2)VHzel€€XUYH g 5 Tebesgue null set.

Since o gy, (@) = {(7,y)|x - v+ vy € Y} we can fix such an o €

(x-w1)\ X that is not inAig"Hy for y-v+yeY.

Lemma 6.3. (See 2.8.) In leo‘*, the set (“2)Vil7e1€€XUY] has Lebesgue
measure 0, and a witness for a definition for a measure zero superset can be
found in VFe+1 for o € x \ X that is not in E¢ for every § €Y — x.

Now proceed through the analogues of Sections 2 and 3. In the definition
of a blueprint we allow m’ and n’ to indicate in which intervals [x -, x - (y+
1)) the heart of the delta system (intersected with the Cohen parts for m?’)
lies, hence m*, n? € [w1]<% and m! C n’ in general not as an initial segment,
but inserted according to the type of the heart. (The old n® would be just
the length of our new n'.)

Then we modify 4.2 as follows: In (d) 2. we say n < |n!| and in (d) 4. we
say

if n < dom(m?) & Vl(ay € [x - mi(n),x -mt(n) + u)) & I(ay € [x -
m (), x - m'(n) + ), and
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if n < dom(n') \ dom(m') & Vl(ay € [x - m'(n) + p,x - (m!(n) + 1)) &
F(ay € [x - m(n) + p, x - (m'(n) +1)).
The rest of Section 4 shows that the new X3 has the desired members. In

5.3, the choice of the blueprint has to be modified accordingly. Thus we get
(#%)g for the modified class K3,

Since the analogue of 2.7 holds, we also get analogues to 5.4 and to 5.5
and hence can finish the proof of 6.1 Ce.1

7. GETTING THE PREMISES OF 1.1 AND 2.1

In this section we discuss how to get the bare set-theoretic premises of
Theorems 1.2 and 2.1.

If we do not insist on (V7, V5) having the same cardinals but just require
(“V1)¥2 C V7, then we can get the situation in the premise of 1.2 for example
as follows:

Take for V7 any model of ZFC and let 8y < v < 1/ be regular cardinals in
V1. We extend V; by forcing with P = ({f | f: v — ¢/, | dom(f)|"* < Rg}, C).
Since P is w-closed we have that (¥ Vl)V2 C V7. We set

N=A{(p,p)eVi|3feVafin cofipal iy, regular in Vi, p < p'}.
Let A = min(m(V)), where my denotes the projection onto the first co-
ordinate. Then we have that cf'2()\) is uncountable. Let u/ = p/'(\) a

minimal witness that A € wo(N) and let f € Vo, f: A cofipal w'.  Let
C = range(f) € Vo. Then |C|"2 = |A\|'2 = \. Let T € V4 be the set of
all bounded subsets of C. For any B € V; such that |B|"* < i’ we have that

BN C is not cofinal in .

If we allow cofinalities to be changed, there is the following constellation
with consistency strength 3k o(k) = wi: Gitik [8] shows that assuming
Jk o(k) = wy there is some V (got with a preparatory forcing) such that
in V, there is a regular cardinal x > w; and a notion of forcing P that
adds a cofinal sequence of length w; to x and does not add any countable
sequences and does not add any bounded subsets of k. Now we have V; =V,
Vo = VP, C = the range of the new cofinal sequence, u = k, A = Ny,
I={C'Ck|C" eV, |C| <N}

In order to get (V1, Vo) with the same cofinality function, we take a model
announced in the “Added in proof” in Gitik [9]:

Theorem 7.1. [Gitik] Assume that there is a measurable r of Mitchell or-
der k™ 4+ 0, 0 reqular and 6 > wy. Then the singular cardinal hypothesis
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can be violated in the following manner: There is some model V' such that
2f = gt in V and such that there is a notion of forcing P such that P
does not change cofinalities above k and such that in VP, k is a singular
strong limit, Rg < cf(k) = 0, 2% = kT and such that Vz(z € VE ANz C
Ord A |2V <kt 5 Iy eV(yeOrdAly|V" <kt Az Cy)). O

Remark. By [10] the lower bound for the consistency strength is of such a
failure of SCH is between 3k o(k) = kT+ and Ik o(k) = kT + 0, and if
0 > N; then the strength is o(k) = T+ + 6.

Theorem 7.2. Suppose that we have that 2% = k™ in V and that there is
a notion of forcing P such that P does not change cofinalities above Kk and
such that in VP, K is a singular strong limit, Rg < cf(rk) = 0, 2 = k™t and
such that Va(z € VP Az COrd A |z]V" <kt = Jye V(y e Ord A ly|V" <
kT Az Cy)).

Then there are Vi, Vo such that
1) VTV, TV CVIG],

(
(
(3
(
(

any set in Vi of size less than k.

Proof. Let A= H(x)VICl,

By the “cov versus pp (= pseudo power) theorem” [17, II, 5.4] we get
that pp(k) = 2% = k™" in V5, and hence by the definition of pp there is a
(ki1 < ) € V[G] be a sequence of regular cardinals cofinal in x and an
ideal I on 6 containing all the bounded sets in 6 such that tcf(][x;/I) =
kTT. That means: There is a <j-cofinal scale (f, |a € k1) in V4, i.e. for
a < € rxT we have

fa: 0 — K,
fa(v) € Ky for v €0,
fo<rfafora<pert™
Vg € [[;cori Ja € kT g <1 fa,
where f <r g iff {i < 0] f(i) > g(i)} € I. (By [17, VIII, §1] that there is
even a scale with respect to the ideal Jgd of the bounded subsets of 6.)
We set
Vi =VI[A, (ki |i < 0)].
Then we have that there is some f,, € V¥ that <;-dominates V;:
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Proof: In V, in the subalgebra P’ of the Gitik algebra P that is generated
by H(k)VICI U {(k;|i < 0)} there are only < x* elements (since the Gitik
algebra P hat the k™-c.c.) and it has the k™ c.c. Hence there are only s
many P’-names for subsets of x in V, so we have that in V; = VP/, 28 = KT,

Since Co = {f € % N Vi | f £1 fa} is decreasing, of length x™+ and has
empty intersection, there is some o < k*+ such that C, = () and hence f,
that <;-dominates ?x N Vj.

We fix such an f, and set

VQ - ‘/1[]004]

For C we take range(f,). Now all the items claimed in 7.2 are true:

We give a proof of item 5, the others are easier. We show that range(f,) =
C' is a set in V5 that is not covered by any set B in V7 of size less than x.

Suppose the contrary: B O C, B € V; and |B| < k. We show that
these premises imply f, € Vi. We have that (sup(B Nk;)|i < 0) € V.
Since |B| < k, there is some 6y < 0 such that for ¢ > 6y we have that
sup(B N k;) < K;.

We set

oi) = { sup(BNk;)+1, ifi> 0,
0, else.

But we have that f,(y) < g(v) for v > 6y. Since that latter is in V; and since
I contains all the bounded subsets of 8 and is proper, this is a contradiction
to f, being <r-unbounded and hence to being <;-dominating over Vj.
Remark: Unboundedness with respect to <j instead of being dominating
w.r.t. <; would suffice for the proof of item 5 and all other items. Oz
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