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both GCH and M (oot o+ o) —+» B [resp. M(ote*D X, 0) - B(o") for all A <
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81. Introduction

The aim of this paper is to show that, assuming the existence of certain large
cardinals, the results of [EH] are sharp. Let us recall these results, first their termi-
nology.

If £ < XA <k and o are infinite cardinals then M (k, \, u) — B(0)
[resp. M (k,\, ;1) — B] abbreviates the following statement: Whenever A C [x]*
with |A| = & is p-almost disjoint (in short: p-a.d.) then A has a o-transversal
[resp. A has property B|. Here A is p-a.d. means that the intersection of any two
members of A has size < p; a o-transversal of A is a set T such that 0 < [ANT| < o
holds for every A € A; and A has property B if there is a set T with ) 2 ANT # A
for all A € A.

One of the main results of [EH] (see also [W, Chapter 1]) is as follows:

1.1. Theorem. (GCH) If g is any regular cardinal then for any A < x < o+
we have

M(k, X, 0) — B(o").

The natural question whether the restriction k£ < (9 is essential here had also

been raised in [EH], especially because the following was also proved there.

1.2. Theorem. (GCH) If g is regular then for any A < &
M(x, A 0) = B(e"™)
is valid. So if also A > ot then M(k, \, o) — B.

Concerning the above question it was much later shown in [HJSh]| and [BDJShSz|
that the restriction x < p(*9 in 1.1 can be omitted if some weak O-like principles
hold in addition to GCH, hence e.g. if V= L. On the other hand, it was also shown
in [HJSh] that the existence of a supercompact cardinal implies the consistency of
M(R,41,81,Rg) - B, hence also of M(X,41,8,Rg) - B(Xy), with GCH. The
appearence of large cardinals here is of course essential because one has to negate
the above mentioned [-like principles.

Our first main result generalizes this negative result from o = N to any regular

cardinal p. This was not immediate because the method of proof used in [HJSh]
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does not apply if p > N, so a new ingredient was needed. The general result can
be formulated as follows.

1.3. Theorem. Assume that GCH holds, g is any regular cardinal and & is
a supercompact cardinal with o < k. Then there is a p-closed notion of forcing P
such that, in V¥, we have GCH and

M(o™etV) 0T, o) » B.

(Note that since P is g-closed, no cardinals or cofinalities will be changed in V7’
up to o.)

Of course, we trivially have here again that M (o1 0% o) - B(p") holds as
well, but the relations M (oot )\, o) - B(o") are not excluded for o™ < A\ <
ot Our second main result, formulated below, takes care of these.

1.4. Theorem. Assume GCH, p is regular and s is 2-huge with ¢ < k. Then
there is a o-closed notion of forcing P such that, in V¥, we have GCH and
M (™™ X, 0) - B(o")
for all A < p(teth.

These results indeed show that, modulo some large cardinals, the results of [EH]
are best possible. However, the question of exactly what large cardinals are needed,
in particular if the rather large step from the supercompact of 1.3 to the 2-huge of
1.4 is necessary, remains open.

§2. The proof of 1.3

We start by recalling the following simple result from [HJSh]:

2.1. Lemma. Let S C & be a stationary set such that {(5) holds and {A,: «a €
S} be a family of infinite sets with A, C « for each @ € S. Then we can find sets
B, C A, with |B,| = |A4| for all a € S so that the family {B,: a € S} does not
have property B.

Let us now fix the regular cardinal o, and to simplify notation let us denote p{*e+1)

by 0. Also, given two regular cardinals A and xk with A < k we set

Sy ={a € k: cf(a) = A}
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Thus, by 2.1, M(p, 0", 0) - B is valid if we can find a stationary set S C S§+
satisfying <(S) and a g-a.d. family {A,: o € S} such that A, € [a]?" for each
a € S. Note that, as is well-known, GCH implies {(S) whenever S C S¥ is
stationary.

So far, everything has been done as in [HJSh] for the case o = Wy. It is the
following theorem that allows us to get the result for an arbitrary regular cardinal

0.

2.2. Theorem. Let p be a singular cardinal of cofinality ¢ and such that
p = p=2. Then there is a partial order Q = Q(n) with properties (i)-(v) below:

(i) @ is p-closed;
(i) Q is pt-CC;
(i) Q] < 2
(iv) in V@, u is collapsed to g, and o* = p*;
(v) there is, in V9, a set X € [p7]¢" such that for any set H € P(ut) NV we
have |[H N X|V" < g if and only if |H|V < p.

Proof. Let us put @) = Q1 X ()2, where ()1 is the natural p-closed partial order
that forces a map of p onto u, i.e. ¢ € @)1 iff ¢ maps some a € g into u, and extension
is the partial ordering. Moreover,

Q2 — [M+]<Q X [M+]</-L
with the following ordering: for (a, A), (¢’, A") € Q2 we have (a, A) < (d’, A') iff
aDa,ADA and A'N(a\d) =0 hold.
Clearly, both @; and Q) are g-closed, hence so is @, i.e. (i) holds.

To show (ii), let us first note that from u = p~¢ we have |@| = p and so it
suffices to prove that @y is u™-CC. Thus let {(a;, A;): i € p™} C Qq; clearly we may
assume that |a; U A;] < A holds for a fixed regular cardinal A < p for all i € u™.
Now, for every v € Sﬁ\ﬁ the set B, = (a, U A,) N~ is bounded in ~, i.e. there is an
f(y) <~ with B, C f(v). So by Fodor’s theorem there is a stationary set S C S&ﬁ
on which f takes the constant value . Using ;<¢ = p we may also assume that
ayNy=ayNa=cforall yesS.

Let us now pick v,d € S such that both v < ¢ and a, U A, C 9, this is possible
because each a,UA, is bounded in ", and set a = a,Uas, A = A,UA;. Clearly, we
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have (a, A) € ()2 and we next show that (a, A) extends both (a., A,) and (as, As).
Indeed, this follows because a\a, = as\c¢ C pT\d and A, C 0 imply A,N(a\a,) =0,
moreover a \ as =a, \ ¢ C d\ v and As C aU (™ \ d) imply As N (a\ as) = 0.

(iii) follows easily because |Q1| = p and |Qa] = (pT)<e(ut)<H < (u)* = 2~
(iv) is again trivial because @ collapses i to o and by (ii) pu™ is preserved.
Finaly, to see (v), let G = G x Gy be Q-generic over V' and set, in V[G],
X =U{a: 3A)({a, A) € G1)}.
Clearly, for every o € u™ the set
D, ={(a,A) € Q2: a\ o # 0}
is dense in @, and so X is unbounded in u™ = o7, i.e. X € [pT]?".
Now, if H € [T]<* NV then again
Dy ={{a,A) € Q2: H C A}

is dense in () because (a, AUH) < (a, A) for each (a, A) € Q3. But then GoNDy #
0, and if (a, A) € Gy N Dy then we clearly have X " H € X N A C a, hence
I X NH|<o.

If, on the other hand, H C pu*, H € V and |H| > p then clearly
Ey = {<CL,A> € QQI aﬂH;ﬁ@}

is dense in Q2. Now, if we had |X N H| < g then by (i) we also had X N H € V and
so H\ X € V and |H \ X| > p. This, however, contradicts the denseness of E x.

The following corollary is now immediate.

2.3. Corollary. With the assumptions of 2.2, we can, in V¥, associate with
every ground model set A € V with |A| = ot = p* a subset A* € [A]¢" such that
for any set B € V we have |A* N B| < ¢ iff |[AN B|Y < p. In particular, if A is a
p-a.d. family of sets of size u™ in V then A* = {A*: A € A} is a g-a.d. family of
sets of size ot in V<.

Proof. Let h: ut — A be a bijection of u* onto A in V. Clearly,

A" ={h(£): £ € X}
is as required by (v) of 2.2.
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Let us now return to the proof of 1.3. Let us put A = (9 and since & is \*-
supercompact we can fix a normal, k-complete ultrafilter & on [A*T]<". Using GCH
we get (AT)2 = AT, hence we may also fix a bijection G of [A*]2 onto AT. Standard
reflection arguments and Solovay’s Theorem 2 from [S] then imply the existence of
a set A € U such that

(i)  the map P+ UP is one-one on A;
(i) each P € A is G-closed,;
(iii) PNk is an inaccessible cardinal and

tp(P) = (PN /ﬁ)(ﬂ’ﬂ)
for each P € A.

Now the set S; = {UP: P € A} is clearly stationary in A* since U is normal and,
by (i), we have A = {P,: o € S} where UP, = a for a € S;.

Let us now consider the map a — P, Nk on S;. Then by (iii) we have a fixed
inaccessible cardinal 7 such that

S={aeS:P,Nk="1}

is also stationary. We claim that the family {P,: o € S} € [N is also 7(+9)-
a.d. Indeed, if o, B € S are distinct and |P, N P3| > 7+ held then by (ii) we also
had |P, N P3| = 7(¢*Y using that P, N Ps is G-closed. This, however contradicts
that tp(P,) =tp(Ps) = 7¢*V) and UP, = a # UP; = j.

Note that the singular cardinal p = 7(+9) satisfies the conditions of 2.2, hence in
V@) the family {P*: o € S} C [A\*]¢" is p-a.d., according to 2.3. All that remains
to be done is now to do a further o-closed forcing that turns A* into ¢ and preserves
both GCH and the stationarity of S. This job will clearly be done by e.g. Lv(k, o),
i.e. the Levy collapse of & to o™+ in V@, Then P = Q(u)* Lv(k, 07F) is a p-closed
forcing such that V' satisfies GCH, moreover, in VX {P*: o € S} C [g]¢" is o-a.d.
But here S C Sng is stationary and so by GCH we also have {(S), so Lemma 2.1
applies and hence M (p, 0™, 0) - B holds in V.
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83. A “stick”-like principle

The aim of this section is to introduce a “stick”-like combinatorial principle that
will play an essential role in the proof of theorem 1.4. We also look at some other re-
sults of purely combinatorial nature and thus separate the combinatorial arguments
from the rest, to be given in the next section.

3.1. Definition. If x > X\ > p > w then we denote by ¥ (k, A, 1) the following
statement: There is a p-a.d. family A C [k]* with |A| = & such that for every set
X € [K]" there is some A € A with A C X; if A is like this then we say that A is a

? (k, \, p)-family.

The relevance of this principle to our subject, in particular to 1.4, becomes clear

from the following result.

3.2. Lemma. ((k,\, p) implies that
M(k, K, i) = B(A).

Proof. Let Abea ?(k,\ p)-family and fix a partition {X¢: € € k} C []* of &
into k-many sets of size k. Then we set

B={AecA: (V¢ € )(JANXe| < 1)}

Clearly |B| = |A| = &, hence we may also fix a one-one enumeration B = {B¢: { € K}

of B. Now, for every £ € k we set
Ye = X¢e U Be.
Then it is obvious that the family
Y=A{Y:: £ €k} C[K]"
is p-a.d., hence we shall be done if we can show that ) has no A\-transversal.

So assume that 7" is such that T NY; # 0 for all £ € k. We claim that then the
set a ={§ € k: TN X, # 0} has size k.

Assume, indirectly, that |a| < k. It is clear that for any set H € [k]*, which
satisfies |H N X¢| <1 for all € € k, we have

{Be € B: Be ¢ H}| = k.
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In particular, if a; is the minimal member of X, for any £ € &, then we may apply
the above observation to the set

H={a¢: £ € k\a} € [r]"

So there is some £ € £\ a such that B¢ C H. But then, by the definition of the set
a, we have both TN H =0, hence TN B =0 and TN X, =0,ie. TNY: =0, a
contradiction.

But now, let us pick for every ¢ € a an element f; € TN X, and set K = {f¢: £ €
a}. We may then apply the above observation to the set K € [k]" and find B € B
with Be C K. So we conclude that T'NYe D Be, hence [T NYe| > |Be| = A, ie. T
is not a A-transversal.

Remark. We have actually shown that ) has the following stronger property:
For any set T, if [{{ € k: T NYy = 0} < k then there is some Y; € Y with
TN Ye| > A

Our next result yields a method for “stepping down” in the second parameter A
of a negative relation of the form M (x, A, u) - B(0).

3.3. Lemma. Assume that 7 < A and we have both

(*) M(k, A, 1) = B(o)
and
(%) M(k,\, ;) = B(1T).

Then we also have
M(k,7,p) - B(0o).

Proof. Let Y = {Y;: £ € k} C [x]* be a p-a.d. family with no o-transversal.
With transfinite recursion on o € 7 we define sets T, that are all 77-transversals of
Y as follows.

Let Ty be any 7t-transversal of ), it exists by («x). If T has been defined for
each € o € 7 then for every Y € Y we have |Y; \ U{Tj: S € a}| = X because, by
the inductive hypothesis, |Ye N 15| < 7 for each § € a. So we may now apply ()
to the family ), = {Y: \U{Ts: 5 € a}: £ € k} and obtain a 7"-transversal T,, of
Y, and hence of ).



Paper Sh:697, version 1998-12-03_11. See https://shelah.logic.at/papers/697/ for possible updates.

Having completed the recursion, set
T=U{T,:aeT}
and Zg =Y, N T for each £ € k. It is clear from the construction that
Z={Z:: ¢ er}
is a p-a.d. subfamily of [k]7, so we’ll be done if we can show that Z has no o-
transversal.

Since UZ C T, it suffices to show that if U C T intersects every member of Z
then |U N Z¢| > o for some Z; € Z. However, we know that there is a { € xk with
\UNYe| > o which by U C T and Z = T'N Y, implies |U N Z¢| > o, completing the
proof.

Putting 1.2 and 3.3 together we immediately obtain the following result.

3.4. Corollary. (GCH) If
M(x, 1, 0) = B(e")
then for any A with ot < A < k we have
M(r, A, 0) = B(e")
as well.

This implies that to prove 1.4 it suffices to concentrate on M(g, 0, 0) - B(o™),
and so, by 3.2, on Y(2, 0", 0).

Let us now make a few observations about the principles T(Ii, A, 1) that are less
closely related to the main subject matter of this paper.

If P(k,\ ) is valid then we obviously have a ?(k,\,p) family A such that
tpA = A for every A € A. Let us now put

SA:{UA: AE.A}7

so S4 C Sy, where o = cf(A) < A < k. We claim that if & is regular then S4 is also
stationary. Indeed, if C' C & is c.u.b. then, as |C| = &, there is some A € A with
A C C and thus

UA e SynC #0.
So, if GCH holds then we also have {(S4), consequently from 2.1 and 1.2 we easily

obtain the following result.
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3.5. Proposition. (GCH) If k is regular then ?(x, A, i) implies M (k, A, 1) -
B. Hence if K > A\ > o" where s and p are regular then ?(k, ), o) is false.

Thus, under GCH, for regular k£ and o the best we may hope for is % (k, o, 0),
moreover, in view of 1.1, p is the smallest possible value for a x where this may
happen. In fact, as follows from the next result, ?(x,o",0) will fail for “most”
regular k > o" even in ZFC.

3.6. Proposition. If k is regular and for every A < k we have \? < k then
?(k, 0%, 0) is false.

Proof. Assume that A C [/4;]9+ is p-a.d. with tpA = o™ for all A € A. According
to what we have seen above, if we can show that S 4 is non-stationary in x then we

are done.

Assume, indirectly, that S 4 is stationary and for each o € S4 let A, € A be such
that UA, = a. For every a € Sy let f(a) be the o™ element of A,, then f is a
regressive function on S4 so by Fordor’s theorem we have a stationary set S C Sy
and a v € k with f(a) = 7 for every @ € S. But then, using |y|? < &, we clearly
have distict o, § € S with yN A, = vN Ag, hence |A, N Ag| > p, contradicting that
A is p-a.d.

Remark. The above argument actually yields the following stronger result: Un-
der the assumptions of 3.6 even T(KB, 0+w, o) is false, with the obvious interpretion
of this symbol.

Thus we have arrived “down” to ¥ (k, o, o) that is “easy” to satisfy, being e.g. a
consequence of the appropriate version of & at « and o. In fact, in many cases it
holds even in ZFC.

We close this section with two simple results concerning the behaviour of (K, A\, )
in forcing extensions. The first one is a preservation result.

3.7. Proposition. Assume (s, )\, 1) where & is regular and P is a forcing
notion with |P| < k such that both A and p remain cardinals in V¥ (k does so
automatically). Then ?(k, ), ) remains valid in V.
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Proof. Let Abea ¥ (k,\, p)-family in V. Now |P| < k = cf(k) clearly implies
that if X € [k]® in V? then there isa VY € [X]*" NV, hence A C Y C X for some
Ac A ie. Aremains a ?(k,\, p)-family in V7.

The second result gives us a method to obtain T(X, o, 0) for a given regular

cardinal o, assuming that we have ¥ (x, u*, ) for a singular cardinal p of cofinality
0.

3.8. Proposition. Assume ?(x,ut, ), where cf (1) = 0, p<¢ = p, and 2# <
x = cf(x). Then ?(x, 0", 0) holds in V@®).

Proof. Let A C [x]*" bea ®(x,ut, pu)-family in the ground model V. Then, in
V@) applying 2.3 we have for every A € A subset A* € [A]¢" such that

A = {4 Ae A

is p-a.d. We claim that A* is a ¥(x, 0", o)-family. Since, by 2.2 (iii), we have
|Q(1)| < 2 < x, similarly as in the proof of 3.7, every set X € [x]¥ in VW has a
ground model subset Y with |Y'| = | X| = x. But then there is an A € A with

A¥CACY CX,

and the proof is completed.

8§4. The proof of 1.4

Assume GCH and that o = ¢f(0) < k, where k is 2-huge, in fact what we really
need is the following property of x that is just a little more than being 1-huge:

There is an elementary embedding j: V' — M with crit(j) = &, j(k) = A and

MY o M , or equivalently there is a k-complete normal ultrafilter D* over

P(H(AFe+3))) such that
{M: M < HAT) & M= H(kFet)} € D*.
We shall be working with the projection D of D* to H(A(Te+1), i.e.
D={Ac HAT): {a c HATFe): an HAF) € A} € D).
Then, of course, D is a x complete normal ultrafilter over P(H (AT¢*1)) such that
X ={M:M<HN ) & M=H(E D)} eD.

Let us write, for simplicity, Kt = p and A*¢t1) = . Combining the above with
Solovay’s result as in the final part of section 2, we conclude that there is a stationary
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set S C S§+ such that for each § € S we have My € X, U(Ms N x) = §, moreover
{Ms: § € S} € D is p-a.d.. In what folows, we shall write Y5 = Ms N x for 6 € S.

The crucial part of our proof is the following result.

4.1. Lemma. There is a sequence (fs: d € S) such that

(i) fs: Ys — Y for each 6 € S;
(ii) for every f: x — x the set

{oesS: fsCf}

is stationary in Y.

Proof. Let us write, for § € .5,

Vs = {asc: C e p'l,

the increasing enumeration of Ys. The functions fs5: Y5 — Y will be defined by a
simple transfinite recursion in such a way that for each § € S the set Hs = {( €
P fase [Ys N Yo C fs}) be non-stationary in p™, if this is possible at all.

All we have to do now is to check that (ii) holds. Assume, indirectly, that f: y —
x and C' C x c.u.b. exist such that fs ¢ f for every § € SN C.

For any « € x, as normality of D implies its fineness, we have
Ay ={Ms:{a, fs(a)} C Ms} € D.
Also, for any pair (a, 3) € x* we can define A, g € D so that
{Ms: fs(a) = 5}

App = qor
{Ms: fs(ar) # B}
Then, by the normality of D, there is a (clearly stationary) subset S; C SN C such
that
Xy ={M;s:0€5,} €D
and if § € Sy, (a, B) € Y? then Ms € A, N A, p.

Let Ms € X1 N A, € D where «a € Y, then clearly g(a) = fs(a) does not depend
on ¢, moreover

{Ms: fs(a) =g(a)} € D.
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This implies that for every a € x we have

Aagla) = {Ms: fs(a) = g(a)},
consequently fs C ¢g whenever § € S;. In particular, as Sy C C and fs ¢ f for
0 € C, we have f # g.

Now, applying the normality of our original ultrafilter D*, we can find N <
H(x*") such that N = H(ut), moreover

(a) <M5: 5€S>7 <f5: 5€S>7 Sl,f,g,O,DEN;
(b) for any Z € NND we have NN H(x) € ZN X;.

Let h: N — H(ut"") be the Mostowski collapse, then h(yx) = u*. Moreover,
from (a) and (b) it follows that N N H(x) = Mjs«, where 0* € S;. By elementarity
N = “5) is stationary in x”, hence h(S;) is stationary in h(x) = u™, or in the other
words the set

H={Cep": asc€ S}
is stationary in pt. But if as- ¢ € S; then we have Jage, C g as well as fs C g,
hence f%*,g [ Y5« N Yaa*,< C fs+. So we conclude from H C Hy« that at step 0* of
the transfinite construction we could not make Hgs« non-stationary.

However, as f,g,C' € N we have on one hand that fy = f | Ys: Yso — Y,
moreover the set
{Cep:asceC}=h(C)
is c.u.b. in u*. By elementarity, as f # g, for every ¢ € h(C) thereisay € NNM,,.
such that f(7) # g(7) = fas. ((7), Le.

fa(;*,g rY:S* m YOé(;*’C ¢ fN

This, however contradicts our above conclusion because fy would make, at step 6%,
the set Hs« non-stationary in p*.

Now from 4.1 we easily obtain the following result, where the notation is the same.
4.2. Proposition. ¥ (y, u*, p) is valid.

Proof. Let S* = {0 € S: fs is strictly increasing} and for each § € S* let Z; =
f5"Ys. We claim that Z = {Zs: 6 € S*}  [x]*" is a ¥ (x,put, u)-family. Since
Zs C My, Z is clearly p-a.d. Now, for any set Z € [x]X let f be its increasing
enumerating function, then

Sp={0:fs C f}
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is stationary and also Sy C S*. But for any 6 € Sy we clearly have Z; C Z.

Now, it is very easy to complete the proof of 1.4. First note that 3.8 may be
applied, i.e. in VO® we have ¥ (y, 0", ). Next, similarly as in §2, if one collapses
A to ot in VOW using Lv(), o*+) then the forcing P = Q(u) * Lu(A, o*™) is as
required because it is o-complete, preserves GCH, moreover (g, o, 0) holds true in
VP, Indeed, the last part follows because y = g'in V" and ?(x, o™, 0) is preserved
by the Levy-collapse, using 3.7 and |Lv(X, o™1)| < x.
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