THE SPLITTING NUMBER CAN BE SMALLER THAN THE MATRIX CHAOS NUMBER

HEIKE MILDENBERGER AND SAHARON SHELAH

Abstract. Let $\chi$ be the minimum cardinal of a subset of $\omega^2$ that cannot be made convergent by multiplication with a single Toeplitz matrix. By an application of creature forcing we show that $s < \chi$ is consistent. We thus answer a question by Vojtáš. We give two kinds of models for the strict inequality. The first is the combination of an $\aleph_2$-iteration of some proper forcing with adding $\aleph_1$ random reals. The second kind of models is got by adding $\delta$ random reals to a model of MA$_{<\kappa}$ for some $\delta \in [\aleph_1,\kappa)$. It was a conjecture of Blass that $s = \aleph_1 < \chi = \kappa$ holds in such a model. For the analysis of the second model we again use the creature forcing from the first model.

0. Introduction

We consider products of $\omega \times \omega$ matrices of reals $A = (a_{i,j})_{i,j<\omega}$ and functions from $\omega$ to 2 or to some bounded interval of the reals. We define

$$A \lim f := \lim_{i \to \infty} \sum_{j=0}^{\infty} (a_{i,j} \cdot f(j)).$$

Toeplitz (cf. [2]) showed: $A \lim$ is an extension of the ordinary limit iff $A$ is a regular matrix, i.e. iff $\exists m \forall i \sum_{j=0}^{\infty} |a_{i,j}| < m$ and $\lim_{i \to \infty} \sum_{j=0}^{\infty} a_{i,j} = 1$ and $\forall j \lim_{i \to \infty} a_{i,j} = 0$. Regular matrices are also called Toeplitz matrices.

We are interested whether for many $f$'s simultaneously there is one $A$ such that all $A \lim f$ exist, and formulate our question in terms of cardinal characteristics.

Let $\ell^\infty$ denote the set of bounded real sequences, and let $\mathbb{M}$ denote the set of all Toeplitz matrices. Vojtáš [10] defined for $A \subseteq \mathbb{M}$ the chaos relations $\chi_{A,\infty}$ and their norms $\|\chi_{A,\infty}\|$ as follows:

$$\chi_{A,\infty} = \{(A,f) : A \in A \land f \in \ell^\infty \land A \lim f \text{ does not exist}\},$$

$$\|\chi_{A,\infty}\| = \min\{|F| : F \subseteq \ell^\infty \land (\forall A \in A) (\exists f \in F) A \lim f \text{ does not exist}\}.$$

By replacing $\ell^\infty$ by $\omega^2$, the set of $\omega$-sequences with values in 2, we get the variations $\chi_{A,2}$. In [6] we showed that for the cardinals we are interested in, $\omega^2$ and $\ell^\infty$ give the same result. From now on we shall work with $\omega^2$.

Vojtáš (cf. [11]) also gave some bounds valid for any $A$ that contains at least all matrices which have exactly one non-zero entry in each line:

$$s \leq \|\chi_{A,2}\| \leq b \cdot s.$$
We write $\chi$ for $\|\chi^{\omega_2}\|$.

In [6] we showed that $\chi < b \cdot s$ is consistent relative to ZFC. Here, we show the complementary consistency result, that $s < \chi$ is consistent. We get the convergence with positive matrices.

Now we recall here the definitions of the cardinal characteristics $b$ and $s$ involved: The order of eventual dominance $\le^*$ is defined as follows: For $f, g \in \omega^\omega$ we say $f \le^* g$ if there is $k \in \omega$ such that for all $n \geq k$ we have $f(n) \leq g(n)$.

The unbounding number $b$ is the smallest size of a subset $B \subseteq \omega^\omega$ such that for each $f \in \omega^\omega$ there is some $b \in B$ such that $b \not\le^* f$. The splitting number $s$ is the smallest size of a subset $S \subseteq [\omega]^\omega$ such that for each $X \in [\omega]^\omega$ there is some $S \in S$ such that $X \cap S$ and $X \setminus S$ are both infinite. The latter is expressed as “$S$ splits $X$”, and $S$ is called a splitting family. For more information on these cardinal characteristics, we refer the reader to the survey articles [1, 3, 9].

If $A \lim f$ exists, then also $A' \lim f$ exists for any $A'$ that is gotten from $A$ by erasing rows and moving the remaining (infinitely many) rows together. We may further change $A'$ by keeping only finitely many non-zero entries in each row, such that the neglected ones have a negligible absolute sum, and then possibly multiplying the remaining ones such that they again sum up to 1. Hence, after possibly further deleting of lines we may restrict the set of Toeplitz matrices to linear Toeplitz matrices. A matrix is linear iff each column $j$ has at most one entry $a_{i,j} \neq 0$ and for $j < j'$ the $i$ with $a_{i,j} \neq 0$ is smaller or equal to the $i$ with $a_{i,j'} \neq 0$ if both exist, in picture

\[
\begin{pmatrix}
  c_0(0) & \ldots & c_0(m_{up}(c_0) - 1) & 0 & \ldots & 0 & 0 & \ldots \\
  0 & \ldots & 0 & c_1(m_{dn}(c_1)) & \ldots & c_1(m_{up}(c_1) - 1) & 0 & \ldots \\
  0 & \ldots & 0 & 0 & \ldots & 0 & c_2(m_{dn}(c_2)) & \ldots \\
  \vdots & & & & & & & \\
\end{pmatrix}
\]

Linear matrices can be naturally (as in the picture) read as $\langle c_i \rangle_{i<\omega}$ where $c_i: [m_{dn}(c_i), m_{up}(c_i)] \to [0, 1]$, $c_i(j) = a_{i,j}$, give the finitely many non-zero entries in row $i$, and $m_{up}(c_{i-1}) = m_{dn}(c_i)$. The $c_i$’s are special instances of the weak creatures in the sense of [7]. In the next two sections we shall show: The $c_i$’s coming from the trunks of the conditions in the generic filter of our forcing $Q$ give matrices that make, after multiplication, members of $\omega^2$ from the ground model and members of $\omega^2$ of any random extension convergent.

Now, that we have used the word “creature” several times, we should explain it. Roughly speaking creatures are certain partial functions. Countably many of them are put into an arrangement which serves as one forcing condition. Stronger conditions are gotten by composing (unsually finitely many) of the partial functions and changing the arrangement in a certain way. We need the exact definitions only at one point in our work, when we want to cite some result on properness from [7]. For this purpose, we have to verify that our forcing is an instance of a creature forcing built from a finitary creating pair, such that the forcing conditions fulfil some conditions on the growth of the norms of their building blocks. We shall explain these notions in the next section.

1. A CREATURE FORCING

In this section, we give a self-contained description of the creature forcing $Q$ which is the main tool for building the two kinds of models in the next section.
Moreover, we explain the connections and give the references to [7], so that the reader can identify it as a special case of an extensive framework.

**Definition 1.1.** a) We define a notion of forcing $Q$. We say that $p \in Q$ iff
\begin{align*}
(1) & \quad n < \omega, \\
(2) & \quad \text{for each } i \text{ there are natural numbers } m_{dn}(c_i) < m_{up}(c_i) < \omega \text{ such that } c_i : [m_{dn}(c_i), m_{up}(c_i)) \to [0, 1], \\
(3) & \quad (\forall i < \omega)(\forall k \in \text{dom}(c_i))(c_i(k) \cdot k! \in \mathbb{Z}), \\
(4) & \quad (\forall i < \omega)\sum_{k \in \text{dom}(c_i)} c_i(k) = 1, \\
(5) & \quad m_{up}(c_i) = m_{dn}(c_i+1).
\end{align*}

We let $p \leq q$ (“$q$ is stronger than $p$”) if
\begin{align*}
(6) & \quad n^p \leq n^q, \\
(7) & \quad (\forall 0 \leq k < n^p)c^p_k = c^q_k, \\
(8) & \quad \text{there exists an increasing sequence of natural numbers } (k_t)_{t \geq n^p} \text{ such that } \\
& \quad \text{for each } t \geq n^p \text{ there exist a non-empty set } u_t \subseteq [k_t, k_{t+1}) \text{ and positive } \\
& \quad \text{rationals } \{d_{\ell} : \ell \in u_t\} \text{ such that } \sum_{\ell \in u_t} d_{\ell} = 1 \text{ and } c^p_{\ell} = \sum_{\ell \in u_t} d_{\ell} \cdot c^p_{k_{t+1}}.
\end{align*}

Observe that if $p \leq q$ then for each $t \geq n^p$ we have that $m_{dn}(c^q_t) = m_{dn}(c^p_{k_t})$ and $m_{up}(c^q_t) = m_{up}(c^p_{k_{t+1}}-1)$.

We write $p \leq_i q$ iff $n^p = n^q$ and $c^i_j = c^p_j$ for $j < n^p + i$.

**Remark 1.2.** The notation we used in 1.1 is natural to describe our forcing in a compact manner. However, it does not coincide with the notation given for the general framework in [7]. Here is a translation: We write $(c^p_i)_{i < n^p}, (c^p_i)_{i \geq n^p}$ instead of $(n^p, (c^p_i)_{i < \omega})$, which contains the same information. Then we write
\begin{align*}
(\ast) & \quad (c^p_i)_{i < n^p}, (c^p_i)_{i \geq n^p}) = (w^p, (t^p_i)_{i < \omega}),
\end{align*}
i.e. we shift the indices.

Now we want to show that $Q$ is proper. This follows from the work in [7] once we have verified that $Q$, in the form (\ast), fulfils all the conditions made on the notions of forcing in [7, 2.1.6].

We claim that there is a set of creatures $K$ with respect to a finitary $H$ and a subcompositions function $\Sigma$ such that $(K, \Sigma)$ is finitary [7, 1.1.3 (2)] and such that our forcing is $Q_{\ast, \omega}(K, \Sigma)$ in the notation of [7].

We take $H : \omega \to V$ such that for $i \in \omega, H(i) = \{0, 1, \frac{1}{2}, \ldots, \frac{i-1}{2}, 1\}$. As usual we write $<$ for the proper initial segment relation. The set of all weak creatures with respect to $H$ is the set of all $t = (\text{nor}(t), \text{val}(t), \text{dis}(t))$ such that $\text{nor}(t) \in \mathbb{R}$, $\text{nor}(t) > 0$, $\text{val}(t)$ is a non-empty subset of
\begin{align*}
\left\{ (x, y) \in \bigcup_{m_0 < m_1 < \omega} \left[ \prod_{i < m_0} H(i) \times \prod_{i < m_1} H(i) \right] : x < y \right\}.
\end{align*}

$K$ will be a subset of the set of all weak creatures. The function $\text{dis}$ is the empty function in our case. Now, in our case there are the following requirements on $t \in K$: For $i \in \omega, t_i$ from (\ast) is a part of such a $t$ in the following sense:
nor(t) = m_{dn}(t_i), range(val(t)) = \{t_i\}. For dom(val(t)) one can take the maximal set fitting to val(t), since the range does not depend on the domain in our case. We have that H and K are finitary in the sense of [7, 1.1.3(2)]. Now we take \( \Sigma: [K]^{<\omega} \to \mathcal{P}(K) \), \( \{\{t_0, \ldots, t_{n-1}\}\} = \emptyset \) unless \( t_i: [m_{dn}(t_i), m_{up}(t_i)] \to \mathbb{R}, \), \( t_i \in K \), and \( m_{up}(t_i) = m_{dn}(t_{i+1}) \), in which case \( \Sigma(\{t_0, \ldots, t_{n-1}\}) \) is the set of all \( t: [m_{dn}(t_0), m_{up}(t_{n-1})] \to \mathbb{R}, \ t \in K \) such \( \exists d_\ell, \ell \in n, \) with \( \sum_{\ell \in n} d_\ell = 1 \) and such that for each \( \ell \), for \( m \in [m_{dn}(t_\ell), m_{up}(t_\ell)] \), \( t(m) = d_\ell \cdot t_\ell(m) \). Our \( \Sigma \) is a sub-composition operation in the sense of [7, 1.1.4]. Now some further quite long definitions (the interested reader may look at 1.1.6 to 1.1.10, 2.1.2 to 2.2.6 in [7]) give that our instance \( (K, \Sigma) \) is a finitary creating pair and that our \( Q \) is \( Q^*_{\infty}(K, \Sigma) \) in Roslanowski’s and Shelah’s framework. Now their work shows:

**Lemma 1.3.** ([7, Corollary 2.1.6]) The forcing notion \( Q \) is proper.

2. The Effect of \( Q \) on Random Reals

Let \( G \) be \( Q \)-generic over \( V \). We set \( c_i^Q = c_i^q \) for \( q \in G \) and \( n^q > i \). This is well-defined. Let \( c_i \) be a name for it. Our aim is to show that multiplication by the matrix whose \( i \)-th row is \( c_i \) makes any real from the ground model and even any real from a random extension of the ground model convergent. For background information about random reals we refer the reader to [5, §42]. The Lebesgue measure is denoted by \( \lambda \). With “adding \( \kappa \) random reals” we mean forcing with the measure algebra \( R_\kappa \) on \( 2^{\omega \times \kappa} \), that is adding \( \kappa \) random reals at once or “side-by-side” and not successively.

**Definition 2.1.**

(1) Let \( \text{may}_k(p) = \{c_i^q : p \leq k, i \geq n^q + k\} \).

(2) For a function \( c: \text{dom}(c) \to \mathbb{R} \) with finite domain and \( \eta \in \omega^2 \) let \( \text{av}(\eta, c) = \sum_{k \in \text{dom}(c)} c(k)\eta(k) \).

**Main Lemma 2.2.** Assume that

(A) \( \eta \) is a random name of a member of \( \omega^2, \eta = f(r) \) where \( f \) is Borel and \( r \) is as name of the random generic real,

(B) \( p \in Q \),

(C) \( k^* < \omega \).

Then for every \( k \geq k^* \) there is some \( q(k) \in Q \) such that

(\( \alpha \)) \( p \leq k^* q(k) \),

(\( \beta \)) for all \( \ell \), if \( k^* \leq k < \ell < \omega \) and \( c_1, c_2 \in \text{may}_\ell(q(k)) \) then

\[
\frac{1}{\ell!} > \lambda \left\{ r : \frac{3}{2^k} \leq |\text{av}(f(r), c_1) - \text{av}(f(r), c_2)| \right\}.
\]

**Proof.** For \( q \in Q \) and \( k, \ell \in \omega, i \in \{0, 1, \ldots, 2^k\} \) we set

\[
\text{err}_{k,i}(\eta, c) = \int_0^1 \left| \text{av}(f(r), c) - \frac{i}{2^k} \right| dr,
\]

\[
e_{k,i}^q(\eta, q) = \inf \{ \text{err}_{k,i}(\eta, c) : c \in \text{may}_\ell(q) \}.
\]

Note that \( \text{err}_{k,i}(\eta, c) \) is a real and no longer a random name. So the infimum is well-defined.

Now, if \( \ell_1 < \ell_2 \) then \( \text{may}_{\ell_1}(q) \supseteq \text{may}_{\ell_2}(q) \) and hence

\[
e_{k,i}^{\ell_1}(\eta, q) \leq e_{k,i}^{\ell_2}(\eta, q).
\]
THE SPLITTING NUMBER CAN BE SMALLER THAN THE MATRIX CHAOS NUMBER

So \( e_{k,i}^\ell(\eta, q) \) increasing bounded sequence and

\[ e_{k,i}^\ast(\eta, q) = \lim_{\ell \to \infty} e_{k,i}^\ell(\eta, q) \]

is well-defined.

We fix \( i \leq 2^k \), until Subclaim 4, when we start looking at all \( i \) together.

Subclaim 1: There is some \( q_1^{k,i} = q_1 \geq k^* \) such that for \( \ell \geq k^* \)

\[ e_{k,i}^\ast(\eta, q) - \frac{1}{\ell} \leq \text{err}_{k,i}(\eta, c_{q_1}) \leq e_{k,i}^\ast(\eta, q) + \frac{1}{\ell}. \]

Moreover, if \( m_{dn}(c_{q_1}) = m_{dn}(c_\ell) \) then \( e_{k,i}^\ast(\eta, q_1) \geq e_{k,i}^\ast(\eta, q) - \frac{1}{\ell}. \)

Why? We choose \( c_{q_1} \) by induction on \( \ell \): For \( \ell \leq n^p + k^* \), we take \( c_{q_1} = c_\ell \). Suppose that we have chosen \( c_{q_1}^m \) for \( m < \ell \) and that we are to choose \( c_{q_1}^\ell \), \( \ell > n^p + k^* \). We set \( \varepsilon = \frac{1}{\ell} \). By possibly end-extending \( c_{q_1}^m \) by zeroes we may assume that \( m_{up}(c_{q_1}^{\ell-1}) = m_{up}(c_\ell^{\ell-1}) \) for such a large \( \ell' \geq \ell \) such that for all \( \ell'' \geq \ell' \), \( e_{k,i}^{\ell''}(\eta, p) \geq e_{k,i}^{\ell'}(\eta, p) + \varepsilon \). Then we take \( c_\ell = c_\ell^{\ell-1} \) may \( e_{k,i}^\ell(\eta, p) \) such that \( e_{k,i}^{\ell''}(\eta, c_\ell) \leq e_{k,i}^{\ell'}(\eta, p) + \varepsilon \). On the other side we have that \( e_{k,i}^{\ell''}(\eta, c_{q_1}^\ell) \geq e_{k,i}^{\ell'}(\eta, p) \geq e_{k,i}^{\ast}(\eta, p) - \varepsilon \). The fact that this holds also for \( \ell' \leq \ell \) if \( m_{dn}(c_\ell^{\ell-1}) = m_{dn}(c_\ell^{\ell-1}) \) yields the “moreover” part.

Subclaim 2: In Claim 1, if \( \ell \geq k^* \) and \( q_1^{k,i} \leq q_2 \) then

\[ e_{k,i}^\ast(\eta, q) - \frac{1}{\ell} \leq \text{err}_{k,i}(\eta, c_{q_2}) \leq e_{k,i}^\ast(\eta, q) + \frac{1}{\ell}. \]

Why? By the definition if suffices to show:

- if \( \ell_1 < \cdots < \ell_t < \omega \) and \( d_1, \ldots, d_t \geq 0 \) and \( d_1 + \cdots + d_t = 1 \),
- and \( c_{q_2} = d_1 c_{q_1} + \cdots + d_t c_{q_1} \),

then \( e_{k,i}^\ast(\eta, q_1) - \frac{1}{\ell} \leq \text{err}_{k,i}(\eta, c_{q_2}) \leq e_{k,i}^\ast(\eta, q_1) + \frac{1}{\ell} \).

The first inequality holds by the “moreover” after the first inequality in the previous claim. For the second inequality it suffices to show that

\[ \text{err}_{k,i}(\eta, c) \leq \sum_{s=1}^t d_s \text{err}_{k,i}(\eta, c_{q_s}). \]

For this is suffices to see that

\[ \int_0^1 \left( \left| \text{av}(f(r), c) - \frac{i}{2^k} \right| \right) \, dr \leq \sum_{s=1}^t d_s \int_0^1 \left( \left| \text{av}(f(r), c_{q_s}) - \frac{i}{2^k} \right| \right) \, dr, \]

and since \( d_s \geq 0 \) and \( \sum_s d_s = 1 \) we finish by the the triangular inequality.

Subclaim 3: Let \( q_{k,i}^n \) be as in Subclaim 2. For all \( \ell \), if \( c_0, c_1 \in \text{may}_\ell(q_{1,i}^r) \), then

\[ \frac{2^{k+1}}{\ell} \geq \lambda \left\{ r : \text{av}(f(r), c_0) \geq \frac{i + 1}{2^k} \wedge \text{av}(f(r), c_1) \leq \frac{i - 1}{2^k} \right\}. \]

Why? Consider \( c = \frac{1}{2} c_0 + \frac{1}{2} c_1 \in \text{may}_\ell(q_1) \). Write

\[ A = \left\{ r : \text{av}(f(r), c_0) \geq \frac{i + 1}{2^k} \wedge \text{av}(f(r), c_1) \leq \frac{i - 1}{2^k} \right\}. \]
\[ \frac{2}{\ell} \geq \frac{1}{2}\text{err}_{k,i}(\eta, c_0) + \frac{1}{2}\text{err}_{k,i}(\eta, c_1) - \text{err}_{k,i}(\eta, c) \]
\[
= \int_{0}^{1} \left( \frac{1}{2} \left| \text{av}(f(r), c_0) - \frac{i}{2^k} \right| + \frac{1}{2} \left| \text{av}(f(r), c_1) - \frac{i}{2^k} \right| \right) dr
\]
\[
\geq \int_{A} \left( \frac{1}{2} \left| \text{av}(f(r), c_0) - \frac{i}{2^k} \right| + \frac{1}{2} \left| \text{av}(f(r), c_1) - \frac{i}{2^k} \right| \right) dr
\]
\[
\geq \frac{1}{2^k} \lambda(A).
\]

Subclaim 4: For every \( q \in Q \) and \( k^* \) we can find \( q^k \) such that

\( \alpha \) \quad \text{if } \ell \in [k, \omega) \text{ and } c_0, c_1 \in \text{may}_\ell(q^k) \text{ and } i \in \{1, 2, \ldots, 2^k - 1\} \text{ then } \frac{2^{k+1}}{\ell} > \lambda \{ r : \text{av}(f(r), c_0) \geq \frac{i+1}{2^k} \land \text{av}(f(r), c_1) \leq \frac{i-1}{2^k} \} .
\]

\( \beta \) \quad \text{This holds also for every } q^* \geq q^k.

Why? Repeat Subclaims 1 and 2 and 3 choosing \( q^{k,i} \), \( i = 0, 1, \ldots, 2^k \). We let \( q_0 = q \) and choose \( q^{k+1} \) such that it relates to \( q^{k,i} \) like \( q_1 \) to \( q \).

Now \( q^k = q^{k,2^k} \) is o.k. Note that according to (\( \circ \)) thinning and averaging can only help.

Subclaim 5: Let \( q^k \) be as in Subclaim 4. For \( \ell \geq k \) there is \( q(k, \ell) \geq \ell-1 \) \( q^k \) such that for \( c_0, c_1 \in \text{may}_\ell(q(k, \ell)) \),
\[ \frac{1}{\ell !} > \lambda \left\{ r : \frac{3}{2^k} \leq |\text{av}(f(r), c_1) - \text{av}(f(r), c_0)| \right\} . \]

Why? The event \( \frac{3}{2^k} \leq |\text{av}(f(r), c_1) - \text{av}(f(r), c_0)| \) implies that for some \( i \in \{1, 2, \ldots, 2^k - 1\} \) we have \( \text{av}(f(r), c_1) \geq \frac{i+1}{2^k} \land \text{av}(f(r), c_2) \leq \frac{i-1}{2^k} \) or vice versa. So it is incuded in the union of \( 2 \times (2^k - 1) \) events, each of measure \( \leq \frac{2^{k+1}}{\ell} \). Hence it itself has measure \( \leq \frac{2^{k+2}}{\ell} \). By thinning out \( q^k \) (by moving the former \( \ell \) far out by putting in a lot of zeroes and thus having as new \( c_i \)'s partial functions that were formerly labelled with a much larger \( \ell \) and thus giving a much smaller quotient according to Subclaim 4) we replace \( \frac{2^{k+2}}{\ell} \) by \( \frac{1}{\ell} \).

Subclaim 6: Finally we come to the \( q(k) \) from part (\( \beta \)) of the lemma: For any \( k \) there is \( q(k) \) such that \( q \leq k^* \ q(k) \) and for any \( \ell \geq k \) and any \( c_0, c_1 \in \text{may}_\ell(q^*) \) then
\[ \frac{1}{\ell !} > \lambda \left\{ r : \frac{3}{2^k} \leq |\text{av}(f(r), c_1) - \text{av}(f(r), c_0)| \right\} . \]

Why? Like in the previous claim we choose inductively \( q(k, \ell) \) such that \( q_0 = p \) and \( q(k, \ell + 1) \geq \ell \ q(k, \ell) \) and \( (q(k, \ell + 1), q(k, \ell), \ell) \) are like \( (q(k, \ell), q, \ell) \) from
Subclaim 5, but for larger and larger $\ell$. Now
\[ q(k) = (n^p + k, c_0^p, \ldots, c_{n^p+k}^p, c_{n^p+k+1}^p, c_{n^p+k+2}^p, \ldots) \]
is as required in (α) and (β) of the conclusion; we have even $q(k) \geq k p$. \qed

Now we use the Main Lemma in an iteration. Any notion of forcing $Q'$ that preserves $\aleph_1$ and $\aleph_2$ is suitable. In the application, $Q'$ will be an end segment of length $\aleph_2$ of a countable support iteration of $Q$.

**Conclusion 2.3.** Let $Q'$ be any notion of forcing. Then we have: \( \vDash_{Q'} \text{"if } \eta \in V \text{ is a random name for a real in } V^{Q'\ast R_\omega}, \text{then } \vDash_{Q'\ast R_\omega} \langle \text{av}(\eta, c_n) : n \in \omega \rangle \text{ converges"} \)

**Proof.** Let $q \in Q$ and $\varepsilon > 0$ be given. Let $\eta = f(r)$, $f \in V$, be a random name for a real. We take $k_0$ such that $\frac{3}{2^\varepsilon} < \varepsilon$. Then we take for $q(k) \geq q$ as in the Main Lemma. We set
\[ A_{k_0,\varepsilon_1,\varepsilon_2} = \left\{ r : \frac{3}{2^\varepsilon} > |\text{av}(f(r), c_1) - \text{av}(f(r), c_0)| \right\}. \]
Since $\sum_{\ell \geq 1} \frac{1}{\ell} < \infty$, we can apply the Borel-Cantelli lemma and get:
For any sequence $\langle c_\ell \rangle_{\ell < \omega}$ such that $c_\ell \in \text{may}_\ell(q^*(\ell))$ we have that
\[ \lambda \left( \bigcup_{K \in \{k, \omega\}} \bigcap_{\ell \geq K} A_{k_0,\varepsilon_1,\varepsilon_2+1} \right) = 1. \]
So $r \in \bigcap_{\ell \geq K} A_{k_0,\varepsilon_1,\varepsilon_2+1}$ for some $K \geq k$. So $q(k)$ forces (also in $V[G]$ where $G$ is $Q' \ast R_\omega$-generic over $V$) that $\langle c_\ell \rangle_{\ell < \omega}$ describes a matrix whose product with $\eta$ lies eventually within an $\varepsilon$ interval. Now we take smaller and smaller $\varepsilon$’s and a density argument. \qed

**Conclusion 2.4.** Let $P_{\omega_2} = \langle P_i, Q_j : i \leq \omega_2, j < \omega_2 \rangle$ be a countable support iteration of $Q_i$, where $Q_i$ is $Q$ defined in $V^{P_i}$, and let $R_{\omega_1}$ be a $P_{\omega_2}$ name of the $\aleph_1$-random algebra. Then in $V^{P_{\omega_2}\ast B_{\omega_1}}$ we have $s = \aleph_1$ and $\chi > \aleph_1$.

**Proof.** Dow proves in [4, Lemma 2.3] that $s = \aleph_1$ after adding $\aleph_1$ or more random reals, over any ground model. In order to show $\chi > \aleph_1$, let $\eta_i$, $i < \omega_1$, be reals in $V^{P_{\omega_2}\ast B_{\omega_1}}$. Over $V^{P_{\omega_2}}$, each $\eta_i$ has a $R_{\omega_1}$-name $\eta_i$. Since the random algebra is c.c.c, there are w.l.o.g. only countably many of the $\aleph_1$ random reals mentioned in $\eta_i$. Let $\eta'_i$ be got from $\eta_i$ by replacing these countably many by the first $\omega$ ones and then doing as if it were just one random real. This is possible because $R_i$ and $R_\omega$ are equivalent forcings. Since the random algebra is c.c.c., the name $\eta'_i$ can be coded as a single real $r_i$ in $V^{P_{\omega_2}}$. Now, by [8, V.4.4.] and by the properness of the $Q_j$, this name $r_i$ appears at some stage $\alpha(\eta_i) < \aleph_2$ in the iteration $P_{\omega_2}$. We take the supremum $\alpha$ of all the $\alpha(\eta_i), i < \omega_1$. We apply 2.3 with $Q = Q_{\alpha}, Q' = \langle P_i, Q_j : \alpha < i \leq \omega_2, \alpha < j < \omega_2 \rangle$ and $R_{\omega}$ to the $\eta'_i$. Thus $Q_\alpha$ adds a Toeplitz matrix, that makes after multiplication all the $\eta'_i$ convergent. Since Conclusion 2.3 applies to all random algebras simultaneously, this matrix makes also the $\eta_i$ convergent. \qed
Definition 2.5. (1) \( Q_{pr} = \{ p \in Q : n^p = 0 \} \) is called the pure part of \( Q \).

(2) We write \( p \leq^* q \) if there are some \( w, n \) such that \( p \leq (w, t^p_n, t^q_{n+1}) \). So, it is up to a finite “mistake” \( p \leq q \).

Fact 2.6. If \( \langle p_i : i < \gamma \rangle \) is \( \leq^* \)-increasing in \( Q \) and \( MA_{\gamma} \) holds, then there is \( p \in Q_{pr} \) such that for all \( i < \delta, p_i \leq^* p \).

Proof. We apply \( MA_{\gamma} \) to the following partial order \( P \): Conditions are \( (s, F) \) where \( s = (t^p_0, \ldots , t^p_n) \) is an initial segment of a condition in \( Q_{pr} \) and \( F \subset \gamma \) is a finite set. We let \( (s, F) \leq_P (t, G) \) if \( s \leq t \) and \( F \subset G \) and \( (\forall n \in \lg(t) - \lg(s)) (\forall \alpha \in F) (n > (\text{all mistakes between the } p_{\alpha}) \rightarrow t_n = \Sigma(c^n_{\alpha} : i \in S(\alpha, n) \text{ for suitable } S(\alpha, n))) \). This forcing is c.c.c., because conditions with the same first component are compatible and because there are only countably many possibilities for the first component. It is easy to see that for \( \alpha < \delta \) the sets \( D_\alpha = \{ (s, F) : \alpha \in F \} \) is dense and that for \( n \in \omega \) the sets \( D^n = \{ (s, F) : \lg(s) \geq n \} \) are dense. Hence if \( G \) is generic, then \( p = \bigcup \{ s : \exists F(s, F) \in G \} \geq^* p_\alpha \) for all \( \alpha \). \( \Box \)

Conclusion 2.7. If \( V \models MA_\kappa \) and \( \kappa > \delta > \aleph_0 \), then in \( V^{R_\delta} \) then matrix number is at least \( \kappa \) and the splitting number is \( \aleph_1 \).

Proof. As mentioned, [4] shows the theorem on the splitting number. For the matrix number, let random names \( \eta_i, i < \gamma \), be given in \( V \), \( \gamma < \kappa \). We fix \( \varepsilon > 0 \) and \( K \) as in the proof of 2.3. We choose for \( i < \gamma, p^i = \langle c^i_k \rangle_{k<\omega} \) as in the end of the proof of 2.3 for \( \eta_i \) and use and Fact 2.6. \( \gamma + 1 \) times iteratively and find a pure condition \( p = \langle c_k \rangle_{k<\omega} \geq^* p^i \) for all \( i < \gamma \), that gives the lines of a matrix which brings everything into an \( \varepsilon \)-range. We denote these \( c_k \) by \( c_k(\varepsilon) \).

Now by induction we choose \( c_k : c_0 = c_0(1) \), and \( c_k = c_k'(\frac{1}{k'+1}) \) if \( k' > k \) is the first \( k'' \) such that \( m_{dn}(c_k'(\frac{1}{k'+1})) > m_{an}(c_{k-1}) \). The matrix with \( c_k \) in the \( k \)th line acts as desired. (Now \( m_{up}(c_k) > m_{dn}(c_{k+1}) \) is possible but this does not harm.) \( \Box \)

Acknowledgement: The first author would like to thank Andreas Blass for discussions on the subject and for reading and commenting.

References

THE SPLITTING NUMBER CAN BE SMALLER THAN THE MATRIX CHAOS NUMBER 9


HEIKE MILDENBERGER, INSTITUT FÜR FORMALE LOGIK, UNIVERSITÄT WIEN, WÄHRINGER STR. 25, A-1090 VIENNA, AUSTRIA

SAHARON SHELAH, INSTITUTE OF MATHEMATICS, THE HEBREW UNIVERSITY OF JERUSALEM, GIVAT RAM, 91904 JERUSALEM, ISRAEL

Email address: heike@logic.univie.ac.at
Email address: shelah@math.huji.ac.il