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In this short note we want to characterize the groups isomorphic to full automor-
phism groups of ordered abelian groups. The result will follow from classical theorems
on ordered groups adding an argument from proofs used to realize rings as endo-
morphism rings of abelian groups, see [2]. Recall that H is a right ordered group
(RO-group) if (H, ·) is a group and (H,<) is a linear order satisfying the following
compatibility condition

(RO) For all h < g, k in H follows hk < gk.

Similary define (LO), the left compatibility condition. If (H, ·, <) satisfies both (RO)
and (LO) thenH is an ordered group. Obviously abelian RO-groups are ordered groups,
in which case we often replace multiplication by +. A group H is right orderable if it
permits a linear order which makes it an RO-group. We do not distinguish RO-groups
and groups which are right orderable. From the fact that cyclic ordered groups are
infinite, it is clear that RO-groups are torsion-free. By an old theorem of Smirnov a
group is an RO-group if and only if it is (isomorphic to) a subgroup of Aut (A,+, <) of
an ordered free abelian group A, see Mura, Rhemtulla [5, p. 129, Theorem 7.1.3]. We
will use the obvious representation as subgroup of Aut (A,+, <) below. On the other
hand there are torsion-free groups, in fact polycyclic groups, which are not RO-groups,
a result due to Smirnov, see [5, p. 127]. Note that torsion-free polycyclic groups are
even finitely generated - iterated extensions of Z. Our main result then reads as follows.

Theorem 1 For a group H the following are equivalent.

(1) H is an RO-group.

(2) There is an ordered abelian group G = (G,+, <) with Aut (G,+, <) ∼= H.
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(3) If K is any ordered field, then we find an ordered extension field F such that
Aut (F ) ∼= H.

This result is in sharp contrast to Corner’s [1] result classifying all finite groups
which are automorphisms groups of abelian groups, where many groups like Z/7Z do
not come up. The equivalence (1), (3) is taken from Dugas, Göbel [3], and (1) follows
from (3) by the above theorem of Smirnov. It remains to show that (1) implies (2), in
fact we will show a stronger implication

(2∗) There is an ℵ1-free ordered abelian group G = (G,+, <) with Aut (G,+, <) ∼= H.

Here G is ℵ1-free if all its countable subgroups are free. Consider the group ring
R = ZH and let B =

⊕
R be a “large enough” free R-module. Hence R ⊆ End RB

by scalar multiplication with elements from R on the right of B. We will construct an
R-module G such that B ⊆∗ G ⊆∗ B̂ and EndA = R. Here B̂ is the S-adic completion
of B with respect to some suitable, multiplicatively closed subset S ⊆ N ⊆ R; e.g.
S = {pn | n ∈ ω}. Moreover “ ⊆∗” denotes an S-pure submodule. It will be important
that

G =
⋃
α∈λ∗

G∗

is the union of an ascending continuous chain of S-pure R-submodules

Gα ⊆∗ B̂ with G0 = B and Gα+1 = 〈Gα, gαR〉∗

such that Ann Rgα = 0, Gα ∩ gαR = 0

and either Gα+1/Gα
∼= R or Gα+1/Gα

∼= S−1R is S -divisible.

Here 〈Gα, gαR〉∗ denotes the smallest subgroup of B̂ which is S-pure and contains
Gα, gαR. This part will follow by arguments we used in several earlier papers, e.g. in
[2]. As H is assumed to be an RO-group by (1) we will turn R = ZH into a linear order
satisfying the compatibility condition (RO) for multiplication with positive elements
in the group ring.

Proposition 2 If H is an RO-group, then the group ring R = ZH has a natural linear
order satisfying (RO) for multiplication with positive elements. The monoid of positive
elements of R will be denoted by R>0.
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We postpone the proof of Proposition 2 and assume it holds. It follows that (R+, <)
is an ordered free abelian group and R>0 ⊆ End (R,+, <) thus also

R>0 ⊆ End (B,+, <)

where the linear order will be extended and B becomes an ordered abelian group.

Inductively we want to extend the order on to G. If Pα = {g ∈ Gα, 0 < g} denotes
the positive cone of Gα, then we want to define the positive cone Pα+1 of Gα+1 =
〈Gα, gαR〉∗.

If y ∈ Gα+1, there is s ∈ S such that ys = x+ gαr for some r ∈ R and x ∈ Gα.
Thus we define

y ∈ Pα+1 ⇐⇒ r > 0 or r = 0 and x ∈ Pα.

It is easy to see that Gα+1 = −Pα+1 ∪ Pα+1 ∪ {0}, and Pα+1 is well-defined. If
also ys′ = x′ + gαr

′ then xs′ + gαrs
′ = x′s + gαr

′s. Hence xs′ − x′s = gα(r′s − rs′) ∈
Gα ∩ gαR = 0. From Ann Rgα = 0 follows r′s = rs′ and s, s′ > 0 implies r′ > 0 iff
r > 0. Moreover r = 0 iff r′ = 0 and in this case xs′ = x′s thus x ∈ Pα iff x′ ∈ Pα.
Note that gα > 0 follows from 1 > 0. If r′ ∈ R>0 and y ∈ Pα+1 as above, then
yr′s = xr′ + gαrr

′, hence either r = 0 and xr′ ∈ Pα by induction hypothesis or rr′ > 0
by Proposition 2, so yr′ ∈ Pα+1 and

R>0 ⊆ End (Gα+1,+, <)

follows from R>0 ⊆ End (Gα,+, <). At limit ordinals β < λ∗ we take unions, thus
Pβ =

⋃
α<β

Pα and it follows that (G,+, <) is an ordered abelian group with

R>0 ⊆ End (G,+, <).

If r < 0 then the action of r on B, hence multiplication on a summand Re of B shows
that 0e < 1e turns into re < 0e. Together with R = EndG we get

R>0 = End (G,+, <)

We derive the following

Theorem 3 If H is an RO-group, λ is any cardinal with |H| ≤ λ and R>0 is the
monoid of positive elements of the group ring R = ZH, then there is an ℵ1-free,
ordered abelian group (G,+, <) of cardinality λℵ0 with R>0 = End (G,+, <).
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provided Proposition 2 is shown and the used presentation of G =
⋃
α<λ

Gα follows.

First we want to establish the last claim and note that R+ is a free abelian group, in
particular R+ is cotorsion-free (Hom (Ẑ, R) = 0), which is needed to apply Theorem
6.3 in Corner, Göbel [2, p. 465]. We need a very special case of Theorem 6.3, putting
N = {0}, J1 = J = ∅. Thus EndG = R is immediate. It is easy to check that G is
ℵ1-free. The group G is obtained by transfinite induction as⋃

α<λ∗

Gα = G over α < λ∗ with |λ∗| = λℵ0

by using a weak version of Shelah’s Black Box (see Appendix of [2]). Conditions (II0)
(IIµ) and (IIIα+1) show that Gα+1 is of the right form (replacing A by R), and Lemma
3.4 in [2, p. 456] for Nk

α = 0 together with (IIIα) implies that Gα ∩ gαR = 0, and
Ann Rgα = 0.
It remains to show Proposition 2.
If r ∈ R, write r =

∑
h∈H

rh h with rh ∈ Z, similarly r′ =
∑
h∈H

r′hh. We say that

r < r′ ⇐⇒ ∃ h∗ ∈ H, rh∗ < r′h∗ and rh = r′h∀ h > h∗.

Let [r] = {h : rh 6= 0}, then the positive cone of R is

R>0 = {r ∈ R : ∃ maximal h∗ ∈ [r] and rh∗ > 0}.

It is easy to check that this is a linear ordering on R. From R>0 · R>0 ⊆ R>0 follows
that multiplication with elements from R>0 satisfies (RO), thus R>0 ⊆ End (R,+, <).
The ordering extends naturally to direct sums, see e.g. Theorem 2.1.1 in [5] thus
R>0 ⊆ End (B,+, <).
Like in case of polynomial rings R[x] we can show the following

Proposition 4 If H is an RO-group, R = ZH is the group ring and U(R) are its
units, then U(R) = ±H.

Proof. If r =
∑
h∈H

rhh, r
′ =

∑
h∈H

r′hh ∈ R are as above with rr′ = r′r = 1, then the

product of the maximal coefficients rh∗ and r′h′∗ must be 1. This is only possible if
h∗h′∗ = 1 and if all other coefficients are 0. It follows that r = rh∗h

∗ and r′ = r−1h∗ h
−1
∗ ,

and rh∗ , rh′∗ are units of the coefficient ring Z. Hence r, r′ ∈ ±H.

Remark also follows from a more general result by Strojnowski on unique product
groups, see Karpilovsky [4, p. 272, Corollary 8.4.8].
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From Proposition 4 follows that the units of R>0 are U(R>0) = H. From Theorem 3
and Aut (G,<) = U(End (G,+, <)) follows our main result which immediately implies
“(1) −→ (2)” of Theorem 1.

Corollary 5 If H is an RO-group of cardinality |H| ≤ λ, then there is an ℵ1-free,
ordered abelian group (G,<) of cardinality λℵ0 with Aut (G,+, <) = H.
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Fachbereich 6, Mathematik und Informatik
Universität Essen, 45117 Essen, Germany
e–mail: R.Goebel@Uni-Essen.De

and
Saharon Shelah
Department of Mathematics
Hebrew University, Jerusalem, Israel
and Rutgers University, Newbrunswick, NJ, U.S.A
e-mail: Shelah@math.huji.ae.il

5

Paper Sh:780, version 2001-09-12 11. See https://shelah.logic.at/papers/780/ for possible updates.


