
Absolutely Indecomposable Modules
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Abstract

A module is called absolutely indecomposable if it is directly indecomposable in every generic
extension of the universe. We want to show the existence of large abelian groups that are absolutely
indecomposable. This will follow from a more general result about R-modules over a large class
of commutative rings R with endomorphism ring R which remains the same when passing to a
generic extension of the universe. It turns out that ‘large’ in this context has a precise meaning,
namely being smaller than the first ω-Erdős cardinal defined below. We will first apply a result on
large rigid valuated trees with a similar property established by Shelah [26] in 1982, and will prove
the existence of related ‘Rω-modules’ (R-modules with countably many distinguished submodules)
and finally pass to R-modules. The passage through Rω-modules has the great advantage that the
proofs become very transparent essentially using a few ‘linear algebra’ arguments accessible also
for graduate students. The result closes a gap in [12, 11], provides a good starting point for [16]
and gives a new construction of indecomposable modules in general using a counting argument.

1 Introduction

There is a whole industry transporting symmetry properties from one category to another: For example
consider a tree or a graph (with extra properties if needed) together with its group of automorphisms.
Then encode the tree or the graph into an object of your favored category in such a way that the
branches (or vertices) of the tree (of the graph) are recognized in the new structure. If the new
category are abelian group argue by (infinite) divisibility, in case of groups and fields you use of
course infinite chains of roots (with legal primes) etc. Thus the automorphism group of the tree or the
graph is respected in the new category and by density arguments (or killing unwanted automorphisms
by prediction arguments ‘on the way’) it happens that the automorphism group we start with becomes
(modulo inessential maps: inner automorphisms in case of groups and Frobenius automorphisms in
case of fields) the automorphism group of an object of the new category. For a few illustrating details
the reader may want to see papers by Heineken [22], Braun, Göbel [2] (in case of groups), Corner,
Göbel [7] in case of modules (with group rings as the first category) or Fried and Kollar [14], Dugas,
Göbel [9] in case of fields and [10] for automorphism groups of geometric lattices. In this paper we also
argue with symmetry properties of trees, but they are of a different kind. Given a cardinal λ which is
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Erdős cardinal, rigid-like systems, automorphism groups.

1

Paper Sh:880, version 2006-05-06 11. See https://shelah.logic.at/papers/880/ for possible updates.



not extraordinary large (we explain what we mean by ‘extraordinary large’ in the next section) then
there is an absolute and rigid family of (ω-)valuated trees based on this cardinal. This is a family
of λ subtrees T of size λ of the tree Tλ = ω>λ of finite sequences of ordinals in λ together with a
valuation map v : T −→ ω. Rigid means that there is no level preserving valuated homomorphisms
between any two distinct members. (A tree homomorphism is valuated if the value of a branch is the
same as the value of its image.) Moreover this property is preserved if we change the universe, passing
to a generic extension of the given universe (of set theory) we live in. The existence of such trees
was shown by Shelah [26]. These trees (used also in applied mathematics) were considered earlier in
papers by Nash-Williams, see [24] for example. We will encode them into free Rω-modules over an
arbitrary not extraordinary large commutative ring R with 1 6= 0. To be definite we can assume that
R is the field Q of rationals or Z. Recall that Rω-modules are R-modules with countably many (ω)
distinguished submodules and free means that the module and its distinguished submodules and factor
modules are free as well. Such creatures are considered in Brenner, Butler, Corner (see [3, 4, 5, 1])
and Göbel, May [18] for arbitrary commutative rings and an account about the advanced theory in
case of fields can be seen in [27] and in the references given there. We will show the existence of free
Rω-modules with endomorphism algebra R by transporting the absolute rigid trees into the category
of Rω-modules. It turns out that the passage through Rω-modules makes the anticipated proofs very
transparent. Moreover our main result on Rω-modules with distinguished submodules is only a few
steps away from the desired result on R-modules if R has enough primes (like Z).

The corollary on the existence of large absolutely (fully) rigid abelian groups replaces the earlier
unsuccessful approach in [12] and [11, Chapter XV]: Let R 6= 0 be any fixed countable ring. Then
by Corollary 4.2 there exists an absolutely rigid Rω-module of size λ (or an absolute family of size λ
of non-trivial R-modules with only the zero-homomorphism between distinct member) iff λ < κ(ω).
The same holds if Rω-modules are replaced by abelian groups. Thus as a byproduct we present a new
construction of large, absolutely indecomposable abelian groups, not using stationary sets as [25, 7].
So, if we restrict to the problem on the existence of large absolute indecomposable abelian groups
addressed in [12, 11], then it follows from the above (realizing for example Z as the endomorphism
ring in Corollary 4.2) that from λ < κ(ω) follows the existence of such abelian groups. The converse
direction would need a strengthening of the Theorem 2.2 from [12] now showing the existence of
non-trivial idempotents. (The second author believes that this guess might be true.)

It is also a different matter how to replace Rω-modules by R4-modules or R5-modules and the
endomorphism algebra R by a general not extraordinary large prescribed R-algebra A. This will
follow from [16], a paper which had to wait for Theorem 4.1 in place of [12].

2 Rigid families of valuated trees and the first ω–Erdős car-
dinal

We first describe the result on trees we want to apply by encoding them into modules with distinguished
submodules.

Let κ(ω) denote the first ω-Erdős cardinal. This is defined as the smallest cardinal κ such that
κ → (ω)<ω, i.e. for every function f from the finite subsets of κ to 2 there exist an infinite subset
X ⊂ κ and a function g : ω → 2 such that f(Y ) = g(|Y |) for all finite subsets Y of X. The cardinal
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κ(ω) is strongly inaccessible; see Jech [23, p. 392]. Thus κ(ω) is a large cardinal. We should also
emphasize that κ(ω) may not exist in every universe.

If λ < κ(ω), then let

Tλ = ω>λ = {f : n −→ λ : with n < ω and n = Dom f}

be the tree of all finite sequences f (of length or level lg(f) = n) in λ. Since n = {0, . . . n − 1} as
ordinal, we also write f = f(0)∧f(1)∧ . . . ∧f(n−1). By restriction g = f �m for any m ≤ n we obtain
all initial segments of f . We will write g � f . Thus

g ≤ f ⇐⇒ g ⊆ f as graphs ⇐⇒ g � f.

A subtree T of Tλ is a subset which is closed under initial segments and a homomorphism between two
subtrees of Tλ is a map that preserves levels and initial segments. (Note that a homomorphism does
not need to be injective or preserve �.) The tree T is valuated if with the tree we have a valuation
map v : T −→ ω. In the following a tree will always come with a valuation and Hom(T1, T2) denotes
the valuated homomorphisms between subtrees T1 and T2, i.e if vi is the valuation of Ti (i = 1, 2)
and ϕ is such a valuated homomorphism, then v2(ηϕ) = v1(η) for all η ∈ T1. Shelah [26] showed the
existence of an absolutely rigid family of 2λ valuated subtrees of Tλ.

Theorem 2.1 If λ < κ(ω) is infinite and Tλ = ω>λ, then there is a family Tα (α ∈ 2λ) of valuated
subtrees of Tλ (of size λ) such that for α, β ∈ 2λ and in any generic extension of the universe the
following holds.

Hom(Tα, Tβ) 6= ∅ =⇒ α = β.

Proof. The result is a consequence of the Main Theorem 5.3 in [26, p. 208]. The family of rigid
trees is constructed in [26, p. 214, Theorem 5.7] and the proof, that the trees are rigid, follows from
Theorem 5.8 using the Conclusion 2.14 in [26]. In Shelah’s notation κ(ω) is the first beautiful cardinal
> ℵ0.

This property of rigid families of valuated trees in Theorem 2.1 fails, if we choose λ ≥ κ(ω). In
fact the following result from [12] on rigid families of R-modules reflects this.

Theorem 2.2 (Eklof-Shelah [12]) Let λ be a cardinal ≥ κ(ω) and R any ring with 1.

(i) If {Mν | ν < λ} is a family of non-zero left R-modules, then there are distinct ordinals µ, ν < λ,
such that in some generic extension V [G] of the universe V , there is an injective homomorphism
φ : Mµ →Mν .

(ii) If M is an R-module of cardinality λ, then there exists a generic extension V [G] of the universe
V , such that M has an endomorphism that is not multiplication by an element of R.

Thus κ(ω) is the precise border line for Theorem 3.1 and we can not expect absolute results on
endomorphism rings and rigid families of abelian groups above κ(ω), see Corollary 4.2.

Combining Theorem 2.2 with our main result this also conversely shows that the implication of
Theorem 2.1 fails whenever λ ≥ κ(ω), i.e. there is a generic extension V [G] of the universe V and
there are distinct ordinals α, β ∈ 2λ with Hom(Tα, Tβ) 6= ∅.
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3 The main construction

Let R 6= 0 be a commutative ring. As we shall write endomorphisms on the right, it will be convenient
to view R-modules as left R-modules. Next we define a free R-module F of rank λ over a suitable
indexing set (obviously) used to encode trees Tα from Theorem 2.1 into the structure when turning
the free R-module F into an Rω-module module F with ω distinguished submodules.

We enumerate a subfamily of λ valuated trees from Theorem 2.1 by the indexing set I = ω>(ω>λ).
Thus

Tη with valuation map vη : Tη −→ ω (η ∈ I)

without repetition. Next define inductively subsets Sn ⊆ n(ω>λ) such that the following holds.

(0) S0 = {⊥}

(1) If Sn is defined, then Sn+1 = {η∧〈ν〉 : η ∈ Sn,⊥ 6= ν ∈ Tη}.

Let S =
⋃
n∈ω

Sn and also let η∧〈⊥〉 = η for ⊥ ∈ Tη.

Put Snk = {η∧〈ν〉 ∈ S : lg η = n, lg ν = k} ⊆ Sn+1. Here ν = ν0
∧ . . . ∧νk−1 with νi ∈ λ is a

sequence of ordinals and η = η0
∧ . . . ∧ηn−1 with ηi ∈ Tη0∧...∧ηi−1

a sequence of branches from special
trees. Moreover write

T kη = {ν ∈ Tη : lg ν = k} ⊆ Tη and Tkη = {ν ∈ Tη : vη(ν) = k} (η ∈ I).

Now we define the free R-modules:

(i) F =
⊕
η∈S

Reη

(ii) Fnk =
⊕
η∈Sn

⊕
ν∈Tkη

R(eη∧〈ν � k−1〉 − eη∧〈ν〉)

(iii) Fnk =
⊕
η∈Sn

(
⊕
ν∈Tkη

Reη∧〈ν〉)

(iv) F kn =
⊕
η∈Sn

(
⊕

ν∈Tkη
Reη∧〈ν〉)

(v) F0 = 〈R(eη − eη′) : η, η′ ∈ S〉 and F1 = Re⊥.

We note that F0 =
⊕

⊥ 6= η∈S
R(e⊥ − eη) and F = F0 ⊕ F1.

Next we defineRω-modules. These areR-modules with ω distinguished submodules. We enumerate
the distinguished submodules by a particular well-ordered, countable indexing set

W = 〈0, 1〉∧L1
∧L2

∧L3 with Li a copy of ω × ω (i = 1, 2, 3).

We view W as an ordinal. Then an Rω-module X is an R-module X with a family of submodules
Xi (i ∈W ). We will also say that X is a free Rω-module if X,Xi, X/Xi (i ∈W ) are free R-modules.
In particular
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F = (F, F0, F1, Fnk, F
pq, F rs : (nk) ∈ L1, (pq) ∈ L2), (rs) ∈ L3) is a free Rω −module. (3.1)

If X,Y are Rω-modules, then ϕ is an Rω-homomorphism (ϕ ∈ HomR(X,Y)) if ϕ ∈ HomR(X,Y )
and Xiϕ ⊆ Yi for all i ∈W , where Y = (Y, Yi : i ∈W ). We also write HomR(X,X) = EndRX.

We want to show the following

Theorem 3.1 Let R be a commutative ring with 1 6= 0 and |R|, λ < κ(ω). A free R-module F of
rank λ can be made into a free Rω-module F = (F, Fi : i ∈ W ) such that EndRF = R holds in any
generic extension of the given universe.

Note that the size of R and the rank λ can be arbitrary < κ(ω); in particular R = Z/2Z. If λ is
finite, then we can choose directly a suitable finite family of Fis with the required endomorphism ring.
Otherwise λ is infinite and we can apply Theorem 2.1. So we choose F = (F, Fi : i ∈ W ) as in (3.1)
depending on the valuated trees from Theorem 2.1. Then clearly it remains to show EndRF = R.
We first show the following crucial

Lemma 3.2 Let ϕ ∈ EndRF with F as in (3.1) and F =
⊕
η∈S

Reη. If η ∈ S, then

eηϕ ∈ Reη.

Proof. Let η ∈ S be fixed and recall that T kη = Tη ∩ kλ. We consider its successors η∧〈ν〉 in S with

⊥ 6= ν ∈ Tη and let lg η = n, lg ν = k. Thus η∧〈ν〉 ∈ Snk and ν ∈ T kη . If ϕ ∈ EndRF, then we claim

eη∧〈ν〉ϕ =
∑
l<lν

rνleρνl∧〈σνl〉 with ρνl ∈ Sn, σνl ∈ T kρνl and 0 6= rνl ∈ R. (3.2)

If eη∧〈ν〉ϕ = 0, we choose lν = 0 and have the empty sum which is 0. By definition of Fnk follows

eη∧〈ν〉 ∈ Fnk, thus eη∧〈ν〉ϕ ∈ Fnk showing that eη∧〈ν〉ϕ is of the desired form (3.2).
We will now use F to derive further restrictions of the expressions in (3.2).
If ν1 ∈ T k+1

η , then ν0 = ν1 � k ∈ T kη and eη∧〈ν0〉−eη∧〈ν1〉 ∈ Fn k+1 hence w := (eη∧〈ν0〉−eη∧〈ν1〉)ϕ ∈
Fn k+1 as well. Using (3.2) and the definition of Fn k+1 we get

w =
∑
l<lν0

rν0 leρν0l
∧〈σν0l〉 −

∑
l<lν1

rν1leρν1l
∧〈σν1l〉 =

∑
i<lw

swi
(
eρwi∧〈νwi � k〉 − eρwi∧〈νwi〉

)
with ρwi ∈ Sn, νwi ∈ T k+1

ρwi
and 0 6= swi ∈ R.

Now we collect terms of length k and k + 1 respectively, and it follows

length k:
∑
l<lν0

rν0 leρν0l
∧〈σν0l〉 =

∑
i<lw

swieρwi∧〈νwi � k〉

length k+1:
∑
l<lν1

rν1leρν1l
∧〈σν1l〉 =

∑
i<lw

swieρwi∧〈νwi〉.
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We will apply the two displayed equations and suppose for contradiction that eηϕ /∈ Reη. Hence
eηϕ =

∑
l<lη

rl eηl and there is η0 6= η with r0 6= 0. We want to construct a (level preserving) valuated

homomorphism
g : Tη −→ Tη0 with vη0(g(ν)) = vη(ν) for all ν ∈ Tη.

Hence Tη, Tη0 are not rigid and this would contradict the implication of Theorem 2.1. We will construct
g =

⋃
k∈ω gk as the union of an ascending chain of valuated homomorphisms

gk : Tη ∩ k≥λ −→ Tη0 ∩
k≥λ.

Let g0(⊥) = ⊥ and suppose that gk is defined subject to the following condition which we carry
on by induction.

If ν1 ∈ T kη , then η0
∧〈gk(ν1)) ∈ {ρν1l

∧〈σν1l〉 : l < lν1} (3.3)

thus gk(ν1) ∈ Tη0 for η0 = ρν1l. Note that (3.3) is satisfied for k = 0 by the assumption on ϕ. Thus we

can proceed. If now ν1 ∈ T k+1
η and ν0 = ν1 � k, then gk(ν0) ∈ T kη0 is given and we want to determine

gk+1(ν1). By induction hypothesis we have some l∗ < lν0 with ρν0l∗ = η0 and gk(ν0) = σν0l∗ ∈ Tη0 .
We must find l′ < lν1 (see (3.2)) such that ρν1l′ = η0 and σν0l∗ = σν1l′ � k. The second condition

ensures that g will be the union of an ascending chain of g′ks and also level preserving. The first
assertion is our induction-bag which we must carry along. It is also the link to the undesired map ϕ.

By the displayed equation for length k, there is some i (perhaps more than one) such that swi 6= 0
and ρwi = η0 and νwi � k = σν0l∗ . Then the other displayed equation of length k + 1, by picking one
of the preceding i, yields the desired l′.

We now have l′ < lν1 with ρν1l′ = η0 and σν1l′ ∈ Tη0 of length k + 1 with σν1l′ � k = σν0l∗ . So
we can map gk+1(ν1) ∈ Tη0 . If vη(ν1) = k, then (using lg(η) = n) eη∧〈ν1〉 ∈ F kn and by (iv) also

eη∧〈ν1〉ϕ ∈ F kn and vη0(gk+1(ν1)) = k = vη(ν1) follows. Thus valuation is preserved.
We argue like this for all ν1 ∈ Tη of length k + 1. This completes the definition of gk+1. Thus

g : Tη −→ Tη0 exists, a contradiction.

Proof. (of Theorem 3.1) From Lemma 3.2 follows e⊥ϕ = re⊥, eηϕ = rηeη for some r, rη ∈ R and
all ⊥ 6= η ∈ S. Moreover (e⊥−eη) ∈ F0, and therefore (e⊥−eη)ϕ ∈ F0 and (e⊥−eη)ϕ = re⊥−rηeη ∈
R(e⊥ − eη) by support (in the direct sum). Hence re⊥ − rηeη = r′(e⊥ − eη) for some r′ ∈ R and
r = r′, rη = r′ implies rη = r for all η ∈ S. Thus ϕ = r ∈ R.

4 Extension to fully rigid systems

We want to strengthen Theorem 3.1 showing the existence of fully rigid systems of Rω-modules on λ.
This is a family FU (U ⊆ λ) of Rω-modules such that the following holds.

HomR(FU ,FV ) =

{
R if U ⊆ V
0 if U 6⊆ V
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This result will be the starting point for realizingR-algebrasA as endomorphism algebras EndRF =
A which are also absolute, see Fuchs, Göbel [16]. We first extend the well-ordered indexing set W for
F by one more element and let

W ′ := 〈0, 1, 2〉∧L1
∧L2

∧L3 with Li ∼= ω × ω.

Hence W ′ and W are both order-isomorphic to ω×ω but W ′ has virtually one more element than W
added at place 2 to the definition of F. This allows us to replace F from Theorem 3.1 by FU where
the new place is

F2 := FU :=
⊕
e∈U

eR for any U ⊆ S.

From Theorem 3.1 follows
HomR(FU .FV ) ⊆ R for any U, V ⊆ S.

Clearly HomR(FU .FV ) = R if U ⊆ V . On the other hand, if u ∈ U \ V , then euϕ = reu by the
displayed formula. But reu ∈ FV only if r = 0. Hence HomR(FU .FV ) = 0 whenever U 6⊆ V . Finally
note that |S| = λ. We established the existence of fully rigid systems.

Theorem 4.1 If R is any commutative ring with 1 6= 0 and λ, |R| < κ(ω), then there is a fully rigid
system FU (U ⊆ λ) of free Rω-modules with the following properties.

(i) F is free of rank λ and FU = (F, F0, F1, FU , Fi : i ∈ L1
∧L2

∧L3), thus only F2 = FU depends
on U .

(ii) The family FU (U ⊆ λ) is absolute, i.e. if the given universe is replaced by a generic extension,
then the family is still fully rigid.

The last theorem and a result from [12] (see Theorem 2.2) immediately characterize the first
ω-Erdős cardinal. For clarity we restrict ourself to countable rings R.

Corollary 4.2 Let R by any countable commutative ring. Then the following conditions for a cardinal
λ are equivalent.

(i) There is an absolute Rω-module X of size λ with EndRM = R.

(ii) There is a fully rigid family FU (U ⊆ λ) of free Rω-modules.

(iii) There is a family of Rω-modules of size λ with only the zero-homomorphism between two distinct
members.

(iv) λ < κ(ω) with κ(ω) the first ω- Erdős cardinal.

We note, that the last theorem can also be applied to vector spaces (and ω in (i), (ii) and (iii) can
be replaced by 4 or 5 as demonstrated in [16])
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5 Passing to R-modules

We will restrict ourself to only one application of Theorem 4.1. A forthcoming paper by Fuchs, Göbel
[16] will exploit Theorem 4.1 and new results will be obtained in two directions. Firstly the number
of primes needed in Corollary 5.1 will be reduced to four (which is minimal), moreover R-algebras
A will be realized as EndRM = A in order to give more absolute results. These applications were
obtained earlier but had to wait for publication until it became possible to replace certain results in
[12] by Theorem 4.1.

Corollary 5.1 Let R be a domain with infinitely many comaximal primes. If λ, |R| < κ(ω), then
there is an absolute fully rigid family MU (U ⊆ λ) of torsion-free R-modules MU of size λ. Thus the
following holds in any generic extension of the given universe of set theory.

HomR(MU ,MV ) =

{
R if U ⊆ V
0 if U 6⊆ V

Proof. Let pi (i ∈ W ′) be a countable family of comaximal primes of R and choose FU =
(F, F0, F1, FU , Fi : i ∈ L1

∧L2
∧L3) from Theorem 4.1. We will now construct R-modules MU with

F ⊆MU ⊆ Q⊗ F

where Q denotes the quotient field of R. Also, if X ⊆ F , then we denote by

p−∞X :=
⋃
n∈ω

p−nX ⊆ Q⊗ F.

Now let
MU := 〈p−∞i Fi, p

−∞
2 FU : i ∈W 〉.

Thus F ⊆MU ⊆ Q⊗F because F0+F1 = F and Q⊗FU := (Q⊗F,Q⊗F0, Q⊗F1, Q⊗FU , Q⊗Fi :
i ∈ L1

∧L2
∧L3) satisfies EndQ(Q⊗ FU ) = Q by Theorem 4.1. Consider now any ϕ ∈ EndRMU . The

primes ensure that p−∞i Fiϕ ⊆ p−∞i Fi for all i ∈ W ′ and ϕ extends uniquely to an endomorphism
(also called) ϕ ∈ EndQ(Q ⊗ FU ). It follows that ϕ = q ∈ Q, thus ϕ is scalar multiplication by q on
the right. It remains to show that (ϕ =)q ∈ R and possibly ϕ = 0.

Now we recall that the family of primes, in particular p0 and p1 are comaximal, thus p−∞0 R ∩
p−∞1 R = R. Choose any eη ∈ F1. Then eηϕ ∈ p−∞1 Reη, hence q ∈ p−∞1 R. Similarly, e⊥ϕ ∈ p−∞0 Re⊥,
thus also q ∈ p−∞0 R and q ∈ p−∞0 R∩p−∞1 R = R as required. If U 6⊆ V , then HomQ(Q⊗FU , Q⊗FV ) =
0 by Theorem 4.1 and the unique extension of ϕ to the corresponding Q-vector space must by zero.
Hence ϕ = 0 and the corollary follows.

We would like to mention that the infinite set of primes in the corollary can be replaced by 4
primes, see [16]; and primes can also be replaces by comaximal multiplicatively closed subsets. The
latter is a natural straight extension suggested by Tony Corner (unpublished); this can be looked up
in [13].
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Fachbereich 6, Mathematik
Universität Duisburg Essen
D 45117 Essen, Germany
e-mail: r.goebel@uni-essen.de

Saharon Shelah
Institute of Mathematics,
Hebrew University, Jerusalem, Israel
and Rutgers University, New Brunswick, NJ, U.S.A
e-mail: shelah@math.huji.ac.il

10

Paper Sh:880, version 2006-05-06 11. See https://shelah.logic.at/papers/880/ for possible updates.


	Introduction
	Rigid families of valuated trees and the first bold0mu mumu –Erdos cardinal
	The main construction
	Extension to fully rigid systems
	 Passing to R-modules

