
GROUPWISE DENSITY CANNOT BE MUCH BIGGER THAN

THE UNBOUNDED NUMBER

SAHARON SHELAH

Abstract. We prove that g (the groupwise density number) is smaller or

equal to b+, the successor of the minimal cardinality of an unbounded subset
of ωω. This is true even for the version of g for groupwise dense ideals.

1. Introduction

In the present note we are interested in two cardinal characteristics of the con-
tinuum, the unbounded number b and the groupwise density number g. The former
cardinal belongs to the oldest and most studied cardinal invariants of the contin-
uum (see, e.g., van Douwen [vD84] and Bartoszyński and Judah [BJ95]) and it is
defined as follows.

Definition 1.1. (a) The partial order ≤Jbd
ω

on ωω is defined by

f≤Jbd
ω
g if and only if (∃N < ω)(∀n > N)(f(n) ≤ g(n)).

(b) The unbounded number b is defined by

b = min{|F| : F ⊆ ωω has no ≤Jbd
ω

–upper bound in ωω}.
The groupwise density number g, introduced in Blass and Laflamme [BL89], is

perhaps less popular but it has gained substantial importance in the realm of car-
dinal invariants. For instance, it has been studied in connection with the cofinality
cf(Sym(ω)) of the symmetric group on the set ω of all integers, see Thomas [Tho98]
or Brendle and Losada [BL03]. The cardinal g is defined as follows.

Definition 1.2. (a) We say that a family A ⊆ [ω]ℵ0 is groupwise dense when-
ever:
• B ⊆ A ∈ A, B ∈ [ω]ℵ0 implies B ∈ A, and
• for every increasing sequence 〈mi : i < ω〉 ∈ ωω there is an infinite set
U ⊆ ω such that

⋃
{[mi,mi+1) : i ∈ U} ∈ A.

(b) The groupwise density number g is defined as the minimal cardinal θ for
which there is a sequence 〈Aα : α < θ〉 of groupwise dense subsets of [ω]ℵ0

such that (
∀B ∈ [ω]ℵ0

)(
∃α < θ

)(
∀A ∈ Aα

)(
B 6⊆∗ A

)
.

(Recall that for infinite sets A and B, A ⊆∗ B means A \B is finite.)
The unbounded number b and groupwise density number g can be in either

order, see Blass [Bla89] and more Mildenberger and Shelah [MS02], [MS07], the
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latter article gives a bound on g. However, as we show in Theorem 2.2, g cannot
be bigger than b+.

We would like to thank Shimoni Garti and the anonymous referee for corrections.
Notation: Our notation is rather standard and compatible with that of classical
textbooks on Set Theory (like Bartoszyński and Judah [BJ95]). We will keep the
following rules concerning the use of symbols.

(1) A,B,U (with possible sub- and superscripts) denote subsets of ω, infinite
if not said otherwise.

(2) m,n, `, k, i, j are natural numbers.
(3) α, β, γ, δ, ε, ξ, ζ are ordinals, θ is a cardinal.

2. The result

Lemma 2.1. For some cardinal θ ≤ b there is a sequence 〈Bζ,t : ζ < θ, t ∈ Iζ〉
such that:

(a) Bζ,t ∈ [ω]ℵ0

(b) if ζ < θ and s 6= t are from Iζ , then Bζ,s ∩Bζ,t is finite (so |Iζ | ≤ 2ℵ0),
(c) for every B ∈ [ω]ℵ0 the set{

(ζ, t) : ζ < θ & t ∈ Iζ & Bζ,t ∩B is infinite
}

is of cardinality 2ℵ0 .

Proof. This is a weak version of the celebrated base-tree theorem of Bohuslav Balcar
and Petr Simon with θ = h which is known to be ≤ b, see Balcar and Simon [BS89,
3.4, pg.350]. However, for the sake of completeness of our exposition, let us present
a proof.

Let 〈fζ : ζ < b〉 be a ≤Jbd
ω

–increasing sequence of members of ωω with no ≤Jbd
ω

–

upper bound in ωω. Moreover we demand that each fζ is increasing (clearly, this
does not change b). By induction on ζ < b choose sets Tζ and systems 〈Bζ,η : η ∈
Tζ+1〉 such that:

(i) Tζ ⊆ ζ(2ℵ0) and if η ∈ Tζ+1 then Bζ,η ∈ [ω]ℵ0 ,
(ii) if η ∈ Tζ and ε < ζ, then η � ε ∈ Tε,
(iii) if ζ is a limit ordinal, then

Tζ =
{
η ∈ ζ(2ℵ0) :

(
∀ε < ζ

)(
η � ε ∈ Tε

)
and

(
∃A ∈ [ω]ℵ0

)(
∀ε < ζ

)(
A ⊆∗ Bε,η�(ε+1)

)
},

(iv) if ε < ζ and η ∈ Tζ+1, then Bζ,η ⊆∗ Bε,η�(ε+1),
(v) for η ∈ Tζ+1 and m1 < m2 from Bζ,η we have fζ(m1) < m2,
(vi) if η ∈ Tε, then the set {Bε,ν : η C ν ∈ Tε+1} is an infinite maximal

subfamily of {
A ∈ [ω]ℵ0 :

(
∀ξ < ε

)(
A ⊆∗ Bξ,η�(ξ+1)

)}
consisting of pairwise almost disjoint sets.

It should be clear that the choice is possible. Note that for some limit ζ < b we
may have Tζ = ∅ (and then also Tξ = ∅ for ξ > ζ). Also, if we define Tb as in (iii),
then it will be empty (remember clause (v) and the choice of 〈fζ : ζ < b〉).

The lemma will readily follow from the following fact.

(~) For every A ∈ [ω]ℵ0 there is ξ < b such that

|
{
η ∈ Tξ+1 : Bξ,η ∩A is infinite

}
| = 2ℵ0 .
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To show (~) let A ∈ [ω]ℵ0 and define

S =
⋃
ζ<b

{
η ∈ Tζ : (∀ε < ζ)(A ∩Bε,η�(ε+1) is infinite )

}
.

Clearly S is closed under taking the initial segments and 〈〉 ∈ S. By the “maximal”
in clause (vi), we have that

(~)1 if η ∈ S ∩ Tζ where ζ < b is non-limit or cf(ζ) = ℵ0,
then (∃ν)(η C ν ∈ Tζ+1 ∩ S).

Now,

(~)2 if η ∈ S and `g(η) is non-limit or cf(`g(η)) = ℵ0, then there are C–
incomparable ν0, ν1 ∈ S extending η, i.e., η C ν0 and η C ν1.

[Why? As otherwise Sη = {ν ∈ S : η E ν} is linearly ordered by C, so let ρ =
⋃
Sη.

It follows from (~)1 that `g(ρ) > `g(η) is a limit ordinal (of uncountable cofinality).
Moreover, by (iv)+(vi), we have that

`g(η) ≤ ε < `g(ρ) ⇒ A ∩B`g(η),ρ�(`g(η)+1) =∗ A ∩Bε,ρ�(ε+1).

Hence, by (iii)+(ii), ρ ∈ T`g(ρ) so necessarily `g(ρ) < b. Using (vi) again we may
conclude that there is ρ′ ∈ S properly extending ρ, getting a contradiction.]

Consequently, we may find a system 〈ηρ : ρ ∈ ω>2〉 ⊆ S such that for every
ρ ∈ ω>2:

• k < `g(ρ) ⇒ ηρ�k C ηρ, and
• ηρ_〈0〉, ηρ_〈1〉 are C–incomparable.

For ρ ∈ ω>2 let ζ(ρ) = sup{`g(ην) : ρ E ν ∈ ω>2}. Pick ρ such that ζ(ρ) is the
smallest possible (note that cf(ζ(ρ)) = ℵ0). Now it is possible to choose a perfect
subtree T ∗ of ω>2 such that

ν ∈ lim(T ∗) ⇒ sup{`g(ην�n) : n < ω} = ζ(ρ).

We finish by noting that for every ν ∈ lim(T ∗) we have that
⋃
{ην�n : n < ω} ∈

Tζ(ρ) ∩ S and there is η∗ ∈ Tζ(ρ)+1 ∩ S extending
⋃
{ην�n : n < ω}. �

Theorem 2.2. g ≤ b+.

Proof. Assume towards contradiction that g > b+.
Let 〈fα : α < b〉 ⊆ ωω be an ≤Jbd

ω
–increasing sequence with no ≤Jbd

ω
–upper

bound. We also demand that all functions fα are increasing and fα(n) > n for
n < ω. Fix a list 〈m̄ξ : ξ < 2ℵ0〉 of all sequences m̄ = 〈mi : i < ω〉 such that 0 = m0

and mi + 1 < mi+1.
For α < b we define:

(∗)1 nα,0 = 0, nα,i+1 = fα(nα,i) (for i < ω) and n̄α = 〈nα,i : i < ω〉;
(∗)2 n̄0α = 〈0, nα,2, nα,4, . . .〉 = 〈n0α,i : i < ω〉 and n̄1α = 〈0, nα,3, nα,5, nα,7, . . .〉 =

〈n1α,i : i < ω〉.
Observe that

(∗)3 if m̄ ∈ ωω is increasing, then for every large enough α < b we have:
(α) (∃∞i < ω)(mi+1 < fα(mi)), and hence
(β) for at least one ` ∈ {0, 1} we have(

∃∞i < ω
)(
∃j < ω

)(
[mi,mi+1) ⊆ [n`α,j , n

`
α,j+1)

)
.

Now, for ξ < 2ℵ0 we put:
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(∗)4 γ(ξ) = min{α < b : (∃∞i < ω)(fα(mξ,i) > mξ,i+1)};
(∗)5 `(ξ) = min{` ≤ 1 : (∃∞i<ω)(∃j<ω)([mξ,i,mξ,i+1) ⊆ [n`γ(ξ),j , n

`
γ(ξ),j+1))};

(∗)6 U1
ξ = {i < ω : (∃j < ω)([mξ,i,mξ,i+1) ⊆ [n

`(ξ)
γ(ξ),j , n

`(ξ)
γ(ξ),j+1))}.

Note that γ(ξ) is well defined by (α) of (∗)3, and so also `(ξ) is well defined (by
(β) of (∗)3). Plainly, U1

ξ is an infinite subset of ω. Now, for each ξ < 2ℵ0 , we may

choose U2
ξ so that

(∗)7 U2
ξ ⊆ U1

ξ is infinite and for any i1 < i2 from U2
ξ we have

(∃j < ω)(mξ,i1+1 < n
`(ξ)
γ(ξ),j & n

`(ξ)
γ(ξ),j+1 < mξ,i2).

Let a function gξ : U2
ξ −→ ω be such that

(∗)8 i ∈ U2
ξ & gξ(i) = j ⇒ [mξ,i,mξ,i+1) ⊆ [n

`(ξ)
γ(ξ),j , n

`(ξ)
γ(ξ),j+1).

Clearly, gξ is well defined and one-to-one. (This is very important, since it makes
sure that the set gξ[U2

ξ ] is infinite.)

Fix a sequence B̄ = 〈Bζ,t : ζ < θ, t ∈ Iζ〉 given by Lemma 2.1 (so θ ≤ b and B̄
satisfies the demands in (a)–(c) of 2.1). By clause 2.1(c), for every ξ < 2ℵ0 , the set{

(ζ, t) : ζ < θ and t ∈ Iζ and Bζ,t ∩ gξ[U2
ξ ] is infinite

}
has cardinality continuum.

Now, for each β < b+ and ξ < 2ℵ0 we choose a pair (ζβ,ξ, tβ,ξ) such that

(∗)9 ζβ,ξ < θ and tβ,ξ ∈ Iζβ,ξ ,
(∗)10 Bζβ,ξ,tβ,ξ ∩ gξ[U2

ξ ] is infinite, and

(∗)11 tβ,ξ /∈ {tα,ε : ε < ξ or ε = ξ & α < β}.
To carry out the choice we proceed by induction first on ξ < 2ℵ0 , then on β < b+.
As there are 2ℵ0 pairs (ζ, t) satisfying clauses (∗)9 + (∗)10 whereas clause (∗)11
excludes ≤ (b+ + |ξ|) × θ < 2ℵ0 pairs (recalling that towards contradiction we are
assuming b+ < g ≤ 2ℵ0), there is such a pair at each stage (β, ξ) ∈ b+ × 2ℵ0 .

Lastly, for β < b+ and ξ < 2ℵ0 we let

(∗)12 Uβ,ξ = g−1ξ [Bζβ,ξ,tβ,ξ ] ∩ U2
ξ

(it is an infinite subset of ω) and we put

(∗)13 A+
β,ξ =

⋃
{[mξ,i,mξ,i+1) : i ∈ Uβ,ξ}, and

(∗)14 Aβ = {A ∈ [ω]ℵ0 : for some ξ < 2ℵ0 we have A ⊆ A+
β,ξ}.

By the choice of 〈m̄ξ : ξ < 2ℵ0〉, A+
β,ξ and Aβ one easily verifies that for each

β < b+:

(∗)15 Aβ is a groupwise dense subset of [ω]ℵ0 .

Since we are assuming towards contradiction that g > b+, there is an infinite B ⊆ ω
such that

(∀β < b+)(∃A ∈ Aβ)(B ⊆∗ A).

Hence for every β < b+ we may choose ξ(β) < 2ℵ0 such that B ⊆∗ A+
β,ξ(β). Now,

since γ(ξ(β)) < b and ζβ,ξ(β) < θ ≤ b and `(ξ(β)) ∈ {0, 1}, hence for some triple
(γ∗, ζ∗, `∗) we have that

Paper Sh:887, version 2007-09-17 11. See https://shelah.logic.at/papers/887/ for possible updates.



GROUPWISE DENSITY CANNOT BE MUCH BIGGER THAN THE UNBOUNDED NUMBER5

(�)1 the set

W =:
{
β < b+ :

(
γ(ξ(β)), ζβ,ξ(β), `(ξ(β))

)
=
(
γ∗, ζ∗, `∗

)}
is unbounded in b+.

Note that if β ∈W then

(�)2 B ⊆∗ A+
β,ξ(β) =

⋃{
[mξ(β),i,mξ(β),i+1) : i ∈ Uβ,ξ(β)

}
⊆⋃{

[n
`(ξ(β))
γ(ξ(β)),j , n

`(ξ(β))
γ(ξ(β)),j+1) : j = gξ(β)(i) for some i ∈ Uβ,ξ(β)

}
⊆⋃{

[n
`(ξ(β))
γ(ξ(β)),j , n

`(ξ(β))
γ(ξ(β)),j+1) : j ∈ Bζβ,ξ(β),tβ,ξ(β)

}
.

[Why? By the choice of (β, ξ(β)), by (∗)13, and by (∗)8 as Dom(gξ(β)) ⊆ Uβ,ξ(β) ⊆
U2
β,ξ(β); also remember (∗)12.]

Also, for β ∈ W we have `(ξ(β)) = `∗, γ(ξ(β)) = γ∗ and ζ(β, ξ(β)) = ζ∗, so it
follows from (�)2 that

(�)3 B ⊆∗
⋃{

[n`
∗

γ∗,j , n
`∗

γ∗,j+1) : j ∈ Bζ∗,tβ,ξ(β)} for every β ∈W .

Consequently, if β 6= α are from W , then the sets⋃{
[n`

∗

γ∗,j , n
`∗

γ∗,j+1) : j ∈ Bζ∗,tβ,ξ(β)
}

and⋃{
[n`

∗

γ∗,j , n
`∗

γ∗,j+1) : j ∈ Bζ∗,tα,ξ(α)

}
are not almost disjoint. Hence, as 〈n`∗γ∗,j : j < ω〉 is increasing, necessarily the sets
Bζ∗,tβ,ξ(β) and Bζ∗,tα,ξ(α)

are not almost disjoint. So applying 2.1(b) we conclude

that tβ,ξ(β) = tα,ξ(α). But this contradicts β 6= α by (∗)11, and we are done. �

Definition 2.3. We define a cardinal characteristic gf as the minimal cardinal θ
for which there is a sequence 〈Iα : α < θ〉 of groupwise dense ideals of P(ω) (i.e.,
Iα ⊆ [ω]ℵ0 is groupwise dense and Iα ∪ [ω]<ℵ0 is an ideal of subsets of ω) such that(

∀B ∈ [ω]ℵ0
)(
∃α < θ

)(
∀A ∈ Aα

)(
B 6⊆∗ A

)
.

Observation 2.4. 2ℵ0 ≥ gf ≥ g.

Theorem 2.5. gf ≤ b+.

Proof. We repeat the proof of Theorem 2.2. However, for β < b+ the family
Aβ ⊆ [ω]≤ℵ0 does not have to be an ideal. So let Iβ be an ideal on P(ω) generated
by Aβ (so also Iβ is the ideal generated by {A+

β,ξ : ξ < 2ℵ0} ∪ [ω]<ℵ0). Lastly, let

I ′β = Iβ \ [ω]<ℵ0 .

Assume towards contradiction that B ∈ [ω]ℵ0 is such that (∀α < b+)(∃A ∈
Iα)(B ⊆∗ A). So for each β < b+ we can find kβ < ω and ξ(β, 0) < ξ(β, 1) < . . . <
ξ(β, kβ) < 2ℵ0 such that B ⊆∗

⋃
{A+

β,ξ(β,k) : k ≤ kβ}. Let D be a non-principal

ultrafilter on ω to which B belongs. For each β < b+ there is k(β) ≤ kβ such that
A+
β,ξ(β,k(β)) ∈ D. As in the proof there for some (γ∗, ζ∗, `∗, k∗, k(∗)) the following

set is unbounded in b+:

W =:
{
β < b+ : k(β) = k(∗), kβ = k∗, γξ(β,k(∗)) = γ∗,

ζβ,ξ(β,k(∗)) = ζ∗ and `(ξ(β, k(∗))) = `∗
}
.

As there it follows that:

(�) if β ∈W , then
⋃{

[n`
∗

γ∗,j , n
`∗

γ∗,j+1) : j ∈ Bζ∗,tβ,ξ(β,k(∗))
}

belongs to D.

But for β 6= α ∈ W those sets are not almost disjoint whereas (ζ∗, tβ,ξ(β,k(∗))) 6=
(ζ∗, tα,ξ(α,k(∗))) are distinct, giving us a contradiction. �
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