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GROUPWISE DENSITY CANNOT BE MUCH BIGGER THAN
THE UNBOUNDED NUMBER

SAHARON SHELAH

ABSTRACT. We prove that g (the groupwise density number) is smaller or
equal to b1, the successor of the minimal cardinality of an unbounded subset
of “w. This is true even for the version of g for groupwise dense ideals.

1. INTRODUCTION

In the present note we are interested in two cardinal characteristics of the con-
tinuum, the unbounded number b and the groupwise density number g. The former
cardinal belongs to the oldest and most studied cardinal invariants of the contin-
uum (see, e.g., van Douwen [vD84] and Bartoszyniski and Judah [BJ95]) and it is
defined as follows.

Definition 1.1. (a) The partial order <jba on “w is defined by
f<pag if and only if (IN < w)(Vn > N)(f(n) < g(n)).

(b) The unbounded number b is defined by
b = min{|F[: F C “w has no < pa—upper bound in “w}.

The groupwise density number g, introduced in Blass and Laflamme [BL89], is
perhaps less popular but it has gained substantial importance in the realm of car-
dinal invariants. For instance, it has been studied in connection with the cofinality
cf(Sym(w)) of the symmetric group on the set w of all integers, see Thomas [Tho98]
or Brendle and Losada [BL03]. The cardinal g is defined as follows.

Definition 1.2. (a) We say that a family A C [w]®° is groupwise dense when-
ever:
e BC A€ A, Be [w™ implies B € A, and
e for every increasing sequence (m; : i < w) € “w there is an infinite set
U C w such that J{[m;, mit1) : i €U} € A.
(b) The groupwise density number g is defined as the minimal cardinal 6 for
which there is a sequence (A, : @ < 6) of groupwise dense subsets of [w]™°
such that

(VB € [w]™) (3o < 0) (VA € A,) (B £* A).

(Recall that for infinite sets A and B, A C* B means A \ B is finite.)
The unbounded number b and groupwise density number g can be in either
order, see Blass [Bla89] and more Mildenberger and Shelah [MS02], [MS07], the
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latter article gives a bound on g. However, as we show in Theorem 2.2, g cannot
be bigger than b™.

We would like to thank Shimoni Garti and the anonymous referee for corrections.
Notation: Our notation is rather standard and compatible with that of classical
textbooks on Set Theory (like Bartoszyniski and Judah [BJ95]). We will keep the
following rules concerning the use of symbols.

(1) A, B,U (with possible sub- and superscripts) denote subsets of w, infinite
if not said otherwise.

(2) m,n, ¥ k,i,j are natural numbers.

(3) a,B8,7,9d,¢,&,C are ordinals, 0 is a cardinal.

2. THE RESULT

Lemma 2.1. For some cardinal § < b there is a sequence (B¢ : ( < 0, t € I¢)
such that:
(a) B € [w]™
(b) if ¢ <0 and s # t are from I¢, then B¢ s N B¢y is finite (so |Ic] < 2%0),
(c) for every B € [w]0 the set

{(¢,t): (<O & tel & BeyN B is infinite }
is of cardinality 2%,

Proof. This is a weak version of the celebrated base-tree theorem of Bohuslav Balcar
and Petr Simon with 6§ = h which is known to be < b, see Balcar and Simon [BS89,
3.4, pg.350]. However, for the sake of completeness of our exposition, let us present
a proof.

Let (f¢ : ¢ < b) be a < pa—increasing sequence of members of “w with no < jna—
upper bound in “w. Moreover we demand that each f; is increasing (clearly, this
does not change b). By induction on ¢ < b choose sets T¢ and systems (B¢, : ) €
Te41) such that:

(i) Te € ¢(2%) and if n € T¢4q then Be, € [w]™o,
(ii) if ne T and e < ¢, thenn [ e € T,
(iii) if ¢ is a limit ordinal, then

Te={ne@): (Ve<)(nleeT:) and (3A € [w]") (Ve < ¢)(A C* Beypern) }

(iv) if e < Cand n € Teq1, then Beyy ©F B. ppc41)s

(v) for n € Te4q and my < my from B, we have fe(m1) < ma,

(vi) if n € Te, then the set {B., : 7 < v € Tc41} is an infinite maximal
subfamily of

{Aewl™: (V6 <2)(AC Beyigern) }
consisting of pairwise almost disjoint sets.

It should be clear that the choice is possible. Note that for some limit { < b we
may have 7; = 0 (and then also T¢ = 0 for £ > (). Also, if we define Ty as in (iii),
then it will be empty (remember clause (v) and the choice of (f¢ : ¢ < b)).

The lemma will readily follow from the following fact.

(®) For every A € [w]™0 there is £ < b such that
|{77 € Tet1 2 Bey N A s infinite }\ = %o,
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To show (®) let A € [w]®° and define

S = U {neTe: (Ve <{)(AN B.y(e+1) is infinite )}.
¢<b
Clearly S is closed under taking the initial segments and () € S. By the “maximal”
in clause (vi), we have that
(®)1 if n € SN T where ¢ < b is non-limit or cf(¢) = Ry,
then (Iv)(n < v e Tey1 NS).
Now,
(®) if n» € S and lg(n) is non-limit or cf(fg(n)) = R, then there are <—
incomparable vy, 1 € S extending 7, i.e., n < vy and 1 < 4.
[Why? As otherwise S,, = {v € S : < v} is linearly ordered by <, so let p = |J.5,,.
It follows from (®); that £g(p) > £g(n) is a limit ordinal (of uncountable cofinality).
Moreover, by (iv)4(vi), we have that

tgn) <e<tg(p) = AN By piegem+n) = AN Bepi(ern)-
Hence, by (iii)+(ii), p € Trg(p) s0 necessarily £g(p) < b. Using (vi) again we may
conclude that there is p’ € S properly extending p, getting a contradiction.]
Consequently, we may find a system (1, : p € “72) C S such that for every

pEYT

o k</lyg(p) = MNpik <My, and

® 1),~(0); p—~(1) are <-incomparable.
For p € “»2 let ((p) = sup{lg(n,) : p < v € “>2}. Pick p such that ((p) is the
smallest possible (note that cf({(p)) = Rp). Now it is possible to choose a perfect
subtree T* of “~2 such that

velm(T™) = sup{lg(nun) : n <w}=((p).

We finish by noting that for every v € im(7™) we have that (J{n,, : n < w} €
Te(p) NS and there is n* € Te(py41 NS extending U{nun : 1 < w}. O

Theorem 2.2. g <b™.

Proof. Assume towards contradiction that g > b™.

Let (fo : @ < b) C “w be an < jpa-increasing sequence with no <jsa—upper
bound. We also demand that all functions f, are increasing and f,(n) > n for
n < w. Fix a list (mg : £ < 2%0) of all sequences m = (m; : i < w) such that 0 = mg
and m; +1 < mq1.

For oo < b we define:

($)1 M0 =0, Nait1 = fa(Na,:) (for i <w) and fig = (e 1 1 < w);

()2 N0 = (0,n402,N0,4,-..) = <ngl i < w) and 1L = (0,70,3, N5, Na,7y - -) =
(ng; 1 <w).

Observe that
()3 if M € “w is increasing, then for every large enough « < b we have:
() (3% <w)(mit1 < fa(m;)), and hence
(8) for at least one £ € {0,1} we have

(3% <w) (35 <w)([mi,mis1) C [ni,ju nﬁé,j+1))-

Now, for £ < 2% we put:
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(*)4 7(§) = min{or < b : (3% < w)(falmei) > meipr)}s
(¥)5 €(€) = min{l < 1: (3%i<w)(Fj<w)([mei,me,ir1) S [0 ) 5,08 ¢ 1)

. . 14 )4
(K)o U = {i <w: G <w)(Imesmeisn) C Q) 505 j0))H

Note that () is well defined by (a) of (%)3, and so also £(€) is well defined (by
(B) of (x)3). Plainly, L{i1 is an infinite subset of w. Now, for each ¢ < 280, we may
choose L{g so that

(%)7 Z/{E2 C Z/Ig is infinite and for any i; < iy from 1/152 we have

. 4 14
(3 <w)(me,ii+1 < ”w(é)),j & ”v(é)),jﬂ < Mgy ).

Let a function g : Z/{g — w be such that

£(&) £{(&)

2(€)7 M (€) g+1)"

Clearly, ge is well defined and one-to-one. (This is very important, since it makes
sure that the set ge[UZ] is infinite.)

(W)g i €U &ge(i)=7 = [mei,meir1) C[n

Fix a sequence B = (B¢, : ( < 0, t € I;) given by Lemma 2.1 (so # < b and B
satisfies the demands in (a)—(c) of 2.1). By clause 2.1(c), for every & < 2%0_ the set

{(¢,t): ¢ <O andt eI and By N ge[Uf] is infinite }
has cardinality continuum.

Now, for each 8 < b+ and & < 2% we choose a pair ((g¢,?g,¢) such that

(¥)o Cpe <Oandige € I¢,

($)10 By .15, N geUE] is infinite, and

(#)11 te & {taec:e<fore=¢& & a<p}.
To carry out the choice we proceed by induction first on & < 2%, then on 8 < b¥.
As there are 2% pairs ((,t) satisfying clauses (¥)g + (¥)10 whereas clause ()11
excludes < (b + [£]) x @ < 2% pairs (recalling that towards contradiction we are
assuming bt < g < 280), there is such a pair at each stage (3,£) € b x 2%,

Lastly, for 8 < b and & < 2% we let

($)12 Upe = 951[3@,57ta,s] m/’g
(it is an infinite subset of w) and we put

(*)iz Af e = U{lmesmeinr) 11 € Upe}, and

()12 Ag = {A € [w]*0: for some & < 280 we have A C Agg}.

By the choice of (mg : £ < 2%0), AE,g and Ag one easily verifies that for each
B<bt:

(%)15 Ap is a groupwise dense subset of [w]™°.
Since we are assuming towards contradiction that g > b, there is an infinite B C w
such that

(VB < bT)(3A € Ag)(B C* A).

Hence for every 8 < b™ we may choose £(3) < 2 such that B C* A+£(ﬁ). Now,

B
since v(£(8)) < b and (g ¢y < 0 < b and £(£(8)) € {0,1}, hence for some triple

(v*, C*, £*) we have that
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(®)1 the set
W= {B <bt: (7(£(ﬁ))7CB,&(B)ae(g(ﬁ))) = (’Y*’C*ag*)}

is unbounded in b*.
Note that if 5 € W then

(®)2 BC* AE&(B) = U {[mes),i»mea),it1) 11 €Ugea } C

B uE®)
U{ IS )5 e g 1) 25 = eqe) (i) for some i € Us ga)} €

£(&(8)) £(&(8))
U{ Y(EB)).5 T (E(B)), J+1) J€ B<B~e<5>vta,a<ﬁ>}'

[Why? By the choice of (3,£(8)), by (¥)13, and by (x)g as Dom(ge(g)) € Ug¢(s) €
Uéé(ﬁ); also remember (x)12.]

Also, for B € W we have £(£(8)) = €, ¥(€(8)) = 7* and C(B,£(8)) = C*, so it
follows from (®)s that

(®) BC*U{ NS s 7 J+1) jEBC*,tB,E(m}for every B € W.
Consequently, if 8 # « are from W, then the sets

U{ S . z ]+1) J € B, tﬁf(ﬁ)}and
U{nv g Moy J+1) J € Bee i Lo, g(a)

are not almost disjoint. Hence, as <n€*’j : j < w) is increasing, necessarily the sets
Bes iy s and Bex ¢, ., are not almost disjoint. So applying 2.1(b) we conclude

that g ¢(5) = ta,e(a)- But this contradicts 8 # « by (*)11, and we are done. d

Definition 2.3. We define a cardinal characteristic g; as the minimal cardinal ¢
for which there is a sequence (Z,, : a < ) of groupwise dense ideals of P(w) (i.e.,
T, C [w]® is groupwise dense and Z,, U[w]<™° is an ideal of subsets of w) such that

(VB S [w]NO)(EIa < 0) (VA € Aa) (B z* A).
Observation 2.4. 2% > g5 > 9.
Theorem 2.5. g; < b+.

Proof. We repeat the proof of Theorem 2.2. However, for f < bt the family
Ag C [w]=N0 does not have to be an ideal. So let Zz be an ideal on P(w) generated
by Ag (so also Zg is the ideal generated by {AEE 1€ < 2R} U [w]<No). Lastly, let
Ty =Ty \ [W] N,

Assume towards contradiction that B € [w]™ is such that (Va < b¥)(3A €
To)(B C* A). So for each f < b* we can find kg < w and £(8,0) < £(8,1) <...<
£(B,kg) < 2% such that B C* U{Aﬂ cBry k< ks}. Let D be a non-principal
ultrafilter on w to which B belongs. For each 3 < b™ there is k() < kg such that

AEE(B,k(ﬁ)) € D. As in the proof there for some (v*,(*, ¢*,k*, k(x)) the following

set is unbounded in bT:
W= {8 <bb: k(B)=k(x), ks = k", ve(ar) =7
Coretpnieny = ¢ and £(S(B. (*))) e}
As there it follows that:
(©) if B € W, then J{[nt. ;,nbe ;1) 15 € Be ity csn(ry,  Delongs to D.

But for § # o € W those sets are not almost disjoint whereas (¢*,t5¢(3,1(x))) 7#
(C*, ta,e(ak(+))) are distinct, giving us a contradiction. a
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