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Abstract. We deal here with colorings of the pair (µ+, µ), when µ is a
strong limit and singular cardinal. We show that there exists a coloring
c, with no refinement. It follows, that the properties of colorings of
(µ+, µ) when µ is singular, differ in an essential way from the case of
regular µ (although the identities may be the same).
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2 SHIMON GARTI AND SAHARON SHELAH

0. Introduction

Identities (or identifications) were first defined by Shelah in the late 60-s.
The purpose was dual. On the one hand, they may be used as a tool for
solving problems in model theory. On the other hand, there is interest in
them within the realm of set theory.

The basic connection between identities and questions of model theory
(especially the compactness question of various pairs of cardinals) or math-
ematical logic (like the subject of generalized quantifiers) is formulated in
[1]. It is used in a much more sophisticated context, in [3]. But here, we are
interested in pure set theoretical considerations.

Shelah proved, in the first part of [4] (i.e., §0 and §1), that the set of
identities ID2(µ

+, µ) has the property of 2-simplicity in the case of a regular
cardinal µ, such that µ = µ<µ. A natural example is the pair (ℵ1,ℵ0).

Now, one may ask if the assumption on µ is necessary. We shall prove here
that it can hardly be avoided. We will take a singular µ such that 2<µ = µ.
Even under that assumption, we will see that there exists c : [µ+]n → µ
which is not computable from any coloring d : [µ+]m → µ when m < n.

Let us describe now the structure of this article. In Section 1, we give
some definitions and basic facts about identities. In Section 2, we state the
main theorem and establish some preliminary results used in its proof. In
Section 3, we prove the main theorem, using methods of pcf theory. Our
proof will be independent of the value of 2µ.

Let us try to explain the idea. Assume κ = cf(µ) < µ. Let 〈λi : i < κ〉
be an increasing sequence of regular cardinals with limit µ. Let J = Jbd

κ

be the ideal of all the bounded subsets of κ. We use the assumption that
tcf(

∏
i<κ

λi, J) = µ+ to prove our main theorem. The fact that there exists

λ̄ = 〈λi : i < κ〉 such that tcf(
∏
i<κ

λi, J) = µ+ is a theorem of ZFC.

That brings us to a philosophical question about the meaning of analyzing
the magnitude of 2µ. It is clear that 2µ can be manipulated by forcing.
What do we do about this? In fact, several answers are possible. Pcf theory
suggests that asking about the size of 2µ is sometimes the wrong question.

Instead of looking at the value of 2µ, about which there is a vast variety of
consistency results, we should ask the right questions about the cardinality
of products of cardinals, divided by an ideal. Section 3 here exemplifies the
philosophical idea very well.
We offer our deepest thanks to the referee, for many helpful comments and
improvements.
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1. Definitions

The basic notion that we need, is identity:

Definition 1.1. (a) A partial identity s is a pair (a, e) = (Doms, es). a
is a finite set, and e is an equivalence relation on a subfamily of the
subsets of a.

We always require that e respects the cardinality of the subsets,
i.e. bec⇒ |b| = |c|.

(b) A full identity is an identity s = (a, e), where Dom(e) = P(a).
We might say just “identity”, instead of full identity.

One may wonder, why do we distinguish between full identities and partial
identities? Well, in many cases we are interested in colorings of the type
c : [λ]n → µ when n is constant. Analyzing those colorings helps us to
understand identities with e defined only on subsets of a with cardinality n.
Those are partial identities, of course.

Definition 1.2. Let (a, e) be an identity (or a partial identity). We say
that λ → (a, e)µ if for every function f : [λ]<ℵ0 → µ there is a one-to-one
mapping h : a→ λ, such that bec⇒ f(h′′(b)) = f(h′′(c)).

Notice, that the requirement of λ → (a, e)µ relates to every function f .
So, the next definition which depends only on the pair (λ, µ), makes sense:

Definition 1.3. ID(λ, µ) := {(a, e) : (a, e) is an identity, and λ→ (a, e)µ}
But we might be interested also in the identities of a specific function f :

Definition 1.4. Let f : [λ]<ℵ0 → µ be a function.
ID(f) := {(a, e) : (a, e) is an identity, and there exists a one-to-one mapping

h : a→ λ, such that bec⇒ f(h′′(b)) = f(h′′(c))}.
Notice that ID(λ, µ) =

⋂
{ID(f) : f is a function from [λ]<ℵ0 into µ}.

One of the basic tools for investigating identities is the notion of refine-
ment. The idea is to compute the values of a coloring c : [λ]n → µ, with a
coloring d : [λ]m → µ, when m < n.

Definition 1.5. Let m < n < ω, (λ, µ) a pair of infinite cardinals. Let
c : [λ]n → µ and d : [λ]m → µ be colorings. We say that d refines c, if:
For any α0, . . . , αn−1 < λ with no repetitions, and any β0, . . . , βn−1 < λ
with no repetitions, the condition (*) is satisfied. This means

(*) Suppose for every u ∈ [n]m, it is true that d({α` : ` ∈ u}) = d({β` :
` ∈ u}). Then c({α0, . . . , αn−1}) = c({β0, . . . , βn−1}).
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2. The main theorem

Let µ be a singular cardinal, µ = 2<µ, so µ is strong limit. We deal, in
this section, with the pair (µ+, µ). We state now the main theorem, proving
it in the next section.

Main Theorem 2.1. Assume:

(a) µ is a singular cardinal
(b) 2<µ = µ
(c) n ∈ [2, ω)

Then there is a coloring c : [µ+]n+1 → µ such that no d : [µ+]n → µ is a
refinement for c.

Before beginning the proof, let us recall the parallel situation for a regular
µ. If µ = µ<µ, and c : [µ+]<ℵ0 → µ is a coloring, then there is d : [µ+]2 → µ
which is a refinement of c. We don’t need the assumption of order on the
ordinals in the domain of c.

That theorem is the main claim in §1 of [4]. It follows, quite immediately,
that ID2(µ

+, µ) is 2-simple (Those notions are defined there). So here we
show that colorings of (µ+, µ), when µ is singular, behave much differently.

Let us go back to the claim. We shall start with a general lemma, which
asserts the existence of a bounding function under some reasonable assump-
tions.

Lemma 2.2. Let µ be a singular strong limit cardinal, and n ∈ [2, ω].
Then we can find θn < µ and gn : [θn]n → cf(µ) such that:

(*) For every f : [θn]n−1 → cf(µ) there exists uf ∈ [θn]n such that
v ∈ [uf ]n−1 ⇒ f(v) < gn(uf ).

Proof: Let κ = cf(µ), θ2 = κ+, and θn+1 = in−1(κ+) for every n ∈ [2, ω).
We prove this result by induction on n. We separate the proof into two

cases. In the first case n = 2, and then we build directly the desired g2,
using the fact that κ+ > κ. In the second case we consider n > 2, and we
use an induction hypothesis.
Case 1: n = 2.

So we need g2 : [κ+]2 → κ, which dominates any f : κ+ → κ. For ev-
ery α < κ+, let hα : α → κ be a one-to-one mapping. Define for every
α < β < κ+(= θ2) the following function:

g2({α, β}) = hβ(α).

Let us try to show that g2 is as required. Assume that f is a function
from κ+ into κ. By the pigeon hole principle, we can choose γ < κ such that
S := {α < κ+ : f(α) = γ} is of cardinality κ+. We choose also an ordinal
β∗ ∈ S such that |S ∩ β∗| = κ.

Notice that

|{{α, β∗} : g2({α, β∗}) ≤ γ}| = |{{α, β∗} : hβ∗(α) ≤ γ}| < κ,
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since γ < κ, β∗ is constant and hβ∗ is one-to-one. But |S ∩ β∗| = κ, so one
may choose α∗ ∈ S ∩ β∗ such that g2({α∗, β∗}) > γ.

On the other hand, f(α∗) = f(β∗) = γ (since both α∗ and β∗ were taken
from S). Define uf = {α∗, β∗}, and we are done.

Case 2: n > 2.
By the induction hypothesis, θ` and g` : [θ`]

` → κ satisfy the lemma for
` = n− 1.

Let 〈f ′α : α ∈ [θ`, θn)〉 enumerate all the functions from [θn]n−1 into κ.
Define gn : [θn]n → κ as follows. If α0, . . . , αn−2 < θ` ≤ αn−1 < θn, then let
gn({α0, . . . , αn−1}) be

max{f ′αn−1
({α0, . . . , αn−2}) + 1, g`({α0, . . . , αn−2})}.

In any other case, let gn be zero.
We will show that (gn, θn) satisfies the claim. For this, assume f is a

function from [θn]n−1 into κ. Clearly, f�[θ`]n−1 appears in the enumeration
above. Let α∗ ∈ [θ`, θn) be an ordinal such that f�[θ`]n−1 ≡ f ′α∗ . Define

f− : [θ`]
`−1 → κ as follows:

(∀v ∈ [θ`]
`−1)(f−(v) = f(v ∪ {α∗})).

By the induction hypothesis, there exists uf− = {α0, . . . , α`−1} as required

for ` and g`, i.e., if vm = uf− \ {αm} for every m ≤ ` − 1 then f−(vm) <
g`(uf−). At last, we can define uf := uf− ∪ {α∗}. We claim that uf is as
required.

(∗)1 m ≤ `− 1⇒ f(vm ∪{α∗}) = f−(vm) < g`(uf−) ≤ gn(uf− ∪{α∗}) =
gn(uf ).

(∗)2 f(uf−) = f ′α∗(uf−) < gn(uf− ∪ {α∗}) = gn(uf ).

So, again, we are done. �2.2

Moving back to the the main theorem, we try to create a coloring c with
no refinement. It is, somehow, more convenient to work with functions that
encode the information that the refinement captures, instead of dealing with
the refinement itself. That’s the idea behind the next lemma.

Lemma 2.3. Let µ be an infinite cardinal, c : [µ+]n+1 → µ a coloring, and
d : [µ+]n → µ a refinement of c.

One can find F : [µ+]n+1 → µ such that if α0, . . . , αn < µ with no repe-
titions, and for 0 ≤ ` ≤ n we write d({α0, . . . , αn} \ {α`}) = γ` < µ, then
F (γ0, . . . , γn) = c({α0, . . . , αn}).

Proof:
Let E be the equivalence relation that is determined by c, i.e.,

{α0, . . . , αn}E{β0, . . . , βn} iff c({α0, . . . , αn}) = c({β0, . . . , βn}).
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For any equivalence class of E, choose a representative. If {α0, . . . , αn} ∈
[µ+]n+1, define γα` = d({α∗0, . . . , α∗n} \ {α∗`}) when {α∗0, . . . , α∗n} is the repre-
sentative of the equivalence class {α0, . . . , αn}/E.

Define F (γα0 , . . . , γ
α
n ) = c({α0, . . . , αn}) whenever {α0, . . . , αn} ∈ [µ+]n+1.

For every other (n+ 1)-tuple ∈ [µ+]n+1, define F to be zero. One can verify
easily that F is well-defined and satisfies the requirements above, because
of the assumption that d refines c.

[Let us explain more thoroughly why F is a well-defined function from
[µ+]n+1 into µ. Assume 〈γ0, . . . , γn〉 belongs to [µ+]n+1. Choose a repre-
sentative for every equivalence class of E. We split the definition into two
cases.

In the first case, there is no representative of the form {α∗0, . . . , α∗n} such
that

d({α∗0, . . . , α∗n} \ {α∗`}) = γ` for every 0 ≤ ` ≤ n.
In that case, we have defined F (γ0, . . . , γn) = 0. Notice that a different
choice of the representatives would not change this fact, so F is well-defined
in that case.

In the other case, there is a representative {α∗0, . . . , α∗n} such that

d({α∗0, . . . , α∗n} \ {α∗`}) = γ`, for any 0 ≤ ` ≤ n.
We show that the definition of F does not depend on the way that we

choose the representatives. Suppose that we choose {β∗0 , . . . , β∗n} as a rep-
resentative of the same equivalence class, and d({β∗0 , . . . , β∗n}\{β∗` }) = γ`
for every 0 ≤ ` ≤ n. It means that for every u ∈ [n + 1]n we have
d({α∗` : ` ∈ u}) = d({β∗` : ` ∈ u}). By Definition 1.5, we must in-
fer that c({α∗0, . . . , α∗n}) = c({β∗0 , . . . , β∗n}). This fact enables us to define
F (γ0, . . . , γn) = c({α∗0, . . . , α∗n}) without any problem of ambiguity. So F is
well-defined also in that case].

�2.3

Remark 2.4. The (n+1)-tuples in the domain of F might be with repetitions.
So we write F (γ0, . . . , γn) and not F ({γ0, . . . , γn}). We observe also that F
is symmetric, i.e., its value does not depend on the order of the ordinals in
the (n+ 1)-tuple.
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3. the pcf advantage

Theorem 3.1. Assume:

(a) µ is a singular cardinal.
(b) 2<µ = µ.
(c) m ∈ [2, ω).

Then there exists c : [µ+]m+1 → µ such that no d : [µ+]m → µ refines it.

Proof: Denote κ = cf(µ) < µ, and θ = θm = im−2(κ+). Let J = Jbd
κ , the

ideal of bounded subsets of κ. By [2] (see Main Claim 1.3 in Chapter II), we
can choose an increasing sequence of regular cardinals 〈λi : i < κ〉, θ < λ0
and µ =

⋃
i<κ

λi, such that µ+ = tcf(
∏
i<κ

λi, J).

Let 〈g∗α : α < µ+〉 exemplify it. We may assume that the sequence of
the g∗α-s is strictly increasing. We are going to define a coloring with no
refinement, using the g∗α-s. But we need some other functions.

(∗)0 Let f̄θ = 〈fθα : α < µ+〉 be a sequence of functions such that:
(a) fθα : [θ]m → κ, for any α < µ+.
(b) For every f : [θ]m → κ, we have:

µ+ = sup{α : fθα = f}.

(The meaning of (b) is that every fθα appears µ+ times in the se-
quence. It enables us to pick a specific function from a high enough
level in the sequence).

(∗)1 Let h : [θ]m → κ be a dominating function, as given in Lemma 2.2,
i.e., for every g : [θ]m−1 → κ, there exists vg ∈ [θ]m such that

(∀γ ∈ vg)[g(vg \ {γ}) < h(vg)].

Now, denote n = m+ 1, and define c : [µ+]n → µ as follows:
(i) If v ∈ [θ]m and α ∈ [θ, µ+), then

c(v ∪ {α}) := g∗α(max{h(v), fθα(v)}+ 1) + 1.

(ii) For any u ∈ [µ+]n that doesn’t fall in (i), define c(u) = 0.

Assume towards a contradiction that d : [µ+]m → µ refines c. By
Lemma 2.3, there is F : [µ+]n → µ which computes c from the values
of d. We will reach the desired contradiction using F . We need some
more functions:

(∗)2 For every j < κ and any α < µ+, we define f∗α,j : [θ]m−1 → κ as
follows:

f∗α,j(v) = min{i < κ : i > j and λi > d(v ∪ {α})}.

(∗)3 Let f∗∗ : [θ]m → κ be defined by:

f∗∗(v) = min{i < κ : d(v) < λi}.

We add also some functions of a different form:
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(∗)4 Define g′ ∈
∏
i<κ

λi by

g′(k) = sup{λk ∩ Rang(d�[θ]m)} ∪
⋃
j<k

λj .

(∗)5 Define g′′ ∈
∏
i<κ

λi by

g′′(k) = g′(k) ∪ sup{λk ∩ Rang(F �[g′(k)]n)}.
Everything is ready now. Since g′′ ∈

∏
i<κ

λi, we can pick an ordinal α0 < µ+

such that g′′ <J g∗α0
. By (∗)0, we can choose an ordinal α1 ∈ [θ, µ+),

α0 < α1 < µ+, such that fθα1
≡ f∗∗. Clearly, g′′ <J g

∗
α1

, so by the nature of
the ideal J , there exists j(∗) < κ such that

g′′�[j(∗), κ) < g∗α1
�[j(∗), κ).

Choose v∗ ∈ [θ]m such that for every γ ∈ v∗ it is true that f∗α1,j(∗)(v∗\{γ}) <
h(v∗) (v∗ exists, by (∗)1).
From the definition of f∗α1,j(∗), it follows that

�0 γ ∈ v∗ ⇒ d((v∗ \ {γ}) ∪ {α1}) < λf∗
α1,j(∗)

(v∗\{γ}) < λh(v∗).

Let i(∗) = max{h(v∗), f
θ
α1

(v∗)}. By the definition of the f∗-s,
γ ∈ v∗ ⇒ j(∗) < f∗α1,j(∗)(v∗\{γ}), and since f∗α1,j(∗)(v∗\{γ}) < h(v∗),

we know that j(∗) < h(v∗). So j(∗) < i(∗). We need this for
bounding the values of the coloring d, because �0 implies now that

�1 γ ∈ v∗ ⇒ d((v∗ \ {γ}) ∪ {α1}) < λh(v∗) ≤ λi(∗).
This fact tells us what happens if we drop one ordinal from v∗,

adding α1 instead. We also know what happens if we omit α1 and
keep v∗:

�2 d(v∗ ∪ {α1} \ {α1}) = d(v∗) < λf∗∗(v∗) = λfθα1 (v∗)
≤ λi(∗).

This follows from the definition of f∗∗ in (∗)3, and the choice of α1,
which implies that fθα1

≡ f∗∗.
We can finish the proof now, as follows. Define:

W := {F (ζ0, . . . , ζn−1) : ζ0 < . . . < ζn−1 < λi(∗)},

W+ := {F (ζ0, . . . , ζn−1) : ζ0 < . . . < ζn−1 < g′(i(∗) + 1)},
and get W ⊆W+ and also W+ ∩ λi(∗)+1 ⊆ g′′(i(∗) + 1) (By (∗)4 and (∗)5).

By virtue of F ′s definition, we have c(v∗∪{α1}) ∈W+. On the other hand,
by the choice of c in (i) of (∗)1, c(v∗∪{α1}) = g∗α1

(max{h(v∗), f
θ
α1

(v∗)}+1)+
1 = g∗α1

(i(∗)+1)+1 < λi(∗)+1. So c(v∗∪{α1}) ∈W+∩λi(∗)+1 ⊆ g′′(i(∗)+1).
But j(∗) < i(∗) + 1, so g′′(i(∗) + 1) < g∗α1

(i(∗) + 1) + 1, a contradiction.

�3.1

Remark 3.2. (a) Combine Theorem 3.1 with the main claim of [§1] from
[4], and one has (almost) a full picture for the pair (µ+, µ).
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(b) One may wonder about the assumption 2<µ = µ. As a matter of fact,
the proof of 3.1 depends only on the fact that θ = im−2(κ+) < µ.
Of course, we want this for every m < ω, but this is still a weaker
assumption.

(c) We can also ask what happens for other pairs of cardinals. We will
try, in a subsequent paper, to shed light on the pair (µ+n, µ).
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