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TIE-POINTS AND FIXED-POINTS IN N*

ALAN DOW AND SAHARON SHELAH

ABSTRACT. A point z is a (bow) tie-point of a space X if X \ {z}
can be partitioned into (relatively) clopen sets each with = in its
closure. Tie-points have appeared in the construction of non-trivial
autohomeomorphisms of SN\N (e.g. [10, 8]) and in the recent study
of (precisely) 2-to-1 maps on SN\ N. In these cases the tie-points
have been the unique fixed point of an involution on SN\ N. This
paper is motivated by the search for 2-to-1 maps and obtaining
tie-points of strikingly differing characteristics.

1. INTRODUCTION

A point z is a tie-point of a space X if there are closed sets A, B
of X such that {x} = AN B and x is an adherent point of each of
A and B. We picture (and denote) this as X = A DI B where A, B
are the closed sets which have a unique common accumulation point x
and say that x is a tie-point as witnessed by A, B. Let A =, B mean
that there is a homeomorphism from A to B with = as a fixed point.
If X = A ><IB and A =, B, then there is an involution F' of X (i.e.

F? =F) such that {z} = fix(F). In this case we will say that x is a
symmetric tie-point of X.

An autohomeomorphism F of SN\ N (or N*) is said to be trivial if
there is a bijection f between cofinite subsets of N such that F' = f |
AN\ N. If F' is a trivial autohomeomorphism, then fix(F") is clopen;
so of course SN\ N will have no symmetric tie-points in this case if all
autohomeomorphisms are trivial.

If A and B are arbitrary compact spaces, and if x € A and y € B
are accumulation points, then let A E:qy B denote the quotient space of
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A @® B obtained by identifying x and y and let xy denote the collapsed
point. Clearly the point zy is a tie-point of this space.
We came to the study of tie-points via the following observation.

Proposition 1.1. If z,y are symmetric tie-points of SN\ N as wit-
nessed by A, B and A’, B' respectively, then there is a 2-to-1 mapping
from BN\ N onto the space A > B'.

The proposition holds more generally if x and y are fixed points of
involutions F, F' respectively. That is, replace A by the quotient space
of SN\ N obtained by collapsing all sets {z, F|(z)} to single points
and similary replace B’ by the quotient space induced by F’. It is an
open problem to determine if 2-to-1 continuous images of SN \ N are
homeomorphic to SN \ N [5]. It is known to be true if CH [3] or PFA
2] holds.

There are many interesting questions that arise naturally when con-
sidering the concept of tie-points in SN\ N. Given a closed set A C
BNA\N, let Zy = {a € N:a* C A} . Given an ideal Z of subsets of
Nylet ZH={bCN:VaeZ)anb="0}and Z™ = {d C N: (Va €
I)d\a¢Z"}. IfJ C [N let & =,c;P(J). Say that 7 C T is
unbounded in Z if for each a € Z, there is a b € J such that b\ a is
infinite.

Definition 1.1. If Z is an ideal of subsets of N, set c¢f(Z) to be the
cofinality of Z; b(Z) is the minimum cardinality of an unbounded family
in Z; §(Z) is the minimum cardinality of a subset J of Z such that J+
is dense in 7.

If BN\ N = A > B, then Zp = Z; and z is the unique ultrafilter

on N extending Z NZ}t. The character of z in AN\ N is equal to the
maximum of c¢f(Z4) and cf(Zp).

Definition 1.2. Say that a tie-point = has (i) b-type; (ii) d-type; re-
spectively (iii) bd-type, (x, A) if BN\N = A > B and (k, A) equals: (i)
(6(Z4),b(Zp)) (ii) (0(Za),0(Zp)); and (iii) each of (b(Z4),b(Zp)) and
(0(Z4),0(Zp)). We will adopt the convention to put the smaller of the
pair (K, A) in the first coordinate.

Again, it is interesting to note that if = is a tie-point of b-type (k, \),
then it is uniquely determined (in SN\ N) by A many subsets of N since
x will be the unique point extending the family ((Ja)¥)™ N ((Jz)¥)"
where J4 and Jp are unbounded subfamilies of 74 and Zp.

Question 1.1. Can there be a tie-point in SN\ N with é-type (x, A)
with £ < A less than the character of the point?
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Question 1.2. Can SN \ N have tie-points of d-type (wi,w;) and
(wa,wa)?

Proposition 1.2. If GN\ N has symmetric tie-points of d-type (k, k)
and (X, X), but no tie-points of §-type (k, \), then SN\ N has a 2-to-1
image which is not homeomorphic to SN\ N.

One could say that a tie-point = was radioactive in X (i.e. 4) if
X \ {z} can be similarly split into 3 (or more) relatively clopen sets
accumulating to z. This is equivalent to X = A DI B such that x is a
tie-point in either A or B.

Each point of character w; in SN\ N is a radioactive point (in partic-
ular is a tie-point). P-points of character w; are symmetric tie-points
of bé-type (wy,wy), while points of character w; which are not P-points
will have b-type (w,w;) and 0-type (wy,wq). If there is a tie-point of
b-type (k, \), then of course there are (k, A)-gaps. If there is a tie-point
of 6-type (K, A), then p < k.

Proposition 1.3. If BN\ N= A >IB, then p < §(Za).

Proof. If J C I, has cardinality less than p, there is, by Solovay’s
Lemma (and Bell’s Theorem) an infinite set C' C N such that C' and
N\C each meet every infinite set of the form J\ (|J J’) where {J}UJ’ €
[J]=¥. We may assume that C' ¢ x, hence there are a € Z4 and b € Zp
such that C' C aUb. However no finite union from J covers a showing
that J+ can not be dense in Z4. OJ

Although it does not seem to be completely trivial, it can be shown
that PFA implies there are no tie-points (the hardest case to eliminate
is those of b-type (w1, w))).

Question 1.3. Does p > w; imply there are no tie-points of b-type
(wl, w1>?

Analogous to tie-points, we also define a tie-set: say that K C SN\N
is a tie-set if SN\ N = A PdB and K = ANB, A= A\K, and
B = B\ K. Say that K is a symmetric tie-set if there is an involution
F such that K = fix(F') and F[A] = B.

Question 1.4. If F'is an involution on SN\ N such that K = fix(F')
has empty interior, is K a (symmetric) tie-set?

Question 1.5. Is there some natural restriction on which compact
spaces can (or can not) be homeomorphic to the fixed point set of
some involution of SN\ N?

Again, we note a possible application to 2-to-1 maps.
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Proposition 1.4. Assume that F is an involution of SN \ N with
K = fix(F) # 0. Further assume that K has a symmetric tie-point x
(i.e. K=A >AIB), then BN\ N has a 2-to-1 continuous image which
has a symmetric tie-point (and possibly SN \ N does not have such a
tie-point).

Question 1.6. If F' is an involution of N*, is the quotient space N*/F’
(in which each {x, F'(z)} is collapsed to a single point) a homeomorphic
copy of SN\ N7

Proposition 1.5 (CH). If F is an involution of SN \ N, then the
quotient space N*/F' is homeomorphic to SN\ N.

Proof. 1f fix(F') is empty, then N*/F is a 2-to-1 image of SN \ N, and
so is a copy of SN\ N. If fix(F’) is not empty, then consider two copies,
(N3, F1) and (N3, F3), of (N*, F'). The quotient space of Nj/F; @ N;/F,
obtained by identifying the two homeomorphic sets fix(F}) and fix(F3)
will be a 2-to-1-image of N*, hence again a copy of N*. Since N\ fix(F})
and N3 \ fix(Fy) are disjoint and homeomorphic, it follows easily that
fix(F') must be a P-set in N*. It is trivial to verify that a regular closed
set of N* with a P-set boundary will be (in a model of CH) a copy of
N*. Therefore the copy of Ni/F} in this final quotient space is a copy
of N*. O

2. A SPECTRUM OF TIE-SETS

We adapt a method from [1] to produce a model in which there are
tie-sets of specified bd-types. We further arrange that these tie-sets will
themselves have tie-points but unfortunately we are not able to make
the tie-sets symmetric. In the next section we make some progress in
involving involutions.

Theorem 2.1. Assume GCH and that A is a set of reqular uncountable
cardinals such that for each X € A, Ty is a <A-closed \*-Souslin tree.
There is a forcing extension in which there is a tie-set K (of b-type
(¢,c)) and for each \ € A, there is a tie-set Ky of bd-type (AT, AT) such
that K N Ky is a single point which is a tie-point of K. Furthermore,
foruw < X<, if p# X or A& A, then there is no tie-set of bi-type

(ks A).-

We will assume that our Souslin trees are well-pruned and are ever
w-ary branching. That is, if Ty is a AT-Souslin tree, we assume that
for each t € T, t has exactly w immediate successors denoted {t™¢ :
¢ € w} and that {s € T) : t < s} has cardinality AT (and so has
successors on every level). A poset is <k-closed if every directed subset
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of cardinality less than x has a lower bound. A poset is <x-distributive
if the intersection of any family of fewer than x dense open subsets is
again dense. For a cardinal pu, let ©= be the minimum cardinal such
that (u=)" > p (i.e. the predecessor if p is a successor).

The main idea of the construction is nicely illustrated by the follow-
ing.

Proposition 2.2. Assume that BN\N has no tie-sets of bo-type (K1, K2)
for some k1 < Ky < ¢. Also assume that Xt < ¢ is such that \*
is distinct from one of ki,ke and that Ty is a AT-Souslin tree and
{(ay, x4, b)) : t € To} C (IN]¥)? satisfy that, for t < s € Th:

(1) {a¢, s, bi} is a partition of N,

(2) zp~jNap~g =0 for j <,

(3) zs C* x4y, ay C* ag, and by C* by,

(4) for each € € w, xp—~p11 C* ap~p and Ty~pyo C* by,

then if p € [T\]*" is a generic branch (i.e. p(a) is an element of the
a-th level of Ty for each o € X\T), then K, = () )+ Thy 18 a tie-set of
BN\ N of b-type (AT, A1), and there is no tie-set of bo-type (K1, Ka2).
(5) Assume further that {(ae, xe, be) - £ € ¢} is a family of partitions
of N such that {z¢ : £ € ¢} is a mod finite descending family
of subsets of N such that for each Y C N, there is a maximal
antichain Ay C T\ and some & € ¢ such that for each t € Ay,
xNxg is a proper subset of either Y or N\Y', then K = (., o}
meets K, in a single point zy.
(6) If we assume further that for each & < n < ¢, ag C* a, and
be C* by, and for each t € Ty, n may be chosen so that x; meets
each of (a, \ ag) and (b, \ b¢), then zy is a tie-point of K.

Proof. To show that K, is a tie-set it is sufficient to show that K, C
Users @ NUgers b7 Since Ty is a AT-Souslin tree, no new subset of A
is added when forcing with T. Of course we use that p is T}, is generic,
so assume that ¥ C N and that some t € T} forces that Y* N K, is not
empty. We must show that there is some ¢ < s such that s forces that
asNY and by NY are both infinite. However, we know that x;~, NY
is infinite for each ¢ € w since ™0 IFy, “K, C x;-,”. Therefore, by
condition 4, for each ¢ € w, Y Na;~, and Y N b;~, are both infinite.
Now let k1, ke be regular cardinals at least one of which is distinct
from AT. Recall that forcing with T preserves cardinals. Assume that
in V[p], K C N* and N* = C P4 D with b(Z¢) = §(Zc) = k1 and
b(Zp) = 6(Ip) = ke. In V, let {c, : v € K1} be Th-names for the
increasing cofinal sequence in Z¢o and let {d; : £ € Ko} be Th-names for
the increasing cofinal sequence in Zp. Again using the fact that T) adds
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no new subsets of N and the fact that every dense open subset of T
will contain an entire level of T, we may choose ordinals {c, : v € K1}
and {f¢ : £ € Ky} such that each ¢t € T), if ¢ is on level «., it will force a
value on ¢, and if ¢ is on level f; it will force a value on de. If £y < AT,
then sup{a, : v € K1} < A%, hence there are t € Ty which force a
value on each ¢,. If AT < Ky, then there is some § < AT, such that
{€ € Ky : Be < B} has cardinality ky. Therefore there is some ¢ € T)
such that ¢ forces a value on d; for a cofinal set of § € k. Of course, if
neither k1 nor x5 is equal to A, then we have a condition that decided
cofinal families of each of Zo and Zp. This implies that N* already has
tie-sets of bo-type (K1, k2).

If k1 < ke = AT, then fix ¢ € T deciding € = {¢, : v € K1}, and let
D={dCN:(3Is>t)slp, “d* C D"}. It follows easily that ® = €*.
But also, since forcing with 7 can not raise b(®) and can not lower
d(D), we again have that there are tie-sets of bd-type in V.

The case k1 = AT < kg is similar.

Now assume we have the family {(ag, z¢,b¢) 1 € € ¢} as in (5) and
(6) and set K = (25, A= {K}UU{a; : § € ¢}, and B = {K} U
U{b : € € ¢}. It is routine to see that (5) ensures that the family
{xeNxpa) 1 & € c and o € AT} generates an ultrafilter when p meets
each maximal antichain Ay (Y C N). Condition (6) clearly ensures
that A\ K and B\ K each meet (z¢ N x,))* for each £ € ¢ and
a € A, Thus AN K, and B N K, witness that z, is a tie-point of
K, 0

Let 6 be a regular cardinal greater than A* for all A € A. We will
need the following well-known Easton lemma (see [4, p234]).

Lemma 2.3. Let o be a reqular cardinal and assume that Py is a
poset satisfying the p-cc. Then any <p-closed poset P, remains <p-
distributive after forcing with Py. Furthermore any <p-distributive
poset remains <p-distributive after forcing with a poset of cardinality
less than .

Proof. Recall that a poset P is <pu-distributive if forcing with it does
not add, for any v < p, any new ~-sequences of ordinals. Since P,
is <p-closed, forcing with P, does not add any new antichains to P;.
Therefore it follows that forcing with P, preserves that P, has the u-cc
and that for every v < u, each v-sequence of ordinals in the forcing
extension by P, x P is really just a P-name. Since forcing with P; x Py
is the same as P, x P;, this shows that in the extension by Pj, there
are no new P,-names of vy-sequences of ordinals.
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Now suppose that P, is u-distributive and that P, has cardinality
less than u. Let D be a Pi-name of a dense open subset of P,. For
each p € P, let D,, C P5 be the set of all ¢ such that some extension of
p forces that ¢ € D. Since p forces that D is dense and that D C D,,
it follows that D, is dense (and open). Since P, is u-distributive,
ﬂpe p, Dy is dense and is clearly going to be a subset of D. Repeating
this argument for at most g many Pj-names of dense open subsets of
P, completes the proof. U

We recall the definition of Easton supported product of posets (see
[4, p233)).

Definition 2.1. If A is a set of cardinals and {Py : A € A} is a set
of posets, then we will use Il cp P\ to denote the collection of partial
functions p such that

(1) dom(p) C A,

(2) |dom(p) N u| < p for all regular cardinals ,

(3) p(A) € Py for all A € dom(p).

This collection is a poset when ordered by ¢ < p if dom(q) D dom(p)
and g(A) < p(A) for all A € dom(p).

Lemma 2.4. For each cardinal i, Hycpy,+ Ty s <p™-closed and, if p
is reqular, Ilxean, T has cardinality at most 2<* < min(A \ p).

Lemma 2.5. If P is ccc and G C P x I eaT) is generic, then in V|G|,
for any p and any family A C [N]* with |A| = p:
(1) if p < w, then A is a member of V|G N Pl;
(2) if uw = AT XN € A, then there is an A" C A of cardinality \*
such that A" is a member of V|G N (P x T))];
(3) if u= ¢ A, then there is an A" C A of cardinality p which is a
member of V|G N PJ.

Corollary 2.6. If P is ccc and G C P x IlyepaT) is generic, then for
any k < < ¢ such that either k # u or k & {\T : X € A}, if there
is a tie-set of bo-type (k,p) in V[G], then there is such a tie-set in
V[G N P].

Proof. Assume that SN\ N = A DI B in V[G] with u = b(A) and
A =b(B). Let J4 C Z4 be an increasing mod finite chain, of order type
1, which is dense in Z4. Similarly let Jg C Zg be such a chain of order
type A\. By Lemma 2.5, J4 and Jp are subsets of [N]*NV[GNP] = [N]~.
Choose, if possible u; € A such that puf = p and A\; € A such that
AT = \. Also by Lemma 2.5, we can, by passing to a subcollection,
assume that J4 € V[GN(P xT),,)] (if there is no 4, then let 7),, denote
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the trivial order). Similarly, we may assume that Jp € V[GN(P xT),)].
Fix a condition ¢ € G C (P x HyeaTy) which forces that (Ja)t is a
C-dense subset of Z4, that (Jp)* is a C-dense subset of Zp, and that
(Zy)*+ =Ip.

Working in the model V[G N P] then, there is a family {a, : o € u}
of T),,-names for the members of J4; and a family {bs : § € A} of
Ty,-names for the members of Jp. Of course if 4 = X and T}, is the
trivial order, then J4 and Jp are already in V|G N P] and we have our
tie-set in V[G N P].

Otherwise, we assume that pu; < A;. Set A to be the set of all
a C N such that there is some ¢(p1) <t € T,, and a € p such that
tlFg, “a=a,”. Similarly let B be the set of all b C N such that there
is some q(A\;) < s € Ty, and B € A such that s I, “b= bs". Tt follows
from the construction that, in V[G], for any (a/,b") € Ja x Jg, there
is an (a,b) € A x B such that o’ C* @ and v’ C* b. Therefore the ideal
generated by A U B is certainly dense. It remains only to show that
B C (A)*. Consider any (a,b) € A x B, and choose (q(i1),q(\1)) <
(t,s) € Ty, x Ty, such that tl-r, “a € J4” and s b, “b € Jp7. 1t
follows that for any condition ¢ < g with ¢ € (P x xeaTh), q(u1) = t,
q(A1) = s, we have that

qIF(Pxiiyeary) “a € Jaand b€ Jp7 .

It is routine now to check that, in V|G N P|, A and B generate ideals
that witness that ({(N\ (aUb))* : (a,b) € Ax B} is a tie-set of bd-type

(12, A). O

Let T be the rooted tree {0} U [J,c, 7\ and we will force an em-
bedding of 7" into P(N) mod finite. In fact, we force a structure
{(at,z¢,b;) : t € T} satisfying the conditions (1)-(4) of Proposition
2.2.

Definition 2.2. The poset )y is defined as the set of elements g =
(n?, 719, f9) where n? € N, T € [T]<%, and f?: n? x T9 — {0,1, 2}.
The idea is that z; will be J,o{j € n? : fI(j,t) = 0}, a; will be
Ugecti € n? 1 f9(5,t) = 1} and by = N\ (a; Uz;). We set ¢ < p if
n? >nP, T9 > TP, f1 D fPand for t,s € TP and i € [nP,n9)

(1) if t < s and fi(i,t) € {1,2}, then fi(i,s) = f(i,t);

(2) if t < s and f9(i,s) =0, then fi(i,t) = 0;

(3) if t L s, then f9(i,t) + f9(i,s) > 0.

(4) if j € {1,2} and{t" ¢, t~(¢+5)} € TP and fi(i,t~ (L + 7)) = 0,

then fi(i,t0) = j.

The next lemma is very routine but we record it for reference.
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Lemma 2.7. The poset Qg is ccc and if G C Qq is generic, the family
Xr = {(ar, x4, b)) : t € T} satisfies the conditions of Proposition 2.2.

We will need some other combinatorial properties of the family A7r.

Definition 2.3. For any T € [T]<“, we define the following (Qq-
names).

(1) fori €N, [i] ={j eN: (VteT) i€z iff j € x,},

(2) the collection fin(T') is the set of [i]; which are finite.

We abuse notation and let fin(7") C n abbreviate fin(7") C P(n).

Lemma 2.8. For each ¢ € Qq and each T C T, fin(T) C n? and for
i > ny, [i]¢ is infinite.

Definition 2.4. A sequence Sy = {(ag, x¢,be) : £ € W} is a tower of
T-splitters if for E <npe W and t € T

(1) {ag, e, be} is a partition of N,

(2) Qg - apy, bg - bn,

(3) @ N ¢ is infinite.

Definition 2.5. If Sy is a tower of T-splitters and Y is a subset N,
then the poset Q(Sw,Y) is defined as follows. Let Ey be the (possibly
empty) set of minimal elements of T such that there is some finite H C
W such that 2, NY N,y T¢ is finite. Let Dy = By = {t € T : (Vs €
Ey)t L s}. A condition q € Q(Sw,Y) is a tuple (n?,a?, 27,09, 79, H?)
where

(1) n? € N and {a%, 29,07} is a partition of n?,

(2) T9 € [T]<% and H? € [W]<¥,

(3) (ag \ ay), (b \ by), and (z, \ z¢) are all contained in n? for

E<ne Hi.

We define ¢ < p to mean n? < n?, TP C T HP C HY, and

(4) for t €e TP N Dy, x; N (29 \ 2P) C Y,

(5) 9\ a? C (e po e,

(6) a?\ a? is disjoint from byax(sr),

(7) b9\ bP is disjoint from amax(mr)-

Lemma 2.9. If W C ~, Sy is a tower of T-splitters, and if G is
Q(Sw,Y)-generic, then SwU{(a, z,,b,)} is also a tower of T-splitters
where a, = |J{a, : ¢ € G}, ©y = U{zy : ¢ € G}, and b, = J{b, : ¢ €
G}. In addition, for eacht € Dy, vy Nxe C*Y (and xyNwe C*N\Y
forte Ey).

Lemma 2.10. If W does not have cofinality wy, then Q(Sw,Y) is
o-centered.
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As usual with (w1, ws)-gaps, Q(Sw,Y) may not (in general) be ccc
if W has a cofinal w; sequence.

Let 0 ¢ C' C 6 be cofinal and assume that if C'N+ is cofinal in v and
cf(y) = wq, then v € C.

Definition 2.6. Fix any well-ordering < of H(6). We define a fi-
nite support iteration sequence {Pﬂy,Q7 :y €0} C H(f). We abuse
notation and use Qp rather than Qy from definition 2.2. If v ¢ C,
then let Qﬂ, be the <-least among the list of P,-names of ccc posets in
H(O)\ {Q¢ : € € v} If v € C, then let Y, be the <-least P,-name of
a subset N which is in H(0) \ {Y : £ € C N ~}. Set Q, to be the P,
name of Q(Scny, YW) adding the partition {a., ., bv} and, where Scny
is the P,-name of the T-splitting tower {(ag,z¢,be) : & € C Ny}

We view the members of Py as functions p with finite domain (or
support) denoted dom(p).

The main difficulty to the proof of Theorem 2.1 is to prove that the
iteration Py is ccc. Of course, since it is a finite support iteration, this
can be proven by induction at successor ordinals.

Lemma 2.11. For each v € C such that C' N~ has cofinality wy, Pyiq
18 ccc.

Proof. We proceed by induction. For each «, define p € P if p € P,
and there is an n € N such that
(1) for each B € dom(p) N C, with H? = dom(p) N C N 3, there
are subsets a?, 27, 0% of n and T? € [T]< such that p | 3 IFp,
“p(B) = (n,a?, 28, 0%, T8, H?)”
Assume that Pj is dense in Ps and let p € Pgyq. To show that P, is
dense in Pgy; we must find some p* < pin Pj,,. If 3 ¢ C and p* € P;
is below p [ 8, then p* U{(8, p(3)} is the desired element of P;,,. Now
assume that § € C' and assume that p [ § € Pj and that p [ § forces
that p(5) is the tuple (ng,a,z, b, T, ﬁ]) By an easy density argument,
we may assume that H C dom(p). Let n* be the integer witnessing
that p | B € P;. Let ¢ be the maximum element of dom(p) N C'N 3
and let p [ ¢ IFp. “p(C) = (n*,aS, 2%,b%, TS, HS)” as per the definition
of PZ,;. Notice that since H C H¢ we have that

plBlkp, “(n*, a®,2,b", T UT, H  U{(}) < p(B)”

where a* = a U ([ng,n*) \ 0°) and b* = b U ([ng,n*) N 1°). Defining
p* € Py by p* [ B=p [ Band p*(B) = (n*, a*,,b", T°UT, HU{(})
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completes the proof that Pj,, is dense in Py, and by induction, that
this holds for g = ~.

Now assume that {p, : @ € w1} C PJ,,. By passing to a subcollec-
tion, we may assume that

(1) the collection {TP=() : o € w;} forms a A-system with root T*;

(2) the collection {dom(p,) : @ € wy} also forms a A-system with
root R;

(3) there is a tuple (n*, a*, z*, b*) so that for all a € wy, a?") = a*,
2P = z* and b0 = p*.

Since C' N~ has a cofinal sequence of order type wy, there is a § €
such that R C ¢ and, we may assume, (dom(p,)\d) C min(dom(pg)\9)
for a < f < wy. Since Pj is cce, there is a pair a < 8 < wy such that
Do | 0 is compatible with pg | §. Define ¢ € P,4; by

(1) ¢ | 0 is any element of Py which is below each of p, [ § and
ps 10,
(2) if & < ¢ €vNdom(pa), then ¢(§) = pa(§),

(3) if 6 < & € dom(pg) \ C, then ¢(§) = ps(£),
(4) if 6 < ¢ € dom(pg) N C, then

q(é) = (n*, aPp&) gps(&) ppe(&) rs&)  frps(€) Hpa(’v))_

The main non-trivial fact about ¢ is that it is in P,;; which depends
on the fact that, by induction on n € C'N~, q [ n forces that

(ay \ ag) U (b, \ be) U (z¢\ ;) Cn* for & € C N
It now follows trivially that ¢ is below each of p, and pg. 0

Proof of Theorem 2.1. This completes the construction of the ccc poset
P (P as above). Let G C (P x IIycaTh) be generic. It follows that
V[G N P] is a model of Martin’s Axiom and ¢ = #. Furthermore by
applying Lemma 2.4 with ¢ = w and Lemma 2.3, we have that P, =
[M)eaT) is wy-distributive in the model V[G N P]. Therefore all subsets
of N in the model V[G] are also in the model V|G N P].

Fix any A € A and let p) denote the generic branch in T given by G.
Let G* denote the generic filter on P x II{T}, : A # u € A} and work
in the model V[G*]. Tt follows easily by Lemma 2.4 and Lemma 2.3,
that Ty is a AT-Souslin tree in this model. Therefore by Proposition
2.2, Ky = Nycp+ T), (o) 18 @ tie-set of bo-type (AT, AT) in V[G]. By the
definition of the iteration in P, it follows that condition (4) of Lemma
2.2 is also satisfied, hence the tie-set K = ﬂgec z¢ meets K in a single
point zy. A simple genericity argument confirms that conditions (5)
and (6) of Proposition 2.2 also holds, hence z, is a tie-point of K.
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It follows from Corollary 2.6 that there are no unwanted tie-sets in
AN\ N in V[G], at least if there are none in V[G N P|. Since p = ¢ in
V[G N P], it follows from Proposition 1.3 that indeed there are no such
tie-sets in V[G N PJ. O

Unfortunately the next result shows that the construction does not
provide us with our desired variety of tie-points (even with variations
in the definition of the iteration). We do not know if bd-type can be
improved to d-type (or simply exclude tie-points altogether).

Proposition 2.12. In the model constructed in Theorem 2.1, there are
no tie-points with bo-type (K1, Kk2) for any k1 < Ky < ¢,

Proof. Assume that SN\N = A > B and that §(Z4) = k1 and 0(Zp) =
ko. It follows from Corollary 2.6 that we can assume that k; = ko = AT
for some A € A. Also, following the proof of Corollary 2.6, there are
P x Ty-names Jy = {an : @ € X7} and P x Ty+-names Jp = {bs : B €
A1} such that the valuation of these names by G result in increasing
(mod finite) chains in Z4 and Zp respectively whose downward closures
are dense. Passing to V[GN P], since Ty has the 6-cc, there is a Boolean
subalgebra B € [P(N)]<? such that each d, and bg is a name of a
member of B. Furthermore, there is an infinite C' C N such that C' ¢ x
and each of b C and b\ C are infinite for all b € B. Since C' ¢ x, there
isaY C N (in V[G]) such that CNY € Z, and C'\'Y € Zg. Now
choose tg € Ty which forces this about C' and Y. Back in V[GN P], set

A={beB: (3t <ty) t1IFp, “bETaUTR"} .

Since V[G N P] satisfies p = 6 and A" is forced by t; to be dense in
[N]“, there must be a finite subset A" of A which covers C. It also
follows easily then that there must be some a,b € A" and t,ty each
below ¢ such that t; by, “a € J47, t2 IFr,, “b € Jp”7, and aNb is
infinite. The final contradiction is that we will now have that ¢, fails
to force that CNa C*Y and CNbC* (N\Y). O

3. T-INVOLUTIONS

In this section we strengthen the result in Theorem 2.1 by making
each K N K, a symmetric tie-point in K (at the expense of weakening
Martin’s Axiom in V[GNPJ). This is progress in producing involutions
with some control over the fixed point set but we are still not able to
make K the fixed point set of an involution. A poset is said to be o-
linked if there is a countable collection of linked (elements are pairwise
compatible) which union to the poset. The statement MA (o — linked)
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is, of course, the assertion that Martin’s Axiom holds when restricted
to o-linked posets.

Our approach is to replace T-splitting towers by the following notion.
If fis a (partial) involution on N, let min(f) = {n € N:n < f(n)}
and max(f) = {n € N: f(n) < n} (hence dom(f) is partitioned into
min(f) U fix(f) Umax(f)).

Definition 3.1. A sequence T = {(A¢, fe) : £ € W} is a tower of
T-involutions if W is a set of ordinals and for ¢ <v e W andt €T

(1) A C* Ag;

(2) 2= fe and Je T (N\fix(fe)) € [y

(3) fg[xt] =" x; and fix(f¢) Nz, is infinite;

(4) fe([n,m)) = [n,m) for n < m both in A.

Say that ¥, a tower of T-involutions, is full if K = K¢ = ({fix(fe)*
£ € W}is atie-set with SN\N = A P B where A = KU{J{min(f¢)" :
€€ W) and B =K UJ{max(fe)" : é € W}

If T is a tower of T-involutions, then there is a natural involution F7
on Ugew (N\ fix(f¢))*, but this F7r need not extend to an involution on
the closure of the union - even if the tower is full.

In this section we prove the following theorem.

Theorem 3.1. Assume GCH and that A is a set of reqular uncountable
cardinals such that for each X € A, Ty is a <A-closed \*-Souslin tree.
Let T denote the tree sum of {T» : A\ € A}. There is forcing extension in
which there is T, a full tower of T-involutions, such that the associated
tie-set K has bd-type (c,¢) and such that for each A € A, there is a
tie-set K of bo-type (AT, \T) such that Fsz does induce an involution
on Ky with a singleton fized point set {2y} = K N K. Furthermore,
foruw < X<, if p# X or A& A, then there is no tie-set of bi-type

(1, A).

Question 3.1. Can the tower T in Theorem 3.1 be constructed so that
Fx extends to an involution of SN\ N with fix(F) = K7

We introduce T-tower extending forcing.

Definition 3.2. If T = {(A¢, f¢) : £ € W} is a tower of T-involutions
and Y is a subset of N, we define the poset Q@ = Q(%,Y) as follows.
Let Ey be the (possibly empty) set of minimal elements of 7" such that
there is some finite H C W such that z; N'Y N[y fix(fe) is finite.
Let Dy = Ey = {t € T : (Vs € Ey)t L s}. A tuple ¢ € Q if
q = (a4, f1,79, H?) where:
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(1) H? € [W]<¥, T? € [T]<¥, and n? = max(a?) € A, where
a? = max(HY),
(2) f?is an involution on nf,
(3) (Aaa \ n?) C Ag for each f € HY,
(4) ﬁn(Tq) C n?,
(5) fe | (N (Bx(fe) Un?)) © fuu for & € HO,
(6) faq[xt\nq] =z, \n?fort e T
We define p < ¢ if n? < nf, and for t € T? and i € [n”, n9):
(7) a®» =a?Nn?, TP C T?, and H? C HY,
(8) aq\apCAap,
(9) far(i) # @ implies f9(z) = far (i),
(10) f9([n,m)) = [n,m) for n < m both in a?\ a?,
( ) fq(xt [np,nq» =x N [np’ nq)’
(12) ift € DP and i € x, Nfix(f9), theni €Y

It should be clear that the involution f introduced by Q(%,Y) sat-
isfies that for each t € Dy, fix(f) Na; C* Y, and, with the help of
the following density argument, that TU{(v, A, f)} is again a tower of
T-involutions where A is the infinite set introduced by the first coor-
dinates of the conditions in the generic filter.

Lemma 3.2. If W C~, Y CN, and T = {(Ag, fe) : £ € W} is a tower
of T-involutions and p € Q(Z,Y), then for any T € [T]<*, ¢ € W, and
any m € N, there is a ¢ < p such that n? > m, ( € H?, T? D T, and
fix(f9) N (x¢ \ nP) is not empty for each t € TP.

Proof. Let 8 denote the maximum of and ¢ and let  denote the min-
imum. Choose any n? € A, \ m large enough so that

(1) fap[xt\ =z \ntforteT,

(2) fy T (N\ (19 Ufix(£,)) < fo

(3) AB \ A, is contained in n?,

(4) n?N i ]Tp N fix(far) is non-empty for each ¢ € N such that []7»

is in the finite set {[i]r» : i € N} \ in(77),

(5) if i € x;Nn?\n? for some t € Dy NTP, then Y meets [i]r» Nn?\n?
in at least two points.

Naturally we also set H? = H? U {¢} and 7% = T? UT. The choice
of n? is large enough to satisfy (3), (4), (5) and (6) of Definition 3.2.
We will set a? = a? U {n?} ensuring (1) of Definition 3.2. Therefore
for any f? O fP which is an involution on n?, we will have that ¢ =
(a%, f1,79, H?) is in the poset. We have to choose f? more carefully to
ensure that ¢ < p. Let S = [n?, n?) Nfix(fur), and S" = [n?,n9)\ S. We
choose f an involution on S and set f7 = fPU (far [ S')U f. We leave
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it to the reader to check that it suffices to ensure that f sends [i]7» NS
to itself for each ¢ € TP and that fix(f) Na, C Y for each t € TP N Dy.
Since the members of {[i]r» NS : i € N} are pairwise disjoint we can
define f on each separately.

For each [i]7» NS which has even cardinality, choose two points v;, 2;
from it so that if there is a p € Dy N TP such that [i]y» C 2y, then
{y;, 2z} C Y. Let f be any involution on [i]z» N S so that y;, z; are the
only fixed points. If [i]7» NS has odd cardinality then choose a point
y; from it so that if [i]”" is contained in x; for some ¢ € D, N TP, then
v € Y N[ilz» NS, Set f(y;) = y; and choose f to be any fixed-point
free involution on [i]7" N S\ {v;:}. O

Let Py now be the finite support iteration defined as in Definition 2.6
except for two important changes. For v € C, we replace T-splitting
towers by the obvious inductive definition of towers of T-involutions
when we replace the posets Q(SCM, Yw) by Q(TCM, Yw)- For v ¢ C we
require that Ikp, “Q7 is o-linked.”

Special (parity) properties of the family {z, : t € T'} are needed to
ensure that IFp, “Q(Scry, Y,) is cee 7 even for cases when cf(y) is not
w1.

The proof of Theorem 3.1 is virtually the same as the proof of The-
orem 2.1 (so we skip) once we have established that the iteration is
cce.

Lemma 3.3. For each v € C, P,y is ccc.

Proof. We again define P} to be those p € P, for which there is an
n € N such that for each 3 € dom(p) N C, there are n € a” C n+1,
fPenn, TP € [T]<*, and H? = dom(p) N C N 3 such that p | 3 Ip,
“p(B) = (a®, 2, TP, HP)”. However, in this proof we must also make
some special assumptions in coordinates other than those in C'. For
each £ € v\ C, we fix a collection {Q(¢,n) : n € w} of Pe-names so
that

1lkp, “Qe = | JQ(&,n) and (V) Q(¢,n) is linked.”

The final restriction on p € P} is that for each £ € a'\ C, there is a
ke € w such that p [ € IFp, “p(€) € Q& ke)”.

Just as in Lemma 2.11, Lemma 3.2 can be used to show by induction
that P is a dense subset of P,. This time though, we also demand that
dom(fP(V) = n x TP is such that 7% c TP for all 3 € dom(p) N C
and some extra argument is needed because of needing to decide values
in the name K, as in the proof of Lemma 3.2. Let p € Py and
assume that Pj is dense in Ps. By density, we may assume that p |
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B € Fj, HP®) C dom(p), TP < TP and that p | B has decided
the members of the set Dyﬁ N TPB) . We can assume further that for

each t € Dy N TP®) p | 3 has forced a value y, € Y/B Ny \ U{zs :

s € TP and s £ t} such that y, > n?®. We are using that T is
not finitely branching to deduce that if ¢t € DYB’ then p [ B Ikp,
“Yana, \U{zs : s € T? and s £ t} is non-empty” (which follows
since Y3 must meet z, for each immediate successor s of t). Choose
any m larger than y, for each ¢t € TP®¥). Without loss of generality,
we may assume that the integer n* witnessing that p [ § € Pj is at
least as large as m and that n* € ﬂge o Ae. Construct f just as in
Lemma 3.2, except that this time there is no requirement to actually
have fixed points so one member of YB in each appropriate [i] s is all
that is required. Let ¢ = max(dom(p) N B). No new forcing decisions
are required of p | B in order to construct a suitable f, hence this shows
that p | BU{(B,q)} (where ¢ is constructed below p(3) as in Corollary
3.2 in which H?©) U {¢} is add to HY) is the desired extension of p
which is a member of Pj, ;.

Now to show that P, is ccc, let {p, : @ € w1} C Py,. Clearly
we may assume that the family {p,(0) : @ € w;} are pairwise compat-
ible and that there is a single integer n such that, for each a € wy,
dom(pa(0)) = n x T for some T € [T]<“. Also, we may assume that
there is some (a, h) such that, for each a,

Pa | Y “_Pn, “p(’}/) = (av h,T*, Ha),,

where H* = dom(p,) NC' N .

The family {dom(p,) N7y : a € wi} may be assumed to form a A-
system with root R. For each £ € R, we may assume that, if £ ¢ C,
there is a single k¢ € w such that, for all o, po | § IFp, “pal§) €

Q(&, ke)”, and if £ € C, then there is a single (ag, he) such that p, |
§IFp, “pal§) = (ag, he, T, H* N E)". For convenience, for each § ¢ C

let 7¢ be a Pe-name of a function from w x Qg such that, for each k € w,

Likbp, “e(k,q.¢') < .4 (Vg,q € Q(&,k))".

Fix any a < 8 < w; and let H = H® U H?. Recall that p,(0)
and ps(0) are compatible. Recursively define a Pe-name ¢(§) for £ €



Paper Sh:916, version 2007-08-12_11. See https://shelah.logic.at/papers/916/ for possible updates.

TIE-POINTS AND FIXED-POINTS IN N* 17

dom(p,) U dom(pg) so that q [ £ I-p,

((n, T*UT?, freOy fre®) ¢=0
re(ke, pa(€), ps(€)) E€eR\C
“q(§) = { Pa(§) ¢ e dom(p,) \ (RUC) .
ps(§) ¢ € dom(pg) \ (RUC)
k(&g,hf,TaUTﬁ,Hﬂg) SGO

Now we check that ¢ € P: by induction on § € v+ 1.

The first thing to note is that not only is this true for £ = 1, but also
that ¢(0) Ikg, “fin(T*UT?) C n”. Since p, and ps are each in P,
this show that condition (4) of Definition 3.2 will hold in all coordinates
in C.

We also prove, by induction on £, that ¢ | £ forces that for n < ¢ both
in HN¢ and t € T*UT?, fslx,\n] =z \n, f, | (N\ (fix(f,)Un)) C fs
and As \n C A,.

Given ¢ € H and the assumption that ¢ | £ € P, and a = o) =
max(H N &), condition (3), (5), and (6) of Definition 3.2 hold by the
inductive hypothesis above. It follows then that ¢ | § IFp, “q(§) € Qg”.

By the definition of the ordering on Qf, given that H N¢ = H1© and
TUT? =T99 it follows that the inductive hypothesis then holds for
§+ 1.

It is trivial for § € dom(q) \ C, that ¢ | § € P implies that ¢ | & IFp,
“q(€) € Q¢”. This completes the proof that ¢ € P,1, and it is trivial
that ¢ is below each of p, and pg. 0

Remark 1. If we add a trivial tree T} to the collection {7\ : A € A} (i.e.
T; has only a root), then the root of T" has a single extension which is
a maximal node ¢, and with no change to the proof of Theorem 3.1,
one obtains that F'induces an automorphism on x; with a single fixed
point. Therefore, it is consistent (and likely as constructed) that SN\ N
will have symmetric tie-points of type (¢, ¢) in the model V[G'N P] and
VI[G].

Remark 2. In the proof of Theorem 2.1, it is easy to arrange that
each K, (A € A) is also K, for a (T)-generic) full tower, T, of N-
involutions. However the generic sets added by the forcing P will pre-
vent this tower of involutions from extending to a full involution.

4. QUESTIONS

In this section we list all the questions with their original numbering.
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Question 1.1. Can there be a tie-point in SN\ N with d-type (x, A)
with £ < A less than the character of the point?

Question 1.2. Can SN \ N have tie-points of d-type (w;,w;) and
(CL)Q,CL)Q)?

Question 1.3. Does p > w; imply there are no tie-points of b-type
(w1, w1)?

Question 1.4. If F' is an involution on SN \ N such that K = fix(F')
has empty interior, is K a (symmetric) tie-set?

Question 1.5. Is there some natural restriction on which compact
spaces can (or can not) be homeomorphic to the fixed point set of
some involution of SN\ N?

Question 1.6. If F is an involution of N*, is the quotient space N*/F'
(in which each {x, F(xz)} is collapsed to a single point) a homeomorphic

copy of SN\ N?

Question 3.1. Can the tower T in Theorem 3.1 be constructed so that
Fs extends to an involution of SN\ N with fix(F) = K7
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