Correction for "The Amalgamation Spectrum"

John T. Baldwin^{*} Alexei Kolesnikov[†] and Saharon Shelah[‡]

October 5, 2020

The purpose of this note is to correct an argument in [1]. The argument of Theorem 3.10 relied on the fact that, consistently with ZFC, the partially ordered set \mathbb{P} described in Definition 3.13 satisfies the property that for any collection of fewer than λ dense subsets of \mathbb{P} there is a filter that intersects each subset.

The paper incorrectly claimed in Proposition 3.6 that the assumptions of $(< \mu)$ -closure (i.e., that any decreasing sequence of length less than μ has a lower bound) and the strong μ^+ -chain condition (described in Definition 3.1(2)) are sufficient to establish the existence of the filter from a version of generalized Martin's axiom (the axiom Ax₀(μ)).

The axiom $Ax_0(\mu)$ quoted in the paper requires that the partially ordered set be wellmet (i.e., any two compatible elements of \mathbb{P} have a greatest lower bound). In this note, we describe a stronger form $Ax_{\mu,\omega}$ of generalized Martin's axiom established in [2]. The stronger version ensures the existence of a filter meeting fewer than 2^{μ} dense subsets of a partially ordered set that is not necessarily well-met. We show that the partial order in [1] satisfies the conditions of the axiom $Ax_{\mu,\omega}$, thus filling the gap in the main argument of Section 3 of that paper. The authors are grateful to Mirna Dzamonja for pointing out a mistake in the original argument.

The summary of corrections is as follows: Definition 3.1 in [1] should be replaced by Definition 2 below. Fact 3.4 in [1] should be replaced by Theorem 3. Lemma 4 and Claim 6 below together with the statements proved in Claim 3.14 of [1] establish that the partial order satisfies the assumptions of the set-theoretic axiom $Ax_{\mu,\omega}$.

We start by adapting Definition 1.1 from [2] to our context. In that paper, the property of a partially ordered set described below is denoted $*^{\omega}_{\mu}$. To be consistent with [1], we use the ordering convention that "<" means "stronger"; the ordering in [2] is reversed.

Definition 1. Given a forcing notion P with a maximal condition 1_P , we define a game $\mathcal{G}_{\mu}(P)$. For $n < \omega$, at the *n*th stage Player I chooses a club $E_n \subset \mu^+$, a function $f_n : \mu^+ \to \mu^+$, and a sequence $\{q_i^n \mid i < \mu^+\} \subset P$. Player II chooses a club $F_n \subset \mu^+$ and a sequence $\{p_i^n \mid i < \mu^+\}$. The selections must satisfy the following rules:

- 1. $E_0 = \mu^+$, $f_0(i) = 0$ and $q_i^0 = 1_P$ for all $i < \mu^+$;
- 2. $E_n \subset \bigcap_{k < n} (E_k \cap F_k); q_i^n < p_i^{n-1}$ for all $i \in E_n$ such that $cf(i) = \mu$;

^{*}Partially supported by the Simons Foundation grant G5402.

 $^{^\}dagger \mathrm{partially}$ supported by NSF grant DMS-0901315.

[‡]The author thank Rutgers University and the Binational Science Foundation for partial support of this research.

3. $f_n(i) < i$ for all $i \in E_n$;

4. $p_i^n < q_i^n$ for all $i \in F_n$ such that $cf(i) = \mu$.

Player I wins the game if there is a club $E \subset \mu^+$ such that for all $i, j \in E$ with $\mu < i, j$ if $cf(i) = cf(j) = \mu$ and $f_n(i) = f_n(j)$ for all $n < \omega$, then the set $\{p_i^n \mid n < \omega\} \cup \{p_j^n \mid n < \omega\}$ has a lower bound.

We say that the partial order P satisfies $(*)_{\mu}$ if Player I has a winning strategy for game $\mathcal{G}_{\mu}(P)$.

We formulate a strong form of the generalized Martin's axiom.

Definition 2. $Ax_{\mu,\omega}$ is the following statement. For every $\mu \leq \kappa < 2^{\mu}$, for every partially ordered set P which is $(<\mu)$ -closed of cardinality less than κ and satisfying $(*)_{\mu}$, for every collection of fewer than κ dense subsets of P, there exists a filter intersecting all the subsets in the family.

The following is a particular case of Theorem 0.7(3) proved in [2] (here, we take $\varepsilon_{\alpha} = \omega$ for all α .

Theorem 3. Let $\{\lambda_{\alpha} \mid \alpha < \alpha^*\}$ be a sequence of cardinals in V such that

- 1. if λ_{α} is singular, then $\lambda_{\alpha+1} = \lambda_{\alpha}^+$;
- 2. if λ_{α} is regular, then $\lambda_{\alpha} = \lambda_{\alpha}^{<\lambda_{\alpha}}$ and $\lambda_{\alpha+1}$ is a regular cardinal greater than λ_{α} .

There is a cardinal and cofinality-preserving forcing extension V^P in which $2^{\lambda_{\alpha}} = \lambda_{\alpha+1}$ for all $\alpha < \alpha^*$ and for all regular λ_{α} , $\alpha < \alpha^*$, the axiom $Ax_{\lambda_{\alpha},\omega}$ holds.

The following lemma establishes a sufficient condition for a partially ordered set to satisfy $(*)_{\mu}$. We then show that the partial order \mathbb{P} defined in [1] satisfies the sufficient condition. This allows us to apply $Ax_{\mu,\omega}$.

Lemma 4. Suppose that a partial order P satisfies the following condition: for every two decreasing sequences $\{p_{\ell}^n \mid n < \omega\}, \ell = 1, 2$, such that p_1^n is compatible with p_2^n for all $n < \omega$, the set $\{p_1^n \mid n < \omega\} \cup \{p_2^n \mid n < \omega\}$ has a lower bound.

If P satisfies the strong μ^+ -chain condition, then P satisfies the condition $(*)_{\mu}$.

Proof. We describe a winning strategy for Player I. The 0-th move of the player is determined by the rules. Suppose that the club subsets E_k , F_k , sequences $\{p_i^k \mid i < \mu^+\}$ and $\{q_i^k \mid i < \mu^+\}$, and functions f_k have been constructed for k < n.

For each $i < \mu^+$, choose an element q_i^n so that $q_i^n < p_i^{n-1}$. The strong μ^+ -chain condition implies that there is a regressive function f_n and a club set E'_n of μ^+ such that $f_n(i) = f_n(j)$ implies that q_i^n , q_j^n are compatible for all $i, j \in E'_n$ such that $cf(i) = cf(j) = \mu$. Let $E_n := E'_n \cap \bigcap_{k < n} (E_k \cap F_k)$.

To show that Player I wins, let $E = \bigcap_{n < \omega} E_n$. For $i, j \in E$, i, j of cofinality μ , if $f_n(i) = f_n(j)$ for all $n < \omega$, then, by the choice of the functions f_n , we have q_i^n is compatible with q_j^n for all $n < \omega$. By the assumption of the lemma, we get that the set $\{q_i^n \mid n < \omega\} \cup \{q_i^n \mid n < \omega\}$ has a lower bound.

It remains to observe that a lower bound for the set $\{q_i^n \mid n < \omega\} \cup \{q_j^n \mid n < \omega\}$ is also a lower bound for the set $\{p_i^n \mid n < \omega\} \cup \{p_i^n \mid n < \omega\}$.

Note that any well-met ω -closed partial order has to satisfy the condition stated in the above lemma. Therefore, the axiom $Ax_{\mu,\omega}$ is a strengthening of the axiom $Ax_0(\mu)$; all the arguments in [1] involving $Ax_0(\mu)$ and well-met partially ordered sets (Claims 3.7 and 3.8) go through without changes.

Now we show that the partial order \mathbb{P} in [1] satisfies the sufficient condition. We recall the definition of the partially ordered set \mathbb{P} .

Definition 5. Let \mathbb{P} be a set of models $M \in \mathbf{K}$ such that

- 1. M has the universe $B \subset \mu$, $|B| < \lambda$;
- 2. $\{a_l \mid l < k\} \subseteq B;$
- 3. if $u \subset k$, then $N_u \upharpoonright (B \cap |N_u|)$ is a substructure of M;
- 4. the rank of **a** in M is at least $\beta + 2$;
- 5. the rank of every (k+1)-element indiscernible sequence extending **a** in M is at least $\beta + 1.$

The partial order is the reverse K-submodel relation.

Claim 6. For every two decreasing sequences $\{M_{\ell}^n \mid n < \omega\}, \ell = 1, 2$, such that M_1^n is compatible with M_2^n for all $n < \omega$, the set $\{M_1^n \mid n < \omega\} \cup \{M_2^n \mid n < \omega\}$ has a lower bound.

Proof. For $\ell = 1, 2$ and $n < \omega$, let B_{ℓ}^n be the universe of the structure M_{ℓ}^n and let $B_0^n =$

 $\begin{array}{l} B_1^n \cap B_2^n. \text{ Let } M_0^n := M_1^n \upharpoonright B_0^n (= M_2^n \upharpoonright B_0^n).\\ \text{ It is clear that } M_0^n \subseteq M_0^{n+1} \text{ for all } n < \omega. \text{ Let } M_\ell := \bigcup_{n < \omega} M_\ell^n \text{ for } \ell = 0, 1, 2. \text{ We now } n < \omega. \end{array}$ show that the models M_1 , M_2 can be amalgamated over M_0 . The amalgam N is the needed lower bound for the sequences $\{M_{\ell}^n \mid n < \omega\}, \ell = 1, 2.$

Without loss of generality, we may assume that $M_{\ell} = M_0 \cup \{b_{\ell}\}$ for $\ell = 1, 2$, where $b_1 \neq b_2$. To construct the model N, we amalgamate the special system:

$$\{N_u \upharpoonright (|N_u| \cap |M_0|) \mid u \subset k, \ |u| = k - 1\} \cup \{M_1, M_2\}$$

with the root $M_0 \setminus \{a_0, \ldots, a_{k-1}\}$ and the special sequence $\mathbf{b} = \{a_0, \ldots, a_{k-1}, b_1, b_2\}$.

If the sequence **b** is not formally indiscernible, there are no obstacles to amalgamation; otherwise the rank of the subsequence $\{a_0, \ldots, a_{k-1}, b_1\}$ has to be at least $\beta + 1$ by (5) in the definition of \mathbb{P} . So the amalgam N exists by the special $(\langle \lambda, k+2, \beta \rangle)$ -amalgamation.

Together with the proof of Claim 3.14 of [1], the above arguments establish that \mathbb{P} satisfies the conditions of the $Ax_{\mu,\omega}$, thus filling the gap in the proof of Lemma 3.12.

References

- [1] John Baldwin, Alexei Kolesnikov, and Saharon Shelah. The amalgamation spectrum. Journal of Symbolic Logic, 74, (2009), 914–927.
- [2] Saharon Shelah. Was Sierpiński right IV? Preprint, paper Sh546.