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ABSTRACT. We investigate the class of models of a general dependent theory.
We continue [Shel5] in particular investigating the so called “decomposition
of types”; our thesis is that what holds for stable theory and for Th(Q, <)
hold for dependent theories. Another way to say this is: we have to look
at small enough neighborhood and use reasonably definable types to analyze
general types; also we presently concentrate on complete types over saturated
models (and sometimes just quite saturated models). We now mention the
main results understandable without reading the paper. First, a parallel to the
“stability spectrum”, we consider the “(problem of) recounting of types”, that
is assume A = A<* is large enough, M a saturated model of T of cardinality
A, let Gaut(M) be the set of complete types over M up to being conjugate,
i.e. we identify p,q when some automorphism of M maps p to q. Whereas for
independent T usually the number is 2*, for dependent 7' the number is < A
moreover it is < |a||Tl when A = R, and X is not too small, see §(5B). Second,
for stable T, recall that a model is k-saturated iff it is N.-saturated and every
infinite indiscernible set (of elements) of cardinality < x is not C-maximal. We
prove here an analog in §(7B). Third, if M is saturated and p € S(M) then
p is the average of an indiscernible sequence of length ||M|| inside the model,
see §(6A). Fourth, we prove a (weak) relative of the existence of indiscernibles,
see §(4A). Lastly, the so-called generic pair conjecture was proved in [Shel5]
for x measurable, here it is essentially proved, i.e. for k = k<" > |T| + 3.,
see §(TA).
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§ 0. INTRODUCTION

§ 0(A). What is done here.

This is a step in trying to understand a dependent elementary class Modp. Our
approach is:

Thesis 0.1. 1) It is fruitful to prove that questions on (first order complete) T
and a cardinal does not depend too much on the cardinal, by finding syntactical
equivalent condition; this suggests it is an interesting dividing line.

2) We should first analyze saturated models (then quite saturated models and only
then general models).

3) In particular we should first try to understand complete types over saturated
models, etc.

More specifically:

Thesis 0.2. For M € EC,, ,(T) we shall try to analyze p € S°(M) by types of two
simple kinds:

Kind A: Av(D, M), D an ultrafilter on ¢B for some B C M of cardinality < p (u
a fix cardinal < | M|]).

Kind B: Av(I, M) where I = (G, : @ < A) an indiscernible sequence (of e-tuples)
inside M.

Remark 0.3. For stable T, if M is |T|"-saturated then every p € S(M) is Av(I, M)
for some indiscernible sequence (so set) I of cardinality Ry, so it falls under both
kinds.

Consider a fixed complete first order theory T which is dependent. The problem
we try to address here is analyzing a complete type over a saturated model, say
p € S<0" (M) where 6 > |T|. The reader may wonder why not p € S<“(M)? The
reason is that anyhow we are driven to consider infinitely many variables.

Trying to analyze p € S(M), M € EC,, .(T), clearly whatever occurs for some
stable theories may appear, so in the analysis we allow types definable over small
sets (though presently not stable types, just definable in a weak sense) where any
fix bound will be O.K. but as it happens here “small sets” mean a set of cardinality
say < J, + |T|*.

Also in dense linear order there are cuts defined say by a sequence of elements
of length any regular o < k (e.g. p(xz) € S(M) say that x induces a cut of M
whose lower half has cofinality ), we cannot avoid this so we allow types gotten
as averages of indiscernible sequences of length o. Note that types related to large
cofinalities are not covered by Kind A, just as in [Shel4a, §1], where the cuts with
both cofinalities maximal are fine - there expanding by them preserve saturation.

An approximation to analyzing p is x € pK, , »; a characteristic case is £k =
k<" large enough, 8 = |T| = Vg, = 3, (actually we use f but ignore it in the
introduction). Now, see Definition 2.2, such x consist of the model M = My,
which is k-saturated (and in general may have larger cardinality), the sequence
d = dy realizing a complete type p over M which we are trying to analyze, ¢ =
(... "G ...)icu(x) an initial segment of the analysis where v(x) is an ordinal < 6+
or just a linear order of cardinality < . This means that for each i € v(x) one of
the following two cases occurs, letting r; = tp(&;, Mx + £{¢; : j < i}).
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In the first case, formally ¢ € vx\ux, the type rx; does not split over some
By € [My]<H (or even is finitely satisfiable in it). So this type is in a suitable
sense definable over some small set as in the stable case, so is the “stable part”
called “Kind A” above.

In the second case, formally 7 € ux the type 7y ; is the average of an indiscernible
sequence Iy ; = (Gx ;o : @ < K;) where r; = cf(k;) € [u, k).

In [Shel5] some relatives were used but there p = « hence Bff = U{Ix; : i €
ux} UJ{Bx, : i € vx\ux} here corresponds to By there, so there the analysis is
by information of size just smaller than x, whereas here it is by < 6 indiscernible
sequences of length a regular cardinal 4+ information of bounded size, i.e. < pu, a
major difference.

How does such x help? For each i € vx we define when x is active in ¢; it is the
parallel of forking, i.e. of “tp(dx, Mx+3{¢; : j < i}) forks over Mx+%{¢; : j <i}”,
this cannot occur #* times so there is y above x maximal in this sense; i.e. we
cannot increase vx having a “new” activity but not changing My, dy, G (i € vx) but
possibly increasing vyx. Moreover, see 2.14(2) we have further versions, local and/or
less demanding, but we skip this in the introduction. The class of maximal such

y’s is called qKLW,g, see Definition 2.11(1); for them we can prove:

() if A C My,|A| < p then some e € ?(My) solve (x, A) which means that
tp(dx, ex + €) I tp(dx, éx + A) and even uniformly, which is expressed by
“according to v”.

This is the parallel of: if M is a dense linear form, p € S(M),¥ = (C1,C2) the
cut of the linear order M which p(z) induces and it has both cofinalities > u and
A C M,|A| < p then we can choose a € C1,b € Cy such that (a,b)y N A = () hence
(a<z<b)epand (a <z <b)Fplx) A

All this seems to support:

Thesis 0.4. 1) The theory of dependent elementary classes is the combination of
what occurs in stable classes and in the theory of dense linear orders.

2) We analyze general types by decompositions to three kinds: one are finitely
satisfiable in a small set (or just does not split over a small set), second are averages
of indiscernible sequences, third, are like branches of trees (include cuts of a linear
order) any “bounded” subset are implied by a very small subset.

But we really gain understanding by the density of tK, .0 C pK, , ¢ for some
pair (k, 1), (to cover all relevant cases better use vK®, see §3). That is for d € ?¢,
we can find x € tK, ,¢ such that d<ady, M = My and for every A C M of
cardinality < x we can find (¢,d’) in M realizing the same type as (Ex, dx) over M
and tp(dx, cx + & + d') F tp(dx,éx + A + &, + d'), even uniformly and fixing the
type of éx"dyx @ d. In a stronger sense the type of éx dx over M really combine
parts definable over a small set and one like a (partial) order.

Another thesis is (see [She09, §1])

Thesis 0.5. In dependent (elementary) classes the family of outside definable sets
(Def. (M), see Definition 1.19) replace the family of inside definable sets for stable
classes.
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This work may be continued [STa] and as said above it continues [Shel5] though
does not depend on it. More specifically, how are [Shel5] and the present work
related?

In both cases decomposition (pK, , 4 here, K there) are central and qK’,qK
here' are parallel to mxK there and also <;,<s are similar here and there. In
both cases the model My is k-saturated and dy, éx are of cardinality < @ (normally
k> 6 > |T|). But here we use |By ;| < p and allow pu < k rather than |Bx ;| < &,
and instead use indiscernible sequences Iy ; for some i’s. Hence By here stands for
By there, both have cardinality < s, but there By is any set, here without loss of
generality x is smooth so Byl is a so called (i, 6)-set, essentially a set of cardinality
< p plus < 6 mutually indiscernible sequences of (< #)-tuples. Such sets have some
affinity to stable €, e.g. [S(B;)| <2<+ + | B |71

Also tK, ¢ here is related to strict decompositions in [Shel5]. But in [Shel5]
we get existence assuming only k is a measurable cardinal so a quite large cardinal,
so cannot prove in ZFC that it exists; whereas here this is proved for every large
enough regular cardinal provably in ZFC, and the bound is small (at least for my
taste), 3,,, well +|T], of course.

All this is a good point in favor of large cardinals by the criterion (first suggested
by Godel): we can first prove things assuming them, this helps us to find the way
to really sort out things.

§ 0(B). From Higher Perspective: The Test.

What questions do we address here?

Question 0.6. The serious/dull question 1) Is the equation dependent/stable =
groups/Abelian groups true?

That is, is dependence a better dividing line than stable (among say elementary
classes), but we have been (and are) just too dim to see it?
2) The use of cardinals (> Np) in model theory: has it passed its time OR is it the
key to dependent classes and will continue to be central.

Alas, most (relevant) people already know the answers, unfortunately not all of
them know the same answer.

In more serious mode, we suggest here to put dependent theories to “end of first
level examination”. Trying to be objective we ask: do we have a good analog to
what is in the first paper on stable T', [She69b] (and [She71]), essentially equivalently
at the time of stability being three years old.

So here is the test composed of four questions (as presented in a lecture in
MAMLS, Fall 2008 Meeting in honor of Gregory Cherlin) and a fifth question (as
urged by the audience):

Question 0.7. Question/Test Find parallels of (1)-(4) and answer (5) for dependent
T.

1)The stablility spectrum Theorem (for stable theory T on a model of cardinality
A there are < A completer 1-types).

2) Strong partition theorems, i.e. existence of indiscernibles: for stable T, if a, € €
for & < At are given, A = A7l then for some unbounded, even stationary subset S
of AT the sequence (aq : @ € ) is indiscernible.

n the context of [Shel5], i.e. o = & essentially we get qK’ = qK, see 2.15(3),(5)
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3) “Understanding” complete types over models and indiscernible sequences (for
stable T', the finite equivalence relation theorem which was somewhat later).

4) Characterize saturated models by indiscernible sequences, (for stable T\, M is
k saturated iff it is N.-saturated and every infinite indiscernible set of cardinality
< K).

5) The generic pair conjecture, a major question from [Shel5] and more generally
the existence of (A, k)-limit models (k = 2 is the generic pair case).

We did not mention two problems having been answered earlier: majority on
indiscernibles (see §(1C)) and definability of types (as we may consider the following
theorem as an answer: expansion by outside definable sets preserved the theory of
the model being dependent, by [She09, §1]).

We will present the questions in §1 and present solutions to (1),(4) and the first
part of (5) in §5,§7. Unfortunately we do not solve the original interpretation of
questions (2),(3) as we hoped, but, not surprisingly, we think we have excellent
excuses. Now the answer to the parallel of (3) we considered, i.e. “no case of
high directionality” that is bounding the number of ultrafilters D on M such that
Av(D,M) = p, has already been known to be false for many years, proved by
Delon.

As for the existence of indiscernibles, i.e. 0.7(2) and actually also 0.7(3), subse-
quently Kaplan-Shelah [KS14b], proved that the premature assertion in the Rutgers
lecture is false, (and nothing can be saved by Kaplan-Shelah [KS14a]). This is the
negative half of the excuse, i.e. this version cannot be proved being false.

However on the positive side, we believe we have reasonable substitutes, i.e.
reasonable parallels of parts (2),(3) of 0.7 for dependent 7.

For part (3):

B, if M € EM,, ,(T) and p € S(M) then p is the average of an indiscernible
sequence in M of length r, see 6.2, (more in §(6A) and the results of §(6B)).

About the existence of indiscernibles, i.e. part (2) of 0.7, by §6 we have

Ho existence for T with low or medium directionality (introduced in §(1B)).

Probably this is not convincing: but a true answer for 0.7(2) is another relative
(or you may say a weak version) of the existence of indiscernibles

HBs if K = cf(k) > Ng and A C L(7p) is finite and aq,, € € for a < k,n <
n(x) < w then we can find stationary .7, C k for n < n(x) such that: for

a € [] %, the A-type of (aq,,-- .,aan(”,l) depends just on the truth
<n
values of (1) < o) for £(1),£(2) < n(*).

This holds by 4.6, (note that we can apply it for any permutation of {(0,...,n(x)—
1)} and the formulation here is simpler because we use the club filter on x, i.e. use
diagonal intersection of clubs). Note that for 7" any completion of Peano arithmetic
(or any 2-independent T) this holds only for (some) large cardinal.

There has been work on dependent theories in the previous century, see e.g. in
the introductions of [She04, §1], [She09, §0], [Shel5, §0]; there was much activity in
the first decade of the present century, but in different directions; on indiscernibility
see §(1C) here.
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§ 0(C). Basic Definitions.

We assume basic knowledge in model theory.

Convention 0.8. 1) € = €1 is a monster model of the complete first order T
2) The vocabulary of T is 7.
3) L(7) is the set of first order formulas in the vocabulary .

Definition 0.9. 1) Let EC, ,(T') be the class of k-saturated models of T' of cardi-
nality A; if K = 1 this means that we omit the k-saturation; we may omit x when

K=\
2) Let ¥z = (x4, : t € Dom(a)) where @ € € for some index set I = Dom(a),
usually I an ordinal. Let o) = (x5 : 8 < «), similarly Z[,) for u a set or linear

order. Generally we allow infinite sequence of variables but the formulas are finitary
so only finitely many variables are mentioned.

2A) Let 2, = (), : t € Dom(a)), etc.; note Tap, = Tglu.

2B) Ifn € IDom( ) then: 75 ) = (z4,,, : s € I) and a, = (a,(s) : s € Dom(n)); see
5.22.

2C) Let £g(a) = Dom(a). Note £g(Za) = Dom(Z5) and Lg(ZTp,)) = u.

3) Let ¢(Z) be the pair (@, Z), where

e  is a first order formula (in L(7r),T the first order theory understood
from the content

e T is a sequence without repetition of variables, including all the variables
occuring in ¢ freely.

We normally use ¢(Z, 7) as a different object than ¢(Zu, §[v) and ¢ may stand for
such object, e.g. (Yo(7,2) : ¢ = ©(Z,y) € L(rr)). This is ambiguous in principle
but clear in practice. See more in Definition 1.2(4).
4) We may use A + B instead of AU B and Y, A; for U{A; : ¢t € I}.

tel
Observation 0.10. The number of formulas ¢(Tz, x5) € L(rr) is |T| + [£g(C)| +
[6g(d)| so > Ng and maybe > |T|.

Definition 0.11. 1) For M < € and B C € let M{g] be M expanded by relations
definable in € with parameters from B, as in [She09, §1].

2) Similarly M,z for p(z) € S(M) is M expanded by Ryz,) ={a € "M : M |
90[5‘]} for ¢(j[7L] € ]L(TT)'

Convention 0.12. E.g. saying “¢"d realizes tp(cx dx, A)” we may forget to say

tg(c) = Lg(ex), tg(d) = Lg(dx)-

Notation 0.13. 1) tp,(d,c + A) for ¢ = (T4, Tz, 7) is {¢(Zg ¢ a):a € 9 A and

CEpldeal}.

2) Similarly tpa(d,¢ + A) where A C {¢ : ¢ = (T g, Tz, §) € L(7r)}, members of

A not of this form are ignored.

3) tpy, means tpy, 3.

4) Let T = {¢ : ¢ = @(T(¢), §) € Llrr)}; similarly Tiep o = {9 0 0 = 0(Th, - 71 9) )
5) Let (V"“t € I)9(t) means: for all but < k members ¢ € I we have ¥(t) (but may

use (V°n) instead (V¥on € N)d¥(n)). Similarly (3¢ € I) means: there are > &

members ¢ of I such that 9(t).
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Definition 0.14. 1) We say that a model M is a x-sequence homogeneous when : if
f is a partial one-to-one function from M to M of cardinality < &, i.e. |Dom(f)| < k
and f is elementary in M then: for every a € M for some b € M the function
f'=fU{{a,b)} is elementary in M, where

1A) We say the function f is elementary in M when: Dom(f) C M, Rang(f) and
if M |= ¢lao,...] and ag,... € Dom(f) then M E ¢[f(ag),...].

2) We say that a model M is strongly k-sequence homogeneous when: if f is as in
part (1) then f can be extended to an automorphism of M.

3) We say that a model M is strongly x-saturated when M is k-saturated and
strongly k-sequence homogeneous.

Convention 0.15. 1) Generally (i.e. from §2 on if not said otherwise) in this work,
I vary on Kj,, the class of linear orders which are endless.
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§ 1. PRESENTING QUESTIONS, DEFINITIONS AND FACTS

We here recall and make some definitions and questions related to the family of
dependent theories and say some easy things to clarify, mostly those questions are
dealt with later in this work.

§ 1(A). Recounting types.

We define the new version of the number of types, i.e. up to automorphisms,
considering saturated model and generalizations. We then have a “first look at
them”. First, about the function f2"*, counting the types up to automorphisms,

see Definition 1.1:

B (a) if T is stable, the function f2'*(\) is constant, < 2!7
(b) if T is countable then
() the constant value belongs to {2,3,...}U{Rq, 2%}, see 1.3(1),(2)

(8) every one of the values occurs even for superstable T, see 1.2
(c) if T is Ng-stable then except 2% every one of the values
(listed in (b)(5)) occurs
(d)(a) if T is independent then f2'¢()\) = 2* when (Ju)(A = A<* =
28 > |T), see 1.4
(B) if T is independent, A = A<* > |T| but not as in () then
Still F27(\) > A
(e) if T is dependent and unstable then f2"(R.) > | + 1], see 1.3(4),(5).

This explains that the problem is about dependent (unstable) T. Note that the
case of independent T and strongly inaccessible A > |T'| is not resolved here, see on
it [STh].

The rest of this subsection is devoted to looking at relatives of f2"* motivated
by a desire not to use instances of G.C.H.

Definition 1.1. 1) Let C:={A\: A =A<*} and C-,, = C(> u) be C\u*.

2) For T a complete first order theory and 6 > 1 we define the function f;“et :C —
Card by f3§(\) = 169 . (My)| for My € ECy A(T), i.e. a saturated model of T of
cardinality A, where

3) &7 (M) = (S®(M)/ =au) where =,y or more? fully =3% is the following
equivalence relation: p,q € S%(M) are =,u- equivalent iff they are conjugate, i.e.
there is an automorphism of M mapping p to q.

4) If we omit 6 we mean 6 = 1, if we write “< Ro” we mean “for any finite n > 0”.

Example 1.2. 1) Assume T = Th(Q, <), the theory of dense linear orders with
neither first nor last element. Then f2"(Rg) is equal to 6, yes, six.

2) If T'= Th(C), or T is the theory of some algbraically closed field of characteristic
p,p prime or zero, then f3*(\) = Ry, for A\ > RNy.

3) In part (1), in general, f2"*(R,) = 6 + 2|a| for X, € C.

2We can define also when p; € SP(M,) are equivalent = conjugate for £ = 1,2 as in [Shea]
which deal in a non-first order but for a stable context.
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4) Let 7 = {P; : i < a}, P; a unary predicate and T says that each P; is infinite,
they are pairwise disjoint, and if « is finite then {x : A —P;(z)} is infinite. Then T
i<a

is stable (even totally transcendental so Rg-stable if « is countable) and f2"*(\) =
2(Ja+1|) for A > Rg + || If v is finite > 0 and 5 < a and above we demand Py is
a singleton when ¢ < 3, infinite when ¢ > 8 then we get f2"¢(\) = 2|a— (| +|8]+2.
5) Let T = Th(M) where M = (¥2, PM), ., and PM = {n € “2 : n(n) = 1} for
n € N. Then T is countable superstable and f2u*(\) = 2%0 for A > 2%o,

6) Let T = Th(“w, Ep)n<w where E, = {(n,v) : n,v € “w and n[n = v[n}. So T is
countable, stable not superstable and f2'(\) = 2, f%“zt (\) = R for every A = A\No;
noting that 7" has no saturated models of cardinality A when Ry < A < ANo,

Observation 1.3. 1) If T is stable, then f3"()\) is constant and is < 271 for
every A € Cs | (or just T has a saturated model of cardinality X, e.g. X = )\‘T‘),
Similarly f35(\) < 2171%% and is constant.

2) If T is countable and stable and e.g. A = A\¥ then f33%(N), either is constantly
some 0 € [2,N0] or is constantly 2%°.

3) If T is No-stable then f2"*(\) < N,.

4) If T is unstable and is dependent, then f3"*(R:) > |(+ 1| for e € C which is
> |T.

5) If T is independent, \ > |T| is inaccessible then f2**(\) > \.

Proof. 1) Assume M is saturated of cardinality > |T| or just a strongly |T'|"-
sequence homogeneous (see Definition 0.14). Every p € S™(M) is definable, in fact
there is a sequence (¥, (¥,2,) : ¢ = @(Z,y) € L(7r)) 80 T = Z|), not depending
on M such that for every p € S™ (M) there is a sequence c? := (¢}, : ¢ = ¢(,y) €
L(7r)), of sequences from M such that lg(ch) = lg(Z,) and @(Z,b) € p iff b €
9@ M and M = 1,[b, cl], see [She78, Ch.II]. Now the number of complete types of
sequences of the form (¢, : ¢ = ¢(,y) € L(r7)) in M with ¢, € taze) M is < 2171,
But M is strongly |T'|"-sequence homogeneous, see Definition 0.14(3), so this piece
of information suffices, that is, if p, ¢ € S™(M) and tp(e?, 0, M) = tp(e?, 0, M) then
there is an automorphism f of M which maps ¢” to ¢? hence f maps p to q. Of
course, this works for &S, (M) too, only the bound is 2/<HIT1 so for ¢ > |T| we
moreover get equality.

2) As in part (1), but this constant value is the number of equivalence classes of
some Borel relation hence by a theorem of Silver is < X or is 2%, see e.g. [HS82],
[She84]. Note that the value is always > 2 as the type tp(a, M) for a € M is not
conjugate to the type tp(b, M, N) when M < N,b e N\ M.

3) By the proof of part (1) and the definition of being Rg-stable.

4) Recall T has the strict order property (by [She90, Ch.II]) hence some formula
©(x, Yn) has the strict order property. We fix such ¢; and any M € ECy, n (T) for
any regular £ < N¢ we can find an indiscernible sequence I, = ((bx.) Gx,a : @ < K)
in M such that:

() (a) € E@lbg,are) iff a <p
() p(z,a5,0) F p(z,a,p) if a < B.

Let pr, = Av({(bs,a : @ < k), M), so it is enough to prove that for regular k1 # kg,
the types px,,Pr, are not conjugate. For this it is enough to prove p., # psx,
(as the assumptions in the choice of I,;, p, are preserved by automorphisms of M).
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Toward contradiction assume p,, = p = ps, and without loss of generality x1 < ks.
For £ = 1,2 we have a < ky = (V¥ < Ke)@(br, 8y 0rp,0) = (T, 8x,0) € D =
(V305 < k3—r)@(biy_,, 8, r,,a); SO applying this to 3 — £ we also have a < k3_p =
(V8 < Ko)[@(biy,8,Ors_p,0)]- SO as k1 < ko = cf(ka) necessarily there is a co-
bounded u C ko such that @ < k1 A B € u = M = @[bs, 8,0k,,o]- Renaming,
without loss of generality u = k.

First, assume ko < X¢. Let ¢(3) = {=¢(bx, 5, 7) : 1 < K1} U{p(br, ;,7) 1 J < K2}
If a € “9W) M realizes q(7) we get ~p(z,a) € pe, A p(2,a) € py,, contradiction.

But if » C ¢(g) is finite and 4, = sup{i : b, ; appear in r} then @, ;, +1 realizes
r 50 ¢(7) is a type in M but we are assuming |¢| = ko < N¢ and M is saturated so
q is realized in M, contradiction.

Second, assume kp = N¢; we could have chosen p,, using a linear order I =
I}, + I, isomorphic to (kg + k3) such that I} = {s, : a < &}, I = {ta : @ < K}
and a < f < kg = 54 <1 S <1 tg <J ta.

We choose (bs,as : s € I) in M such that M |= ¢[b;,as] if s <;t. Also without
loss of generality for every A C M of cardinality < N for some a < R the set
(bs"as : s € {sp,tp} : B € (a,N¢)) is indiscernible over A.

Lastly, without loss of generality 8 < k2 = bs, = bx. g 50 Pr,(A) = {¥(,0) :
¢ C M and M = 9bs,, ¢ for every a < kg large enough}. Now for any o < ka
we have (p(z,as,) N —p(x,at,)) € pu, hence for some v(a) = v, < K1 we have
CE @b, y(a) Gsa] A 20[b, 4(a), Gt,] S0 for some v < Ky the set u = {f < kg :
v(8) = ~} is unbounded in k3 = V.. So choose above A = {b,, ~} and get a
contradiction.

5) See more in [STh], still we state 1.4 below. O3

Observation 1.4. Assume T is independent, then :

f%ut()\) =2* for A =2t ¢ C>‘T‘
Proof. Because there are My € ECy 1(T) such that A C My,|A| = p such that
P = {p € S(M) : p finitely satisfiable in A} has cardinality 2*, but 2, = {p €
& : p conjugate to ¢} has cardinality < A\* = X for each ¢ € £. Oy

Dealing with saturated models, for unstable T', force us to have the suitable
cardinality with (kx = K<")! so our restriction to such cardinals is natural, that is
recall

Claim 1.5. If M € ECy, (T) but T is unstable and k > Rg then k= K<".

Proof. By [She90, Ch.IIT]. Uis

Our aim is

Conjecture 1.6. 1) If T' is dependent, then f2**(R,) < \oz|2m for X, € C.

2) If T is dependent unstable, then for some x*(T) < |T|* we have fr(R,) =
\a|<“+(|T|) when R, € C is large enough (see [She90, Ch.III] on number of inde-
pendent orders).

Discussion 1.7. 1) During a try to improve [Shel5], raising this Conjecture changes
my outlook and leads to this work.

2) We may like to eliminate the use of G.C.H. or weak relatives, though 1.5 show
this is not straight. We may consider the following relatives, f34'(—) and f3%*(—),
those are not further dealt with in this work, i.c. after §(1A).
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Definition 1.8. 1) For A > [T let f¥3(\) = min{u: for every M < € of cardinality
A there is N < € of cardinality A\ extending M such that |G,y (N)| < u}.

2) Let f7%*(A) = min{u: for every M < € of cardinality A there is N < € of
cardinality A extending M and function g : S(M) — S(N) such that p € S(M) =
9(p)IM = p and [{g(p)/ =§": p € S(M)}| < p}; so [{™(T) < fF*(A),

3) Omitting 6 means 6 = 1, writing “< 6” means we use S<%(—).

Discussion 1.9. Let us consider T' = T,,q := Th(Q, <), we concentrate on f¥**(\),
the case fY**(T) can be analyzed similarly. For any A letting OF = {x : k =
cf(k) < X and A<">t > XA}, see Definition 1.10 below, so for some M € EC, 1(T)
for each k € OF it has a set xk of > X cuts of cofinality (, k). Now if we consider
N,M < N € EC, 1 (T), some of these will not be filled, hence fr(\) > |OY].

Concerning the size of ©F note that by Easton forcing (using a not necessarily
increasing function f from RCard to Car), if g = min{x : 2# > A} then O N [u, A)
is quite arbitrary. However, by pcf theorems ©% Ny is quite small, that is, if x < p
is strong limit, then O Ny is a bounded subset of x, see [She00b], [She06] and
maybe even is provably always finite.

Given M € ECy 1(T) there is N € EC, 1(T) extending it which is strongly Ro-
saturated (equivalently, 2-transitive), filling as many cuts as we can. Now all the
cuts of N of cofinality (Ro,Rp) are conjugate; also the types corresponding to cuts
¢ with cofinality (kk, rZ) such that ki, # k2 V kL, = k2 ¢ OF\{R} are easy to
handle; because their number is < A, and we fill the cut € by J¢ such that Ji has
both cofinalities Ny as well as treating increasing sequences leading to the cuts from
both sides; in fact we can choose N such that this occurs to any cut of M filled by
some member of N\ M.

But when k& = k2 ¢ OF call it Ky and it € OF\{Np} it is not immediately
clear whether all such cuts can be treated to ensure uniqueness up to conjugacy.

Let ((a%,, bz i) : i < k) be a decreasing sequence of intervals converging to the
cut €; now the isomorphism type of ¥ can be handled when:

By the following set contains a club of ke, {i < ke: the cut of M with lower
half {a : \/ @ <u ag,;} is filled in N and the cut of M with upper half
j<i

J
{b:V bg; <b}isfilled in N}.
i<i

Now as classically known we can find a tree .7 of cardinality A with < X levels and
< X nodes, with nodes intervals of I and cuts correspond to branches. So clearly
we can ensure By, and this is clearly enough. So we can understand fyV*(T') for
T = Th(Q,<). We may formalize 1.9 as a claim in 1.11. (Note that computing

T (A, frg(A) for 6 > 1 is easy from the case § = 1. We use a(x) > w below to
simplify.

Definition 1.10. A<>v = sup{|limy(7)| : 7 C 9>\ is closed under initial

segments and has cardinality < A} where limg(.7) = {n € 9\ : nli € F for every

i< 0}

Claim 1.11. Let T = Ty := Th(Q, <). For any cardinal X = R,y > N, we have
W) = |a(x)], FIY(N) = O] + 1 = |©] where © = OF := {0 : 0 = cf(0) < X\ and

A<OZe > \}

Proof. Let M € ECy 1(T) be given, without loss of generality M is such that:
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(%) for every € Reg N AT, in M

(a) there is an increasing sequence (aé)a ca <)

(b) there is an decreasing sequence (aaa ta<0)

(c) if 6 € O thereis a tree .7y C 9>\ exemplifying A<¢># > X\ and sequence
(bo,nsco.n M € Ty of members of M such that v<an € Tp = bo <m
bo.y <1\]/[ co.n <u cop and [n°(a),n"(B) € Ty, < B = copn () <M
bo.n"()]-

Assume M < N € EC, 1(T) and let N* be such that N < N* and N* is A*-
saturated. For ¢ < 4 choose d; € NT be such that: dy € M, (Va € N)(d1 < a <
d3),(Va € N)(a < dg — a < d3 < dp),(Va € N)(dy < a = dp < dg < a). For
0 €0, let n=mny € limy(Tp) and pg = {bo, ;i <z < bgypi : @ < 0} be such that py
is omitted by N, exists by cardinality consideration; and so py has unique extension
py in S(N) and let ) € N* realize it. For § € Reg N At let ej € NT be such
that o < 6 = a, < e}, and (Va € N)( A\ ap, <a = el <a). Let e € N* be
0

a<
such that o < 0 = € < a3, and (Va € N)[ A\ a} < a}, — a < €3]. (So the most
' a<f '
“economical” way is to have aj , = by yja, a3 , = Conja and €) = ej =€3,0 € © =
0_ 1 ’
ep = €p.)

Now we prove the four needed inequalities
B [N = 10] + 1.

Why? It suffices to prove that for any f : S(M) — S(N) such that p € S(M) =
(F@)IM = p we have [{£(p)/ Zau: p € S(M)}| > (0] + 1. The types po =
tp(do, M) and py = tp(ey, M) for § € © have unique extensions in S(NN) and
clearly f(pg), f(pg),0 € © are pairwise non-conjugate.

Ha f¥**(X\) > |Reg N AT| + 5.

Why? Tt suffices to prove that S(N)/ =.u has cardinality > |Reg N AT| + 5.
Now the types tp(do, N),tp(di, N), tp(dz, N), tp(ds, N),tp(ds, N) and tp(ej, N) for
0 € Reg N AT are pairwise non-conjugate.

B f7(N) <[6]+1.

Why? It suffices to show that we can choose a model N, such that M < N, €
ECy1(T) and a function f : S(M) — S(N.) such that p € S(M) = f(p)[M =p
and {f(p)/ =aus: p € S(M)} has cardinality < |©] + 1. Note that

(¥)1 ¢ :=min(O) is equal to min{d : A2 > A}.
Now choose N, such that
(¥)2 (@) N <N, €ECy1(T)
(b) ifde@\M and (0y; 4,04, ) = (cf{a e M :a < d}, <),

cd({aeeM:dea},>n)) ¢ {(0,0):0 € ©} then
the type tp(d, M) is realized in N,

(¢) N, is o-saturated
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(¢c)™ moreover N, is strongly o-saturated (i.e. every partial
automorphism of cardinality < ¢ can be extended to an
automorphism)

(d) 7 C*>2is a tree with < X nodes (and < A levels) and @ = (ay;:

n € ) list the members of M with no repetitions such that
for n € .7 we have a < f < lg(n) = (anja < an =
anta < anpp) and a < Lg(n) — (apta < ay = nla) =1)

(e) ifne T then for some el el € N\M we have {a € M :a <€)} =
{ae M: (B <lgn)h(a) =1Aa<lyg(n),a< ayal}
and {a € M :e; < a} ={a € M: (3a<Lg(n)n(a)=0
Nagia < al}

(f) if for £ =1,2 we have ¢, < d; are both from N, \M and we let
Ap={beN.:ifae Mthen a<c¢y=a<bandd; <a=b<a}
then there is an automorphism of N, mapping A; onto As.

Why is this possible: for (c) as A = A<7, for (b) as {tp(d, M) : d € € and 0}, , #
HJJ\F/Ld are infinite} has < A\ members and {tp(d, M) : d € € and Ry < 6, , =
HJJ(L 4 ¢ ©} has < X\ members by the definition of © (and the well known old
equivalence of trees and number of cuts); lastly {tp(d, M) : d € € and 0}, , € {0,1}
or 0y, 4 € {0,1}} has < A members trivially. Also clauses (d),(e),(f) are straight.

Now we define f, so let p € S(M); the proof is divided to two tasks. First, if
some d = d, € N, realize p, then let f(p) = tp(d,, N.) so by clause (c¢)* clearly
f(p), po = tp(do, N,) are conjugate. Second, if p € S(M) is not realized in N, then
by clause (b) there are § € © and <j;-increasing (d,,; : i < ¢) and <js-decreasing
(d};:i <6} such that d_; <y df; for i <0 and p include p’ = {d, <z < df, :
i < 0} which N, omits hence p has unique extension f(p) in S(IV,).

Let dy; = ay, , for i <0, now

(x)3 without loss of generality fg(n, ;) is constant or is increasing
(#)a if 49 < i1 < i < 0 then £g(np.io N Np.iy) = L9(Np.io N Np.is)-
[Why? Check separately when 7, ;, <7, and when not.]
(x)5 without loss of generality if ig < i1 < 6 then Lg(np,io N Mpiy) = £g(Np,io N

77177i0+1)
()¢ without loss of generality either

(@) (nps 1<) is <increasing and 0, i+1(¢g(np,i)) =1
or

(0) Lg(npi) > i = Lg(Mp,i+1 N 1p,i) 80 Np () = 0 for every i.

But if (x)(b) holds we can use 7, ; = 1,[c;, so without loss of generality (*)q(a)
holds so

(x)7 for some n € cl(T)\T we have cf(g(n)) =0, (e : ¢ < 0) is increasing with
limit £g(n), mp.i = nlai, n(es) = 1.

Similarly without loss of generality

(x)s for some v € cl(T)N\T,ct(lg(v)) = 6,(B; : i < 0) is increasing with limit
tg(v), dp,i = vIBin(Bi) = 0.

See https://shelah.logic.at/papers/950/ for possible updates.
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But for each limit 6 < 6 the types {d,; < z < a :i < ¢ and a € M and
j<d=>d,; <a}{a<w<d;:i<baecMandj<d=a<d,}
are realized by clauses (d),(e). NOW easily f(p ) tp(e), N) are conjugate by some
g € aut(NN) such that g(bg,;) = d,, ;, g(co,i) = dp ;» because we can choose it in each
relevant convex set by clause (f).

By f7*(N) < olx) +6].

It is simpler when (%) > w and the proof is similar to the proof of Hz but use
=<-increasing continuous (N7 : e < o), Nj = N, etc. 0411

Question 1.12. 1) For T countable, dependent and unstable, is fY"*(T') essentially
equal to fyfo - (A)? at least can we understand it (and fwat( )?
2) What can we say on fy¥*(\), f%?*(\) for independent 77, see below.

Discussion 1.13. 1) Concerning Part (2) of 1.12, it is easy to note: if T is inde-
pendent and |T| < p < A < 2% < 2* and cf([2#]*, C) > 2 hold, e.g. if cf(2#) < A,
then fyat()\) = 2*; see more in Kojman-Shelah [KSQQ] [Shea, 4.7].

Let (ug : @ < A) be a sequence of subsets of 1 which is independent and ¢(Z, y) €
L(7r) is an independent. Let M € ECy(T) be such that a, € g, b, € 9@ s
for @ < p,i < A be such that M | ¢laqe,b;] iff o € u;. It suffices to prove
that |7(M)/ =34t | > 2* and for s C A let Py € S(M) be finitely satisfiable in
A ={aq : @ < p} and such that ¢(x,b;) € p, iff 7 € s.

So it suffices to prove that for s. C A the set ¥ = {s C X\ : ps, ps, are conjugate}
has cardinality < A = 24, For s € ¥ let g, € aut(M) map ps, to ps. So if
|#| > 2" then for some g : A — M the set %, = {s C X\ : g;[A = g} has
cardinality > 2#. We continue as there.

2) For independent 7' the situation concerning fy%'(—) is very different than for
3 (—). Why? By the following.

Claim 1.14. 1) If A = AX<* > 0+ |T| + Ry and T is a complete first order theory,
then fr7t(A) < 29,

2) Moreover for every M € ECy1(T) there is an elementary extension M™ €
ECx1(T) such that:

() ar, if p € SP(M) then for some q = q, € S(M™) extending p the model M[Z]
is saturated, see Definition 0.11.
Proof. 1) By (2).
2) Let N be such that M < N and every p € S?(M) is realized by a, € *N.

For @ < A let D, be a regular ultrafilter on I, = |a| + Ry. Now we choose
(Nu, M,,) by induction on o < A such that

(a) (Ng,Mg) is elementarily equivalent to (N, M) (where (Ng, Mg) is the
(7 U{P})-model expanding N by PNe:Ms) = | M|, so P is a new unary
predicate)

(b> (N07 MO) = (N7 M)

(¢) the sequence ((Ng, M) : 8 < «) is <-increasing continuous

(d) if @« = B+1 then there is an isonrlolrphismj;r from (N, M,) onto (Ng, Ms)!s /Dg
extending the canonical embedding jz from(Ng, Mg) into (Ng, Ms)*? /Dg,

i.e. for a € Ng,js(a) = fo,3/Dp where fq g : Ag — N is constantly a.
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There is no problem to carry the definition and M ™ := M), is as required. That is,
we can prove by induction on « that || M| = A: if @ = 0 by clause (b) if a = 3+ 1
as A < /\IB/D,X < A8l < A<A = X and for « limit by the induction hypothesis.
Also, as Dg is a regular ultrafilter, clearly M) is saturated hence M) € ECy A (T).
Similarly (N, M) is A-saturated hence if @ € *>(Ny) then (M) is saturated.
We choose M = M) so indeed M < M+ € EC, (7).

Now for every p € S?(M) recall that a, € N C ?(NN,) realizes p, so let g, (Z)) =
tp(@p, My ), so we are done. O 14

Claim 1.15. 1) Assume T is a complete first order theory and X\ is strong limit
singular of cofinality ki, A > 0, A > |T'| +Ro. Then fr*(A) < 29,
2) Like 1.14(2) replacing “saturated” by “special”, see [CKT73].

Proof. 1) By part (2).

2) Similar to the proof of 1.14, but we elaborate. Now the definition of “special”
says that there is M = (M} : i < k) which is a <-increasing continuous sequence
of models (of T') with union M such that M, is ||M;]|*-saturated and i < k =
IMF]] < A. Let (A; : i < k) be an increasing sequence of regular cardinals with
limit A. We choose N, (@, : p € S?(M)) and (D, : a < A) as in the proof of 1.14.
We now choose (N, M,,) by induction on a < A such that:

B (a)(a) M, = (M, :i< k) is <-increasing continuous
(8) (Na, M,,;) is elementarily equivalent to (N, M) for i < k
such that A; > a so M, ; < N,

(b)(a) No=N
(B) Mo;=M;fori<ek
(7) MO,H =M

(¢) ((Ng,Mg;): [ < a) is <-increasing continuous
(d) ifa=p+1 then
()  there is an isomorphism jg from N, onto N, BIB /Dg extending
the canonical embedding of Ng into NV é‘a /Dg
(8) if B < A; then j; maps M, ; onto Méf*i/Dg
(’}/) if ﬂ > )\1 then Ma,i = Mﬂﬁ'.

In the end (My, \, : @ < k) witness that M := U{M,, , : i < A} is special;
moreover, if a € YN then g, := tp(a,, M+, N)) is as promised. Oi15

If you do not like the use of instances of GCH, i.e. k = k<*, but like to stick to
essentially the same property, we can reformulate it.

Definition 1.16. Let f%u;*()\), for X regular be the minimal u such that for any

A-saturated M < €, e.g. of cardinality 2<* we can find a subset P of S?(M) of
cardinality < p satisfying that:

(*) for any p1(Zjg) € S?(M) there is p2(Z(g)) € P such that letting a; = (ag, :
i < 0) realizes pg(T)) in € for £ = 1,2 we have
©® in the E.F. (i.e. Ehrenfeucht-Fréissé) game of length A for the pair
(Mia,), Mia,)) the ISO player has a winning strategy.
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Discussion 1.17. Concerning f;uet*(—)

1) The positive result, i.e. upper bound for dependent T (see end of §4) still holds
as well as the negative ones.

2) The negative results for independent T" holds.

3) The question is closed to the one on “what occurs in VEevy(AX) for some x”.

Question 1.18. Generalize to any dependent 7' the theorem: a linear order of car-
dinality A has < X cuts of different lower cofinality and upper cofinality.

§ 1(B). On the outside definable sets and uf(p).

Definition 1.19. 1) Let DefQ (M) = {p(M,¢) : ¢(Z,7) € A, lg(T) = « and
¢ € 9W¢} and Def, (M) = Deff'(,,) (M) where see below; of course instead € we
can use any ||M||"-saturated elementary extension of M.

2) (M,e) = {b:bec @M and € |= p[b,¢]} where ¢ = ¢(z,7).

2A) We say I C “M is outside definable when it belongs to € Def, (M).

3) If p(z) € S*(M) let uf(p) = {D : D an ultrafilter on the Boolean Algebra
Def,, (M) containing {¢(M,a) : ¢(z,a) € p}}.

3A) If p € S*(M) and A C {¢o(Za,¥) : J € {Um) : 7 < wh, @ € L(7r)} then let
ufa(p) = {D NDefx (M) : D € uf(p)}. If A ={p} we may write ¢.

4) We say p has super multiplicity 1 when |uf(p)| = 1.

5) If ¢(Z,9) = tp(a"b, M) and p(Z) = tp(a, M) then m = Tp(z),q.z.y) 18 the function
from uf(q) onto uf(p), we call it the projection, such that if D € uf(q) and M C
A C €and @V realizes Av(D, A) then @ realizes Av(m(D), A), see 1.20(1) below.
6) We say I = (a, : t € I) is an indiscernible sequence based on p € S*(M) when
(I is a linear order and) I is based on some D € uf(p) which means that: for each
t € I,tp(as, MU{as : s satisfies t <y s}UM) is Av(D, {as : s satisfies t <; s}UM).
Similarly for p € S™(A) which is finitely satisfiable in M and I is based on (D, A).
7) Assume p € S*(M) and D € uf(p), let Dom(D) = |M]|, (we can replace it by
an set). We say a realizes tp(D, A) when there is (G, : n < w), as in part (6),
i.e. such that a, realizes Av(D,{a, : £ € (n,w)} UaUDom(D)) for n < w and
(@)"(an : n < w) is an indiscernible sequence over A.

8) Above we say “realizes tpa (D, A)”, when in the end (@) (G, : n < w) is de-
manded only to be an A-indiscernible over A.

9) For D as above let A(D) = min{o: for some A C Dom(D) of cardinality ¢, no
a € "(Dom(D)) realizes (4, D)}.

10) Aa(D) is defined similarly restricting ourselves to A.

11) Aioc(D) = sup{Aa(D) : A C L(7r) finite}.

Claim 1.20. 1) For M,a,b,p(z),q(z,y) as in Definition 1.19(5), the function
Tp(z),a(z,5)) * uf(q) = uf(p) is well defined.
2) Moreover it is onto.

Proof. 1) Should be clear.
2) So assume D; € uf(p(z)). It suffices to prove that

() the family 27 U 25 can be extended to an ultrafilter on “M where
(a) 27 :={X/}: for some X; € D we have X, = {@'"V' : @ € “@ M,V ¢
9@ M and @’ € X;}} and
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(0) 2= {{@"F : @ € WOMF € 9OM and M k= @, F,d} : €
@[aaba 5] and ¢ C M;QD = (p(f,g_,_hz) € H—‘(TT)}

As each of the two families in the union is closed under (finite) intersection, it
suffices to prove:

© assume ¢ = p(Z, %), ¢ € 9E)E and X := (M, ¢;) € Dy define X| € 23
as in (¥)(a) and @ = (7,7, 22), 2 € “9Z)M such that € |= +a,b,d],
defines X, € 25 as in (%)(b) then we can find @,b" in M such that € =
ola', e Ayla’, b, ).

To prove ® note that the set Y; := {@’ € 9@ M : M = (35)¢(@’,§,¢2)} belongs to
Dy because Dy € uf(p),p = tp(a, M) and € = (3y)v[a,y,cz]. Hence X1 NY; € Dy
and choose @ € X, NY]. As @ € Y] thereis b/ € 9% M such that M = y[a’, b, é)
and as @’ € X; we have M |= ¢[a’, é). Together @' "b' is as required in ®. [y 99

Claim 1.21. We assume (needed really just in parts (0),(2),(4), that T is depen-
dent.

0) If 1 is an infinite indiscernible set, then I sits stably, see 1.36(2), (so every
p € S<¥(UI) is definable).

1) If D € uf(p(%)),p(z) € S*(M) and I is a linear order then there is an indis-
cernible sequence (a; : t € I) over M based on D, see Definition 1.19(6). We can
replace M by a set A.

2) In part (1) if I, = (@} : t € I) is an indiscernible sequence based on D, I is a
linear order with no first element and af realizes Av(D,U{a* : s satisfies t <; s
and k = 1,2}) then If, 15, i.e. 11,15 inverted are equivalent, see 1.36(5).

3) In Definition 1.19(7), it is equivalent “for every infinite linear order I there is
an indiscernible sequence {(a; : t € I) over M based on D”.

4) Assume Dy € uf, (M) and (@’ : n < w) is an indiscernible sequence based on
Dy, see Definition 1.19(6) for £ = 1,2, then Dy = Dy iff tp((@} : n < w), M) =
tp({a? : n < w), M).

4A) Assume for transparency v < w and A CL(7r) is finite. Then for some na <
w for every D1, Da, M, @ as in part (4) we have: Dy NDef (M) = Dy NDef} (M)
iff tpa((@h :n <na), M) =tpa((@:n <na),M).

5) If { < 01, M is rk-saturated, cf(k) > 2% and p € SS(M) then for some u, A, we
have (we write u = uy(p)):

(a) u is a non-empty subset of uf(p), see 1.19(8)

(b) if D € u and A C M has cardinality < r then some a € M realizes
tp(D, A)

(¢) Ax C M and |Ai| < &

(d) if @ € M realizes p|A then for some D € u,a realizes tp(D, A,), see
Definition 1.19(8)

(e) if D € uf(p)\u, then no a € M realizes tp(D, A).

Proof. Parts (0),(2),(4),(4A) and (5) by [She04], the others are obvious. O1.21

Observation 1.22. Assume p € SY(M) and |T|+~ < 0. Ifuf(p) has cardinality
> 2% then for some ¢ = (Z-,9), also ufyz..5)(p) has cardinality > 20, In fact

luf(p)| < IM{ufy(p) : ¢ = ¢(Z}y)) € L(7r)}-
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Proof. Obvious. Uy 22

Recall question [She04, 6.1].

Definition 1.23. 1) T has bounded directionality when: if p € S*(M), then the
set uf(p) = {D : D an ultrafilter on Def®(M) such that Av(D,*M) = p} has
cardinality < 2/7l+lel,

1A) We define “finite directionality” similarly when we consider only p € S<¥(M).
1B) We define “unary directionality” similarly when we consider only p € S(M).
2) We say T has medium directionality when for every p € S*(M), the set uf(p)
has cardinality < ||M||!*/*!T1 but T' does not have bounded directionality.

3) We say that T has large directionality when it neither has bounded directionality
nor medium directionality.

Claim 1.24. 1) T has bounded directionality iff ufa(p) is finite whenever p €
S¢(M),A C T, is finite iff for some X\ > |T| we have M € ECy 1(T) A A C L(rr)
finite Ap € S<¥(M) = |[ufa(p)| < .

2) If T has medium directionality iff for every A > |T| we have A = sup{|ufa(p)] :
p € S<Y(M) and M € ECy1(T) and A C L(rp) is finite}.

3) If T has large directionality iff for every X > |T| we have sup{\<¢>w : 9 < )
regqular} = sup{|ufa(p)| : p € S<U(M), M € ECx1(T) and A C L(rr) is finite}.

4) If T has medium or bounded directionality, M < €,p = tp(a, M) € S°(M) and
D € uf(p) and (G, : n < w) is an indiscernible sequence based on D then for
every ¢ = w(£?€]7 .. ,a’cf‘e]*l;ﬂ) the type p = tp,(ao” ... "an—1, M) is definable with
parameters in the model M.

5) If T has bounded directionality then in part (4) the type p, is definable almost
on () in the model Mig), i.e. in Mﬁ,f]‘ it is definable with parameters.

Proof. 1) Clearly the second implies the first which implies the third.

Lastly, assume the second fails and we shall prove the third fails. So we are
assuming p € S™(M) and uf(p) infinite, A finite. let (D, : n < w) be a member
of uf(p) such that (Ava(D,,€) : n < w) are pairwise distinct. For n < m < w as
Av(D,,, @) # Av(D,y,, €) we can choose let ¢, 1 (%, bnm) € Av(Dy, by ) such that
“n.m (T, bn.m) € AV(Diny by ).

Let M = My < My < My U {by,,, : m < n} C Ni,é, C My realizes Av(D,, N)
hence it realizes p € S™(M). Let M+ = (N, PN QN <N") PN" = |M|,Q¥ =
{bpm :m <n < wh PNT = |Ny[,Qy = {&n i n < w}.

Let Ni™t be a pT-saturated model of Th(M*). Without loss of generality Ny =
N*tlrp <€ let Ny =€[PN"" Ny =ePN'™".

Let p’ = tp(¢, M") for every ¢ € Q§V++. For every ¢ € Q§V++ let gz = tp(¢, Ny),
this type is finitely satisfiable in M’ (by N*+ = M™) hence for some ultrafilter
D on M’ we have q; = Av(Ds, N]). Now for any ¢ # & in QY we have
Dz, # Dg, so for some b € QY% p(Z1,b) = —p(Ca,b) hence for some t we hvae
@('f’ b)t € gz, _'So(i‘7 b)t € ge,-

So (Ds Ndefa (M) : & € QY'") is a sequence of pairwise distinct members of
ufa(p). As |QY 7| > ut we are done.

2),4) See Kaplan-Shelah [KS14b] using [She78] and 1.21(4).
5) Obvious. 51.24
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Remark 1.25. Can define ufa(p) = {D Ndefa(M) : D € uf(M) and Av(D, M) D
plA}, no difference in the proof.

Question 1.26. If M, z)) < Nigz)) how are uf(p(7)), uf(q(z)) related?

Question 1.27. Can we prove a substitute? We do not deal with it presently. E.g.
we may consider uf(I),I a k-end-homogeneous sequence, see below and §(5B).

Definition 1.28. For a sequence I = (a, : s € I) of (-tuples, (I a linear order) let
1) B(I) = {J C I: for some ¢(Z¢),b) for every t € I we have @la;, b] <t € J}.

2) uf(I) is the set of ultrafilters D on B(I) containing all co-bounded subsets, so
interesting only when I has no last element.

3) For A CT¢ ={p: ¢ = 0(),y) € L(T)} let BA(I) = {J C I: for some
©(Z(),y) € A and b € 9D for every t € I we have t € J = p[ay, b]}.

4) ufa(I) = {DNBA(I) : D € uf(I)}.

Probably we may do better.

Question 1.29. Does the directionality of T" essentially determine when A =7 (k),?
See on the directionality, see 1.24 and on the arrow see 1.42 and on A =7 (k). for
dependent T' see [KS14b].

We have divided the family of dependent unstable T’s to three.

Claim 1.30. 1) Fvery dependent T satisfies exactly one of the following possibil-
ities: stable, unstable (dependent with) bounded directionality, unstable dependent
with medium directionality and unstable dependent with large directionality.

2) Each of those classes is non-empty.

Remark 1.31. 1) Delon, see Poizat [Poi00], gives an example of a dependent T with
[uf(p)] > ||M]|, in the present terminology this means a dependent T with large
directionality.

Proof. 1) By 1.24.
2) See Kaplan-Shelah [KS14b]. U130

Question 1.32. In the definition of medium/large directionality, can we use p €
S(M)?

§ 1(C). Indiscernibles.

Definition 1.33. 1) For an index model I and model M we say I = (a, : n € I)
is (A, n)-indiscernible in M when: a,, is a sequence from M of length depending
only tpys(n, ), I) and such that if the sequences 7y = (n; : £ < n), iz = (7 : £ < n)
realize the same quantifier free type in I then ag, , a5, realize the same A-type in
M where:

1A) For 7= (n; : £ < n) we let @5 := Gy, " ... "y, _,-

2) If A = L(7a) we may omit it; if M < € = €7 we may omit M, we may write
“< n” instead n and omit n meaning all n’s.

3) Note: saying I is {¢(Zo, ..., Zn—1)}-indiscernible in M mean that we consider
only @y, " ... ay, ,,29(ne) = £g(Z,), so do not allow to divide the variables differ-
ently.



Paper Sh:950, version 2014-05-02_12. See https://shelah.logic.at/papers/950/ for possible updates.

DEPENDENT DREAMS: RECOUNTING TYPES SH950 23

4) (@, : n € I) is continuously indiscernible in M when, say® g(a,) = ¢ for every
n € I and for any formula (o, ..., Tn-1) € T'(¢),, with £g(Z¢) = ¢ for £ < n see
0.13, there is a quantifier free formula ¥ (yo, ..., yn—1) € L(77) such that for every
N0s -y Mn—1 € I we have M = @y, ..., 0y, | iff T E=9Mno,..., 0n-1].

5) We add “over B” when we use the expansion (M, b)pcp

Claim 1.34. Let T be dependent.
1) Assume

(a) A is a finite set of formulas
(b) M a model of T and AC M
(¢) I is a linear order

(d) T=(aype:l<nk<keuc [l is indiscernible’ over A
(e) ce“” M.

Then there is a finite subset J of I or of the completion comp(I) of I such that
(g <nk <kpu € [I]°) is A-indiscernible over AU d above J.

2) Moreover, there is a bound on |J| which depend just on A, (ke : ¢ <n) (and T),
and so it is enough that I is Aq-indiscernible for appropriate finite Aq.

3) So for every C C € there is J C comp(I) of cardinality < |C| + |T'| such that I
is indiscernible above J over AUC.

4) Let I € K, -, see Definition 1.39(1) below. If o is finite then parts (1),(2) holds.
Part (3) holds when we demand J to be just of cardinality < |C|+|T|+ o.

Proof. See [She04, §3]. U134

More generally

Definition 1.35. Let ¢ = (K, <¢) = (K¢, <¢) be an a.e.c. class of index models;
normally < is C, then we may write K.

1) We say that the theory T has the ¢ — f-indiscernibility property when: if I € K
(see below) and the sequence I = (a, : n € I) is indiscernible over A in Cr and
b e w>¢ then thereis I, € K <¢-extending I and subset J of I, of cardinality < 6
such that: if ny = (e : m < n) € "I for £ = 1,2 realizes the same quantifier free
type over J in I, then, the sequences Gy, := Gy, ... Gy, , for £ = 1,2 realize
the same type over A.

2) Writing “¢ — (< 0, n,)-indiscernible property” means that above n < n,.

3) Writing “¢ — (< 0, A, n,)-indiscernible property” means that above we restrict
ourselves to the A-type, i.e. which means that A C {¢(Zo;Z1;...;Tn-1;7) :
©(To; ... ;Tn_1;7) € L(rr); 7 finite} and 71, 72 € (€1) we use only p(Zo, . . ., Tn_1;7) €
A such that £g(g) = £g(b) and Lg(Zy,) = Lg(an, ,,) = Lg(ay,.,.).

4) Writing “¢ — local — (< 6)-indiscernible property” means that “¢ — (6, A, n)-
indiscernible property”, and for every finite A.

5) Omitting 6 means Ry for the local case, |T|* for the other case; and instead
“< 07" we may write 6.

6) We say I € K is full® when for every J € K which <g-extends I, every quantifier
free type (in finitely many variables) realized in J is realized in I.

3for transparency
450 [I]S™ is defined as an index model naturally
5it is many reasonable to restrict ourselves to full T
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7) We say I € K is locally full when we replace above type by a formula.

Definition 1.36. 1) An indiscernible sequence (G, : s € I) in Cr is dependent (in
¢r) when for every b € “> € it satisfies the conclusion of 1.35 for x = |T'|*+ (the
number of quantifier free (< w, 77)-types realized in I).

1A) Above “k-dependent” means we use k.

2) If T € Ky, see 1.39 below, an indiscernible set I = {a; : t € I'} in € is stable or
sit stably when it satisfies the conclusion of 1.35(1).

2A) Above we say k-stably when we use x, superstably when x = Ng.

2B) An infinite indiscernible sequence I = (G : t € I) of (-tuples is dependent when
for every ¢ = o(Z(¢],7) and b € L9 ¢ there is a convex equivalent relation E on I
with finitely many equivalence classes such that sEt = € |= ¢[as, b] = @|ay, b].

3) For indiscernible I = (@, : t € I) C ¢€ as in part (2) and A, C € let Av(I, 4) =
{o(Z(g,a) : b€ “> A and € = g[ag, b] holds for all but < R, elements ¢ € I}.

4) For endless I € Kj,, see 1.39, indiscernible sequence I = (a; : t € I) C €
and set A let Av(I, A) = {¢(Z(¢),b) : b € “>M and € = g[ay, b] for every < -large
enough t € I}.

5) We call the infinite indiscernible sequences I,J equivalent when Av(I, A) =
Av(J, A) for every A.

6) Given endless indiscernible sequences I, = (af : t € I,) for £ = 1,2, we say
I,,I, are immediate neighbours when I, 4+ I3_, naturally defined is an indiscernible
sequence for some ¢ € {1,2}. They are n-neighbours when there are J§, ..., J* such
that Jg,Jx41 are endless indiscernible sequences which are immediate neighbours
fork=0,...,n—1and I, = Jy,Is = J,. Let being neighbours mean n-neighbours
for some n.

Discussion 1.37. Historical review for §(1C):

Of course, Eherenfeucht-Mostowski [EM56] use indiscernibles, i.e. their models
were generated by a sequence of indiscernibles. Morley [Mor65] prove that for Rg-
stable T: when A\ = p is regular A —7 (\); which mean for any a, € Cr(a < )
for some % C A, of cardinality u the sequence (a, : « € %) is an indiscernible set,
using o(z,b) of minimal rank such that (3*a)(p[aa,b]), see Definition 1.42. The
author [She69a],[She90, I1I], got a parallel result for stable theory using e.g. Fodor
lemma, as minimality does not work, when e.g. a < A = |a\|T| <A

Also for stable 1™

(a) if (@q : € I) is an infinite indiscernible set, I a set, i.e. with equality only
(a) (z,b) can divide it only to finite/co-finite sets, so we have average
(B) for some u C A, |u| < A, {(an : a € I\u) is indiscernible over b U {a, :
aculUb.

On general models see [Sheb, §5]. Grossberg and the author suggest to classify
first order T by A —1 (u)1, see 1.42(2) this remains untraceable, see [She00a, §2].
We can consider parallel to Erdés-Rado, see Definition 1.42(3). This is proved for
stable T' (and more general context) in [Shec, §1], e.g.

(b) =2 =7 ([1]=%])p when X = (2#)F and pu > 217! see 1.42(4).

For dependent T, the parallel to (a)(«) above is in [She90, Ch.I1,4.13,pg.77] or
[She04, 3.2(1)] the parallel to (8), is in Baldwin-Bendikt [BB00] (not seeing it is
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also [She04, 3.2(3)]). For I being essentially I=" the parallel of (a)(3) in [She04,
3.4=1.34] here. Here we state also another generalization using end-homogeneity.
In [Shel4b, §3] some advance was made for strongly stable theories, 35 =1 (A1),
when § = (2/T1H2)* also in [Shel4b] it was suggested to look at infinite sequences
having better prospects for dichotomies and “T is n-dependent”, see more [Shel?7,

§2].
Question 1.38. Is the combination reasonable?

Definition 1.39. 1) Let K, , be the class of I = (I,<;,P!);<, where <; is a
linear order of I and (P} : i < o) a partition of I, (as in many cases we disabuse
our notation not distinguished the (index) model and its universe).

1A) K, is the class of I = (I, <y, P!);., where < is a linear order of I and P; a
unary predicate. If o = 0 we may omit it and so if I is endless this means I € K.
2) For I € K, ,, let Ef = {(s,t) : s,t € P! for some i < o}; so Ey an equivalence
relation on I with < ¢ equivalence classes.

3) Let ¢, be the class of (I, <, F) where < is a linear order on J and E an equivalence
relation on I.

4) Koo is the class of (I, P!)i, where (P! :i < o) a partition, if ¢ = 1 we may
omit o and P{.

Remark 1.40. So by 1.34(1) this case is covered, i.e. if T is dependent then it has
the K, ,-indiscernibility property.

Observation 1.41. 1) If T is independent then the conclusion of 1.40 fails.

2) But there is T which is unstable, but have the Ko — Ro-indiscernible property,
e.g. any expansion of the theory of linear order.

3) If T is a dependent theory, then it has the Ko -indiscernible property (see [She04,
§1))

4) Trivially T has the Kgei-indiscernible property iff for every m, every infinite
indiscernible set I = {a, : @ < A} of n-tuples in € is stable (in Cr, see Definition
1.36(2)).

Definition 1.42. 1) For a linear order I, we say that (a; : ¢ € I) is an n-end-
homogeneous over A when if m < n and t(0,¢) <; t(1,£) <; ... <r t(m — 1,¢)
for £ = 1,2 then the sequence ay(0,1)" - .. "G¢(m—1,1) and @y0,2)" - -+ "Gy(m—1,2) realize
the same type over U{a; : t < t(0,1) and ¢t <; ¢(0,2)} U A.

1A) Replacing n by “< n” has the obvious meaning (and allow m = w), u € [A]<™.
2) Let A =7 (7)o means that: if a, € 7€ for @ < A and (@, : @ < A) is end-
homogeneous then for some u C A, of order type v the sequence (@, : a € u) is
indiscernible.

3) Let A =1 (7)% when: if a,, € 7€ for u € [A]" then for some % C X of order type
~ the sequence (G, : u € [#Z]") is (< n)-indiscernible. Similarly with < n instead
of n.

4) Fix ¢t = (K, <¢) an a.e.c. of index models. Then I —¢ 1 (J)g for I,J € K is
defined naturally.

Question 1.43. Find reasonable sufficient conditions on T for the following: for
every o, the cardinality min{ : A\ =1 (7)o} is quite small or at least < min{\ :
A = (7)5¢ where o1 = 2/T1+7}. (Of course, Erdés-Rado theorem gives lower
bounds, see [EHMR84].)
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We may consider

Question 1.44. The Strong Indiscernibility Question

1) Give sufficient conditions on T for the following; where |T'| < 6 and x = cf(k) >
29 (or just large enough). For some k; < w,T has the strong ki-indiscernibility
existence property for (k,6), meaning: if y(x) < #% and a, € "¢ for a < &
and I = (@, : a < k) is k-end-homogeneous then for some unbounded % C « the
sequence (Gq : @ € %) is indiscernible.

2) Similarly for “T" has the k-strong™ indiscernibility existence property for «”
which means that above I is mod clubs locally indiscernible.

Discussion 1.45. 1) We will be glad even for weaker versions, anything better
than Erdos cardinal.

2) If T is w-independent we are no better off than in set theory (because we allow
w-tuples).

3) Independent theories can satisfy strong versions of 1.44, see example below.

Definition 1.46. Assume & is regular uncountable.

We say I = (G, : @ < k) is mod clubs locally indiscernible when for some club
E of k and I € K, | expanding (x,<) the sequence (a, : o € I[E) is locally
indiscernible, see 1.33(4), this means that for every finite A there is a finite 7o C 77
such that (@, : @ € (I1E]7a)) is A-indiscernible.

Similarly n-indiscernible, n-end-homogeneous.

Recall ([Shel7, §2])

Definition 1.47. 1) We say T is 2-independent or 2 x independent when , we can
find an independent sequence of formulas of the form (¢(%,b,, &) : n,m < w) in
¢ = &r or just in some model of T

2) “T is 2-dependent” (or dependent/2) means the negation of 2-independent (see
[Sheldb, §5 (H))).

3) We say ©(Z,%o,---,9n-1) is n-independent (for T') when in €r we can, for
each A < &, find a’, € @) (¢r) for a < A\ < n such that the sequence
(p(z, &9](0), cel a;l(_nl—l)) :m € ™\) is an independent sequence of formulas.

4) T is n-independent when some formula ¢(Z, %o, 1, - . -, Yn—1) is n-independent.
5) T is n-dependent (or dependent/n) when it is not n-independent.

Example 1.48. 1) For a first order 7" which is 3-independent assuming A = (2#)*
we can find n < w and d, € "€ for @ < X such that (d, : a < \) is one-
end-homogeneous, equivalently tp(da, U{ds : 8 < a}) is increasing, but for no
unbounded % C A and even no % of cardinality uT is (d, : @ € %) an indiscernible
sequence.

2) For a first order T which is (k+2)-independent and A = (2#)* we can find n < w

and d, € "€ for a < A such that (d, : @ < n) is k-end-homogeneous for no u C A
of cardinality u™ is (dy : & € %) an indiscernible sequence.

Example 1.49. T4, the theory of random graphs has the strongly one-indiscernibility
property.
Definition 1.50. We say T has bounded/medium/large k-directionality when : if

I = (Go : o < 0) has a k-type-increasing (= k-end-homogeneous) then uf(I) is
defined as in Definition 1.23, replacing ||M]| by |4].



Paper Sh:950, version 2014-05-02_12. See https://shelah.logic.at/papers/950/ for possible updates.

DEPENDENT DREAMS: RECOUNTING TYPES SH950 27

Remark 1.51. We may consider replacing well orderings by other classes of index
models.

Question 1.52. Can we answer 1.43 or 1.44 when T has bounded or at least medium
k-directionality for some k.

Question 1.53. 1) Can we characterize Ur , A = {(n1,n2) : n1 = (n2)7r,A,m}7 for
finite A, m when T dependent?

2) Similarly for T' k-dependent?

3) If T is k-dependent is there ky such that: if for T is k-dependent, m < w, A C
L(7r) is finite, then i, (n) — (n)r,A,m for every n large enough?

4) As in (2) for k =17 (i.e. T dependent).

Question 1.54. Assume A = L(7p) or A-finite, p = p(Z) a (A, m)-type over
A Lg(Z) < 6 and every subset of p of cardinality < s is realized in M. Can
we find ¢ € SY(A) extending p(Z) such that every subset of ¢ of cardinality < « is
realized in M7

Conjecture 1.55. Assume M is a saturated model of a cardinality £ > |T'| of a
dependent complete T'.
1) If p € S(M) then there is an indiscernible sequence I = (a,, : @ < k) in M such
that p = Av(I, M).
2) Similarly for p € S(M) where 0 < .

See more on this in §6.

§ 1(D). Limit Models and Generic Pairs.

We shall address in this paper also the following conjectures.

Conjecture 1.56. We can characterize “M is k-saturated” parallely to stable T,
e.g. M is a k-saturated model of T iff it is |T'|"-saturated and every indiscernible
sequence {a, : a < 0) of elements in M of length § < k can be continued and
similarly for cuts.

Conjecture 1.57. The Generic Pair Conjecture

Assume ¢ X\ = A<* > |T|,2* = AT, M,, € ECy1(T) is <-increasing continuous for
a < At with U{M, : @ < At} € ECy+ \+(T), i.e. being saturated. Then T is
dependent iff for some club E of AT for all pairs o < 8 < AT from E of cofinality
A, (Mg, M,) has the same isomorphism type.

Remark 1.58. We proved in [Shel5] the “structure” side, i.e. the implication = in
1.57 when A\ = & is measurable, on the non-structure side of 1.57, 1.59, see [Shel4a,
[Shell]. It seemed natural to assume that the first order theories of such pair is
complicated if T" is independent and “understandable” for dependent of T', but this
is not so, see Kaplan-Shelah [KS14b].

But we shall leave open:

Bthe “2* = A*+7 is just for making the formulation more transparent
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Conjecture 1.59. The Unique Limit Model Conjecture Assume if T" is dependent,
IT| < A= A<*and AT =2* and 0 = cf(0) < A\. If (M, : @ < AT) is an increasing
continuous of models of cardinality A with AT-saturated union then for some club
E of AT, all the models in {M,, : a is from E and has cofinality o} are pairwise
isomorphic.

Completions:

For linear order the notion of completion is very important, so it is natural to
try to generalize it to dependent theories (if we accept thesis 0.4). Note that for
stable theories as every type p € S(A) is definable by formulas with parameters
from A, this is not so necessary (and €°? is a much less radical extension).

Definition 1.60. 1) ai(€) is the set {Av(I, €) : I an infinite indiscernible sequence
of finite tuples in €}.

2) nsp,(€) is the set of p € S™ (&) which does not split over some A C € of
cardinality < p.

3) fs,,(€) is the set of p € 8™ (&) which is Av(D, €) where D is an ultrafilter on ™A
for some m < w (or more) and A C € a set of cardinality < p. If u = oo, (ie. ||€]))
we may omit it.

Thesis 1.61. So the types we considered as understandable, a base for analysis
are fs, (€) or nsp,,(€), u for small enough (hopefully |T'[*) and ai(<).

Question 1.62. Is it reasonable to add in the completion of € nsp. (€) or just
nsp,,(€) U ai(<).

Discussion 1.63. 0) So our main theorems say that any p € S(M), M € EC) A(T)
is definable over < 3, + |T'| elements from ai(€) U fs<5_(<).

1) We may prefer not to analyze complete types but ultrafilters, i.e. the dy and éx ;
are in the full completion! But there is no parallel to the “recounting of types” as
there are dependent T' with large directionality. However, given D € uf(™M) we
may choose an || N || T-saturated elementary extension N of M and let p = Av(D, N),
so analyzing p is very close.

It is still reasonable that in view of later developments we shall prefer to use the
ultrafilter version.

Recall that if we succeed to use u = |T'|* for countable T', then we can always use

eventually indiscernible sequences, see below. This may be not just aesthetically
nicer but helpful. Anyhow allowing constant though not so small p, will give us
the asymptotic behaviour.
2) To clarify our intension let us consider the class of linear orders. We like to deal
with the class of complete linear orders; or at least (< k)-complete. If T is the
completion of a x-saturated dense linear order, then it is natural to add predicate
P, g(x € {left,right}, 8 = cf(f) < k) such that

(@) (@) T Resola) iff cf(I-,) =0
(8) I k= Pignigla] iff the inverse of I, has cofinality ¢
(b) I <¢ Iy iff

() I1 C I
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(Bhery  if I1 = Plest,0(a) then (I1)<, is cofinal in (I3)<q
(B)right  if I1 [= Pright,0la] then (I1)s is cofinal in the inverse of (I2)sq.

Definition 1.64. 1) We say that I = (a; : t € I) is an eventually indiscernible
sequence when: [ is an endless linear order, £g(a;) for ¢ € I is constant and finite
for transparency, and for every finite set A C IL(7r) there is ¢(A) € I such that
(a¢ : t € Is4(n)) is a A-indiscernible sequence (over A).
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§ 2. DECOMPOSITIONS OF TYPES

We define x € pK,, ; 5, which is a partial analysis of tp(dy, My), it is related to
K, ¢ from [Shel5] but By, which has cardinality < s there corresponds to By =
By U{Ix,; : i € ux} here. Moreover, the set By is of cardinality < po rather than
< K but in this section we do not really use this. We define “x is g-active in i < ix”,
which cannot occur too many times. We define K/ 7,0, those for which we “exhaust
the possible activities”, this set is dense; and the related qK,, ; ¢ is suppose to be
the class of such x’s in which we have fuller analysis. For the case k = p we have
qK;’M, = qK, , ¢ so in this case qK,; , o is dense and we define solvability, all are
related to [Shel5]. But not so dealing with (f, 8)-sets, over which the situation
is similar to the one for stable T' and any set C €p; note that B;{ is a so called
(I, 0)-set when x € pK,, ; ¢ is smooth. Central here are the definitions of similarity
of decompositions and their smoothness (points which are meaningless in [Shel5])
and we point out their basic properties. Those later ones indicate the possible
advantages of Definition 2.2, i.e. the use of indiscernibles. Generally, we shall
concentrate on the case k = pg > p1 = pp > 0 > |T| so may not state claims in
full generality concerning this point”.

§ 2(A). Decompositions - the basics.

Convention 2.1. 1) In clause (i) of Definition 2.2 below we have three options,
the choice is tx € {0, 1,2}, usually the choice does not matter and in those cases we
suppress ¢; so far we can use only ¢, = 2. Usually the set v can be a well ordering
and even an ordinal but in disjoint amalgmation in SK? 5.0 We shall need anti-well
orderings whereas in proving density for gK’ it is natural to use just well-ordering.
2) Also ¢y consists of finite sequences and sometimes we use ¢ C d, normality, see
Definition 2.6(7); we may demand that always ¢ C d. We can work in € hence
use ¢ a sequence of singletons but this is immaterial in Definition 2.4.

3) The notation is sometimes best understood as in the case when v is a set of
ordinals, as the case “v an ordinal” is our prototype so abusing notation we let, e.g.
vNi:={j€ev:j<,i}.

4) Objects like x below will be called decompositions.

Definition 2.2. Assume f = (p2, 1, p0) and A > £ > g, A > o > g > pg > 0
but if not said otherwise in addition 6 > |T'|,cf(u2) > 6 and usually p1 = po and
even K = lio.

We let pK, ,; 7 ¢ be the class of objects x consisting of:

(a) M < € which is x-saturated of cardinality A
(b) B=U{B; :i € v\u} and each B; C M is of cardinality < o

(c) d e >(“>¢) or even d € “(“>€) where® w is a linear order (e.g. a set of

ordinals) of cardinality < 6; we may write w as £g(d) or Dom(d) but we

"A debt: similarly replacing “M saturated of cardinality AT, A = A<*” by X is strong limit

singular, M;, increasig M = U{M; : i < cf(A\)}, M;41 is ||M;||T-saturated, ||M;|| < X =3 | M.
i

8This is useful when we like to amalgamate such objects, but usually we may ignore this. We
may work in €°? and then use d; instead of d;. Similarly for the ¢;’s.
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usually write ¢ < j instead of i <,, j and wNj or we; for {i € w: i <y j};
similarly for v, u below

(d) € = (¢ : i € v) € Y(¥>C) which sometimes is treated as (... "¢ ...)ico
so? & € “>¢; where v is a linear order of cardinality < 6; we may write
v = £g(€) or v = Dom(¢)

() uCw

(f) &= (k1€ u) such that k; = cf(k;) € [u1, p2)

(9) I=(I;:i€u)

(h) I; = (G; o : @ < K;) is an indiscernible sequence in M for i € w.
(i) tx <2 and!® for i € v\u,

Case 0: tx = 0,tp(¢;, M + 3{¢; : j < i}) does not split over B;
Case 1: 1x = 1:tp(&, M + 2{¢; : j < i}) does not locally split over

B; + %{¢; : j < i}, see Definition 2.3 below
Case 2: 1 = 2, the type above is finitely satisfiable in B;.
In short we may say tp(¢;, M + X{¢; : j < i}) does not tx-split over B;.
Let schmy ; be the scheme defining the type, (so the only
parameters are B ;)
(j) for i € u, the type tp(c;, M + 3{¢; : j < i}) is Av(L;, Mx + X{¢; : j < i})
hence £g(a; o) = Cg(&;) for a < k.

Definition 2.3. 1) We say that the type p(Z) locally splits over A when there is
¢ = ¢(Z,7y) € L(ry) such that for every finite A C {p : ¢ = ¢(7, %) € L(1y)} there
are formulas ¢ (7, b), ~(Z,€) € p where b, € realize the same A-type over A.

2) If p € S*(B) does not split over A C B let the scheme of p be the function H
defined by: if ¢(Z(),9) € L(rr) and b € 9% B then H(p(z,7), tp(b, A)) is the

truth value of ¢(Z,b) € p; note that this defines the domain of H.

Definition 2.4. In Definition 2.2 we say i € vy is o-active (in x) when 1 <o <Y,
and 0 =1 = i ¢ uy and (using notation of 2.6(1) below; the default value for o is

1):

Casel: 0=1
We can find b; o, b; 1 such that:

(a) bio,b;1 realize the same type over ¢x «; + My, see 2.6(1)
(b) Ei,O, l_am realize distinct types over dy + Cx,<i + Mx

(¢) exi=bio bi1.

Case 2: 022an_di¢ux
We can find (b;,, : n < o) such that:

9could demand ¢; € “Cor even ¢; € 9+>€, in this work usually it does not matter but not
always; if we do this in 2.4 we can make ¢x,; = (... ABMA ...)t<eo in Case A and a parallel demand
in Case B

10ye may use tx,; for ¢ € v\u, that is possibly having different choice for each i; so far does

not seem to matter.

See https://shelah.logic.at/papers/950/ for possible updates.
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(a) tp(bin, U{bim : m € (n,0)} + &x,<; + Mx}) is C-decreasing with n and*!
does not ix-split over By ;; (i.e. does not split over By ; if ix = 0, does not
locally split over By ; if tx = 1 and is finitely satisfiable in By ; if tx = 2)

(b) tp(l;m, dy + Cx,<i + My) for £ =0,1 are distinct

(¢) exi=Dbio bi1.

Case 3: UEZanieux
We can find b; o n(o < kx,i,n < o) such that:

(@) tp(bi,nnsns Hinpsm : M € (n,0)} 4 Cx,<i + My) does not ty-split over
U{lx ia o < Fx,i}

(b) tp(l_%,,«ux,i,e, dy + Cx,<i + M) for £ = 0,1 are distinct

(€) € = binyi0 biny1 and Gx i 0 = bija,0 bia,1 for a < ki,

(d) (biam : (a,n) € (Kx,i+1)x2) is an indiscernible sequence where (kx ;+1) x2
is ordered lexicographically.

Remark 2.5. 1) We shall return to this and to 2.14 and in 5.22.

2) We can use Cx»; = (Cxj : J € vx\{i}) instead éx «; in Definition 2.4, as in
[Shel5]. Similarly we can allow ¢x; = b bo1" ... in cases 2,3 in Definition 2.4;
but so far this does not matter.

3) In Case (3) of Definition 2.4 note that it follows that for every e € “~(My)
for some B < K, (bian : (,n) € [B,kx;) X 2) is an indiscernible sequence over é.
Hence in clause (d) of case (3) of Definition 2.4, we can use “(c,n) € kx,; X 2”7 or
“(a,n) € (kx,i +1) x 27, and get equivalence conditions.

Definition 2.6. 1) For x € pK, ,, ¢ let x = (Mx,...) 50 wx = w,vx = v,Ux =
u,ex = (x| = ¢,dx = d[x] = d, k; = kx; = K(X,i), Bx,i = Bi, Bx = B, etc., and let
Bf = U{Ix; : i € ux} UByx. Let ¢c; = ¢[<i] = éx,ci = (... "Cx; ... )j<is CU] =
Cx[u'] = (.. 7Gxy o )jew and Cxy = Cx i = (oo "Cxj " .- .)jews\ [} fOr @ € vy and
for u' C vy. We may write ¢, d instead of ¢y, dx when confusion is unlikely as there
is only one x around, in particular avoiding using, e.g. T ; also we may write
clx], ¢[x, < i], etc. Let ax = {kx, : 1 € ux}.

1A) For i € vy let D; = Dy ; be such that tp(éx , Ex,<i + Mx) = Av(D;, &x,<; + Mx)
where D; is an ultrafilter on 9D (B, ;) if 1x = 2 Ai € vy\ux and on I, if
i € ux such that @ < kx; = {axip : B € (o, kxs)} € D;; but only D) :=
D; N Def4z(x,i)) (Dom(D;)) matters so we normally use it.

2) Concerning pK, ,, - 4, omitting A means “for some \”; omitting 1o means po =
11, omitting also py means po = K, then we may write p instead of py and of
writing * instead of p; means py = (07 + |T|T + 3,); omitting A, 5, p0, pi1, 2, 0
means for some such cardinals. Similarly in parallel definitions later.

3) We say i € vy is active in x when it is o-active for some o, equivalently for
o=1.

3A) We say i € vy is active in x over u when i € vy, u C vx(< %) and in Definition
2.4, in clause (b), in each of the cases we replace ¢x «; by éx[u|. Similarly in the
other versions.

4) We say i € vy is strongly active in x when it is Rg-active.

Hin the other cases the parallel statement follows

See https://shelah.logic.at/papers/950/ for possible updates.
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5) We say that i € vy is (0, A)-active in x when 1 <o < Vg and A C F,lw- ={p:
¢ = o(Tq, Tej<i], ¥, Z) € L(7r) and 7, z are finite} and in Definition 2.4 we replace
clause (b), in all cases by

(b)’ for'? some @(Z g, To<i), §,Z) € A we have
Q: ): QD[CZX’ EX,<7;7 lf)i,fﬁx,i,(% EL]/\—'QO[JX, éX,<ia Bi,ﬁx,iyl ) d] fOI' some a € Eg(i) (Mx)

5A) For v C vy and A C L(7rp) let T} 5, = {p:p ey
is replaced by Zz}(vni) }-

6) Let Mpx) be (Mx)(ps ¢, +4,]> See Definition 0.11.

7) We say x is normal when Rang(éx) C Rang(dy), pedantically U{Rang(éy ;) :
i € v} C U{Rang(dx ;) : i € wy}; note that usually there is no loss in assuming it.
8) Let 'L be {p: p = ©(Z4,Zz7) € L(rr) for some 7, finite if not said otherwise}.
9) Ty ={¢:9=9(Ez,,7) and n € "lg(dy) for some n}, used in particular when
x is normal, see 2.7(4) below.

10) For v C vy, w C wy let Xy s = (My, By [(v\ux), Ex [V, dsc [w, I (v Nuy)), but
if w = £g(dyx) we may omit it.

11) We say x is essentially well ordered when {i € ux : k; = k;} is well ordered (by
<) for each j € ux.

and ¢ € A but Tgx <4

i

Notation 2.7. 0) We may write d,¢ instead of dy,¢x when x is clear from the
context, (usually in subscripts).
1) u, v, w are linear orders, members are 4, j but, e.g. wNj =w<; :={i € w:i < j}.
If vy C g let [v1,v) ={i Evy: j <y, i for every j € vy }.

g(d) = Dom(d) etc.

2)
3) £ _
4) dyy = (dye) : £ < Lg(n)) if  is a function from £g(n) to Lg(d).
5) J = < xn([) : £ < Lg(m)), see Definition 2.6(1).
6) 5:3 = Txy = (T, 1 <Lg(n)) = Zg,_, when d = dx.
7) Tz, is defined similarly.
8) tp,(dx,x + A) := {p(x4,6x,b) : b € 90 A and € | ¢(dy, Cx,b)} when ¢ =
90(*% [x]axC[X] y)

8A) We may above use £p, A and/or ¢ = (24, Ten, )-
9) vy = v + 1 is defined naturally.

Definition 2.8. Let x € pK,, ; 5.
1) We say that € solves (x,1), A) or 1p-solves (x, A), or 1)-solves x over A, (pedan-
tically we should add ) when:

(a) €€ 9(My)

(b) AC My

(©) ¥ = (Vy = ¥o(Tg, Te, o)) 1 p € ') where 'y C I'L, recalling 2.6(8)

(d) Yy(Tg ex,€) F {p(Tg, x,a) 1 a € 909 A and € |= pldx, ex,a]} for p €T
(e) €= wv[dx,cx,e] for ¢ € L.

12No real loss if we replace § by ¢z, ;. Also no real loss if we omit Z, absorbing a into ¢; by

cosmetic manipulations
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1A) We say that 1 (zg,ex,€) solves (x,4,p) when ¢ = o(Zz,7s %) € Tl and
€ C My and (Tg,¢x,€) = {p(Zg,Ex,0) : b € 9T A and € |= ¢[dy, ex,b]} and
€ = 1y [dx, Ex, €.

1B) We say that ¥ (Z g, Tz, Z) solves (x, A, ¢) when (Z, Cx, €) solves (x, A, p) for
some € € 99 M.

1C) We let Vx,,(Ze, 2, §) = Ux,p0(Tz, 2,7) where ¢ = p(Zg, %z, y) € Tk and ¢ =
V(T g, Te 2) be (VZ7)(W(Tg,Te,2) = ©(Tg,Te,7)); we usually omit x, belng clear
from the context and similarly ¢ or ¥, .

ID) We say v = (Vy(24,7z€) : ¢ € I‘h) solves (x,A) when I‘l C T, so we
usually write Fb instead of I'j; to stress this (similarly in other cases) and for
every ¢ € Fwa¢¢($d733c7 e) solves (x, A, ). We say ¢ solves (x, A) when 1) = (¢, :

o€t ) Yy = V(T g, Te, Yjg)) and some € solves (x,9, A).

2) We say 1 is full for x when F%[—} =T'L. Omitting ¥ means for some ¢ full for x.
2A) Let “tp(Tg, éx, €) F tp(d, &x + M) according to 1" mean clause (d) of part (1)
with T} instead of T';.

3A) We say ¢ illuminates x € pK, ,, when ¢ is as in clause (c) of part (1) and
for every A C My of cardinality < po some € does solve (x,1), A).

3B) We say 1(Z, Tz, T[g)) illuminates (x,¢) when ¢ = ¢(Z, Tz, ) € I'y and the
above holds with (p, ¢) standing for (¢, 1,,).

4) We say € solves (x, A) when for some v which is full for x, & solves (x, 1, A).

Remark 2.9. 0) Note that we use “illuminate” rather than “solve” when we quantify
on A.

1) For the case tx = 2,1 = ®y,0 = Ny, i.e. for countable T, we can replace
“tp(Cx.,i, Cx,<i + Mx) is finitely satisfiable in some countable By ; C My” by: p is
the average of an eventually indiscernible sequence I = (a,, : n < w) from My which
means that for every finite A, some end-segment is A-indiscernible, see Definition
1.64. Also Av(I, A) is well defined.

2) However, we cannot replace eventually indiscernible by indiscernible, e.g. for
= Th(R),R the real field, there is an eventual indiscernible I = (a,, : n < w) in
R such that a,, > n; the cut it defines cannot be defined by a really indiscernible
sequence, (well of length less than the saturation).

3) We can characterize when an eventually indiscernible sequence is equivalent, (see
Definition 2.19(2)) to an indiscernible sequence, but this does not always occur, by
the example above.

4) Being equivalent is well defined for eventually indiscernible sequences because
their averages are well defined.

5) Usually no harm is done when below in 2.10(1)(b) we add “wx is an initial
segment of wy”. Similarly in 2.10(1)(d).

Definition 2.10. 1) We define a two-place relation <; on pK : x <; y when:
(a
(b
(c
(d

2) We define <5 similarly strengthening clause (b) to

) M= M,
) dy = d lwyx and wx C wy as linear orders
) Ux = Uy Nvx and ux C uy as linear orders
) ¢

« = Cy|Ux and vx C vy as linear orders.
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(b dy = dy.
3) If x <1y and ¢ = (T Telx),§) € Ty then we may identify it with the
P(Zary) Ty J) € Iy, naturally.

4) For x € pK and ¢ = ¢(Z;,%y) € I'y let supp(p) be the pair (w,v) such
that w C £g(dx),v C £g(cx) are minimal (so finite) such that ¢ = P(Zg.,; Tejv, ¥)s
moreover the omitted variables are dummy (= does not appear in ¢, not just
“immaterial for satisfaction”).

4A) Similarly for ¢ = ¢(Z g, T¢, T3, Tt, §), we define supp(p) = (w1, v1,ws, v3); used
in 3.3.

5) For A C T'L let supp,(A) be the pair (U{w : (w,v) = supp(u) for some ¢ €
A}, U{v: (w,v) = supp(yp) for some ¢ € A}).

Definition 2.11. 0)

(A) For x € pK, 9 let T = {0 : o = (24, %o, 2, 77, §) € L(7r) so Lg(77) =
lg(zz), Lg(xl;) = Lg(Z ),y finite};used in 3.3(1).

(B) For x € PK) s n0 let 2= {p:p = ig,gj[g],é) € L(7r), z finite},
(used in (3A), close to T'L ,, see Definition 2.6(5),(5A)).

X,1)

1) Let K , 5 9[A] be the class of x € pK, . ;4 such that for no y € pK, , ;, do
we have x <, y and y is A-active in some i € vx\vy Over vk <4, i.€. VxNVy <4, see'?
Definition 2.4, 2.6(3A),(5); if A = T'} we may write qK, , ; 4; similarly below.
1A) We define gKY . ; 4[A] similarly but restricting ourselves to the case vy = vy +1.
2) Let gK, . 5 ¢ be the class of x € pK, , ; o such that for every A € [M,]<" some
€ solves x, see Definition 2.8(4).
3) Let qK?K’ﬂ’e be the class of triples n = (x,1,7) such that x € aKy . 0 and
Y= (hpy:pely= Fiﬁ C Ty) illuminates x and r = r(Zz,, T4, §jo)) is a type over
My such that: for every A C My of cardinality < x there is a f-tuple € from My
such that:

€ solves (x,1, A) and the sequence ¢ " dy "€ realizes r.

In this case we may say € C M,y solves (x, A,1),7) or solves (n, A). If not said
otherwise, r is a type over @); in this case we may say n is pure.
3A) Let qK® be the class of n = (x,v,r) € qK® such that lezZ =Tl

3B) Let qu,p,e be the class of triples (x,,r) such that'*:

(a) x€qK, ;70
(b) 7 =r(Ze, 74, 5j0)), ¥ = (P : ¢ € TY) satisfy
o % = 1/f<p(fg, jéyg[é])
o, for every A C My of cardinality < x for some € € (M) realizing
7(¢,d, jjp)) we have: if o € T' then € |= 1, [dx, Cx, €] and 1, (Z g, e, €) b
{0(Z3,¢x,8,b) : € = “pldy,x, € )" and b € 9@ A},
4) We say € universally solves the triple (x,1),7) € qu& 4.0 When for every A €

[M,]<* there is & as in part (3) such that &, & realizes the same type over dy+¢x+4,
see 2.8(4) and Theorem 4.8.

131n many places it suffices to use [vy,vx]. Note that qK’ is like mxK in [Shel5]; as qK is
related to a major corollary of being from mxK.
MyWhat is the difference with part (3)? Here in the end, € appears in ¢
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4A) Similarly for (x,%,7) € gK§ a0
5) We define the partial orders <;, <, on qK’, qK, qK®, ¢K® naturally.

Remark 2.12. Concerning Definition 2.11(3),(4) note that qK® is used in the end
and in (x)5 of the proof of 4.8 and in the proof of 4.12 only.

Observation 2.13. Let £ =0,1,2.

0) If the type p(T) is finitely satisfiable in A then p(Z) does not locally split over
A and this in turn implies that p(T) does not split over A (hence the corresponding
implications hold for the variants of Definition 2.2).

1) <y is a partial order on pK.

2) If x = (x. : € < §) is <y-increasing sequence of members of pK, . - and § < o+
is a limit ordinal then X has a <;-lub, essentially the union, naturally defined and
it belongs to pKy . 5 9-

3)Ifx e pPK, ;.0 and we define y like x replacing dy by dy Cx, then y € PK,. 0
is mormal and x € qK, ;9 <y € qK, ;9 and x € qK;}ﬁ,g Sy € qK;%@ and
X € qKZ@g &Sy e qu’ﬂ’g and x <1y and no loss if systematically we use only
normal x (except when we like e.g. £g(dy) to be finite).

4) Parts (1),(2) apply*® also to qK, qK'.

5) Assume k > 0 > |T| and i are as in 2.2. If M is k-saturated, w a linear order
of cardinality < 0% and d € Y(*>€), then for one and only one x € pPK, 10 we
have My = M,dyx = d,vx = 0 hence ¢x = (), Bx = 0.

6) Let x € pK, ,; 7 9-

(a) If cf(uo) > 6 then Bx = U{Bx, : i € vx\ux} C Mx has cardinality < po.
(b) If cf(p2) > 0 then U{Ix,; :i € ux} has cardinality < po.

(c) If cf(uz) > 0, (hence po = p2 = cf(po) > 0) then also |BY| < pa.

(d) Aluways |Byl < pio, | BE| < pis.

Proof. Easy, concerning part (2) for £ = 1,2 note that the union, it is not uniquely
defined as if i € vy \ux.,e < & then (Bx i : ¢ € [¢,0)) is not necessarily constant,
but we can use any one of them. Similarly for ¢ € ux_. O3

Claim 2.14. 1) If 6 > |T'| then in pK, ;o there is no <s-increasing sequence
(xc: € < 0T such that: if € < 0T then x.y1 is active in some i € v(xcy1)\v(X:).
2) For ﬁm'te16 A C F,l{, there is na = na,7 < w such that there is no <s-increasing
chain (xy : £ < na) of members of pK,le such that xgy1 is A-active in some
i € [u(xe),v(%e41)). . _

8) In part (1), the sequence may be just <i-increasing if {e¢ < 6 : dy, = dx.., =
U{dx, : ¢ <€} is a stationary subset of 6.

Proof. A similar proof appears in Case 1 of the proof of 8.4 or see [Shel5, 2.8=tp25.33]
recalling Definition [Shel5, 2.6=tp25.32]. Os14

Claim 2.15. 1) If x € pK, 4 then there isy € qK|, ; o such that x <ay.
15However7 while for quﬂ 0 quﬂ 0 quﬂ o Parts (1),(3) are O.K. but part (2) is a different,

harder matter; for qK;’ 70 all are not clear.
16if we restrict ourselves to dx | u for some finite u C £g(dx) then any finite A C L(rr) is O.K.
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2) If the finite A is as in 2.14(2) and x € pK,, ; o then there isy € pK, ;o such
that x <3y and vy\vx is finite and there is no z € pKn,ﬁ,G such that y <o z and
some i € [vy,v,) or just i € v\vx is A-active in z.

24) If above we restrict z to the case v, = vy +1, then we can demand vy C vx+na
when na is'7 from 2.14(2).

2B) In part (2), if we restrict the assumption to the case vy < vx+w, i.e. vy = Vx+n
for some n then this is O.K. provided that we restrict the conclusion to the case
vy D, (actually just vy C v, A vk Juy).

3) If x € qK;, . g or just x € qK;w]’@ and 1o = K then '8 x € qK
every A € [My]|<* some 1 solves (x, A), see Definition 2.8(1D).
4) [Local version'®]; if ¢ € T} and x € qK[, , 4 or just is as 'y in 2.15(2) or just
2.15(2A), then for every A € [Myx|<Ho there is ¢ = (T, Tz Z) € L(rr),Z finite
and & € Y9G M such that ¢(Z g, x, €) solves (x, A, @).

5) Assume 1x = 2 and pa < k. The inverse of part (3) holds, i.e. if x € pK, - 4
and x € qK,, ; 9, i-e. for every A C Mx of cardinality <  there is a solution then
X € qK;’ﬁ’e (and see 3.7(2)).

6) Assume pig = k. Assume x € pK,, ; o but x ¢ qKJ, ; o then there is a pair (y, )
such that:

that is, for

£y f,07

(a) x <1y €pK, ;0

(b) ¢ = (24,7, 9,2) € Iy

(¢) y is {p}-active in somei € [vx,vy), 50 C = G0 i1, ¢ C Rang(Cy «i),€g(Cio) =
lg(y) = £g(C; 1) and € = ¢[dx, ex, Cip, 0] iff £ =1, etc., see Definition 2.4.

Remark 2.16. Note that in part (6), if A ue = p for transparency then we allow
¢
>0+ |T| > cf(p) and |Bx| = p; also note that B = By.

Proof. By [Shel5, 2.14=tp25.36,2.15=tp25.38] this should be clear, still:

1) By 2.14(1).

5) Toward a contradiction assume that y,i € vy\vx,w,lf)i,o,lf)i’l exemplify x ¢
qK;,ﬁ,a SO l_)i70, 51,1 are as in Definition 2.4 in particular there are b* from My and ¢
such that € |= “QO[JX,EX’<Z‘,BZ"()7E*] A ﬁap[Jx,éx,<i,Bi,1,l§*}” and ¢y ; = lf)i’oAlfJi’l and
bi.0, bi1 realize the same type over ¢x <; + My which is finitely satisfiable in By ;.
Let A be By ; + b* if 4 ¢ uy and be UL, ; + b* if i € uy; so A C My has cardinality
< K hence for some 1) = (%, Cx, Z,) and € € “9¢)(M,) we have

(%) (T x,€) € tp(dx, Cx + M) satisfies Y(Z g, Ex,€) F tpy,(dx, Ex + A).
Hence

(+) (a) €= ldx,Cx, €]

(b)  for every b C 9(b:.0) A for some truth value t we have

¢ = (Vg) [y (T4, ex, €) = ¢(T3,b)").

Now for £ = 0,1 we know that tp(b; ¢, Mx + Cx,<;) is finitely satisfiable in A and
does not depend on ¢, easy contradiction. U5

17and see ind(A) in §3

18the “up = K" is of course undesirable, but eliminating it is the reason of much of the work
here.

Dwe may use 2.15(3),(4) replacing A € [M]<+0 by € [M]<* as the definition of K.
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Observation 2.17. 1) Assume po = £ and cf(k) > 0 +|T|. If x € K| ; 4 or just
x € qK,; ;4 then for some full Y we have n := (x,v,0) € quﬂﬂ, see 2.11(3A).
Moreoverithere isn = (x,9,0) € quﬂﬁ.

2) If (x,v,7) € QK?,MG and the model M is rk-saturated and k = p*,u > cf(p)

then for some ¢’ we have (x,¢',r) € qK?,uﬁ‘

Proof. 1) First, for each ¢ = @(Zg, %z y) € 'k there is ¥, = ¥, (g, Te, 2,) illu-
minating (x, ). Why? for every A C My of cardinality < k by 2.15(4) there is
¥ (Z g, Cx, €) solving (x, ¢, A). The set A of candidates 1 = 1(Zg, Tz, Z,) has cardi-
nality < 6 + |T'| and if ¢ € A fails then we choose a set A, exemplifying it. As
cf(k) > 6 + |T| the set A, = U{Ay 4 : ¥ € Ay} has cardinality < &, so there are
1 and € such that ¢ (Zg, cx, €) solves (x,p, A,), hence it contradicts the choice of
Ag y. So 1, exists.

Renaming the z,’s we have (¢, (Zg, %z, 2jg) : ¢ € T'x) as required for n :=
(x,9,0) € K, 4.

Second, to get the “moreover”, let ¢ = (@i(Tg,Te, Yoy, 2i) : @ < 0) list the
formulas of this form. For i < 6 let u; C 0 be finite such that ¢; = ;(Zg, Tz, Yu,), Zi)
and without loss of generality we choose the sequence @ such that u; C i. Let
Bi = $u(T4 T 77) be as above for ¢ = gi(F, Te, P ), 50 L9(F]) < @, let
a; = X{lg(y;) : j < i} and let §; = (Ya,+¢ : £ < Lg(y;)) and now let P = (U
Vi(rg, e, TF) 11 < ).

Now given A C My of cardinality < k we choose &; = (eq, ¢ : £ < Lg(g})) by in-
duction on i < 0 such that ¥;(Z 4, Te, €;) solves (x, AU{eq : @ < @i}, 0i(Z g, Te, Ypu,] " Zi))-
So & € Y(M,) is well defined and satisfies the requirements.

2) Let 1 = (¢, : ¢ € I'y). For ¢ = o(Zg,%¢,9) € 'k let Yo, = ,01,, = 1y, , and
let Y2, = 1y, . Lastly, 1 1= (Ja,, : ¢ € TL) satisfies (x,7',7) € qK® ,; compare

K,u,00
with the proof of 2.27. Oa.17

Note that we shall use 2.17 in 4.12.

§ 2(B). Smoothness, similarity and (fi, 0)-sets.

We like to show that in some sense there are few decompositions, so toward this
we define smooth ones, show that for a saturated model, the smooth decompositions
are few up to being conjugate and every x € pK, ; , is equivalent to a smooth one
modulo the relevant equivalence relation; this certainly helps.

Definition 2.18. 1) The decomposition x € pK,, ;o is called smooth when: if
K € ay, see end of 2.6(1), then I} is an indiscernible sequence over U{L}, : k) €
ax\{rk}} UBx = UW{Ixia i € ux and a < kx; but kx; # £} U By in the sense of
Definitions 1.33(1), 1.39 and 2.17(2) where

1A) We define

II,K = <dx,f€,oé HOAS I/{,u(x,ka) = Ix7/i>

for k € ax := {kx; : § € ux} where:

(@) uxx =u(x,K) :={i € ux : Ky = K}
(0) L uix,r) = (K X Uy <, Pe)ecu(x,x), Where
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(o) < ordered k X ux , lexicographically (so if ux . is well ordered we can
use K)

(8) (P: : € < otp(ux,)) is a partition to unbounded subsets, in fact,
P. =k x{e}

(¢) Gx,x,p8 1S Gx,i,o When 8 = (a,¢).

2) For x € pK,, , » and h € Ilayx let xp,) be defined like x but I, is replaced by

Icn = (L, h(n(x,i)) 1 & € ux) Where Ix o = (ax,i,p : B € [ kix,i)).
3) We say by, by are x-similar when for every n,ﬁ(Vio € ux)(VFioay < k;)(Vip €

UX)_”-(Vin—l € ux) (Vi Dan_1 < Ki(n—1))[tp(b1, Hax, )0, : £ < n}UBx) =
tp(b2, U{@s, 0, : £ < n} U Bx)], where we stipulate i, = i(£).

Definition 2.19. 1) We say the decompositions x,y € pK, ¢ are very similar
when :

(a) Mx = My, wx = wy,dx = dy,vx = Uy, Ux = Uy, Cx = Cy (SO Cx,; = Cy,; for
every i) and?" By = By ; for i € vy\ux

(b) for i € uy, the indiscernible sequences Iy ;,Iy ; are equivalent, (i.e. have
the same average over My, equivalently over ¢) and?! Fx,i = Ky, j-

2) We say x,y € pK, ;¢ are similar when vx = vy,ux = uy and there is an
elementary mapping g of € witnessing it which means:

(a) g(Bx) = g(By)ag(éx) = Eyvg(dx) = Jy and g(Bx,i) = By,i for i € Ux\ux

(b) for i € vx\ux,9(Cx,;;) = Cy,; and the scheme schmy ; defining tp(éx,:, Mx)
(equivalently tp(¢x,q, Cx,<i+Mx)) is mapped to the scheme defining tp(éy ;, My );
0 if 1x = 2 this means g(Dx,;) = Dy, l.e. g(D;m-) = D;,vi, which means

g(Dx N Def@g(éx,i)(Bx,i)) =Dy N Defy,i N Defég(éx,i)(By,i)

(¢) g(Ix:),Iy ; are equivalent indiscernible sequences and ky ; = Ky ; for i € ux.
3) Above we say weakly similar when (so possible ax # ay) as in part (2) but

for each i € uy we replace the “are equivalent” in clause (c), by the indiscernible
sequences h(Ix;), Iy ; being neighbors, (see here 1.36(6)) and kx; = kx;j € Ky, =

Ry,j-
4) For x,y € pK we say they are essentially similar when there are smooth X', y’ €
pK, ..o which are very similar to x, y respectively and are similar (by the definition

in part (2); note that e.g. By ;, By ; for i € vx\ux may be different).

Remark 2.20. We may add: if x,y are smooth we say they are smoothly immedi-
ately weakly similar when in part (2) we replace clause (c) by

(¢)" there is a one-to-one function h from a, onto ay such that for every &, kx; =
Kk = Ky,; = h(k) and for some one-to-one order preserving function from
some infinite u C & into h(k), we have & € U A kxi = Kk = Axpy ;0 =

a}’;“y,i;a'

Note that being smoothly immediately weakly similar implies being weakly similar.

20we may consider weakening it.
21usually this follows, but not for stable indiscernible sets
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Claim 2.21. Let k,[i and 0 > |T| be as in 2.2 and we let u be uo if cf(po) > 0
and pfy = pg otherwise, similarly for .

1) Being similar, very similar, essentially similar and also weakly similar are equiv-
alence relations.

1A) Being very similar implies being similar which implies being essentially similar
which simplies being weakly similar.

2) For k-saturated M < €, the number of x € pK, ;o up to weak similarity is
< 2<Ho,

3) For r-saturated M < € if us = pui® and p > |T| + 0, then the number of
x € pK,, ;¢ up to similarity is < 2<Ho |l

4) For x,y € PK, ;.0 we have: x,y are very similar iff x,y are <i-equivalent, i.e.
x<1y S x

5) Ifx,y are very similar and by, by € € for some { < 1, then by, by are x-similar
iff by, by are y-similar; see Definition 2.18(3).

Proof. Easy (for essentially similar use 2.22(1) below). O .01

Claim 2.22. 1) For every x € pK,, ; o there is a smooth 'y € pK,, - 4 very similar
to x.

2) Ifx € pK,, , o and h € [ ax then xp) € PK,, ; ¢ is very similar to x; see 2.18(2).
8) In part (2), if x is smooth then so is Xp).

4)Ifx e aK, e and'y € pK, ; o is very similar to x then y € gK
4A) Similarly for qK/, a0 and aK” 0

5)Ifx € DK, g is smooth then for every a € "o~ (M) for some h € Ilax also
((Mx)a), Bx; x; dx; L.n) € PK,, 7.0 18 smooth, pedantically replacing € by €(g); also
ifa=(..."a;"..)icox))\ux) where a; € “~(My) or just a; € "= (My) for every
i € vx\ux then for some h € Ilay the tuple (Mx, (Bx,;+ @; : i € ux), Cx, dx, Ix,h) IS
PK,, 7.9 s smooth, see 2.18(2).

6) S<U(B}) has cardinality < |B;|® when x € pK, z,0 s smooth.

Ky f,0°

Proof. E.g. for parts (5),(6) use 1.34(1) or see below, in particular 2.25(1). s o9

We may formalize how “small” is By for smooth x € pK,, , 4.

Definition 2.23. We say that f = (B,1) is a (fi, §)-set or a (fi, #)-smooth set when
i = (pa2, p1, o) and for some u, v we have:

(a) v is a linear order of cardinality < 0% and u C v
(b) B=(B;:i€v\u),welet B=U{B,; :i € v\u} and each B; is of cardinality

< po; but f = (B,I) means i € v\u = B; = B so in this case |B| < po

() I={(I;:i €u)

(d) I; = (@, : @ < K;) is an indiscernible sequence of finite tuples, k; €
Reg N 2\ i1

(e) (B,I) satisfies the smoothness demand, clause (e) in Definition 2.18 and
a, Lo, I, Gy o (for K € a,a € I}) are defined as there.
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Definition 2.24. 1) For f as in 2.23 we let?%: pee = pug for £ =0,1,2,v¢ = v, uf =
U,Bf,i = Bl‘,Bf = U{Bf,i 1€ Uf\Uf},if =1 so If_’i = IZ',I?:K = I;;r,(_lfﬂya =
Ui 0,0 = a={R; 1 1 € u}, etc.; for u C ug let ag,, = {k; 1 7 € u}.

1A) If x € pK is smooth then f = fy is defined by vr = vx,ur = ux, B =

Bxﬂ',If,j = Ix,j hence C_lf7i7a = C_Lxﬂ"a,Bf’j = Bx,j for 7 € vx\ux,a < Kx,j and
j € ux.
2) For u C ug let Bffu = U{af;0 : @ < Kk; and ¢ € u} U By, if we omit u we mean
U = Uf.

2A) For v C vr let Bfi’v =U{Br; i €v\ue} UlU{af 0 :a < ke; and i € v Nug}.

3) We say f is an infinitary (f,0)-set when £g(ag,; o) is just < 07 for every i €

ug, & < k¢ ; instead of being finite.

4) Let™ ey = (Tg i n(ne) ¢ 0 € ug) = (@50 : @ < k; and i € Dom(h) = h(kg;) <

) 19 € ug) so h € Iag. Let B;T%h be defined as in part (2) using Ifp. Let

fin) = (Be, I n).

5) For g € Hag let F¢ g = {h : h € [[(kei\g(kei)); also for h € Fg, 4 let
(SN

asun = (G ne) * 1 € U

6) We say that f is essentially well ordered when for each x the set {i € us : k¢ ; = K}

is well ordered by <,; compare with Definition 2.6(11).

Claim 2.25. 1) Iff is a (i, 0)-set, |Bf | > 2 for simplicity and e < 0% then S°(By)
has cardinality < |B{|%.

1A) If m < w and A C L(77) is finite, then for some k we have |[SR(B{)| < |B{ |
whenever f is a (i, 0)-set, ug is finite.

2) If x € pK,, ; 4 is smooth then (By,Iy) is a (fi,0)-set.

3) If £ is an essentially well ordered (fi,0)-set and & € "1~ € then for some h € Tlag
for some type ¢ we have: g € ] ke A N\ (ki) <gl@)A A g() <g(j) =

AT i€us Ki=kKj,i<y]
tp((... Adf’i)g(oi)A ...),Bf+é) =q. -
4) If £ = (Bg,Is) is a (R, 0)-set and C' C € has cardinality < uo then (Bg+C,I¢ )
is a (fi,0)-set for some h € Ilag.
5) If x € pK,, o is smooth then fx is a (11, 0)-set, see Definition 2.24(1A).
6)If1 < e < 0% andf is a ([, 0)-set then** S°(B{) has cardinality < 21B=I+vI+IT1 4
BE [+ -+ BF |
6A) If A C L(7r) is finite, m > 1 then SR(B{) has cardinality < 21Psl+¥o 4 |B;{|

Proof. E.g. part (1) by 1.34(4) using {(k,a) : £ € ay and o < k} ordered lexi-
cographically; part (4) by 1.34(1) as in 2.22(6), for part (3) recall the smoothness
demand. As for parts (6),(6A) they are proved similarly to 1.34, noting that for I;
we use a well ordered index set. Co.o5

22This is an abuse of our notation as f does not determine e in Definition 2.23, pedantically
we can expand f to have this information.

23 Assume K € ar = ul{i : k; = k} well ordered; which is reasonable. Then we can change
a little the definition of small such that for h € [] k; we can define fin) replacing Ip,; by

i€u

<aB,i,a ra € [h(4), ki)

24\We can use T being dependent: (so, e.g. use (Ded(|Bx|+|v|+|T]))!7T! +(|B;|+2)<(“T‘T|+”+)‘
We can use A as in part (1A), so as we can decrease 77, really of interest.
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§ 2(C). Measuring non-solvability and reducts.

The following is needed in §4, §5, it measures how far solutions are missing.

Definition 2.26. 1) For x € pK, ;4 let ntr(x), the non-transitivity of x be the
minimal cardinal A such that for some A C My of cardinality A for no € € e(Mx)
do we have tp(dy, &x + &) F tp(dy, &x + A).
2) For x € pK, ;g let ntric(x) be the minimal cardinal A such that for every
© = ¢(Zg, T y) € L, we have ntr,(x) < A, see below.
3) For ¢ € T, let ntry,(x) be the minimal A such that no + does A*-illuminates
(x,¢), i.e. there is A C My of cardinality A such that for no (Zg, éx,€) €
tp(dy, Ex + My) do we have 9(Zg, tx, d) b= tp,, (dx, cx + A).
4) Let ntr,, ,,(x) be defined naturally.
5) We say that 1) does M-illuminate x € pK, ;0 when T'y = Tl =, :pely)
and for every A C M, of cardinality < X, some & € ?(My) solves (x,1, A), (see
2.8(1),(34)).
6) We say 1 does A-illuminate (x,T) or 4 illuminate (x,\,T') when I' C 'L, ¢ =
(¢ : p € T) and for every A C My of cardinality < A for some & € (My) the
sequence € solves (x,, A).
7) Similarly when I' =T'j;, = I‘% C T3, see 2.11(B),(3B).

As in 2.17.

Observation 2.27. 1) If x € pK,, ; o and A = ntr(x) > 0(> |T'|) then ntr(x) is a
regular cardinal.

2) If x € pK,, ;g and A = ntrc(x) is singular then cf(\) <0+ [T.

3) If 6 < cf(\) < A < ntre(x) then some 1 = (Y, : p € TL) does A-illuminate x.
4) If x € pK,, ;; o then ntr(x) < ntrie(x) < ntry(x) C ntry 4 (x) whenever ¢, ¢ are
as in Definition 2.26.

Proof. 1) Why is A regular? If A > cf(\), let A C My exemplify the choice of A,
let (A, @ a < cf(N)) be C-increasing, each A, being of cardinality < A such that
A=U{A, : a < cf(\)}. For each a < cf()\) by the choice of A there is &, € (M)
such that tp(dy, ex + €a) F tp(dyx, &x + Ag).

Let A, = U{€q : @ < cf(\)} so |A.| < 6+ cf(\) < X hence for some € € (M)
we have tp(dy, éx + €) - tp(dx, &x + Ax). Clearly € contradicts the choice of A.
2) Similarly (as in 2.17(2)), changing the 9,’s. (In fact we can get cf(\) < |T'| and
moving to a reduct, cf(\) < Rg.)
3) Similarly, as in the proof of 2.17(1).
4) Easy. Oa.26

Definition 2.28. 1) If 7 C 77 and x € pK,, ; ¢ let x|T be defined like x but € is
replaced by €7 and My is replaced by My |7.

2) If x € pK,, ;9 and v C vx,w C wyx then y = x[(v,w) is defined by My =
My, wy = w,ciy = dy lw, vy = v,Cy = Cx |V, Uy = ux NV, By ; = Bx; for i € vy\uy
and Iy ; = I ; for i € uy.

Observation 2.29. Membership in pK, o is preserved under reducts, i.e. if 7 C
7(T') then x| € pK,, ; 4[€]7]; also and x[(v,w) € PK,, ; o in the cases above. Also
smoothness, “very similar”, etc. are preserved.

Proof. Straightforward. U229



Paper Sh:950, version 2014-05-02_12. See https://shelah.logic.at/papers/950/ for possible updates.

DEPENDENT DREAMS: RECOUNTING TYPES SH950 43

Claim 2.30. 1) If x € PK, 0 and tx = 2 then tp(Cx, Mx) is finitely satisfi-
able in By hence for some ultrafilter Dy on Def gz, (B ), we have tp(cx, M}) =
Av(Dy, My) in fact Dy is unique.

2) If x € pK,, ;g and 1x = 0 then tp(cx, Mx) does not split over Bl .

3) If x € pK,, ;g and 1x = 1 then tp(cx, Myx) does not locally split over By .

Proof. Straightforward. Os.30
We can elaborate 2.30(1)

Definition 2.31. 1) Let D, be an ultrafilter on the Boolean Algebra Def.(Ay) for
¢ =1,2. We say D;, Dy are equivalent when Av(D;,C) = Av(D,, C) for every set
cce

2) We say an ultrafilter D on Def.(4) is (fi,0)-smooth when ¢(Bf) € D for some
(i, 0)-set f.

Definition 2.32. For x € pK such that (x = 2 let Dy be the following ultrafilter:
(a) Dy is an ultrafilter on € = {(C; : i € vy) : & € Y9 (B;) if i € vy\ux and
G € {lx,ia 00 < Kx;} if 1 € uyx}
(b) {¢ € 6y : €= pld,b]} € Av(D, €) iff letting ¢ depend just on (7
i(1) > ... > i(n — 1) and the formula ¢(Z;,
AV(Dx,i(O) X Dx,i(l) X ... X Dx,i(nfl),i))

(Teioys - > Teynory ) 1(0) >
(2 Te,,_qy,b) belongs to

where above Dy ; is the natural ultrafilter, see 2.6(1A).

Definition 2.33. For a (fi,0)-set f,u C v (if w = v¢ we may omit it), set v and
A C € of cardinality < 1, we define an equivalence relation &X 4 on S} (A + Bf )
as follows: (if A = L(77) we may omit A) /

tpa (b, A + B;u)éaﬁtpA(Bg,A + B?'u) iff (bg(b1) = v = £g(by) and) for some
h € Tlag, the types tpa (b, A + B;fuyh),tpA(Bg, A+ Bffu’h) are equal.

Observation 2.34. 1) On Shen = {tp(e, A—&-Béu’h) :e €€ and (Bgy, +6 1t 1)
is a (i, 0)-set} the equivalence relation &Y is the equality.

2) Assume x € pK,, ;g and (Va < k)(|a|? < k) and (Yu < po)(2* < k) and g = K
and let £ = fx see Definition 2.21(1A). If n < w and A C My is of cardinality < po
then the equivalence relation &X 4 has < K equivalence classes.

Proof. Straightforward. U234
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§ 3. STRONG ANALYSIS

In §2 we have dealt with pK and gK, here we use tK and vK. Now tK is
the “really analyzed” case, one essentially with “dy universally solve itself’ so it
is a central notion here. But we have problems in proving its density in enough
cases (i.e. cardinals), so we use also a relative vK, weak enough for the density
proof, strong enough for the main desired consequence. We do not forget tK as
it is more transparent and says more. We give some consequences of x € tK, ¢
or x € vKy po. First, M) = Mgy, .51 is (Dx, k)- sequence-homogenous (see
0.14(1); so pcf, see [She94] appears naturally when we try to analyze Dy but this
is not really used here). This implies uniqueness, so indirectly few types up to
conjugacy; this will solve the recounting problems from §(1A) but only when we
shall prove density of tK or vK in (pK, ;¢,<1). We give sufficient condition for
existence, using existence of universal solutions and prove it for x weakly compact
when || Mx|| = k. We end with criterions for indiscernibility related to tK.

Note that tK is better than qK, but the relevant density result is for <; rather
than <,, i.e. you may say that we add more variables to the type analyzed.

§ 3(A). Introducing K, tK, vK.

So a central definition is

Definition 3.1. Let tKy , 7,0 be the class of x € pK, , ; o such that: for every A C

My of cardinality < r there is (¢, d,) which strongly solves (x, A) which means:

¢, dy is from M, and it realizes tp(cx dx, A), of course £g(c.) = £g(cx),lg(d.) =
lg(dy) and tp(dy, Ex + di + &) F tp(dx, Ex + ds + & + A) by some .

Remark 3.2. 1) For <;-increasing chains in tK, ; ¢ the union is naturally defined
(essentially see in 2.13(2)) but it is not a priori clear it belongs to tK. ; ¢, i.e. if
(Xq @ @ < 0) is <;-increasing in tK, ;0 and 6 < 07 then does the union belongs to
tKH,ﬂ,G?

2) To have enough cases when this holds we define a relative of pK which carries

more information.
3) Note that below:

(a) (a) 1K, tK,uK,vK as well as qK,qK’, ¢K” are subsets of pK
(B) qK9,qK® from 2.11(3),(3A) have members of the form (x,,r) with
|

(b) TK® tK® vK® vK® has members of the form (x,1,7) such that I'; =
F% C T2 where ¢ = (¢, : ¢ € F%)

(c) sK® uK® uK® as well as gK® are similar but with I'; = I‘i cr:

(d) the vK’s and uK’s use so-called duplicates (defined below)

(€) uKy .6, VK 5,0 is a parallel of K
duplication, see 2.11(1), 3.6(3c).

x, 00 U, 2,0 Tespectively when we allow

Definition 3.3. 1) Let rK?ﬁﬂ,g be the class of triples n = (x,1),r) such that

(a) x € PKy x50
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(b) r is a type in the variables T; Z:"Z~"Z%, over ) if not said otherwise and

d
always over some A C My
(¢) ¥ = (Vyp(Tg, Te, T Tg) 1 p € F%> recalling® 2.11(0)(A)
(d) Ty = I% CT%:={p: =0Ty 2251, y) € L(rp)} recalling 2.11(0)(A)

(€) Yo (T g, Te, 5, TL) € 1 for every o € F%
(f) if A C My has cardinality < k then some (&, d’) solves (x,,r, A) or solves
(n, A); we may write ¢ "d’ instead (&, d’); which means:
(a) &@"d is from M, and realizes tp(Cx dx, A)
(B) &x dy & d realizes r, of course, £g(¢') = Lg(cx), Lg(d') = Lg(dy)
(v) if o € T2 then 1, (Zg,x,d', &) F tpyJ (dx,ex d' "¢+ A) recalling the lat-
ter means {Q(Z g, x,d’,,b) : b€ 9 A and € = ¢ldy, ex, d', ¢, D]}

2) Let sK§ 5.0 be the class of tuples m = (x,%,r) such that:

(a) x € PK 7,0
b) r is a type in the variables Tz:"Z; e, over @ if not said otherwise and
d Yo
always over some A C My
(©) ¥ = (Yo(Tg, Te, Ya)) : 0 € T%)
where recalling 2.11(0 )(B)
(d) Ty =T3 CT% ={v: 9 =¢(Tq Tc Yo, Z) € L(rr)}
(e) Yyu(T4,Te, ypg) € r for every ¢ € I‘%
if A C My has cardinality < x then some é solves (x,,r, A) or solves
(f) y ) ) )
(m, A) which means:
() & d e realizes r
(B) Yyo(Zg, x, €) tpw(c{x, ex €+ A) for every ¢ € I‘%.

3) We define “very similar/similar/weakly similar” on K% and sK® naturally as
in Definition 2.19, (and they are equivalence relations).

Remark 3.4. 1) So arbitrary b C Rang(éx) is not allowed in clauses (f)(y) of
3.3(1) and (f)(B) of 3.3(2). The reason is in the proof of 2.15(3),(4), i.e. [Shel5,
2.14=tp25.36,2.15=tp25.38]. We can partially allow it, see 2.15(4), the “moreover”,
but not needed now.

2) Note that for singular ps we get a better result for free (as in the case k = u™, p
strong limit singular of cofinality > 6 is easier, see 2.17(2) and the proof of 4.12.
3) In Definition 3.6 below note that vK is a weak form of tK and uK a weak form
of qK.

Discussion 3.5. Concerning Definitions 3.1, 3.3 and 3.6 below:

0) For the vK’s, uK’s instead of dealing Wlth some ¢ € I'2/T'3 we allow ourselves
to deal with a so called duplicate.

1) Note that tK® rK® vK® vK® deals with T2 while sK®, uK® uK® as well as
aK® deals with T3.

2) Note that uK®, vK® have the witness w as part of the m while uK® vK? do
not.

25hut we may allow one ¢ to appear more than once
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3) tK, uK?®, uK®, vK® vK® deal with all formulas unlike rK®, sK®.
4) vK, uK is the projection of vK% uK® respectively to pK.
5) What is the point of VK?mﬂﬁ? We do not deal with every ¢ = ¢o € I'2,

6) We can formulate 3.6(3A)(d), more like 3.6(3C)(«).

7) rK is intended as a step toward tK (or vK).

8) Note uK/uK® /uK® /uK® relate like qK/qK®/qK® /qK®.

9) tK? is parallel to vK® just as it is parallel to vK®.

10) Note that vK is defined as the projection of vK® whereas tK is only provably
the projection of tK® when cf(x) > 29.

11) So vK® /vK® is not parallel to uK® /uK® but the latter is parallel to qK® /qK®.

)
)
)
“translate” the problem of g to a “duplicate” ¢s similar enough which is in Ff/;.
)
)
)

Definition 3.6. 1) In 3.1, 3.3 we adopt the conventions of 2.6(2) concerning the
cardinals. B
1A) If m belongs to rK®, let m = (X, ¥m, 'm) = ( [m], ¢[m], r[m]) and M, =
My}, ete. and I'Z, = T2 x[m]» this may well be 7 F , see 3.3(1)(d).
1B) Similarly for n € sK® let n = (xy, wn,rn) = (X[n],gﬁ[n],r[n]). B
2) We define a two-place relation <; on rKﬂ PR (x1,%1,71) <1 (X2,%2,7r2) when
x; <1 X2 (in PK,. i0)s P = 1o [1"1251 (but dummy variables may be added) and
1 Q 9.
2A) Similarly for SKgﬂﬂ. .
3) Let tK?N,ﬂ,G be the class of (x,1,7) € 1K
complete type, over @ if not said otherwise. -
3A) Let VK?WW be the class of m = (x,v,r) € rKf'\aﬁﬂ,e such that: for every
¢ € T3 there is an (m, p)-duplicate w = (770;V077717V137727V277’33V3790079013Q02)
which means?® (treating dy, x as sequences of singletons, similarly®7 later)
a) o = o = ¢o(Zq, e, T, 7%, §) € T2 (as in Definition 2.11(0)(A), 3.3(1)(d))
) 70,1, 72,13 € ¥ Lg(dx) and Lg(1o) = €g(m1), Lg(n2) = Lg(ns3)
) Vo,v1,V2,V3 € w>£g(0x) and £g(vo) = Lg(v1),€g(v2) = Lg(v3)
d) Y1 = %01@&,771 ) xE,VU J,ns’ z:j‘7V37 y) = %o
)
)

/\Kﬂesuchthat 1"12[—):1",2( and r is a

€) ¥1 (‘fd_,nov jé,vo ) j&,nz’ j%ﬂ/z? g) =p2 = 302(jd_7 T, -fip jlév y) € F)2<
(f Q: ): “901 [CZX:7707 EX sV0 J%z ? d/z’ B] = ¥1 [JX nio EX7V1 ? 624737 6213 ? B]” fOI‘ every J;B €
g(ns)(]wx))aj3 € t9s) (M), b € L9 (M)
(9) v2 T2,

3B) For x € pK,, , 4 we say I is x — vK-large where I' C T'; when for every ¢ € I'z
there is w satisfying clause (a)-(g) of part (3A) and 2 € T.

3C) Let uKy ;.0 be the class of x € pK, ,; ; o such that: for every p(z4, 7z, 7) € Ik
there is a weak (x,)-duplicate w = (ng, v, 11, V1, 0, 1, P2) meaning pg = ¢
and?®:

260 may use a Jn {u,i:d*" lu = Tu instead of J,,,igm; as we may omit Z%, no real change, in
particular for normal x it is the same; used in proof of 3.10(1A), 3.24, a degenerate case without
n2,v2,1M3,V3.
7Below7 you may wonder what is the difference between ¢g and po. Example: d = (do, d1),¢ =
(co,c1), po(Z g, Tz, - - ) = (Ta,0RTc,0), P2 = (Td,1RTc,1).
'We may demand v; = vp; it seems there is no serious diference.
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(a) (n1,v1) = supp(yp), (see 2.10(4)), i.e. n1, vy list w, v respectively, in increas-
ing order for some (w,v) € supp(p)

(b) Mo, M € “>(g(dy) and Lg(ny) = Lg(n1), pedantically also fg(dy m0(0) =
Lg(dx,p, (0)) for every £ < £g(no) but usually we ignore this

) vo,v1 € “7Lg(ex) and Lyg(v) = Lg(11)

) 01 =01(Zg,, Tewns §) = w0 = oz, Te, ) € Ty

€) O1(Zgp> Tewy,¥) = P2 = pa(Z4,Ta, §) € Th

) € “O1ldxnys Cxvos O] = Paldxnys Cxin s b]” for every b € 90 (M)

) some 1) illuminates (x, 2).

3D) For x € pK,, , 4, we say I' C 'L is x — uK-large when for ever I'L there
is a)weak (i,i)—gﬁgﬁca‘ue V\}/',, seepa);t (30). S Tes s

3E) Let vKj x,0 be the class of x € pK, , - such that for every A C My of
cardinality < k we can find ¢ = (1), : ¢ € 1"3—}) and (&, d’) such that:

() as in 3.3(1)(f)
(8) if ¢ € T then 9y, (Tg, Cx, d', &) - tp,(dx, ex"d' "¢ + A)
() 1’% is x — vK large, see part (3B).

3F) We define UK?,K,,:,Q as the class of triples n = (x,9,r) € SK?H,;—L,G such that
I‘3 C I'? is x — uK-large. We define VK?’H%G as the class of n = (x,,r) which
ok M o and F?L C T2 is x — vK-large.

3G) We define uK 4,0 s the class of n = (x,%, 7, W) such that (x,9,7) € SK?n,p,é
Y P3 c Fs,’ll) <wtp($daxca Yle ]) P = Qp(xdvxcayw]? ) e > W = <WLP tpE F?c>
recalhng 2.11(0)(B) and: for every p = @(Z g, Zz, §jg), Z) € I's, Wy, is a witness of the
form (no, Yo, M1, V1, o, ¥1, 2) (see below) and for every A g M of cardinality < &
there is a solution €, i.e. € solves (n, A) which means: & € ?(M,) solves (x,%),7)
recalling 3.3(2)(f) and for every ¢ € I'S the witness w,, satisfies:

belongs to rK?

(a) (1,v1) € supp(p(Z g, Te; Yoy, 2))

(b) 10, € ¥ Lg(dx) and Lg(no) = Lg(m)

(c) vo,11 € “Zlg(ex) and Lg(vo) = Lg(11)

(d) w2 = ©2(Zg,,>Tewve T 2) = Po = (T, Te, Yo, 2) € T

(e) <P2(33d o> Tewos Ujo], Z) = @2 = 0a2(Z g, Te, Ypo), Z) € T

(f) €= “p1]d. .10 > Cx,v0 5 €5 b = wg[dxm,éx,yz,é, b]” for every b € 9(2) A
(9) w2 €T3,

4) Let <7 be the following two-place relation on rK®:
(x1,%1,7m1) <F (%2,v0,72) iff (x1,91,71) <1 (X1,%2,72) and 1",2(1 - 1"1252, not just
re cre
4A) Let <P be the following two-place relation on rK®:

m <P niff m <; nandif p = <P($J[m]»fa[m],fig[m], Tomp ¥) € 2 x[m] then some
w is an (n, @)- duphcate see part (3A).
4B) We deﬁne <1 A, <1 A similarly where A C T3 and we deal only with ¢ € A.

4C) We define vK¥ _ , as the class of n = (x, %, r, W) such that:

PWNTA
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(a) (X7 1/7)7 T) € VKE?,K,/LQ

(b) w=(w,:peTl3)

(c) for ¢ = (g, Tz, &'y, 1, §) € T2 we have® wy, is a® ((x,4),7), ¢)-duplicate,
see part (3A).

5) If (m. : ¢ < §) is <j-increasing in TK¥ (see Definition 3.6(c)) then we let
m; := U{m, : ¢ < 0} be naturally defined (uniquely up to “very similar”) but it
is not clear that ms € rK®, the problem is with 3.3(1)(f). Similarly in the other
cases.

6) We define reducts, m|7 for 7 C 7(T) naturally.

Note

Observation 3.7. Let k > 6 and i be as in Definition 2.2.

1) If x € tKy x50 and y is defined like x replacing dx by dx"Cx then y € tKx x50

and is normal. Similarly for VK x n.6, WUKx k.56

2) x € tKhppo = X € aKy e and tKx wpe C uKyxpe and tK?mﬂﬁ -
@ ®

VK)\,K,[L,O - VK,\,n,ﬁ,e- ~

3) For every k-saturated M there is x € tKy xp0 with My = M,dx = () = ¢x

hence wy = 0 = vy, By = 0. ) )

4) Assume cf(k) > 20 +|T|. Then x € tK x .0 iff for some 1,7 we have (x,9,7) €

tK?ﬁ’ﬁ’g with 7 a complete type over (.

4A) Similarly for VKA,H7,179,VK?7W]79.

4B) If m = (x,%,7) € VK?K,W9 then for some w we have (x,1,r7,w) € VKSK

5)Ifm e tK?K,g,a then Xm € tK 5,6

5A) m e VK?%@ then xm € VK 6.

2,0

Proof. 1) Straight (as in 2.13(3)).

2) For the first statement recall (from Definition 3.1) that a consequence of x €

tK k1,0 1s the existence of solutions, but this consequence for x € pK, , ; g implies

x € K, , ¢ by Definition 2.11(2) so indeed x € tKx » 0 = x € qK, ,, 7 4. Also

for the other statements see the definitions.

3) Obvious (and see 2.13(5)).

4),4A),4B),5), 5A) Easy. Read the definitions for < and immitate 2.17 for =
Us.7

Observation 3.8. 0) If m € rKﬁﬁ’a then m € tK?M, S m §1+ m and m €
VKEW, < m <P m.

1) <§ partially ordered rKgm9 except that possibly =(m <} m).

14) Similarly g?.

2) Also on rK?,ﬁ,e we have gfgg?ggl and m; <q my gi" m3 <; my implies
m; SIL my and m; <; mo g? mg <1 my implies my §<1D my.

3) If x € pK, ;¢ then (x,(),0) € 1KY

3 TR
4) If m = (x,¢,r) € rKfﬂvg and x,y € pK, ;o are very similar then n :=

7y @ 524 S D &
(v, ¢,7) €K g andm € tK, y & netK]  pandm e vk , & ne vk, 4.

29may use u(p, up) but this can be absorbed as we consider u; = {0} for ¢ = (zay = xdp)

30we may restrict ourselves to normal x (and m) and then demand vy = w; N £g(cx)
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Observation 3.9. 1) If x,y € pK, ;o are very similar then x € qK, ;o iff
y €aK, no-

2) Similarly for qIE;Vﬁvg,rK?ﬁﬂ,tK_fyﬁ’g,vK?’ﬁﬂ,uKmﬁ_’g_ and uK?ﬁﬁ. E.g., for
such x,y: for any 1, we have (x,v¢,r) € tK® _ iff (y,1,7) € 1K

5,0 s f,0°

§ 3(B). Sequence homogeneity and indiscernibles.

We now try to prove that decompositions from tK and vK are “good” and
“helpful”. We prove for x € tKj ;¢ that M = M[B,J{+5x+cix] defined in 2.6(6), is
K-sequence-homogeneous, see 0.11, this is nice, and help to prove that there are few
types up to conjugacy because if M, N are (D, k)-sequence homogeneous models of
cardinality x then they are isomorphic.

Theorem 3.10. The sequence homogeneous Theorem

1) If x € tKy go then My is a k-sequence-homogeneous model for the finite dia-
gram which we call Dx; see Definition 0.14(1), 2.6(6).

1A) Similarly for x € VK, z.0.

2) Moreover, if (x,1,1) € thﬂ’Q or just (x,9,r, W) € VK%ﬂﬂ and v is a complete

type then Dy depends just on T, v, r, W, B, (schimy ; : i € vx\ux) and tp(dx " éx, BY).
That is, if my = (x¢,%,7,W) € VKEM, for £ =1,2 and x1,%X2 are smooth and sim-
ilar as witnessed by g, see Definition 2.19(2) then g maps Dy, onto Dy, .

Remark 3.11. 1) We use a little less than the requirements in the definitions
of tKy 1,0, VK z,0; see the proof, ie. in (x)1 below there is ¥(Zg, ¢, d,¢) €
tp(d, e d."¢.) such that (T, ¢"d."¢) - (T4, ¢, b,ar) but 1) may depend on by, a;

and in ¢, ¢, d, does not appear.
2) In 3.10(A),(1A) can we replace tK, ;.0, VK, p.0, tKE ) vK®

K, fi,6 Ky 1,0
respectively? No! We need universal solution, i.e. inside the proof that the type of

d. ¢, over A is the same as that of czx“éx, so still this is less than stated.

&3} 2]
by UKH,,LL,97 qKn,ﬁ,O’ uK’iyﬁve

Proof. 1) Let B = B and as usual let ¢ = &, d = dy. So it suffices to prove that
M .= Mg =M [Btatd) 1S @ k-sequence-homogeneous model.

Let f be an elementary mapping from 4; C M+ onto A C M7 in the sense of
M™ and |A;] < k and by € M and we should find such g O f for which b; € Dom(g),
this suffices. Let A = B+A;+A3+b;. Let fo = f, fi = fUidp and f; = f1Uid;, 4.
By the definition of M the mappings fi, f2 are elementary (in the sense of €, the
default value). As A C M has cardinality < x, recalling x € tK, ;¢ there is e, d,
in M, realizing tp(¢°d, A) such that:

®o tp(d, ¢+ ds + &) F tp(d, e + ds + & + A).
But actually we need just
O tp(d, ¢+ d. + &) F tp(d,c + A).
By the choice of (&, d.), clearly the following function h is elementary for €:

©f Dom(h) = A +¢+d and h[A is the identity, h(¢ d) = &, d..
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Let fi = fiUid; ;7,80 f, = ho fooh " but h and f, are elementary so f} is
elementary too. Clearly Dom(f3) = Dom(fy) + €. + ds = B+ Ay + ¢, +di C My
and Rang(f) = Rang(f1) + ¢ + d. = B + Ay + &, + d. C M. Hence there is an
elementary mapping g; such that g; O f5 and Dom(g;) = B + A; + & + d. + by
and without loss of generality bs := g1(b1) belongs to My recalling Rang(f) C My
and My is k-saturated.

Let go = g1 Uidg, next:

©®1 (a) g2 is an elementary mapping
(b) g2 is with domain B + A; + ¢, +d. + b + €.
[Why? Clause (a) as tp(¢, Mx) does not split over B and g2 2 ¢g1 2 f4 2 f1 2 idp.
Clause (b) holds as Dom(g2) = Dom(g;) U ¢ by the choice of g» and Dom(g;) =

B+ A+ ¢, +d. + by as said above.]
Now assume for awhile:

®2 a1 € w>(B +A1) and®! ¢ ': (p[: c, bl,(_ll]; let as = fl(a1).

Now
(#)o (@) fo2 frandga 2912 f32 f1
(b) a1 C(B+ A1) =Dom(f1), hence
(¢) g2(a1) = ag; also
(d)  g2(br) = g1(br) = b2
(€) go is the identity on B + ¢, + d, + ¢.

[E.g. why clause (e)? By their choices, fi is the identity on B, f; is the identity on
Cx +d. and gy is the identity on ¢ hence by clause (a) we are done.]

We know that tp(d, c+d.+¢x) - tp(d,c+A) by ©g or ©f (Why? (T 4,¢,b1,a1) €
tp(d, ¢+ by + G2) by @2; and tp(d,c+by +a1) C tp(d,c+ A) because ¢+b; +a; C ¢
(why? a3 C B+ Ay C A, see (x)o(b) and by € A by the choice of A)):

(¥)1 tp(d,¢+d. +E) F o(Tg,E by, a1).

So applying go recalling (x)g(e)
(¥)2 g2 maps tp(d, ¢+ d. + &) to itself

As (¥)1 + ()2 hold and g2(b1) = ba, g2(a1) = a and g2(¢) = ¢ (by (¥)o(d), (c), (e)
respectively) recalling g, is an elementary mapping by ®1(a) we get

(*)3 tp(d, ¢+ d + &) b 9(Z 4, b2, a2).
So it follows that:

©3 < ): 50[1 67 b27a2]'

3lywe can strengthen the demand on a; to @1 € “> (A1 + B + dy + ¢x) and change according

in later cases
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We have proved ®o = ®3 when a; was any finite sequence from B + A;. Recalling
(*)o(e) and g2(b1) = b2, g2(a1) = @2 and g2(¢) = ¢, this means that g3 := (g2[(B +
A1 + b1 +¢)) Uid; is an elementary mapping, so the function g3 = g3[(B + 41 +
by +¢+d) is an elementary mapping of €, so as g3 [(B+¢+d) is the identity clearly
g = g3 (A1 +by) is an elementary mapping in the sense of M T, so g is as required.
1A) The proof above works now, too, except that not necessarily ®¢ holds (and
S0 @, too) which was used only in proving (%); so in proving @2 = @3, hence
it suffices to prove ®3 assuming ®o. Let ¢ = o(Zg, Tz 2,y) so there is ¢y =
@0(Z gy, Teun; % §) equivalent to ¢ for some ny € “7Llg(dy), v € ¥ Lg(x), hence
by the Definition 3.6(3A), a degenerated case®?, there are 79, v such that:

@ (a) mo,m € “Llg(dy) and vy, vy € “>Lg(Cx)
() Lg(no) = Lg(m) and Lg(vp) = Lg(v1), all finite

(C) < ): “(»00 [dxﬂ?l » Cxvr s blﬂ d] = 4,09 [dxﬂlm Cx,vgs b/v d]”
for every v/ € My, a’ € 90 (M)
@' there is d,. ¢, from M, realizing tp(dy "¢x, A) such that
(d)  tD(dxmos Cxyvp + o + ) F {@0(Z g0 O V@) 1V € Ay’ € 9@ A

and € = @o[dx,ngs Cx,v0, 0, @]}
Now as in the proof of part (1) above we are assuming

O2 a1 € w>(B + Al) and € ': QO[CZ, C, bl,dl].

By the choice of ¢q this means that € = @o[dx,n, ; Cx,u,, b1, a1] hence by ®(c) we
have:

CD,2 < ': Yo [CZX,T[()? EX,V(W b17 d2]

Recalling @'(d), for this formula the proof of ®3 = ©3 in part (1) works so € |=
goo[czx,no, Cx,vo, D2, G2]. Using @(c) again this implies € = ¢q [Jxm,éx,,,l,bg, as). As
this holds for any a; € “~ (B + A1) we finish as in part (1).

2) Assume

B my = (x¢,9,7) € tKgﬁﬂ for ¢ =1,2
or

B,k my = (X, 0,7, W) € VKSWQ for £ =1,2.

Assume further that g witnesses x;,xo are similar; the proof is like the proof of
parts (1),(1A) but we give some details so go = g/ B, is an elementary mapping
from B} onto Bf,.

Let & = €x,,d¢ = dx,. Assume a; € “>(M,,) for £ = 1,2. Let £ € {1,2} choose
¢t ~d’ as in Definition for A, := B;fé U ay, so
()10 (a) di, et are from My,
(b) dt, & realize tp(dy"ce, Ay)
(¢) dy e di et realizes ry := r[my]
(d)(a)  if Bk then tp(dy, ¢+ d + &%) - tp(de, ¢+ Ay)
(

B) if By then (€%, d%) solves (x4, v, 7, W), see 3.3(1)(f).

32this is a weak version of 3.6(3A) as n2,v2,m3,v3 does not appear
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Let h¢ be the elementary mapping with domain A(-l-éz—ng, helAg = ida4,, he(@[d() =
¢t dt, it is well defined and elementary by the choice of ¢, d’.

Now g1 := hg o gohy' is an elementary mapping by (%)1,¢(b), for £ =1,2. As
g1’s domain is C My, and its range is C My, there is an extension g, of g; to an
elementary mapping with domain O A; but C My, and range O Ay but C Mx,.
Next extend g2 to the mapping g3 by letting g3(¢) = &, by the definition of “g
witnesses the similarity of ...” easily also g3 is an elementary mapping. Let g4 be
the mapping with domain Rang(d; "¢, "d!"¢l) mapping di,¢;,d., ¢! to do, Co,d2, 2
respectively, now g, is an elementary mapping by the assumption on r. Easily
g3(a1) witness g maps tp(ay, 0, My,) € Dy, to the member tp(gs(as),?, Mix,)) of
Dy,. Similarly for 93—17 a2, Mixy)s Mix,)-

So we are done. Os.10

Discussion 3.12. 1) Now we can start to see the relevance of tK, vK to the re-
counting of types; of course, the following conclusion will be helpful only if we prove
the density of tK (or of vK).

2) Note that if we below like to use 3.10(1),(1A) rather than 3.10(2), we lose little

using 2{228 10 < po} instead 2<Ho,

Conclusion 3.13. 1) If k,[i,0 are as in Definition 2.2, k = k<% = p+® and®
20 < k and M € EC,. «(T) then the number of {tp(d, M): for some x € tKy,n0 we
have d < dy, My = M} up to conjugacy is < 2<H0 4 |al?.

2) Similarly for x € VK, z.9.

Proof. 1) By part (2) recalling 3.7(2).
2) Let A = k; by 2.22(1) + 3.8(4) we can restrict ourselves to smooth x € vKj . 7.6.
By 3.7(4A),(4B) we can deal with {tp(d, M) : m € VK?ﬁ,e satisfies d < dp, My =
M and, as said above, X, is smooth}.

Now if (x¢,,7r, W) € VK?IN,7 see 3.6(4C) are smooth for £ = 1,2 and x1,x5
are similar as witnessed by ¢ then g maps Dy, onto Dy,, see 3.10(2) hence by
the uniqueness of the (D, k)-sequence-homogeneous model of cardinality x there
is an automorphism f of M such that g U f is an elementary mapping. Hence
tp(dx,, M), tp(dx,, M) are conjugate. We are done as: the number of relevant
triples (¢, r, w) is < 2% and the number of m € VK?W, with Mm = M, (¥m, T'm, Wm) =
(¢, 7, w) up to similarly is < 2<H0 + |a|? if cf(ug) > 6 and 2#0 + |a|? if cf (ug) < 6.
The 2H0 /2<F0 comes from the type of by where by consists of: Ex,i listing B; for
i € Um\Um and (Ax0 ... "Gxin - )n<w if © € um (and of course the respective
lengths, etc.); the |a|? is for the choice of the (kx; : i € ux).

Now for each x € vK, ;¢ the set {d : d < dy} is < 0 (even allowing {d : d a
sub-sequence of dy} gives 2/ < 2<r0), 0313

* * *

Now we turn to proving sufficient conditions for (some versions of) indiscernibil-
ity, they are naturally related to tK and vK.

Claim 3.14. (¢,"d, : s € I) is an indiscernible sequence over B when :

33without assuming it we have just to replace tK, z 9/vKs .0 by tK?‘1 g/vKgﬂ 0
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(a) I € K, see Definition 1.39
(b) if s <1t are Er-equivalent then tp(¢, ds, Bs) C tp(¢; dy, By) where
(a) Er ={(s,t): (Fi < o)(s,t € P))}
(B) By =U{¢s'bs:s<;t}UB
(v) €g(ds),Lg(cs) for s € I depend just on s/Er.
(¢) tp(@s, Bs) does not split over B
(d) ifs€ Pl andt e PJ-I and s <r t then r; ; = tp(¢s"ds e dy, ), i.e. depend
only on (i,7)
(€) tp(dy, & + dg + ) - tp(ds, & + ds + € + Bs) when s <j t
or just
(e) if s <r t.m € “Zlg(dy), 1 € “7lg(r),m3 € “7lg(ds),vs € “7Lg(Es) and
Y= gp(igﬁm » Tg,v1 s £J57n37 i'cis,l/gv g) then fOT‘ some 1o, Vo, 12, V2 (dependmg
on (s/Er,t/Er,ni,v1,m3,v3) but not on (s,t)) we have
(@) mo € 9 (Lg(dy)) and vy € Y90 (0g(E)) and ny € “903)(Lg(dy)) and
vy € 903) (Lg(cy))
(B) if b e 9D (By) then ) ) ) )
< }: “Lp[dtmo 1 Ctovo ds,n2, Csva) b] = Qo[dt,m » Ctours ds,7737 Cs,vs) b]”
(P)I) tp(gt,ﬂ(n Et + JS + Es) '_ {So(i.(it,no 9’ Et,l/o b Cis,’r]zu ES,V27 5) : B e lg(g) (BS) Cl/nd
Q: ): So[dt,nm Et,uo ) ds,nga és,ug; b]}
Proof. Recall E = {(s,t) : s,t € P! for some i < 0}. We prove by induction on n
that

(%) if s0 < ... < sp-1and g < ... < t,1 and £ < n = s,Et, then the se-
quence Cs, ds,” ... Cs, , ds, , and the sequence ¢, "dy,” ... ¢, , di
realize the same type over Biin{so.t0}-

n—17

The case n = 0: The desired conclusion is trivial.

The case n = 1: By clause (b) of the assumption, i.e. for any t. € I and i < o, the
type p; = tp(¢;"ds, By,) is constant for t € {s:s € P! and t, <; s}.

The case n =m + 1,m # 0:

By clause (b) of the claim assumption, without loss of generality s,, = t,, call
it t(x) and let s(x) = min{sg, to}.

Let fo = dp,,,,, let f1 be the function with domain By, + ESOACLO + ...+
Cs,_, ds, _, such that f; O fo and fi(¢s,"ds,) = &, dy, for £ < m, it is an
elementary mapping by the induction hypothesis. Let fo = f; Uid it is an

elementary mapping as tp(Cy(«), By(x)) does not split over B by clause( )(c) of the
claim assumption.

Let f3 be an elementary mapping (in €) extending fo with domain Dom(fs) +
dis) = Dom(f1) + s, "ds,, = Bs(x) + Cs dsy " ... "Cs,, "ds,, and let dj = f3(ds,,).
Let 7,7 < o be such that s,,_1 € P,f, Sm € PjI.

So

By tp(di, . C,, + de,_, + €, y) = tp(dy,,, C, +dyyy +Cry)

See https://shelah.logic.at/papers/950/ for possible updates.
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[Why? By clause (d) of the claim assumption as s Ety for £ = m—1,m and $;,—1 <1
Smytm—1 <1 tm we have tp(dy,, "¢, “di, _, "¢, _,,0,€) =tp(ds,, "G, “ds, _, Cs,_1,0,C).
By recalling the choice of f2, f3 and d; ~we have tp(d, "¢, di,._, e, _,,0,&) =
tp(ds,, "Cs,, s,y "Cs, 1,0, €).

Together we are done.]

The proof now splits into two cases.

m m—1

Case 1: Clause (e) of the claim assumption holds.

Hs Jtm,cﬂm realize the same type over &, + C where C' = By(y) + &y, "dy, +
.o.+¢&,, _, ds, _, that is Rang(f;).

m—1
Why s holds? B B

Clearly tp(dy,,, ¢, +dt,,_, + ¢, ,) Ftp(ds,,, ¢, +C) and together with B; we
are done.

Case 2: Clause (e)’ of the claim assumption holds.
So assume

©O1 € @ldty s Ctns By s s Ctyy s, b] Where b € WO Cand ny € “>Lg(dy,,), 1 €
w>Lg(c,, ), n3 € “7Llg(ds,,_,),vs € “”Llg(c, _,) all finite.

By clause (e)’ we can find 9, vg, 72, V2 as there.
By ®; and subclause (8) of (e)’ we have

®2 Q: ’: SO[Jt'mﬂ']O ? Et?nﬂ’fﬂ d7t7rL71 M2 Et'mfl sV29 B] .
By ®2 and subclause () of (&)’ we have:

®3 tp(dtnlvn07 étnz + dtnlfl + étnzfl) }_ @(i‘gm7n07 Etmﬂ/o’ dtmfla’rh’ Et,71717y2’ b)

But tp(d}, .0, C, + iy + Ct,y) = tp(diy s Ctpy + di,, + Ct,,_,) by By s0 by
®3 we have

- _ _ _ - B _ _
©4 tp(dtm,nm Ct,, T dtm—l + ctmfl) + ‘p(xdt(n)mm Clom,vo9 dtm7157727 Ctm_1,v25 b)
hence

- 3 _ B
©5 € ': Sa[dtm77]0 y Ctm,vo dtmflﬂn » Clon 1,02 b}'

We can apply the elementary mapping fs ! whose range include all of the elements
of € appearing in ©5 hence we get

®6 < ': @[Jsmvn(ﬁésmﬂfo’ Cismfly"h’ 637n717u2’ f\s_l(l;)]

By subclause (8) of (e)’ and ®g we have (recalling from (e)’ depending on s/E},
but not on (s,t))

Or €= Sa[dsm,nwésm,uudtm—lmw [

As this holds for any such ¢ we have finished proving (x),, also in Case 2, so we are
done. Us.14

Discussion 3.15. 1) Naturally we can prove finitary versions of 3.14 in some senses.
Below we deal with k-indiscernibility; another variant deals with A-indiscernible.
2) See 3.18.
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Claim 3.16. The sequence (E&OAJS,O : s € I is k-indiscernible over By when the

sequences ((dsy,Cs¢) : € <k,s € I),(By: £ <K) satisfy:

(a) I € K, , and Lg(Cs.) and Lg(ds ) depend just on { and i(s) := the unique
i such that s € PiI,' also €sp A Csp41,ds¢ Jdggq1 forl<k,sel

(b) tp(dsx Csx, Bs) is C tp(Crx dix, Bi) when s <pt Ai(s) =i(t) (hence this
holds for ¢ < k, too) where By = By ) and

Bt,k = U{ds’kAé&k s <y t} U By for k <k

(¢) tp(Csk, Bs,k) does not split over By, and By C By C ... C By

(d) ifse Pl te P]-I and s <p t then r; j = tp(Cs k" ds x "t 1 di x, 0)

() tp(die, o1+ dsor1+Cse1) F tp(dee, Gro+ds o+ Cs o+ Bsyg) when s <;t
or just

(e) if s <r t,0 < k,m € “Zlyg(dye),v1 € “ZAg(Cre),ns € “7lg(dsy),vs €
“>0g(Cs.¢) are all finite and
SD/(‘/Z'JLZ’ jét,za :Z.:i_t,z’ mlét’za g) = Y = @('fid_t,g,fql ) jét,zﬂll ) i‘iis,h"]a’ j/ésl’y?,a g) €
L(7r), then we can findny € “~Lg(dyse),vo € “7Lg(Cre41),m2 € “7Lg(ds,e41),v2 €
“>0g(Cs.041) (depending on s/Eyr,t/Er, €,m,v1,n3, Vs but not on (s,t)) such
that:
(a) Lyg(no) = Lg(m) and Lg(vo) = Lg(m) and Lg(nz) = Lg(n3) and Lg(v2) =

lg(v3)
(B) if b€ ¥ (B,) then ) ) ) )
¢ ): ‘p[dt,f,no 5 Et,@+1,voa ds,EJrl,ng 3 Es,erl,Ug; b] = Qp[dt,f,nl 3 Et,@,ul 9 ds,é,ng 5 Es,é,u37 b]

(7) tp(Jt,E,ng,é_t,eH + Js,lJrl + Cs041) F tpw(tzt,z,nm (Ctot1,00 + Czs,£+1,n2 +
ES,£+1,U2) + Bs,f)-

Remark 3.17. 1) Note that (e) = (e)’.

2) In clause (e) we may use “no € “>lg(d;,)” rather than “ny € “>Lg(dy11)”
when we add J:,z such that czs,g < J:,z < JS,[J,_] and use CZ;EWO instead J‘g,g,% in
clause (e)'(7).

Proof. We prove by induction on k < k that:

(%) if 01,00 € F*1I are <;-decreasing, (V¢ < k)(3i < o)[01(¢), 02(¢) € P/] and

5 <1 01(k), 02(k) then the sequences d,,(0),k—k "Cop(0),k—k - - Doy (k) k—k Cop(k)k—Fk
for £ =1, 2 realize the same type over Bj x_.

Case k = 0: This holds by clause (b) of the claim as £g(01) = 1 = £g(g2).

Case k > 0: For v = 1,2, let p, = (0,(1+m) : m < k) and for i < k let ¢, ; =
Cp,(0),i -+ Cp (k=) and dy i =d, (0y,i" -+ "dp, (k—1),s S0 the induction hypothesis
applies and if k = 1 then ¢,, ; = ¢, (1), Jp“i = Jm(l) for i = 0.
Note that ¢,, ; is a subsequence of ¢, ;+1 and d,, ; is a subsequence of d,, ;1.
By the case k = 0, that is by clause (b) without loss of generality 01(0) = 02(0)

call it t. So assume
(e . = =/ z
(*)1 Y= @(xdt,n,k y L n_k> xdpl,nfk' 'L, ok Z) and

E S t9(2) (Bs,k—k) and € }Z (P[Jt,n—k, Et,n—ka d_pl,n—ka Epl,n—ka b]
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We should prove the parallel statement for go, i.e. for ¢ and ps.

Subcase 1: Clause (e) of the assumption.
Hence by clause (e) there is a formula ¢, = ¥, (T4, ,_,,

such that

T ! )

Ta L
Ctk—k+127d, (o) k—kt1’ " Cr1(0)k—k+1

(¥)2 (@) €= Yuldix—r, Ctax—k+1, Doy (0)k—kt15 Cpy (0) k—kit 1]

(0)  Yo(Tg, s Ctk—kt1,dp, (0) k—k+1>Cpy (0) k—k+1) I~

P(Td, s Ctk—ks Apy k—ks Cpy k—k» b)-

(*)3 (a) < ): ﬂtp[étvk—k-‘rla dp1,k—k+17 Eﬂ17k—/€+17 b} where

(b) ﬁ@(fénk—kwfépl,k,k+1’f§p1,k—k+1v5) =
(Vi.(isykfk ) [d)@(‘i(it,k,kﬂ ‘%Et,k—k+1 ) f/_pl,kfk«{»l b flfpl Hk—k+1)

— Lp(afgtykik,fgtrk_k,:E:i—pl,kik,flaplyk_k,2)].
Now
(*)a dp, k—k+1"Cp, k—k+1 b realize the same type over By x_p+1 for ¢ = 1,2.
[Why? By the induction hypothesis as b is from Bs k-t C Bs k—k+1]

(*)5 Cin—k+1 AJp“k_k_H "Cp, k—k+1 *b realize the same type over B x—p+1 for v =
1,2.

[Why? As first, tp(étik_kJrl,Bt,kH) does not split over B; 41 by clause (c) of the
assumption, second d,, k—k+1, Cp, k—k+1, 0 are included in By 41 and third (x)4.]

(*)¢ in (*)3(a) we can replace p1 by p2,i.e. € =9, k—k+1:dps, k—k+1,Cpo k—k+1, D).
[Why? By (%)5 and (*)3(a).]
(#)7 € = Voldik—k» Ctk—kt15 py (0) k—kt-15 Cpa (0), k— k1)

[Why? By clause (d) of the hypothesis of the claim and (x)2(a).]

(%)s € = 0[dik—ks Ctk—k» py ks Cpy ks D]-

[Why? By (*)g + (*)7 and the definition of ¢ in (x)3(b).]
So we are done.

Subcase 2: Clause (e)" of the assumption holds.
Similarly as in the proof of 3.14 and see the proof of 3.21. Os.16

Claim 3.18. The conclusions of 3.14, 3.16 and 3.21 below still hold (and even (x)
from its proof holds) even under the following weaker assumptions

(@) (@) 1€ Ky,
(8) weaddI, CI forv=1,2andtel=>teVtel
(b), (c),(d) the same
(e),(e)" the same but only for Iy and for Iy (but not for Iy UIy)
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(f) ifty <pto,e€{1,2} andt, € I\Is_, andts € I3_\I, andn € %o (for 3.16,
3.21 k is given, otherwise any k < w) then we can find sp < ... < Skx_1
from (t1,t2)1,n1, Such that s, € PT{(L) for £ < k.

Remark 3.19. 1) The case which suffice in 3.23 below is I} = [0,w + w), Iz =

[0,w +w + 1)\{w} which is somewhat easier.

2) In the natural case, for decreasing o € "*1I we have tp(dg(o) T AJg(n_lw Co(0) -+ Com)t
dg(n)) F tp(dg(o) T Adg(n_l)_l, Co(0) T Aég(n) +dg(n) + Bg(n)) and it is quite nat-

ural to use this.

3) A variant is: e.g. (¢;"°ds : s € I) is an indiscernible sequence over B when we

assume (a) + (b) of 3.14 and (a),(f) of 3.18 and

(g9) if s € I and ¢ € {1,2} then (¢"d; : t € I, and t > s) is an indiscernible
sequence over Bj.

Proof. Tt is enough to prove this when I;\ I, I3\ I; is finite by induction on |I;\ 2|+
|I2\I1| (probably losing appropriately in £ for 3.16). So without loss of generality
this number is 2. By symmetry without loss of generality I;1\Ix = {t1}, I2\I1 = {t2}
and t; <y t3. The rest should be clear by the transitivity of the equality of types.
IL.e. for notational simplicity concerning 3.14, by it we know

B if . € {1,2},¢ € I, then (¢,"ds : s € (I,)>¢) is an indiscernible sequence
over U{¢s"ds : s € I4+} UB.

It suffices to prove

@ if sg <y ...<j Sp—1 then for some ro <y, ... <y, Tn—1, (so all from I) the
sequence Cs, ds, ... Cs, , ds, , realizes the same type over B as
67'0 AdT'O oy AE"'n—l Ad"'n—l N

Why @ holds? Now if ty & {s0,...,5,-1} this is obvious, so assume ty = sy(2), and
let k(1) be minimal such that ¢; <; sp(1), so k(1) < k(2); (we can even demand
t1 = sp(1)—1, but not used). By clause (f) there are 71y <7 ... <p i) from
(t1,t2)1,n1, such that k € [k(1),k(1)]Ai < o = 1, € P! & s, € P/ and let 1, = s,
for k < n such that k ¢ [k(1), k(2)].

So applying 8 for v = 2, = t;(;) we know that &, "d e, de

Tk(1) n
reali%es over Bgnin{sk(1>,rk(1>} the same type as C,,, "ds,,, -+ "Cs,y dr, ;. As
Csy, " ds, = €, dy, 18 from Buings, )y for & < k(1) and {ry : k <n} C I we
are done proving @ hence the claim. Usqs

The following may be used in 3.16, 3.21.

Definition 3.20. Assume b = ((¢s,ds) : s € I)) where I € K, , but below we
omit b if clear from the context, and if we have <(ES,Z7CZS7E) :s ey for ¢ <k we
may write b, instead of b but below may write cZM, Co,e-

1) For k < w and g € FTI let

dojo = dp(0)b " -+ "dp(k—1),b

Cob = Co(0)b -+ Co(k—1),b
2) The sequences 11,72 € *I are called similar when they realize the same quantifier-

free types in I.
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The following generalizes 3.16: using only formulas for some A’s following the
quantifier-free types in I and using a parallel of vK rather than of tK.

Claim 3.21. The sequence (ds 0 Cs : s € I) is (Ak, k)-indiscernible over By when

the sequence ((dse,Cs0) : £ <k, s € I) satisfies

(@)

(o) I€K,, and** Eg(cfs,g),Eg(ézye),ﬁg(cf;e) depend just on € and i(s) :=
the unique © < o such that s € PiI; also €50 4 Cs 041, Js,g < J:,z
< Js,“_l fort <k,se€l and B C B C...C B,; and
557[,(?57[ are finite®
(B)  fori<o and k <k let wi g = Ly(ds ), wy = Lg(d: ),
Vi = £9(Cs 1) for any s € P/
(7)  for k <k let Ry = {tpy(0,0,1): 0 € *"FI is <;-decreasing} and let
i(7,0) = 100(0)) < o(0) € P, 1), () = lg(0) 50 = k when
r= tqu(Q,@,I) € Ry
(0) for € < k,A; and also A} is the closure of a finite set of formulas
(each with finite set of variables) under permuting the variables, negation
and adding dummy variables
() A CA; CAp1 CAn
tpa, (ds,x " Csxs Bs) is € tpa, (G "dix, By) when s <p t Ai(s) =i(t) (hence
this holds for k <k, too) where By = Byx and By = U{ds 1" Cs o : s <1
t}UBy fork <k
tpa: (€s,0, Bs,e41) does not Apyq-split over By

ifse Pl te P]»I and s <t then r;; = tpa, (Csx dsx Crx dix, D)

) tD(dp e, Cto1 + dso + s 1) F tp(dee, Ero + dsp + Cs0, Be) when s <yt

or just
if s <; t,0 < k,m € “Zly(dpe),vn € “ZLg(Crp),ms € “7lg(dsye),vs €
“>lg(Cs,0) are all finite and @y = @O(jd},z,m’j@t,evuwj:is,z,m’j/és,zws’g) €

L(rr), then we can findno € “>Lg(d; ,),vo € “>Lg(c; ), n2 € “Lg(ds,e11),v2 €

“2Lg(Cs,011), (depending on £,s/Ey,t/Er,m,vi,n3,v3 and @o but not on

(s,t)) such that:

(@) Lg(no) = Lg(m) and Lg(vo) = Lg(m) and Lg(nz) = Lg(n3) and Lg(v2) =
lg(vs)

(B) if b€ 99 (By) then

_ 7 _ 71 — Tk —% 7 =
€= o [dt,lJrl,nov Ct,e+1,v05 Os s Cs b, b = 901[dt,€,171 1 Ct 0,010 ds,t,m35 Cs,b,vs b]

(V) tP(d; 4,0 Crrt1 + ds 01, Cs,e1) WD (d] g s (o1, + dserrm +
és,£+1,uz) + Bs)

or (we rephrase some clauses recalling the assumptions on the Ag’s):

(e)/l

ifs<pt,d <kandyp=py= goo(i"gm,fct’e,fgsyé,Egs,e,z) € Ay then we can
ﬁ’fld p1 = (pl(jli;[’jaj,e’j:i_s,g+1’j/5s,k+1’2) andq/) = w‘P = w@(‘fli;/jéfl%—l’j
depending only if i(s),i(t),£ and ¢ such that:

34if we assume (e) then without loss of generality d:,=dsy

35this helps in phrasing the demands on the Ay’s

/_
ds o411’

See https://shelah.logic.at/papers/950/ for possible updates.
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(a) €= 9[d] g1, dsorr; s o]
(b) for every b € 9(2) (B, ¢) we have € |= @oldse, Cre,ds.i,Cs0,b] iff € =
e1[df 4, €y ds, 041, Cs 1]
(€) € pld; s o1y o1y o]
(d) O(Tg: , Cror1s dsers so1) F {01 5T g ds o1, Coppr,0) b € 9O (B )
and € = cpl[czz@,(?;g, ds 041, Es,041; b} ’
(e) ¥y = ﬁw(jft,ul’j:L,Hl’jIES,HNE) € A} where 9, is
(V:Eg;e)[wq,(a?g;e T2, 010 Tdy gy e prn) = gpl(a?g;e ' Ty s B, g0 Tea e 2)]-
Remark 3.22. Used in 3.23, 3.24 below (for the case we use (¢)’, (c); respectively).
Proof. We prove by induction on k < k that:

(*)p if 01,00 € FTI are <;-decreasing, (V¢ < k)(3i < 0)[o1(¢), 02(¢) € P/] and

5 <1 01(k), 02(k) then the sequences d,,(0),k—k "Cop(0),k—k -+ Doy (k) k—k Cop(k)k—Fk
for £ = 1,2 realize the same Ax_j-type over By k_.

Case k = 0: This holds by clause (b) of the claim as £g(o1) = 1 = £g(02).

Case k> 0: For v = 1,2, let p, = {(0,(1 +m) : m < k) and for i < k recall
Cp,i = épL(O),iAu-AépL(k—l),i and Jp“i = &pb(o),i -ACZpL(k—l),i so the induction
hypothesis applies and if £ = 1 then ¢,, ; = &, (1),i,dp, s = d;, (1) for i = 0.
Note that ¢,, ; is a subsequence of ¢,, ;41 and d,,, ; is a subsequence of d,,, ;1.
By the case k = 0, i.e. by clause (b) without loss of generality 01(0) = 02(0)

call it t. So assume

— — = = =/ =/ >
(*)1 ¥ =%o = wo(xdhn—k7Iét,n*k7x(iplyn_k’xépz,n—k’z) € Ak—k and

B S t9(2) (Bs,kfk) and € ): So[czt,nfka Et,nfka Jpl,n7k7 épl,n7k7 E]

We should prove the parallel statement for g, i.e. for ¢ and ps; this will suffice.

Subcase 1: Clause (e) of the assumption.
Follows by the second subcase, (and has easier proof).

Subcase 2: Clause (e)’ of the assumption but similar to Subcase 3.

Subcase 3: Clause (e)” of the assumption.
Hence

(%)2 choose 1,1, and ¥, as in clause (e)” for p(0),t (chosen above) and ¢ from
(%)1, hence in particular
(@) T Yold i s Core—kt1, dpy (0) k15 Cpr (0) ekt 1]

(0) Yo(Zg:Ctaa—k+1, dp, (0)k—k+15 Cpy (0) k—kt+1) = P(Zd, > Ct.k—ks Avy k—k Con k—ks D).

Hence

(%)3 (a) € EVy[Crk—k+1,dp, k—k+1,Cpy k—k+1,b] Where

(b) "‘9§9(f5t,k—k+1 ) f&pl,k—k+1 ) flé,,l,k,kﬂ ) 2) =
(de*:’kfk ) [@bsa(fdft*_’kfka fat,k—k+1 ’ flfpl,k—k+1 ’ flépl ”k,kﬂ)

= _ _, _, -
- So(xdtﬁk_k7xét,k—k’mjplﬁk_kj‘répbk,k’Z)]'
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Now

(%)4 Jp“k,kHAép“k,kHAE realize the same Ayyi- type over B x_g41 for ¢ =
1,2.

[Why? By the induction hypothesis as b is from Bs k-t C Bs k—k+1.]

(*)5 Ctn—k+1 “J,,L,k,kﬂ "Cu, k—k+1 “b realizes the same A-type over Bs x—k+1 for
L=1,2.

[Why? As first, tpas (Ct.xk—k+1, Bt k+1) does not Ayyq-split over By j41 by clause (c)
of the assumption, second Jp[,k_k_i_l, Ep,z,k_k_s_l,B are included in By j41 and third
(*)a]

(%)¢ in (*)3(a) we can replace p1 by p2,i.e. € = Vo [Ctx—k+t1,dpy k—k+1)Cpy k—kt1,b]-

[Why? By ()5 and (x)s(a).]

(*)7 € Voldii—k: & g1 Dpa(0) kb4 15 Cpn(0) k1 -
[Why? By clause (d) of the hypothesis of the claim and (x)2(a).]
(*)s € |= @ldt k—ks Ct ks py ks Cpg ks D)

[Why? By (*)g + (*)7 and the definition of ¢ in (x)3(b).]
So we are done. U300

§ 3(C). Toward Density of tK.

We first show that the existence of gf-extension for every x € rKf’ ) suffice
for existence (i.e. for density) for tK. The main case in 3.23, 3.24 is ¢ = w. Then
in 3.27 we prove this sufficient condition for weakly compact x. Note that for rK®
closure under union is not obviously true.

Claim 3.23. We have xs € tK, o, moreover ms = (X5,1/_15,7"5) S tK?ﬂg and
€ <8 = x. <y x5 when (5 < 0% is a limit ordinal and):

B (a) m.=(x,v.,7.)€E rKwa for e < § is <i-increasing
(b) re is a complete type, (over the empty set)
(¢) m. < m.,y, see Definition 3.6(4) or just
(¢)
(

" ife<dand p € ang then for some ¢ € [e,0) we have ¢ € F?Z[mg]
d) ms=U{m, :e <3}, see 8.6(6), i.e.

(o
(B
(v

We shall prove 3.23 together with

) x5 =U{xc:e <8}, see 2.13(2)
) s is the limit>® of (Y. : e < 0)
) rs=U{r.:e<d}.

Claim 3.24. We have x5 € vK, z¢ moreover ms = (X5,%5,75) € VK?[”, and
€ <0 =x: <y x5 when as in 3.23 except that we replace (c), (c)’ by

36But note that for e < ¢ the formulas in 1/_J§ has more dummy variables than those in ¢
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(¢); m. <P m.,q, see 3.6(4A)
or at least
(¢c)y for everye < & and ¢ € %, for some ¢ € (¢,6) we have m, S?W me, see
Definition 3.6(4B).

Remark 3.25. 1) We may weaken clause (b), i.e. 7., 75 are not necessarily complete,
still need sufficient condition for indiscernibility in proving H3 below.

2) In 3.24 we can use ngﬁﬂ.

Proof. Proof of 3.23, 3.24 For simplicity we assume (c),(c); in 3.23, 3.24, respec-
tively, otherwise we have to use 3.21 (or use compactness). Let d. = dx_,ds =
dxs,Cc = Cx. and €5 = Cx, for ¢ < §. The main point is proving clause (f) from
Definition 3.3(1).

Let A C My be of cardinality < x and without loss of generality € < § = Bjc; -
A. We now choose Aa,Ja,g,aa,57Ja7€,5a,€ (for ¢ < 4) by induction on o < 67,
really a < 6 + ¢ suffice, such that:

@ (a) da,s,da,e,Ca,e are sequences from My

ég(ga,s) = @g(&e) and e < (<6 = Ja,s = Ja,( Mg(gs)

0g(Ca,e) = lg(C:) and € < < § = Cqe = Ca,c[lg(Ce)

d) dos=U{dac:e<6}and Cos=U{Cnc:e<d};

e) ife <§ then ans%fa’s and ¢, "d.

realize the same type over Ag := A+ ¥{¢g s dss: 0 < a}

(f) ife<dand a =¢ mod 0 then the sequence EEAJEAEQ,EAJmE
realizes r.

(90 ife<dand a=¢ modd and p = w(fgs,a_:és,:i’d—sﬂ,a?'ésjl,y) €

Fizl;[mg] then ¢¢(fj5765a da,sa Ea,a) F tp¢(d5a (EEAJa,EAda,E) + Aoz)-

This is possible by the assumptions recalling the definitions, that is, if € < §, @ <
0+ 6 and a = ¢ mod § then first we choose Ja’a,éa,s as required in clauses
(e),(f),(g), this is possibly by the assumption on m.; second we choose (dy.s,Ca.s)
from My realizing tp(ds ¢s, Aa) and do e = do 51€9(de), Ca e = Ca.5[lg(Cc), possible
as My is r-saturated and as clause (e) is satisfied; and third define d.c,Cn ¢ as
das10g(de), Cas1lg(ec) for ¢ < § so clauses (a),(b),(c) hold.

So let ue = (£,0) U (d + ¢, + d); now

B if ( <¢é and o € ucy1, then
(a) & d¢ Cac da,c realizes ¢
(b) e:"d¢ and Eq.¢ " dy ¢ realize the same type over A,
(c) for 3.23 tp(da+1,¢; Cat1,c+1 + dact1 + Cac1) F tD(dat1,¢s Catice1 +
da,c+1 + Cac+1 + Aa). _ ;
for 3.24: if o = (T4, Te, T4, Tt, J) € I‘i( then tp(da+1,¢; Cat1,c +da,c+
¢ o Ca) + Aa).

Ea,c) F tpgp(da“rl,C? (Cat1
[Why? Let a = ¢ mod ¢ so ¢ < ¢; clause (b) holds by clause (e) of @, for clause
(a) uses clause (f) of & noting that m¢ <; m, hence r¢ C 7. (so ¢ < ¢ suffices for
(a),(b)). For clause (c), first assume clause (c) of 3.23. Note that m¢ <7 m¢iq
hence (by Definition 3.6(4)) we have Fi[ms] C P?Z Second, assume clause (c)

of 3.24: similarly using m. <{ m¢.]

[m¢]”
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Let D be an ultrafilter on § to which every co-bounded subset of § belongs and let

By q = q(Zg,,Zs,) = {0(Zg,, Tey,b) 1 b € °7(As4s) and for some % € D we
have o € % = My |= U[da,s,Ca,s,b]} 50 q(Zg,, Tey) is a complete type over
Asis © M.
Let dj;"cj be a sequence from My realizing q(Z4, , T, ).

Let d., . be such that d. <dj, (g(d.) = ¢g(d.) and &. <&, Lg(c.) = Lg(ce).

e) e

MB; ife < dande =n mod wand~y € u. then (dyc "Cac : @ € Ueyon\7Y) (d:"Cc)
is an n-indiscernible sequence over A,.

[Why? For claim 3.23, by claim 3.16 the version with clause (e), for claim 3.24 by
claim 3.16 the version with clause (e)’.]

B, ife < §and e = nmod w then (dg e Cac : O € Ut 2,N6) (AL EL) (dpe Cae :
@ € Ue42,\0) is an n-indiscernible sequence over A.ap,.

[Why? By 3, the choice of q(Zg,, Z¢,) and the choice of (dj, &), (d.,c.). Note that
0 ¢ u. by the definition of w..]

Bs if ¢ < 6 and e = n mod w and B € ucq2,\d and v C ueyo, NG and |v] < n
then d."¢. and dg11,"Cs11,c realize the same type over A, . +d.+¢. where
Ape=Ag+X{doc Coe: @ €V}

We elaborate the more complicated case.

Proof of Xy for 3.24:
Let v1 = v,v9 = v U~y where € + 2n + 3 < vy < 4.
So assume

o1 (a) ¢=¢(T4,%.,7)
(b) by e™W(A, . +d.+2.)
() €Eldgyre, Cate, b1l
We choose by such that

Oy by € 59(-'7)(14”2’5) and b1, by realize the same type over Ay + CB+1,041 +

dﬂ+1,€+1 + CBe+1 T dﬂ7€+1~

[Why possible? By By and the choice of 7.
So

O3 (a) CF QO[CZB-Q—LE’E,B-H,E;BQ]
(b) < ): @[dsaaﬁ b2]'

[Why? Clause (a) follows by clause ®(c) and the choice of by, i.e. ®3. Clause (b)
follows from clause (a) by @(e).]

Let (n1,v1) = suppy(¢) and let (ng,1p),% be as guaranteed in (a degenerated
case of) Definition 3.6(4A), 3.3(1) for ¢ and ¢ = O (Zg. s Teewn s U)-

But dei1,p, = dey,, Cot1,0, = Cey1,,, hence

04 € @l[de+1,n1755+1,u17b2]~
So by the choice of (19, v0) and ¥ = 1,
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OF] (a) (U ): [ e+1 ngyce+1 yO;bZ]
(b) w = (5j dey1,mg? Loy, J 1’ 7ég+1)
(¢) € )7: ‘YDz derr o) T d o , T, +1)” so for sowe 1), v we have 1Mo dne
“>(lg(dey1)),vo Qv € “Zlg((Ceq1)) We have 1) = ldet1,y, Cer1,0,dpet1,Cpet1]
(d) l— [C€+1 o) dﬂ e+1,CBe+1, b2] where
WNZoopr,s Ty L T 0 Y) =
( 5+1 n)( ('TdEJrl n? xce+1 u7§::1 1’ i‘és+1) — @ (xdEJrl no x(/s+1 v ? y))
Next

©6 € = V[Ces1,,dpes1, Coett, b1l

[Why? By @ the sequences dg .11 Cget1 b1,dg.er1 Cser1 o realize the same
type over Ag D By hence also over B + ¢.11, so by ©5(d) we get the statement
in ®¢.

o7 € ': 2 [ e+1,m0> Cet 1,09 bl]

[Why? Recall by ®5(c) we have € = 9[dei1., Cet1,0,dpet1,C.e+1] SO by O and
the definition of J, see ®5(d), we get ©7.]
By the choice of (g, o)

®8 Q:':SO[ 87]1705111761]

This means
®9 ¢ ': QD[C?E, Ce, 51}

As for any ¢ = (T4, %c.,y) and by € 99 (A, . +d + &) for some truth value t
the statement ©1(c) holds for *, i.e. € = ¢*[dgy1.c, Ea41,c,b1] hence by the above,

see g, we get € = @t[d., ., b]. Hence we get the equality of types stated in s,
so indeed Hj5 holds.

B if ¢ <0 and e = n mod w then (do Co t O € UneyniaNO){d ") (dy Cqy -
@ € Uetant2\0) " (d:"C.) is an n-indiscernible sequence over Ay.

[Why? AS uetant+2\0 is with no last member hence is infinite it suffices to for
each 8 € ucqon42\0 to prove this statement replacing uey2,4+2\0 by Uetont2 N B\J.
But by H5 this is equivalent to proving the statement omitting d. "é. and replacing
Uetont2 N B\ by (Ueyoni2 N B\S) U {8}, which holds by Hy.

Alternatively, by Hs recalling 3.18; the main point is that clause (b) there holds,
except that for d."¢. we can use By and for this case we use Hs.]

This shows that for each finite v C § and e < §, the pair (d., &.) solves (m., A,),
but this means that (d’,¢) solves (mg, A) which is what we need. Os .03

Conclusion 3.26. 1) If 6 < 0% is a limit ordinal and {(x-,v,7.) : € < 8) is a
<;-increasing sequence of members of tK .00 S€e Definition 3.1, then the limit

(x5,%5,75) belongs to tKn,ﬁ,G and is a <q- lub of the sequence.
2) Similarly for VKEFL,G
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Proof. 1) By 3.23 as m € tK{ , o,m <; n € 1K}
rather than (c)’ there.
2) Similarly by 3.24(2), so we use (c); rather than (c)] there. Os.26

, = m <{ n so we use (c)

Claim 3.27. Assume & is weakly compact > 60 > |T|. B

1) If (x1,%1,71) € Ky 0 and Mx has cardinality k, then there is (x2,%2,72) €
rKfﬁﬁ which is <] -above (x1,1,71).

2) If M € EC,, +(T) and d € 0">¢ then for some m € tK?K’19 we have Myjm) = M
3) If M € EC, (T) then &° (M) has cardinality < k.

aut

Remark 3.28. 1) Compare with [Shel5, §4], we here replace “measurable” by
“weakly compact”.

So for k weakly compact we can prove the density of tK?,n,e (by 3.23 + 3.27
above), hence using the (D, k)-sequence homogeneity (see Theorem 3.10, Conclu-
sion 3.13) we can prove that there are few types (i.e. < k) up to conjugacy on
saturated model (the proof in the end of §4 use only this). To get it for some
smaller cardinals we shall need a replacement of weak compactness which is the
major point of §4 and to get it for all large enough x we use vK, 6.

2) Note that in 3.27, for parts (2),(3) it is enough in part (1) to have I'y, =0 = ry.

Proof. 1) By 2.15(1) there is y € qK], ,. y such that x; <3y so dy = dx, and as we
are using rK, . ¢, that is yg = p1 = po = k without loss of generality uy, = @ . Let
(M, : a < k) be <-increasing continuous with union My such that |M,]| < & for
a < K.

Asy € qK, . 4 by 2.15(3) we have y € gK, , 5 so, see Definition 2.11(2) for each
a < k there are &, € 9(My,) and 9, such that tp(dy,cy + &) - tp(dy, ey + M,))
according to ¥,. As (x1,91,71) € 1Ky 4.0, for every a < k we can choose (o, do)
from My solving (x1, 1,71, €q + M, ), see 3.3(1)(f) by an assumption of the claim.
As k is weakly compact we can find (1., f) such that

() (a) f is an increasing function from x to k so a < f(«),
(b) J)f(a) = 77/;* for a < K
(¢) (tP(df(a) Cr(a) €f(a), dy + Cy + My) : o < k) is C-increasing.
Let (¢,d, €) from € be such that ¢"d" € realize U{tp(Ct(a) " df(a) Ef(a), x+dx+Ma) :
a < K}, but the pairs (¢, d), (¢y [vx, dy) realize the same type over My so without
loss of generality (¢,d) = (&y|vx,dy).
Hence

() for @ < K the sequences (Cy|vx) dy € and Cp(a) df(a) €f(a) realize the
same type over M,.

Now we can define (xz,19,72) as follows:

® (a) Mx2 = Mx1
(b) dx, =dx, €= dy € and’”

(C) Exz = Ey

37no harm in demanding ux, =0
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(d) Bx, = By and vx, = vy and ux, = ux,

(€) s is just putting together ¥ and 1,

(f) 72 is such that ro = tp(ex, "dx, € Cf(a) df(a) €f(a),0)
for unboundedly many « < k.

Clearly (x2,2,72) is as required.
2) By part (1) and 3.26(1).
3) By part (2) and 3.10. Os.97
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§ 4. DENSITY

Our immediate goal is, concentrating on countable T, is to prove density for
tK,., .0 in some ZFC cases: k = p", p = Tys,cf(6) > 0. Wedoit in4.12 whenn =1
and shall do it in §(5A) when n > 1. The point is proving some & universally solves
a given x € K, , o done in §(4B) and for this we use the partition Theorem 4.1.
Theorem 4.6 is a partition theorem which is nicer per se, and is more transparent
(and stronger in some respects, see also 8.1), but it is not enough for helping in the
proofs about decompositions.

§ 4(A). Partition theorems for Dependent T'.

The following partition theorem will be crucial (in the proof of 4.8 and also will
be used in 5.2). We prove a nicer one later, but not useful here. We can below use
“p finite, k = 17 in 4.1, see 4.4(3). For a case when the conclusion of 4.1 can be
nicely phrased, see 4.5. In 4.1 we do not explicitly demand T to be dependent but
clause (i) holds if T' is dependent.

Theorem 4.1. The partition Theorem
There are 9, -positive sets /1 , forn < k and a Do-positive set S5 and h € Ilag
and q, € S”A"j“’" (B;h +%,C,) such that for every n <k, %1 ni1 C L1 and® for
each s € A, for Da-almost everyt € 5 we have®® q,, = tpa, ((EL1vn) " (E2wy), B;’:uthr
Cy), see 2.24(2) when :

@ (o) k<wandk, <w,k, >1 forn <k
(b)  forn <k,A, CL(rr) is finite, each ¢ € A, has the form ¢(T(y, ], Yjw,]> Z)

(c)(a) £ isa(m,0)-set, see Definitions 2.23, 2.24, we use their notations
) v, Cwis ﬁm'te40 and C-increasing with n < k
(v)  un C s for n <k, note that v,ve are unrelated objects
and let Uup 2 = up Nus and Up,1 = Uy \Us

(0) cf(Il{ks; 14 € un2}) = cf(Magy, ,) <K
(€) wp Cwpyr Cw=U{wy:m<w}
(¢)  for notational simplicity*" ag; o is a singleton for i € ug, o < kg ;
) Al CL(rr) and C, C € forn <k
(e)() w=cf(k) and min{re; : ¢ € up 2 Nur} are

> g, (1Bt un\ue | + 1Cnl +0),0 = Ro + |vg| + |un| + [A]

and C, C €

(8) k=cf(k) and B;:un\uf
(9) eleve forsel
(h) e e™C fortel,

1 .
s Uny Wy, Cn, A, are finite

38can add s € A1 .n = tp(Es, Biun,h) =qn

39¢could ask just g[An = tpa,, (€s € s u, by Beu, +C) for every h € I{xg ;\hn(i) : i € un},
does not really matter.

4Oinstead “vy, finite” we can use v, = ¢ but AL C Ty,n € L(7rr), see 0.13(4)

41 A5 we can work in €9 this is not a loss.

See https://shelah.logic.at/papers/950/ for possible updates.
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(i) ifn<w,BCC€eec€ and {a :l<w)isa (AL k,)-indiscernible
sequence over B where £ < w = ay € "€ then the set
{t <w:tpa, (ac"e,B) #tpa, (ary1"€, B)} is finite
(j) Do is a k-complete filter on Iy
(k)(a) D1 is a k-complete filter on I
(B) ifk=w then a < k= |a|f < k.

Remark 4.2. 1) Similarly if T is strongly dependent (hence by [Sheldb, 4.1] we
already get some existence of indiscernibles) we can get more.

2) Assume c,, as well as A,,, A, 11 so without loss of generality Al are finite. If k
is finite, then it is enough that Dy is a filter, if k = w then it is enough that D, is
N;-complete filter.

Claim 4.3. 1) Assume T is strongly dependent. In 4.1 we can use: A, = AL =
{o o ={0(Zp,1: ), 2) € L(rr)} but demand k = cf(k) > Jip+ (| Bt u, | + |Cn| +
0).

2) Similarly in 4.6.

Proof. 1) Like the proof 4.1 but first we just use [Shel4b, 4.1] instead Erdos-Rado
theorem in the proof of ()2 and second, we use the definition of strongly dependent
(see [Sheldb, 2.1]), in the proof of (x)g, justifying why we are stuck for some k.

2) Similarly below. Oa g

Remark 4.4. 1) A nice case is U{A,, :n <k = w} = {o(T(y,], T[w]) : ¢ € L(7r) and
n <w}and U{v, :n < w} =vand U{A] : n <w} =L(rr) and A,, C A, 41, AL C
A}, and each A,, Al is finite so T is countable.

2) If we first replace (Ex,dx) by ({),x dy) the way back is problematic!

3) We could use v finite. Also we may use I, = I = [M]<" and %, is a normal
filter on I, it is natural in the application here (similarly for the definition of a
(i1, )-sets!)

4) In clause (c) of 4.1, by 2.25(1A), it suffices to demand

(¢)' fisa (@, 0)-set, A, CL(rr) for n < n and i € ve\us = Br; = Bs.
5) We have considerable leeway in the proof.
6) In order to use infinite A,, at present we need a stronger assumption on 7', see
4.3.
7) For transparency assuming k = 1, we can get also that for some ¢’ for each t € .7
for Z-almost s € .71 ¢ we have ¢’ = tp,, (€} é;, B;fumh + C). How? Applying 4.1
twice.
8) In the proof we can demand that 3, ; has length k£ + 1 and so can demand that
the game is of a fix finite number of moves, e.g. {2 x ind(p) : p € Ay} + 1, on
ind(y), see 5.22.
9) We can assume .%; € @2‘ for £ = 1,2 and demand .# ,, C /7", % C 5 but
this does not add anything because we may just use Z; = ;. = { NS} :
S € Dy}
10) There is no real harm if in 4.1 we assume v = w, i.e. Dom(el) = Dom(é?) for
se,te .
11) Assume f; satisfies cf(Ilag, ) < k (or k ¢ pcf(ag )); so we have he, &, € Ilag,.
Can we find h satisfying (Vso € .74 ) (V7251 € F1)(he, 6., < h)? see 5.1,
12) We could have asked u,, C vg instead u,, C ug and use Bfun instead of Bt y,, -



Paper Sh:950, version 2014-05-02_12. See https://shelah.logic.at/papers/950/ for possible updates.

68 SAHARON SHELAH

Remark 4.5. If you are interested in weakening the generality of the theorem for
having a somewhat more transparent proof, note that the statement of 4.1 is sim-
plified when we use a model M of cardinality x to which all relevant elements
belong (as in the proof). Let (M, : a < k) be <-increasing continuous with
union M such that @ < k = ||[M,]| < k. So we can decide I, = K, %, a nor-
mal filter on x, e.g. the club filter hence instead of “for every s € .7 ,,, for Z-
almost every t € /3” we have: if s € 7 ,,t € S and s < t as ordinals then
an = tpa, ((€X1vn)" (€7 Twy), B;fumh + (). This is by the normality of the filter.

Proof. Proof of 4.1 Let M < € include U{e’ : s € I, and £ = 1,2} U{C, : n <
w} U B{ . Let pn = pio hence y < min(ag). We can choose @ = (Guix : i € ug) for
k < w such that (recalling Definition 2.24(5)):

B for every A C M of cardinality < p and n < k,k < w, for some g € Ilag ,,

we have: g < h € Hagyu, = tp(Gfupon A+ Be + Cn + Y Gum) =
m>k
tp(a*akvun,27A+Bf + C” + Z a*ym)'
m>k

Note that

B if for some j € u, 2 we have k¢ ; = min{r¢; : ¢ € ur} then in H; we may
replace u, 2 by ug and Cp, by > Cp,.
m

Next

By for n < k let Cf = U{@s,m : m < w} U Bf UC, but if the assumptions
of sub-clause () of clause (e) of @ fails, then C;" = U{a.; : i € u,, and
k<kn,}UBsUC,

hence

Hs if n < k,¢ < p and é;,é, € M realize the same type over C;t then for
some g € Hag,,, , we have (C;f + & + e2,I¢ 4, ,.9) is a (fi,0)-set and &, &
realize the same type over Cf +1I¢,,, , 4.

Choose .%,, such that

By &, is a cofinal subset of Ilag ,,, , of cardinality cf(Ilag ,, ,),
hence by clause (¢)(d) of the assumption

B % < k.
Without loss of generality (recalling g > 0 > |T| > Rg):

Be (Btu,., + CF g, ,) is a (i, 0)-set for each n < k
B7 |mr| = Z{|A,| + |AL| : n < k} or both are < Rg.
Next

(¥); f£=1,2andn <k and .7 € @Zr then for some ¢ =q»n,and h=hy, €
Fn C lag 4, we have S, 4 € @2‘ where %, o :={s € (C,j{‘i’éﬁ,]:fyun_’h)
is a (f1,0)-set and ¢ = tpy(,, (€5 [vn, BE, , +CH)}.
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[Why? For each s € ¥ by 2.25(4) there is a function hs € Iag,, such that
(CF + e 1g 1) is a (1, 0)-set; without loss of generality hg € .

But by clause (j) of the assumption, i.e. the xk-completeness of &y and Hs there
is a function h € %, C Ilas,, such that .’ := {s € . : hy < h and we can add
hs = h} € 9,. Now 21CTIHIAL < i by clauses (a),(d),(e) of @, hence for some
(", q) we have: .9 C.7",./" € I and s € " = q = tpy,,) (€5, C;). By the
choice of hy = h and C;} it follows that .7 C .7}, , 50 S € Z; is as required in
(*)1.]

We now define some games; for any n < k,g € %,,q € SHTH)(B;%,Q,Q) and
& € 97 we define a game O, 44 a play last w moves, in the ¢-th move the
antagonist chooses 2y € %, and the protagonist chooses s, € 2y N .7.

In the end of a play the protagonist wins the play iff:

® (a) (CF +Zecwty, Iru,q) is a (i, 0)-set
(b) (e}, lvn : £ <w)is an (L(77), ky)-indiscernible sequence over
B;run st C;f and*?
(¢) q=1tPrir, (@, 100, Bf, ,+Cf) so is the same for every £ < w.

Alternatively*® (by (e)(8) of ®) we can define ', , . . similarly but in the end of
the play the protagonist wins the play iff:

® (a) asin®
() (e}, lvn : £ <w)is a (A}, kn)-indiscernible sequence over B;fumg +CF

(¢) tpa, (€}, 10, CF) = (qIAn)IC;F hence is the same for all £ < w.

!

So only ¢, := (q]A,)[C;T matters and we may write % nguan

(%) if & € @f“ and n < k then for some h € .%,, and ¢, the protagonist wins
in the game o'y, , ;.

[Why? Let A = 2/C1+1A. £ R so by Erdés-Rado theorem and &(e) clearly
K — (w)’i".

For each h € 7, and ¢ € S""(C,}) the game Oy, , ,  is determined being closed
for the protagonist, so toward contradiction let st.» ,, 4 be a winning strategy for
the antagonist. We choose s, € ¥ C I; by induction on a < k such that: for
any relevant h and ¢ in any finite initial segment of a play of D"ym’h’ q 10 which
the antagonist uses the strategy st.o , 5, and the protagonist chooses members of
I from {sg : B < a}, the last move of the antagonist is a member 2 of Z; to
which s, belongs. So s, just have to belong to < [[a]<™| + |7, +[SX* (C;)] < &
sets** 27 € 9y, but 2, is a k-complete filter so this is possible. As k = cf(k)
is large enough without loss of generality (tpa (€i_ lvn,CyY) : @ < k) is constant.
Now letting A, = [SF»*I"nl(CH)|, by clause (e) of the assumption we have x —
(w)lf\:, so for some increasing sequence {(«(i) : i < w) of ordinals < & the sequence
(€5, 11 < w) is (Ay, kn)-indiscernible over C;F. We can find h € ., such that

(U{el i< wl+CF gy, 5)is a (i, 0)-set. By the choice of C;f (in particular

Sa(i)

42
43

we may omit clause (c)
we use the second; presently it does not make a difference what we use
44Why is it < k? Recall || < & by By and |SZ"H (CH)] < k by clause (e) of the assumption.
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enough a, ; ’s belong to it) and of («(i) : i < w) it follows that (! w0 w) is
(Al k,)-indiscernible sequence also over Bf wnh T C;F. So for some ¢ the sequence
(fa(i) i < w) is a result of a play of the game o', ;,  in which the protagonist

wins, easily a contradiction.]

(¥)3 for any .# € 2;" and n < w we choose (¥, q, h,st,T) = W ny 457 0, B s
sty n, T ) satistying:
(a) he Z,

(b) # € P and W C .

(c) if s € # then ¢ =tpy, (€ eaBP_u A tC)

(d) st is a winning strategy in o'y, ,, ;, , for the protagonist

(e) T = {5: for some m < w the sequence 5§ = (2, s, : £ < m) is a finite

initial segment of the play in which the protagonist uses st}.

[Why? Easy by ()1 + (¥)2.]
Let x be large enough and

()4 let A Dbe the set of N < (%(X) €, <}) such that:
(a) € f,M,(C, :n<Xk),(ef:tel)forl=1,2and (Z, : n <k) belongs
to N
(b) the following function belong to N:
(ya n) = (Wy,na 4.7 n, hty,nu Stf’,na Ty’,n)
(¢) N has cardinality < x and NN« € % (hence, e.g. n <k = .%, CN)
(d) if k = w then [N]% C N.

Now
(x)5 for every N € A we can choose ty € {S € Dy : S € N}.
[Why? Because %, is a k-complete filter and N is of cardinality < &.]

(x)g for every N € A choose (1 n, Gns by Sty Tn)) = (Nons qN s AN s SEN .y, Tvn)
by induction on n < k such that:
((Z) (yl,n;thmstn,Tn) c N iS as iIl (*)3

() An 2 Ant1

( ) yln E.@rﬂN
(d) if s € A 1 NN then g, = tpa ((EL1vn) (€7, Twy), Bf

f i, T O )-
We can carry the inductive construction.

[Why? For n = 0 choose .1 p, qn, hn,Sty, Ty, asin ()3 with (I, n) here standing for
(7, n) there and as we are assuming N € .4 without loss of generality they belong
to N. Assume that the tuple (.71 n, @n, hn, Stn, Ty) was chosen and n+1 < k. We
try to choose 5,k = (2, s¢ : £ < {j) by inductionon k < w (so k = m+1 =5, , <
Sn,k) such that: 5, is a finite initial segment of a play of the game a/yl,mn,hmqn

in which the antagonist uses the strategy st, and 5,, € N and if & = m + 1,
then for some ¢ € [, €, — 1) we have tpa, ((es, [vn)" (€7, [wn), B;:un,hn +CF) #

tpA (( sg+1 rvn)A(égN rwn) B{j_un,h + C,;l_)
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If we can choose® all 5,1,k < w we get a contradiction to clause (i) of the
assumption of the theorem. Obviously, we can choose 5, 9. So for some k, 5, . is
well defined but we cannot choose 5, 1.

Let

A = {80,141 ¢ for some 5 = (24,tp: £ < Ly + 1) € T, we have 5, ; <5}

Let ¢, = tpa,, ((éin,ek rvn)A(éfN [wn), B;umh” +C).

Lastly, choose (.ZN n+1,An+1; Pn+1,Stn+1, Tnt1) as in (x)3 with (A pt1,n+ 1)
here standing for (#,n) there. Clearly we are done proving (x)g, in particular
Clause (f) of (x)¢ holds because we cannot choose 5, x41 as required above. So we
can carry the induction.]

So we have chosen ((Ann,qNn,P1n) @ n < k) for each N € 4 and it belongs
to N: if k < w trivially by (x)¢ and if k = w by clause (d) of (x)4 and let gy =
U{gn,n : n < k}. Also ./ is a stationary subset of [ (x)]<" by (x)4 and clause
(k) of the assumption. Hence using Fodor’s lemma on the club filter on .4

(x)7 for some A p,hn, T, ¢ for n < k the set .45 is a stationary subset of
[#€(x)]<" where A5 := {N € AN : qn, = ¢, and SN, = S, for every
n < k}

(x)s S € .@; where % = {ty : N € Na}.

[Why? Clearly . € P(I2) € #(x) hence 4/ = {N € A : S € N} belongs
to the club filter on .4, hence 45 N A" # ), choose N in this intersection so
ty € % € N hence by the choice of ty we have I,\.% ¢ P, so F € D that is
(*)s holds.]

(x)g if n < k and s € %, then A\ A%, s = 0 mod P, where S, s = {t €
Sy i qn = toa, (€ 10n) (e lwn), BE, . +Cn)}.

[Why? Similar to the proof of (x)s.]
Let h € Ilag be sup{h,, : n < w}. So clearly (¢} : n < k),h, (¥ n :n <w) and
Y% are as required. U1

The following is a transparent “n(*)-dimensional” relative of 4.1

Theorem 4.6. 1) Assume k is regular uncountable, Py is a filter on Iy, Py is a
k-complete filter on I, for non-zero £ < n, &’ mO¢ for 0 < n,s € Iy and A C
L(7r),C C € are finite. Then there are a type q and % € :@2‘ for £ < n such that
(V@‘)SO S YO)(V@lsl S yl) - (Vgn_lsn_1 S Yn_l)[q = tpA(ég(O)Aéi(l)A e Aé?n_}l,C)].
2) If above 9y is a normal filter on k for £ < n then for some q and %, € 9T we
have: if so < ... < sn_1 and s¢ belongs to . then q = tpa(ed ... €21 c).

3) Moreover, if sy € % for £ < n then tp(égoA e Aégn’_ll,C) depends just on the
permutation 7 of n such that sy < Sx1) < -- .-

Proof. 1) Let m(< i) = ¥{m(j) : j < i}.
Stage A: We prove it by induction on n; for n = 0 it says nothing, for n = 1 it holds

by the pigeon-hull principle, i.e., because %y is a filter and the set {tpa (€2 ,c) :
so € Ip} is finite. So assume we know it for n > 1 and we shall prove it for n + 1.

454¢ course, as Al is finite we can use a finite long enough game; part of our leeway
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Let I = J] I, and &5 = & ~...7er! € ™<W¢ for 5 € I and let & =
I<n

Hsel: ¢ ylesc} i ¢ = p(Tpm(<n),¥) € L(rr) and ¢ € 9 ¢ and for some

finite C; C € and finite Ay C L(7r) there are no (A, m(< n))-type ¢ on C

and sequence (% : £ < n) € [[ 2, such that (V7%0sg € H)...(¥/ 15,1 €

<n
yn—l)[q = tpAl (é<5g:€<n>a Cl)] and ﬂ90(-777[1’rz(<n)]7é) S Q}
By the induction hypothesis I' generates a filter on I hence there is an ultrafilter
9, on I extending it.

Stage B:
Choose finite A! C LL(7r) large enough, i.e. such that

(%) if & € ™M for £ < w and (¢ : £ < w) is a Al-indiscernible sequence over
some set C; C € then for no formula ¢(z,7,2) € A,fg(Z) = m(< n) and
b€ L9W¢ is the set {¢ < w: for some ¢ € Y93} we have € |= ¢(é,b,¢) =
~¢(€p11,b,¢) : £ < w} infinite.

Choose x and define A4 as in (x)4 from the proof of 4.1. For C' C € define a game
Oc. A play last w moves (really n. < w large enough suffice). In the ¢-th move
the protagonist player chooses 2y € 2. NDef,, (<) (M) and the antagonist chooses
S¢ € II I, such that 5, € 27. In the end of the play the protagonist player wins

m<n
the play when (&, : £ < w) is a Al-indiscernible sequence over C.

As in the proof of 4.1, see (x)2 there, the protagonist player has a winning
strategy st, and let N € .4 be such that st € N and choose t, € I, such that
Z e P,NN = t, € &, possible as Z,, is k-complete because n > 1. We now
simulate a play of D¢ called ((2%,3¢) : £ < w) such that:

(¥)2 (a) the protagonist player uses st to choose 2

(b)  the antagonist chooses 5y € I NN and in 2, such that if £ > 0 and
it is possible then tpa: (e}, €7 ,CT) # tpas(es, | "er.,C).
It follows that (2%,5¢) € N for ¢ < w and that for some £(x) > 0 the demand in
clause (b) of (x)3 is not possible. So for some ¢
(*)3 (a) c%fg(*) eD
(b) tpai(er’e; ,C) = qfor every 5 € 2y, NN.
By the definition of 2. and of the game there is (SN : £ <n) € [[ 2, as there,

£<n
such that [] N C £ and without loss of generality (N : ¢ <n) € N.
£<n
We continue as in the proof of 4.1 after proving (*)g.
2),3) By 2 being a normal filter on « for £ < n. Oig

In 4.6, if # < k is a compact cardinal then we allow C to be of cardinality < 6.

Theorem 4.7. Assume 0 is a compact cardinal (or Rg), Py is a 0-complete filter
on Iy, Py is a k-complete filter on Iy for £ =1,... n, — 1.

Assume further e(£) < 0 for £ <n and & € D€ for £ <n,s € I,.

Then there are a type q and .y € 9, for £ < n such that (V7 sg € S)(V/1s1 €
L) (Vs € S )g = tp(ég(O)Aé;(l)A . Aég(:f_l), ).

Proof. The difference from the proof of 4.6 is that:
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(a) P is now a -complete ultrafilter
(b) the game O¢ last 6 moves

(¢) we prove the protagonist player has a winning strategy directly (not via the
game is determined).

[Why clause (c)? For every m and % C ™I letting %1 = (™I)\%; for some
t € {0,1} we have (V750 € I)...(V7*5,_1 € D)[(50,-..,5m_1) € Z]. O

§ 4(B). Density of tK in ZFC occurs.

Theorem 4.8. The universal solution theorem Assume T is countable, (k,fi,0) as
usual, pi2 < K, o > 3, and 0 =R and cf(k) > 20
1) If my = (x1,%1,71) € rKgﬂﬂ and x1 <1y € gK,, ;¢ then we can find my such

that m; gj ms € rKfﬂ’e andy <1 Xm,-
2) Similarly but in the assumption'y € uKy p,6 and in the conclusion m; S? ms.

Remark 4.9. 0) Note that this theorem restricts the cardinals lightly, but for density
of tK we shall have quite heavy restrictions, still ZFC ones.

1) Part (2) is not needed for this subsection.

2) If My € EC,, (T') the proof is somewhat easier, similarly in 4.1.

3) There is no real difference between the two parts. We just deal with the set of
pairs (¢,v) where ¢ € I'yyy,) and ® illuminate (m, ).

4) In 4.8 we use ¢(x3) = 2 but with minor changes ¢(x;) = 1 is O.K., too; the
changes are in @5 — @7 in the proof.

5) Concerning 4.8(2) see 3.2(3)(e).

Before proving note

Observation 4.10. 1) If (x1,%1,71) € rK?ﬂﬂ and x1 <1y € pK

(Xlﬂzhﬁ) <1 (%@177“1) € rK?,;],G'

1A) If m; € rK?ﬂe and cf(k) > 2°,0 > |T| then for somery = r2(Zey, Zq,, 25, T )
i ad) Yy
&

Ky f,0°

K,,07 thﬂ

which extends ry, and is complete (over ) we have m <; (Xm,d_)mmg) erK
1B) If in (1A) in addition cf(x) > 2/Bxl we can demand ro is a complete type over
By; (similarly for B} when |SY(B{)| < k).

2) Ifm; € rKfﬂﬁ and Xm, <1y € K, ; g and cf(r) > 0 > |T| then

(a) for some pair (,r) we have ¥m, < ¢ and Ty = Txjm,) U F}([m] and
(Y7w7rm1) S I‘K?,[L,G
(b) similarly replacing F}c[ml] by Fi[

ml]'

2A) Like part (2) replacing qK,, ; 4, qK?ﬂ,O by quﬂ’g,VKf’ﬂﬁ respectively.

3) Assume 9 is a r-complete filter on a set I,&, € € fort € I,k = cf(k) > 21B1+I¢]
and £ is a (ji,0)-set and k > cf({ks; : i € ux}). Then for some q € S¢(Bg ), €
27T and h € Tlag we have: ¢ = tp(ét,B;h) for every t € .

4) Similarly for SK?,,],@'
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Remark 4.11. 1) Variants: for 1) enough if cf(k) > 6, see 2.27.
2) Compare with 2.17 and 3.7.
3) The reader may wonder: in the proof of 4.8 we deal with I'" but the conclusion

is on I'2? But see the proof of K.
Proof. Straightforward, e.g. part (2) as in the proof of 3.27(1). O4.10

Proof. Proof of 4.8
1) Without loss of generality y is smooth and for notational simplicity w is

disjoint to vy, wy and let x = x;. Now

(¥)o let ©,w, 4 be such that
(@) v= (v, :n <w)and w = (wy, : n < w)
(0) v, C Vg1 C vy and wy, C wpy1 C wy

S

)
(¢) vy, is finite and w,, is finite
(d) vy =UH{v, :n <w} and wy = H{w, 1 n < w}
(e) u=vy Uwy Uw
(f)
)

<

f) let @ = (u, : n < w) where u, = v, Jw, U{0,...,n—1}

(9) let u(n) = up,v(n) = vy, w(n) = wy.
We choose ((A,,, AL k,,m,) :n < w) such that:

(*)1 (@) m, < w is increasing with n

(b) An SH{@(T[u,)) Zn)) = ¢ € L(7r)} is finite

(c) An C A, 41 in the natural sense, i.e. up to equivalence

(d) =U{A, :n <w} = {o(ZTr, 2w) : @ € L(7r)} up to equivalence
()2 (a) A1 CA{L(Zlun)s Jiun]s Zima]) = @ € L{7r)} is finite

(0) AL CAL,

() AL=U{A} :n <w}={p(Z),Yu: Z) : Z = Z}n) for some

n,¢ € L(rr)} up to equivalence, i.e. adding dummy variables

(d) if o(Ty,]s Zm)) € Ay then some @' (Zp,, ), y[un} Zim,)) € A} is
equivalent to ©(Zu,], Z[n)) and some ©"(T(y,]; Yu,.)» [mn])
equivalent to ©(Y[u,,]» Zn))

(e) the finite AL and k,, < w are such that clause (i) of @
of 4.1 holds for A,,, see the way we use this proving (x)g below.

This is possible as T is countable, and for clause (e) of ()2 as T is dependent.
(x)3 I := ([Mx]<", Q) is cf(k)-directed and let 21 be the club filter on I.
Clearly
()4 (a) ifa < k= |a <k then S‘]i’(TT)(B;,r + ¢y + dy) has cardinality < &
(b) Su(*)(B+ + &y + dy) has cardinality < & for any finite u(x).

Yin
[Why? Recall that pus < & by an assumption of 4.8 and we are assuming that y is

smooth hence (By + ¢y + dy,Iy) is a (fi,0)-set by 2.25(2); now for clause (a) apply
2.25(1) and for clause (b) apply 2.25(1A).]
So together by observation 4.10(2).

(¥)5 there are 9o and 7o such that, (recall 2.11(3),(3A)):

See https://shelah.logic.at/papers/950/ for possible updates.
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(a) (y,12,72) belongs*® to qu,a,o for part (1) and belongs to UKS,ﬁ,a for
part (2)
by = (tha, : € I'y) where I'1 = or part an 1 C is
(b) o (2, + p € T'1) where T Iy f (1) and T ry
y — uK-large for part (2), see Definition 3.6(3B)
c) ro =r9(Tg , Tz, ,Ti,) 18 a type over ) in €; may add r is complete but
4, Tey Tw)) 1 §in € dd r i lete b
should at least contain wg,w(sﬁg[y],ﬁcé[y], z,)) for o €Ty

(d) for every A € [My]<" some € € “(My) solve (y, 12,79, A), see Defini-
tion 2.11(3) or 3.3(2)(f).

For A ¢ I first choose (d4,ca) solving (y, ), 1, A), possible by 4.10(1) and second
choose €4 as in (%)5(d) for A+ d; 4+ ¢4 and let éz =es"ds"Ca.
Next

(¥)6 there are ¢¥, gk, h, and .7, (for £ < 3,n < w) such that:
(a) Son € D
) Sm € S4m when n=m +1

)
(¢) a5 € yﬁin”u(n)(B;,umh*,n +dy +¢y)
(d) if s € S,n then for the (Z; + S ,)-majority of s; € 7, (say for
every s1 € S n,5,) we have qp = tpas (€5, 1m2)" (€5, Imn), B;vmh* +
d;, + &) 80 A n,so C F1,n belongs to Ir + .S 5

(e) if s1 € S 4, then for the (27 + S ,,)-majority of sy € S, (say for
every sy € Sa.n.5,) We have g}, = tpA;((éjl Imy)” (€8, Imn), B;vmh* +
dy +3y).

[Why? We do it by induction on n replacing h. by h,,. For n = 0, without loss of
generality m,, = 0, hy constantly zero and we can let .}, = I for £ =0,1,2. For
n=m+ 1 we do it in two steps. First, letting f,, = ((By,i : 1 € vy\uy), (Iy; : @ €
vp, Nuy)) and applying Theorem 4.1 for k = 1 with (Zr + S4m, L,m, (€almy,
A€ Sym), Mg, £, 0y + Jy7AmA}l,kn>)g<2 here standing for (2, %, (€% : A €
Ig>, M, f, C, AQ, Aé, k0)¢<2 there.

We get hl), Son, S s € SX (B, o + 2y + d).

Second, let .75, = S m and we applynTheorem 4.1 for k = 1 with (27 +
S (€ar A€ S ), M1, ey+dy, Ay, AL k)1 2 here standing for (%, .74, (€4 :
A€ I;), M,f,C, Ao, Al ko)e=o,1 there. We get hl, A1 1, Som, ¢t € SR (By i+
ey + dy).

Let h. = sup{h’, :n <wand £ = 0,1}, i.e. k € ay = h.(k) = sup{h (k) :n <w
and ¢ = 0,1}. Now for £ = 0,1 and Ay € S, let S p 4, = {Arg1 € o100 We
have ¢, = tpa, ((€a, Im) (€4, IMn), B;Umh* + ¢y +dy)}. So (*)g holds indeed.]

We choose an ultrafilter 2 on I extending ; + .71 ,, for every n < w so clearly
Acl={B:ACBecl}c. Lete,c“Crealizes p.(J]) == Av(Z,(ea: A€
I),dy + ¢y + My), i.e. (clause (a) by the definition of Av and clause (b) follows)

46 B2

moreover we can demand it belongs to qK|; 5,0



Paper Sh:950, version 2014-05-02_12. See https://shelah.logic.at/papers/950/ for possible updates.

76 SAHARON SHELAH

(¥)7 (a) for b€ “>(My) we have € |= p[dy, &y, &, b] iff
@(dy, cy, Yiw]s b) € Pi(pw)) iff
{Ael:Ck=ypldy,cy,€a,b} €2
(b) &, exemplify v, i.e. is as in (¥)5(d) except that it may be ¢ M,
(*)s (a) let Ty beTy
(b)  wedefine 95 = (45, : ¢ € T'1) as follows: letting ¢ = (% gy, Tefy]s 2) €
I3, for some ng(p), p = @0(_93(;[),],@5[3,],33[%@,)], z) and let p1 =
V2,00 (Ziy)> Tely)> ¥) Where 9o is from (x)5(a)
so really o1 = 2(Zgpy)s Tely] Ui (¢)]) for some n1(p) > no(yp)
and lastly let 1/);74‘0 = 1[1@2 (:Z'J[y], fé[y],g[w]).
(¥)9 without loss of generality tp(e. dy ¢y, Myx) is recalling u is from (x)o(e)
p**(i‘[u]) = Av(2, <éAAJAACA :Ael), My).

[Why? By the choice of €, it is enough to have tp(dy "¢y, My) = Av(Z, (da"ca :
A € I), My) which is easy by 2 2 Z; and the choice of (da,c4) for A € I after
(%)5.]

(%)10 let ef = e, dy ¢y.

‘We now consider the statement

X for every A, C My of cardinality < &, i.e. A, € I there are € € “(My),d €
90y (My) and ¢ € “9CIXD) (M) such that
(a) € solves (y,v*, 72, A)
(b) (d,e) solves (my, A,) so £g(c) = £g(ex),Lg(d) = £g(dy)
(c) e d ¢ realizes tp(e. dy "x, A.), but we do not say “tp(e,"dy "¢y, A.)".

Why proving X is enough?

We define x2 as (Mx,, By, ¢y, dx, "€x,1y); so clearly y <; X2 € pK, ;0. Note
that Wy, = Wy, UW and w = Dom(e,).

Next

(*)11 we define 73 by: r3 = 71 U {0(Zapy), Tely), T,) * (Tapy) Taly)s Tpw)) € T2}
recalling 1 = r[m;] and r is from (x)s.

Lastly, let

()12 Y3 = (Y3 1 p € Ly where?” Ly, = Iy, UT1, see (x)5(b) (here it is
convenient to allow repetitions of ¢’s in 1); for part (2) we have to change
more) where:

(a) Y3, =11, if @ € I%n’ adding dummy variables recalling 1, = ¢m,
so = (Y1,:0€ I‘2—1>
b) 3., is 3 if ¢ € T} using wy + w instead wy, i.e.
P 2,0 y y y
= A = T
1/’3,90*@5[21] 'T[w_]v -Té[y_]; Tiy] Tl xg[y})
= 13 o (Zdry]s Tely), T(o))-

47t I = K, (M : a < k) our problem will be to choose the &), such that (tp(&,, M, +ey+dy) :
o < k) is increasing
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We shall show that the triple my = (3,3, 73) is as required. First, my € 1K o
all the requirements are obviously satisfied, e.g. for clause (f) of Definition 3.3(1),
given A € I we can choose (,d,¢) as in X so £g(¢) = £g(cx,),Lg(d) = g(dy,) =
lg(dy) and let & € “9CYD(M,) be such that ¢ = & [lg(¢) and & d ¢ realizes
tp(ey "dy €., A); this is possible as d"¢ realizes tp(dyx ¢x, A) because by X(b) the
pair (d, €) solves m; and d, ¢ are from M,. We shall now show that (d€,¢) solves
ms.

We have to check clauses (a), (8), (7) of Definition 3.3(1)(f).

By the choice of &, ¢ "(d"€) realizes tp(éx, dx,, A) = tp(¢y " (dy "&.), A) so clause
() there holds.

Second, dy, " d'¢ = (fy“éxAciAé, realizes 1 = T, by clause (b) of X and the
definition; in addition dy "¢y "€ realizes 72 by clause (a) of K. Together (dy, "&})" ¢, (d €) ¢
realizes 3 by the choice of ro above and the previous sentence; so clause (3) there
holds.

For clause () there, recalling that I‘%S = Fle U I‘;, and we have to check a

condition for each ¢ € th. Now if ¢ € Ff/;l the desired conclusion holds by clause
(b) of X and the definition of “solve”.
If p € Ty, use clause (a) of K.

So we have proved indeed that my = (xa, s, r3) € rK®

K, 1,0
m; <; my. Lastly, m; g? ms by the choice of 1;3 [1";,, so we are done.

So we are left with
proving X holds:

Let A, C My be of cardinality < x and we shall show that there are sequences
€, d, ¢ as required for A, in X, this suffices. We can choose (A, : n < w) and A,,
such that, without loss of generality

In addition obviously

By A.UBJ C Ay € S and let Ay, = U{éfg*_n + A pin <w}e[M]<R.

Recalling ()¢ let .71, = {F1ma,,, :m < n}but A, C A na,., €I+
Fom C© D1+ S0 for m <n <w hence S, € D1 + 1 m.

Recalling (¥)g let*® A = {p : p a finite subset of Pwx (Y[u)) With parameters from
A }; so clearly |A] < k and let As,, = {p € A : |p| > n}. By the choice of é,, 2
we can find (A(p) : p € A) such that:

*,m

B: A(p) € #, C I and é4(p) realizes p and A.. € A(p) when p € A and
p| = n.

For n < w let C,, be a member of .% ,, which includes U{éz(p) +A(p) :pe AJUA,,
such that p € AA [p| = n = C, € S5, a(p), Possible by 4.1 the “Zr-almost”, i.e.
recalling 7y is from (%)3 as %5 5, a(p) € Zr+S2,n by (¥)6(€) and the choice of Z. Let
9, be an ultrafilter on A such that py € A = {p € A:p; C p} € .. Let q.(Tp,)) =
AV(Ds, (a1 p € A),U{Cy, +éc, : n <w}), it is a type in My of cardinality < &.
Recalling (*)8 let q**(f[u]) Z_q**(i‘[w],fg[y],i‘g[y]) = AV(@*, <éA(p)AdA(p)AEA(p) =
ejg(p) :p e N),U{C,, + éc, +dc, +Cc, :n <w}), it is a type in My of cardinality
< r and it extends ¢.(7[.)). Lastly, let ¢ € to(@y) M, d € 9() (M) and & € “(My)
be such that the sequence e = &"d"¢ realizes Qe (T1w)s T dy)» Tely] ), We shall prove
that €,d,¢ are as required in X; and let e = &°d"é. That is, we have three

48we could use parameters just from dy + 2y + Yneéa, ,



Paper Sh:950, version 2014-05-02_12. See https://shelah.logic.at/papers/950/ for possible updates.

78 SAHARON SHELAH

demands on e*, i.e. on €,d,¢ in X, noting e+ € *(My) recalling u is from (*)o(e),
in other words, €,d,¢ are sequences of elements of My of the right lengths; let
u=Lg(e*) = lg(e?).

First, clause (c) there says‘“realizing tp(e}, A.) = tp(e. dy ¢y, A.)” recalling
(x)9; we shall show that moreover e realizes tp(e), A..). This sufices as A, C A,..
Why “e* realizes tp(€;, A..)” holds? Just recall q..(J,)) = tp(€f, My) by the
choice of € (see (x)7(a) + (*)s + (x)g), by the definition of A and the choice of Z,
and et above. We shall deal with clause (b) in Hs below and with clause (a) in By
below.

Now

Hy el lun, et u, and all éA [u, for A € 5”1’ ,, Tealize the same complete A,,-type
(can add same complete type) over B .

[Why? First, recaling h, is from (x)g there is p,, € SA(n)(B+

.on.h,) Such that eh

(equivalently &} u,), realizes p, when A € .7/, by (x)s(d) recalling (x)2(d) and
S n © S, see after By. For e} by its choice in (x)7, the choice of 2 and the
previous sentence; lastly, for e it realizes q.«(Z[,)) and recall that Bj UA, € C,, C
Dom(gs+), the definition of g.. and the previous sentence.]

B3 & [un, € Ju, and €} [u,, (for A € 7/, ) all realize the same A,-type over
= +
Cy + By,vn,h*'

[Why? Compared to By we add éy,. First, all the e for 4 € 1, realizes the same

A,-type over ¢y + Byj:'un,h* as this holds for B; v, and recalling 3.11(4) the type

tp(¢y, M) is finitely satisfiable in B;" vn.h, and all those sequences are from Mx.

Second, the equality for & and é€{’s as in the proof of By. Third, for e* and the

€l’s as tp(Cy,o, , Mx) is finitely satisfiable in By, when ¢(x) = 2 (also it is locally

does not split over B; »,, but have to do more earlier if ¢, = 1) and those sequences
are from My, using By of course.]

By if p = w(:ﬁg[x],ié[x],yfu]) and A, ={peA:CE @[Jx,éx,éj(p)]} belongs
to 2. then € = p[dy, ex, €]

This will take awhile.
Recalling ()11 note that

@11 (@) ¢ =@(ZTgx) xé[x],gf ]) S
(b) (i' x]vxc[x y[w]) 1/)2<p
(C) ( x]a [w]) ¢2 ;P10
[Why? For clause (a) just reflect, for clause (b) and (c) recall (x)s.]
Now:
D42 (a) ¢ ): “<)01 [Jxa éx: éCn]” for n <w
(b) wl(i‘g[x]7EXa écn) + ‘P(@Z[ 1 CX’ 6A( ) for JAS Atpvn < w.
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[Why? Clause (a) holds by the choice of 1 (in @4.1), the choice of 15 (in (*)5) and
the choice of the €4’s, in particular, ec,, .
Clause (b) holds by the choice of ¢; the choice of 9, (in (%)5) and the choice of
eéc,, recalling éj;(p) C C, for p € A by the choice of C,, after Hj.]
Hence letting J2 = 92 (fé[x] ) gf:_,]a gfu]) = (VEJ[x])(@l (foi[x} » Talx] s gfi,]) - @(Eg[x] » Tafx] s gfu] ))7
we have

Bas (a) CE “ [Jx,éx,écn]” forn <w
(b) €k “Yqlex, éCméz(p)]” for pe Ay,n < w.

[Why? As éX(p) CC,forpeAn<w]
By 4.1, that is by (x)g(d), recalling A(p) € yl,alpl C Apl,a from ©43(b) as

tp(Cx, M) is finitely satisfiable in B it follows that for some n; < w (recalling
AL =U{Al :n <w}, AL C AL, by (¥)1) we have

@y ifce 9CHD(BE) and p, g € Asp, and n < w then € = “¥5[¢, ec,, éz(q)] =

D2l &, Eh )

Hence by the choice of e (after H;)
@y if @ € WCEXD(BY) and p € As,, and n < w then € = “¥y[¢,ec,, et
D2l &0, €))7

n?

As tp(ex, My) is finitely satisfiable in By C A,., clearly
@46 if pE€ Ay, and n < w then € | “Ysfex, ec,, "] = Valex, écn,éj(p)]”.
By ®4.6 and @4.3(b) we get
Da7 € “Osex, ec,, ]
which means
Ba8 P1(Tapx)s Cx: €0,) - P(T g Ox, €7).
By @4.3(a) we have
Puo CE gal[(zx,éx,écn} for n < w.
By @48 + P49 we have
@110 € “pldx, x, €]
So H, has been proved indeed.
Hs clause (b) of X holds (for our choice of ™).

[Why? We have to check clauses («), (8), () Definition 3.3(1)(f). For every A € T
the pair ((fA7EA) solve (my, A,) hence dy"Cx ds Gy realizes 71 sO recalling ez =
€4°da"Ca by By also (dy,cx,d,¢) realizes 71 so clause (8) there holds. Also as
in the proof of My just easier, d"¢ realizes tp(dy €x, A.) and is from M, by the
choices of €,d, ¢ after i, so clause () there holds. As in the proof of B, easily
d"é and d_A(p)AEA(p) realize the same type over ¢x + A, for p € A.
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Let ¢ = o(Zap, Tefx]s Ty T §) € 15, and b € t9(9)(A,) be such that =
oldx, ex,d, €, bl so , = 11;1,@(:3(2[,4,jé[x],iz:ﬂx],i’é[x]) € r1 and ww(a‘:d—[x], Cxs dA(p), Ca(p)) F
(T gixgs Cx> dA(p) s CA(p)+ D) ) ) ) )

As 91, € 11 necessarily = “¢1 ,|dx, Cx, da(p), Cap)] N Y1,0]dx, Cx,d, ¢]” and as
CZA(p)AEA(p),JAE realize the same type over A, and as b C A, and the end of the
previous sentence, Y1, (Zgx], &x; d,€) b @(Zgx)s Cx, d; €, b).

The last sentence says that clause () from 3.3(1)(f) holds. Together indeed
we have proved that d, ¢ satisfies clause (b) of X, i.e. (d,¢) solves (my, A,.) as
promised.|

We are left with clause (a) of ). For the rest of the prooflet Z; = Z g1, Tc = Zq[y)-

Be for o = p(Zg,7¢ 2) let o = @, 01 = P1(Zg, Te, Yjw)) = Y2, Where Wy is
from (*)5 and P2 = 902(‘,30% févﬂ[w]) = 1/}2,901 S0 2 = ¢§,¢, see (*)11.

Now to finish the proof of X(a) hence of the theorem, it suffices to show:

B7 € & poldy,y,e] and ga(zg, ey, €) F p(Z4,Cy,b) when (if we add € in ¢ we
have a problem in @7 19 as the € is changed):
(@) ¢ =p(Zg3,7c2) €I
(b) €= ¢ldy,&y,b] and b € 93 (A,).

Why? So assume clauses (a),(b) of H; and eventually we shall prove the desired
conclusions of B7. The first part, € = pa[dy, ¢y, €] holds by By by $7.2(a) and the
second part by @710 beloxy.

Recalling the choice of 15 in ()5 recalling ¢ = ¢ and the formula ¢ (Z 7, T¢, J[.])
is equal to 9, clearly we have: letting I := {A € I:b € t9(:) A} and J = {b €
) (M) : € b= pold, &, B]}

D71 (a) ¢ ): (pl[(iy,éy,éA] when A el

) ¢1(Zg,Cy,€a) b po(Zg,Cy,b) when A€ I;NJ
) 1(Zg, Cy, ) F po(Tg, Cy, b) when A € J.
Hence by (x)7(b), recalling @9 = 12 o,

)

€ = pa[dy, ey, ea] for A € I hence € = po[dy, Cy, €] s0
{w2(dy, ey, Yp))} € A pedentically {@5(dy, €y, Yu))} € A where
05 (T g, Tes Yu)) = P2(T g, Te, Ypu)

(b)  p2(Zg,Cy,e4) F @1(Tg, Cy,€4a,,) for n <w

moreover

@73 (a) if p € A satisfies @2(d, ¢, Jj]) € p then € = [d,ée, EA(p)]
(b) if A € I then po(Zz,¢ €a) - {p1(23,6 ) : € = ¢1[d, ¢ €] and
e evA}
(c) like (a) replacing €4(p) by &x.

So letting A = {p € A : pa(dy, Cy, Uw)) € p} we have A, € Z, and let

—/

V1 = 91(Tes Yoy i) = (V20) (02(T g Tes Uoy) = 01(Za, Tes Ypu)))-
So we have, by &7.1(b) and ®7.3(c) as €4, ., € Awx C A(p) by By
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Prq CE ﬁl[éy,éA(p),éA*,n] forpe As,n < w.
But by 4.1, that is, by (x)g(d) recalling €4, € 5]
some n1 < w (as U{AL 1 n <w} = Al) we have:

pl € A1,Ipl,A. it follows that for

©r5 if @ € 9D (BE) and p,q € As,,, then
¢ )Z “191[5/7 EA(p)> éA*,n] = 191[5/, €A(q)> éA*,n]” for n < w.
Hence by the choice of e

©re if @ € 9D (BF) and p € As,,, and n < w, then
C V7,8 6a.,] =01[C, Ea0p)s€a. n]-
As tp(éy, My) is finitely satisfiable in By, | clearly

X, hx
@77 if p€ Ay, and n < w then € = “O1[Cy, €,€a, n] = V1[Cy, €a(p), €A, ,n]”-
Next
@78 if n <w then € |=1[cy,€,ea, ]

[Why? By @&7.4 + 7.7 because there is p € A>,,, N A, which holds as A>,, € %,
and A, € 2, and 2, is an ultrafilter on A.]
So by the choice of 14

©r.9 p2(Zg,Cy,€) F 01(Zg, 8y, €, ).
By @®7.9 + ©7.1(b) applied to A = A, ,, we have (recall b is from B; hence b C A, C
A**)
@710 #2(T3,Cy,€) F p0(Tg, Cy, b).
This proves the second clause in the desired conclusion of Hy.
So we are done proving Hy.
As said above (before Hy;) proving By finish the proof.
2) We repeat the proof above with some changes. In (x)5(a) we replace qKS, a0 by
qu 4.0 Tespectively. We change (*)s + ()9 naturally and also the rest should be
clear. Uas

Now we get a “density of tK, ;¢ in ZFC” for § = Ry and some pairs &, pt.

Conclusion 4.12. If T is countable, 8 = Ng, pu is strong limit and (p > cf(u) >
Ny Ak =put) or (u=cf(u) = k), then for every m & rK?%e there is n € th%a
such that m <; n.

Remark 4.13. 1) Do we need cf() > 297 No, see 2.15(1) and 2.19 but “u is strong
limit” is assumed above.

2) Recall that rK?,Wg means rKf’ﬂye with @ = (ua, g1, o) = (K, p, 11).

3) This is enough for the recounting of types for & strongly inaccessible. Also for
k = pt, p strong limit singular of uncountable cofinality, but only if p = R, we
can deduce the correct upper bound on the number of types up to conjugacy in
S(M), M € EC »(T), still if p < X, the upper bound is yx, smaller than the value
for independent T

Proof. We choose m,, by induction on n < w such that

By (a) m, erKy .0
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(b)) my=m

(¢) r[myyq] is complete

(d) m,, §1+ m,, when n =m + 1.
Why can we carry the induction?

For n = 0, by clause (b) this is trivial.

For n = m + 1 by 2.15(1) there is y,, such that Xm, <2 ym € qKj, , , hence
to qKJ, , o hence by 2.15(3) using our use of (u, u,0) rather than (k,u,0) we have
ym € dK,, , ¢; as cf(u) > Vg by 2.17(1) for some v, we have (ym, Pm, M) e inlw.
Hence y,, € qK, ¢, why? If & = p trivially and if & = p* by 2.17(2), which is
O.K. by the assumptions 6 < cf(u) < p. As cf(u) > 6 we have |Bj| < p and as p
is strong limit we have 3 (|Be| + 6) < p for k < w, so we can apply 4.8.

By 4.8 there is n,, € rK?H,g such that m,, ST n,, such that y,, <i Xn,,-

Lastly, as x is regular > 29, by Observation 4.10(1A) there is a complete r,, 2

r[n,] such that m, := (Xn, ,%n,, ") € rKfue is <j-above n,,. So m,, is as
required.
Now n = lim(m, : n < w) is as required by 3.23. 0412

Remark 4.14. Also 4.12 is enough for the “generic pair conjecture” for the relevant
cardinals.
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§ 5. STRONGER DENSITY

§ 5(A). More density of tK.
The following will help us to prove density of tK,; , ¢ replacing x by £*™ in 4.12.
Unfortunately, we are stuck in x™%, still this gives more cases for the recounting of

types.

Claim 5.1. Crucial Claim There is an indiscernible sequence I = (aq : a < A) in
My such that letting ay realizes Av(I, Mx+¢x), the types of ax and dyx over My +cx
are not weakly orthogonal when :

(d) (o) wuyx is finite
or just
(B) a<i=lalTl<
(e) K> A> 1 > |By]
(f) X > 21B<1%% and k > 2,,(|Bx| + ).

Discussion 5.2. 1) Recall ntr(x) is regular or is < 6, see Definition 2.26, Obser-
vation 2.27(1) but this is not necessarily so for ntrj.(x), on it we know only that it
is regular or its cofinality is < 6.

2) Why above “uy is finite”? Otherwise in 5.1 there is a problem. The reason is a
pef one: maybe A € pef(ax,<x) where we let ax <) = {kx,; : 7 € ux and kx; < A},
even the case A € {kx; : { € ux} need care.

Even under G.C.H., if A = xT7,cf(x) < 6 we have a problem. The problem
is in fixing the “essential” type of &, for o € [, @c41) over x; which has more
information than its type over By but less than its type over B and is preserved if
we replace x by a very similar x’, we can use just x[;) which is smooth see Definition
2.18(1),(2) and 2.19 and 2.22.

The first idea for saving the day was to get (X : ¢ < ) tree indiscernible for
some § = (go € Ilaxx : @ < A) <j_,[a,,]-increasing and cofinal which is “nice”.
Did not seem to work.

Second is a weaker version: demand something on (e ,...
Jeo < Gey < ...

The second is not good enough to classify f%ug(—) Still, when & = p™, p

,€z,_,) only when

regular, z = 9 this may help but we prefer not too, when we can.

The solution is to do it locally, i.e. to deal with local density for K (in pK),
deal with one ¢, then pretend you have no ¢ and deal with the case uy is finite,
i.e. 4.1 whose original aim was to help 4.8.

3) The proof serves also for a related more local result, 5.3, there we just replace
stage A; it also serves §(5B).
4) We may use normal x so Z; disappears.

Proof. Stage A: By Claim 2.22, without loss of generality

®o x is smooth (see Definition 2.18) so (Ixx : k € ax) are well defined.
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As we are assuming ntric(x) = A is regular, so, in particular, of cofinality > 0, see
Definition 2.26(2) and by 2.27(3), there are 1, ¢, such that (see Definition 2.26(5)
on A-illuminate, 2.6(8) for I'}, 2.8(3A),(3B) on illuminate):

®1 (a) 1 does M-illuminate x so l"1 =TL,
P

(b) = 0.4, Te, ) € T

(¢) vy, does not A*-illuminate® (x, p.)

(d) without loss of generality ¢—,, = 9,

(e) if A C My has cardinality < A then there is & € ?(My) such that

tp(dyx, Cx "€) F tp(dx, &x~ + A) according to 1; follows by (a).
Hence for some A

®s (a) A C My has cardinality A

(b)  for no e € Y(My) does b, (T4, Tz, €) solves (x, A, p.), see 2.8(1A)
(¢) let {aq:a < A)list A

@3 (a) let o = u(Zg, Ze, Yo)
(b) b= <pi0f(t) is o if t =1 and —pp if t =0, so V¢ are well defined
(c) let o1 = @1(Tg,Te,Zpg) € I‘l— be Yy, = Y,
(d) let po = pa(Tg, Tz, T Tig) € F be 1,
(e) let 3 =3(Z4,2c 2 [9]) € F* be

®4 (a) let Ag = {J,, (T}, 2y, fg)} where Ui, = Uy, (Zz, T, Zjg)),

see 2.8(1C)
(0)  let Ay = {0, (Zy), Tp, Te) } where O, = o, (Te, Ty Tp))
(¢) let Ag C L(7r) be finite large enough Such that clause (i) of 4.1

holds with (A, Al) there standing for (Ag, Ag)
here and for (Aq, As) here.

Note that
®s5 I{A; 17 € ux and A\; < A} < A
[Why it holds? By clause (d) of the assumption; important for 5.3.]

Stage B: Let I = ([My]<",C). Recall that for every & € (M) for some h €
I {kx; : i € u.} the pair (Bx + & Ixp) is a (fi, 0)-set.

Now let €4 be as guaranteed by ®1(e) above for A € I. Let Z; be the club filter
on I.

We apply® Theorem 4.1 with 1, My, (Byx,Ix), (€4 : A€ I), (€4 : A€ T),(No), (As), D1, I1
here standing for k, M, f, (e, : A € I),(e? : t € I),(A, : n < k),(Al : n <
k), 71, P, there. We get hf, qo, 7, -2 here standing for h.,q, % o, -7 there.

Next we apply 4.1 again with 1, My, (By,Ix), (€a : A€ 1), (ea: A€ I),(Ay), (A Y P11, D1,
here standing for k, M, f, (e : A € I),(e%2 : s € I;),(A, : n < k),(AL : n

491 the present proof, we can demand that no ¢ does AT-illuminate (x, ¢)
50We could use A,, with union L(rr) if @ = Rg = |T/, if so we do not have to care in choosing
Ag.
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k), 21, P, there. We get hi, q1, 0,71 here standing for h,,q, %0, there and
without loss of generality %, C .. Note that g, € S‘Ztg(Bj{ ) for £ =0, 1.
Let h = max{h{,hi} and B, = Bx,,» and let Sp = {3a+ ¢ : o < A} for
£=0,1,2.
We shall show that there is a quadruple (N, 1A, B,) such that:

By (a) N=(Ny:a<ANandI=(g,:a<)) and A= (A, :a <))

Q
N

( N, < My is <-increasing
(¢) [INall <A
(d) Bx C Ny and a, € Nyiq; hence A+ By € Ny :=U{N,:a < A}
(6) ieux/\|Ix,i| <)\:>Ix77; QNQ
(f) ifi€ux Akx; = Athen ax ;o C Nog1 for a < kx;, hence I ; C Ny
(g) €q € H(Noc+1)
(h)  tp(dx, ex + €q) F tp(dx, ex + (No + Bf)) according to v
(i) Ga"do € 7" (Nqy1) realize tp(ex dy, No + Bf + o)
where £g(Co) = €g(cx), Eg(Ja) = eg(czx)

(]) Na gAa EN&+1

(k) Ape S acSpande, =éa,

(I) if B<aandf € Sy,ac S then go = tpa,(€s €a; Bx)

(m) if B<aand B € Si,ac S then g1 =tpy, (65" €n, By).
How? We shall choose Ny, éy, €, dg, ¢~ by induction on « satisfying the relevant
conditions.

In the induction step, first N, exists as it should just be < My and include < A
specific elements and has to be of cardinality < A. Second, A, exists, if & € Sy it
can be any member of %} satisfying < A requirements, each such requirement is
satisfied by a set of A’s from Z; + .#; which is a A-complete filter.

Third, &, exists by the definition of A = ntrj.(x) and choice of v, more exactly
by ®1(e). B

Fourth, ¢, d, exists as My is k-saturated and xk > A; so we are done carrying
the induction.

Let up = {i € ux : kx,; < A} and ug = ux\u;. For each o < X by 2.22(5) we
choose a function h = h, € II{kx; : § € ux} such that (Byx+Ny+Eq+dxtx, ix7u2,h)
is a (f1,0)-set recalling Lg uy,n = (Lnines) @ @ € u2) and L () = (Gia @ €
[h(Ki), Fix,i))-

So

B2 (ax,0,5 : B € Ix0,n.(9) is indiscernible over By 4+ Ny + &x + dy + € +
W{ax,0,0 : 0 € ax\{0} and « € [h(0),0)} for every O € ax.
Note that

B3 we can replace (N, Casda;€a) : @ < A) by (U{Ngpgy41: 8 < 1+a}U
Na),éf(a),cif(a),éf(a)) sa < A) when f: A — \is increasing (so a < f(a))
and £ € {1,2,3} Aa € Sy = f(a) € Sy.

Hence recalling noting M(ax\A") is At-directed and cf(Il(a N A))) < A by ®s,
for some h, € Ila we have £ < 2 = X\ = sup{a € S; : ho[(a\{\}) < h.} and
h«(A) = 0 hence there is S C A such that for every a < A there is § € S’ such
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that otp(S’ N B) = a A A(a € S¢) = B € S¢) hene shrinking (a, : @ < A) by a
¢
subsequence and as we can replace h, by any bigger function in ITa,, without loss
of generality
Bs (a) halax\{A} = h., i.e. is constant
() (ha(a):a < A) is increasing
Bs let B, = B;h* recalling h. € II(a\{\}) and® B} = By, for a < X so
a<p<A=B,CB;CB;.

Also without loss of generality {eq,0: @ < A) is with no repetitions.

Stage C: Let N} < Mx be of cardinality < s such that B UN, C N;. We
+ +
choose Ny expanding N such that P = |N>\|,P1N* ={eq0:a < /\},PQNA =

{(a;€eq,0) : @ € No,x < A} and FiN;r (a,0) = €q, for i < G,P;\E; = {eq,0: @ € S¢}
for £=0,1,2 so N and the vocabulary 7(Ny) are well defined.

We shall choose an increasing sequence (o = a(e) : € < A) enumerating in
increasing order a thin enough club of .

We shall prove in this stage that there are Ny and (e : ¢ < A) such that:

M (a) Ny is an elementary extension of Ny
) é; S 0{a : N;? ': PQ(avea(eJrl),O)}

&2

c) e:i:F-NA (elo) fori<B,e <A

N K2

(

(

(d) eZ,O € Pivsa and ﬁP2N§B (62,0’ ea(s),O)

(e) (&f:e < \)is an indiscernible sequence in Ny |77

(f)(a) eéi(e <A),éq(a € Sp) realize the same L(7r)-type over B,

B) if < A then all & such that a(e) < 8 and €, such that
o € 51N B realize the same L(7r)-type over Bj

(v) ifa<ag,e<Xand a € Sy then e, " e’ realizes qo
(0) ife<Aacys <aand a € S, then €f"é, realizes ¢;.

First note:

B6.1 there is an increasing continuous sequence (o, : € < A) of limit ordinals
< X such that: for every n < w, finite®® A C U{T(9), :m < w} = {p:

© = o(Tzy, Teys- -5 T, ,) and m < w, ¢ € L(rr)} and for every 0 = g¢ <
€1 < ... < &, we can find f; € [ag,,ac,,) NSy for £ < n such that
(€8y+€8y,---+€8, ) 1s a A-indiscernible sequence (in My).

[Why? For each such pair (A, n) define a game 0a , with n moves, in the m-th
move the antagonist chooses an ordinal 3, < A which is > sup{v; : k£ < m} and
the protagonist chooses v, € [Bm,A) N S1. In the end of a play the protagonist
wins the play when (€,,,...,é,, ,) is a A-indiscernible sequence. This game is
determined so we choose a winning strategy sta , for the winner. Let E = {§ <
K:a<l4+d§=hs(a)+1<0danddis closed under sta , for every pair (A, n) as

5lthe difference between By and B} is concerning I
52Alternatively use finite v C £g(g), A finite C L(rp) and get (€gy U, ..., €8, [u) is A-
indiscernible.

See https://shelah.logic.at/papers/950/ for possible updates.
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above}. As the number of pairs (A, n) as above is < 6 < A = cf()\), clearly E is a
club of k and let @ = (. : € < k) list E in increasing order.

It is enough to prove that the protagonist wins every such game oa ,. Now for
each pair (A,n) if this fails the sequence (€4 (k)41 : & < w) has an infinite subse-
quence (e(;) : ¢ < n) of length n which is A-indiscernible, hence the protagonist
wins in least in one play of Oa , in which the antagonist uses the strategy sta ,,
i.e. when he chooses v, = ay(m), it is legal by the choice of E, so sta , is not a
winning strategy for the antagonist hence it is for the protagonist 0, A. So easily
@ is as required in Hj 1.].

Now let Ny be a || Ny||*-saturated elementary extension of N}, by H51 we can
find in it a sequence (€f : € < ) as promised in Hg. Note that clause (f) of Hy can
be gotten by thinning the sequence (el : ¢ < ).

Stage D: There is Nf‘? such that

M7 (a) N has cardinality A (by the LST theorem)

(b) N7 < My (by renaming, possible as My is r-saturated while
K> A= [Nyl

(C) if b € w>(N)\)_,€ < \U e ]L(TT) _and o€ (045,0454_1) ns, =
€ = 9[en, b, ] then = 9], b, ).

[Why? As tp(cx, Mx) is finitely satisfiable in By and B C My, |Bj| < k, My is
k-saturated.]

(d) let N/ =Myxl{a € N{: NY |= Pa(a,el)} for any e < A.
Now recall
e CE “Doe [Cxs éa(s),l;}” whent € {0,1},b € L]-"(?O)(Na(s)) and € |= ¢§[dx, Cx, D]
[Why? By the choice of €,(c) and of ¥, recalling 1 s = by, by ®3.]
©2 € = @1[dy, Cx, Eae) ]
[Why? As @1 = 9, see ®3(c) and the choice of the é,(.).]

©3 € ': 4480£+1[Jx35x,éa] /\ﬁw[éméoméa(s)]” when o € (aEaO‘E-H) and £ €

{1,2}.
[Why? As @1 = 1)y, see ®3(d) and ©q.]
O4 qo = tpAO(éa(s)Aéa,B;EH) when a. € Sy and a € (g, a.41) NSy,

[Why? See clause (¢) of B above, recall that gg is from the application of Theorem
4.1 in the beginning of Stage B.]

®s qolBj = tpAO(éa(g)Aég,B;) when a.11 < B < A
[Why? By ®4 and the choice of &%, i.e. Bg(f)(¥).]

O €Yy, [Cx, €, ea(e)] iff Uy, [Cx; a, Ea(e)] When e < AN € (az, acyr) N ST;
recalling a. € Sy being a limit ordinal.
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[Why? By Bg(f)(8) and as U, (Cx, Z{g], €a(s)) is a Ag-formula, see by ®4(a) recall-
ing tp(ex, Mx) is finitely satisfiable in Bj as B = B;hﬂ ]

Or € | paldy, Cx, €]
[Why? Clearly 3 = 1,,, see ®3(e) and ¥, are well defined and by ©3 we know
that € |= @o[dx, Cx, €a) for every a € (a.,a-11). Let B € So\a(e +1). Again by O3
we have € = “ty,, [dx, Cx, €5) A Vi, [Cx, €5, Ea]” for a € (e, aetr).

But by H;(m) for every a € (ae,acq1) NSy we have q1 = tpa, (6o €s, By).
So for every ¢ € Zg(éx)(B*) we have € |= “O,[¢, és, 4] iff U, (C, :E{’Q],i‘iel) € q.
Hence for every ¢ € lg(cx)(B*) we have € |= “J,,[¢, eg, ef]” iff ¥, (¢, x[e], 1:[9]) €q.
As this holds for every such ¢ and tp(éx, Mx) is finitely satisfiable in B, clearly
C = “Dy,[Cx, €8, €] = Uy, [Cx, €p,€2]” for every a € (ae, aeq1) NSy

By the conclusions of the last two paragraphs € |= 9, [cx,€s,€:] and by the
conclusion of the first of them € |= 9, [dx, &x, €5]. Together recalling the definition
of ¥, we get € = pa[dy, Ex, €], i.e. we are done proving ©7.]

g € ﬁwl[éxaés,éa(a)] .
[Why? Note € | “Oy,[Cx, €a,Ca(e)]” for a € (ac,acq1) NS1. Let T = {¢ €
9EN(B,) 1 € | “Yy, [C, as Ea(e)]” but clearly I = {& € “9EXD(B,) : 9, [cx,a:[e] Tiy) €

qo} so does not depend on « hence, second, I = {¢’ € 9D (B, ) : € |= 0, (€], €%, en(o)]}-
As tp(ex, M) is finitely satisfiable in B, we get € |= 9, [¢x, €5, €q(c)] ]

9 € = “iy, [dx, Cx, €], € = “<p0 [dx,cx,b]77 and when b € ¥ (N,(.)) and
t[b] is chosen such that € = 0 e [Cx; €2, b].
0

[Why? Recalling ¥,, = @2, note that € = 1, [dx, éx, €] by @7, i.e. the first
conclusion of ®g holds. By ©7 we have € |= ¥y, [cx, €%, €q(s)] Which means that
Ve, (Zg: Cx, €2) F p1(Zg; Cx, éa(s))' BuE 1 = Py = Py, 50 by ®1(d)+®3(a)+®3(b)
we have @1 (Z g, Cx, €a(e)) F ©8(Z g, Cx: ).

As | is transitive we have 9y, (Zg,ex,€5) F ¢5(Zz, x,b)t which by ®7 means
€ = Yy, [Cx, €5, b], i.e. the second conclusion of g so we are done.]

Stage E: By the choice of . = ¢ and letting ¥ = v, and of the set A see ®2 we
can find

(¥); an ultrafilter D on eg(g)(N{) such that for every & € (M) and v’ sat-
isfying ¢/ (Zz,¢x,€) € tp(dx,ex + Myx) the™ set {b € 9E(Ny) - ¢

(324) (¥ (24, 6x, ') A 9s(Tg,8x,0)) A (329 (V' (4, Ex,€') N s (T, Ex, b))}
belongs to D;

this is as in the proof of ?? or 2.15(2), i.e. [Shel5, 2.10=tp25.36]
()2 For b € 9@ (Ny) let e(b) = min{e < A :bC Ny} and
(x)3 let t(x) be such that {B € 9 (Ny) : t[b] = t(¥)} € D recalling t[b] € {0,1}
is such that € |= cpo [dx, Cx, b].

Note that

53can use “{b e 92 (A): ...}



Paper Sh:950, version 2014-05-02_12. See https://shelah.logic.at/papers/950/ for possible updates.

DEPENDENT DREAMS: RECOUNTING TYPES SH950 89

(¥)4 for every € < A the set {b € 99 (Ny) : e(b) > &} belongs to D.

[Why? Otherwise 9(Z, ¢, é-) contradicts the choice of D.] )

We use ultrapower to get (I, €) iI} ¢ realizing P(y,f[?]) = {ﬂ(dx,éx,_y,i[g] ,_EL) :
(24, 7o, Tyg), Z) € L(rr) and @ € 95 (M) and {b € O (Ny) : € = [dx, &, b, €15, al} €
D}}.

Now

()5 (ef:e < A)"(€) is an indiscernible sequence.
[Why? By (*)g below.]

(x)¢ € realizes Av((€}:e < \), Mx + &x).

[Why? As (€f : ¢ < k) is an indiscernible sequence (and 7' is dependent), the
average is well defined. Now recall (x)4 and the choice of &'.]

(¥)7 tp(dx, My + &x),tp(b', My + &) are not weakly orthogonal.

[Why? By the choice of b’ and of 2, i.e. as witnessed by ¢,.]
But (an important point for Claim 5.3) we need a more effective version of (*)7.
Let p1(Zg) = tp(dx, Mx + ¢x) and p2(y) = tp(b', Mx + x), p3 (7_5[9]) = tp(€, Mx +
Cx)

()5 p1(Z7) Up2(9) U {pt(Zg, ex,7)} is consistent for t =0, 1.
[Why? By the choice of the ultrafilter D and of the sequence b'.]
(¥)s € = 1y, [dx, x, €] and € = 0 e [ex, € V).

[Why? Because by (x)4 and O for every b € ‘9% (N, ) we have € = 9., [dx, &x, )

and Q: ': 79({;;[5] [Exa ég(g)v b]]
()0 p1(Tg) Ups(Tie)) U{Fvy. (Tq, Cx, Tpg))} are consistent.

[Why? First, clearly € |= v, [dx, Cx, €] by (¥)s hence p1(Z7)Ups(Z(g)) H{ Ve, (23, Cx, Tjg)) }
being realized by dy "€ is consistent.

By (*)1 for some d’ realizing p; (%) and b” realizing pa(7) recalling t(*) is from
(¥)3 we have € |= ﬂnpi(*)[g’,éx,g"]; as p1(Zg) = tp(dx, My + &) without loss of
generality d’ = dy. As tp(b",ex + My) = p2(y) = tp(b/, My + &) for some &’ we
have tp(b” &, My + x) = tp(b' "€, My + Cx).

Note that € = D e [6x, €, 1'] hence by (x)g we have € = 19¢i<*) [Ex, €, 0"].

Now if € |= 1, [dx, Cx,€"] then by the definition of Uy, t, See @9 and the last
sentence, € = @i(*)[Jx,Ex,l;”] but dy"€” realizes p1(Zg) U p3(Zp)) we have a con-
tradiction to the choice of b hence € = =), [dx, Cx, €] thus finishing the proof of
(*)o.]

As p3(Tp)) was defined as tp(€’, Mx + ¢x) by (¥)¢ + (*)9 we are done. Os.1

We shall not use 5.1 as stated but a variant which the proof gives (as mentioned
in the proof).
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Claim 5.3. Assumex € pK,, , ¢, & C {u C vx : uNuy is finite} is C-directed with
union vx and K > X = ntrie(x) and i € ve\ux = A > 3,(|B;| +0) and X is regular,
this is similar to 5.1 but omitting the assumption “ux is finite”. We still can find

(¢, A, u, ) such that

(a) ¥ illuminates (x, A\, T'L)

(b) A C My is of cardinality \,u € & and ¢, = @.(Z3, Tzu,y) such that no
V' (T3, Cxu, @) € tp(dx, Ex+Myx) solve (x,¢, A) fi.e. for no finite u C £g(ex)
and ' = ' (T4, Teu, Z) and & € Y93 (M) do we have € |= “0'[dx, Cx u, €]”
and V' (23, exu @) F {pu(Tg,x,b) b € L9 A and . (T3, Cx,b) € tp(dy, A+
Cx) i let Yy, = Yy, (T4, Te, Tig) = Vo, (T, Tey Tpy))s v € 0 finite

(c) we get the result of 5.1 with ¢x replaced by Cx = Cxult = (Cx; 1 € Uy,
i.e.:

(%) there is an indiscernible sequence I = (b, : o < A) in My, £g(bs)
Lg(g) and b°,b* € Y€ realizing Av(I, My +¢x.) and € |= ¢[dx, Cx u, b]
fort=0,1.

Proof. We can find 1, ., A as in ®; in the proof of 5.1, so ¢ is as in clause (a)
there. Then we find ¢, 9, as in @3 + @4 in the proof of 5.1, Stage A. Next let
us € & be such that i € u, iff xz_, is not dummy in ¢ or in ¢; or in ¢, or in
3. Now use the proof of 5.1 from Stage B on, however not on x but x|, ], see
Definition 2.6(10). Os.3

Conclusion 5.4. Assume T is countable, 0 = R, u strong limit of uncountable
cofinality and p < k = cf(k) < p*¥. Then for every m € rKfH o With um finite
there isn € tK 1,0 such that m < n

Remark 5.5. If we assume cf(u) = g and k = p, then we can get a weaker version
of density of tK , 0.

Proof. Without loss of generality £g(d) = w.

Let (@n(Tutaw]s Jluw]s Zn) = 1 < w) list all formulas of such form, each appearing
infinitely many times. Without loss of generality ¢, = ©n(Z[w,], Uin]» Zn), Wn =
[0,n) U [w,w + n). We choose m,, by induction on n < w such that:

B (¢) m,e€ rK?me and u(my,,) is finite, moreover € [n,w); we may
add v(m,,) finite (as we can assume vy, finite)
(b)) m,=m
(¢) ifn=m+1 then m,, <; m,;; and ry,, is complete
(d) if n=m+ 1 and there is m’ € rK® 10 satisfying
(my, <y n A (M’ is (0 (T, Tim], Zm), 1) active for some
i € v(m')\v(m,,)) then m,, satisfies this
(e) if n=m+ 1 and the assumption in clause (d) fails, but there is
m' ¢ rK® 1.0 satisfying m,, <; m’ and ¢,, € Fw[m,]
then mn+1 satisfies this.
We can carry the induction for clauses (d) + (e) because if there is such m’ we can
find m” such that m,, <; m” <; m’ such that u[m”] is finite, and the demand
“rm,,,, is complete” is not a problem by 4.10(1A).

See https://shelah.logic.at/papers/950/ for possible updates.
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Having carried the induction let n = lim(m,, : n < w), we have to show that
n € rK?W9 and more. If 'y, = Fi[n] we shall be done by 3.23, so toward
contradiction assume ¢ = ¢(Zgpn); Ten]: ¥) € Fi[n]\F@[n], let k be such that ¢ = @
hence v = {n : v, = ¢} is infinite. By clause (d) and 2.14(2), i.e. [Shel5] the
set {m : ¢, = ¢ and the assumption in H(d) holds} is finite. So choose m such
that ¢, = ¢k but the assumption of H(d) fails. By 5.1 more exactly 5.3, the
assumption of M(e) holds; why? the point is that ntri(x,) = {u*, u*2,..., u™}.
So the conclusion of H(e) holds, contradiction.

Lastly, n = U{m,, : n < w} is well defined and by Claim 3.23, using (c)’ there,
m = 1my Sl ne tKgu,@' |:|5_4

Discussion 5.6. We may like to cover every k = k<" > 1; at least and/or when
for countable T as in 4.12, G.C.H. holds). For this, we are still left with the case
cf (1) = Ny, for this we have to redo some previous definitions and claims, so this is
presently delayed.

Conclusion 5.7. Assume G.C.H. and T is countable and 0 = Ry and u is strong
limit of cofinality > R and k = cf(k) € (u, u™*).

1_) For every k-saturated M of cardinality r and d e >C there isx € tKy k.0 with
d < dy.

2) Hence M € EC,, .(T) = [S*(M)/ =aut | < k.

3) If M is a saturated model of T of cardinality  then &P (M) has cardiality < .

Remark 5.8. 1) For vK this is easier.
2) When cf(u1) = Rg, maybe see more in [STa].

§ 5(B). Density of vK; Exact recounting of types and vK.

We prove the density of vK, z.9. We use 5.22(1) but not 5.22(2)-(6).

Recall that we have difficulties when ntr)c(x) was singular. This motive defining
relatives in 5.10,5.13 and investigating them. This succeeds but not applicable to
rK only to vK.

Convention 5.9. We here tend to use ¢ € Ty as ¢(Za,p,Tz,0,J) Where p €
"(Lg(dx))), 0 € ™(€g(ex)) for some n,m.

Definition 5.10. Assume for x € pK, ;5 and ¢ = p(Z 7 ,, Tc 0, ¥), S0 ¢ determines
py0 and ¥ = (Zq,p, Cx,p0) € tP(dx,p, x,00)- Below we may omit ¢ when p = () =
00, the role of ¢ in (1) is minor.

1) Let k(p,%,x) be the maximal n such that there is an increasing sequence g €

"(vx) which witness it, which means (note that ¢ has a role only via go):

o {<lg(o) Nk <Lg(or) = o(l) <u, 1(k)
o (< Lg(oo) Nk < Lg(o1) = 00(f) <o, 01(0)
® Cjg.C;q are subsequences of ¢x y, (¢) realizing the same type over ¢x <y, () +

X
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ol “@[JX,pv Cx,05 521} A _‘<P[Jx7m Cx,00 520]-

2) We define kqyu(p,1,x) as the maximal n such that some 7 witness it which
means; du stands for duplicate:

e 7) is an increasing sequence in wy of length £g(p)
Lg(dx,p(e)) = Lg(dx () for £ < Lg(p)

7#(55&,777 EanD) € tp(dxﬂh EX»QO)

tp@(dx,n, Cx,0 + Mx) = tpg;(czx,pv Cx,0 + Mx)

n= k(w(fﬁ,na Ex,go)a (P(j(im Zz, 0, g)a X)-

Claim 5.11. 1) In Definition 5.10, k(p,¥,x) is well defined and < ind(yp).
2) Also kau(p,1,x) is well defined and < ind(p).

3) If (p,¢,x) is as in 5.10 and x <1y € pK,, ; o then:

o (p,1,y) is as in 5.10

e k(p,1,x) <k(p,9,y)
o kdu(SDad)yx) < kdu(@ﬂ/’ay)'

4) If x € pK,, ; o then there is'y such that (see 5.19):

® X Sl y S pK;{,p‘,G
o if (p,9,x) is as in 5.10 and y < z € pK,_ ; , then k(p,9,y) = k(p,v,2)
and kdu(<)07 wa y) = kdu(<)07 wa Z)'
5) Like (4) but in ey it applies to (p,1) such that (p,1,y) is as in 5.10.

Proof. 1),2) By the definition of ind(¢p) it is always finite as T is dependent, see
[Shel5] or 5.22(1).
3) Read the definition.
4) By parts (1),(2),(3) as
(#)1 (Kg,p,0,<1) is a partial order
(x)2 in this partial order an increasing sequence (x; : i < d) of length < 6 has

a <j-upper bound xs; moreover is the union so if (¢,,xs) is as in 5.10
then for some i < §, (¢, 1, %;) is as in 5.10

()3 for any x € pK, ; 4, there < 0 relevant pairs (p,v).

5) Similarly using (4). Us.11
Claim 5.12. If (A) then (B) where
(4) (o) x,p= @(i‘g,p,ig,p,g),w(£g7p7i5)go) are as in Definition 5.10
() n=Xkaqu(p,¥,x) and py witness it
(C> let 80/ = SD(jJ,pl,jag, g)
(d) lety' = ’L/J(fg’pl 1 Cx,00) hence € tp(dx. p,, Cx,00)
(e) let o1 witness k(¢', ¢, x) with ((c}o,¢; 1) : £ < Lg(o1)) as in
Definition 5.10(1)

(f) w//(jiplaéx,go‘m) = wﬁ(jippéx,goﬁl) AN (S"(j&méx,@ 62,1)/\
£<tg(o1)

_“P@'d_,m Cx,05 EZO))
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(B) (a) (¢, ¢",x) are as in 5.10
(b) kdu((P/, W/’ X) =0.
Proof. Straightforward. Os 1

Definition 5.13. 1) For x € pK, ;, and ¢. = ¢.(Z5,%Z,9) € Ty and ¢, =
Vu(Z g, Cx, bs) € tp(dx,ex + My) let ntry, (¢x, ., x) be the maximal A such that:
if A C My and |A] < X then for some finite p C tpy, (Z4,Cx + Mx) we have
PUA{Yu(Z g, Cx,0:)} - tpy,, (dx, Cx + A).

2) For x € pK,, ; y let ntr,, (x) = min{ntr, (v, ¥«, X) : @, P« as above}.

Claim 5.14. 1) For x, @., . as in Definition 5.13(1) the cardinal ntry,(@«, ¥s, X)
is a regular (infinite) cardinal.

2) For x € pK,, ; ¢ the cardinal ntr,,(x) is a regular (infinite) cardinal.

3) If X := ntry, (©x, Yu, X) is > Ng then for some m we can replace “p C ... finite”
by: for some fix n and n € ™2 we have “p C tpig(czx,éx + My) has the form
{o(@,ap) M) . 0 < n}.

Proof. 1) Toward contradiction assume A = ntr,, (¢, ¥x, x) is singular and A C My
has cardinality A. We shall prove that for some finite p C tp,,, (dx,Cx + My) we
have p U {1, (Z 5, 6x)} F tp,,, (dx, Ex + My), this suffices.

Let (A : € < cf()\)) be a C-increasing sequence of subsets of A with union
A with each A. having cardinality < A. For each € < cf(\) there is a finite
Pe € tpy,, (dx,Cx + (Mx) such that p. U {t.(Z4,0x)} = tp,, (dx, ex + Ac). As pe
is finite also B. := Dom(p.) is finite hence the cardinality of B := U{B. : ¢ <
cf(N)} is < cf(X). As B C My there is a finite ¢ C tp,,_ (dx,Cx + My) such that

qU{¥.(Zg,x)} F tpy, (dx, Tx + My).
Now g is as required.
2) Follows from part (1). Us.14

The following is a replacement of 5.1 of §(5A).
The Crucial Claim 5.15. If (A) then (B) where:

(A) (a) X<k is reqular > p
(b) x€pK, g and ix =2
(€)  ou=0:u(Tg,Tz0,Y)
(d) =924 7 %2)
(€) (@) = ¥(50,5,5) € tb(de, 5 + M)
(f) wux is finite, but see 5.17
(9) A =cf(A) =min{|A| : A C My and there is no finite B
p Ctpy,, (dx, Cx + My) such that pU{w.(Zg)} F tpy,, (dx, Cx +A)

(h) if AC My, |A| <X then there is ba € M such that . (Zg,cx,ba) €
tp(dXv éx—i_Z\fx) and {(p*(,fg’ éxa bA>}U{1/J* (i‘d_)} }_ tpigo* (dX7 EX—i—A)

(B) there are I,d" such that
(@) I = {(Ga,0 Ga1:a <A) is an indiscernible sequence in My
(b) Lg(aae) = Lg(y)
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(¢) @xo"ax1 realizes Av(I, ex + M)
(d) tp((_b\,oa Ex + Mx) = tp(a)\,lv Ex + Mx)
() @ realizes {1 (22)JUths . (de, Ext M) U{00 (8,801 ), 704 (8, B a0 0)]}-

Remark 5.16. 1) Note 1, (Zz) correspond to g, in §(5C), so we can restrict its form
if necessary, see §(5C).
2) How will we justify clause (A)(h)?

(a) we can manipulate @, such that {¢.(M,a) : a} = {—¢«(M,a) : a} and

0, %) (M) belongs to it, as in the proof of 8.4
(b) replacing p(Z,7) by A ©(Z,7¢) change little.
l<m

3) We could have weakened clause (B)(c) to A-types for A derived from 5.22, in
fact A = A with n = k(p«, x).
4) So 5.22(2)-(6) is what is really required but we do not need it.

Observation 5.17. We can omit (A)(f) of 5.18.

Proof. Let ¢, = (p( Zz,0,y) with p, o as in convention 5.9 and work with y
which is like x but dy, = dy [Rang(p), ¢y = Cx|Rang(p).
Now reflect. Us.17

P

Proof. Proof of 5.15
We repeat the proof of Claim 5.1, making minor changes in Stages (A)-(D) and
replacing stage (E) as follows:

Stage (A)-(D):

We omit ®1(b) — (e), using clauses of (A) of the claim when quoted.

In ®2(b) the set A exemplify (A)(g) of the claim

In ®3 let wp = @, for £ =0,1,2 (or just omit and replace ¢ by ¢. when used,
justified by clause (A)(h) hence é,,&" € “99))(M,)

In ®4(a) add “+®1”.

We replace Z[g) by Zyg(y) or ¥ recalling p. = (x4, Te, J)-

Stage E: Let MT < € be such that dy + &x + My € M+ and let I = {(b,&,(,d) :
be W (Ny),e<(<Xandde Mt}

For every { < A and p € & = {p : p is finite and p C tpy,, (dx,cx + Mx)} we
let I, ¢ be the set of (b,¢,(,d)) € I such that

o bc9W(N,)

e d realizes p

€ < ¢ are from [, \)
¢ = ¢uld]

¢ E p. [J, Cx, €1]

¢ = —p.[d, e, €]
Now note that

(%)1 if p1 C po C tPiy, (dx,x + My) are finite and & < & < A then Ip, e, C
Iplyﬁl'
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[Why? Read the definition.]
(x)2 if (p,&) € & x X then I, ¢ # 0.

[Why? As = ¢[dx, Cx, e¢] clearly p1 == pU {p.(Zq,cx, €)} belongs to &, hence by
clause (A)(g) there is b € “9) (N,) such that p; (zz) U{e ()} U{ps(Zg, Ex, 0) 1)}
is consistent for t = 0,1. Hence recalling € = @, [dy, éx, b]F¢®3) there is d in
¢ realizing py(Zz) U {1« (Z5)} and € = @, [dy, &y, )fE"t®) . Next choose ¢ < A
such that ¢ > ¢ and b € N¢. Now ¢, (%4, Cx, ) b oulzg, ox ,B]EE®) g0 necessarily

€ b S [d, e )T
Clearly (b, ¢, C,J) € I, ¢ so Iy ¢ # 0 as promised.]

(%)3 choose an ultrafilter 2 on I such that (p,{) € Z x A= I, € Z.
[Why? As I,  C I using (*); and (x)2 above.]

)4 p(y, ¥, y",x7) is the following complete type over cx + My; where ¢/, §” has
(#)a p(1. ¥, 9", 24 g complete typ v,y
length £g(7):

p(y,7.9"23) = {0(ex, 5,9, 9", %4,€) : 0 = WTe, 9,9, §" T3, 2) € Lirr), e €
t9(2) (M) and the set {(b,e,(,d) € I : € = ﬂ[cx,b ez, e, d,el} belongs to
7.

[Why? As 2 is an ultrafilter on I.]
(¥)s choose (V',ao,ar,d’) in € realizing p(9, ¥, 7", Zq)-
Now note

(%)g (a) @y realizes Av({€X:e < \),cx + Mx)
(b) ap realizes Av({ef :e < \),ag + x + Mx)
(©)

[Why? Think.]

ao”ay realizes Av((e3. €5, 1 1€ < A, Cx + My)).

(*)7 (a) (f_’ realizes tp,, (dx,cx + Mx)
(b) d realizes ¢g,ex,a0) and —p. (T g, Cx, a1)-
So clearly we are done. Us.15

Claim 5.18. Assume x € PK, ;4,00 > Do, 06 = @(Tg, Teg ) and®* 1, =
Vu(Zdps Te00) € tP(dxps Cx,0) and K(0uy sy X) = 0. If X := ntry (s, s, X) is
< k then there is'y such that x <1y € pK,, ;o and 0 < k(p., s, y).

Proof. Let Ay C My witnessing ntr, (¢«, Vs, X) = A
Let A, = (A; : e < \), ete.

Case 1: A < p.
As in 2.14 that is [Shel5, 2.8=tp25.33] and see Definition [Shel5, 2.6=tp25.32]
but here we elaborate.
B Let J be the set of pairs (¢,I") such that:
(a) g=q(Tg,) C tpi¢*(cfx7p,5x,g + M) is finite

54May add parameters from Mx, but can use trivial members of éx, i.e. Cx,i © Mx.
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(b) T = T'(y) is a finite subset of A = {J(y,¢) : 9(g,z) € L(rr) and
= eg(z)(Mx)}
By for a pair (¢,T") € J we say (¢o,¢1) does A,-exemplifies (¢,T") when :
(a) o, € 9W(A,)
(b) € E “Y[eg] = I[e1]” when ¥(7) € T'(g)
(¢) {v(zg)} U q(a‘:gm) U {gp(a‘:gyp, c1), —wp(a‘:cj,p, o)} is consistent
B3 the family {{(¢g,¢1) : (Co,¢1) does A.-exemplifies (¢,T')} : (¢,T') € J} has
the finite intersection property.

[Why does H3 hold? Otherwise we can find (g¢,T'¢) € J for £ < n such that no
(Co, 1) does A, exemplify (p,Ty) for every ¢ < n. Define the two-place relation E
on YW (A,):
®3.1 coFep iff Cp,C1 € @g(z})(A*) and € ': “’19[60] = 7.9[61]” for every 7.9(@) € U Iy
<n

clearly F is an equivalence relation with finitely many equivalence classes. Let (¢} :
£ < {(x)) be a set of representatives and let ¢. = (U q0) U{p(Zg,,¢;)" : t € {0,1}
l<n

and € b= ld . 2111
So

©3.2 ¢« is a finite subset of tp,,(dx,p, Cx,e + M) and

®3.3 g« F tpjzgp(dx,pu Ex,g + A*)

But ®3.2 contradicts the choice of A, so Hs holds indeed.]
So

M, there is an ultrafilter on 29(%)(A,) extending the family from Hs.

Choose such an ultrafilter D.
Let (&, ;) realizes Av(D, dx + ¢x + Mx), so clearly

Hs the following set of formulas is finitely satisfiable in €:

{¢* (‘frf)} U tpigo* (dX”Uv Tz, + Mx) U {‘P* (i‘ci,/n Cx,05 6/1)’ TP (‘frf,/n Cx,05 E,/a)}
So let d’ realize the type from B5 and define y € pK, .0 by

Mo (a) M, = My

B wy=wet{t)
(¢) dylwx =dx and dy,, =d’
(d) vy =vx+ {s:} and uy = ux
(e) Cylvx =¢x and &y 5, =7}
() 1, - L

(9) By,s is equal to By s if s € vx\ux and is equal to A, if s = s,.
Clearly y is as required.

Case 2: A\ > u is singular.
Impossible by 5.14.

Case 3: A > p regular
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@1 without loss of generality
(a) for some ¢1,¢cy € “9W) (M) we have
< ): “(VEJ) [90* (fciv Cx; 51) A" (fiv Cx; EO)}”
(b) for every &, € “9¥) (M) for some &y € ‘9% (M,) we have
< ): “(V.Tg)[cp*(fg, Cx; El) = —\cp*(fg, Cx; 52)]77'
[Why? We can use ¢'(Zg,2e ¥ ((yo, ¥1,92)) = [Yo = y2 = ¢(Zg, T, Y)] A [yo #
ya ANy1 = ya — —p(Tg, Tey)] so if B C My, |B| > 2 we can use for yo,y1, Y2
members of B; see more in the proof of 8.4.]

@2 (a) let n, be as m in 5.14(3)

(b) let P = (P**(i'g,p’ Cx, 05 ﬂ**) wherey =" ... Agn(*)—lv fg(gg) = fg(g)
and Pux = /\ w*(jd,paéxﬂ’gg)'

£<n(x)
Now
@3 A = ntry, (Qus, ¥, X).
[Why? Think.]

Now we shall use 5.15 + 5.17 for ¢,., v getting d', Go, @1,I = ((Ga,0,8a,1) : @ <
A).
Why this suffice? We choose y by

Dy (a) My = My
(b) dy = dx {d) ie. wy = wx U{s},wx,p <y 8,dys=d.
(¢) ¢y =ex (ao ar), i.e. ag a1 = Gy, vy = vx + {t}
(d I,,=L
This is this possible? We just have to check that the relevant condition in 5.15, i.e.
the clauses in (A) holds which is straight. Os.18

Conclusion 5.19. 1) For every x € pK,, , o there is'y such that x <1y € pK, , o
and: if @*(j37pajé,gag) € Fyluw*('f(ipvjé,g) € tp(dX,pAEX,ga(D) andy <y z € pK,wL,a

then Kau (9, Vs, 2) = Kau (s, ¥, y).-
2) Above y € uK, ,, 9, see Definition 3.6(3C).

Proof. By 5.15, recalling 5.12; as in 5.14(4). Os.19

Conclusion 5.20. Ifx > p > 3,+07,0 > |T| then VKSM, 18 <i-dense in st%e.

; 52 ®
Moreover, if m € SKH%@ then for some n we have m <y n € uKN)M)e.

Proof. Assume m € SK?MQ we apply 5.11(5) to x getting y as there. By 5.18 we
have

(*)1 ifsﬂ = (p(jd_,pa -i'agn g) and '(/J = ¢(fg,p> jé,go) € tp<dx,p7 Ex,po) and kdu(@7 % y) =
0 then ntr, (v, ¥,y) > k.

Clearly we can find n such that
()2 (a) m<;ne SK?,,LL,Q

(b)) Xn=y
(c) if p,1 are as in (¥); then ¢ € T2 .
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By 5.12 + 5.15 clearly n € vK, 4.

The “moreover” is proved similarly. Os .20

Theorem 5.21. The recounting theorem Assume k = K< =N, = p+a > p >

2, +60%,0>1T).
Then for any M € EC, ,.(T) the cardinality of S°(M)/ =au; is < 2<H+ |a|0FITI
Proof. By 5.20 and 3.13(2). Us.21

§ 5(C). Exact recounting of types and vK.

The following analysis look more carefully at decomposition and ¢ € T'L: even-
tually it was not used in proving the density of vK.
Here we use ind(¢p).

Definition 5.22. 1) For ¢ = ¢(Z,7, ) let ind(p) = indr(¢) = min{n : the set
{o(Zy, 7, G)"®) 9y € "2 and k < n} is inconsistent with 7'}; compare with 2.6(5),
2.15(1).

2) Above if §' is the empty sequence we may omit it; we may ignore the case
ind(y) = 1; it is always > 1.

3) For x € pK,_ , g and ¢ = ¢(Zg, Te, §) € Ty, and k < indp () let

A}(,%k ={¢Y: ¢ = w(gk,ga“...Ag,j_l,y,j+1A...Ay;d(w)fl;ica) and for each ¢ €
ind(¢)\{k}, ¥e,0 or g1 is a dummy in ¢} where we fix ¥\, = Um0 Um.1,£9(Um.0) =
29(Ypm) = £g(Ym.1) and in g g3 " ... Ayi—;d(@—l there is no repetitions.

4) A?(,cp,k = {wx,%n,wk Sk = wx,%mwk(gk? g(-)im s Agl_c‘ll’ gl-c:lA Tt Ag;d(w—l; Ig) =

(Fzg)( A (o(zg, Te, ym,n(m))[y(mﬂ/\@(f& Ze, yk)[u(k)])) wheren, v € ind(¢)2}~
m<ind(y),m#k

5 Let Q) one = {Uxpmuk(P,6,88) @ € = &1’ ... "Eina(p)—1 and &, €
249(9) (M) for each m} where: &, =5 "¢) ;" - .. "Cr10 Cho11,49(C ) = Lg(Tp,) =
£g(y)-

6) For A C A}, and we let
Yoo, = W@ ) 0 =G0 - B T
and € = €xy1” ... "€ind(y) and &, € 2t9(9) (M) for each m}.

A relative of 2.14(1) = [Shel5, 2.8=tp25.33] imitating vK is

y;;d(go)—l’ Te) € A

Definition 5.23. Let x € pK, ; , be normal®® and ¢ = ¢(Z,Z¢ ) € '}

%, really
¢ = p(Tg Tz, Y) for some p € ¥ (Lg(dy) and ¢ € “> (£g(cx)) and n = ind(y), see
5.22(1).

We call w an (x,¢)-witness when w = ((x,0,¢,1) : £ < n) = (Cw k0, Cw k.1 :
k < ny), their concatanation is denoted by ¢, and there is p; exemplifying it such
that

(CL) let ¢ = E]“()Aékvl and Cek = (50, ceey Ek—l)
(b) €k,0, Ck,1 are finite subsequences of some ¢y ;) with (i(k) : k < n) increasing
and () < i(k) for £ < Lg(o), k <n

55This indicates we may forget &x and instead have a set of sequences some d;’s which function
as ¢;’s, so we have By or I, but even if £g(ny) = n¢ + 1,m1(n1) = n2(n2) we still may have
By, # By, etc.
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0
x,p,k,C<k

(¢) €k,0,Cr,1 satisfies the same formulas from Q
(d) p1 € 9P ig(dy) and
e) dx ,and dy ,, satisfies the same formulas from {@(Z 7, éx.0,0) : b € 9 (M,
P P1 d,pr Cx,0
(f) dx.p, realizes gw = {o(Z g, Cx,0)s k1) A P(T g > Cx,or Chi0) K < 1}
(9) (nec?) tp(Ciky, C<i(h) + Mx) is°% finitely satisfiable in My.

Observation 5.24. Above in Definition 5.23, Lg(w) < indr(p).

Definition 5.25. In Definition 5.23

0) We say w is a maximal (x, ¢)-witness when it is an (X, ¢)-witness and there is
no (x, p)-witness wy such that w awy.

1) We say w is a successful (x, ¢)-witness when it is an (x, ¢)-witness and for every
(x1,w7) satisfying x <; x; € pK, ;0 and w; an (x1,¢)-witness w < w; we have
W = Wjy.

2) We say x € pK,, ;4 is full for (k, i, #) when x is normal and for every ¢ € T')
there is a successful (x, p)-witness.

Remark 5.26. In Definition 5.25 we may consider “every maximal (X, ¢)-witness is
successful”.

Definition 5.27. 1) Let ntr, (¢(Zg,,, Tz, ¥), W, X) where x € pK,, ; » and w is a
cp(ig’n,i@g,y)—witness, be the minimal cardinal A such that, recalling ¢ is from
Definition 5.23(f);

(x) for every A C My of cardinality < A there is a finite g4 = qa(Z4,) C

tpiq,(dxm, Cx + My) such that qa(Zg,) Uqw tpw(dxw, cx + A).

2) Let ntry(x) = min{ntry(¢(Zg,,, Te,0,¥), W, X) : ¢ = ©(Tg,,Te,e,¥) and W is a
maximal (x, p)-witness}. It is regular (see case 2 in the proof of ?? below and we
can replace finite by “of cardinality < n,” if A > Ny, see case 3 there.

Discussion 5.28. 1) The point is that looking for ¢ C tp,,(dx,y, ex + Mx) enables
us to deal with singular ntry ().
2) Do we really have to change dy , to dx,, in the definition of ntr,, (x, p, w)? when
we succeed, i.e. is it K7

Part is a finite subset ¢ of tpfg (Jx,n,Mx) so 7, p are not distinguished. But we

have gy is a £p-type on &Yy (k < nw, £ =0, 1} and tp(Gw, Mx) is definable.

56First, we can use just tpa, for Ay large enough. Second, does clause (g) follows from the
earlier ones?
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§ 6. INDISCERNIBLES
Hypothesis 6.1. T dependent.

Theorem 6.2. Assume k = k<" >p=23,4+6,0 > |T| and M € EC,, .(T).
Ife < 0" andp € S°(M) then there is an indiscernible sequence I = (G, : o < K)
of e-tuples from M, i.e. ao € M for a < K such that p = Av(I, M).

Proof. Let d realize p hence for some x € 1K, . 9 we have dy = d,ex = (), vx = 0.
Let m = (x, (), (), it € rK® _,. By the density of uK?%a there isn € uK?Hﬂ such

K,k,0°

that m <y n, hence d < dy[m]- By 6.3 below we are done. U2

§ 6(A). Indiscernibility and materializing m.

Claim 6.3. 1) Assume m = (x,,r) € tK?’ﬂ’a and My has cardinality k, then for
some (6" dg : a < K+ w) we have:
(a) Cu,de are from My and ¢y dy"Co dg realizes v for a < k

(b) T = (o do : < Kk+w) is an indiscernible sequence and (., d,) = (Cx, dx)

(€) tp(M,U{Ca " do : a0 < K} + G+ ..+ Cuin, ) Ftp(M,U{dy : a < K +n.})
(d) if A C My is ﬁnite‘ri7 and a < & is large enough then tp(Co da,A) =
tp(Ex "dx, A) and tp(dx,cx + do) F tp(dx, ex + A + €0 do) according to .

2) For (m,w) € VKSF—L’G similarly but replace clause (d) by

(d)" if A C My is finite and o < r is large enough then (Ca,da) solve (m, A +
U{eg"ds : B < a} in the rKgﬁye-sense-see Definition 3.53(f).

Definition 6.4. 1) We say an indiscernible sequence I = (¢, d, : s € I) materialize
m € tKg 1,0 when in the linear order I there is no last element and for some ¢, d,,
for n < w the sequence (s ds : s € I +w) satisfies (a)-(d) of Claim 6.3, and (&, d,,)
here standing for €4y, Cxtn there.

1A) Similarly for VKSQ,Q.
2) I is also said to materialize x when this holds for some m with x = x,.

3) We say that D is the ultrafilter of m € th%e or just m € tKS#ﬂ and we
may (see 6.9(3)), D = Dy, when D € uf(éx[m]A(fx[m],Mx[m]) satisfies: for every
A C My of cardinality < x and sequence ¢'"d’ from My, the sequence real-
izes tp(D, A) iff ¢"d’ realizes tp(Cxfm] dx[m], A) and Cxjm] dx[m] ¢ "d’ realizes rm,
recalling Definition 1.19(7).

Proof. Proof of 6.3 1) Let (aq : o < k) list Mx and choose (¢q,dq) in M by

induction on o < x which solves (x,1,7) over A, := {ag+¢s+ds: 3 < a}U By,
see clause (f) Definition 3.3. B
Next, let (¢x,dx) = (€x,dx). By 3.14 for each a < k the sequence (¢g"dg : B €

[, k]) is indiscernible over A, and choose (Cxtn,ditn) for n € [1,w) such that

(es"ds : B € [a,k + w)) is an indiscernible sequence over A, for every a < k,
possible by compactness, so clauses (a),(b),(d) of 6.3(1) hold.

57we can say of cardinality < k, but for 6.4 sake we use this form
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 We are left with clause (c). By clause (d) we have tp(dx, ¢x, da+¢a) F tp(dx, ex+
do + Co + {la) Now for stationarily many « < k we have tp(dx, ¢x + do + Co)
tp(dx, ex+da+CatAa+ Y. Cutn), otherwise by Fodor Lemma we get contradiction

n<w —

to 2.14(2). So by indiscernibility we get, for n < w, 8 < k+n that tp(duini1, Catnt+
dg+¢3) Ftp(ditn, Cogn+ D G di + Ag s + Y. Cutn)-

i<B m>n
Hence forn < wwehave tp(M,, >, ¢ dat+ Y, Corm) b td(My, > o dat+
a<k+n n<w a<k+n
> Cxtn) hence we get the desired conclusion.
m<w
2) Similarly. Og.3

A variant of 6.3

Claim 6.5. If m = (x,1,7) € tKguﬂ with My of cardinality k and Iy = 11 X Z
ordered lexicographically of course, Iy is a saturated model of Th(Q, <) of cardinality

Kk, then we can find (¢s"ds : s € Is + {k}) such that:

(a> (Emdn) = (Ex;dx)
(b) (¢s°ds : 5 € I + {K}) is an indiscernible sequence
(¢) My is |T|T-atomic over U{¢s"ds : s € I}
(¢) if Jo = J1 X 7, where Jy (is a linear order which) extends I, and &, ds for
s € Jo\Io are such that (¢,"ds : s € J) is indiscernible, then tp(M,U{cs d,} :
s€I}) Ftp(M,U{e"ds: s € J})
(d) if s € I then dy ¢x ds"Cs realizes r and for every A € [My]<" for every
large enough t € Iy we have tp(dx,cx + di + ¢;) + tp(dyx, Ex + di + c; +
S e ds + A).
s<t
Remark 6.6. 1) In 6.5 we cannot use Iy a saturated model of Th(Q, <) as then
some b € My may induce a cut with both cofinalities > |T|.
2) In 6.5 we can replace Z by any linear order with at least two elements but < A.
3) Note that if m € tK¥_, C vK%_ then also (m,w) € vK®__ for w the

K,0,0 rs 07 5,0
“identity” on I'Z | see Definition 3.6(4C).

Proof. Let (a, : @ < k) list the finite sequences of My each appearing stationarily
many times.

Let (to : @ < k) list the elements of I; without repetitions and for technical
reasons (t, : n < w) is increasing.

Now we choose Ji o, J2,q, (6s°ds : s € J2,o) by induction on o < A such that

(a) J1, is a subset of I; of cardinality < A, C-increasing continuous

) J2.0 C J1,0 X Z ordered lexicographically and contains Jy o x {0}

Y {tg:f<a}CJiqand {tg: B <a} XxZC Jy,
d) I, = (¢ d;:t e J2,q) is indiscernible for o > w

) (€, dy) solves (x,1,U{¢s"ds : s <y, t} for each t € Jo o

) if @ <wora=1mod3let 3(a) < A be minimal such that g, is <r-above
Ji,a then €., . 0) digs.,.0) SOLVes (x,1,7r, Ay) where A, = U{¢:"d; : t €
Jo,0 U{(tga),m) : m < n}} and Ji a1 = J1,0 U{tg)}s J2,041 = J2,0 U
{(tg(a),n) : m € N}
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(9 if @ = 2 mod3,a > w and let Jig+1 = J1aU{ty : 8 < a,tg <
ta(a) }> J2,041 = J1,a41 X Z and choose a; for t € Jo 11\ J2,a (such that (d)
+ (e) holds)

(h) if @ = 38 > w, then we choose Ji a+1,J2.0+1,((Cs,ds) : 8 € Joar1\J2.a)
such that®®, if possible, for some finite I C IL\J1 o we have Jy g41 =
J1,0UIL, J3 0 = J1,o X Z and defining I* € K, as (I XZ, Ps)ser, Ps = {s} X Z,
the sequence (¢, d, : s € I*) is not indiscernible over ag.

It is easy to carry the induction.

The main point is to verify clause (c) hence (c)’. By [She04, 3.4] or see §(1C),
if a € "(Mx) and ¢ = p(Z i), Te[x]» Z[n)) then there is an expansion of I3 to I =
(I, Py, ..., Py) each P; a (non-empty) convex subset of I5 such that (¢, d, : s € I)
is {¢}-indiscernible over a.

Without loss of generality if t € I, £ < nand ({¢t} XxZ)NP; # ON({t} xZ)\Ppy # 0
then P, C {t} x Z and let I} be the set of such t’s. Let a < k be such that
{<n=>PNJy# (), without loss of generality Jo.0 = J1,0 X Ly = war.

By clause (h) of the construction we get that tp,,(a, {e°ds : s € IL X Z}) F
tp,.(a, {e,°ds : s € I1}), treating ¢,"d, are singletons, of course.

As this holds for any such ¢ we are done. Us.5

Observation 6.7. 1) If I = (¢;"ds : s € I) materializes m € th’“ﬁ then we can
replace I by I|J for any J C I cofinal in I and cf(I) > k.
2) If || Mx|| = k then cf(I) = |I| is necessarily k.

Remark 6.8. Recall that if T' is stable (or just I is an indiscernible set), necesssarily
we get that ds is algebraic over cs.

Proof. Straightforward. Ue.7

Claim 6.9. 1) If m = (x,9,7) € tK?,ﬁ,e orm = (x,9,r,u) € VKSMﬁ, then any
two materializations I1,1s of m are equivalent, see Definition 1.36(5).

2)Ifx e quﬁﬁ or X € VKSE,G and My has cardinality k, the number of materi-
alizations of x up to equivalence is < 27.

3)Ifme tK?,Wg then there is one and only one D = Dy,, the ultrafilter of m, see

6.4(3).

Proof. 1) Suppose I, = (ELSAJZ,S : s € I;) is a materialization of m and &, "d’, be as
in Definition 6.4, or see 6.3, for £ = 1,2. We can replace I; by any cofinal sequence
hence without loss of generality otp(Iy) = k¢ = cf(ke), so by 6.7 kg > k > |T|.
Without loss of generality k1 < ko, now we let Iy = {tg. : € < K¢} with t, . being
<p,-increasing with e.

First assume m € tKSM,7 so for every a < k1 for some hi(a) < kg we have:

(*)a tp(dxaéx + d2,t2,ﬂ) F tp(dxaéx + d2,t2,5 + {El,tl,eAdl,tl,a 1e < Oé}) if B €
[h1(a), k2).
Case 1: k1 < ko
Then () = sup{hi(a) : @ < K1} is < Ko, so applying (x), for every a < ki,
for 8 = B(x) we get that da s, g(s)41 Ca,t,,8(+)+1 Tealizes tp(dy " cx U{C1,¢,,8 d1 s, 5
B < a} which is realized in My so we get contradiction.

58J27a+1 has an infinite end segment included in Jz o
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Case 2: kK1 = Ko

So hs : kg — k1 can be defined similarly and let £ = {§ < k1 : ¢ a limit ordinal
such that o < § = hi(a) < J A ha(a) < 6}, it is a club of &4.

Now for any h : E — {1,2} the sequence I, = (
cernible sequence by Claim 3.14 or 3.16.

So all the Ij,’s and I;, I are equivalent. Second, assume (m,u) € vK
too. The case of vK is similar.
2) For x € thﬁ,g the number of pairs (¢, r) such that (x,¢,r) € th_ﬁ,g is < 27,
and now apply part (1). Similarly, if x € vKy, z,¢ then the number of triples (4, r,u)
such that (x,4,r,u) € vK®

Aty (0.0 @ @ € E) is an indis-

®

ka0 CA8Y

Ky ,K"
3) E.g. force by Levy(k, || Mx]||) and use absoluteness. Os.o
Definition 6.10. Assume M € EC,, ,(T') and p € S7(M).
Let

(a) I, ={I:1I1is an (endless) indiscernible sequence in M with Av(I, M) = p}

(b) I¥ = {I €I, : T has length x}

(c) Iy =1T5.
Definition 6.11. Assume M < ¢, m = (x,%,7) € tK?,/E,G or m = (x,1,r,u) €
VKEM, and v < £g(dy) and p = p(T) € S7(My). We say that I materializes the
quadruple (p,x,,7) or (p,x,,r, w) or in (p, m) when:

(a) I=(bs"¢s"ds : s € I) is an indiscernible sequence in My

(b) (¢s°ds : s € I) materialize m = (x,1,7)

(c) (bs:sel)el,

(d) Case 1: m € tK? _, for every finite A C M, for every large enough s € T

~ TR0 a - _ _
we have tp(dy, éx + ds) b tp(dx, x + (A + bs + & + ds)) according to

Case 2: m € VK?%Q: for every finite A C My for every large enough s € I,
the pair (cs,d,) solves (m, A + b).

Claim 6.12. Assume M, m,~,p are as in Definition 6.11 and || Mx|| = &.
Ifl, = (b5, :a < k) € [, then there is 1= (o "Co dy : 0 < K) which materialize

(p,x,1, 1) such that the sequences I, and (b, : a < K) are equivalent (even are
equal on a stationary set of indices).

Proof. Let (as : a < k) list the members of My. Now repeat the proof of 6.3 before
choosing (€, d,) in stage o, choose minimal y(a) < A such that Bv(a) realizes
Av(L,, Al) where A}, := U{{ag) bys) ¢z ds : B < o} and choose (¢q,ds) as a
solution of (x,1,7) over A, + by (a)-

As (by : a < K), (€4 ds : o < ) are indiscernible sets, for some type 7, we have
(VB < K)(Vy < B)[tp(bs ¢y dy, Ex + dx + AL) = 14], and clearly b, (o) o da
realizes the type and r, increases with .

So again by 3.14 or 3.16, the sequence <(E,y(a),éa,(fa) : a < A) is indiscernible
and also the rest should be clear. .12

Discussion 6.13. Recall 1.21(4). If we replace the type by its w-th iteration, see

[She80], i.e. if (d,, : n < w) is an indiscernible sequence witnessing D € uf(tp(a, M))
then tp(a,do”d;”..." D) determine D.

See https://shelah.logic.at/papers/950/ for possible updates.
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Definition 6.14. 1) For M < €7, ultrafilter D on M and Ip = (a, : n < w) based
on D (see Definition 1.19(6)), let Tp be the set of sequences ((As,as, As) : s € u)
such that:

as € SM

(d) finite Ay C I'¢ which is C-increasing with s € urecalling I'c = {¢(Zo, ..., Zn;7) :
Ty = (x4 € < () and y = (y, : £ < n) for some n}

(e) (a:)"Ip is As-indiscernible over U{A; U (aslw) : s <, t and w C 7 is the

finite set of places not dummy in Ag}.

2) Forne Tp let n = (Ans,n,s, Ann) 1 8 € Un),u[n] = uy and let max(n) be the
<u-maximal member (= root) of uy and (Ay, @n, An) = (An max(n)s Gn,max(n)s Dn,max(n))-
Lastly, @y 18 Gn max(n)-

4) Ifne Tp and s € uy let un[(< s) be ul{s1 € uy : $1 <y, s1} as a partial order
and let n[(< s) be ((An,sy; On,sqy Anysy) @ 51 € ul(<L9)).

5) We say w = (n; : t € I) is a witness for D when:

(a) I is a directed partial order
(b) ng € Tp for every t € I

(c) if t1 <p to then for some s € ulng,] we have ny,, =0y, [(< ).
6) In part (5) let (At> ag, At) = (Azr,ta Gyt A;,t) denote (Al'tt,max(nt)? Gy max(ng)s Ant,max(nt))-

Claim 6.15. 1) If D is an ultrafilter on M then there is a witnessy = (n; : t € I)
for D, let n[t] = n,.

2) If A CT¢(rr) is finite and A C M is finite then for some tg € I, if k <w and
to <1 ... <ty then (Gny,) : £ < k) is A-indiscernible over A.

Proof. See [She04, §1] or an exercise. Ue.15

§ 6(B). Indiscernible existence from bounded directionality.

We affirm here the conjecture from §(1C) for the case k = 1, for dependent
theory T of bounded directionality. We state the more informative version (see
Defintion 1.46(1)).

Claim 6.16. The Strong Indiscernible Existence Theorem 1) Let T be of finite di-
rectionality, see Definition 1.23. Assume r = cf(k) > 0 = |y| + |T|,ds € 7€ for
a € k and (d, : a < K) is a type-increasing sequence, see 6.18(0) below, then
for some I € K¢ expanding (k,<) the sequence (ds : s € I) is mod club locally-
indiscernible, see Definition 1.46.

2) Let T be of bounded directionality. Then we get a similar result for I € Kyeg g,

see Definition 6.17 below.

Proof. 1) By 6.20 + 6.21(2) below.
2) By 6.20 + 6.25 below. Lo
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Definition 6.17. 1) K,eg ¢ is the class of structures I = (I, <, P! F )i<6,j<6 such
that (I, <) is a linear order, P! a unary relation and F JI is a unary functlon such
that Fj[ (t) < t; reg stands for regressive.

2) Assume k is regular uncountable and I € K,eg¢ expand (x,<). We say the
sequence (d, : @ € I) is mod club locally indiscernible when (d, € ¢€,( < 6 and)
for some club E of &, for every n € 92,v € 9(k + 1) and finite A C L(77), we have:
if S, ={a € E:IE P(a)" for every i € u and Fl(a) = v(j) v (F/(a) =
a Av(j) = k) for every j € v} is unbounded in  then (d : a € S,,) is A-
indiscernible.

Definition 6.18. 0) We say that (dq : @ < ) is type-increasing over B when
tp(dg, U{ds : @ < B} U B) is C-increasing with «; if B = () we may omit it.
1) Let aK} 40 be the class of x consisting of

(a) M = (M, : a < k), which is <-increasing, a < kK = |[|[M,]| < A
lo : a < k) and d = d,, is of length < 6%

-
I
=

2) Let €K « .0, be the class of x consisting of

(a) M as above

(b) I=(I,:a<k)and d=dy

(¢) each d’ € I, belongs to M, and realizes tp(d, M)
(d) My, =U{M, :a <k}

3) Let aKy 9 = aKy 10 and €K, g = eKy 4 0.

Observation 6.19. Ifx € aK), . ¢ then for a uniquey € eK) .0 we have My o =
My o for a <k and Iy o = {Gx,0}-

Claim 6.20. If (d, : o < k) is type increasing and k = cf(k) > |T|, then there is
x € aKy g such that for a club of o < k we have dx o = dq.

Proof. Let C, = U{dg : B < a} for @ < k+ 1. We can find a sequence (a, : @ < k)
such that

(a) tp(aq, An), where A, = C, U {ag : B < a}), does not split over some
B, C A, of cardinality < |T;

(b) every finite type over A,,a < k is realized by some ag, § < k.

This is possible by [She90, I11,7.5,pg.140] or see [She04, 4.24=np4.10]. So A, is well
defined and is the universe of a model M < €.

As k is regular, for every a for some 3, < k we have: the type tp(dg, A,,) where
A = U{d, " (a,) : v < B}) is the same for all B € [B3,, k), just consider the definition
of non-splitting.

Hence without loss of generality this holds for 8 € [B,,x + 1), too. Clearly
U = {0 < Kk : A§ is universe of an elementary submodel of M} is a club of &.

Define x by lettlng My, = M and for a < & letting My o = MTA]; (% \«) and
do = dmm(%\a) Clearly x is as required. .20
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Claim 6.21. Assume T is of finite directionality. Assume x € aKcy n9,k =
cf(k) >0 > |T| and ¢ = £g(dx).

1) If k > 2% then for some club % of x and partition (S; : i < 2°) of %, letting
I=(%,<,Si)ico0 the sequence (dx o : o € I) is an indiscernible sequence.

2) If A CT¢ = {o(Zo,...,Tn-1;7) : Te = (Tpe: € <) and § = (yg : £ < n) for
some n} is finite then for some club % of k and finite partition (Pa g : £ < {a) of
Un we have: {dx o : @ € (Un,<,Par)i<in) is A-indiscernible in the sense of 6.23
below.

Before we prove, similarly:

Claim 6.22. Assume T is of finite directionality. As in 6.21 for eK, g.

In full: assume x € eKcy wg,k = cf(k) > 0 C |T|,¢ and finite A CT where T
is as in 6.21(2), there are functions F, : U{I, : a < k} = K for n,na(x),na large
enough (i.e. (ZTo,...,Tn—1;7) € A = n < n(x) such that if (To,...,Tn-1;7) €
Am <nand K > af > ... > a1 > v and for v = 1,2 and d_% € lay for

E<mye=12and k <m = og > Fp_p(og ), 1) and b € *(Mx ), d* and
diyy .o di_y € $(Mx,) then

¢|:¢[Jaéa-~-7ﬁial 7g:nv"'ag;kl—1ag]

m—1

iff

¢ |= (p[(iag,...,cia
Definition 6.23. For I' as in 6.21(2) and A C T' we say (d, : o < a(x)) is A-
indiscernible over A when if m < nya(x) > ag > ... > a1 and a(x) > Gy >
coo> B and b€ 9P A and dj € CAfor  =m,...,n — 1 then

. o
2 b dh D)

€l @ldays sy sy 13 0)

Cloldy,....ds dn, ... dy ).

Discussion 6.24. Even for singletons we cannot replace “finite” by one in 6.21,
because even for 7' = Th(Q, <), a cut has two cofinalities in general.

Claim 6.25. Let T be of bounded directionality.

1) Assume x € aKy 9 and lg(dy) = ¢ and A C I¢ is finite. Then we can find a
club E of k and a regressive function f on E such that for every v < k the sequence
(do 1 € E and f(a) = v) is A-indiscernible or is empty.

2) Parallel for 6.22.

Proof. Proof of 6.21 1) It follows from part (2) as if %, (Pa; : ¢ < £a, A C T finite)

is as gotten there, we let £ = {(a,8) : o, € % and a € Pr; < B € Pa, for

every finite A C L(77) and (P; : i < i(x) < 29) list the E-equivalence classes then

(% , <, P;)i<i(+) is as required.

2) We prove here also 6.12(2). We call A C T'¢ cyclically closed when : if ¢(Zo, . .., Tn-1;7) €
A then some ¢'(Zog, ..., Tn—1;7) € Ais equivalent to ©(Z1,...,ZTn_1,Z0;y). Clearly

it suffices to deal only with cyclically closed A’s.
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Let DA ={DnN Defi(Mx) : D € uf(tp(d, Mx, )} says (Da; 1 i < Aa) list it. So
by 1.23 and 1.24 we have:

Case 1: T of finite directionality. Then D, is finite so Ap is finite.

Case 2: Not Case 1 but T" of bounded directionality. Then A\p < k.

Let dy = dx a,d = dx . Now fix ( = lg(dy), A C I'¢, A finite (cyclically closed).
For each i < Aa choose D; € uf(tp(d, My .)) such that D; N Defi(Mx) = Da ;.
Let v, be k + w if T is of finite dimensionality and x + x otherwise.

Let J = ([K,7x), <, P{/)ican € Kpan be such that each P/ is unbounded. For

(2 K2

v € [Kk,7«) let i(y) be such that v belongs to P’{v) and let J, = J[{y}. Let

Jo,i = ({at, <7Pj}“’i)j<z\a € K, be such that PZ-J"’i = {a}.

We can choose d., for v € [k,7.) so redefining dy such that tp(d,,U{d, : v €
[v,75)} U My ) is equal to Av(Dj(gy,U{dg : B € (7,7%)} U Mx,). How? For any
finite u C [k, 7« ) we can use downward induction and now use general compactness.

For i < Aa, let S; = {a < k: the sequence (d. : € € J,; + J) is A-indiscernible
over My o and for simplicity o ¢ U{S; : j < i}}.

For a < k let i(a) =i < a € S; and let J, = J, 5(a), 50 i(a) may be undefined.

Now

B if i < Aa and v < & then the sequence (dy : @ € S;\7) " (dy : 7 € [k, V)
and i(y) = ¢) is A-indiscernible over My .

Moreover

Hy Assume v < &, let #a = U SiU[k,v:)\V,Jay =2{Ja:a € #r )} +
i<Aa
J € Kpas let Ja = Jnpo,Iny = Y{Jo:a € #r} and In = Ino. Then
the sequence (dq : o € Ja ) is A-indiscernible over My ..

[Why? Without loss of generality consider only v € #a o. Let ¢ = ¢(Zo, ..., Tn_1;7) €
A. We now prove by induction on m, the statement for m simultaneously for all
v < k. That is

(%) if n > m and p(ZTo,...,Tpn—1,y) EAand JaFa>af>...>al,_; >
fort=1,2and k < mAi < la = [a} € P/> & o} € P2 and b €
9O (Myy) and dyy,, ... iy € (M) then € b= @[dag, .o dg1  dry, ..o diy 1,0

iff € @ldaz, . daz o di, .o di_, 0]

m—1’ M7

We prove this by induction on [{af, : K < m and ¢ = 1,2} Nk|. If it is zero this
should be clear by the use of ultrafilters. If not, let (¢, k) be such that o}, ¢ x and
t 4+ 2k maximal.

Let 8 € [k,7x) be such that i(a}) = i(8). Easily (dg : B € J) is indiscernible
over My so without loss of generality {a;((ll)) (1) € {1,2} and k(1) < m} N J is®®
disjoint to [k, + 1). But now note that replacing «j, by 8 does not change the
truth value. So Hy hence H; indeed holds.]

Clearly H; 4 Hs are nice but will say nothing if, e.g. each S; is empty.

Bs the set S := k\ U{S;\i:% < Aa} is non-stationary.

59%0uld be easier if we choose J with no first member
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[Why? Toward contradiction assume S is a stationary subset of k. For each

0 € Sand i < A we know § ¢ S;, hence there are ns; = n(d,i) and formula

©5,i(To, -+ Tng,—15Ps,i) € A and &§7i,1, e Jjg’i’n_l € U{d, : v € [k,v«)} and bs; €
95 (M 5) such that € = —ps,i[ds, d5; -, d5 ;1 05,0 but @5, (To, di 1+ di iy 135,) €
Av(D;j,U{dy : v € [K,64) } + Mx,5). Only finitely many of the members of dj ; , mat-

ter say Jg,i,e [Vs,4,¢, Vs,1,0 finite.

Case 1: A\ is finite

Let C5 = U{Rang(d}; ;v : € < ns; and i < Aa} U {Rang(bsr)) : i <€} so
it is finite.

Also Cs C U{dy : v € [K,7%)} U My and U{d, : v € [k,7.)} has cardinality
<|T|.

Hence by Fodor lemma for some C, C My the set ' = {6 € S: Cs = C.} is
a stationary subset of k. The number of possibilities for ((ns., <,05_,i)>A<J5,iyg [si0
i < Aa,l < n)is < |T| and the number of possible (bs; : i < Aa) is finite so for
some stationary S” C S’ for every § € S” we have ns; = N, s5i = Pxivs,;, =
Vi b, A5 10550 = di s 0,055 = by i

Let 2 be an ultrafilter on  to which x and every club of k belong as well as S”.

Let D' = {I C ¢(Mxy,): the set {a < k : d, € I} belongs to 2}, clearly D' is
an ultrafilter on ¢(Mx ). As tp(d, My ) = U{tp(da, Mx o) : a < K} clearly D' €
uf (tp(dyx, Mx ) or pedantically D’ N Def(¢(My)) € uf(tp(dx, Mx.)) hence we can
find i < Aa such that 2;NDef A (Mx ) = 2'NDef(Mx ). But this is a contradiction
to {ds : 6 € §"} € 2 and the choice of @s;(Zo, d} 1, .- 7(21,2’,77,*,1'71’ bai)-

Case 2: \a is infinite.

For a < r+1let My, be (Mxq)g, also E:={J < x: Mia < M, }is aclub
of k. For each § € E choose Ds € uf(tp(dx, Mx s)) and choose ds,,, € € for n < w
such that ds,, realizes Av(Ds,U{dsm : m € (n,w) + Myxs}. As T has bounded
directionality for each ¢ = ©(Zo,...,Tn(p)-1;¥p) € L(rr) and 6 € E there are
formulas 15(Jyp, Zp,5) € L(7y,+ ) and ¢y 5 € t9(22.5) (M, 5) such that

® forbe m(Mxﬁ) we have: € = (p[d&o, ooy ds -1, b iff My s = 1/)%5[17, 5%5].

Note that if: p(Zo,...,Tn,—1;7) € A and m < n,, then
©(Zo, - Tmn—13Tm - Tn(py—1 F) € A.

For transparency without loss of generality 77 is countable, { < w let (A, :n <
w) be C-increasing with union I'c and Ay = A and each A,, finite. For induction
on n, for some stationary S;, C SN E we have 6 € S, A € Ay, = Yo, (Yo, Zp,5) =
Voo (Jps Zp ) and m < n = S, C Sy,. Let Z be a uniform ultrafilter on x such that
n<w= S, €D, let (din : n < w) realize Av(Z, <<J(5,n m<w):0€ S>,Mx).
Easily (d., : n < w) is indiscernible over My, each d. , realizes tp(dyx, My) and
tp(da.ny U{dsm,m € (n,w)}+My) is finitely satisfiable in My, so it is based on some
D € uf (tp(dx, My)), so for some i < Ax we have D; ﬁDefCA(Mx) = DﬂDefCA(Mx).
We easily get a contradiction to the choice of S as disjoint to (S;\(¢ + 1)) and
S1. Us.21
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§ 7. APPLICATIONS

§ 7(A). The generic pair conjecture/On uniqueness of (x, 0)-limit models.

We now return to the (k,o)-limit model conjecture and generic pair conjecture
for k.

We shall not deal with the first, only represent it. The second, the generic pair
conjecture was solved in [Shel5] for x > |T'| measurable. Here we solve it for
k= k<" >|T|+3,, it is the case £ = 1 in Definition 7.1.

Note that even under GCH the picture is somewhat cumbersome when: x =
xT =2X > |T|+ 3, and x strong limit singular. It is natural to restrict ourselves
to Sgd+ (see [She79]). We may still like to deal with |T| < k < J,,.

Presently, the proof is complete only for £ = 1, i.e. the generic pair conjecture.

Now we rephrase the conjecture; the use of 2* = A* (in addition to A = A<?*) is
for transparency only as an equivalent version without it is absolute under forcing
with Levy (A, 2%), see §1.

Definition 7.1. 1) We say that T satisfies the uniqueness of limit models above p
when for any p-complete forcing notion Q in V@ and ¢ < X we have (A4) = (B)g,
see below. Omitting p means p = |T'] 4+ 3.

2) For regular A > |T'| and ordinal & < X we say that T satisfies the (A, &)-limit
uniqueness when for every A-complete forcing notion Q such that V@ = “\ =
AAA22 = AT clause (B)¢ holds.

3) We can add above “for the trivial Q” or other restrictions. Instead “for the
trivial Q” we may say “presently”

where

(A) (@) A=At and 2> = T >4
(b)  density for VK% A0 holds for every 6 < A, see §5

(¢) (Mg :a < At)is a <-increasing continuous chain of
models of cardinality A\ with union M, a saturated model of
cardinality AT

(B)¢ for some club % of A, if (a1 € < &) is an increasing continuous
sequence of ordinals from % for £ = 1,2 such that
[e < & non-limit = ay . of cofinality A] then there is
an isomorphism 7 from M,, . onto M,, ¢ mapping
M, . onto M,, . for every e <¢.

We now translate the relevant questions represented in §0 to this definition.

Observation 7.2. Assume T is dependent.

0) If IT| < A= A<, then T has (\,0)-uniqueness (even for the trivial forcing).

1) Assume |T| < A = A<* and 2* = A\*. Then T has (A, 1)-uniqueness, for trivial
forcing iff T satisfies the generic pair conjecture iff in (B)1 of 7.1 above, if oy <
B1, 0 < B2 are all from % and has cofinality A then (Mg, , My,) = (Mp,, Ma,).
2) Assume |T| < A = A<* and 2% = AT and 0 = cf(0) € [No,\]. Then T has
uniqueness of (A, o)-model iff T has (A, o)-limit-uniqueness for the trivial forcing.
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Theorem 7.3. T satisfies the generic pair conjecture for X when X\ = A< >
Tt + 31

Remark 7.4. This is closed to the proof from [Shel5] as we could restrict ourselves
to x with ux = 0.

Proof. By older works, we can assume 7T is dependent. Without loss of generality
22 = At by absoluteness, see [Shel4a].
So let (M, : a < A1) be given, M = U{M,, : a < AT}. Let E be the set of limit
§ < AT such that:
@®s (a) for every av < ¢ for some 8 € («, ) the model Mp is saturated
(b) ifa<B<6,¢<A{br,ba} C ¢(Mg) and there is an automorphism
g of M such that g(M,) = My, g(b1) = (b2) then there is such g mapping
Ms onto itself.

So

(x)o (a) Eisaclubof A"
(b) if & € F has cofinality A then M, is saturated.

[Why? As M is saturated and A = A<*.]

()1 if @ < AT and M, is saturated and m;, my € VKi\®,>\,<,\ satisfies M, =

M, = My, and m; <; my and G, “dm, is from M then there is an auto-

morphism g of M over B,;‘r‘12 mapping M,, onto itself such that g(¢m, "dm,) =
Cm; dm, -
[Why? See uniqueness of M) in 3.10, see Definition 2.6(6).]
Fix a1 < B2,as < (2, all from E and of cofinality A and we have to prove just
that (Mpg,, My, ) = (Mg,, Ma,). Let AP be the set of triples (m;, msy) satisfying:
(¥)2 (a) mye€ vK%AKA7 and ryy,, is complete
) Mx[mg] = M(Xz
) Cximy] dxim,] € Mg,
(d) g is an elementary mapping with domain Bi'[me] + Cx[m,] + Jx[ml]
(e) ¢ maps m; onto mo.
Let the two place relation <ap on AP be

(¥)3 (m1,ms,g) <ap (n1,n2,h) iff both triples are from AP, and g C h and
m; <3 ny,mp <g No.

Now
(x)4s AP # 0.
[Why? Use my which is empty except My, = M,,, see 3.7(3).]

(%)5 if the sequence ((mj ., ms.,g:) : € < () is <ap-increasing and (¢ is a limit
ordinal < X then this sequence has a <ap-lub, its union (mi ¢, ms ¢, gc),
ie.

(a) Xmy,¢c = U{Xm,, e <(}for£=1,2
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(b) similarly for 7/;me,5
(c) similarly for rm,
(d) ge = U{g6 e < C}

[Why? See 3.26.]
The main point is

(¥) if (my,mq,g) € AP and ¢ € {1,2} and A C Mp, has cardinality < A
then for some (nj,ng,h) € AP which is <ap-above (m1,ms, g) we have
A C By, + n, +dn,.

[Why? By symmetry we can assume ¢ = 1. Now trivially we can find x € pK, y -,
such that Xm, <1 x and A C Rang(dxjm,)). By 5.20 there is n} € rKi'ikK)\ such
that m; <; n and x <; x,.

Let Cp = c?x[,m] + Cxm,] T B:[mz]. Now recall that by 3.10, the model (M, )[c,)
is (A, Dy)-sequence homogeneous and moreover g induces a mapping from D; onto
D,, because g maps m; to my. So there is an isomorphism f from M,, onto
M., such that f U g is an elementary mapping (of €), hence it can be extended
to an automorphism f* of M. Now (ny, f*(ny), f[(Bn, + én, + dn,)) is almost
as required but f(én, dn,) is € M rather than C Mpg,. But B2 € E hence the
definition of F we can finish.]

Now by ()44 ()54 ()¢ we can find a <ap-increasing sequence ((mi ., ms ., gc) :
€ < A) such that: for any Ay C Mpg,, Ay C Mp, of cardinality < A for some € < A
we have Ay C Bm, . + Cm,. + dm, . for {=1,2.

So gx = U{ge : € < A} is an isomorphism as required. 73

Discussion 7.5. 1) So we know that Ty = Th(M,,, M,,) for every ag < ay of
cofinality A from %, is a complete theory and does not depend in (g, 1) and even
on A. But we may like to understand it better, see Kaplan-Shelah [KS14b).

2) Still Mag.a,) = (May, My, ) is close to being sequence-homogeneous. So this
leads us to deal with dependent finite diagrams D. Because if we like to deal with
(A, ¢)-uniqueness we have to look at (M,,, M,,) for any a € *>(M,+).

§ 7(B). Criterion for saturativity.

Claim 7.6. Assume o > pu = (217h)* + 3%,
Then M is o-saturated iff

(a) M is p-saturated

(b) if k € [p,0) and {aq : & < K) is an indiscernible sequence in M then for
some a € M the sequence {(a, : a < K)"{a) is indiscernible

(c) if K € [u,0) is reqular, {as : s € I + I2) is an indiscernible sequence in M
where Iy = (k,<), Iy = (a,>) for some a < k + 1 then for some a € M
the sequence {(as : s € I1)"(a) {(as : t € I2) is an indiscernible sequence.
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Proof. The “only if” implication is obvious. For the “if” direction assume (a),(b),(c)
and we prove that M is kt-saturated by induction on & € [, o); clearly this suffices.
By clause (a) of the assumption the model M is p-saturated. So by the induction
hypothesis M is k-saturated. Let A, C M be of cardinality x,p. € S(A.) and we
should prove that p, is realized in M. Let x € pK 0 = |T|,dx = (d) where d
realizes p,, My = M,vx = 0.

Now

Ky p,6?

B if m=1,I=(a, : «a < k) is an indiscernible sequence of m-tuples from M
and A C M have cardinality < x then the type Av(I, A) is realized in M.

[Why? Choose b, € M for a < k such that A C {b, : @ < k} and let A, =
Wag (bs) : B < a} for a < k. Let {p.(,¢.) : e < r} list the type ¢ = Av(I, A,)
and for a € ™€ define e(a) as min{e < «: if € < k then € | —p_[a,c.|}. We try to
choose @/, e, by induction on « < k such that

(¥) (a) ay, realizes p, := Av(I,U{aj : B < a})
(b) if «a is even then £(a’) is minimal, i.e. e(a’) < e(a”) whenever
ay, realizes Av(L U{aj : 8 < a})

(o3

(c) if ais odd then € = play,, co@ )]

We can choose @/, satisfying clause (a) as p, is an m-type in M of cardinality < k
and M and is k-saturated.

If « is even it follows trivially that we can satisfy clause (b), too. If «v is odd, and
e(al,_,) = x then a,_, is as required, i.e. so we are done proving H;, so assume
e(@g_1) < k hence also po U{¢car)(Z,C-(ar,_,))} is well defined and being a subset
of ¢ it is an m-type in M hence is realized in M, and any a., realizing it is O.K.

Having carried the definition, clearly (G, : @ < k) is an indiscernible sequence;
also by clause (b) of the theorem there is @, € ™M such that (@), : @ < k) is an
indiscernible sequence. If @/, realizes ¢ we are done, if not choose € < k such that
¢ E —pclal,c]. So for every even a < k,al, satisfies clause (a) hence e(a,) < e.
So for some ¢ < e the set {o < k : « even and &(al,) = (} is infinite. But by
(¥)(b) + (c) this is a contradiction to “(al, : @ < k) is an indiscernible sequence”

from the beginning of the paragraph and “T is dependent”. So H; holds.]

B, if BC AC M,|B| < k,|A] <k,m=1and p is an m-type over A which is
finitely satisfiable in B, then p is realized in M.

[Why? Let D be an ultrafilter on ™ B such that p C Av(D, A). Let (A, : o < k) be
C-increasing with union A such that |A,| < |a|. Choose a, € ™M by induction on
a < k such that @, realizes Av(D,{ag: 8 < a}UA,UB). SoI=(a,:a<k)is
an indiscernible sequence ([She90, 1,§1] or see [She04, §1]) and p C Av(I, A), hence
by H; we are done proving Hs.]

@1 if k is singular, p, is realized in M.

[Why? Let (Af : e < cf(k)) be C-increasing with union A, such that |A¥*| < k for
€ < k. As M is k-saturated for each ¢ < k there is a. € M realizing p,[A.. Let
B = {a. : ¢ < cf(x)} and let D be an ultrafilter on B such that ¢ < k = {ac : ( €
(e,cf(k)} € D. Clearly p. C Av(D, A.) hence by Bs we are done.]

@o if Kk is regular, then p, is realized in M.
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[Why? Let (A} : o < k) be C-increasing with union A, such that |A%| < & for
a <k Let m=(y,¢,ru) e VKSIMG be such that x <; y, exists by 5.20. We can
choose (dg,€s) by induction on o < k such that it solves (m, A, U {dg s : 8 <
a} U By ). By 3.14 the sequence (6o dy : o < K) is an indiscernible sequence over
By .

Let d/, = da, so I = (d], : & < k) is an indiscernible sequence and d, realizes
px[Aqs. Hence Av(I, A,) is equal to p.. So by H; we are done.]

By @1 + @2 we are done. O76

Another result of interest is (compare with 6.2)

Conclusion 7.7. Assume vK g is dense and € < ot.
If M is a k-saturated model then for any p € S°(M) there is a k-complete filter
on |M| which is an ultrafilter when restricted to Def.(M), see Definition 1.19.
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§ 8. CONCLUDING REMARK
Another relative of 4.6 is

Claim 8.1. 1) Assume ©,(Z(¢],¥n) is a formula for n < n.. If 9 is a filter on I
and a; € °C fort € I, then there is ./ such that

(a) for some ki, = (S k < ki) is a partition of I

() S e D™

(¢) if £ <m, and b € ()@ then for some truth value t and k < k, we have
{t € S : €= plag, b]f®} = . mod 2.

1A) Above we find S such that

(a),(b) are as there and
(¢) if b, € L9WIE for n < n, then for some k we have

e for each n < n, for some truth value t, the set {t € S : € |
©nlas, b, )T} is = .7, mod 2.

2) Assume Dy is a filter on Iy for £ = 0,1 and C C €p, A C L(rr) are finite and
Qo € me fort € I;,0 < 2. Then we can find % € DZ for £ < 2 such that for
some q we have (V705 € #) (V7 s1 € 1)[q = tpa(@o.s, "a1.s,,C)]-

3) Like part (2) for ((Is, Ze) : £ < ny).

Proof. 1) We try to choose ny, by,.#; by induction on ¢ € N such that

B (a) ne<n.
(b) by has length £g(¥,,)
() Fo= (S n € T12)is a partition of I
(d) S, € P+ forne’2
(e) S ={tel: ifk<lg(n) then €= “p,, [as,by]f"EI"},

We stipulate .| = (S«s), Lo = L.

If we succeed, we get a contradiction to “T" is dependent”. Arriving to ¢, clearly
%;_1 has been defined, and if we cannot choose ng, by are required, the conclusion
of part (1) holds.
1A) Similarly; e.g. without loss of generality ( is finite from a failure we get that
for every k we can find A, |A| < (Z{lg(Fn) : 1 < n.} X k, |S§%:n<n*}(A)| > ok,
contradiction to “T" dependent” (see ??(b)).

2) Let A = {0} (Z(m(0))s Um1)]s Zn) : 1 < N} and @ = {@} (Z(m(0)], Tpm(1)], Ck) = 1 <
Ny, ¢ € Y9E)C) it is finite and clearly it suffices to deal with one pair (p},¢), as
we can replace Z; by 2y +.% when . € 2, and let 02 = @} (Yim(1)], Z{m(0)]s Zn) =
o (Yim(0)]s Uim(1)]> Zn)- We apply part (1) with m(n),1,¢2,(a; ¢ : t € Iy), 2y here
standing for ¢,n.,¢n, (@ : t € I), 2 there and get . = (Fx : k < ki) as
there. We define a funtion h : Iy — {0,... k. — 1}, by h(s) = min{k : (Y71t €
1)¢2 (@14, a0, 5,¢) or (V7it € I1) (=92 (@14, a0.,¢))}. By the choice of .7, this is a
well defined function. Clearly for some k and t, the set % := {s € I : h(s) = k
and (V71t € I1)[p2(a1.1,a0.5, )]} belongs to 7 and let .73 = .7 , clearly we
are done. Og.1

Here we look again at decomposition as in [Shelb], i.e. with ux = 0.
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Claim 8.2. Assume A = {¢«(Z,7), "0« (Z,75)},m = Lg(Z) and m < w and n, =
ind(ps). For any A(C €) and p € SR(A) is consistent with r.(Z) and p > Ny we
can find the following objects:

(4) (a) d€ ™€ realizing p
(b) ny <ind(e(z,7))
(¢) A, C A has cardinality < p for n < nq
(d)  bno,bp1 € 9D forn < ny
(e) D, is an ultrafilter on “99)(A,)
(f)(@) bno by realizes Av(Dy, {bro,br1: k <n}+ A
(B)  if £ < n then by, by hence realizes the same type over
{br,: k<nk#l1<2}+ A
() if v €2, (bo (), brn)s - - 5 Onn(n))s (Bo,u(0) b1,u(1ys - - )
realizes the same type over A
(9) pUry, is consistence where 7(Z) = {p(Z, bg,1) = —@(T,beo) : £ < k}
(h) d realizes the type from (g)
(B) (a) if ¢ C p has cardinality < p then for some finite r C p we have
rUr.bFgq

(b)  for some ny depending on p only, we can demand
|r| =mng so {r.Ur:r Cp,|r| =n2} is a u-directed partial ordered
byr <rq & (rakry).

Remark 8.3. 1) This is a relative of a claim from [Shel5]. We lose not fixing d a
priori but can use e.g. finite A.

2) We can chose D,, such that if B O A, and b} b; realizes Av(D,,, B) then
tp(bo, B) = tp(b1, B), moreover the two natural projections of D,, to an ultrafilter
on W) (A,) are equivalent.

3) If we are analyzing tp(d, A) and already have ¢ as in decompositions, w can work
in € = (C, ca)a<rg(z) and use ¢’ = p(T4,¢,7), A’ = A and apply the claim.

4) This may be used in §5.

Proof. We try to choose (A, Dy, lf)nﬁo, 13”,1) by induction on n such that

B clauses (¢), (d), (e), (f)(«), (B) of (A) of the assumption holds as well as (g)
of (A),ie. pUr) | is consistent where r  ; is from clause (A)(g).

Note that p U r{ is consistent by an assumption.

Case 1: We can carry the induction for n < ind(y).
We get a contradiction to the definition of ind(—) as in [Shel].

Case 2: We are stuck in ny (i.e. cannot choose for n;)
@1 clause (B)(a) holds.

Why? Toward contradiction, let ¢(Z) C p(Z) be of cardinality < p be a counterex-
ample so let ¢(Z) = {pa(Z, ba) : @ < ps} where p, = |q(Z)|.
For any finite » C p let

\&/l
C
=

3*
®
P

hS)

Q
&
=l

2

o

U ={a < pu :r(T)Ur) I “0o(Z,by)” and r(
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' ={(c,B) € pu s (@) U, U{pp(Z,bs), ~¢a(Z,ba)} is consistent}.

Clearly
() % # 0.

[Why? Otherwise recalling r C p,r is as promised in (B) of the claim.]
S0 0a (T, ba) = @ (T, by ) TE@) for some truth value t(a).
Let 4o = <yg7k sk < Lg(g)).
Let

(*)2 Tw = {¢(71,¢) = ¢(F2,¢) : b = (g, 2) € L(77) and ¢ € 93 (2{b,,, : n <
ny, L <2} + A}

(¥)3 for any finite ' C 'y let
U2 = {(a, B) € pe X ps : (ba, bg) realizes T and t(a) = t(B)}.

(¥)4 if T C T, is finite then %42 is an equivalence relation on g, with < 2/V+1
equivalence class.

[Why? By inspection.]
(¥)s if r(Z) C p(z) and T C T, are finite then %! N %2 # 0.

[Why? As %2 has < 2711 equivalence classes, we can find a sequence {a(j) :
§ < 2ITH1Y of ordinals <y, represent all the %;?-equivalence classes. Let 71 (%) =
7(2)U{@a, (T, ba(j) : 7 < 2I"1+1} as q(2) C p(z), necessarily r;(z) is a subset of p(z)
and of course it is finite. So %, # () and choose 3 € %, and let j < 2/Tl be such
that «;, 8 are % -equivalent. Recalling cp*(i,l_aa(j))if(t(o"j)) € p so in particular
r1(Z) U {i(Z), baj)) Tt} is consistent.

Let d’ realize it then the pairs (a(j), 8), (3, a(j)) belongs to %3} and at least one
of them belongs to %,!. So (*)5 holds indeed.]

(¥)6 If r1,79 € p(2) and T';,T'y C T, are finite then %! ., N %32 o, € (%, N
UR) N (UL NUR)).

[Why? By inspection.|
By (%)5 + (%) clearly

()7 there is an ultrafilter 2,,, on p. X p, such that:

if () C p(z) is finite and T C T, is finite then %\, N %7 € Py,

(x)s let t be such that {(a, 8) € p« X ps : t(a) = t(B) is equal to t} belongs to
D.
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[Why well defined? As %} € P, by (*)7 and see ()3.]

Let by, 0,bn, 1 € 99 € be such that by, o by, 1 realize Av(Z,,, (o s : (a, B) €
e X i), S{br, i k < nq and ¢ < 2} + A). Clearly %, satisfies clause (A)(e).

Let A,, := U{Rang(b,) : @ < p.} so clause (A)(i) holds. Now (b, 0,bn,+1)
satisfies clauses (A)(d) and (A)(f)(«), (8) and 7, is well defined.

Lastly, concerning clause (e), the set p(z) Ur); |, is well defined and consistent
because for any finite r(z) C p(z), for the Z,,-majority of (a, 5) € i X pis, p(T) U
s U{pu(®,a5)t®), —p.(F,aq) < )} is inconsistent, contradiction to D assump-
tions. So indeed (A,,,, Dl,,bn, 0,bn, 1) are as required.

Contradiction to the case assumption so really to “®; fail”. So indeed &1, i.e.
clause (B)(a) holds.

@2 choose d € "€ realizing p(Z) Ur}, 1 so clauses (A)(a),(b) hold.

[Why possible? As p(z) Ur} ., is consistent by the induction assumption, i.e.
clause (A)(g), see above.]

@3 clause (A)(f)(y) holds.
@4 clause (B)(b) holds.

[Why? Otherwise for every n there is ¢, (%) C p(Z) of cardinality < g for which in
clause (B)(a) there is no 7(z) C p(Z) with n elements such that r(z)Ur;, (Z) F ¢,(Z).
Still there is a finite 7,(Z) C p(x) such that r,(Z) Ur) (T) F ¢.(Z). Let q(Z) =
U{¢n(Z) : n € N}, by (B)(a) there is a finite 7(z) C p(z) such that r(z)Ur) F q(Z);
let n = |r(z)| and we get a contradiction to the choice of ¢, (Z).

Together by &1 — @4 and the induction hypothesis H we are done. Og.2

Claim 8.4. Assume A C {¢ : ¢ = ©(Tjm),¥) € L(77)} ds finite and closed under
negation (well we stipulate =—p = ). Then 8.2 holds.

Proof. We may repeat the proof. Alternatively we can in [She90, Ch.II] manipulate
A to one formula ¢, i.e. let A = {po(Z,7¢) : £ < n.} and we can consider only A
with at least two members. Let £g(9r) = ke, (V€ < ny) (ke < ko) let

0+ (T, 90" (205 21, 22,  Z2n,+1) = N (22n.41 =20 A N 22n,+1 # 20 = ©0(T, Yol ke))

£<n, k<t
A /\ (ZQn*+1 = Zn,+e N\ /\ Zon, 41 7 2k — ﬁﬁof(jvgl sz))
L<my k<n.+¢
ANV zen,41 = 20).

L<2n,+1

(¥)1 for any & € (Fo+27-42) A one of the following cases occurs:
(a) for some ¢ < n, and b< ¢ and truth value t we have (VZ)[p.(Z,¢) =
90@(56, B)if(t)]
(b) (VI)p(Z,0)
(¢) (V2)(=¢(7,¢)
(%)2 if ag # aj,f < n, and b € 9 ¢ and t a truth value then for some
¢ C (Rang(b) U {ap, a1 }) we have (VZ)[p.(Z,¢) = @o(z, b)H®)]

()3 if ag # a; then for some &g, ¢ € 2™+ {ag, a1} we have € |= (V) (¢(Z, ¢1))A
(VZ)(—p(Z, Co)).-
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Us.4
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