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Abstract. We show a general scheme of Ramsey-type results for partitions

of countable sets of finite functions, where “one piece is big” is interpreted in
the language originating in creature forcing. The heart of our proofs follows

Glazer’s proof of the Hindman Theorem, so we prove the existence of idempo-

tent ultrafilters with respect to suitable operation. Then we deduce partition
theorems related to creature forcings.

0. Introduction

A typical partition theorem asserts that if a set with some structure is divided
into some number of “nice” pieces, then one of the pieces is large from the point
of the structure under considerations. Sometimes, the underlying structure is com-
plicated and it is not immediately visible that the arguments in hands involve a
partition theorem. Such is the case with many forcing arguments. For instance, the
proofs of propernes of some forcing notions built according to the scheme of norms
on possibilities have in their hearts partition theorems stating that at some situa-
tions a homogeneous tree and/or a sequence of creatures determining a condition
can be found (see, e.g., Ros lanowski and Shelah [RS99, RS06], Ros lanowski, Shelah
and Spinas [RSS12], Kellner and Shelah [KS09, KS12]). A more explicit connection
of partition theorems with forcing arguments is given in Shelah and Zapletal [SZ11].

The present paper is a contribution to the Ramsey theory in the context of fini-
tary creature forcing. We are motivated by earlier papers and notions concerning
norms on possibilities, but we do not look at possible forcing consequences. The
common form of our results here is as follows. If a certain family of partial finite
functions is divided into finitely many pieces, then one of the pieces contains all
partial functions determined by an object (“a pure candidate”) that can be inter-
preted as a forcing condition if we look at the setting from the point of view of the
creature forcing. Sets of partial functions determined by a pure candidate might
be considered as “large” sets.

Our main proofs are following the celebrated Glazer’s proof of the Hindman
Theorem, which reduced the problem to the existence of a relevant ultrafilter on
ω in ZFC. Those arguments were presented by Comfort in [Com77, Theorem 10.3,
p.451] with [Com77, Lemma 10.1, p.449] as a crucial step (stated here in 2.7). The
arguments of the second section of our paper really resemble Glazer’s proof. In
that section we deal with the easier case of omittory–like creatures (loose FFCC
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pairs of 1.2(2)) and in the proof of the main conclusion (2.10) we use an ultrafilter
idempotent with respect to operation ⊕ (defined in 2.4). The third section deals
with the case of tight FFCC pairs of 1.2(4). Here, we consider partitions of some sets
of partial functions all of which have domains being essentially intervals of integers
starting with some fixed n < ω. While the general scheme of the arguments follows
the pattern of the second section, they are slightly more complicated as they involve
sequences of ultrafilters and operations on them. As an application of this method,
in 3.9 we give a new proof of a partition theorem by Carlson and Simpson [CS84,
Theorem 6.3]. The next section presents a variation of the third section: under
weaker assumptions on the involved FFCC pairs we get weaker, yet still interesting
partition theorem. Possible applications of this weaker version include a special
case of the partition theorem by Goldstern and Shelah [GS90] (see 4.9). These
results motivate the fourth section, where we develop the parallel of the very weak
bigness for candidates with “limsup” demand on the norms.

Our paper is self-contained and all needed “creature terminology” is introduced
in the first section. We also give there several examples of creating pairs to which
our results may be applied.

Notation: We use standard set-theoretic notation.
• An integer n is the set {0, 1, . . . , n− 1} of all integers smaller than n, and the

set of all integers is called ω. For integers n < m, the interval [n,m) denotes the
set of all integers smaller than m and greater than or equal to n.
• All sequences will be indexed by natural numbers and a sequence of objects is

typically denoted by a bar above a letter with the convention that x̄ = 〈xi : i < y〉,
y ≤ ω.
• For a set X the family of all subsets of X is denoted by P(X). The domain of

a function f is called dom(f).
• An ideal J on ω is a family of subsets of ω such that

(i) all finite subsets of ω belong to J but ω /∈ J , and
(ii) if A ⊆ B ∈ J , then A ∈ J and if A,B ∈ J then A ∪B ∈ J .

For an ideal J , the family of all subsets of ω that do not belong to J is denoted by
J+, and the filter dual to J is called Jc.

1. Partial creatures

We use the context and notation of Ros lanowski and Shelah [RS99], but below
we recall all the required definitions and concepts.

Since we are interested in Ramsey-type theorems and ultrafilters on a countable
set of partial functions, we will use pure candidates rather than forcing notions gen-
erated by creating pairs. Also, our considerations will be restricted to creating pairs
which are forgetful, smooth ([RS99, 1.2.5]), monotonic ([RS99, 5.2.3]), strongly fini-
tary ([RS99, 1.1.3, 3.3.4]) and in some cases omittory–like ([RS99, 2.1.1]). Therefore
we will reformulate our definitions for this restricted context (in particular, val[t]
is a set of partial functions), thus we slightly depart from the setting of [RS99].

Context 1.1. In this paper H is a fixed function defined on ω and such that H(i)
is a finite non-empty set for each i < ω. The set of all finite non-empty functions f
such that dom(f) ⊆ ω and f(i) ∈ H(i) (for all i ∈ dom(f)) will be denoted by FH.
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Definition 1.2. (1) An FP creature1 for H is a tuple

t = (nor,val,dis,mdn,mup) = (nor[t],val[t],dis[t],mt
dn,m

t
up)

such that
• nor is a non-negative real number, dis is an arbitrary object and
mt

dn < mt
up < ω and

• val is a non-empty finite subset of FH such that dom(f) ⊆ [mt
dn,m

t
up)

for all f ∈ val.
(2) An FFCC pair2 for H is a pair (K,Σ) such that

(a) K is a countable family of FP creatures for H,
(b) for each m < ω the set K≤m := {t ∈ K : mt

up ≤ m} is finite and the

set K≥m := {t ∈ K : mt
dn ≥ m & nor[t] ≥ m} is infinite,

(c) Σ is a function with the domain dom(Σ) included in the set

{(t0, . . . , tn) : n < ω, t` ∈ K and mt`
up ≤ m

t`+1

dn for ` < n}

and the range included in P(K) \ {∅},
(d) if t ∈ Σ(t0, . . . , tn) then (t ∈ K and) mt0

dn = mt
dn < mt

up = mtn
up,

(e) t ∈ Σ(t) (for each t ∈ K) and
(f) if t ∈ Σ(t0, . . . , tn) and f ∈ val[t], then

dom(f) ⊆
⋃
{[mt`

dn,m
t`
up) : ` ≤ n}

and f�[mt`
dn,m

t`
up) ∈ val[t`] ∪ {∅} for ` ≤ n, and

(g) if t̄0, . . . , t̄n ∈ dom(Σ) and t̄ = t̄0
_. . ._t̄n ∈ dom(Σ), then⋃

{Σ(s0, . . . , sn) : s` ∈ Σ(t̄`) for ` ≤ n} ⊆ Σ(t̄).

(3) An FFCC pair (K,Σ) is loose if
(cloose) the domain of Σ is

dom(Σ) = {(t0, . . . , tn) : n < ω, t` ∈ K and mt`
up ≤ m

t`+1

dn for ` < n}.

(4) An FFCC pair (K,Σ) is tight if
(ctight) the domain of Σ is

dom(Σ) = {(t0, . . . , tn) : n < ω, t` ∈ K and mt`
up = m

t`+1

dn for ` < n},

(ftight) if t ∈ Σ(t0, . . . , tn) and f ∈ val[t], then f�[mt`
dn,m

t`
up) ∈ val[t`] for all

` ≤ n, and
(htight) if s0, s1 ∈ K, ms0

up = ms1
dn, f0 ∈ val[s0], f1 ∈ val[s1] and f = f0 ∪ f1,

then there is s ∈ Σ(s0, s1) such that f ∈ val[s].

Definition 1.3 (Cf. [RS99, Definition 1.2.4]). Let (K,Σ) be an FFCC pair for H.

(1) A pure candidate for (K,Σ) is a sequence t̄ = 〈tn : n < ω〉 such that tn ∈ K,

mtn
up ≤ m

tn+1

dn (for n < ω) and lim
n→∞

nor[tn] =∞.

A pure candidate t̄ is tight if mtn
up = m

tn+1

dn (for n < ω).
The set of all pure candidates for (K,Σ) is denoted by PC∞(K,Σ) and the
family of all tight pure candidates is called PCtt

∞(K,Σ).

1FP stands for Forgetful Partial creature
2FFCC stands for smooth Forgetful monotonic strongly Finitary Creature Creating pair
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(2) For pure candidates t̄, s̄ ∈ PC∞(K,Σ) we write t̄ ≤ s̄ whenever there is a
sequence 〈un : n < ω〉 of non-empty finite subsets of ω satisfying

max(un) < min(un+1) and s̄n ∈ Σ(t̄�un) for all n < ω.

(3) For a pure candidate t̄ = 〈ti : i < ω〉 ∈ PC∞(K,Σ) we define
(a) S(t̄) = {(ti0 , . . . , tin) : i0 < . . . < in < ω for some n < ω}, and
(b) Σ′(t̄) =

⋃
{Σ(s̄) : s̄ ∈ S(t̄)} and Σtt(t̄) =

⋃
{Σ(t0, . . . , tn) : n < ω},

(c) pos(t̄) =
⋃
{val[s] : s ∈ Σ′(t̄)} and postt(t̄) =

⋃
{val[s] : s ∈ Σtt(t̄)},

(d) t̄ � n = 〈tn+k : k < ω〉.
(Above, if s̄ /∈ dom(Σ) then we stipulate Σ(s̄) = ∅.)

Remark 1.4. Loose FFCC and tight FFCC are the two cases of FFCC pairs treated
in this article. The corresponding partition theorems will be slightly different in
the two cases, though there is a parallel. In the loose case we will deal with Σ′(t̄),
pos(t̄) and ultrafilters on the latter set. In the tight case we will use Σtt(t̄), postt(t̄)
and sequences of ultrafilters on postt(t � n) (for n < ω).

We will require two additional properties from (K,Σ): weak bigness and weak
additivity (see 1.5, 1.6). Because of the differences in the treatment of the two
cases, there are slight differences in the formulation of these properties, so we have
two variants for each: l–variant and t–variant (where “l” stands for “loose” and
“t” stands for “tight”, of course).

Plainly, PCtt
∞(K,Σ) ⊆ PC∞(K,Σ), Σtt(t̄) ⊆ Σ′(t̄) and postt(t̄) ⊆ pos(t̄). Also,

if t̄ ∈ PCtt
∞(K,Σ), then t̄ � n ∈ PCtt

∞(K,Σ) for all n < ω.

Definition 1.5. Let (K,Σ) be an FFCC pair for H and t̄ = 〈ti : i < ω〉 ∈
PC∞(K,Σ).

(1) We say that the pair (K,Σ) has weak l–additivity for the candidate t̄ if for
some increasing f : ω −→ ω, for every m < ω we have:
if s0, s1 ∈ Σ′(t̄), nor[s0] ≥ f(m), ms0

dn ≥ f(m), nor[s1] ≥ f(ms0
up) and

ms1
dn > f(ms0

up), then we can find s ∈ Σ′(t̄) such that

ms
dn ≥ m, nor[s] ≥ m, and val[s] ⊆ {f ∪ g : f ∈ val[s0], g ∈ val[s1]}.

(2) The pair (K,Σ) has weak t–additivity for the candidate t̄ if for some in-
creasing f : ω −→ ω, for every n,m < ω we have:
if s0 ∈ Σ(tn, . . . , tk), k ≥ n, nor[s0] ≥ f(n + m), s1 ∈ Σ(tk+1, . . . , t`),
nor[s1] ≥ f(k +m) and ` > k, then we can find s ∈ Σ(tn, . . . , t`) such that
nor[s] ≥ m and val[s] ⊆ {f ∪ g : f ∈ val[s0], g ∈ val[s1]}.

(3) The pair (K,Σ) has l–additivity if for all s0, s1 ∈ K with nor[s0],nor[s1] >
1 and ms0

up ≤ ms1
up there is s ∈ Σ(s0, s1) such that

nor[s] ≥ min{nor[s0],nor[s1]}− 1 and val[s] ⊆ {f ∪ g : f ∈ val[s0], g ∈ val[s1]}.
The pair (K,Σ) has t–additivity if for all s0, s1 ∈ K with nor[s0],nor[s1] >
1 and ms0

up = ms1
up there is s ∈ Σ(s0, s1) such that

nor[s] ≥ min{nor[s0],nor[s1]} − 1.

We say that (K,Σ) has t–multiadditivity if for all s0, . . . , sn ∈ K with
ms`

up = m
s`+1

dn (for ` < n) there is s ∈ Σ(s0, . . . , sn) such that nor[s] ≥
max{nor[s`] : ` ≤ n} − 1.

Definition 1.6. Let (K,Σ) be an FFCC pair for H and t̄ = 〈ti : i < ω〉 ∈
PC∞(K,Σ).
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(1) We say that the pair (K,Σ) has weak l–bigness for the candidate t̄ whenever
the following property is satisfied:

(~)t̄l if n1, n2, n3 < ω and pos(t̄) =
⋃
{F` : ` < n1}, then for some s ∈ Σ′(t̄)

and ` < n1 we have

nor[s] ≥ n2, m
s
dn ≥ n3, and val[s] ⊆ F`.

(2) We say that the pair (K,Σ) has weak t–bigness for the candidate t̄ whenever
the following property is satisfied:

(~)t̄t if n, n1, n2 < ω and postt(t̄ � n) =
⋃
{F` : ` < n1}, then for some

s ∈ Σtt(t̄ � n) and ` < n1 we have

nor[s] ≥ n2 and val[s] ⊆ F`.
(3) We say that the pair (K,Σ) has bigness if for every creature t ∈ K with

nor[t] > 1 and a partition val[t] = F1∪F2, there are ` ∈ {1, 2} and s ∈ Σ(t)
such that nor[s] ≥ nor[t]− 1 and val[s] ⊆ F`.

Definition 1.7. Let (K,Σ) be an FFCC pair for H.

(1) (K,Σ) is simple except omitting if for every (t0, . . . , tn) ∈ dom(Σ) and
t ∈ Σ(t0, . . . , tn) for some ` ≤ n we have val[t] ⊆ val[t`].

(2) (K,Σ) is gluing on a candidate t̄ = 〈ti : i < ω〉 ∈ PC∞(K,Σ) if for every
n,m < ω there are k ≥ n and s ∈ Σ(tn, . . . , tk) such that nor[s] ≥ m.

The following two observations summarize the basic dependencies between the
notions introduced in 1.5, 1.6 — separately for the two contexts (see 1.4).

Observation 1.8. Assume (K,Σ) is a loose FFCC pair, t̄ ∈ PC∞(K,Σ).

(1) If (K,Σ) has bigness (l–additivity, respectively), then it has weak l–bigness
(weak l–additivity, respectively) for the candidate t̄.

(2) If (K,Σ) has the weak l–bigness for t̄, k < ω and pos(t̄) =
⋃
`<k

F`, then for

some s̄ ∈ PC∞(K,Σ) and ` < k we have

t̄ ≤ s̄ and (∀n < ω)(val[sn] ⊆ F`).
(3) Assume that (K,Σ) has the weak l–bigness property for t̄ ∈ PC∞(K,Σ)

and it is simple except omitting. Let k < ω and pos(t̄) =
⋃
`<k

F`. Then for

some s̄ ≥ t̄ and ` < k we have pos(s̄) ⊆ F`.

Observation 1.9. Assume (K,Σ) is a tight FFCC pair, t̄ ∈ PCtt
∞(K,Σ).

(1) If (K,Σ) has bigness and is gluing on t̄, then it has the weak t–bigness for
the candidate t̄.

(2) If (K,Σ) has t–additivity, then it has the weak t–additivity for t̄.
(3) If (K,Σ) has the t–multiadditivity, then it has the t–additivity and it is

gluing on t̄.

In the following two sections we will present partition theorems for the loose and
then for the tight case. First, let us offer some easy examples to which the theory
developed later can be applied.

Example 1.10. Let H1(n) = n+1 for n < ω and let K1 consist of all FP creatures
t for H1 such that

• dis[t] = (u, i, A) = (ut, it, At) where u ⊆ [mt
dn,m

t
up), i ∈ u, ∅ 6= A ⊆ H1(i),

• nor[t] = log2(|A|),
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• val[t] ⊆
∏
j∈u

H1(j) is such that {f(i) : f ∈ val[t]} = A.

For t0, . . . , tn ∈ K1 with mt`
up ≤ m

t`+1

dn let Σ1(t0, . . . , tn) consist of all creatures
t ∈ K1 such that

mt
dn = mt0

dn, m
t
up = mtn

up, u
t =

⋃
`≤n

ut` , it = it`∗ , At ⊆ At`∗ for some `∗ ≤ n,

and val[t] ⊆
{
f0 ∪ . . . ∪ fn : (f0, . . . , fn) ∈ val[t0]× . . .× val[tn]

}
.

Also, let Σ∗1 be Σ1 restricted to the set of those tuples (t0, . . . , tn) for which mt`
up =

m
t`+1

dn (for ` < n). Then

• (K1,Σ1) is a loose FFCC pair for H1 with bigness and l–additivity,
• (K1,Σ

∗
1) is a tight FFCC pair for H1 with bigness and t–multiadditivity,

and it is gluing on every t̄ ∈ PCtt
∞(K1,Σ

∗
1).

Example 1.11. Let H2(n) = 2 for n < ω and let K2 consist of all FP creatures t
for H2 such that

• ∅ 6= dis[t] ⊆ [mt
dn,m

t
up),

• ∅ 6= val[t] ⊆ dis[t]2,
• nor[t] = log2(|val[t]|).

For t0, . . . , tn ∈ K2 with mt`
up ≤ m

t`+1

dn let Σ2(t0, . . . , tn) consist of all creatures
t ∈ K2 such that

mt
dn = mt0

dn, m
t
up = mtn

up, dis[t] = dis[t`∗ ], and val[t] ⊆ val[t`∗ ] for some `∗ ≤ n.
Then (K2,Σ2) is a loose FFCC pair for H1 which is simple except omitting and
has bigness.

Example 1.12. Let H be as in 1.1 and let K3 consist of all FP creatures t for H
such that

• ∅ 6= dis[t] ⊆ [mt
dn,m

t
up),

• val[t] ⊆ {f ∈ FH : dis[t] ⊆ dom(f) ⊆ [mt
dn,m

t
up)} satisfies

(∀g ∈
∏

i∈dis[t]

H(i))(∃f ∈ val[t])(g ⊆ f),

• nor[t] = log957(|dis[t]|).
For t0, . . . , tn ∈ K2 with mt`

up ≤ m
t`+1

dn let Σ3(t0, . . . , tn) consist of all creatures
t ∈ K3 such that

• mt
dn = mt0

dn, mt
up = mtn

up, dis[t] ⊆
⋃
`≤n

dis[t`], and

• if f ∈ val[t], then dom(f) ⊆
⋃
{[mt`

dn,m
t`
up) : ` ≤ n} and f�[mt`

dn,m
t`
up) ∈

val[t`] ∪ {∅} for all ` ≤ n.

Also, for t0, . . . , tn ∈ K2 with mt`
up = m

t`+1

dn let Σ∗3(t0, . . . , tn) consist of all creatures
t ∈ K3 such that

• mt
dn = mt0

dn, mt
up = mtn

up, dis[t] ⊆
⋃
`≤n

dis[t`], and

• if f ∈ val[t], then dom(f) ⊆
⋃
{[mt`

dn,m
t`
up) : ` ≤ n} and f�[mt`

dn,m
t`
up) ∈

val[t`] for all ` ≤ n.

Then

• (K3,Σ3) is a loose FFCC pair for H with bigness and l–additivity,
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• (K3,Σ
∗
3) is a tight FFCC pair for H with bigness and t–multiadditivity

and it is gluing on every t̄ ∈ PCtt
∞(K3,Σ

∗
3).

Example 1.13. Let N > 0 and HN (n) = N . Let KN consist of all FP creatures
t for HN such that

• dis[t] = (Xt, ϕt), where Xt ( [mt
dn,m

t
up), and φt : Xt −→ N ,

• nor[t] = mt
up,

• val[t] =
{
f ∈ [mt

dn,m
t
up)N : ϕt ⊆ f and f is constant on [mt

dn,m
t
up) \Xt

}
.

For t0, . . . , tn ∈ KN with mt`
up = m

t`+1

dn (for ` < n) we let ΣN (t0, . . . , tn) consist of
all creatures t ∈ KN such that

• mt
dn = mt0

dn, mt
up = mt0

up, Xt0 ∪ . . . ∪Xtn ⊆ Xt,
• for each ` ≤ n,

either Xt ∩ [mt`
dn,m

t`
up) = Xt` and ϕt�[m

t`
dn,m

t`
up) = ϕt` ,

or [mt`
dn,m

t`
up) ⊆ Xt and ϕt�[m

t`
dn,m

t`
up) ∈ val[t`].

Then

(i) (KN ,ΣN ) is a tight FFCC pair for HN ,
(ii) it has the t–multiadditivity and

(iii) it has the weak t–bigness and is gluing for every candidate t̄ ∈ PCtt
∞(K,Σ).

Proof. (i) All demands in 1.2(2,4) are easy to verify. For instance, to check
1.2(4)(htight) note that:
if s0, s1 ∈ KN , ms0

up = ms1
dn, f` ∈ val[s`] (for ` = 0, 1) and s ∈ KN is such that

ms
dn = ms0

dn, m
s
up = ms1

up, Xs = Xs0∪[ms1
dn,m

s1
up), ϕs�Xs0 = ϕs0 , ϕs�[m

s1
dn,m

s1
up) = f1,

then s ∈ ΣN (s0, s1) and f0 ∪ f1 ∈ val[s].
(ii) The s constructed as in (i) above for s0, s1 will witness the t–additivity as
well. In an analogous way we show also the multiadditivity.
(iii) Let t̄ = 〈ti : i < ω〉 ∈ PCtt

∞(KN ,ΣN ). Suppose that n, n1, n2 < ω and
postt(t̄ � n) =

⋃
{F` : ` < n1}. By the Hales–Jewett theorem (see [?]) there is

k > n2 such that for any partition of kN into n1 parts there is a combinatorial line
included in one of the parts. Then we easily find s ∈ ΣN (t0, . . . , tk−1) such that
val[s] ⊆ F` for some ` < n1. Necessarily, nor[s] ≥ k − 1 ≥ n2. This proves the
weak t–bigness for t̄. Similarly to (ii) we may argue that (KN ,ΣN ) is gluing on
t̄. �

2. Ultrafilters on loose possibilities

Here we introduce ultrafilters on the (countable) set FH (see 1.1) which contain
sets large from the point of view of pure candidates for a loose FFCC pair. Then
we use them to derive a partition theorem for this case.

Definition 2.1. Let (K,Σ) be a loose FFCC pair for H.

(1) For a pure candidate t̄ ∈ PC∞(K,Σ), we define
• A0

t̄ = {pos(t̄ � n) : n < ω},
• A1

t̄ is the collection of all sets A ⊆ FH such that for some N < ω we
have(
∀s ∈ Σ′(t̄)

)(
nor[s] ≥ N & ms

dn ≥ N ⇒ val[s] ∩A 6= ∅
)
,
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8 ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

• A2
t̄ is the collection of all sets A ⊆ FH such that for some N < ω we

have

(∀t̄1 ≥ t̄)(∃t̄2 ≥ t̄1)(∀s ∈ Σ′(t̄2))(nor[s] ≥ N ⇒ val[s] ∩A 6= ∅
)
.

(2) For ` < 3 we let uf`t̄(K,Σ) be the family of all ultrafilters D on FH such
that A`t̄ ⊆ D. We also set (for ` < 3)

uf`(K,Σ)
def
=
⋃
{uf`t̄(K,Σ) : t̄ ∈ PC∞(K,Σ)}.

Proposition 2.2. Let (K,Σ) be a loose FFCC pair for H, t̄ ∈ PC∞(K,Σ).

(1) A0
t̄ ⊆ A

1
t̄ ⊆ A

2
t̄ and hence also uf2

t̄ (K,Σ) ⊆ uf1
t̄ (K,Σ) ⊆ uf0

t̄ (K,Σ).

(2) uf0
t̄ (K,Σ) 6= ∅.

(3) If (K,Σ) has the weak l–bigness for each t̄′ ≥ t̄, then uf2
t̄ (K,Σ) is not

empty.
(4) If (K,Σ) has the weak l–bigness for t̄, then uf1

t̄ (K,Σ) 6= ∅.
(5) Assume CH. Suppose that (K,Σ) is simple except omitting (see 1.7(1)) and

has the weak l–bigness on every candidate t̄ ∈ PC∞(K,Σ). Then there is
D ∈ uf2

t̄ (K,Σ) such that(
∀A ∈ D

)(
∃t̄ ∈ PC∞(K,Σ)

)(
pos(t̄) ∈ D & pos(t̄) ⊆ A

)
.

Proof. (2) Note that A0
t̄ has the finite intersection property (fip).

(3) It is enough to show that, assuming (K,Σ) has the weak l–bigness for all
t̄′ ≥ t̄, A2

t̄ has fip. So suppose that for ` < k we are given a set A` ∈ A2
t̄ and let

N` < ω be such that

(∗)` (∀t̄1 ≥ t̄)(∃t̄2 ≥ t̄1)(∀s ∈ Σ′(t̄2))(nor[s] ≥ N` ⇒ val[s] ∩A` 6= ∅
)
.

Let N = max{N` : ` < k}. Then we may choose t̄′ ≥ t̄ such that

(∗) (∀s ∈ Σ′(t̄′))(nor[s] ≥ N ⇒ (∀` < k)(val[s] ∩A` 6= ∅)
)
.

[Why? Just use repeatedly (∗)` for ` = 0, 1, . . . , k − 1; remember t̄′ ≤ t̄′′ implies
Σ′(t̄′′) ⊆ Σ′(t̄′).]

For η ∈ k2 set

Fη = {f ∈ pos(t̄′) : (∀` < k)(η(`) = 1 ⇔ f ∈ A`)}.
Then pos(t̄′) =

⋃
{Fη : η ∈ k2} and (K,Σ) has the weak l–bigness for t̄′, so we

may use Observation 1.8(2) to pick η0 ∈ k2 and s̄ ≥ t̄′ such that val[sn] ⊆ Fη0
for all n < ω. Consider n < ω such that nor[sn] > N . It follows from (∗) that
val[sn]∩A` 6= ∅ for all ` < k. Hence, by the choice of s̄, η0(`) = 1 for all ` < k and
therefore ∅ 6= val[sn] ⊆

⋂
`<k

A`.

(4) Similarly to (3) above one shows that A1
t̄ has fip.

(5) Assuming CH and using Observation 1.8(3) we may construct a sequence
〈t̄α : α < ω1〉 ⊆ PC∞(K,Σ) such that

• if α < β < ω1 then (∃n < ω)(t̄α ≤ (t̄β � n)),
• if A ⊆ FH then for some α < ω1 we have that either pos(t̄α) ⊆ A or

pos(t̄α) ∩A = ∅.
(Compare to the proof of [RS99, 5.3.4].) Then the family

{pos(t̄α � n) : α < ω1 & n < ω}
generates the desired ultrafilter. �
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Observation 2.3. The sets uf`t̄(K,Σ) (for ` < 3) are closed subsets of the (Haus-
dorff compact topological space) β∗(FH) of non-principal ultrafilters on FH. Hence

each uf`t̄(K,Σ) itself is a compact Hausdorff space.

Definition 2.4. (1) For f ∈ FH and A ⊆ FH we define

f ⊕A def
= {g ∈ FH : max(dom(f)) < min(dom(g)) and f ∪ g ∈ A}.

(2) For D1, D2 ∈ uf0(K,Σ) we let

D1 ⊕D2
def
=
{
A ⊆ FH : {f ∈ FH : (f ⊕A) ∈ D1} ∈ D2

}
.

Proposition 2.5. (1) If A1, A2 ⊆ FH and f ∈ FH, then

f ⊕ (A1 ∩A2) = (f ⊕A1) ∩ (f ⊕A2) and
{g ∈ FH : max(dom(f)) < min(dom(g))} \ (f ⊕A1) = f ⊕ (FH \A1).

(2) If D1, D2, D3 ∈ uf0(K,Σ), then D1 ⊕ D2 is a non-principal ultrafilter on
FH and D1 ⊕ (D2 ⊕D3) = (D1 ⊕D2)⊕D3.

(3) The mapping ⊕ : uf0(K,Σ) × uf0(K,Σ) −→ β∗(FH) is right continuous
(i.e., for each D1 ∈ uf0(K,Σ) the function uf0(K,Σ) 3 D2 7→ D1 ⊕D2 ∈
β∗(FH) is continuous).

Proof. Straightforward, compare with 3.3. �

Proposition 2.6. Assume that a loose FFCC pair (K,Σ) has the weak l–additivity
(see 1.5(1)) for a candidate t̄ ∈ PC∞(K,Σ). If D1, D2 ∈ uf1

t̄ (K,Σ), then D1⊕D2 ∈
uf1
t̄ (K,Σ).

Proof. Let f : ω → ω witness the weak l–additivity of (K,Σ) for t̄, and let D =
D1 ⊕D2, D1, D2 ∈ uf1

t̄ (K,Σ). We already know that D is an ultrafilter on FH (by
2.5(2)), so we only need to show that it includes A1

t̄ .
Suppose that A ∈ A1

t̄ and let N < ω be such that

(∗)1

(
∀s ∈ Σ′(t̄)

)(
nor[s] ≥ N & ms

dn ≥ N ⇒ val[s] ∩A 6= ∅
)
.

Claim 2.6.1. For every s ∈ Σ′(t̄), if nor[s] ≥ f(N) and ms
dn ≥ f(N), then val[s]∩

{f ∈ FH : f ⊕A ∈ D1} 6= ∅.

Proof of the Claim. Suppose s0 ∈ Σ′(t̄), nor[s0] ≥ f(N), ms0
dn ≥ f(N). Set

B =
⋃
{f ⊕A : f ∈ val[s0]}.

We are going to argue that

(∗)2 B ∈ A1
t̄ .

So let M = f(ms0
up) + ms0

up + 957 and suppose s1 ∈ Σ(t̄) is such that nor[s1] ≥ M
and ms1

dn ≥ M . Apply the weak additivity and the choice of M to find s ∈ Σ′(t̄)
such that

ms
dn ≥ N, nor[s] ≥ N and val[s] ⊆ {f ∪ g : f ∈ val[s0] & g ∈ val[s1]}.

Then, by (∗)1, val[s]∩A 6= ∅ so for some f ∈ val[s0] and g ∈ val[s1] we have f ∪g ∈
A (and max(dom(f)) < min(dom(g))). Thus g ∈ (f ⊕ A) ∩ val[s1] ⊆ B ∩ val[s1]
and (∗)2 follows.

Since D1 ∈ uf1
t̄ (K,Σ) we conclude from (∗)2 that B ∈ D1 and hence (as val[s0]

is finite) f ⊕A ∈ D1 for some f ∈ val[s0], as desired. �
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It follows from 2.6.1 that {f ∈ FH : f ⊕ A ∈ D1} ∈ A1
t̄ and hence (as D2 ∈

uf1
t̄ (K,Σ)) {f ∈ FH : f ⊕A ∈ D1} ∈ D2. Consequently, A ∈ D1 ⊕D2. �

Lemma 2.7 (See [Com77, Lemma 10.1, p.449]). If X is a non-empty compact
Hausdorff space, � an associative binary operation which is continuous from the
right (i.e. for each p ∈ X the function q 7→ p � q is continuous), then there is a
�–idempotent point p ∈ X (i.e. p� p = p).

Corollary 2.8. Assume that a loose FFCC pair (K,Σ) has weak l–additivity and
the weak l–bigness for a candidate t̄ ∈ PC∞(K,Σ). Then

(1) uf1
t̄ (K,Σ) is a non-empty compact Hausdorff space and ⊕ is an associative

right continuous operation on it.
(2) There is D ∈ uf1

t̄ (K,Σ) such that D = D ⊕D.

Proof. (1) By 2.2(3), 2.3, 2.5(2,3) and 2.6.

(2) It follows from (1) above that all the assumptions of Lemma 2.7 are satisfied
for ⊕ and uf1

t̄ (K,Σ), hence its conclusion holds. �

Theorem 2.9. Assume that (K,Σ) is a loose FFCC pair, t̄ ∈ PC∞(K,Σ). Let an
ultrafilter D ∈ uf1

t̄ (K,Σ) be such that D ⊕D = D. Then(
∀A ∈ D

)(
∃s̄ ≥ t̄

)(
pos(s̄) ⊆ A

)
.

Proof. The main ingredient of our argument is given by the following claim.

Claim 2.9.1. Let (K,Σ), t̄ and D be as in the assumptions of 2.9. Assume A ∈ D
and n < ω. Then there is s ∈ Σ′(t̄) such that

(•)1 val[s] ⊆ A, nor[s] ≥ n, ms
dn ≥ n, and

(•)2 (∀f ∈ val[s])(f ⊕A ∈ D).

Proof of the Claim. Let A′ := {f ∈ FH : f ⊕ A ∈ D} and A′′ := A ∩ A′. Since
A ∈ D = D ⊕ D we know that A′ ∈ D and thus A′′ ∈ D. Hence FH \ A′′ /∈ A1

t̄

(remember D ∈ uf1
t̄ (K,Σ)). Therefore, there is s ∈ Σ′(t̄) such that

nor[s] ≥ n, ms
dn ≥ n, and val[s] ∩ (FH \A′′) = ∅.

Then val[s] ⊆ A and for each f ∈ val[s] we have f ⊕A ∈ D, as desired. �

Now suppose A ∈ D. By induction on n we choose sn, An so that

(a) A0 = A, An ∈ D and An+1 ⊆ An,
(b) sn ∈ Σ′(t̄), nor(sn) ≥ n and msn

up ≤ m
sn+1

dn ,
(c) val[sn] ⊆ An,
(d) if f ∈ An+1, then msn

up ≤ min(dom(f)),
(e) if f ∈ val[sn], then An+1 ⊆ f ⊕An.

Suppose we have constructed s0, . . . , sn−1 and An so that demands (a)–(e) are
satisfied. Set N = m

sn−1
up + n + 1 (if n = 0 stipulate m

sn−1
up = 0) and use Claim

2.9.1 to find sn ∈ Σ′(t̄) such that

(•)n1 val[sn] ⊆ An, nor[sn] ≥ N , msn
dn ≥ N , and

(•)n2 (∀f ∈ val[sn])(f ⊕An ∈ D).

Put

An+1 := An ∩ {g ∈ FH : msn
up < min(dom(g))} ∩

⋂
f∈val[sn]

f ⊕An.
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Since A0
t̄ ⊆ D we know that {g ∈ FH : msn

up < min(dom(g))} ∈ D and since val[sn]
is finite (and by (•)n2 ) also

⋂
f∈val[sn]

f ⊕An ∈ D. Thus An+1 ∈ D. Plainly the other

requirements hold too.
After the above construction is carried out we set s̄ = 〈sn : n < ω〉. Clearly

s̄ ∈ PC∞(K,Σ) and s̄ ≥ t̄ (remember clause (b)).

Claim 2.9.2. If n0 < . . . < nk < ω and f` ∈ val[sn`
] for ` ≤ k, then

⋃
`≤k

f` ∈ An0
.

Proof of the Claim. Induction on k. If k = 0 then clause (c) of the choice of sn0

gives the conclusion. For the inductive step suppose the claim holds true for k
and let n0 < n1 < . . . < nk < nk+1, f` ∈ val[sn`

] (for ` ≤ k + 1). Letting
g = f1 ∪ . . . ∪ fk+1 we may use the inductive hypothesis to conclude that g ∈ An1

.
By (a)+(e) we know that An1

⊆ An0+1 ⊆ f0 ⊕ An0
, so g ∈ f0 ⊕ An0

. Hence
f0 ∪ g = f0 ∪ f1 ∪ . . . ∪ fk+1 ∈ An0

. �

It follows from 2.9.2 that pos(s̄) ⊆ A (remember (a) above and 1.2(2)(f)). �

Conclusion 2.10. Suppose that (K,Σ) is a loose FFCC pair with weak l–bigness
and weak l–additivity over t̄ ∈ PC∞(K,Σ). Assume also that pos(t̄) is the finite
union F0 ∪ . . . ∪ Fn. Then for some i ≤ n and s̄ ∈ PC∞(K,Σ) we have

pos(s̄) ⊆ Fi and t̄ ≤ s̄.

Proof. By 2.8 there is D ∈ uf1
t̄ (K,Σ) such that D = D ⊕ D. Clearly for some

i ≤ n we have Fi ∈ D. By 2.9 there is s̄ ∈ PC∞(K,Σ) such that t̄ ≤ s̄ and
pos(s̄) ⊆ Fi. �

3. Ultrafilters on tight possibilities

In this section we carry out for tight FFCC pairs considerations parallel to that
from the case of loose FFCC pairs. The main difference now is that we use sequences
of ultrafilters, but many arguments do not change much.

Definition 3.1. Let (K,Σ) be a tight FFCC pair for H, t̄ = 〈tn : n < ω〉 ∈
PCtt
∞(K,Σ).

(1) For f ∈ postt(t̄ � n) let xf = xt̄f be the unique m > n such that f ∈ val[s]

for some s ∈ Σ(tn, . . . , tm−1). (Note 1.2(4)(ftight).)
(2) If f ∈ postt(t̄ � n), n < ω, A ⊆ FH, then we set

f ~A = f ~t̄ A =
{
g ∈ postt(t̄ � xf ) : f ∪ g ∈ A

}
.

(3) We let suf t̄(K,Σ) be the set of all sequences D̄ = 〈Dn : n < ω〉 such that
each Dn is a non-principal ultrafilter on postt(t̄ � n).

(4) The space suf t̄(K,Σ) is equipped with the (Tichonov) product topology of∏
n<ω

β∗
(
postt(t̄ � n)

)
. For a sequence Ā = 〈A0, . . . , An〉 such that A` ⊆

postt(t̄ � `) (for ` ≤ n) we set

NbĀ =
{
D̄ ∈ suf t̄(K,Σ) : (∀` ≤ n)(A` ∈ D`)

}
.

(5) For D̄ = 〈Dn : n < ω〉 ∈ suf t̄(K,Σ), n < ω and A ⊆ postt(t̄ � n) we let

setnt̄ (A, D̄) =
{
f ∈ postt(t̄ � n) : f ~A ∈ Dxf

}
.
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(6) For D̄1, D̄2 ∈ suf t̄(K,Σ) we define D̄1 ~ D̄2 to be a sequence 〈Dn : n < ω〉
such that for each n

Dn =
{
A ⊆ postt(t̄ � n) : setnt̄ (A, D̄1) ∈ D2

n

}
.

Observation 3.2. Let (K,Σ) be a tight FFCC pair for H and t̄ ∈ PCtt
∞(K,Σ).

Suppose f ∈ postt(t̄ � n), g ∈ postt(t̄ � xf ). Then

(1) f ∪ g ∈ postt(t̄ � n) (note 1.2(4)(htight)) and
(2) (f ∪ g)~A = g ~ (f ~A) for all A ⊆ FH.
(3) suf t̄(K,Σ) is a compact Hausdorff topological space. The sets NbĀ for

Ā = 〈A0, . . . , An〉, A` ⊆ postt(t̄ � `), ` ≤ n < ω, form a basis of the
topology of suf t̄(K,Σ).

Proposition 3.3. Let (K,Σ) be a tight FFCC pair for H and t̄ ∈ PCtt
∞(K,Σ).

(1) If D̄1, D̄2 ∈ suf t̄(K,Σ), then D̄1 ~ D̄2 ∈ suf t̄(K,Σ).
(2) The mapping ~ : suf t̄(K,Σ)×suf t̄(K,Σ) −→ suf t̄(K,Σ) is right continuous.
(3) The operation ~ is associative.

Proof. (1) Let D̄1, D̄2 ∈ suf t̄(K,Σ), n < ω, and

Dn =
{
A ⊆ postt(t̄ � n) : setnt̄ (A, D̄1) ∈ D̄2

n

}
.

Let A,B ⊆ postt(t̄ � n).
(a) If f ∈ postt(t̄ � n) and A is finite, then f ~ A is finite as well, so it does not
belong to D1

xf
. Consequently, if A is finite then setnt̄ (A, D̄1) = ∅ and A /∈ Dn.

(b) setnt̄ (postt(t̄ � n), D̄1) = postt(t̄ � n) ∈ D2
n (note 3.2(1)). Thus postt(t̄ � n) ∈

Dn.
(c) If A ⊆ B then setnt̄ (A, D̄1) ⊆ setnt̄ (B, D̄1) and hence

A ⊆ B & A ∈ Dn ⇒ B ∈ Dn.

(d) setnt̄ (A ∩B, D̄1) = setnt̄ (A, D̄1) ∩ setnt̄ (B, D̄1) and hence

A,B ∈ Dn ⇒ A ∩B ∈ Dn.

(e) setnt̄ (postt(t̄ � n) \A, D̄1) = postt(t̄ � n) \ setnt̄ (A, D̄1), and hence

A /∈ Dn ⇒ postt(t̄ � n) \A ∈ Dn.

It follows from (a)–(e) that Dn is a non-principal ultrafilter on postt(t̄ � n) and
hence clearly D̄1 ~ D̄2 ∈ suf t̄(K,Σ).

(2) Fix D̄1 ∈ suf t̄(K,Σ) and let Ā = 〈A` : ` ≤ n〉, A` ⊆ postt(t̄ � `).
For ` ≤ n put B` = set`t̄(A`, D̄

1) and let B̄ = 〈B` : ` ≤ n〉. Then for each
D̄2 ∈ suf t̄(K,Σ) we have

D̄1 ~ D̄2 ∈ NbĀ if and only if D̄2 ∈ NbB̄ .

(3) Let D̄1, D̄2, D̄3 ∈ suf t̄(K,Σ). Suppose n < ω, A ⊆ pos(t̄ � n). Then

(i) A ∈
(
(D̄1 ~ D̄2)~ D̄3

)
n

iff setnt̄ (A, D̄1 ~ D̄2) ∈ D3
n iff{

f ∈ postt(t̄ � n) : f ~A ∈ (D̄1 ~ D̄2)xf

}
∈ D3

n, and

(ii) A ∈
(
D̄1 ~ (D̄2 ~ D̄3)

)
n

iff setnt̄ (A, D̄1) ∈ (D̄2 ~ D̄3)n iff

setnt̄
(
setnt̄ (A, D̄1), D̄2

)
∈ D̄3

n iff
{
f ∈ postt(t̄ � n) : f ~ setnt̄ (A, D̄1) ∈

D2
xf

}
∈ D3

n.
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Let us fix f ∈ postt(t̄ � n) for a moment. Then

f ~A ∈
(
D̄1 ~ D̄2

)
xf

iff set
xf

t̄ (f ~A, D̄1) ∈ D2
xf

iff{
g ∈ postt(t̄ � xf ) : g ~ (f ~A) ∈ D1

xg

}
∈ D2

xf
iff{

g ∈ postt(t̄ � xf ) : (f ∪ g)~A ∈ D1
xg

}
∈ D2

xf
iff{

g ∈ postt(t̄ � xf ) : (f ∪ g) ∈ setnt̄ (A, D̄1)
}
∈ D2

xf
iff f ~ setnt̄ (A, D̄1) ∈ D2

xf
.

Consequently,{
f ∈ postt(t̄�n) : f~A ∈ (D̄1~D̄2)xf

}
=
{
f ∈ postt(t̄�n) : f~setnt̄ (A, D̄1) ∈ D2

xf

}
and (by (i)+(ii)) A ∈

(
D̄1~ (D̄2~ D̄3)

)
n

if and only if A ∈
(
(D̄1~ D̄2)~ D̄3

)
n
. �

Definition 3.4. Let (K,Σ) be a tight FFCC pair for H and t̄ ∈ PCtt
∞(K,Σ).

(1) For n < ω, Bnt̄ is the family of all sets B ⊆ postt(t̄ � n) such that for some
M we have:
if s ∈ Σtt(t̄ � n) and nor[s] ≥M , then val[s] ∩B 6= ∅.

(2) suf∗t̄ (K,Σ) is the family of all D̄ = 〈Dn : n < ω〉 ∈ suf t̄(K,Σ) such that
Bnt̄ ⊆ Dn for all n < ω.

Proposition 3.5. Let (K,Σ) be a tight FFCC pair for H and t̄ ∈ PCtt
∞(K,Σ).

(1) suf∗t̄ (K,Σ) is a closed subset of suf t̄(K,Σ).
(2) If (K,Σ) has the weak t–bigness for t̄, then suf∗t̄ (K,Σ) 6= ∅.
(3) If (K,Σ) has the weak t–additivity for t̄, then suf∗t̄ (K,Σ) is closed under
~.

Proof. (1) Suppose D̄ ∈ suf t̄(K,Σ) \ suf∗t̄ (K,Σ). Let n < ω and B ∈ Bnt̄ be
such that B /∈ Dn. Set An = postt(t̄ � n) \ B and A` = postt(t̄ � `) for ` < n, and
let Ā = 〈A0, . . . , An〉. Then D̄ ∈ NbĀ ⊆ suf t̄(K,Σ) \ suf∗t̄ (K,Σ).
(2) It is enough to show that, assuming the weak t–bigness, each family Bnt̄ has
fip. To this end suppose that B0, . . . , Bm−1 ∈ Bnt̄ . Pick M0 such that

(∗)
(
∀s ∈ Σtt(t̄ � n)

)(
∀` < m

)(
nor[s] ≥M0 ⇒ B` ∩ val[s] 6= ∅

)
.

For η ∈ m2 set Cη = {f ∈ postt(t̄ � n) : (∀` < m)(f ∈ B` ⇔ η(`) = 1)}. By the
weak t–bigness we may choose η and s ∈ Σtt(t̄ � n) such that nor[s] > M0 and
val[s] ⊆ Cη. Then (by (∗)) we also have η(`) = 1 and val[s] ⊆ B` for all ` < m.
Hence ∅ 6= val[s] ⊆

⋂
`<m

B`.

(3) Let f : ω −→ ω witness the weat t–additivity of (K,Σ) for t̄. Suppose
that D̄1, D̄2 ∈ suf∗t̄ (K,Σ), D̄ = D̄1 ~ D̄2. We have to show that for each n < ω,
Bnt̄ ⊆ Dn (remember 3.3(1)). To this end assume that B ∈ Bnt̄ and let M be such
that

(∀s ∈ Σtt(t̄ � n))(nor[s] ≥M ⇒ val[s] ∩B 6= ∅).

Claim 3.5.1. If s ∈ Σtt(t̄ � n) is such that nor[s] ≥ f(n+M),
then val[s] ∩ setnt̄ (B, D̄1) 6= ∅.

Proof of the Claim. Fix s0 ∈ Σ(tn, . . . , tm−1) such that nor[s0] ≥ f(n + M). Let
A =

⋃
{f ~B : f ∈ val[s0]}. We claim that

(M) A ∈ Bmt̄ .

[Why? Set N = f(m+M) + 957. Suppose s1 ∈ Σtt(t̄ � m) has norm nor[s1] ≥ N .
By the weak t–additivity and the choice of N we can find s ∈ Σtt(t̄ � n) such that
nor[s] ≥M and val[s] ⊆ {f ∪ g : f ∈ val[s0], g ∈ val[s1]}. By the choice of M we
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14 ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

have B ∩ val[s] 6= ∅, so for some f ∈ val[s0] and g ∈ val[s1] we have g ∈ f ~ B.
Thus val[s1] ∩A 6= ∅ and we easily conclude that A ∈ Bmt̄ .]

But D̄1 ∈ suf∗t̄ (K,Σ), so Bmt̄ ⊆ D1
m and hence, for some f ∈ val[s0], we get

f ~B ∈ D1
xf

. Then f ∈ val[s0] ∩ setnt̄ (B, D̄1). �

It follows from 3.5.1 that setnt̄ (B, D̄1) ∈ Bnt̄ ⊆ D
2
n, so B ∈ Dn as required. �

Corollary 3.6. Assume that (K,Σ) is a tight FFCC pair with the weak t–additivity
and the weak t–bigness for t̄ ∈ PCtt

∞(K,Σ). Then there is D̄ ∈ suf∗t̄ (K,Σ) such
that D̄ ~ D̄ = D̄.

Proof. By 2.7+3.2(3)+3.3+3.5. �

Theorem 3.7. Assume that (K,Σ) is a tight FFCC pair, t̄ = 〈tn : n < ω〉 ∈
PCtt
∞(K,Σ). Suppose also that

(a) D̄ = 〈Dn : n < ω〉 ∈ suf∗t̄ (K,Σ) is such that D̄ ~ D̄ = D̄, and
(b) Ā = 〈An : n < ω〉 is such that An ∈ Dn for all n < ω.

Then there is s̄ = 〈si : i < ω〉 ∈ PCtt
∞(K,Σ) such that s̄ ≥ t̄, ms0

dn = mt0
dn and if

i < ω, si ∈ Σtt(t̄ � k), then postt(s̄ � i) ⊆ Ak.

Proof. Let (K,Σ), t̄, D̄ and Ā be as in the assumptions. Then, in particular, Bkt̄ ⊆
Dk for all k < ω.

Claim 3.7.1. If M,k < ω and B ∈ Dk, then there is s ∈ Σtt(t̄ � k) such that
val[s] ⊆ B, nor[s] ≥M and (∀f ∈ val[s])(f ~B ∈ Dxf

).

Proof of the Claim. Since D̄ = D̄~ D̄ and B ∈ Dk, we know that setkt̄ (B, D̄) ∈ Dk

and thus B ∩ setkt̄ (B, D̄) ∈ Dk. Hence postt(t̄ � k) \ (B ∩ setkt̄ (B, D̄)) /∈ Bkt̄ and we

may find s ∈ Σtt(t̄ � k) such that nor[s] ≥M and val[s] ⊆ B ∩ setkt̄ (B, D̄). This s
is as required in the assertion of the claim. �

Now we choose inductively si, Bi, ki (for i < ω) such that

(i) B0 = A0, k0 = 0,
(ii) Bi ∈ Dki , Bi ⊆ Aki , ki < ki+1 < ω, si ∈ Σ(tki , . . . , tki+1−1),

(iii) val[si] ⊆ Bi, nor[si] ≥ i+ 1,
(iv) if f ∈ val[si], then Bi+1 ⊆ f ~Bi ∈ Dki+1

.

Clause (i) determines B0 and k0. Suppose we have already chosen ki and Bi ∈ Dki .
By 3.7.1 we may find ki+1 > ki and si ∈ Σ(tki , . . . , tki+1−1) such that

nor[si] ≥ i+ 1, val[si] ⊆ Bi and (∀f ∈ val[si])(f ~Bi ∈ Dki+1
).

We let Bi+1 = Aki+1
∩
⋂
{f ~ Bi : f ∈ val[si]} ∈ Dki+1

. One easily verifies the
relevant demands in (ii)–(iv) for si, Bi+1, ki+1.

After the above construction is carried out, we set s̄ = 〈si : i < ω〉. Plainly,
s̄ ∈ PCtt

∞(K,Σ), s̄ ≥ t̄ and ms0
dn = mt0

dn.

Claim 3.7.2. For each i, k < ω and s ∈ Σ(si, . . . , si+k) we have val[s] ⊆ Bi.

Proof of the Claim. Induction on k < ω. If k = 0 then the assertion of the claim
follows from clause (iii) of the choice of si. Assume we have shown the claim for
k. Suppose that s ∈ Σ(si, . . . , si+k, si+k+1), i < ω, and f ∈ val[s]. Let f0 =
f�[msi

dn,m
si
up) ∈ val[si] and f1 = f�[msi+1

dn ,m
si+k+1
up ) ∈ postt(s̄ � (i+ 1)) (remember

1.2(4)(ftight) and 3.2(1)). By the inductive hypothesis we know that f1 ∈ Bi+1, so
by clause (iv) of the choice of si we get f1 ∈ f0~Bi and thus f = f0 ∪ f1 ∈ Bi. �
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It follows from 3.7.2 that for each i < ω we have postt(s̄ � i) ⊆ Bi ⊆ Aki , as
required. �

Conclusion 3.8. Suppose that (K,Σ) is a tight FFCC pair with weak t–bigness and
weak t–additivity for t̄ ∈ PCtt

∞(K,Σ).

(a) Assume that, for each n < ω, kn < ω and dn : postt(t̄ � n) −→ kn. Then
there is s̄ = 〈si : i < ω〉 ∈ PCtt

∞(K,Σ) such that s̄ ≥ t̄, ms0
dn = mt0

dn and for
each n < ω,
if n is such that si ∈ Σtt(t̄ � n), then dn�postt(s̄ � i) is constant.

(b) Suppose also that (K,Σ) has t–multiadditivity. Let dn : postt(t̄ � n) −→ k
(for n < ω), k < ω. Then there are s̄ = 〈si : i < ω〉 ∈ PCtt

∞(K,Σ) and
` < k such that s̄ ≥ t̄ and for each i < ω, if n is such that si ∈ Σtt(t̄ � n)
and f ∈ postt(s̄ � i), then dn(f) = `.

Now we will use 3.8 to give a new proof of Carlson–Simpson Theorem. This
theorem was used as a crucial lemma in the (inductive) proof of the Dual Ramsey
Theorem [CS84, Theorem 2.2].

Theorem 3.9. [Carlson and Simpson [CS84, Theorem 6.3]] Suppose that 0 < N <
ω, X =

⋃
n<ω

nN and X = C0 ∪ . . . ∪ Ck, k < ω. Then there exist a partition

{Y } ∪ {Yi : i < ω} of ω and a function f : Y −→ N such that

(a) each Yi is a finite non-empty set,
(b) if i < j < ω then max(Yi) < min(Yj),
(c) for some ` ≤ k:

if i < ω, g : min(Yi) −→ N , f�min(Yi) ⊆ g and g�Yj is constant for j < i,
then g ∈ C`.

Proof. For f ∈ X let d0(f) = min{` ≤ k : f ∈ C`}. Consider the tight FFCC
pair (KN ,ΣN ) defined in Example 1.13. It satisfies the assumptions of 3.8. Fix
any t̄ ∈ PCtt

∞(KN ,ΣN ) with mt0
dn = 0 and use 3.8(a) to choose s̄ ∈ PCtt

∞(KN ,ΣN )

such that s̄ ≥ t̄, ms0
dn = mt0

dn = 0 and d0�postt(s̄) is constant. Set Y =
⋃
i<ω

Xsi ,

f =
⋃
i<ω

ϕsi and Yi = [msi
dn,m

si
up) \Xsi for i < ω. �

4. Very weak bigness

The assumptions of Conclusion 3.8 (weak t–bigness and weak t–additivity) are
somewhat strong. We will weaken them substantially here, getting weaker but still
interesting conclusion.

Definition 4.1. Let (K,Σ) be a tight FFCC pair for H, t̄ ∈ PCtt
∞(K,Σ).

(1) For n < m < ω we define

pos(t̄�[n,m)) =
⋃
{val[s] : s ∈ Σ(tn, . . . , tm−1)}

and we also keep the convention that pos(t̄�[n, n)) = {∅}.
[Note that pos(t̄�[n,m)) = {fn ∪ . . . ∪ fm−1 : f` ∈ val[t`] for ` < m}
(remember 1.2(4)(ftight) and 3.2(1)).]

(2) We say that (K,Σ) has the very weak t–bigness for t̄ if
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16 ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

(�)vw
t̄ for every n,L,M < ω and a partition F0 ∪ . . . ∪ FL = postt(t̄ � n),

there are i0 = n ≤ i1 < i2 ≤ i3, ` ≤ L and g0 ∈ pos(t̄�[i0, i1)),
g2 ∈ pos(t̄�[i2, i3)) and s ∈ Σ(ti1 , . . . , ti2−1) such that

nor[s] ≥M and (∀g1 ∈ val[s])(g0 ∪ g1 ∪ g2 ∈ F`).

Observation 4.2. If a tight FFCC pair (K,Σ) has the weak t–bigness for t̄, then
it has the very weak t–bigness for t̄.

Definition 4.3. Let (K,Σ) be a tight FFCC pair for H and t̄ ∈ PCtt
∞(K,Σ).

(1) For n < ω, Cnt̄ is the family of all sets B ⊆ postt(t̄ � n) such that for some
M we have:
if i0 = n ≤ i1 < i2 ≤ i3, g0 ∈ pos(t̄�[i0, i1)), g2 ∈ pos(t̄�[i2, i3)) and
s ∈ Σ(ti1 , . . . , ti2−1), nor[s] ≥M , then B ∩ {g0 ∪ g1 ∪ g2 : g1 ∈ val[s]} 6= ∅.

(2) suf�t̄ (K,Σ) is the family of all D̄ = 〈Dn : n < ω〉 ∈ suf t̄(K,Σ) such that
Cnt̄ ⊆ Dn for all n < ω.

Proposition 4.4. Let (K,Σ) be a tight FFCC pair for H and t̄ ∈ PCtt
∞(K,Σ).

(1) suf�t̄ (K,Σ) is a closed subset of suf t̄(K,Σ), suf∗t̄ (K,Σ) ⊆ suf�t̄ (K,Σ).
(2) If (K,Σ) has the very weak t–bigness for t̄, then suf�t̄ (K,Σ) 6= ∅.
(3) If D̄ ∈ suf�t̄ (K,Σ), n < ω and B ∈ Cnt̄ , then setnt̄ (B, D̄) = postt(t̄ � n).
(4) suf�t̄ (K,Σ) is closed under the operation ~ (defined in 3.1(6)).

Proof. (1) Since in 4.3(1) we allow i1 = i0 and i3 = i2 (so g0 = g2 = ∅), we easily
see that Cnt̄ ⊆ B

n
t̄ . Hence suf∗t̄ (K,Σ) ⊆ suf�t̄ (K,Σ). The proof that suf�t̄ (K,Σ) is

closed is the same as for 3.5(1).
(2) Like 3.5(2).
(3) Let M be such that B ∩ {g0 ∪ g1 ∪ g2 : g1 ∈ val[s]} 6= ∅ whenever g0 ∈
pos(t̄�[n, i1)), g2 ∈ pos(t̄�[i2, i3)), s ∈ Σ(t̄�[i1, i2)), nor[s] ≥ M , n ≤ i1 < i2 ≤ i3.
We will show that this M witnesses f ~B ∈ Cxf

t̄ for all f ∈ postt(t � n).
So suppose that f ∈ postt(t̄ � n) and xf ≤ i1 < i2 ≤ i3, g0 ∈ pos(t̄�[xf , i1)),

s ∈ Σ(t̄�[i1, i2)), nor[s] ≥ M and g2 ∈ pos(t̄�[i2, i3)). Then f ∪ g0 ∈ pos(t̄�[n, i1))
(remember 3.2(1)) and consequently (by the choice of M) B ∩

{
(f ∪ g0) ∪ g1 ∪ g2 :

g1 ∈ val[s]
}
6= ∅. Let g∗1 ∈ val[s] be such that f ∪ g0 ∪ g∗1 ∪ g2 ∈ B. Then

g0 ∪ g∗1 ∪ g2 ∈ f ~B witnessing that (f ~B) ∩
{
g0 ∪ g1 ∪ g2 : g1 ∈ val[s]

}
6= ∅.

Since Cxf

t̄ ⊆ Dxf
we conclude now that f ~B ∈ Dxf

so f ∈ setnt̄ (B, D̄).

(4) Suppose D̄1, D̄2 ∈ suf�t̄ (K,Σ), D̄ = D̄1 ~ D̄2. Let B ∈ Cnt̄ , n < ω. By (3)
we know that setnt̄ (B, D̄1) = postt(t̄ � n) ∈ D2

n and thus B ∈ Dn. Consequently,
Cnt̄ ⊆ Dn for all n < ω, so D̄ ∈ suf�t̄ (K,Σ). �

Corollary 4.5. Assume that (K,Σ) is a tight FFCC pair with the very weak t–
bigness for t̄ ∈ PCtt

∞(K,Σ). Then there is D̄ ∈ suf�t̄ (K,Σ) such that D̄ ~ D̄ = D̄.

Theorem 4.6. Assume that (K,Σ) is a tight FFCC pair for H, t̄ = 〈tn : n <
ω〉 ∈ PCtt

∞(K,Σ). Let D̄ ∈ suf�t̄ (K,Σ) be such that D̄ ~ D̄ = D̄ and suppose that
An ∈ Dn for n < ω. Then there are sequences 〈ni : i < ω〉, 〈g3i, g3i+2 : i < ω〉 and
〈s3i+1 : i < ω〉 such that for every i < ω:

(α) 0 = n0 ≤ n3i ≤ n3i+1 < n3i+2 ≤ n3i+3 < ω,
(β) if j = 3i or j = 3i+ 2, then gj ∈ pos(t̄�[nj , . . . , nj+1)),
(γ) if j = 3i+ 1, then sj ∈ Σ(tnj , . . . , tnj+1−1) and nor[sj ] ≥ j,
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(δ) if g3`+1 ∈ val[s3`+1] for ` ∈ [i, k), i < k, then
3k−1⋃
j=3i

gj ∈ An3i .

Proof. Parallel to 3.7, just instead of val[si] use {gi−1 ∪ g ∪ gi+1 : g ∈ val[si]}. �

Conclusion 4.7. Assume that (K,Σ) is a tight FFCC pair with the very weak t–
bigness for t̄ ∈ PCtt

∞(K,Σ). Suppose that for each n < ω we are given kn < ω
and a mapping dn : postt(t̄ � n) −→ kn. Then there are sequences 〈ni : i < ω〉,
〈g3i, g3i+2 : i < ω〉, 〈s3i+1 : i < ω〉 and 〈ci : i < ω〉 such that for each i < ω:

(α) 0 = n0 ≤ n3i ≤ n3i+1 < n3i+2 ≤ n3i+3 < ω, ci ∈ kn3i
,

(β) if j = 3i or j = 3i+ 2, then gj ∈ pos(t̄�[nj , . . . , nj+1)),
(γ) if j = 3i+ 1, then sj ∈ Σ(tnj

, . . . , tnj+1−1) and nor[sj ] ≥ j,
(δ) if i < k and f ∈ pos(t̄�[n3i, n3k)) are such that

g3` ∪ g3`+2 ⊆ f and f�[ms3`+1

dn ,ms3`+1
up ) ∈ val[s3`+1] for all ` ∈ [i, k),

then dn3i
(f) = ci.

Example 4.8. Let (G, ◦) be a finite group. For a function f : S −→ G and a ∈ G
we define a ◦ f : S −→ G by (a ◦ f)(x) = a ◦ f(x) for x ∈ S. Let HG(m) = G (for
m < ω) and let KG consist of all FP creatures t for HG such that

• nor[t] = mt
up, dis[t] = ∅,

• val[t] ⊆ [mt
dn,m

t
up)G is such that (∀f ∈ val[t])(∀a ∈ G)(a ◦ f ∈ val[t]).

For t0, . . . , tn ∈ KG with m
t`+1

dn = mt`
up (for ` < n) we let ΣG(t0, . . . , tn) consist of

all creatures t ∈ KG such that

• mt
dn = mt0

dn, mt
up = mtn

up,

• val[t] ⊆ {f ∈ [mt
dn,m

t
up)G : (∀` ≤ n)(f�[mt`

dn,m
t`
up) ∈ val[t`])}.

Then

(1) (KG,ΣG) is a tight FFCC pair for HG.
(2) If |G| = 2, then (KG,ΣG) has the very weak t–bigness for every candidate

t̄ ∈ PCtt
∞(KG,ΣG).

Proof. (1) Straightforward.
(2) Let G = ({−1, 1}, ·). Suppose that t̄ ∈ PCtt

∞(KG,ΣG) and postt(t̄ � n) =
F0 ∪ . . . ∪ FL, n,L,M < ω. For future use we will show slightly more than needed
for the very weak bigness.

We say that N ≥ n+M is `–good (for ` ≤ L) if

(�)` there are j2 ≥ j1 > N , g0 ∈ pos(t̄�[n,N)), g2 ∈ pos(t̄�[j1, j2)) and s ∈
ΣG(t̄�[N, j1)) such that {g0 ∪ g1 ∪ g2 : g1 ∈ val[s]} ⊆ F`.

(Note that if s is as in (�)`, then also nor[s] = m
tj1
dn ≥ j1 > N ≥ M .) We are

going to argue that

(�) almost every N ≥ n+M is `–good for some ` ≤ L.

So suppose that (�) fails and we have an increasing sequence n + M < N(0) <
N(1) < N(2) < . . . such that N(k) is not `–good for any ` ≤ L (for all k < ω). Let
m = L+957 and for each i ∈ [n,N(m)] fix fi ∈ val[ti] (note that then −fi ∈ val[ti]
as well). Next, for j < m define

hj =

N(j)−1⋃
i=n

fi ∪
N(m)⋃
i=N(j)

−fi
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and note that hj ∈ postt(t̄ � n). For some ` ≤ L and j < k < m we have
hj , hk ∈ F`. Set

g0 =

N(j)−1⋃
i=n

fi = hj�m
tN(j)

dn = hk�m
tN(j)

dn ,

g2 =

N(m)⋃
i=N(k)

−fi = hj�[m
tN(k)

dn ,m
tN(m)
up ) = hk�[m

tN(k)

dn ,m
tN(m)
up )

and let s ∈ ΣG(t̄�[N(j), N(k))) be such that

val[s] = {hj�[m
tN(j)

dn ,m
tN(k)

dn ), hk�[m
tN(j)

dn ,m
tN(k)

dn )}.

Then {g0 ∪ g1 ∪ g2 : g1 ∈ val[s]} = {hj , hk} ⊆ F`, so g0, g2 and s witness (�)` for
N(j), a contradiction. �

The following conclusion is a special case of the partition theorem used in Gold-
stern and Shelah [GS90] to show that a certain forcing notion preserves a Ramsey
ultrafilter (see [GS90, 3.9, 4.1 and Section 5]).

Corollary 4.9. Let Y =
⋃
n<ω

n{−1, 1}. Suppose that Y = C0 ∪ . . . ∪ CL, L < ω.

Then there are a sequence 〈ni : i < ω〉, a function f : ω −→ {−1, 1} and ` < L
such that

(a) 0 = n0 ≤ n3i ≤ n3i+1 < n3i+2 ≤ n3i+3 < ω,
(b) if g : n3i −→ {−1, 1} for each j < i satisfies

g�[n3j , n3j+1) ∪ g�[n3j+2, n3j+3) ⊆ f and
g�[n3j+1, n3j+2) ∈ {f�[n3j+1, n3j+2),−f�[n3j+1, n3j+2)}

then g ∈ C`.

Proof. By 4.7+4.8. �

5. Limsup candidates

Definition 5.1. Let (K,Σ) be a tight FFCC pair for H and J be an ideal on ω.

(1) A limsupJ–candidate for (K,Σ) is a sequence t̄ = 〈tn : n < ω〉 such that

tn ∈ K, mtn
up = m

tn+1

dn (for all n) and for each M

{mtn
dn : n < ω & nor[tn] > M} ∈ J+.

The family of all limsupJ–candidates for (K,Σ) is denoted by PCJw∞(K,Σ).
(2) A finite candidate for (K,Σ) is a finite sequence s̄ = 〈sn : n < N〉, N < ω,

such that sn ∈ K and msn
up = m

sn+1

dn (for n < N). The family of all finite
candidates is called FC(K,Σ).

(3) For s̄ = 〈sn : n < N〉 ∈ FC(K,Σ) and M < ω we set

baseM (s̄) = {msn
dn : n < N & nor[sn] ≥M}.

(4) Let t̄, t̄′ ∈ PCJw∞(K,Σ), s̄ ∈ FC(K,Σ). Then we define t̄ � n, Σtt(t̄),
postt(t̄), t̄ ≤ t̄′, pos(t̄�[n,m)) and pos(s̄) as in the case of tight pure candi-
dates (cf. 1.3, 4.1).
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(5) Let t̄ ∈ PCJw∞(K,Σ). The family of all finite candidates s̄ = 〈sn : n <
N〉 ∈ FC(K,Σ) satisfying

(∀n < N)(∃k, `)(sn ∈ Σ(t̄�[k, `))) and ms0
dn = mt0

dn

is denoted by Σseq(t̄).

Definition 5.2. Let (K,Σ) be a tight FFCC pair, J be an ideal on ω and t̄ ∈
PCJw∞(K,Σ).

(1) We say that (K,Σ) has the J–bigness for t̄ if
(⊗)Jt̄ for every n,L,M < ω and a partition F0 ∪ . . . ∪ FL = postt(t̄ � n),

there are ` ≤ L and a set Z ∈ J+ such that

(∀z ∈ Z)(∃s̄ ∈ Σseq(t̄ � n))(z ∈ baseM (s̄) & pos(s̄) ⊆ F`).
(2) The pair (K,Σ) captures singletons (cf. [RS99, 2.1.10]) if

(∀t ∈ K)(∀f ∈ val[t])(∃s ∈ Σ(t))(val[s] = {f}).
(3) We define suf t̄(K,Σ) as in 3.1(3), setnt̄ (A, D̄) (for A ⊆ postt(t̄ � n) and

D̄ ∈ suf t̄(K,Σ)) as in 3.1(5) and the operation ~ on suf t̄(K,Σ) as in 3.1(6).

(4) For n < ω, Dn,Jt̄ is the family of all sets B ⊆ postt(t̄ � n) such that for
some M < ω and Y ∈ Jc we have:

if s̄ ∈ Σseq(t̄ � n) and baseM (s̄) ∩ Y 6= ∅, then B ∩ pos(s̄) 6= ∅.
(5) sufJt̄ (K,Σ) is the family of all D̄ = 〈Dn : n < ω〉 ∈ suf t̄(K,Σ) such that

Dn,Jt̄ ⊆ Dn for all n < ω.

Remark 5.3. Note that no norms were used in the proofs of 3.2, 3.3, so those
statements are valid for the case of t̄ ∈ PCJw∞(K,Σ) too.

Observation 5.4. (1) Assume that (K,Σ) is a tight FFCC pair with bigness
(see 1.6(3)). If (K,Σ) captures singletons or it has the t–multiadditivity

(see 1.5(3)), then (K,Σ) has the J–bigness for any t̄ ∈ PCJw∞(K,Σ).
(2) The tight FFCC pairs (K1,Σ

∗
1), (K3,Σ

∗
3) and (KN ,ΣN ) defined in 1.10,

1.12 and 1.13, respectively, have J–bigness on every t̄ ∈ PCJw∞(K,Σ).

Every tight FFCC pair can be extended to a pair capturing singletons while
preserving postt(t̄).

Definition 5.5. Let (K,Σ) be a tight FFCC pair for H. Define Ksin as the family
of all FP creatures t for H such that

dis[t] = K, nor[t] = 0 and |val[t]| = 1.

Then we let Ks = K ∪Ksin and for t0, . . . , tn ∈ Ks with mt`
up = m

t`+1

dn (for ` < n)
we set

• Σsin(t0, . . . , tn) consists of all creatures t ∈ Ksin such that mt
dn = mt0

dn,
mt

up = mtn
up and

if val[t] = {f} then f�[mt`
dn,m

t`
up) ∈ val[t`] for all ` ≤ n;

• if t0, . . . , tn ∈ K, then Σs(t0, . . . , tn) = Σ(t0, . . . , tn) ∪ Σsin(t0, . . . , tn);
• if t` ∈ Ksin for some ` ≤ n, then Σs(t0, . . . , tn) = Σsin(t0, . . . , tn).

Observation 5.6. Let (K,Σ) be a tight FFCC pair for H.

(1) (Ks,Σs) is a tight FFCC pair for H and it captures singletons.
(2) If (K,Σ) has bigness then so does (Ks,Σs) and consequently then (Ks,Σs)

has the J–bigness on any t̄ ∈ PCJw∞(Ks,Σs).
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(3) If t̄ ∈ PCJw∞(K,Σ), then t̄ ∈ PCJw∞(Ks,Σs) and postt(t̄) with respect to
(K,Σ) is the same as postt(t̄) with respect to (Ks,Σs).

Observation 5.7. Let G = ({−1, 1}, ·) and (KG,ΣG) be the tight FFCC pair

defined in 4.8. Suppose that t̄ ∈ PCJw∞(KG,ΣG). Then (Ks
G,Σ

s
G) (sic!) has the

J–bigness for t̄.

Proof. Note that PCJw∞(KG,ΣG) ⊆ PCtt
∞(KG,ΣG) and remember (�) from the

proof of 4.8(2). �

Proposition 5.8. Assume that (K,Σ) is a tight FFCC pair for H, J is an ideal

on ω and t̄ ∈ PCJw∞(K,Σ).

(1) sufJt̄ (K,Σ) is a closed subset of the compact Hausdorff topological space
suf t̄(K,Σ).

(2) If (K,Σ) has the J–bigness for t̄, then sufJt̄ (K,Σ) 6= ∅.
(3) If D̄ ∈ sufJt̄ (K,Σ), n < ω and B ∈ Dn,Jt̄ , then setnt̄ (B, D̄) ∈ Dn,Jt̄ .

(4) sufJt̄ (K,Σ) is closed under the operation ~.

Proof. (1) Same as 3.5(1).
(2) Similar to 3.5(2).

(3) Let B ∈ Dn,Jt̄ be witnessed by M < ω and Z ∈ Jc. We are going to show that

then for each s̄ ∈ Σseq(t̄ � n) with baseM (s̄)∩Z 6= ∅ we have pos(s̄)∩setnt̄ (B, D̄) 6= ∅.
So let s̄ = 〈s0, . . . , sk〉 ∈ Σseq(t̄ � n), baseM (s̄) ∩ Z 6= ∅ and let x be such that
msk

up = mtx
dn. Set A =

⋃
{f ~ B : f ∈ pos(s̄)}. Suppose that r̄ ∈ Σseq(t̄ � x).

Then s̄_r̄ ∈ Σseq(t̄ � n) and baseM (s̄_r̄) ⊇ baseM (s̄), so pos(s̄_r̄) ∩ B 6= ∅. Let
g ∈ pos(s̄_r̄) ∩ B and f0 = g�msk

up, f1 = g�[msk
up, ω). Necessarily f0 ∈ pos(s̄),

f1 ∈ pos(r̄) and (as g = f0 ∪ f1 ∈ B) f1 ∈ f0 ~ B. Consequently A ∩ pos(r̄) 6= ∅.
Now we easily conclude that A ∈ Dx,Jt̄ ⊆ Dx. Hence for some f ∈ pos(s̄) we have

f ~B ∈ Dx, so f ∈ setnt̄ (B, D̄).
(4) Follows from (3). �

Corollary 5.9. Assume that (K,Σ) is a tight FFCC pair, J is an ideal on ω and

t̄ ∈ PCJw∞(K,Σ). If (K,Σ) has the J–bigness for t̄, then there is D̄ ∈ sufJt̄ (K,Σ)
such that D̄ ~ D̄ = D̄.

Definition 5.10. Let J be an ideal on ω.

(1) A game aJ between two players, One and Two, is defined as follows. A play
of aJ lasts ω steps in which the players construct a sequence 〈Zi, ki : i < ω〉.
At a stage i of the play, first One chooses a set Zi ∈ J+ and then Two
answers with ki ∈ Zi. At the end, Two wins the play 〈Zi, ki : i < ω〉 if and
only if {ki : i < ω} ∈ J+.

(2) We say that J is an R–ideal if player One has no winning strategy in aJ .

Remark 5.11. If J is a maximal ideal on ω, then it is an R–ideal if and only if the
dual filter Jc is a Ramsey ultrafilter. Also, the ideal [ω]<ω of all finite subsets of ω
is an R–ideal.

Theorem 5.12. Assume that (K,Σ) is a tight FFCC pair, J is an R–ideal on ω

and t̄ ∈ PCJw∞(K,Σ). Suppose that D̄ ∈ sufJt̄ (K,Σ) satisfies D̄ ~ D̄ = D̄ and let

An ∈ Dn for n < ω. Then there are s̄ ∈ PCJw∞(K,Σ) and 0 = k(0) < k(1) <
k(2) < k(3) < . . . < ω such that t̄ ≤ s̄, ms0

dn = mt0
dn and

if i < j, ` < ω, sk(i) ∈ Σtt(t̄ � `), then pos(sk(i), sk(i)+1, . . . , sk(j)−1) ⊆ A`.
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Proof. The proof follows the pattern of 3.7 with the only addition that we need to
make sure that at the end s̄ ∈ PCJw∞(K,Σ), so we play a round of aJ . First,

Claim 5.12.1. Assume M, ` < ω and B ∈ D`. Then for some set Z ∈ J+, for
every x ∈ Z, there is s̄ ∈ Σseq(t̄ � `) such that

x ∈ baseM (s̄), pos(s̄) ⊆ B and (∀f ∈ pos(s̄))(f ~B ∈ Dxf
).

Proof of the Claim. Similar to 3.7.1. Since D̄~ D̄ = D̄ and B ∈ D`, we know that

postt(t̄ � `) \ (B ∩ set`t̄(B, D̄)) /∈ D`,Jt̄ . Therefore, for each Y ∈ Jc there are x ∈ Y
and s̄ ∈ Σseq(t̄ � `) such that x ∈ baseM (s̄) and pos(s̄) ⊆ B ∩ set`t̄(B, D̄). So the
set Z of x as above belongs to J+. �

Consider the following strategy for player One in the game aJ . During the course
of a play, in addition to his innings Zi, One chooses aside `i < ω, Bi ∈ D`i and
s̄i ∈ FC(K,Σ). So suppose that the players have arrived to a stage i of the play
and a sequence 〈Zj , kj , s̄j , `j , Bj : j < i〉 has been constructed. Stipulating `−1 = 0

and B−1 = A0, One uses 5.12.1 to pick a set Zi ⊆ ω \m
t`i−1

dn such that Zi ∈ J+

and for all x ∈ Zi there exists s̄ ∈ Σseq(t̄ � `i−1) with

x ∈ basei+1(s̄) & pos(s̄) ⊆ Bi−1 & (∀f ∈ pos(s̄))(f ~Bi−1 ∈ Dxf
).

The set Zi is One’s inning in aJ after which Two picks ki ∈ Zi. Now, One chooses
s̄i ∈ Σseq(t̄ � `i−1) such that

(α)i ki ∈ basei+1(s̄i),
(β)i pos(s̄i) ⊆ Bi−1, and
(γ)i (∀f ∈ pos(s̄i))(f ~Bi−1 ∈ Dxf

).

He also sets

(δ)i `i = xf for all (equivalently: some) f ∈ pos(s̄i), and
(ε)i Bi = A`i ∩

⋂
{f ~Bi−1 : f ∈ pos(s̄i)} ∈ D`i .

The strategy described above cannot be winning for One, so there is a play
〈Zi, ki : i < ω〉 in which One follows the strategy, but {ki : i < ω} ∈ J+. In the
course of this play One constructed aside a sequence 〈`i, Bi, s̄i : i < ω〉 such that
s̄i ∈ Σseq(t̄ � `i−1) and conditions (α)i—(ε)i hold (where we stipulate `−1 = 0,
B−1 = A0). Note that s̄i_s̄i+1_. . ._s̄i+k ∈ Σseq(t̄ � `i−1) for each i, k < ω. Also

s̄
def
= s̄0_s̄1_s̄2_. . . ∈ PCJw∞(K,Σ) and s̄ ≥ t̄.

Claim 5.12.2. For each i, k < ω, pos(s̄i_s̄i+1_. . ._s̄i+k) ⊆ Bi−1 ⊆ A`i−1
.

Proof of the Claim. Induction on k; fully parallel to 3.7.2. �

Now the theorem readily follows. �

Conclusion 5.13. Assume that (K,Σ) is a tight FFCC pair, J is an R–ideal on ω

and t̄ ∈ PCJw∞(K,Σ). Suppose also that (K,Σ) has J–bigness for t̄. For n < ω

let kn < ω and let dn : postt(t̄ � n) −→ kn. Then there are s̄ ∈ PCJw∞(K,Σ) and
0 = k(0) < k(1) < k(2) < . . . < ω and 〈ci : i < ω〉 such that

• t̄ ≤ s̄, ms0
dn = mt0

dn, and
• for each i, n < ω,

if sk(i) ∈ Σtt(t̄ � n), i < j < ω and f ∈ pos(sk(i), sk(i)+1, . . . , sk(j)−1),
then dn(f) = ci.
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Corollary 5.14. Let H∗ : ω −→ ω \ {0} be increasing, Z∗ =
⋃
n<ω

∏
i<n

H∗(i) and let

J be an R–ideal on ω. Suppose that Z∗ = C0 ∪ . . . ∪ CL, L < ω. Then there are
sequences 〈ki, ni : i < ω〉 and 〈Ei : i < ω〉 and ` ≤ L such that

(a) 0 = n0 ≤ k0 < n1 ≤ . . . < ni ≤ ki ≤ ni+1 ≤ . . . < ω, {ki : i < ω} ∈ J+,
and for each i < ω:

(b) ∅ 6= Ei ⊆ H∗(i), |Eki | = i+ 1, and∏
j<ni

Ej ⊆ C`.

References

[Com77] W. Wistar Comfort, Ultrafilters: some old and some new results, Bulletin of the Amer-

ican Mathematical Society 83 (1977), 417–455.

[CS84] Timothy J. Carlson and Stephen G. Simpson, A dual form of ramsey’s theorem, Adv.
in Math. 53 (1984), 265–290.

[GS90] Martin Goldstern and Saharon Shelah, Ramsey ultrafilters and the reaping number—

Con(r < u), Ann. Pure Appl. Logic 49 (1990), no. 2, 121–142. MR 1077075
[KS09] Jakob Kellner and Saharon Shelah, Decisive creatures and large continuum, J. Symbolic

Logic 74 (2009), no. 1, 73–104, arXiv: math/0601083. MR 2499421

[KS12] , Creature forcing and large continuum: the joy of halving, Arch. Math. Logic
51 (2012), no. 1-2, 49–70, arXiv: 1003.3425. MR 2864397

[RS99] Andrzej Ros lanowski and Saharon Shelah, Norms on possibilities. I. Forcing with

trees and creatures, Mem. Amer. Math. Soc. 141 (1999), no. 671, xii+167, arXiv:
math/9807172. MR 1613600

[RS06] , Measured creatures, Israel J. Math. 151 (2006), 61–110, arXiv: math/0010070.

MR 2214118
[RSS12] Andrzej Ros lanowski, Saharon Shelah, and Otmar Spinas, Nonproper products, Bull.

Lond. Math. Soc. 44 (2012), no. 2, 299–310, arXiv: 0905.0526. MR 2914608
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