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Abstract. The set of all transformation monoids on a fixed set of infinite

cardinality λ, equipped with the order of inclusion, forms a complete algebraic

lattice Mon(λ) with 2λ compact elements. We show that this lattice is uni-
versal with respect to closed sublattices, i.e., the closed sublattices of Mon(λ)

are, up to isomorphism, precisely the complete algebraic lattices with at most

2λ compact elements.

1. Definitions and the result

Fix an infinite set – for the sake of simpler notation, we identify the set with
its cardinality λ. By a transformation monoid on λ we mean a subset of λλ which
is closed under composition and which contains the identity function. The set of
transformation monoids acting on λ, ordered by inclusion, forms a complete lattice
Mon(λ), in which the meet of a set of monoids is simply their intersection. This
lattice is algebraic, i.e., every element is a join of compact elements – an element a in
a complete lattice L = (L,∨,∧) is called compact iff whenever A ⊆ L and a ≤

∨
A,

then there is a finite A′ ⊆ A such that a ≤
∨
A′. In the case of Mon(λ), the

compact elements are precisely the finitely generated monoids, i.e., those monoids
which contain a finite set of functions such that every function of the monoid can
be composed from functions of this finite set. Consequently, the number of compact
elements of Mon(λ) equals 2λ.

It is well-known and not hard to see that for any cardinal κ, the algebraic lattices
with at most κ compact elements are, up to isomorphism, precisely the subalgebra
lattices of algebras whose domains have κ elements ([BF48]; see also Theorem 48 in
the textbook [Grä03]). For example, Mon(λ) is the subalgebra lattice of the algebra
which has domain λλ, a binary operation which is the function composition on λλ,
as well as a constant operation whose value is the identity function on λ.
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2 MICHAEL PINSKER AND SAHARON SHELAH

Let K and L be complete lattices such that the domain of L is contained in the
domain of K. Then L is called a complete sublattice of K iff all joins and meets in
L equal the corresponding joins and meets in K; in most of the literature where
the notion is mentioned, and in particular in the widely used textbook [Grä03],
this includes empty joins and meets, and so in this definition the respective largest
and smallest elements of L and K must coincide. When the condition of “complete
sublattice” holds for all non-empty joins and meets, then we say that L is a closed
sublattice of K; the difference here is that the respective largest and smallest ele-
ments of L and K need not coincide. In other words, L is a closed sublattice of K
if and only if it is a complete sublattice of a closed interval of K.

Now let K be a complete algebraic lattice and L be a closed sublattice of K. Then
it is a folklore fact that L is algebraic as well, and that the number of compact
elements of L equals at most the corresponding number for K. For the comfort
of the reader, let us sketch the argument showing this. Denote for every compact
element x of K which is below some element of L the smallest element of L which
is above x by xL. Then it is not hard to see that the compact elements of L are
precisely the elements of the form xL. Hence, the mapping that sends every x as
above to xL shows that L does not possess more compact elements than K, and it
also follows easily from the above that L is algebraic.

By this observation, any closed sublattice of Mon(λ) is algebraic and has at
most 2λ compact elements. In this paper, we prove the converse of this fact. This
had been stated as an open problem in [GP08, Problem C]. We remark that it is
clear from the context in [GP08] that the word “subinterval” in the formulation
of Problem C is an error; it is Problem B which asks about subintervals. We also
note that while in [GP08] the authors write “complete sublattice”, they confirmed
upon inquiry that they really meant “closed sublattice”, although they consider the
question about complete sublattices interesting as well.

Theorem 1.1. Mon(λ) is universal for complete algebraic lattices with at most
2λ compact elements with respect to closed sublattices, i.e., the closed sublattices
of Mon(λ) are, up to isomorphism, precisely the complete algebraic lattices with at
most 2λ compact elements.

We remark that it follows from our proof that if L is an algebraic lattice with
at most 2λ compact elements, then it is even isomorphic to a closed sublattice
of Mon(λ) via an isomorphism which preserves the smallest element (but not the
largest, in which case we would obtain a complete sublattice).

2. Related work and possible extensions

2.1. Cardinality questions and non-closed sublattices. It has been known
for a long time that every (not necessarily complete) lattice L is isomorphic to
a sublattice of the lattice of subgroups of a group [Whi46]. Hence, viewing the
group as a monoid, it follows that every lattice is isomorphic to a sublattice of
the lattice of submonoids of a monoid M. Strengthenings of the latter statement
were obtained in [Rep96], where it was shown that one can impose a variety of
different additional properties on the monoid M. In these theorems, one cannot
simply replace “sublattice” by “closed sublattice”, since the lattice of subalgebras
of an algebra is algebraic, and hence, by our discussion above, closed sublattices
must share the same property.
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There are lattices L of size κ for which the corresponding monoid M must have
size at least κ as well: for example, it is easy to see that this is the case when L is
the lattice on κ induced by the natural order of κ. When L is complete, algebraic,
and has κ compact elements, then the monoid M will generally have to have size
at least κ, although L itself might very well have size 2κ; this improvement on the
obvious general lower bound for the cardinality of M compared to arbitrary lattices
is due to the fact that the structure of L is already determined by the structure of
the join-semilattice of its compact elements. A given abstract monoid M can then
in turn be realized as a transformation monoid by letting it act on itself; hence,
it will act on a set of size κ. In our case, this would yield an embedding into
Mon(2λ); the difficulty of our theorem is to find L as a closed sublattice of the
optimal Mon(λ).

2.2. Closed sublattices of related algebraic lattices. A clone on λ is a set
of finitary operations on λ which is closed under composition and which contains
all finitary projections; in other words, it is a set of finitary operations closed
under building of terms (without constants). The set of all clones on λ, ordered by
inclusion, also forms a complete algebraic lattice Cl(λ) with 2λ compact elements,
into which Mon(λ) embeds naturally, since a transformation monoid can be viewed
as a clone all of whose operations depend on at most one variable. Universality
of Cl(λ) for complete algebraic lattices with at most 2λ compact elements with
respect to closed sublattices has been shown in [Pin07] (the author of [Pin07] writes
“complete sublattices” but really means – and proves – “closed sublattices”); our
result is a strengthening of this result.

Observe that similarly to transformation monoids and clones, the set of permuta-
tion groups on λ forms a complete algebraic lattice Gr(λ) with respect to inclusion.
By virtue of the identity embedding, Gr(λ) is a complete sublattice of Mon(λ). We
do not know the following.

Problem 2.1. Is every complete algebraic lattice with at most 2λ compact elements
a closed sublattice of Gr(λ)?

In this context it is worthwhile mentioning that in our proof of Theorem 1.1,
we exclusively use monoids which only contain permutations. In other words, we
construct for every complete algebraic lattice with at most 2λ compact elements a
closed sublattice of the interval of Mon(λ) consisting of those monoids on λ which
are subsets of the symmetric group on λ. However, our “permutation monoids” are
themselves no groups, and in fact they never contain the inverse of any of their per-
mutations (except the identity) – adding inverses would collapse the construction.

A related problem is which lattices appear as intervals of Gr(λ), Mon(λ), and
Cl(λ). This remains open – for the latter two lattices this question has been posed
as an open problem in [GP08] (Problems B and A, respectively). By a deep theorem
due to Tůma [Tům89], every complete algebraic lattice with λ compact elements is
isomorphic to an interval of the subgroup lattice of a group of size λ; from this it only
follows that Gr(λ) contains all complete algebraic lattices with at most λ compact
elements as intervals. Proving that Gr(λ) contains all complete algebraic lattices
with at most 2λ compact elements as intervals would be a common strengthening
of Tůma’s result and a positive answer to Problem 2.1.
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3. Proof of the theorem

3.1. Independent composition engines. For a cardinal κ and a natural number
n ≥ 1, we write Λnκ := κn × 2n. We set Λκ :=

⋃
n≥1 Λnκ. For sequences p, q, we

write p / q if p is a non-empty initial segment of q (we consider q to be an initial
segment of itself). For (η, φ) and (η′, φ′) in Λκ, we also write (η, φ) / (η′, φ′) if η / η′

and φ / φ′. If p is a sequence and r a set, then p ∗ r denotes the extension of p by
the element r. We write 〈r〉 for the one-element sequence containing only r.

A sequence P of elements of Λκ is reduced iff it does not contain both (η∗α, φ∗0)
and (η∗α, φ∗1) for any (η, φ) ∈ Λκ and α ∈ κ. We call two sequences P,Q equivalent
iff P can be transformed into Q by permuting its elements.

For a set W and a cardinal κ, a κ-branching independent composition engine (κ-
ICE) on W is an indexed set {f(η,φ) : (η, φ) ∈ Λκ} of permutations on W satisfying
all of the following:

(i) (Composition) For all (η, φ) ∈ Λκ and for all α ∈ κ we have f(η,φ) =
f(η∗α, φ∗0) ◦ f(η∗α, φ∗1);

(ii) (Commutativity) For all a, b ∈ Λκ we have that fa ◦ fb = fb ◦ fa.
(iii) (Independence) Whenever P = (p1, . . . , pn), Q = (q1, . . . , qm) ⊆ Λκ are

inequivalent reduced sequences, then tP := fp1 ◦ · · · ◦ fpn and tQ := fq1 ◦
· · · ◦ fqm are not equal.

Note that by the commutativity of the system, the order of the elements of the
sequences P and Q in condition (iii) is not of importance.

Lemma 3.1. There exists a 2λ-ICE on λ.

Proof. We show that there exists a 2λ-ICE on W := λ× Z. Let

A := {A(η,φ) : (η, φ) ∈ Λ2λ and the last entry of φ equals 0}

be an independent family of subsets of λ, i.e., any non-trivial finite Boolean com-
bination of these sets is non-empty (see, for example, [Jec03, Lemma 7.7] for a
proof of the existence of such a family). For all (η, φ) ∈ Λ2λ , set #A(η,φ) to equal
A(η,φ), if the last entry of φ equals 0, and λ\A(η,φ′) otherwise, where φ′ is obtained
from φ by changing the last entry to 0. Now define B(η,φ) :=

⋂
s/(η,φ) #As, for all

(η, φ) ∈ Λ2λ .
We will define the 2λ-ICE by means of the family {B(η,φ) : (η, φ) ∈ Λ2λ} as

follows. For all (η, φ) ∈ Λ2λ and all (α, i) ∈W , we set

f(η,φ)(α, i) =

{
(α, i+ 1) , if α ∈ B(η,φ),

(α, i) , otherwise.

We claim that this defines a 2λ-ICE on W . Clearly, (ii) of the definition is
satisfied. Property (i) is a direct consequence of the fact that for all (η, φ) ∈ Λ2λ

and all α < λ, B(η,φ) is the disjoint union of B(η∗α,φ∗0) and B(η∗α,φ∗1).
To see (iii), let P and Q be reduced and inequivalent. We first claim that we can

assume that P and Q have no entries in common. So say that some (η, φ) of Λ2λ

occurs in both P and Q. Then, since tP = tQ if and only if f−1(η,φ) ◦ tP = f−1(η,φ) ◦ tQ,

proving that tP is not equal to tQ is the same as proving that tP ′ is not equal to tQ′ ,
where for X ∈ {P,Q} we write X ′ for the sequence obtained from X by removing
one occurrence of (η, φ). Observe that as subsequences of P and Q respectively,
P ′ and Q′ are still reduced. Repeating this process, we may indeed assume that
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P and Q have no common entries. Now to prove that tP 6= tQ, let (η, φ) be an
element of Λ2λ which appears either in P or in Q and which has the property
that (η′, φ′) = (η, φ) for all pairs (η′, φ′) which appear in P or Q and for which
(η′, φ′) / (η, φ). Say without loss of generality that (η, φ) appears in P . Let A be
the union of all Bq for which q appears in Q. Then it follows from the independence
of the family A, from the fact that Q is reduced, and from the fact that Q contains
no q with q / (η, φ) that B(η,φ) is not contained in the union of all #Aq for q
appearing in Q, and thus B(η,φ) \A is non-empty. Let α be an element of the latter
set. Then tP (α, 0) = (α, k) for some k > 0, whereas tQ(α, 0) = (α, 0). Hence,
tP 6= tQ. �

3.2. From lattices to monoids. For a κ-ICE {f(η, φ) : (η, φ) ∈ Λκ} on W and
a subset S of Λκ, we set F (S) to be the monoid generated by the functions with
index in S, i.e., the smallest monoid of functions from W to W which contains all
the functions with index in S. Another way to put it is that F (S) contains precisely
the composites of functions with index in S as well as the identity function on W .

In the following, fix a 2λ-ICE {f(η, φ) : (η, φ) ∈ Λ2λ} on λ. Let L = (L,∨,∧)

be any complete algebraic lattice with 2λ compact elements. Let C ⊆ L be the set
of compact elements of L excluding the smallest element. Enumerate C, possibly
with repetitions, by {c(η,φ) : (η, φ) ∈ Λ2λ}, and in such a way that the following
hold:

(1) Every element of C is equal to c(〈α〉,〈0〉) for some α < 2λ;

(2) For all (η, φ) ∈ Λ2λ and all α ∈ 2λ we have c(η,φ) ≤ c(η∗α,φ∗0) ∨ c(η∗α,φ∗1);
(3) For all (η, φ) ∈ Λ2λ and all d, d′ ∈ C with c(η,φ) ≤ d∨d′, there exists α < 2λ

such that d = c(η∗α,φ∗0) and d′ = c(η∗α,φ∗1).

Consider the semilattice (C,∨) of compact elements of L without the smallest
element. An ideal of (C,∨) is a possibly empty subset of C which is downward
closed and closed under finite joins. It is a straightforward consequence of the
fact that L is algebraic that L is isomorphic to the lattice of ideals of (C,∨) (the
statement is equivalent to Theorem 42 in [Grä03]). The meet

∧
u∈U Iu of a non-

empty set of ideals {Iu : u ∈ U} in this lattice is just their intersection; their join∨
u∈U Iu the smallest ideal containing all Iu, that is, the set of all elements c of C

for which there exist c1, . . . , cn ∈
⋃
u∈U Iu such that c ≤ c1 ∨ · · · ∨ cn.

To every ideal I ⊆ C, assign the sets S(I) := {(η, φ) ∈ Λ2λ : c(η,φ) ∈ I}, and
F (I) := F (S(I)).

Lemma 3.2. If {Iu : u ∈ U} is a non-empty set of ideals of (C,∨), then
∨
u∈U F (Iu) =

F (
∨
u∈U Iu).

Proof. The inclusion ⊆ is trivial. For the other direction, it is enough to show that if
c(η,φ) is an element of

∨
u∈U Iu, then f(η,φ) is an element of

∨
u∈U F (Iu). There exist

c(η1,φ1), . . . , c(ηn,φn) ∈
⋃
u∈U Iu such that c(η,φ) ≤ c(η1,φ1) ∨ · · · ∨ c(ηn,φn). We use

induction over n. If n = 1, then c(η,φ) ≤ c(η1,φ1) ∈ Iu for some u ∈ U , so c(η,φ) ∈ Iu.
Hence, f(η,φ) ∈ F (Iu), and we are done. In the induction step, suppose the claim
holds for all 1 ≤ k < n. Set d := c(η1,φ1) ∨ · · · ∨ c(ηn−1,φn−1) and d′ := c(ηn,φn).

Since c(η,φ) ≤ d ∨ d′, there exist α < 2λ such that (d, d′) = (c(η∗α,φ∗0), c(η∗α,φ∗1)),
by Property (3) of our enumeration. By the induction hypothesis, we have fd, fd′ ∈∨
u∈U F (Iu). Since f(η,φ) = f(η∗α,φ∗0) ◦ f(η∗α,φ∗1), we get that f(η,φ) ∈

∨
u∈U F (Iu)

as well, proving the lemma. �
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Lemma 3.3. If {Iu : u ∈ U} is a non-empty set of ideals of (C,∨), then
⋂
u∈U F (Iu) =

F (
⋂
u∈U Iu).

Proof. This time, the inclusion ⊇ is trivial. For the other direction, let t ∈⋂
u∈U F (Iu), and assume that t is not the identity function. Then there is a unique

reduced set P such that t = tP , by Property (iii) of an independent composition
engine. Now let u ∈ U be arbitrary. Then there exists a sequence Q in S(Iu) such
that t = tQ. By subsequently replacing two entries (η ∗ α, φ ∗ 0), (η ∗ α, φ ∗ 1) in
Q by (η, φ), we obtain a reduced sequence Q′ which still satisfies t = tQ′ . Since
Iu is closed under joins, and by Property (2) of our enumeration of the compact
elements, all entries of Q′ are still elements of S(Iu). By the independence property,
P and Q′ are equivalent, and hence P is a sequence in S(Iu). But u was arbitrary,
so P is a sequence in

⋂
u∈U S(Iu). This proves t ∈ F (

⋂
u∈U Iu). �

Lemma 3.4. If I, J are distinct ideals of (C,∨), then F (I) 6= F (J).

Proof. Assume without loss of generality that I \J is non-empty. Then S(I)\S(J)
is non-empty as well; let (η, φ) be an element therein. If we had f(η,φ) ∈ F (J),
then there would exist a sequence Q in S(J) such that f(η,φ) = tQ. As in the
proof of the preceding lemma, we could moreover assume that Q is reduced. But
then by the independence property, the sequence Q would be equivalent with the
sequence 〈(η, φ)〉, implying (η, φ) ∈ S(J) – a contradiction. So f(η,φ) /∈ F (J) but
f(η,φ) ∈ F (I), and we are done. �

It follows from the above that the assignment I 7→ F (I) is an injective mapping
from the lattice of ideals of (C,∨) to Mon(λ) which preserves arbitrary non-empty
joins and meets, proving our theorem. Moreover, under this mapping the smallest
element of L, represented by the empty ideal in (C,∨), is sent to the monoid which
contains only the identity function, and hence to the smallest element of Mon(λ).
This justifies the remark after the theorem.
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