DETAILS ON SH:74

SAHARON SHELAH

Abstract. We give details on a claim from [She78] (continuing [She71]+ [?]

Key words and phrases.
Research supported by the United States-Israel Binational Science Foundation. Publication E28.

Theorem -1.1. 3
Let $\lambda_{1} \geq \mu_{1}, \lambda \geq \mu$, then the following are equivalent
(A) $\left(\lambda_{1}, \mu_{1}\right) \rightarrow_{\aleph_{0}}(\lambda, \mu)$
(B) $\left(\lambda_{1}, \mu_{1}\right) \rightarrow_{\leq \mu}(\lambda, \mu)$
(C) We can find functions $f_{\ell}: \lambda^{\ell} \rightarrow \mu$ for $\ell<\omega$ such that: if (n, E) is not an identity of $\left(\lambda_{1}, \mu_{1}\right)$ then $\left\langle f_{\ell}: \ell \leq n\right\rangle$ witness that it is not an identity of (λ, μ).

Remark :

(1) If
\square the sets of (n, E) which are not identifies of $\left(\lambda_{1}, \mu_{1}\right)$ is recursive, we can add
(D) $\left(\lambda_{1}, \mu_{1}\right) \rightarrow_{1}(\lambda, \mu)$.
(2) We can weaken \square to:
\square^{+}there is a recursive set of identities, including the one failing for $\left(\lambda_{1}, \mu_{1}\right)$ and included in the one holding for (λ, μ) (check).

REmARK: Recall $\left(\lambda_{1}, \mu_{1}\right) \rightarrow_{\leq \kappa}(\lambda, \mu)$ mean that if T is a (first order theory of cardinality $\leq \kappa$, with the distinguish predicates P_{1}, P_{2} and every finite $T^{\prime} \subseteq T$ has a model M with $\left|P_{1}^{M}\right|=\lambda_{1},\left|P_{2}^{M}\right|=\mu_{1}$ then T has a model N with $\left|P_{1}^{N}\right|=\lambda,\left|P_{2}^{N}\right|=\mu$

Proof. of theorem 3
The proof is by showing (for our given $\lambda_{1}, \mu_{1}, \lambda, \mu$)

$$
(A) \Rightarrow(C) \Rightarrow(B) \Rightarrow(A)
$$

$(B) \Rightarrow(A)$ trivially.
$\overline{(A) \Rightarrow(C)}:$ Let $\left\langle\left(n_{i}, E_{i}\right): i<\omega\right\rangle$ list the identities. Let $m_{i}=\operatorname{Max}\left\{i, n_{0}, \ldots, n_{i}\right\}$
For each i, choose if possible f_{ℓ}^{i}, an ℓ - place function from λ_{1} to μ_{1} for $\ell \leq m_{i}$ exemplifying $\lambda_{1} \nrightarrow \overline{\left(n_{i}, E_{i}\right)_{\mu_{1}}}$; if impossible f_{ℓ}^{i} is choosen identically zero. We do it by induction on i and so without loss of generality
$\circledast_{1} i<j<\omega \& \ell \leq m_{i} \Rightarrow f_{\ell}^{j}$ refine $f_{\ell}^{i} \quad$ i.e. $f_{\ell}^{j}(\bar{x})=f_{\ell}^{j}(\bar{y}) \rightarrow f_{\ell}^{i}(\bar{x})=$ $f_{\ell}^{i}(\bar{y})\left(\right.$ recall $\left.\mu^{n}=\mu\right)$

Let $M_{1}=\left(\lambda_{1}, \mu_{1} \ldots f_{\ell}^{i}, \ldots\right)$, so it has $i<\omega, \ell \leq n_{i}$ universe λ_{1} and vocalulary $\left\{F_{\ell}^{i}: i<\omega, \ell \leq m_{i}\right\}$ where F_{ℓ}^{i} is an ℓ-place function.

This is not exaclly right so let M_{2} be defind by
(a) M_{2} has universe λ_{1} relations:
(b) $P_{1}^{M_{2}}=\lambda_{1}$
(c) $P_{2}^{M_{2}}=\mu_{1}$
(d) F_{ℓ} an $(\ell+1)-$ place function such that for $i<\omega, \forall \bar{x}\left[F_{\ell}(\bar{x}, i)=\right.$ $\left.f_{\ell}^{i}(\bar{x})\right]$ otherwise zero
(e) $P_{3}^{M_{2}}=\omega$
(f) $c_{n}^{M_{2}}=n$
(g) $<{ }^{M_{2}}$ the usual order on λ_{1}

Let M_{2}^{+}be the expansion of M_{2} by Skolem functions.
Lastly let $T=\operatorname{Th}\left(M_{2}\right) \cup\left\{c_{n}<c \wedge P_{3}(c): n<\omega\right\}$. Clearly.
$\circledast_{2} T$ is first order, countable and every finite subset has a $\left(\lambda_{1}, \mu_{1}\right)$ model.

As we are assuming (1) there is a model N of T, with

$$
\left|P_{1}^{N}\right|=\|N\|=\lambda,\left|P_{2}^{N}\right|=\mu
$$

so without loss of generality $P_{1}^{N}=\lambda, P_{2}^{N}=\mu$. Let $f_{\ell}^{*}:{ }^{\ell} \lambda \rightarrow \lambda$ be

$$
f_{\ell}^{*}(\bar{x})=F_{\ell}^{N}\left(\bar{x}, c^{N}\right)
$$

\circledast_{3} if $\left(n_{i}, E_{i}\right)$ is not an identity of $\left(\lambda_{1}, \mu_{1}\right)$ then $\left\langle f_{\ell}^{*}: \ell \leq n_{i}\right\rangle$ witness it is not an identity of (λ, μ)
[Why? because $M_{2} \models$ " $\left\langle f_{\ell}^{j}: \ell \leq n_{i}\right\rangle$ witness $\left(n_{i}, E_{i}\right)$ is not an identity of $\left(\lambda_{1}, \mu_{1}\right)$ " is known when $j=i$ by its choice, and if $j \leq i$ by \circledast_{1}, which means
$\boxtimes M_{2} \models(\forall y)\left(c_{i} \leq y \in P_{3}^{M_{2}} \rightarrow\left\langle F_{\ell}(-, y): i \leq m_{i}\right\rangle\right.$ is a witness to (n_{i}, E_{i}) being not an identity),
this (\boxtimes) is expressed by a first order sentence ψ_{i} which M_{2} satisfied hence $\psi_{i} \in T$ hence $N \models \psi_{i}$.

In particular use $y=c$ in N recalling $N \models\left[c_{i}<c \& P_{3}(c)\right]$ so we have

$$
\left\langle F_{\ell}^{N}(-, c): \ell \leq n_{i}\right\rangle \quad \text { witness } \quad\left(P_{1}^{N}, P_{2}^{N}\right)=(\lambda, \mu)
$$

fail the identity $\left(n_{i}, E_{i}\right)$ which mean that $\left\langle f_{\ell}^{*}: \ell \leq n_{i}\right\rangle$ witness (λ, μ) fail the identity $\left(n_{i}, E_{i}\right)$. So we have gotten (3).
$(C) \Rightarrow(B)$ Exactly as in [She71]. Define an equivalence relation E on $\bigcup_{n}{ }^{n} \lambda$ as follows

$$
\bar{b} E \bar{c} \quad \text { iff } \quad \bigvee_{n}\left[\bar{b}, \bar{c} \in{ }^{n} \lambda \& f_{n}(\bar{b})=f_{n}(\bar{c})\right]
$$

By [She71], Lemma 1 it suffice to show (*) of [[She71] p. 194] which is stright.
Remark: in (3) we have $\left\langle f_{\ell}: \ell\langle\omega\rangle\right.$ for all possible (n, E) not just for each $(n, E) \ldots$

References

[She71] Saharon Shelah, Two cardinal compactness, Israel J. Math. 9 (1971), 193-198. MR 0302437
[She78] _, Appendix to: "Models with second-order properties. II. Trees with no undefined branches" (Ann. Math. Logic 14 (1978), no. 1, 73-87), Ann. Math. Logic 14 (1978), 223-226. MR 506531

Institute of Mathematics The Hebrew University of Jerusalem Jerusalem 91904, Israel and Department of Mathematics Rutgers University New Brunswick, NJ 08854, USA

Email address: shelah@math.huji.ac.il
URL: http://www.math.rutgers.edu/~shelah

