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Abstract. We give details on a claim from [She78] (continuing [She71]+
[?]
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Theorem -1.1. 3
Let λ1 ≥ µ1, λ ≥ µ, then the following are equivalent

(A) (λ1, µ1)→ℵ0 (λ, µ)
(B) (λ1, µ1)→≤µ (λ, µ)

(C) We can find functions f` : λ` → µ for ` < ω such that: if (n,E) is
not an identity of (λ1, µ1) then 〈f` : ` ≤ n〉 witness that it is not an
identity of (λ, µ).

Remark :

(1) If
� the sets of (n,E) which are not identifies of (λ1, µ1) is recursive,

we can add
(D) (λ1, µ1)→1 (λ, µ).

(2) We can weaken � to:
�+ there is a recursive set of identities, including the one failing

for (λ1, µ1) and included in the one holding for (λ, µ) (check).

Remark: Recall (λ1, µ1) →≤κ (λ, µ) mean that if T is a (first order
theory of cardinality ≤ κ, with the distinguish predicates P1, P2 and every
finite T ′ ⊆ T has a model M with |PM1 | = λ1, |PM2 | = µ1 then T has a
model N with |PN1 | = λ, |PN2 | = µ

Proof. of theorem 3
The proof is by showing (for our given λ1, µ1, λ, µ)

(A)⇒ (C)⇒ (B)⇒ (A)

(B)⇒ (A) trivially.

(A)⇒ (C) : Let 〈(ni, Ei) : i < ω〉 list the identities. Letmi = Max{i, n0, . . . , ni}
For each i, choose if possible f i` , an `- place function from λ1 to µ1 for ` ≤ mi

exemplifying λ1 9 (ni, Ei)µ1 ; if impossible f i` is choosen identically zero. We
do it by induction on i and so without loss of generality

~1 i < j < ω& ` ≤ mi ⇒ f j` refine f i` i.e. f j` (x̄) = f j` (ȳ) → f i`(x̄) =

f i`(ȳ) (recall µn = µ)
Let M1 = (λ1, µ1 . . . f

i
` , . . .), so it has i < ω, ` ≤ ni universe λ1

and vocalulary {F i` : i< ω, ` ≤ mi} where F i` is an `-place function.
This is not exaclly right so let M2 be defind by

(a) M2 has universe λ1
relations:

(b) PM2
1 = λ1

(c) PM2
2 = µ1

(d) F` an (`+1)− place function such that for i < ω, ∀x̄[F`(x̄, i) =
f i`(x̄)] otherwise zero

(e) PM2
3 = ω

(f) cM2
n = n

(g) <M2- the usual order on λ1
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Let M+
2 be the expansion of M2 by Skolem functions.

Lastly let T = Th(M2) ∪ {cn < c ∧ P3(c) : n < ω}. Clearly.
~2 T is first order, countable and every finite subset has a (λ1, µ1)-

model.
As we are assuming (1) there is a model N of T , with

|PN1 | =‖ N ‖= λ, |PN2 | = µ;

so without loss of generality PN1 = λ, PN2 = µ. Let f∗` : `λ→ λ be

f∗` (x̄) = FN` (x̄, cN )

~3 if (ni, Ei) is not an identity of (λ1, µ1) then 〈f∗` : ` ≤ ni〉 witness it
is not an identity of (λ, µ)

[Why? because M2 |= “〈f j` : ` ≤ ni〉 witness (ni, Ei) is not an
identity of (λ1, µ1)” is known when j = i by its choice, and if j ≤ i
by ~1, which means
�M2 |= (∀y)(ci ≤ y ∈ PM2

3 → 〈F`(−, y) : i ≤ mi〉 is a witness to
(ni, Ei) being not an identity),

this (�) is expressed by a first order sentence ψi which M2 satisfied
hence ψi ∈ T hence N |= ψi.

In particular use y = c in N recalling N |= [ci < c&P3(c)] so we
have

〈FN` (−, c) : ` ≤ ni〉 witness (PN1 , P
N
2 ) = (λ, µ)

fail the identity (ni, Ei) which mean that 〈f∗` : ` ≤ ni〉 witness (λ, µ)
fail the identity (ni, Ei). So we have gotten (3).

(C)⇒ (B) Exactly as in [She71]. Define an equivalence relation

E on
⋃
n

nλ as follows

b̄Ec̄ iff
∨
n

[b̄, c̄ ∈ nλ& fn(b̄) = fn(c̄)]

By [She71], Lemma 1 it suffice to show (*) of [[She71] p. 194] which
is stright.
Remark: in (3) we have 〈f` : ` < ω〉 for all possible (n,E) not
just for each (n,E) . . .

�
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