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§ 1. ON PCF

This is a revised version of [She96, §6] more self-contained, large part done
according to lectures in the Hebrew University Fall 2003
Recall

Definition 1.1. Let f = (f, : a < 0), fa € "Ord, I an ideal on k.
1) We say that f € *Ord is a <;-l.u.b. of f when:

(o) a<d= fo < f
(b) if f/ € *Ord and (Vo < 8§)(fo <1 f’) then f <; f'.

2) We say that f is a <j-e.u.b. of f when

(o) a<d= fo <1 f

(b) if f' € *Ord and f’ <; Max{f,1,} then f’ <; Max{f,, 1.} for some o < 4.
3) f is <r-increasing if a < 8 = fo <7 fs, similarly <;-increasing. We say f is
eventually <j-increasing: it is <;-increasing and (Vo < §)(38 < 9)(fa <1 f3)-
4) We may replace I by the dual ideal on .

Remark 1.2. For k, 1, f as in Definition 1.1, if f is a <j-e.w.b. of f then f is a
<r-lu.b. of f.

Definition 1.3. 1) We say that 5 witness or exemplifies f is (< o)-chaotic for D
when, for some

f = {(fa:a<¥)is a sequence of members of “Ord
) D is a filter on « (or an ideal on k)
) f is <p-increasing
d) §=(s; :1 < k),s; anon-empty set of < o ordinals
) for every a < ¢ for some S5 € (a,d) and g € [] s; we have fo, <p g <p fs.
i<k
2) Instead “(< ot)-chaotic” we may say “o-chaotic”.

Claim 1.4. Assume

(a) I an ideal on K

(0) f={(fa:a<d)is <j-increasing, fo € "Ord
(¢) J 21 is an ideal on r and 5 witnesses f is (< o)-chaotic for J.

Then f has no <r-e.u.b. f such that {i < k : cf(f(i)) > o} € J.

Discussion 1.5. What is the aim of clause (c) of 1.4? For <;-increasing sequence
[, {fa : @ < 6) in "Ord we are interested whether it has an appropriate <7-e.u.b. Of
course, I may be a maximal ideal on x and (f; : t € cf((w, <)*®/D)) is <;-increasing
cofinal in (w, <)"/D, so it has an <j-e.u.b. the sequence w,, = (w : i < k), but this is

not what interests us now; we like to have a <j-e.u.b. g such that (Vi)(cf(g(i)) > k).

Proof. Toward contradiction assume that f € #Ord is a <j-e.u.b. of f and A; :=
{i <k:ct(f(i)) >0} ¢ Ihence A¢I.
We define a function f’ € Ord as follows:

® (a) ifie Athen f/(i) =sup(s; N f(i))+1
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(b) ifi € K\A then f'(i) = 0.

Now that i € A = cf(g(@)) > o > |s;| = f'(i) < f(i) < Max{g(i),1} and

i€ r\A= f(i)=0= f(i) < Max{f(i),1}. So by clause (b) of Definition

1.1(2) we know that for some o < § we have f' <; Max{f,,1}. But “5 witness

that f is (< o)-chaotic” hence we can find g € [[ s; and 8 € (a,d) such that
<K

fa <19 <1 fg and as f is <j-increasing without loss of generality g < fa-

So Ay :={i < k: fo(i) < g(i) < fa(i) < f(i) and f'(i) < Max{f.(7),1} = K}
mod I hence A := A; N Ay # 0 mod I hence A # (). So for any : € A we have
fali) < g(i) < f5(i) < £(i) and f(3) € 5: hence gi) < f(i) := sup(s; N £(7)) + 1
and so f'(i) > 1.

Also f'(i1) < Max{fs(3,1)} hence f'(i) < fq(i). Together /(i) < fo(i) < g(i) <
1'(%), contradiction. O 4

Lemma 1.6. Suppose cf(§) > k™, I an ideal on k and f, € *Ord for a < § is

<-increasing. Then there are J, 5, f' satisfying:
(A) 5= (s;:9 < k), each s; a set of < k ordinals,
(B) sup{fa(i): a < d} € s;; moreover is max(s;)
(C) F = (f}+ a < ) where [}, € T si is defined by f4(i) = Min{s;\ fa(i)},

1<K
(similar to rounding!)

(D) cf[fL(i)] < & (e.g. fL(i) is a successor ordinal) implies f!,(i) = fa (%)
(B) J=(Jo:a<d),Js is an ideal on k extending I (for o < §), decreasing
with « (in fact for some aq g C k (for a < f < k) we have aq,p/1 decreases

with 3, increases with o and J, is the ideal generated by IU{aqs5 : B belongs
to (o, A)}) so possibly Jo,, = P (k) and possibly Jo = I

such that:

(F) if D is an ultrafilter on k disjoint to Jy then f./D is a <p-lu.b and
even <p-e.u.b. of (fg/D : B < a) which is eventually <p-increasing and
{i < k:ct[fl(i))] >k} € D.

Moreover

(F)T if K ¢ Jo then fl is an <j_ -e.u.b (= exact upper bound) of (fg : B < 0)

andﬁ € (04,5) = fé =Ja féz

(@) if D is an ultrafilter on k disjoint to I but for every a not disjoint to J,
then s exemplifies (fo : o < §) is k chaotic for D as exemplified by § (see
Definition 1.3), i.e., for some club E of 6,8 <~y € E = fz <p f[’; <p fy

(H) if cf(8) > 2% then (fo : a < d) has a <;-l.u.b. and even <r-e.u.b. and for
every large enough o we have I, = 1

(I) if b =: {i: f.(2) has cofinality < k (e.g., is a successor)} & J, then: for
every B € (a,d) we have fl, [ by = fz [ by mod J,.

Remark 1.7. Compare with [She97b].

Proof. Let o = U{fa(i) +1: a < §,i < k} and S = {j < o* : j has cofinality
<k}, €= {(ej:j€S) besuch that

See https://shelah.logic.at/papers/E69/ for possible updates.
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(a) ej C j,lej| < k for every j € S

(b) if j =i+ 1 then e; = {i}

(¢) if j is limit, then j = sup(e;) and j' € SNe; = e Cej.
For a set a C a* let clz(a) =aU |J e; hence by clause (c) clearly clz(clz(a)) =

j€ans

cls(a) and [a C b = cle(a) C cls(b)] and |clz(a)| < |a| + k. We try to choose by
induction on ¢ < kT, the following objects: a¢, D¢, g¢c, S¢ = (s¢i 11 < K), {(fc,a :
a < §) such that:

X (a) gec €"0Ord and g¢(i) < U{fa(?): a <4}
(0)  sci = cla[{ge(i) : € < CFU{sup,c; fa(?)}] so it is a set of < k ordinals

increasing with ¢ and sup, ;5 fo(2) € s,
moreover sup, s fo (i) = max(s¢ ;)

fe.a € #0rd is defined by f¢ (1) = Min{s¢ ;\ fa (%)},
D¢ is an ultrafilter on & disjoint to I

& &

€

f

9) ac<a<d=gc<p, fea-

~—

fa <D gc for o < 0
a¢ is an ordinal < §

P
~—

If we succeed, let a(x) = sup{a¢ : ¢ < k*}, so as cf(d) > kT clearly a(x) < 4.
Now let @ < k and look at (f¢ o) (i) : ¢ < KT); by its definition (see clause (c)),
f¢,a(x) (%) is the minimal member of the set s¢;\ fo () (7). This set increases with ¢,
80 f¢.a(+) (i) decreases with ¢ (though not necessarily strictly), hence is eventually
constant; so for some & < kT we have ¢ € [§,kT) = fe a0 () = fe a0 (i), Let
£(x) = sup; ., &, s0 &(x) < k™, hence

Or C€E(x),wM)andi < & = fe a)(i) = fe(o),a0)(0)-

By clauses (e) + (g) of X we know that fo(x) <pDg(., 9e(x) <De(y fe(x),a(x) hence
for some i < & we have fo)(1) < ge() (1) < fe(s),a() (@) But gey (i) € Sea)1,
by clause (b) of X hence recalling the definition of fe(,)41,a(x)(%) in clause (c) of B
and the previous sentence fe(s)41,a(+)(2) < ge(x) (1) < fe(x),a(+) (i), contradicting the
statement ©;.

So necessarily we are stuck in the induction process. Let ¢ < ¥ be the first
ordinal that breaks the induction. Clearly s¢ ;(i < k), fc (o < 9) are well defined.

Let s; =: s¢c; (for ¢ < k) and f), = fc o (for a < ), as defined in K, clearly they
are well defined. Clearly s; is a set of < k ordinals and:

(*)1 fagf(;
(¥)2 a<B=f, <1 f4
(#)3 ifb={i: fo(i) < f5(i)} ¢ [ and @ < B < 0 then f, [b <y fs [ b.
We let for oo < §
Oy Ja={bCr:belorb¢lI and for every S € (a,d) we have:
Joa T(\b) =1 f5 1 (k\ )}
O3 for a < B <o welet an,g =:{i < k: fo(i) < f5(i)}.

Then as (f] : @ < §) is <;-increasing (i.e., (*)2):
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(¥)a aq,p/I increases with 3, decreases with «, J,, increases with «
()5 Jqo is an ideal on x extending I, in fact is the ideal generated by I U{aq g :
B € (a,0)}
(x)¢ if D is an ultrafilter on x disjoint to J,, then f;,/D is a <p-lub of {fz/D :
B < d}.
Why? We know that 8 € (o,6) = aapg = 0 mod D, so fg < f5 =p f! for
B B B «
B € (a,6), so f!,/D is an <p-upper bound. If it is not a least upper bound then

for some g € "Ord, for every 8 < § we have fz <p g <p f, and we can get a
contradiction to the choice of ¢, 3, f/'3 because: (D, g, ) could serve as D¢, gc, o]

(¥)7 If D is an ultrafilter on & disjoint to I but not to J, for every a < § then
5 exemplifies that (f, : a < §) is k1-chaotic for D, see Definition 1.3.

[Why? For every o < ¢ for some 8 € (a,d) we have aq g € D, ie., {i <r: fi(i) <
f5()} € D, so (fs/D : a < §) is not eventually constant, so if a < 8, f, <p fj
then f, <p fz (by (¥)3) and fo <p f., (by (c)). So fo <p fl, <p fs as required.]

(x)s if kK ¢ J, then f! is an <; -e.ub. of (fg: 8 < ).

[Why? By (x)g, fi, is a <;_ -upper bound of (fs : 8 < §); so assume that it is not
a <j,-e.wb. of (fg: 5 < d), hence there is a function g with domain «, such that
g <j, Max{1, f.}, but for no 8 < § do we have

cg=:{i <k:9(i) <Max{l, fg(i)}} =k mod J,.

Clearly (cg : § < 0) is increasing modulo J, so there is an ultrafilter D on & disjoint
to JoU{cg: B <d}. SoB<d= fs<pg<p fl,sowe get a contradiction to (*)g
except when g =p f/, and then f/, =p 0, (as g(i) < 1V g(i) < f.(3)). If we can
demand ¢* = {i : f/,(i) = 0} ¢ D we are done, but easily c*\ ¢g € J, so we finish.]

(%) If cf[fL(i)] < K then f! (i) = fa(i) so clause (D) of the lemma holds.
[Why? By the definition of s¢ = ¢/¢[...] and the choice of €, and of f/,().]
()10 Clause (I) of the conclusion holds.

[Why? As fo <J. f3 <s. fhand fo [ ba =7, fL | ba by ()o.]
(#)11 if < B <4 then f, = fz mod J,, so clause (F)* holds.

[Why? First, f is <;-increasing hence it is <;_-increasing. Second, 8 < a = fz <;
fo < fo = fp <u. fo- Third, if B € (@,6) then anp = {i < K : fo (i) < f3(i)} €
Ja, hence fi <, f, but as fo <1 fg clearly f,, <; fj hence f/, <, fj, so together
fo=a. 14
x)19 if cf(d) > 2" then for some «a(x*), J, ) = I (hence f has a <j-e.u.b.
(*)

[Why? As (J, : a < ¢) is a C-decreasing sequence of subsets of (k) it is eventually
constant, say, i.e., there is a(x) < d such that a(x) < a < 0 = Jo = Ja@-
Also I C Jyx), but if I # J,(, then there is an ultrafilter D of  disjoint to
I but not to Jy () hence (s; : i < k) witness being x-chaotic. But this implies
cf(6) < IJ Isi] < k"™ = 2", contradiction.]

The re<ader can check the rest. g
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Example 1.8. 1) We show that l.u.b and e.u.b are not the same. Let I be an
ideal on K,k < XA = cf(\),a = (an : @ < A) be a sequence of subsets of k,
(strictly) increasing modulo I, k\a, ¢ I but there is no b € Z(k)\I such that
AbNa, € I. [Does this occur? E.g., for I = [k]<", the existence of such a is

known to be consistent; e.g., MA andk = Rgand\ = 2%°. Moreover, for any x and

kT < XA =cf(\) < 2% we can find a, C k for a < X such that, e.g., any Boolean

combination of the a,’s has cardinality x (less needed). Let Iy be the ideal on s

generated by [k]<" U{an\ag : @ < f < A}, and let I be maximal in {J : J an ideal

onk, Iy CJand [a < B <= ag\an ¢ J]|}. Soif G.C.H. fails, we have examples.]
For a < A\, we let f, : kK — Ord be:

. o iftek\aq,
fa (Z) = e \
At a ifi€aq.

Now the constant function f € #Ord, f(i) = A+ A is a Lu.b of (f, : & < A) but not
an e.u.b. (both mod I) (no e.u.b. is exemplified by g € *Ord which is constantly
A).

2) Why do we require “cf(d) > k7 rather than “cf(§) > "7 As we have to, by
Kojman-Shelah [KS00].

Recall (see [She97b, 2.3(2)])
Definition 1.9. We say that f = (f, : @ < §) obeys (uq : a € S) when

(a) fa:w — Ord for some fixed set w

(b) S a set of ordinals

(¢) uq C

(d) ifae SNdand B € uy then t € w = fa(t) < falt).

Claim 1.10. Assume I is an ideal on /@jf = (fa : @ < ) is <j-increasing and
obeys = (uq : @ € S). The sequence f has a <r-e.u.b. when for some ST we
have ®1 or ®5 where

® (@) ST C{a<d:cfla) >k}
(b) ST is a stationary subset of &
(¢)  for each o € ST there are unbounded subsets u,v of a for which
Bev=>unNpCug.
®y ST ={d} and for & clause (c) of ®1 holds.

Proof. By [She97b]. Ui 10
Remark 1.11. 1) Connected to I[\], see [She97b).

Claim 1.12. Suppose J a o-complete ideal on §*,u > k = cf(p), p = tlimy(A; :
i< 8),0" < p, A =cf(N) > " fori <6 and A=tcf( [ Ai/J), and (fo:ax < N)
3<0*
exemplifies this.
Then we have

() if (ug : B < A) is a sequence of pairwise disjoint non-empty subsets of X,
each of cardinality < o (not < o!) and o* < u™, then we can find B C A
such that:
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(a) otp(B) = a~,
(b) if 5 € B,y € B and § < then sup(ug) < min(u,),
(¢) we can find s € J for ¢ € |J u; such that: if ¢ € | ug,§ €
i€B BEB
U ug, ¢ <& andi € 6\(s¢ Usg), then fe(i) < fe(i).
BEB
Proof. First assume o* < u. For each regular 0 < p, as 07 < X\ = cf(\) there is a
stationary Sp C {§ < A : cf(6) = 0 < §} which is in I[\] (see [She93a, 1.5]) which is
equivalent (see [She93a, 1.2(1)]) to:

(¥) there is C? = (C% : a < \)
() C? a subset of o, with no accumulation points (in C%),
(8) [or € nace(C) = C§ = ChNal,
(7) for some club Ej of A,
[6€SyNEY = cf(8) =60 <A =sup(CY) Aotp(CY) = 6].

Without loss of generality Sy C EJ, and A otp(CY) < 6. By [She94g, 2.3,Def.1.3]
a<d

for some club Ep of ), (g¢(CY, Eg) : o € Sp) guess clubs (i.e., for every club E C Ej
of A, for stationarily many ¢ € Sy, gf(Cg, Ey) C E) (remember g{(C{, Ep) =
{sup(y N Ey) : v € C¢;v > Min(Ey)}). Let C%* = {y € C? : v = Min(C?\ sup(y N
Ejp))}, they have all the properties of the C%’s and guess clubs in a weak sense: for
every club E of \ for some o € SyN E, if 1 < 7 are successive members of F then
|(71,72] N C%*| < 1; moreover, the function v +— sup(FE N ) is one to one on CY*.

Now we define by induction on ¢ < A, an ordinal a¢ and functions gg e I M
i<o*
(for each 0 € © =: {0 : 6 < p, 0 regular uncountable}).
For given (, let o < A be minimal such that:

E< (= as<ag

E<CANIEO = g§ < fo. mod J.

Now a¢ exists as (fo : @ < A) is <-increasing cofinal in [] A;/J. Now for each
i<5*
0 € © we define gg as follows:

for i < 6*,gg(i) is sup[{g§(i) + 1 : £ € CZ} U {fa, (i) + 1}] if this number is
< \i, and fo (i) + 1 otherwise.

Having made the definition we prove the assertion. We are given (ug : f < A), a
sequence of pairwise disjoint non-empty subsets of A, each of cardinality < ¢ and
a* < p. We should find B as promised; let 8 =: (Jo*| + |6*])F so § < p is regular
> [0%]. Let E={d € Ep : (VO)[¢ < & sup(uc) < d © uc €6 ar < 0]}
Choose a € SpNacc(E) such that gE(Cg,E.g) C E; hence letting C%* = {v; : i < 6}
(increasing), v(i) = i, we know that ¢ < 0* = (v;,741) N E # 0. Now let
B =: {v5i43 : i < a*} we shall prove that B is as required. For a € u(5¢43),¢ <
a*, let s9 = {i < §* : gg(5<+1)(i) < fali) < gg(5<+4)(i)}, for each ¢ < a* let
(a¢e s € < |uy(scys)]) enumerate wuys¢q3) and let
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s}lcys = {i: for every & <€, fo, (1) < far (i) © ace < oace

& foe (1) < for (D)}

Lastly, foraw € |J usctslet sq = s2UsY and it is enough to check that (¢, : a € B)

(<a*
witness that B is as required. Also we have to consider a* € [u, u™), we prove this
by induction on «* and in the induction step we use 8 = (cf(a*) + [6*|)T using a
similar proof. 0112

Remark 1.13. In 1.12:

1) We can avoid guessing clubs.

2) Assume o < 67 < 02 < p are regular and there is S C {6 < A : cf(d) = 61}
from I[)\] such that for every ¢ < A (or at least a club) of cofinality 65, SN is
stationary and (f, : @ < \) obey suitable C? (see [She94c, §2]). Then for some
A C X unbounded, for every (ug: 8 < 62) sequence of pairwise disjoint non-empty
subsets of A, each of cardinality < ¢ with [minug, sup ug| pairwise disjoint we have:
for every By C A of order type 6o, for some B C By, |B| = 61, (¢) of (x) of 1.12
holds.

3) In (*) of 1.12, “a* < pu” can be replaced by “a* < u™” (prove by induction on
a®).

Observation 1.14. Assume A\ < A<* = Min{r : 2" > \}. Then there are §,x

and T, satisfying the condition (x) below for x = 2% or at least arbitrarily large
reqular x < 2*

(%) T a tree with 0 levels, (where § < u) with a set X of > x 0-branches, and
fora <o, U | T <A

B<a
Proof. So let x < 2 be regular, xy > .
Case 1: A 2/°l < X\. Then .7 = #>2, 7, = 2 are O.K. (the set of branches #2

a<p
has cardinality 2#).

Case 2: Not Case 1. So for some 0 < p, 2° > A, but by the choice of p,2 < X, so
20 = \,0 < pandsof <a<p= 2 =29 Note |*>2| = X as u < \. Note also
that p = cf(p) in this case (by the Bukovsky-Hechler theorem).

Subcase 2A: cf(\) # p = cf(p).
Let #»2 = |J B, B; increasing with j,|B;| < A. For each n € "2, (as cf(\) #
F<A
cf(p)) for some j, < A,
p=sup{¢ <p:nl (€ By}

So as cf(x) # p, for some ordinal j* < A we have

{ne’2:j, <j*} has cardinality > x.

As cf(N) # cf (i) and p < X (by its definition) clearly p < A, hence |B;-
Let
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T ={nle:e<lg(n) andn € Bj-}.
It is as required.

Subcase 2B: Not 2A so cf(\) = p = cf ().

If A = p we get A = A< contradicting an assumption.

So A > p, so A singular. Now if o < p, pu < 0y = cf(0;)
[She94e, ?, 1.3(10)]) maxpcf{o; : i < a} < [] o3 < Mol <

i<a
as A is singular and maxpcf{o; : i < a} is regular (see [She94c, 1.9]), clearly the
inequality is strict, i.e., maxpcf{o; : i < a} < A. So let (0; : i < p) be a strictly
increasing sequence of regulars in (p, A) with limit A, and by [She94b, 3.4] there is
T C 1] oy satistying |{v [ i:v € T} < maxpctf{o; : j < i} < A, and number of
i<p

p-branches > \. In fact we can get any regular cardinal in (A, pp*(\)) in the same
way.

Let A* = min{\ : p < XN < Ajcf(N) = g and pp(N) > A}, so (by [She94b,
2.3]), also A* has those properties and pp(A\*) > pp(A). So if pp*(\*) = (2#)* or
pp(A\*) = 2* is singular, we are done. So assume this fails.

If 1 > Vo, then (as in [She96, 3.4]) o < 2# = cov(a, p, ut, u) < 2# and we can
finish as in subcase 2A (actually cov(2<t, ut, u™, ) < 2# suffices which holds by
the previous sentence and [She94b, 5.4]). If u = Ry all is easy. 0114

< A for i < a then (see
(2%)lel < 2<# = X, but

Claim 1.15. Assume by C ... C by C b1 C -+ fork < w,a= | by (and

k<w
la]™ < Min(a)) and X € pef(a)\ U pef(by).
k<w
1) We can find finite 8, C pef(bp\br—1) (stipulating b_1 = 0) such that \ €
pef(U{og : k < w}).
2) Moreover, we can demand 03, C pcf(by)\(pef(br—1)).

Proof. We start to repeat the proof of [She94a, 1.5] for kK = w. But there we apply
[She94a, 1.4] to (b : ¢ < k) and get ({cce : £ < n(C)) : ¢ < k) and let A¢p =
max pcf(ce o). Here we apply the same claim ([She94a, 1.4]) to (bx\br—1 : k < w)
to get part (1). As for part (2), in the proof of [She94a, 1.5] we let § = |a]T + Ny
choose (N; : i < d), but now we have to adapt the proof of [She94a, 1.4] (applied to
a, (bg : k <w), (N; : i < )); we have gotten there, toward the end, o < ¢ such that
E, CE. Let E, = {iy : k <w},ir < ig+1. But now instead of applying [She94a,
1.3] to each by separately, we try to choose (¢ ¢ : ¢ < n(¢)) by induction on ¢ < w.
For ¢ = 0 we apply [?, 1.3]. For ¢ > 0, we apply [She94a, 1.3] to b¢ but there defining
by induction on ¢,¢; = ¢¢ ¢ C a such that max(pef(a\eeo\ - - \ece—1) N pef(be) is
strictly decreasing with /. O
We use:

Observation 1.16. If |a;| < Min(a;) for i < i*, then ¢ = () pcf(a;) has a last
element or is empty. -

Proof. By renaming without loss of generality (|a;| : ¢ < i*) is non-decreasing. By
[She94f, 1.12]

(¥)1 ? C cand|d| < Min(d) = pcf(d) Cc.
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By [She94a, 2.6] or 2.7(2)

(x)2 if A € pcf(0),0 C ¢, [0] < Min(d) then for some > C ? we have |>| <
Min(ag), A € pcf(>).

Now choose by induction on ¢ < |ag|™, 0 € ¢, satisfying 6, > max pcf{f. : € < (}.
If we are stuck in ¢, maxpcf{f. : € < ¢} is the desired maximum by (*);. If we
succeed the cardinal §# = maxpcf{f. : € < |ag|T} is in pcf{f. : € < ¢} for some
¢ < lag|™ by (*)2; easy contradiction. 0416

Conclusion 1.17. Assume Rg = cf(p) < k < po < p, [p' € (o, p)andcf(p') <
k = pp,(') < A and ppl(u) > X = cf(X\) > u. Then we can find N, for
n<w, iy <Ay <A1 < p, o= |J A and X = tcf( [ A\n/J) for some ideal J

n<w n<w
on w (extending Jb9).

Proof. Let a C (uo, ) N Reg, |a] < &, A € pcf(a). Without loss of generality A =
max pef(a), let p= U s po < gy, < iy < oy let pg, = pd, +sup{pp, (i) : po <

n<w
' < pl and cf(u') < k}, by [She94b, 2.3] pl < p,pul = p® + sup{pp,(1') : o <
p < pl and cf(y') < k} and obviously p} < pl i by replacing by a subsequence
without loss of generality ul < ul 11- Now let b, = an pl and apply the previous
claim 1.15: to by =: a N (ul)™, note:

max pef(bg) < gy, < Min(bgr1\b).
Uiz

Claim 1.18. 1) Assume Ng < cf(pu) = £ < po < p,2" < p and [po < ¢ <
pandcf(p') < k= pp. () < p]. If p < X =cf(X) < ppT(u) then there is a tree T
with K levels, each level of cardinality < p, 7 has exactly A k-branches.
2) Suppose (\; : i < K) is a strictly increasing sequence of regular cardinals, 2% <
Ao, 0 =: {\; 14 < K}, A = maxpcf(a), \; > maxpcf{); : i < j} for each j < k (or
at least Y A; > maxpef{\; : i < j}) and a ¢ J where J = {b C a:b is the union

i<j
of countably many members of J<x[a]} (so J 2 JPY and cf(k) > No). Then the
conclusion of (1) holds with =3 A;.

i<K

Proof. 1) By (2) and [She94a, §1] (or can use the conclusion of [She94e, AG,5.7]).
2) For each b C a define the function gy : kK — Reg by

go(i) = max pef[b N {\; : j <}l
Clearly [b1 C by = gp, < gp,]. Ascf(k) > Np, J is Rj-complete, thereis b C a,b ¢ J
such that:
¢ Cbande ¢ J = —gc <j Go-

Let Af = maxpcf(bn{\; : j < i}). For each i let b = bN{\; : j < i} and
((f2 o a<A):Aepcf(b)) be as in [She94a, §1].
Let

%O = {01\</[Za<xnf§€70“Z ['b;: A € pef(b;), ap < Apyn < w}.
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Let J; = {f € % : for every j < i, f | b; € T moreover for some f" € [] Aj,
i<k
for every j, f' | b; € ﬂjo and f C f'}, and 7 = |J %, clearly it is a tree, J;
1<K
its ith level (or empty), |Z;] < Af. By [She94a, 1.3,1.4] for every g € [[b for
some f € [[b, A f ] b; € F° hence A\ f | b, € F. Sol|Z| =Af, and T
1<K 1<K
has > A k-branches. By the observation below we can finish (apply it essentially
to # = {n: for some f € [[b for i < k we have n(i) = f | b; and for every

i <k, f|b;€Z%), then find A C k,k\ A € J and g* € [] (\; + 1) such that
1<K
Y ={feF:f|A<g*| A} has cardinality A\ and then the tree will be .7’
where J/ = {f 1 b;: feY'}and " = |J J;. (So actually this proves that if we
i<K
have such a tree with > 6(cf(6) > 2%) k-branches then there is one with exactly ¢
k-branches.) U118
Observation 1.19. If % C [[ \i, J an Ny-complete ideal on k, and [f # g €
<K
F = f#59] and |.F| > 0,cf(0) > 2%, then for some g* € [] (A + 1) we have:
<K

(a) Y={f€F:[f<y9g*} has cardinality 0,

(b) for f' <; g*, we have |{f € F : f <; '} <6,

(c) there Lare fo €Y for a < 0 such that: fa, <j g*, [a<B8<b=-fz <,

fal-
(Also in [She06, §1]).

Proof. Let Z =:{g:g€ [[(Mi+1)and Y, = {f € F : f <; g} has cardinality
<K
> 0}. Clearly (\; : i < k) € Z so there is g* € Z such that: [¢ € Z = —¢' <,

g*]; so clause (b) holds. Let Y = {f € . : f <; g*}, easily ¥ C Yy« and
|Yy- \ Y] < 2% hence |Y| > 0, also clearly [f1 # fo € Fandfi <; fo = f1 <J fal.
If (a) fails, necessarily by the previous sentence |Y| > 6. For each f € Y let
Yy ={h €Y : h <; f}, so by clause (b) we have |Y;| < 6 hence by the Hajnal
free subset theorem for some Z' C Z, |Z'| = AT, and f1 # fa € Z' = f1 ¢ Y}, so
[fi # fa € Z/ = —f1 <; f2]. But there is no such Z’ of cardinality > 2% ([She86,
2.2,p.264]) so clause (a) holds. As for clause (c¢): choose f, € .%# by induction on «,
such that f, € Y\ s<a Yy it exists by cardinality considerations and (fo 1<)
is as required (in (c)). U119

Observation 1.20. Let k < A be regular uncountable, 2 < p; < X (for i < k), p;
increasing in i. The following are equivalent:

(A) there is F C "X such that:
(@) [Z]=A,
(i) {f 1i:f €T <,

(i) [f #9€F = f#pagl;
(B) there be a sequence (\; : i < k) such that:

(Z) 28 <\ = Cf()\l) < i,

LOr straightening clause (i) see the proof of 1.20
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(74) maxpcf{\; :i <k} = A,
(i12) for j < k,pj > maxpcf{\; : i < j};

(C) there is an increasing sequence (a; : i < k) such that A € pcf(J a;), pcf(a;) C
<K
1% (50 MIH(U Cli) > ‘ U ai|).

1<K 1<K
Proof. (B) = (A): By [She94b, 3.4].
(A) = (B): If (VO)[8 > 2F = 6% < 6] we can directly prove (B) if for a club of
i < k,p; > |J py, and contradict (A) if this fails. Otherwise every normal filter D
j<i

on k is nice (see [She94d, §1]). Let .% exemplify (A).

Let K = {(D,g) : D anormal filter on s, g € *(A+1),A\=|{f € F : f <p g}|}.
Clearly K is not empty (let g be constantly A\) so by [She94d] we can find (D, g) € K
such that:

(x)1 fACK,A#D mod D,g1 <pyagthen A\>|{f€.F:f<piaq}

Let #* ={f € .7 : f <p g}, so (as in the proof of 1.18) |.7*| = \.
We claim:

(x)g if h € Z* then {f € F*: -h <p f} has cardinality < \.

[Why? Otherwise for some h € #* %' =: {f € #*: =h <p f} has cardinality ),
for ACklet Z)y ={fe F*: f1A<h|[A}so F =\ J{F),:ACKkA#D
mod D}, hence (recall that 2% < X) for some A C k, A # () mod D and |F)| = \;
now (D + A, h) contradicts (*)1].

By (%)2 we can choose by induction on o < A, a function f, € F* such that
N fs <p fa. By [She94b, 1.2A(3)] (fa : @ < A) has an e.w.b. f*. Let \; =
B<a
cf(f*(7)), clearly {i < k : A; < 2%} = () mod D, so without loss of generality
N cf(f*(@)) > 2% so A; is regular € (2%, ], and A = tef([[ \i/D). Let J; =
i<K i<K
{A C i :maxpcef{); : j € A} < p;}; so (remembering (ii) of (A)) we can find
h; € T] f*(i) such that:

j<i

(%)3 if {j:j <i} ¢ J;, then for every f € .F, f i <y, h;.

Let h € [ f*(4) be defined by:
<K

h(i) = sup{h;(i) : j € (i) and {j : j < i} ¢ Ji}. As \cf[f*(i)] > 27, clearly

h < f* hence by the choice of f* for some a(x) < A we have: h <p f,(,) and let
A=:{i <k :h(i) < fa) (i)}, s0 A€ D. Define \; as follows: A is \; if i € A, and
is (2%)T if i € K\ A. Now (X} : i < k) is as required in (B).

(B) = (C): Straightforward.

(C) = (B) By [She94a, §1] 4 .20

Claim 1.21. If # C ®Ord, 2% < 0 = cf(0) < |Z| then we can find g* € “Ord and
a proper ideal I on k and A C k, A € I such that:

(a) T] g*(9)/I has true cofinality 0, and for each i € k\ A we have cf[g*(i)] >
<K
2%,
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(b) for every g € *Ord satisfying g | A=g* | A, g | (k\A) < g* | (k\A) we
can find f € F such that: f | A=g" 1A, g (kK\A) < f] (K\A) <g* ]

(K\A).
Proof. As in [She93b, 3.7], proof of (A) = (B). (In short let f, € % for a < 6
be distinct, x large enough, (N; : i < (2%)T) as there, §; =: sup(d N N;),g; €
"Ord, g;(¢) =: Min[N N Ord\f5,(¢)],A C k and S C {i < (2%)F : cf(i) = T}
stationary, [i € S = g; = ¢*], [( < aandi € S = [f5,(¢) = g*({) = ( € A] and for
some i(x) < (2°)F, g* € Nj(u), 50 [( € K\ A = cf(g7(C)) > 2"]. 0121

Claim 1.22. Suppose D is a o-complete filter on 0 = cf(0), k an infinite cardinal,
0 > |a|® for a < o, and for each a < 0, B = (8% : € < k) is a sequence of ordinals.
Then for every X C 60,X # 0 mod D there is (57 : € < k) (a sequence of ordinals)
and w C Kk such that:

(a) e€ R\w= 0 <cf(B}) <4,
(b) if BL < BF and [e € w = B = BF], then {a € X: for every e < k we have
BL<BE< B and e €w=pBY=p}#0 mod D.

Proof. Essentially by the same proof as 1.21 (replacing §; by Min{a € X: for every
Y € N; N D we have o € Y}). See more [She02, §6]. (See [She99, §7]). 0122

Remark 1.23. We can rephrase the conclusion as:
(a) B=:{a € X: if e € w then B¢ = 37, and: if € € k \ w then B is < 3 but
> sup{BZ 1(<efE< Bx}}is #0 mod D
(b) If B, < B for e € k\ w then {a € B: if e € kK \ w then B> > B/} # 0
mod D
(¢c) ee k\w=cf(Bl)is <0 but > 0.
Remark 1.24. If |a| < min(a),.# C Ila, |#| = 0 = cf(f) ¢ pcf(a) and even
6 > o = sup(6t N pct(a)) then for some g € Ila, the set {f € F : f < g}
is unbounded in @ (or use a o-complete D as in 1.23). (This is as Ila/Jg[q]

is min(pcf(a) \ 0)-directed as the ideal J.g[a] is generated by < o sets; this is
discussed in [She02, §6].)

Remark 1.25. Tt is useful to note that 1.22 is useful to use [She97a, §4,5.14]: e.g.,
forif n < w, 6y < 6y < --- < B, satisfying () below, for any 8. < B* satisfying
[e € w= Bl < B we can find @ < 7 in X such that:

cecw=pE=pr,
{e, ¢} € v\ wand{cf(BL),cf(B7)} C [0r, 0e11))andl even = B¢ < B,

{6, ¢} € w\ wand{cf(BZ),cf(B7)} C [0r, Ory1)andl odd = B < B¢
where
(%) (a) e€r\w= ct(B}) € [0o,0,), and

(b) maxpcf[{cf(8}): € € k\w}Nb] < 0 (which holds if §, = o, of = oy
for £ € {£,...,n}).
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§ 2. NICE GENERATING SEQUENCES
Claim 2.1. For any a, |a| < Min(a), we can find b = (by : A € a) such that:
(a) b is a generating sequence, i.e.
A€a= Jcayla] = Jcn[a] + by,
(B) b is smooth, i.c., for § < X in a,
0 € by = by Cby,

(7) b is closed, i.e., for A € a we have by = anpcf(by).

Definition 2.2. 1) For a set a and set a of regular cardinals let Chg, be the function
with domain a N a defined by Ch{(6) = sup(a N 6).
2) We may write N instead of |N|, where N is a model (usually an elementary
submodel of (J7(x), €, <} ) for some reasonable x.

Observation 2.3. If a C a and |a| < Min(a) then chy € Ila.

Proof. Let (bg[a] : & € pcf(a)) be as in [She94a, 2.6] or Definition [She97b, 2.12].
For A € a, let f** = (f®* : a < \) be a < J_,[a]-increasing cofinal sequence of
members of [] a, satisfying:

(¥)1 if § < A,Ja| < cf(d) < Min(a) and 6 € a then:
$2(0) = Min{ | £2*(6) : C a club of 6}
acC
[exists by [She94c, Def.3.3,(2)" + Fact 3.4(1)]].

Let x = J,(sup(a))® and & satisfies |a| < k = cf(x) < Min(a) (without loss of
generality there is such x) and let N = (N; : i < k) be an increasing continuous
sequence of elementary submodels of (#(x), €, <}), NiNr an ordinal, N [ (i+1) €
Nii1,||Ni|| < &, and a, (f** : A € a) and & belong to Ny. Let N, = |J N;. Clearly
<K
by 2.3
(¥)2 Chy, € Ia for i < k.

Now for every A € a the sequence (Chy, ()) : i < k) is increasing continuous (note
that \ € NO Q N, Q Ni+1 and Nu>\ € Ni+1 hence Sup(Ni N A) S N1'+1 N A hence
Chy, (A) is < sup(Njr1 N A)). Hence {Chy, (A\) : i < s} is a club of Chyy (M);
moreover, for every club E of s the set {Chy, (A) : i € E} is a club of Chjy, (A).
Hence by ()1, for every A € a, for some club E) of &,

()3 (a) if6 €aand E C Exisaclubof xthen f57 \ \/(0) = aLGJE AN ()
8) f:dg(zvm,\)(e) € cl(0 N N,), (i.e., the closure as a set of ordinals).

Let E = () E\, so E is a club of k. For any i < j < & let
A€a

by = {0 € a: Chy, (0) < foin n, o ()}
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()4 for i < j < k and X € a, we have:
(a) Jeala] = Jexla] + 657 (hence by = by[a] mod J<y[a)),
(8) b C AT Na,
™) <637 A €a) € Nji1,

) .

(0 < Chy, = (sup(N.N0): 0 € a).

sup(N nA)
[Why?

Clause (): First as Chy, € Ila (by 2.3) there is v < A such that Chy, <;_ [q
S and as a U {a,N;} C Chy,,, clearly Chy, € Nii1 hence without loss of
generality v € AN N;;11 but i +1 < j hence N;y1 € N; hence v € N; hence
v < sup(N; N A) hence f“)‘ <J_>\[u] fsup(N - Together Chy, <_,[a] fsup N;AN)
hence by the definition of b}/ we have a\by’ € J_x[a] hence A ¢ pcf(a\by?) so
J<ala] € Joala] 4 637,

Second, (Ia, <;_,[q]) is AT-directed hence there is g € Ila such that o < X\ =
faA <Joala] 9- As f** € Ny without loss of generality g € Ny hence g € N; so g <
ChY,. By the choice of g, fsup(N An) <Jzala] 9 SO together fu (V) <J<ald] Chy,
hence b}/ € Joy[a]. As Joa[a] € J<a[a] clearly Joy[a] + b5 € J<pla]. Together
we are done.

Clause (3): Because II(a\A1) is AT-directed we have § € a\\T = {0} ¢ J<,[a].

Clause (7): As Ch% , f° f belongs to N;i1.

i? Ysup(N;NA)?
Clause (4): For 6 € a(C No) we have fsup(N () = U{f;l’g(Nem)(H) ce€e By} <
sup(N,; N 0).
So we have proved (x)4.]

()5 e(*) < k when (%) = U{ex g : 6 < X are from a} where ) 9 = Min{e < &:

if f;lg N (0) < sup(Ni N 6) then fsup(N A (0) < sup(Nen o)}

[Why? Obvious.]
(*)6 f;;;}(NNm) ) b&j = Ch%, [ b}’ when i < j are from E\e(x).

[Why? Let 6 € b7, so by (x)3(8) we know that fsup(N an(0) < Chy (0). If
the inequality is strict then there is 8 € N, N # such that fup(N m)( ) < B <
Ch () hence for some € < &, 3 € N, hence ¢ € (g, Kx) = fsup(N Ay (0) < Chyy (6)
hence (as “i > €y ,” holds) we have fsup(N ﬁ/\)( ) < Chy, (0) so ;l’p(N m)\)(9) <
fsuug(Nm)\) (0) < Chy,(g), (the first inequality holds as j € E)). But by the definition
of by’ this contradicts § € by’ ] B
We now define by induction on € < |a|T, for A € a (and i < j < k), the set b7

(#)7 (@) b0 =0}

B) 6P = b U b 10 € by LU0 € a6 € pef(by7)},
J

(v) b= CU b47¢ for € < |a|T limit.
<€
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Clearly for \ € a, (bf\’j’E : € < |a|T) belongs to N;;1 and is a non-decreasing sequence
of subsets of a, hence for some €(7, 5, \) < |a]™, we have

[€ € (e(i, 5 2), o] ) = b3 = B3PV,
So letting €(i, j) = supyeq €(i, j, A) < |a]™ we have:

(¥)s €(i,g) < e <laft = A 037 = by
A€a
We restrict ourselves to the case i < j are from E\e(x). Which of the properties
required from (by : A € a) are satisfied by (6577 : \ € a)? In the conclusion of
2.1 properties (8), () hold by the inductive definition of by” (and the choice of

€(i,)). As for property (c), one half, J<x[a] C Jcy[a] + bf\’j7€(i’j) hold by (x)4(c)
(and b5’ = 6570 C bf\”’e(z’j)), so it is enough to prove (for \ € a):

(*)o bl;j,&(@j) € Joala).
For this end we define by induction on € < |a|T functions f&*¢ with domain bi\’j’e
for every pair (a, \) satisfying a < A € @, such that ¢ < e = f&M C f3M€ 50 the
domain increases with e.
We let foN0 = &2 10y, fore = J foN€ for limit e < |a[* and f3 T is
(<e
defined by defining each f&*<*1(9) as follows:

Case 1: If 6 € bi\’j’e then foA<F1(0) = faMe(6).

Case 2: Tf p € b37,0 € b7, and not Case 1 and p minimal under those conditions,
then fo*<+1(0) = f5"°(0 where we choose 3 = f3™(u).

Case 3: If 6 e an pcf(bf\’j’e) and neither Case 1 nor Case 2, then

FENFLO) = Min{y < 01 3N [ bgla] <y, £20C).

Now <<bf\’j’E A €a):e < |aJt) can be computed from a and <bf\’j A€ a).
But the latter belongs to N;q1 by ()4(7), so the former belongs to N;41 and as
((bf\’j “:rXea):e<|a|T) is eventually constant, also each member of the sequence
belongs to Nji1. As also ((f&* :a < \) : X € pef(a)) belongs to N, 41 we clearly
get that

(((fPM re< o) ra< ) A€a)
belongs to N;t1. Next we prove by induction on € that, for A € a, we have:

®1 0 € by and)\ € a = f::gévm)\)(G) = sup(N, N9).

For e = 0 this holds by (x)g. For € limit this holds by the induction hypothesis and

the definition of f&*¢ (as union of earlier ones). For €+ 1, we check f;l’;‘&;\flmk)(ﬂ)

according to the case in its definition; for Case 1 use the induction hypothesis
applied to fa’/\évnm)' For Case 2 (with u), by the induction hypothesis applied to

sup
a,h,e
fsup(NHﬂ;L)'
Lastly, for Case 3 (with #) we should note:
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(i) 63" Nbgla] ¢ J<pla].

[Why? By the case’s assumption b5”° € (Jy[a])T and (x)4() above.]
.. A€ 1,],€ 1,7,€ ,0,e
(“) fsctlp(NnﬁA) r (bAJ N bOJ ) c fsaup(N,{ﬁe)'

[Why? By the induction hypothesis for €, used concerning A and 6.]
Hence (by the definition in case 3 and (i) + (ii)),

(#18) fomia o) (6) < sup(N,. N 6).

Now if 7 < sup(N,; N 0) then for some (1) we have v < y(1) € N, N6, so letting
b =: by Nbgla] N by, it belongs to J<g[a] \ J<g[a] and we have

P10 <y f b= fiﬁ’&mm

hence f;g ?\rﬂm) (6) > ~; as this holds for every v < sup(N, N @) we have obtained

(i0) Fominiany () = sup(N, N 6);

together we have finished proving the inductive step for e+ 1, hence we have proved
®1- o

This is enough for proving by € J<,[a].

Why? If it fails, as by € Nj41 and (f3¢ : a < X) belongs to Nj41, there is
g € 1637 such that

() a < A= fONe 8¢ < g mod J<y[a].

Without loss of generali‘t‘y g € Njy1; by (), fsc:l’gé\rmx) < g mod J<y[a]. But
g < (sup(N,N0): 6 € by”c). Together this contradicts @!
This ends the proof of 2.1. o1

If |pcf(a)| < Min(a) then 2.1 is fine and helpful. But as we do not know this, we
shall use the following substitute.

Claim 2.4. Assume |a| < k = cf(k) < Min(a) and o is an infinite ordinal satisfying
lo|t < k. Let f, N={(N; :i < k), Ny be as in the proof of 2.1. Then we can find
i={(ig:a<0o),a=(a,:a <o) and ((b [ ]: A€ ag): B <o) such that:

(a) i is a strictly increasing continuous sequence of ordinals < k,

(b) for B < o we have (iq : o < 6) Nig,, hence (N, : a < B) € N, and
<b’)y\[ } A€ Oy and S B> w+1’ we can get i f (5 + 1) € Nerl foi
succesor of regular (we just need a suitable partial square)

(c) ag = Ny Npcf(a), so ag is increasing continuous with 3,a C ag C pcf(a)
and |ag| < K,

b2[a) C ag (for A € ap),

Jexlag] = Jonlag] + 65 [a] (so X € b5 [a] and bi[a] C A1),

if w < A are from ag and p € b’g[ a] then bl[a] C f[ ] (i.e., smoothness),
bf\a[a] = ag ﬂpcf(bf[a]) (i.e., closedness),
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(h) ifcCag,B <o andce N;

have ¢ € |J b5+ a];
HEeD

more generally (note that in (h)™ if 6 = Xq then we get (h)).

(R)* ifcCag,B<o,c€ Ny, ,,0=cf(f) € N, ,, then for somed € Ny, ,0C
a4+1 N PCEy_ comprere(€) we have ¢ € |J bS] and [o] < 0,
HED

541 then for some finite ® C agyq N pef(c), we

(7) bf[ﬁ] increases with 3.
This will be proved below.
Claim 2.5. In 2.} we can also have:

(1) if we let byla] = bS[a] = U bf[ﬁ}, a, = |J ag then also for § = o we have
B<o B<o

(b) (use Ni5+1)7 (C)v (d)7 (f)a (1)

(2) If o = cf(o) > |a| then for = o also (e), (g)

(3) If cf(o) > |a],c € N;_, ¢ C a, (hence |¢] < Min(c) and ¢ C a,), then for
some finite d C (pcf(c))Na, we havec C |J byla]. Similarly for -complete,

HED

0 < cf(o) (i.e., we have clauses (h), (h)* for f=0).

(4) We can have continuity in § < o when cf(0) > |al, i.e., b3[a] = BU5 bf[ﬁ].

<

We shall prove 2.5 after proving 2.4.
Remark 2.6. 1) If we would like to use length «, use N as produced in [She93a,

L2.6] so 0 = k.
2) Concerning 2.5, in 2.6(1) for a club E of 0 = k, we have a € E = b{[a] =
b)\[a] Nag.

3) We can also use 2.4,2.5 to give an alternative proof of part of the localization
theorems similar to the one given in the Spring ’89 lectures.

For example:

Claim 2.7. 1) If |a| < 8 = cf(0) < Min(a), for no sequence (\; : i < 0) of members
of pcf(a), do we have A [Aq > maxpcf{); :i < a}].

a<f
2) If |a| < Min(a), |b] < Min(b),b C pcf(a) and X € pcf(a), then for some ¢ C b
we have |¢| < |a| and X € pcf(c).

Proof. Relying on 2.4:

1) Without loss of generality Min(a) > 6%3, let x = %2 let N, N,, a, b (as
a function), (i, : @ < o =: |a|T) be as in 2.4 but we in addition assume that
(Miti<8)eNy. Soforj<8, ¢ =:{N\:i<j}e Ny (soc; Cpct(a)NNo=ap)
hence (by clause (h) of 2.4), for some finite 0; C a; Npcf(c;) = N;, Npcf(a) Npef(c;)
we have ¢; € U\ e, bi[a]. Assume j(1) < j(2) <. Nowif u€an |J b}[a] then

A€V, (1)
for some fig € 0;(1) we have p € b}to [a]; now po € 951y C pef(cjy) € pef(eje)) C
pef( U bila))= U (pcf(b}[a]) hence (by clause (g) of 2.4 as pig € 99y € Ny)
A€Y;(2) A€Y;(2)

for some p11 € 0j(2y, po € b}, [a]. So by clause (f) of 2.4 we have b}, [a] C b}, [a] hence
remembering p € b}m [a], we have p € b}“ [a]. Remembering p was any member of
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an J bia, wehavean J bifajCan J b}[a] (holds also without “an”
A€D;(1) A€R;(1) A€D;(2)

but not used). So (an |J bi[a]:j < ) is a C-increasing sequence of subsets of a,
AED;
but cf(8) > |a|, so the sequence is eventually constant, say for j > j(x). But

maxpcf(an |J bifa]) < maxpcf( J bila))
A€D; A€D;
_ 175
= g\rg)j((max pef (b3 [al))

= max\ < maxpcf{\; 1 i < j} < ),
A€D;

=maxpcf(an |J bifa])
A€V 11

(last equality as by, [a] € b}[a] mod J.[a1]). Contradiction.

2) (Like [She94a, §3]): If this fails choose a counterexample b with |b| minimal, and
among those with max pcf(b) minimal and among those with [ J{u™ : u € ANpcf(b)}
minimal. So by the pcf theorem

()1 pcf(b) N A has no last member
()2 p = sup[A N pcf(b)] is not in pef(b) or = .
()3 maxpcf(b) = A.

Try to choose by induction on i < |a]™, X\; € AN pcf(b), A; > maxpef{\; : j < i}.
Clearly by part (1), we will be stuck at some i. Now pcf{); : j < i} has a last
member and is included in pcf(b), hence by (x); and being stuck at necessarily
pef({\; 1 7 <i}) € X but it is C pef(b) C AT, so A = maxpef{); : j < i}. For each
Jj, by the choice of “minimal counterexample” for some b; C b, we have |b;| < |a],
Aj € pef(bj). So A € pef{); : j < i} C pef(J bj) but |J frb; is a subset of b of
j<i j<i
cardinality < |i| X |a| = |a|, so we are done. Oy 7
Proof. Without loss of generality ¢ = wo (as we can use w“o so [wo| = |o]).
Let f* = (f** = ((f3* : a < \) : XA € pcf(a)) and (N; : i < k) be chosen as in
the proof of 2.1 and without loss of generality f® belongs to Ny. For ¢ < k we
define a¢ =: N¢ N pcf(a); we also define ¢ f as <<f(§‘<’)‘ ta < A) @ A€ pef(a)) where
f85% € [ al is defined as follows:

(a) if 0 € 0, f3°(0) = 32(0),
(b) if 6 € a®\a and cf(a) ¢ (|a¢|,Min(a)), then

FENG) = Min{y < 62 f3 1 bola] <y_yjoota S&° T bolal},

(¢) if € a®\a and cf(a) € (|a|, Min(a)), define fgC*A(Q) so0 as to satisfy (x);
in the proof of 2.1.

Now ¢ f is legitimate except that we have only

B <<€ pcf(a) = f;c’)‘ < f;&,/\ mod Jy[a¢]
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(instead of strict inequality) however we still have A \/ [fgg”\ < f;‘c’k mod Jy[a¢]],
B y<A

but this suffices. (The first statement is actually proved in [She94a, 3.2A], the sec-
ond in [She94a, 3.2B]; by it also ¢ f is cofinal in the required sense.) B

For every ¢ < k we can apply the proof of 2.1 with (N¢ N pcf(a)), ¢f and
(N¢g14i 1 i < k) here standing for a, f, N there. In the proof of 2.1 get a club ES of
k (corresponding to E there and without loss of generality ¢+ Min(E¢) = Min(E¢)
so any ¢ < j from ES are O.K.). Now we can define for ( < x and i < j from ES,
¢y and (“b37C re < |aS|t), (eS(i,4,A) : A € a%),e¢(4, ), as well as in the proof of
2.1.

Let:

E={i<k: iisalimit ordinal (Vj <14)(j+j <iandj x j < i)
and A i€ E7}.
j<i
So by [She93a, §1] we can find C = (Cs : 6 € S),S C {§ < K : cf(6) = cf(0)}
stationary, Cs a club of §,0tp(Cs) = o such that:

(1) foreach a < A, {CsNa : @ € nacc(Cs)} has cardinality < k. If & is successor
of regular, then we can get [y € C, NCs = Co, Ny =CsN~| and

(2) for every club E’ of k for stationarily many 6 € S,Cs C E'.

Without loss of generality C € Ny. For some 6%, Cs- C E, and let {je : ¢ <
w20} enumerate Cs« U {6*}. So (jc : ¢ < w?0) is a strictly increasing continuous
sequence of ordinals from E C x such that (j. : € < () € Nj.,, and if, e.g., s is a
successor of regulars then (j. : € < () € Nj 41. Let j(¢) = j¢ and for £ € {0,2}
let i¢(C) = ¢ =% jurasc), ¢ = Nf Npef(a), and a® =: (af : ¢ < o), 'bS[a] =:

1 j(w* j(w* € (F(w j(w* .
“(Qb&( P, G D@ ) - Recall that o = wo so o = w20 if the

value of ¢ does not matter we omit it. Most of the requirements follow immediately
by the proof of 2.1, as

@® for each ( < o, we have b, <b§[a} © A € ac) are as in the proof (hence

conclusion of 2.1) and belongs to Niy13 € Nig s

We are left (for proving 2.4) with proving clauses (h)™ and (i) (remember that (h)
is a special case of (h)™ choosing 6 = Rg).

For proving clause (i) note that for ¢ < ¢ < &, fa“c’)‘ - f§£’>‘ hence be\’j - %E\’j.
Now we can prove by induction on € that Cbi\’j’e - 5b§j’€ for every X € ac (check
the definition in (*)7 in the proof of 2.1) and the conclusion follows.

Instead of proving (h)™ we prove an apparently weaker version (h)’ below, but
having (h)’ for the case £ = 0 gives (k)™ for £ = 2 so this is enough [[then note that
i = (ig2c 1 ¢ <o), @ = (au2¢ : ¢ < ), (Nyw2e): ¢ < o), (b‘;\JQC[ﬁ’] (<o AEa; =
a,2¢) will exemplify the conclusion]] where:

(h) if ¢ C ag, B < o, ¢ € Nyy,,,0 = cf(0) € N;,,, then for some frd €

Nigoia+1 satisfying 0 C agyw N pefy_complete(€) we have ¢ € bﬁ*“[ﬁ}
HED
and [0] < 6.

O
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Proof. Proof of (h)’

So let 6, 3, ¢ be given; let (b, [a] : 1 € pcf(c))(€ Ni,,,) be a generating sequence.
We define by induction on n < w, A,, ((¢;, A,) : 1 € A,) such that:
) Ao ={(0}. ¢y = ¢, Ay = maxpef(c),
) A C 70, A] <0,
c) if n € Apq1 thenn [ n € A, ¢, Ccyn, Ay < Ay and A, = max pef(cy,),
) An, (¢, Ay) 1 m € Ay) belongs to N; hence X\, € IV;

) if n € Ay and X, € pcfy omplete(€y) and ¢, & bf:rprn[ﬁ] then (Vv)[v €
Apjrandn C v & v = n7(0)] and ¢,y = cn\bfjH"[ﬁ] (so Ayr0y =
max pcf (¢~ g)) < Ay = maxpef(cy),

(f) lf n € An and )‘77 ¢ pCf@-complete(cﬂ) then

e = J{ox,  [c] i < < 0,77 (i) € Ania},

and if v = n" (i) € A,41 then ¢, = by [c],

B+1+n B+1+4n)

(9) ifn € Ap, and A, € pefy complete(€y) but ¢; C bf:’l_"[a}, then —(Iv)[n<v €
An+1]-

There is no problem to carry the definition (we use 2.8(1), the point is that ¢ €
Nig..., implies (bx(c) : A € pcfy[c]) € N; and as there is ? as in 2.8(1), there
isonein Ny, .., 500 C agiiini1)-

Now let

B4+1+n

an = {An 'n € An and )\7] € pCfG—Complete(cn)}

and 0 =: |J 0,; we shall show that it is as required.

n<w

The main point is ¢ € |J b51“[a]; note that
AED

Ay €0, € Ay = 63" [a] € 65" (a]]

hence it suffices toshow ¢ € |J U b5 7" [a], soassumef e ¢\ U U b5 "[a),
n<w A€V, n<w A€V,
and we choose by induction on n, n,, € A, such that ny =<>, 7,41 [ n = 1, and

0 € c¢y; by clauses (e) + (f) above this is possible and (maxpcf(c,,) : n < w) is
(strictly) decreasing, contradiction.
The minor point is [9] < 6; if § > Ry note that A |A4,| < 6§ and 6§ = cf(0) clearly
n

Pl < U, Anl <0+ 8 =0.
If 6 = R (i.e. clause (h)) we should show that | J A,, finite; the proof is as above

n
noting that the clause (f) is vacuous now. So n < w = |4,| = 1 and for some
n\ A, =0, so | 4, is finite. Another minor point is 0 € N; ; this holds as the
n n

Brwt1?
construction is unique from ¢, (b, [c] : © € pef(c)), (N; 1 § < igtw), (4 1 J < B+ w),
((ai(g),<b§[ﬁ] DA€ ay)) : ¢ < B+ w); no “outside” information is used so
((Ap, {(ensAy) 1m € Ap)) tn < w) €N, so (using a choice function) really

1B+w+1)

RS Nig+w+1' |:|2_4

See https://shelah.logic.at/papers/E69/ for possible updates.
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Proof. Let byla] = b = U b5[ag] and a, = U ac. Part (1) is straightforward.
<o <o

For part (2), for clause (f;), for § = o, the iICIChlSiOH “C” is straightforward; so
assume [ € ag N pcf(bf[ﬁ]). Then by 2.4(c) for some By < 3, we have u € ag,,
and by 2.7 (which depends on 2.4 only) for some 81 < 83, u € pcf(bf\a1 [a]); by
monotonicity without loss of generality Sy = 1, by clause (g) of 2.4 applied to Sy,
e bgo [a]. Hence by clause (i) of 2.4, u € bg[ﬁ], thus proving the other inclusion.

The proof of clause (e) (for 2.5(2)) is similar, and also 2.5(3). For ??(B)(4) for
§ < 0,cf(8) > |a| redefine b[a] as |J b5 [a. Oas

Claim 2.8. Let 0 be regular.
0) Ifa< 07pCf0—complete('U ai) = U pCfH-complete(ai)'
<

1< 1<
1) If (bola] : O € pcf(a)) is a generating sequence for a, ¢ C a, then for some
0 C pefy compiete(€) we have: [0 < 6 and ¢ C |J bg[a].
fca
2) [f|CLUC| < Min(a)’ cC pCfG—complete(a)7 A€ pCf@—complete(c) then A € pCf@—complete(a)'
3) In (2) we can weaken |aUc| < Min(a) to |a] < Min(a), |c| < Min(c).

Proof. (0) and (1): Left to the reader.
2) See [She94f, 1.10-1.12].
3) Similarly. 0o

Claim 2.9. 1) Let 6 be reqular < [a[. We cannot find Ao € pcfy_compiete(a) for
a < |a|* such that \; > sup pcfy_pmprere({1Xj 1 5 < i}).

2) Assume 0 < |a|,¢ C pcfy_compiete(@) (and |c| < Min(c); of course |a| < Min(a)).
If XN € pefy_comprete(€) then for somed C ¢ we have [0| < [a] and X € pefy_pmprere(?)-

Proof. 1) If = X, we already know it (see 2.7), so assume 6 > Ng. We use 2.4 with
{0, (\i 2i < |a|T)} € No, 0 = |a|T, k = |a|™® where, without loss of generality, x <
Min(a). For each o < [a|™ by (h)* of 2.4 there is an € Ni;, 00 € Pcfy complete({Ni :
i < a}), [0a] < 0 such that {\; : i < a} € |J bj[a]; hence by clause (g) of 2.4
00,
and part (0) Claim 2.8 we have a; N pcfy_comprere({Ai : @ < @}) € U bglal. So
00,
for a < B < [a]T, 90 € a1 N pefy ompletetAi 17 < a} € a1 N pefy compretelAi

i < B} € U bjlal. As the sequence is smooth (i.e., clause (f) of 2.4) clearly

Ocog
a<pf= U bac U b,
HEDo HEDS
So ( U bula]Nna: a < [at) is a non-decreasing sequence of subsets of a of
JLST

length |a|*, hence for some a(*) < |a|™ we have:

(x)1 a) <a<la™= U bb[ﬁ] Na= { b}t[ﬁ] Na.
HED o MEUQ(*)
If r cm N pCfO—complete({A’i 1< OL}) then 7 € pCfG—complete(a) (by parts (2)’(3)
of Claim 2.8), and 7 € b, [a] for some pu, € d, so bila] C b, [a], also T €

Py complete (01[a] N @) (by clause (e) of 2.4), hence

TE pCfQ-C()mplete(b}'[a] N Cl) - pc£9—complete(b/11T [a] N Cl)

c pCfé—complete( U b;lL[a] n Cl).
HEVy
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So a1 N pcfycomplete ({Ai 1 1 < a}) € pcfycomplete( U bL[a] Na). But for each a <
HEVy
la| ™ we have Xy > sup pcfy_omplete({Xi 4 < a}), whereas 9, C pcf

U-Complete{)‘i :
i < a}, hence A, > supd,, hence

(*)2 )\Oé > Supueba max pCf(b/lj,[a]) 2 sup pCfG—C()mplete( g b/i[a] n Cl).
HED,
On the other hand,

(*)3 Ao € pCfO—complete{)\’i <o+ 1} C pCfO—complete( U b}b[a] N Cl).
HEDq+1

For a = a(x) we get contradiction by (%)1 + (%)2 + (%)s3.
2) Assume a, ¢, A form a counterexample with A minimal. Without loss of generality
la|™ < Min(a) and A = maxpcf(a) and A\ = maxpcf(c) (just let a’ =: by[a], ¢’ =:
¢ N pefyla’]; if X ¢ pefy complete(¢)) then necessarily A € pef(c\¢’) (by 2.8(0)) and
similarly ¢\¢’ C pcfy complete(@\a’) hence by parts (2),(3) of Claim 2.8 we have
A € pcfy complete(@\@'), contradiction).

Also without loss of generality A ¢ c. Let x,0, N, (iq, = i(a) : a < 0),a = (a; :
i < o) be as in 2.4 with a € Ng,c € No, A € Ng,0 = |a|™, k = |a|T® < Min(a). We
choose by induction on € < |a|T, A, 0 such that:

(a) 7 A € aw2e+w+1)aé € Ni(wze+w+1)>
(b) Ac €,
( ) 0. C A2 etw+1 n pCfS—complete({AC : C < 6})5
d) o] <0,

o) {Ac:¢<ac U by ),

0co.

c

(

(

WQE w =
(f) )‘e ¢ pCfG-complctc( U be + +1[a])'
geo.

For every e < |a|™ we first choose 0 as the <}-first element satisfying (c) + (d) + (e)
and then if possible A. as the <}-first element satisfying (b) + (f). It is easy to check
the requirements and in fact (A¢ : ¢ <€) € Ny2c41, (0¢ : ¢ < €) € Ny2.41 (so clause
(a) will hold). But why can we choose at all? Now A ¢ pcfy completeiAc 1 ¢ < €}
as a,c, A form a counterexample with A minimal and € < |a|t (by 2.8(3)). As

A = max pef(a) necessarily pefy comprete ({A¢ 1 ¢ < €}) € A hence 2. C A (by clause
(¢)). By part (0) of Claim 2.8 (and clause (a)) we know:

2 _ W2 dw _
pCfS—complete[ U b(;/f e+w+1[aH = U pCfQ—complete[bu + +1[a]]
HEDe HED,
CU@E+1cai
HED

(note 1 = max pef (b [a])). So A & pefy compiete( U b;ﬂe"’“’“[ﬁ]) hence by part (0)
HEDC

of Claim 2.8 ¢ ¢ J bl"jQ€+w+1[ﬁ] s0 A¢ exists. Now 0. exists by 2.4 clause (h)".
HED,

Now clearly <a nuy bf“‘““[ﬁ] re< a|+> is non-decreasing (as in the earlier
HED,

proof) hence eventually constant, say for € > €(x) (where e(x) < |a|™1).
But
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a) A € b‘*’26 w+17g] [clause (e) in the choice of Aes e,
1
MEDc 11

(B) b‘:\’je+“’+1[ﬁ] € Useo. s b‘:2€+“+1[ﬁ] [by clause (f) of 2.4 and («) alone],
() Ae € pcfg_complete(a) [as A¢ € ¢ and a hypothesis],

(6) Ac € Pl gomplete (0% HF1[@]) [by (7) above and clause (e) of 2.4],

(€) Ac & pef(a\ by rt),

(Q) Ac € Pefycomprere (@ U 62 FF1a]) [by (8) + (€) + ()],

HEDet1

But for € = ¢(x), the statement (¢) contradicts the choice of e(x) and clause (f)
above. Ua.9
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§ 3.

Definition 3.1. 1) For J an ideal on « (or any set, Dom(J)-does not matter) and
singular p (usually cf(p) < &, otherwise the result is 0)

(a) we define pp;(p) as

sup{tcf (] Ni,<s): i € RegnNu\x™ fori < k
i<K
and p = limy(\; : ¢ < k), see 3.2(1) and

(TT Mis <) has true cofinality}
<K

(b) we define pp7 (1) as

sup{(tcf(T] Ni, <)) : N € RegNpu\xT for i < K
i<K
and p = limy((\; : i < k)), see 3.2(1) below and
(TT Mis <) has true cofinality}.
<K
2) For J a family of ideals on (usually but not necessarily on the same set) and

singular y let ppy (1) = sup{pp,; (1) : J € I} and pp (1) = sup{ppJ (1) : J € J}.

3) For a set a of regular cardinals let pcf ;(a) = {tcf( [[ A, <y): A € a for
teDom(J)

t € Dom(J)}; similarly pcfy(a).

Remark 3.2. 1) Recall that p = limj(\; : t € Dom(J)), where J is an ideal on
Dom(J) mean that for every p; < p the set {t € Dom(J) : A¢ ¢ (11, 4]} belongs to
J.

2) On pcf ;(a): check consistency of notation by [She94e].

Observation 3.3. 1) For u,J as in clause (a) 3.1, the following are equivalent

(a) pps(p) >0

(b) the sup is on a non-empty set

(¢) there is an increasing sequence of length cf(u) of member of J whose union
is K

(d) pps(1) > p

(e) every cardinal appearing in the sup is reqular > p and the set of those
appearing is Reg N [u*,ppF (1)) and is non-empty.

Definition 3.4. 1) Assume J is an ideal on k,0 = cf(0) < &, f € #"Ord then we
let

Wyo(f*,<up)=Min{|Z|: £ is a family of subsets of sup Rang(f*)+1
each of cardinality < p and for every f < f*,
Rang(f) is the union of < o
sets of the form

{i<k:f(i)e A}, A e Z}.

2) If f* is constantly A we write \ if p = X\ we can omit < p.
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Remark 3.5. 1) See cov(A, i1,0,0) = Wigj<e ,({A i < 0), ).
2) On the case of normal ideals, i.e. prc see [She93b, §1] and more generally prd
see [She93b].

We may use several families of ideals.
Definition 3.6. Let

(a) comg, = {J:J is a o-complete ideal on 0}

(b) nor,, = {J : J a normal ideal on x}

(¢) comy, ={J:Jis a o-complete ideal on Dom(I) extending the ideal I}
(d) nory = {J:J is a normal ideal on Dom(J) extending the ideal I}.

Claim 3.7. The (< Ry)-covering lemma.
Assume Ry < 0 < cf(u) <k < p and I is a o-complete ideal on k.
Then

(a’) WI,O’(/’(’) = PPcom, (I) (/’6)

(b) except when ®,, 1, below holds, we can strengthen the equality in clause (a)
to: i.e., if PPeom, (1) 18 @ regular cardinal (so > 1) then the sup in 8.1(1) is
obtained

®u1,0 (@) A =1DPeom, (1) (W) is (weakly) inaccessible, the sup is not obtained
and for some set a C RegMy, |a|++x < Min(a) and A = sup(pcf; ,(a));
recalling pef o, (@) = { [ Xi, <y: J € com, (1), i € a fori < k}.
i<K
Remark 3.8. 1) This is [She02, 6.13].
In a reasonable case the result cov(|al,xT, kT, o).

Conclusion 3.9. In 3.7 if kK < pyx < u then

(a) Wro(p, < pix) = Sup{PPeom, (1) (1) : pr < pt" < pycf(p) < w}

(b) if in (a) the left side is a regular cardinal then the sup is obtained for some
sequence (A\; : i < K) of regular cardinality and J € com,(I) such that
lim;(\; 14 < k) is well defined and € [, p] except possibly when

@y Iop, 0810 R, 1, above but |a] < .

Proof. The inequality >:

So assume J is a o-complete ideal on x extending I,)\; € Reg N p\xT and
pw=1lmy((\; i < k) and X = tef( [] A, <y) is well defined and we shall note that

<K

Wi (@) > A, this clearly suffices, and let (f, : @ < A) be < -increasing cofinal in
(TT i, <) Now let | 2] < A, & be a family of sets of ordinals each of cardinality
<K
< p. For each u € & let g, € [] \; be defined by g, (i) = sup(u N X;) if |u| < A

<K

and g, (i) = 0 otherwise.
Hence for some a(u) < A, gy <J fa() and so a(x) = U{a(u) +1:u € P} <A
and f, () exemplifies the failure of & to exemplify A > Wy 5 (p).

The inequality <:

Assume that A is regular > pp}tg(u) and we shall prove that Wy ,(u) < A,
this clearly suffices. Let x be large enough, and 5 be an elementary submodel of
(H(x), €, <}) of cardinality < A such that {/,o,u, A} € B and ANB is an ordinal
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which we shall call dg. Let &2 =: [u]<* N B so |Z?| < A. Hence it is enough to
prove that W ,(u) < | 27| and for this it is enough to praove that &7 is as required
in Definition 3.3(1). Let € = (e : @ < pu) € B be such that e, is a club of « of
order type cf(a) so eqr1 = {a}, eo = 0.

So let fi. € "p and let (u. : € < cf(p)) € B be an increasing continuous sequence
of cardinals from (k,pu) with limit g. Now by induction on n < w we choose

En, An; adn, c?n, Sn7 Bn SuCh that

®n (A)(a) A, € [1]=F, Ag = {pe e < cf(n)}
b

gn is a function from k to A,

fe < gn

ifn=m+1and i <k then g,,(7) > f«(2) = gn(i) > gm(?)
I, C "o has cardinality < o

T ={<>}

ifn=m+1landn e 7, thenn [ me 7,

Sn=(Sy:n€ T)

NN

S
~— — ~—

) Bu=(Byine 7
j) en<cf(p)andn=m+1=¢,>¢p,
(B) for each n € F;:
(@) Sy Sk Sy¢ Tn
(b) ifn=m+1then S, 25,
(c)
(

e e R e e e e e

B, € B is a subset of u of cardinality < ()
d) {gn(i):i€ Sy} isincluded in B,
(C)a) ifn=m+1andne€ T, then the set

Sy i=Ai € Sy gm(i) > fu() N UA{Sy <55 0" (j) € Tn}
belongs to I.

It is enough to Carry the definition:

Why? As then {B, : n € 7, for some n < w} is a family of members of & (by
(B)(c)), its cardinality is < o (as 0 = cf(0) > Ny and for each n < w,|Z,| < o by
(A)(e)).

Similarly as [ is o-complete the set S* = U{.S; : € 7}, for some n < w} belongs
to I. Now for every i € k\S*, we try to choose 1, € Z,, by induction on n < w
such that i € S, and n =m+1= 10, =, | m and g, (i) > fi(). For n =0 let
n=<>s0i€r=Ap. Forn=m+1,asi¢5S; ,see (C)(a)clearly n, as required
exists. Now if n =m + 1 again as i ¢ S~ we get g, (i) > fi(i) and by (A)(d) we
have g, (i) > gn (7). But there is no decreasing w-sequence of ordinals. So for some
m, gm (i) < fi(i) so by (A)(c), gm(i) = fu(i) but g, (i) € By, .

Carrying the induction:

Case n = 0:

Let 9 = {<>}, Acs = {pe : € < cf(p)} which has cardinality < x as cf(u) < k
by assumption. Further, let gy be defined as the function with domain x and
go(7) = min{pue : pe > fo(i)}, let Scs = k and Bes = Ap which € B as (ue : € <
cf(p)) € B (and has cardinality |Ag| = cf(u) < ).

Casen=m-+ 1:
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Let n € 7, and define S; = {i € 5, : gn(i) > fu(i)}. If S} € I then we decide
that j <n = n"(j) ¢ Jn, so we have nothing more to do so assume S ¢ I.
Let a,, = {cf(a) : @« € B, and cf(a) > |B,| + £} and let

¢y = {tcf( [T cf(gn(i)),<s): J is an o-complete ideal on
iesy
S, extending I [ S} such that p = lim(cf(gn(i)) : i € Sy)

and [] cf(gn(i)), <s) has true cofinality}
i€sy,

Clearly  + |a,| < min(a,) and ¢, C pcf; ,(a,;) € AN Reg and by -®, 1, we
know that pcf; ,(a,) is a bounded subset of A. But B, € B hence a, € B hence
pcfy ,(a,) € B so as BN = dys < A, clearly pcf; ,(a,) € B hence 0 € ¢, = 0 <
0. Using pcf basic properties let J, » be the o-complete ideal on a, generated
by J-x[a,] and so a,,J,x € B and there is a <, ,-increasing cofinal sequence
Jox = (Faxc : ¢ < A) of members of Ila,, such that f, ¢ is the <; ,-eub. of
J?n,A [ ¢ when there is such <, ,-e.u.b. Without loss of generality JFnJ\ € B hence
{fn’)\,g (< )\} C 8.

Let a,, = U{a, : 7 € 7, } and define a hy, € Ia,, by h,(0) = sup{otp(ey, ) N
J«(1)) i <k and fi(i) < gm(i)}. Clearly it is < 0 as 6 = cf(0) > pe(m) > |By| + &
when 6 € a,. For each n € 7, and X € ¢, let (;, » < A be such that h,, [ a, <
Joac, . mod Jy y, and let

Sy = {0 € Sy han(cf(9:(0)) < Fang, . (cf(gm ()}

© for some subset ¢, of ¢, of cardinality < o the set {i € S, : i ¢ 5717)\ for
every A € €, } belongs to I.

[Why? Otherwise, let J be the o-complete ideal on S, generated by I U {S%})\ tAE

¢y}, so k ¢ J hence for some S* € J* we know that ( [] cf(gm (i), <s;s+) has true
1€S*
cofinaltiy, call it \*. Necessarily A* € ¢, and easily get a contradiction.]

Case A: |U{c, :n€ T} < p.
Let (A, :j <) list ;. Let aj, = a,\|U¢y|T. Now by induction on k < w we

n
choose hy, i, G 5,k for j < jn,n € 5, such that

® (a) hpy €1Ial,
(b) hm,k < hm,k+1
(€) hmo=hm
(d)  Cojk < Apj
(€) Cnik < Cnjktr
(f) Cnio=Cni
(9) hm,k+1(9) = SUP[{fn,X,,,j,gnyj’k (0):ne T, 0c an} U {hm,k(e)}]
(h)  Cyjk+r =Min{¢ < Ay : ¢ > (ke and hp, gy [ ay < fnag;.c mod

Jn)‘n,j}'
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There is no problem to carry the induction. Let h,, € Ila, be defined by
Pomw(0) = U{hm k(0) 1 k <w}. Let S) ;= {i € Sy : fi(i) is < the Ay o (cf(gm(i))-
ith member of e, (;)}.

Now

X for some ¢ C ¢y, || < o for n € T, we have S,\U{S, ;: \; € ;} € I.
Now continue. Us.7

Case B: C not Case A.
Use §2.

Discussion 3.10. Lemma 3.7 leaves us in a strange situation: clause (a) is fine,
but concerning the exception in clause (b); it may well be impossible and pcf(a) is
always not “so large”. We do not know this, we try to clarify the case for reasonable
J;, i.e., closed under products of two.

Observation 3.11. 1) There is ps < p such that (Vu')(pe < p/ < pAct(p) <
k< p') = pp3 (1) < ppy (1) when:

® (a) cf(p) <k<p

(b) J is a set of o-complete ideals

(¢) J€J=|Dom(J)| <k

(d) if Jo € J for e < cf(u) then for some o-complete ideal I on cf(p),
the ideal J = X(Je : € < cf(p)) belongs to J (or is
Just <rk from some J € J).

Proof. Let A = {y/ : 1/ is a cardinal < pu but > &, of cofinality < k such that
ppy (1) > ppy(u)}, and assume toward contradiction that p = sup(A). So we
can choose an increasing sequence (. : ¢ < cf(p)) of members of A with limit
w. For each € < cf(u) let J. € J witnesses p. € A. Without loss of generality
ke = Dom(J) < k so we can find (A\.; : i < k.) witnessing this. In particular
( TT Ae.is<y.)) has true cofinality A. = cf(\.) > ppy (). Let I,.J be as in cluase

i<Ke

(d) of ®. Us1a

* *

A dual kind of measure to Definition 3.1 is

Definition 3.12. 1) Assume J is an ideal say on x and f* : k — Ord and pu
cardinal. Then U, (f*, < p) = Min{| | : & a family of subsets of sup Rang(f) +1
each of cardinality < p such that for every f < f* (i.e., f € [ (f*(4) +1)) there is

1<K
A e P such that {i <rk:f(i)e A} ¢ J}.
2) If above we write J instead of J this means J is a family of ideals on x and the
& should serve all the J € J simultaneously.

Claim 3.13. We have U jua (i1, < p) = A\« if we assume
® (a) p>r=cf(u) >Ry
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() ([k]®, D) satisfies the p-c.c. or just u*-c.c. which means that:
if & Clk]" and A# B e &/ = |ANB| <k then || <

(¢) A =ppypalp) =sup{tef( [T Ai, <jpa) : Ai < p is increasing with
i<k )
limit yu and (] Ai, <jva) has true cofinality}.
1<K

Claim 3.14. We can in 3.13 replace J°4 by any Ny -complete filter J (?) on k (so
(b) becomes {(JT,D) satisfies the p+-c.c.”

Remark 3.15. If in clause (b) of ® of 3.13, we use the p-c.c. the proof is simpler,
using J, € (e, ), En < Engl-

Proof. Let

(*) (a) [ = {(u;:i< k) isan increasing continuous sequence of singular
cardinals > x with limit pu.

Let x be large enough, <} a well ordering of (J(x),€) and # an elementary
submodel of (J#(x), €, <}) of cardinality A, such that A\, +1C gB and i € B and
let &7 = [p]<* N B.

So o is a family of sets of the right form and has cardinality < A.. It remains
to prove the major point: assume S is an unbounded subset of x, f* € [] [, thi+1]

€S
we should prove that (34 € &7)(3%i € S)(f(i) € A).
Let € = (eq : @ < u) € B be such that e, is a club of « of order type cf(a) so
eat1 = {a},e0 = 0. Let (Bq : € < cf(a)) be an increasing enumeration of e,.
We choose ey, gn, An, I, (Sy, By : 1 € ) such that

®n (A)(a) T C"u, T ={<>}[n=m+1Ane T, =nlmeT)]
) A, C p has cardinality < &
(&) gn:k— A,

(d) i <rk= f(i) < gnli)

() n=m+1=g,<gnm

(f) en<kandn=m+1=e, <e,

(9) ifn=m+1,i€ (en,k) and g, (i) > f*(7) then g, (i) > gn(7)
(B) for n € 7,

(a) S, C & has cardinality
(b) S,e€[k]fandvan=S5,CS,
() B, € B is asubset of p of cardinality < p.(,) where e(n) =
Min{e < xk:n € "(u) and € > &, }
(@) {gu(i):i€S,}CB,

Forn=01let g =0, Acs = {p; : i < k}, T = {<>}, S<> = K, gm is the function
with domain & such that g«~ = Min{a € Acs : f*(4) < a}. Assume n =m +1
and we have defined for m.

Let
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¢, = {6: there is an increasing sequence (\; : i < k)
of regular cardinals € (k, u) with limit u such that
0 =tef(I] Ai, <jva) and
<K "

{Ni i<k} C{cf(a) : a € Ay, cf(@) > K}

Of course, ¢, € Reg\p. Now for each § € ¢, let (\! : i < k) exemplifies it so

{{N 1i < K} : 0 € ¢,,} is a family of subsets of {cf(a) : a € A, cf(a) > k)} each
of cardinality x and the intersection of any two has cardinality < .

As |An| < &, by assumption (d) of the claim we know that |c,| < p and let
(Mg B < ) list them.

For each n € 9, and € < k let

ay,e = {cf(0) : 6 € By, and cf(6) > pe + |Byl}
SO
|yl < |By| < min(ay,).
Let W = {(n,e,8) : 1 € Tm,e < K,B < pe}. Clearly a,. € B,\3 € B hence

Jyep = the k-complete ideal generated by J_»,[a, ] belongs to B and some
<J, . s-increasing and cofinal sequence (f, - 5.c : ( < Ag) belongs to B and f, - 5.¢

n,€,8

is an <, _ ,-ew.b. of (f, ¢ :& < () when there is one.
We now define a function h,,

Dom(hy,) = ay, =U{a,.:n € I, and € < Kk}
$0
0 € Dom(hy,,) =k <0 < u A6 € Reg
(in fact we do not exclude the case af, = Reg N u\x™) and
hin(0) = sup{eg, ;) N f * (i) : i < k and cf(g, (7)) = 0}.
As 0 = cf(0) > k clearly
0 € Dom(h,,) = hp(6) < 6.

We choose now by induction on k < w, Ay, i, (Ck’gﬁﬁ : (n,e,8) € W) such that

n
X (a) hmy € af,
(b) hmo=hm
(C) hm,k < hm,k:-i—l
(d) g =Mn{C: by | aye <j, ., frepcand £ <k=¢_5<(}
(€) hmas1(0) = sup[{hmi(6)} ULFE o (0): the triple (. B,¢) € W

satisfies (Je)(8 < pe < 6) and 6 € a, . }].
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Note that hy, x+1(0) < 6 as the sup is over a set of < 6 ordinals.

So we have carried the definition, and let hy, ,, € Ila,, be defined by A, ., (0) =
sup{hm x(0) : k < w} and (o5 = ((n,e,8) = sup{@’;ﬁﬁ : k < w}. Now for
each (n,e,8) € W we have k < w = A i [ 0y <u,. 5 ,’,“767574(7776,[3)) < B g1 |
a,,.. By the choice of f, . s as Jy ¢ g is Ni-complete it follows that hy, . [ ay =

IneBiines mod Jy.c g
Let

A, =:{ca’: for some a € A,,cf(a) € a,, and o
is the hy, . (cf(a))-th member of e, }.

gn(i) is o when o is the Ay, o (cf(gm (7))-th member of
€g,. (i) and zero otherwise.

The main point is why o, € (g, k) exists.
To finish the induction step on n, let

Byep = Rang(fme,n,én,g,a)

B7l7,a =By .pU{eqa:a€ By and cf(a) < pieny}

and we choose (B, : p € J,,p | m € B = n to list them enumerates {B,, . 3 :
g, B} are such that (n,e,8) € W, U{B, .} in a way consistent with the induction
hypothesis.

Having carried the induction on n, note that

@1 for some n,u, = {i < k: f*(i) = gn(i)} € [K]"

We now choose by induction on m < n a sequence 7, € 7, such that gy =<>
,m=4L+1=n,<an, and S, Nu, € [k]*. For m =n by

®(x) v =uns,, €[xk]” and Rang(f* Nu') C B, € & so we are done.
(]

Discussion 3.16. 1) Can we consider “c([u]*,2) < pu*”? We should look again
at §2.

2) More hopeful is to replace U jpa (1t) by Unon-stationary,, (14)-

3) By 3.11 and ?? we should have the prd version (for which J and closure, see
[She93b].
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