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Abstract

We prove that every a.e.c. with LST number 6 κ and vocabulary τ of
cardinality 6 κ can be defined in the logic Li2(κ)+++,κ+(τ). In this logic an
a.e.c. is therefore an EC class rather than merely a PC class. This constitutes
a major improvement on the level of definability previously given by the
Presentation Theorem. As part of our proof, we define the canonical tree
S = SK of an a.e.c. K. This turns out to be an interesting combinatorial
object of the class, beyond the aim of our theorem. Furthermore, we study
a connection between the sentences defining an a.e.c. and the relatively new
infinitary logic L1λ.

Introduction
Given an abstract elementary class (a.e.c.) K, in vocabulary τ of size 6 κ =
LST(K), we do two main things:

• We provide an infinitary sentence in the same vocabulary τ of the a.e.c.
that axiomatizes K.

• We also provide a version of the “Tarski-Vaught-criterion,” adapted to
a.e.c.’s: whenM1 ⊆M2, forM1,M2 ∈ K, we will provide necessary
and sufficient syntactic conditions forM1 ≺K M2. These will depend
on a certain sentence holding only inM2.

Furthermore, on the way and as part of the proofs of the two main results,
we build a “canonical tree” for an a.e.c. K. This will be a well-founded tree
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of models in K, all of them of cardinality equal to LST(K) and will play
a role generalizing in a rather striking way the role Scott models played for
Lω1,ω, but now for arbitrary a.e.c.’s. Finally, we connect our sentences with
sentences in logics close to the first author’s logic L1κ and other logics similar
to L1κ.

The Presentation Theorem [5] is central to the development of stability
for abstract elementary classes: notably, it enables Ehrenfeucht-Mostowski
techniques for classes that have large enough models. This has as an almost
immediate consequence stability below a categoricity cardinal and opens
the possibility of a relatively advanced classification/stability theory in that
wider setting.

The Presentation Theorem had provided a way to capture an a.e.c. as a
PC-class: by expanding its vocabulary with infinitely many function sym-
bols, an a.e.c. may be axiomatized by an infinitary formula. Although for
the stability-theoretical applications mentioned this expansion is quite use-
ful, the question as to whether it is possible to axiomatize an a.e.c. with an
infinitary sentence in the same vocabulary of the a.e.c. is natural. Here we
provide a positive solution: given an a.e.c K we provide an infinitary sen-
tence in the same original vocabulary ϕK whose models are exactly those in
K. Therefore, unlike the situation in the Presentation Theorem, here the
class turns out to be an EC Class, not a PC class.

The main idea is that a “canonical tree of models”, each of size the LST-
number of the class, the tree of height ω ends up providing enough tools;
the sentence essentially describes all possible maps from elements of this
tree into arbitrary potential models in the class. A combinatorial device (a
partition theorem theorem on well-founded trees due to Komjath and the
first author [3]) is necessary for our proof.

The two main theorems:

Theorem (Theorem 2.1). (Axiomatization of an a.e.c. in τ by an infinitary
sentence in τ.) Let K be an a.e.c. in vocabulary τ of size 6 LST(K) and let
λ = i2(κ)

++, where κ = LST(K). Then there is a sentence ψK in the logic
Lλ+,κ+(τ) such thatK =Mod(ψK).

Theorem (From Theorem 3.1, the main point). (Syntactic Tarski-Vaught-
like criterion for≺K-elementarity.) IfM1 ⊆M2 are τ = τK-structures, then
the following are equivalent:

• M1 ≺K M2

• if ā ∈ κ>(M1) then there exist a tuple b̄, a τ-structure N and a map f
such that
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1. b̄ ∈ κ>(M1) and N ∈ S1 (level 1 of the canonical tree of the class;
see page 3)

2. Rang(ā) ⊆ Rang(b̄)
3. f is an isomorphism fromN ontoM1 � Rang(b̄)
4. M2 |= ϕN,λ+1,1[〈f(a∗α) | α < κ)〉].

The second part of the previous theorem, the characterization of being
≺K-elementary, amounts to the following: for every tuple inM1, the model
M2 satisfies a formula describing the fact that the tuple may be covered by
another tuple that has the “eventual tree extendibility” property described
by a formula we will call ϕN,λ+1,1 in the next section.

We wish to thank Xavier Caicedo, Mirna Džamonja, Juliette Kennedy
and Jouko Väänänen for useful comments and remarks on earlier versions
of this paper.

1 Canonical trees and sentences for a.e.c.’s
Fix K for the remainder of this paper an a.e.c. with vocabulary τ = τ(K)
and LST(K) = κ > |τ|. Let λ be the cardinal i2(κ)

++. Without loss of
generality we may assume that all models in K are of cardinality > κ. Fur-
thermore, we will use for the sake of convenience an “empty model” called
Mempt with the property thatMempt ≺K M for allM ∈ K.

1.1 The canonical tree of an a.e.c.
We now build a canonical object for our abstract elementary class K, S =
SK. This will be a tree withω-many levels, consisting of models inK of size
κ, organized in a way we now describe. To prove our results, we will use the
tree SK to “test” membership in K and “depths” of possible extensions.

Notation 1.1. We fix the following notation for the rest of this paper.

• We first fix a sequence of (different) elements (a∗α | α < κ · ω) in some
model inK.

• x̄n := 〈xα | α < κ · n〉,
• x̄=n := 〈xα | α ∈ {κ · n+ ζ | ζ < κ}〉.

We now define the canonical tree of K:

• Sn :=
{
M ∈ K | M has universe (a∗α)α<κ·n and m < n implies

M � (a∗α)α<κ·m ≺K M
}
,
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• S = SK :=
⋃
n<ω Sn; this is a tree with ω levels under ≺K (equiva-

lenty under ⊆, by our definition of each level).

We use this tree in our proof to test properties of the class K. The key
point about SK is that it contains information not just on models in the class
of cardinality κ = LST(K) but more importantly on the way they embed
into one another.

1.2 Formulas and sentences attached to K

We now define by induction on γ < λ+ formulas

ϕM,γ,n(x̄n),

for every n andM ∈ Sn (when n = 0 we may omitM).

Case 1 : γ = 0
If n = 0 then the formula ϕ0,0 is > (the sentence denoting “truth”).
Assume n > 0. Then

ϕM,0,n(x̄n) :=
∧

Diagnκ (M),

where Diagnκ (M) is the set
{
ϕ(xα0 , . . . , xαk−1) | α0, . . . ,αk−1 < κ ·n,

ϕ(y0, . . . ,yk−1) is an atomic or a negation of an atomic formula and
M |= ϕ(a∗α0

, . . . ,a∗αk−1
)
}
.

Case 2 : γ a limit ordinal
Then

ϕM,γ,n(x̄n) :=
∧
β<γ

ϕM,β,n(x̄n).

Case 3 : γ = β+ 1
Let ϕM,γ,n(x̄n) be the formula

∀z̄[κ]
∨

N�KM
N∈Sn+1

∃x̄=n

ϕN,β,n+1(x̄n+1)∧
∧
α<κ

∨
δ<κ·(n+1)

zα = xδ


Note: all the formulas constructed belong to Lλ+,κ+(τ). When n = 0

our formulas are really sentences ϕγ,0, for γ < λ+. These sentences may be
understood as “external approximations” to the a.e.c. K. Our first aim is to
prove how these approximations end up characterizing the a.e.c. K.
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2 CharacterizingK by its canonical sentence
In this section we prove the first main theorem:

Theorem 2.1. There is a sentence ψK in the logic Lλ+,κ+(τ) such that K =
Mod(ψK).

Our first aim in this section is to prove that every modelM ∈ K satisfies
ϕγ,0, for all γ < λ+.

In order to achieve this, we prove the following (more elaborate) state-
ment, by induction on γ.

Claim 2.2. Given γ < λ+, M ∈ K, n < ω, N ∈ Sn, f : N → M a
≺K-embedding (if n = 0, f is empty) thenM |= ϕN,γ,n[〈f(a∗α | α < κ · n)〉].

Before starting the proof, notice that in the statement of the Claim, when
n = 0, we have that f is empty andϕγ,0 is a sentence. Notice also as γ grows,
the sentences ϕγ,0 capture ever more involved properties of the modelM.
Thus, when γ = 0, ϕ0,0 holds trivially; for γ = 1, M |= ϕ1,0 means M
satisfies ∀z̄[κ]

∨
N�KMempt
N∈S1

∃x̄=1 [ϕN,0,1(x̄1)∧
∧
α<κ

∨
δ<κ·1 zα = xδ]. This

means that given any subset Z ⊆M of size at most κ, there is someN ∈ S1,
the first level of the canonical tree, such that the image of N under some
embedding f : N → M, f(X), covers X. In short, this amounts to saying
thatM is densely covered by images of models in K of size κ.

When γ = 2, we know a bit more: parsing the sentence, M |= ϕ2,0
means that inM,

∀z̄[κ]
∨

N�KMempt
N∈S1

∃x̄=1

[
ϕN,1,1(x̄1)∧

∧
α<κ

∨
δ<κ·1

zα = xδ

]
.

Parsing again, this means that

∀z̄[κ]
∨

N�KMempt
N∈S1

∃x̄=1

∀z̄ ′[κ] ∨
N ′�KN
N ′∈S2

∃x̄=2ϕN ′,0,2(x̄2)∧
∧
α<κ

∨
δ<κ·2

z ′α = xδ

∧
∧
α<κ

∨
δ<κ·2

zα = xδ

]
.

What this long formula says is that given any subset Z ⊆ M there is
some N in level 1 of the tree SK and a map from N intoM with image X1
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covering Z such that. . . for every subset Z ′ ⊆M some≺K-extension ofN in
level 2 of the tree embeds intoM, extending the original map, and covering
also Z ′.
Proof Let first γ = 0. Then we have either n = 0 in which case trivially
M |= ϕ0,0(= >) or n > 0. In the latter case ϕN,0,n :=

∧
Diagnκ (N); if

f : N → M is a ≺K-embedding,M satisfies this sentence as it satisfies each
of the formulas ϕ(y0, . . .yk−1) satisfied in N by the images of the ≺K-map
f.
The case γ limit ordinal is an immediate consequence of the induction hy-
pothesis.
Let now γ = β + 1 and assume that for everyM ∈ K, n < ω, N ∈ Sn, if
f : N→M is a ≺K-embedding thenM |= ϕN,β,n[〈f(a∗α | α < κ · n)〉].

Now, fixM ∈ K, n < ω, N ∈ Sn and f : N→M a K-embedding. We
want to check thatM |= ϕN,γ,n[〈f(a∗α) | α < κ · n〉], i.e. we need to verify
that

M |= ∀z̄[κ]
∨

N ′�KN
N ′∈Sn+1

∃x̄=n
[
ϕN ′,β,n+1(x̄n

_x̄=n)∧
∧
α<κ

∨
δ<κ·(n+1)

zα = xδ

]

when x̄n is replaced inM by 〈f(a∗α) | α < κ · n〉.
So let c̄[κ] ∈ M. By the LST axiom, there is some M ′ ≺K M con-

taining both c̄[κ] and 〈f(a∗α) | α < κ · n〉, with |M ′| = κ. By the iso-
morphism axioms there is N ′ �K N, N ′ ∈ Sn+1, isomorphic to M ′
through an isomorphism f ′ extending f. We may now apply the induction
hypothesis to N ′, f ′: since f ′ : N ′ → M is a ≺K-embedding, we have that
M |= ϕN ′,β,n+1[〈a∗α | α < κ · (n+1)〉]. But this enables us to conclude: N ′
is a witness for the disjunction on models ≺K-extendingN, and the existen-
tial ∃x̄=n is witnessed by 〈a∗α | α ∈ [κ · n, κ · (n+ 1))〉. As the originalM ′
had been chosen to include the sequence c̄[κ], the last part of the formula
holds. �Claim 2.2

Now we come to the main point:
Claim 2.3. IfM is a τ-model andM |= ϕλ+1,0 thenM ∈ K.
Proof The plan of this proof is as follows: we build G a set of substruc-
tures ofM of cardinality κ, each of them isomorphic to a model in S1 and
such that M |= ϕN,λ,1(. . . ) of the elements of the substructure; we prove
that G is cofinal inM (using the fact thatM |= ϕλ+1,0) and a directed set.
We also prove that for elements of G being a submodel implies being a ≺K-
submodel (this is the longest part of the proof, and requires a delicate com-
binatorial argument). We conclude that M ∈ K, as it then ends up being
the direct limit of the ≺K-directed system G.
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Let G := {N∗ ⊆M | N∗ has cardinality κ and for some N ∈ S1 there is
a bijective f : N→ N∗ such that M |= ϕN,λ,1[〈f(a∗α) | α < κ〉]}. In particu-
lar, such f’s are isomorphisms from N to N∗.

We prove first

N∗1 ⊆ N∗2 (N∗` ∈ G) then N∗1 ≺K N∗2 . (1)

Fix N∗1 ⊆ N∗2 , both in G. Choose (N`η, f`η) for ` = 1, 2 and η ∈ ds(λ) :=
{ν | ν a decreasing sequence of ordinals < λ} by induction on `g(η) such
that

1. N`η ∈ S`g(η)+1

2. f`η embeds N`η intoM: f`η(N`η) ⊆M

3. M |= ϕN`η,last(η),`g(η)+1[〈f`η(a∗α | α < κ · (`g(η) + 1))〉] where
last(〈〉) = λ, last(ν_〈α〉) = α

4. if ν / η then N`ν ≺K N`η and f`ν ⊆ f`η
5. f`〈〉(N

`
〈〉) = N

∗
`

6. f1η(N1
η) ⊆ f2η(N2

η) and ν / η⇒ f2ν(N
2
ν) ⊆ f1η(N1

η).

The induction: if `g(η) = 0 let f`η = f`〈〉 be a one-to-one function from
〈a∗α | α < κ〉 onto N∗` ; as ‖N∗`‖ = κ there is a model N`η with universe
〈a∗α | α < κ〉 such that f`η is an isomorphism from N`η onto N∗` . Since
last(〈〉) = λ and by definition of G we haveM |= ϕN`〈〉,λ,1

[f`〈〉(a
∗
α) | α < κ],

this choice satisfies the relevant clauses (1, 2, 3, 5 and the first part of 6).
If `g(η) = n = m + 1 we first choose (f1η,N1

η). From the inductive
definition of ϕN1

η�m,last(η�m),m
with z̄[κ] an enumeration of 〈f2η�m(a∗α) | α <

κ ·m〉, the sequence x̄=n gives us the map f1η, with domain N1
η (a witness

of the disjunction in the formula), and N1
η ⊇ N2

η�m. (While doing this, we
make sure the new function f1η ⊇ f1η�m.)

Now to choose (f2η,N2
η)we use a symmetric argument and the inductive

definition of ϕN2
η�m,last(η�m),m

with z̄[κ] enumerating 〈f1η�n(a∗α) | α < κ · n〉;
as before, the sequence x̄=n gives us the map f2η, with domain N2

η. Again
we make sure f2η ⊇ f2η�m.

In both construction steps the model obtained is a ≺K-extension, since
it is given by the disjunction inside the formula ϕN`

η�m,last(η�m),m
.

This finishes the inductive construction of the well-founded tree of mod-
els and functions (N`η, f`η)η∈ds(λ).

Let us now check why having carried the induction suffices.
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We apply a partition theorem on well founded trees due to Komjath
and the first author [3]. In [2], Gruenhut and the first author provide the
following useful form.

Theorem 2.4 (Komjath-Shelah, [3]). Let α be an ordinal and µ a cardinal.
Set ν =

(
|α|µ

ℵ0
)+

and let F(ds(ν+)) → µ be a colouring of the tree of finite
descending sequences of ordinals < λ. Then there is an embedding ϕ : ds(α)→
ds(ν) and a function c : ω→ µ such that for every η ∈ ds(α) of length n+ 1

F(ϕ(η)) = c(n).

In our case, the number of colorsµ is κ|τ|+κ = 2κ. So, the corresponding

ν is
(
|α|µ

ℵ0
)+

=
(
|α|(2

κ)ℵ0
)+

=
(
|α|2

κ)+
= i2(κ)

+ and ν+ = λ. Our
coloring (given by the choice of the models N`η and maps f`η for η ∈ ds(λ))
is therefore a mapping

F : ds(λ)→ µ

and the partition theorem provides a sequence (ηn)n<ω, ηn ∈ ds(α) such
that:

k 6 m 6 n, ` ∈ {1, 2}⇒ N`ηm�k = N`ηn�k.

We therefore obtain (N`k,g
`
k,n)k6n such that

• N1
k ⊆ N2

k ⊆ N1
k+1 and

• g`k,n is an isomorphism from N`k onto N`ηn�k.

Hence N`n ≺K N`n+1 and so 〈N`n | n < ω〉 is ≺K-increasing. Let
N` :=

⋃
nN

`
n. Then clearly N1 = N2; call this model N. Since we then

have N1
n ≺K N, N2

n ≺K N and N1
n ⊆ N2

n by the coherence axiom for
a.e.c.’s we have that N1

n ≺K N2
n. In particular, when n = 0 we get that

N∗1 ≺K N∗2 .
Finally, we also have that

G is cofinal in [M]6κ, (2)

asM |= ϕλ+1,0 and the definition of the sentence ϕλ,0 says that every Z ⊆
M can be covered by some N∗ of cardinality κ isomorphic to some N ∈ S1
such thatM |= ϕN,λ,1(〈f(a∗α) | α < κ〉). . . but this means N∗ ∈ G. Also, G
is a directed system.
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Finally, putting together (1) and (2), we conclude that every τ-modelM
such thatM |= ϕλ+1,0 must be in the class:M =

⋃
G, and G is a≺K-directed

system. Since K is an a.e.c, the limit of this ≺K-directed system must be an
element of K, thereforeM ∈ K. �Lemma 2.3

Lastly, we complete the proof of Theorem 2.1: Claims 2.2 and 2.3 pro-
vide the definability in the class, as clearly ϕγ,0 ∈ Lλ+,κ+(τK).

�Theorem 2.1

3 Strong embeddings and definability
We now focus on the relation ≺K of our a.e.c. K: we characterize it in
Lλ+,κ+ . We prove a syntactic criterion for being a ≺K-substructure (given
that we already have thatM1 ⊆M2) in terms of satisfiability inM2 of certain
formulas on tuples fromM1. This may be regarded as a very strong analog
of a “Tarski-Vaught” criterion for a.e.c.’s.

It is worth mentioning we will continue using in a crucial way both the
canonical tree SK of our a.e.c., and the partition theorem on well-founded
trees.

Theorem 3.1. Let K be an a.e.c., τ = τ(K) 6 κ = LST(K), λ = i2(κ)
++.

Then, given τ-modelsM1 ⊆M2, the following are equivalent:

(A) M1 ≺K M2

(B) if ā` ∈ κ>(M`) for ` = 1, 2 and γ < λ then there are b̄`, N` and f` for
` = 1, 2 such that:
for ` = 1, 2,

(a) b̄` ∈ κ>(M`) andN` ∈ S`

(b) Rang(ā`) ⊆ Rang(b̄`)
(c) f` is an isomorphism fromN` ontoM` � Rang(b̄`)
(d) Rang(b̄1) ⊆ Rang(b̄2)
(e) N1 ⊆ N2

(f) M` |= ϕN`,γ,`[〈f`(a∗α) | α < κ · `〉].
(C) if ā ∈ κ>(M1) then there are b̄,N and f such that

(a) b̄ ∈ κ>(M1) andN ∈ S1

(b) Rang(ā) ⊆ Rang(b̄)
(c) f is an isomorphism fromN ontoM1 � Rang(b̄)
(d) M2 |= ϕN,λ+1,1[〈f(a∗α) | α < κ)〉].
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Proof (A)⇒ (B): Let ā` ∈ κ>(M`) for ` = 1, 2 and let γ < λ. Choose
first N∗1 ≺K M1 of cardinality 6 κ including Rang(ā1) and next, choose
N∗2 ≺K M2 including N∗1 ∪ ā2, of cardinality κ. Let b̄` enumerate N∗` and
let (N1, f1,N2, f2) be such that

1. N1 ∈ S1, N2 ∈ S2, N1 ⊆ N2 and

2. f` is an isomorphism from N` onto N∗` for ` = 1, 2.

This is possible: sinceM1 ≺K M2 and N∗` ≺K M` for ` = 1, 2, we also
have that N∗1 ≺K N∗2 . Therefore there are corresponding models N1 ⊆ N2
in the canonical tree, at levels 1 and 2 (as these must satisfy N1 ≺K N2).

We then have that f` : N` → M` is a K-embedding from elements N1
and N2 in the canonical tree S. By Claim 2.2, we may conclude that

M1 |= ϕN1,γ,1[〈f(a
∗
α) | α < κ〉]

and
M2 |= ϕN2,γ,2[〈f(a

∗
α) | α < κ · 2〉],

for each γ < λ.
(B)⇒ (C): let ā ∈ κ>(M1). We need b̄, N ∈ S1 and f : N→M1 � Rang(b̄)
such that

M2 |= ϕN,λ+1,1[〈f(a∗α | α < κ)〉]. (3)

(B) provides a model N = N1 ∈ S1 and elements b̄ = b̄1, as well as an
isomorphism f : N→ Rang(b̄). We now check that (B) also implies 3.

Recall the definition of ϕN,λ+1,1 (as applied to [〈f(a∗α | α < κ)〉]).
This formula holds inM2 if for every c̄[κ] (of size κ) inM2, for some ≺K-
extension N ′ of N in S2 we have that

M2 |= ∃x̄=2ϕN ′,λ,2[〈f(a∗α | α < κ)〉_x̄=2] (4)

and the elements c̄[κ] are “covered” by the list of elements (of length κ · 2)
〈f(a∗α | α < κ)〉_x̄=2. But the remaining part of clause (B) provides just this:
there is someN ′ = N2 ∈ S2, extendingN = N1 such that for eachγ < λ, and
an isomorphism f ′ from N ′ into some ≺K-submodel N∗ ofM2 containing
Rang(c̄[κ]) such thatM2 |= ϕN ′,γ,2[〈f ′(a∗α | α < κ×2)〉]. The submodelN ′
witnesses the disjunction on models and 〈f ′(a∗α) | α ∈ [κ, κ · 2)〉 witnesses
the existential x̄=2.
(C )⇒ (A): assuming (C) means that for every κ-tuple ā fromM1 there are a
modelN ∈ S1, a κ-tuple b̄ fromM1 containing ā and an isomorphism from
N ontoM1 � Rang(b̄) such that

M2 |= ϕN,λ+1,1[〈f(a∗α) | α < κ〉].
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This means that for each c̄ included in M2 (of length κ) there are some
extension N ′ of N with N ′ ∈ S2 and some d̄ included inM2, of length κ,
such that

M2 |= ϕN ′,λ,2[〈f(a∗α) | α < κ〉_d̄]

and such that Rang(c̄) ⊆ Rang([〈f(a∗α)〉]_d̄]).
Consider first the family

G1 :=
{
N∗1 ⊆M1 | ∃N1 ∈ S1∃f : N1

≈→ N∗1
[
M2 |= ϕN1,λ+1,1(f(a

∗
α)α<κ)

]}
;

by part (d) of the hypothesis G1 is a directed family, cofinal inM1.
Now fix N∗1 ∈ G1 and let

GN∗1 ,2 :=
{
N∗2 ⊆M2 | N

∗
1 ≺K N∗2 and

∃N2 ∈ S2∃f2 : N2
≈→ N∗2

[
M2 |= ϕN2,λ,2(f2(a

∗
α)α<κ·2)

]}
.

Now build a tree of models as in the proof of Claim 2.3 inside SK, indexed
by ds(λ), and use the partition theorem on well-founded trees to conclude
that

N∗2,1 ⊆ N∗2,2,N∗2,` ∈ GN∗1 ,2(` = 1, 2)⇒ N∗2,1 ≺K N∗2,2. (5)

Now, one of the consequences of M2 |= ϕN1,λ+1,1(f(a
∗
α)α<κ) (for the

model N1 in S1 corresponding to N∗1 and for the map f) is precisely that
GN∗1 ,2 is cofinal inM2 and a directed family,≺K-directed also, by (5). There-
fore, by the union axiom of a.e.c.’s we may conclude thatN∗2 ≺K M2; since
we also had N∗1 ≺K N∗2 , we have that N∗1 ≺K M2.

SinceN∗1 was an arbitrary member of G1, we may conclude that all mem-
bers of G1 are≺K-elementary inM2. By another application of the partition
relation, the family G1 also has the property thatM∗1,1 ⊆ M∗1,2 in the fam-
ily implies M∗1,1 ≺K M∗1,2. So, applying again the union axiom, we may
conclude thatM1 =

⋃
G1 ≺K M2.

�Theorem 3.1
The previous criterion forM1 ≺K M2, givenM1 ⊆ M2, is admittedly

quite sophisticated compared with the classical Tarski-Vaught criterion for
elementarity in first order logic. There are, however, some interesting par-
allels.

• In part (C) of our criterion, we only evaluate the formula at the “large
model” M2. This is one of the crucial aspects of the Tarski-Vaught
criterion, as it allows construction “from below” of elementary sub-
models.
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• The aspect of our criterion that is definitely less within reach is a ver-
sion of “capturing existential formulas”. We are in a sense exactly do-
ing that but in the more complex world of a.e.c.’s. Satisfying a formula
of the form ϕN,λ+1,1(. . . ) at a subset of elements of the small model
M1, when parsing the formula, in a way reflects the possibility of be-
ing able to realize, according toM2, all “possible extensions” of small
models, reflecting them correctly to M1. The partition relation on
well-founded trees of course ends up being the key in our case.

4 Around the logic of an a.e.c.
The logic usually called L1κ from Shelah’s paper [6] satisfies Interpolation and
a weak form of compactness: strong undefinability of well-order. Further-
more, it satisfies a Lindström-like maximality theorem for these properties
(as well as union of ω-chains of models). The logic L1κ, however, lacks a
well-defined syntax. Väänänen and Villaveces [7] have produced a logic with
a clearly defined (and relatively symple) syntax, whose ∆-closure (a notion
appearing first in [4]) is L1κ, and which satisfies several of the good properties
of that logic (of course, strong undefinability of well-order but also closure
under unions of chains). Also, Dzamonja and Väänänen have linked chain
logic [1] to L1κ.

All of these logics are close to our constructions in this paper: the sen-
tenceϕλ+1,0 belongs toLλ+,κ+ and L1µ lies in between two logics of the form
Lµ,ℵ0 and Lµ,µ. Our sentenceϕλ+1,0 belongs to L1µ. However, it is not clear
if this is the minimal logic for which this is the case.

The question of which is the minimal logic capturing an a.e.c. remains
still partially open. Our theorems in this article provide a substantial ad-
vance in this direction.
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