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Abstract. We prove that, consistently with ZFC, no ultraproduct of
countably infinite (or separable metric, non-compact) structures is iso-
morphic to a reduced product of countable (or separable metric) struc-
tures associated to the Fréchet filter. Since such structures are countably
saturated, the Continuum Hypothesis implies that they are isomorphic
when elementarily equivalent.

The trivializing effect of the Continuum Hypothesis (CH) to the struc-
ture of the continuum has been known at least since the times of Sierpiński
and Gödel ([19]). The particular instance of this phenomenon that we are
concerned with in the present paper is the existence of highly non-canonical
isomorphisms between massive quotient structures of cardinality c = 2ℵ0 .
The operation of taking a reduced product

!
F An of a sequence (An) of

first-order structures often results in a countably saturated structure.1 This
is the case with the two most commonly used reduced products: ultra-
products associated with nonprincipal ultrafilters on N and reduced prod-
ucts associated with the Fréchet filter. If each An has the cardinality of at
most c, then so does

!
F An, and the CH implies that the latter structure

is saturated. By a classical theorem of Keisler, elementarily equivalent and
saturated first-order structures of the same cardinality are isomorphic (see
[5, Theorem 5.1.13]). Therefore the isomorphism of such reduced products
reduces (no pun intended) to elementary equivalence.

In [11], this observation was combined with computation of the theory of
the structure (K denotes the Cantor space)

(1) C(K,A) = {f : K → A | f is continuous}
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2 ILIJAS FARAH AND SAHARON SHELAH

for a separable (or countable discrete) structure A to prove that, assuming
CH we have2

(2)
!

U C(K,A) ∼=
!

FinA

for any nonprincipal ultrafilter U on N ([11, Corollary 3.7]). This result
is the basis for [11, Theorem A], asserting that under CH there exists an
ultrafilter U on N such that the quotient map from

!
FinA to

!
U A has a

right inverse for every countable (or separable metric) structure A. In the
case when A is a C∗-algebra, this significantly simplifies some intricate argu-
ments in Elliott’s classification program for nuclear, separable C∗-algebras
(see the upcoming [4], also [40] and [28] for related applications of ultrapow-
ers). Although the assumption of CH can be removed from the applications
of (2) to the Elliott classification programme ([11, Theorem D]), the question
whether (2) can be proved in ZFC remained.

A well-known instance of this trivializing effect of CH is Parovičenko’s
theorem from general topology. Stated in the dual, Boolean-algebraic, form,
it asserts that CH implies that all atomless, countably saturated, Boolean
algebras of cardinality c are isomorphic. In [38] it was proved that the
conclusion of Parovičenko’s theorem is equivalent to CH. An alternative
proof of this fact is given by the main result of [16] (or by [23]), asserting
that if CH fails then there are 2c nonisomorphic ultrapowers of the countable
atomless Boolean algebra associated with nonprincipal ultrafilters on N, and
clearly at most one of them can be isomorphic to P(N)/Fin. The following
two results show that none of them is isomorphic to P(N)/Fin in two of the
most popular models of ZFC: assuming forcing axioms and in the original
Cohen’s model of ZFC in which CH fails.

Theorem A. The Proper Forcing Axiom, PFA, implies that P(N)/Fin
is not isomorphic to an ultraproduct of Boolean algebras associated with a
nonprincipal ultrafilter on N.

Theorem B. In a model obtained by adding at least c+ Cohen reals to a
model of ZFC the following holds. If B is a Boolean algebra definable from
a real then B is not isomorphic to an ultraproduct of countable Boolean
algebras associated with a nonprincipal ultrafilter on N.

In particular, for any analytic ideal I on N, the quotient P(N)/I is not
isomorphic to an ultraproduct of countable Boolean algebras associated with
a nonprincipal ultrafilter on N.

Our other main result applies to a more general range of structures. For
the order property (OP) and the robust order property see Definition 1.1.
Any theory in which the order property is witnessed by an atomic formula
has the robust order property.

2In [11],
!

Fin A was denoted A∞ and
!

U A was denoted AU , following the notation
favoured by operator-algebraists. In the present paper we adopt the notation favoured by
logicians.
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BETWEEN REDUCED POWERS AND ULTRAPOWERS, II. 3

Theorem C. There exists a forcing extension in which for every countable
theory T that has the robust order property the following holds.

For every sequence (An) of countable models of T , every sequence (Bn)
of countable structures in the language of T , and every ultrafilter U on N,
the following are true.

(1) The ultraproduct
!

U Bn is not isomorphic to
!

FinAn.
(2) The ultraproduct

!
U Bn is not isomorphic to an elementary sub-

model of
!

FinAn.
(3) If the order property of T is witnessed by a quantifier-free formula

and each Bn is a model of the theory of
!

FinAn then
!

U Bn does
not embed into

!
FinAn.

Since the original impetus for these results drew from the Elliott classifica-
tion program of C∗-algebras, we’ll explicitly state the relevant corollary. If A
is a C∗-algebra, then the structure C(K,A) as in (1) is isomorphic to the ten-
sor product A⊗C(K). By [11, Corollary 3.7], for a separable C∗-algebra A
and a nonprincipal ultrafilter U on N, the ultrapower (A ⊗ C(K))U is iso-
morphic to A∞ := ℓ∞(A)/c0(A), and the isomorphism extends the identity
on A (A is routinely identified with its diagonal copies in AU and A∞).

Corollary D. There exists a forcing extension in which the following holds
for every separable C∗-algebra A and every ultrafilter U on N.

(1) (A⊗ C(K))U is not isomorphic to A∞.
(2) (A ⊗ C(K))U is not isomorphic to a C∗-subalgebra of B∞ for any

separable C∗-algebra B.

The related conclusion, that C(K)U is not isomorphic to a C∗-subalgebra
of ℓ∞/c0, is known to be relatively consistent with ZFC and its variant
(known as Woodin’s condition) plays an important role in Woodin’s proof
of automatic continuity for homomorphisms of Banach algebras ([6]).

Our proofs use model theory (§1, §6) and set theory (§2, §3). In §1 we
discuss the order property (OP) of first-order theories, discrete and contin-
uous. Several lemmas about the so-called depletions of partial orderings
are proved in §2. In §3 we define a functor E $→ HE from the category of
partial orderings into the category of forcing notions. The material from §2
is used to prove that the forcing HE embeds E into the reduced product!

n∈N(n,<) (n is identified with {0, . . . , n−1}) in a particularly gentle way.
Theorem C and Corollary D are proved in §4, while Theorem A and The-
orem B are proved in §5. In §6 we make remarks about the existence of a
universal model among the ultrapowers of countable models of T associated
with ultrafilters on N. Some concluding remarks and questions can be found
in §7.

Acknowledgments. I.F. would like to thank Alan Dow for pointing our
attention to [38].
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4 ILIJAS FARAH AND SAHARON SHELAH

1. Reduced products, the order property, continuous logic

In this section we recall the pertinent definitions and establish the nota-
tion ⊳ϕ. It should be emphasized that the first-order theory T is not assumed
to be complete.

1.1. Reduced products. We will use the following convention. Suppose
that An are structures of the same countable language, ān is a tuple in An

for all n ∈ N, and all of these tuples are of the same sort. Then ā denotes
the element (ān) of

!
nAn.

If F is a filter on N and An, for n ∈ N, are structures of the same
language L, then the reduced product

!
F An is defined as follows. Its

domain is the quotient of
!

nAn over the relation ā ∼F b̄ if {n|an = bn} ∈ F .
The function symbols in L are interpreted in the natural way (note that ∼F
is a congruence). If k ≥ 1 and R(x(0), . . . , x(k−1)) is a k-ary relation symbol
and ā(0), . . . , ā(k−1) is a k-tuple, then we let

!
F An |= R(ā(0), . . . , ā(k−1))

if and only if the set

{n|An |= R(an(0), . . . , an(k − 1))}

belongs to F .
The image of ā in the reduced product

!
F An under the quotient map is

also denoted ā, by a standard and innocuous abuse of notation.
If F is the Fréchet filter (i.e., the filter of cofinite subsets of N), then!
F An is denoted

!
FinAn. (This is yet another standard and innocuous

abuse of notation; Fin denotes the ideal dual to the Fréchet filter, and the
reduced products are sometimes defined with respect to the dual ideals.) If U
is an ultrafilter (i.e., a proper filter maximal with respect to the inclusion),
then

!
U An is called ultraproduct.

When all structures An are equal to some A, the corresponding reduced
products (ultraproducts) are called reduced powers (ultrapowers).

1.2. The order properties. This combinatorial property of a first-order
theory marks the watershed between well-behaved and wild (see [30]).

Definition 1.1. Suppose that T is a first-order theory.

(1) If ϕ(x̄, ȳ) is an asymmetric formula (with x̄ and ȳ of the same sort)
in the language of T consider the asymmetric binary relation ⊳ϕ on
a model A of T , defined by ā ⊳ϕ b̄ if A |= ϕ(ā, b̄).

Some āj , for j < n, in A form a ⊳ϕ-chain if for all i ∕= j we have
āi ⊳ϕ āj if and only if i < j.

(2) If every model of T has an arbitrarily long finite ⊳ϕ-chain, we say
that the pair (T,ϕ) has the order property, OP ([30]).3

(3) The pair (T,ϕ) has the robust order property if it has the order
property and in addition for models An, for n ∈ N, of T and ā and b̄

3One says that ϕ has the order property when T is clear from the context.
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BETWEEN REDUCED POWERS AND ULTRAPOWERS, II. 5

in
!

F An we have
!

FinAn |= ϕ(ā, b̄) if and only if

{n | An ∕|= ϕ(ān, b̄n)}
is finite. (Note that it is not required that

!
FinAn models T .)

(4) The pair (T,ϕ) is said to have the strict order property (SOP) if the
relation ⊳ϕ is a partial ordering on every model of T .

The relation between the order property and the robust order depends
on the analysis of the relation between the theories of An and the theory
of

!
FinAn, as given by the Feferman–Vaught theorem ([17] and [18] for

continuous logic, also see [10, §16.3]). We will need only the following easy
case.

Lemma 1.2. If a pair (T,ϕ) has the order property and ϕ(x̄, ȳ) is atomic,
or a conjunction of atomic formulas, then the pair (T,ϕ) has the robust
order property.

Proof. Fix models An |= T for n ∈ N and suppose ϕ is a conjunction of
atomic formulas. If ān and b̄n are tuples of the appropriate sort in An such
that An |= ϕ(ān, b̄n), then (writing ā for the element of the product that
has the representing sequence (ān)), we have

!
nAn |= ϕ(ā, b̄) and moreover

for any filter F on N we have
!

F An |= ϕ(ā, b̄). The assertion follows
immediately. □

1.3. Continuous logic. For more details on continuous logic see [2] and [12]
for operator algebras, also [10, §16]. That said, this subsection is targeted
at the readers already familiar with the continuous logic and its aim is to
convince these readers that the proofs of the continuous versions of our main
results are analogous to the proofs in the discrete case.

The reduced product
!

F An of metric structures of the same language is
defined analogously to the discrete case. See e.g., [2, §5] (for ultraproducts)
and [10, §16.2 and §D.2.5] for the general case.

The value of a formula ϕ(x̄) evaluated in a model M , at a tuple ā of
the appropriate sort, is denoted ϕ(ā)M and defined by recursion on the
complexity of ϕ. In particular, if ϕ(x̄, ȳ) is a formula (with x̄ and ȳ of the
same sort) then the binary relation ⊳ϕ on a model A of T is defined by
ā⊳ϕ b̄ if ϕ(ā, b̄)

A = 0 and b̄⊳ϕ ā if ϕ(b̄, ā)A = 1. The pair (T,ϕ) has the order
property if every model A of T contains arbitrarily long finite ⊳ϕ-chains ([14,
Definition 5.2]).

In continuous logic, we say that the order property of the pair (T,ϕ) is
robust if for models An, for n ∈ N, of T , and all ā and b̄ in

!
F An we have!

FinAn |= ϕ(ā, b̄) if and only if for all sufficiently small ε > 0 the set

{n | ϕAn(ān, b̄n) < ε and ϕAn(b̄n, ān) > 1− ε}
is finite.

Therefore by replacing ϕ with f(ϕ) for a suitable piecewise continuous
function f , the order property of a continuous theory as well as its robustness
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6 ILIJAS FARAH AND SAHARON SHELAH

are witnessed by a discrete (i.e., 0-1 valued) formula. Because of this, we
will provide proofs of our results only in the case of discrete theories, with
understanding that they carry on virtually unchanged to the continuous
context. A proof of the following is analogous to the proof of Lemma 1.2
and therefore omitted.

Lemma 1.3. If T is a continuous theory, a pair (T,ϕ) has the order prop-
erty, and ϕ(x̄, ȳ) is atomic or a minimum of atomic formulas then the pair
(T,ϕ) has the robust order property. □

2. Background on partial orderings

In this section we warm up by stating and proving some well-known re-
sults. Consider the following two partial quasi-orderings on NN:

f ≤∗ g ⇔ (∀∞j)f(j) ≤ g(j)

f <∗ g ⇔ (∀∞j)f(j) < g(j).

Any proper initial segment of (NN,≤∗) has the form ({f ∈ NN | f ≤ η},≤∗)
for some η ∈ NN. Such initial segment is isomorphic to (

!
n η(n),≤∗) (if

f ≤∗ η, then the pointwise minimum of f and η is an element of
!

n η(n)
equal to f modulo finite) and these structures will be our main focus. The
following is essentially a bounded variant of [8, Proposition 0.1].

Lemma 2.1. There are η ∈ NN and Φ : (
!

n n,≤∗) → (
!

n η(n), <
∗) such

that for all f and g, if f ≤∗ g and g ≰∗ f then Φ(f) <∗ Φ(g).

Proof. Let η(0) := 0 and η(n + 1) :=
"

j≤n jη(j) + 1. For f ∈
!

n n let

Φ(f)(n) :=
"

j≤n f(j)η(j). Fix f and g in the domain of Φ such that

f ≤∗ g but f ∕=∗ g. Let m be such that f(n) ≤ g(n) for all n ≥ m, and let
k > m be such that f(k) < g(k). Then Φ(g)(k) − Φ(f)(k) > 0, and for all
l > k we have Φ(g)(l)− Φ(f)(l) > 0. □

A morphism Φ as guaranteed by Lemma 2.1 is called strictly increasing.
The universal structure obtained in Lemma 2.2 below is very similar to

the Rado graph, also known as the (countably infinite) random graph, and
it ought to be well-known. It was however easier to include a proof than to
look for it in the literature.

Lemma 2.2. There exists an injectively universal countable structure (C, ⊳)
with an asymmetric binary relation ⊳. This universality property is absolute
between transitive models of a sufficiently large fragment of ZFC.

Proof. Let C := N and define the relation ⊳ as follows. If m < n are in N
and n =

"
j dj(n)3

j is the ternary expansion of n (so that dj(n) ∈ {0, 1, 2}
for all j) then let m ⊳ n if dm(n) = 1, n ⊳ m if dm(n) = 2, and let m and
n unrelated if dm(n) = 0. The structure (C, ⊳) has the following property
resembling the random graph:
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BETWEEN REDUCED POWERS AND ULTRAPOWERS, II. 7

(*) If F and G, are disjoint finite subsets of C, then there exists n ∈ C
such that m ∈ F implies m⊳n, m ∈ G implies n⊳m, and m /∈ F |upG
implies that m and n are unrelated.

To see this, let n :=
"

m∈F 3m +
"

m∈G 2 · 3m.
Given the property (*) of (C, ⊳), every countable (A, ⊳′) can be isomorphi-

cally embedded into (C, ⊳) by recursion. Since (*) is a first-order property,
it is absolute between transitive models of a sufficiently large fragment of
ZFC (see e.g., [25, Lemma II.4.3]). □

The notion of the depletion of a linear ordering and (admittedly rather
dull) Lemma 2.4 will be instrumental in a critical place in the proof of
Theorem 3.12.

Definition 2.3. Suppose that m ≥ 2, A and F (i), for i < m, are disjoint
sets, and ≤ is a partial ordering on the set E := A ∪

#
i<m F (i). A binary

relation ≪ on E defined as follows is called the depletion of ≤ given by A
and F (i), for i < m.

If x and y belong to E, we let x ≪ y if and only if one of the following
applies.

(1) Both x and y belong to A ∪ F (i) for some i and x ≤ y.
(2) There are i < j such that x ∈ F (i) and y ∈ F (j) and one of the

following holds.
(a) There exists a ∈ A such that x ≤ a and a ≤ y
(b) With k = j − i, there are xl ∈ F (i+ l) for 0 ≤ l ≤ k such that

x0 = x, xk = y, and xl ≤ xl+1 for all l < k.
(3) There are i > j such that x ∈ F (i) and y ∈ F (j) and one of the

following holds.
(a) There exists a ∈ A such that x ≤ a and a ≤ y
(b) With k = i− j, there are xl ∈ F (j + l) for 0 ≤ l ≤ k such that

x0 = x, xk = y, and xl ≥ xl+1 for all l < k.

Lemma 2.4. The depletion ≪ of a partial ordering ≤ is a partial ordering
included in it.4

Proof. Fix A, m, F (i), for i < m, and an ordering ≤ on E := A∪
#

i<m F (i).
It is clear from the definition that x ≪ y implies x ≤ y and that ≪ and ≤

agree on A ∪ F (i) for every i. Therefore ≪ is antisymmetric and reflexive,
and it will suffice to prove that it is transitive.

Towards this end, fix x, y, and z such that x ≪ y and y ≪ z. Then x ≤ y
and y ≤ z, and therefore x ≤ z. If x and z belong to A ∪ F (i) for some i,
then x ≪ z by (1). Therefore if at least one of x ∈ A or z ∈ A holds then
x ≪ z, and we may assume x ∈ F (i) and z ∈ F (j) for distinct i and j. If
y ∈ A then x ≪ z by (2a). Similarly, if there exists a ∈ A such that x ≤ a
and a ≤ y, then x ≪ z. Also, if there exists a ∈ A such that y ≤ a and
a ≤ z, then x ≪ z.

4‘Included‘ when identified with its graph—we are set-theorists!
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8 ILIJAS FARAH AND SAHARON SHELAH

We can therefore assume that y ∈ F (n) for some n and both x ≪ y and
y ≪ z are witnessed by instances of (2b). The following claim will help
when discussing the possible cases.

Claim 2.5. Suppose that i < m, 0 < k ≤ m− i, x ∈ F (i) and y ∈ F (i+ k).

(1) Assume there is no a ∈ A such that x ≤ a and a ≤ y. Then x ≪ y if
and only if there are xl ∈ F (i+ l) for all 0 ≤ l ≤ k such that x0 = x,
xk = y, and xl ≤ xl+1 for all 0 ≤ l < k.

(2) Assume there is no a ∈ A such that y ≤ a and a ≤ x. Then y ≪ x if
and only if there are xl ∈ F (i+ l) for all 0 ≤ l ≤ k such that x0 = x,
xk = y, and xl+1 ≤ xl for all 0 ≤ l < k.

Proof. (1) For the direct implication, note that the assumptions imply that (2b)
of Definition 2.3 applies. Let x0 := x, xk := y, and for 0 < l < k let xl be a
witness for (2b) of Definition 2.3. These objects are clearly as required.

For the converse implication, assume that xl for 0 ≤ l ≤ k are as in the
statement of the claim. Then clearly (2b) of Definition 2.3 applies.

The proof of (2) is analogous and therefore omitted. □
Back to our proof. If i ≤ n ≤ j, then part (1) of Claim implies that

x ≪ z. If i < j < n, then the witnessing sequence for x ≪ y contains
t ∈ F (j), such that x ≪ t and t ≪ y. But then (since ≪ implies ≤) t ≤ z,
and t ≪ z since both t and z belong to F (j). A proof in the case when
n < i < j is similar and uses part (2) of the Claim. This proves our claim
in the case when i < j.

The proof in the case when i > j is analogous. □

3. Embedding posets, gently

In the present section we assume that the reader is familiar with the basics
of forcing as presented in e.g., [25] or [34]. The present section is largely
based on [8], and Theorem 3.1 is a close relative to [8, Theorem 9.1].

The category of partially ordered sets is considered with respect to the
order-embeddings, i.e., injections f : E → E′ such that a ≤E b if and only
if f(a) ≤E′ f(b). The category of forcing notions is considered with respect
to regular embeddings (also known as complete embeddings, [25, Defini-
tion III.3.65]). If a forcing notion H0 is a regular subordering of a forcing
notion H1, we then write H0 ⋖ H1. Notably, H0 ⋖ H1 is equivalent to the
assertion that for every generic filter G ⊆ H1, G ∩ H0 is also generic. In
other words, H1 can be considered as a two-step iteration of H0 followed by
some other forcing notion.

If κ is an uncountable cardinal, a forcing notion P is said to have precal-
iber κ if every set of κ conditions in P has a subset of cardinality κ such
that each of its finite subsets has a common lower bound. Precaliber ℵ1

is a strong form of the countable chain condition. For example, if P has
precaliber ℵ1 then it is productively ccc, in the sense that the product of P
with any ccc poset is ccc. (We will not need this fact.)
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BETWEEN REDUCED POWERS AND ULTRAPOWERS, II. 9

Theorem 3.1. There is a functor from the category of partially ordered sets
into the category of forcing notions E $→ HE with the following properties.

(1) HE has precaliber κ for every uncountable cardinal κ.
(2) HE forces that E embeds into (

!
n n,≤∗).

(3) If κ > c is a regular cardinal and neither κ nor its reverse κ∗ em-
bed into E, then HE forces that κ does not embed into

!
Fin(An, ⊳)

for every sequence (An, ⊳n) of countable structures equipped with an
asymmetric binary relation.

Proof. The proof of this theorem will occupy most of the present section.
For HE see Definition 3.2, (1) is Lemma 3.4, (2) is Lemma 3.6, and (3) is
Theorem 3.12. □

In the Definition 3.2 and elsewhere, if dom(f) ⊆ N then f ↾ m denotes
the restriction of f to m = {0, . . . ,m− 1}. We will also write

X ⋐ Y

as a short for ‘X ⊆ Y and X is finite’ (this relation is sometimes denoted
X ∈ [Y ]<ℵ0).

Definition 3.2. For a partially ordered set E, HE is the forcing notion
defined as follows. The conditions of HE are triples p = (Dp, np, fp), where
Dp ⋐ E, np ∈ N, and fp : Dp →

!
m<nm.

The ordering is defined by p ≤E q if the following conditions hold.

(1) Dp ⊇ Dq, np ≥ nq, fp(a) ↾ nq = fq(a) for all a ∈ Dq, and
(2) for all a and b in Dq, if a ≤E b then fp(a)(j) ≤E fp(b)(j) for all

j ∈ [nq, np).

In order to relax the notation, if (pξ) is an indexed family of conditions
in HE we write pξ = (Dξ, nξ, fξ).

Lemma 3.3. Suppose that E is a poset, R ⋐ E, m ≥ 2 and pi, for i < m,
are conditions in HE such that the following holds.

(1) Whenever i ∕= j we have Di ∩Dj = R.
(2) All a ∈ R satisfy fi(a) ↾ min(ni, nj) = fj(a) ↾ min(ni, nj).

Then some q ∈ HE extends all pi.
5

Proof. Let Dq :=
#

i<mDi and nq := maxi<m ni. If i < m is such that
ni = nq, then for a ∈ Di let fq(a) = fi(a). Then fq(a) is well-defined for
a ∈ R by (2). For i < m such that ni < nq and for a ∈ Di \ R, let (with
max ∅ = 0)

fi(a)(j) := max{fq(b)(j) | b ∈ R, b ≤E a}.
for ni ≤E j < nq. This defines q ∈ HE . We will prove that q ≤ pi for
all i < m.

Clearly, q and pi satisfy (1) of Definition 3.2 for all i < m. Fix i < m.
If ni = nq then (2) of Definition 3.2 is vacuous, hence q ≤E pi.

5We write q ≤ p if q extends p.
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10 ILIJAS FARAH AND SAHARON SHELAH

Suppose ni < nq. To check that q ≤ pi, we need to verify (2) of Defini-
tion 3.2. Fix a and b in Di such that a ≤E b. If there is no c ∈ R such that
c ≤E b, then for all j ∈ [ni, nq) we have fq(a)(j) = fq(b)(j) = 0. If there
is c ∈ R such that c ≤E b, then {c | c ≤E a} ⊆ {c | c ≤E b} and by the
definition of fq we have fq(a)(j) ≤ fq(b)(j).

Thus (2) of Definition 3.2 holds, and q ≤ pi. □

Lemma 3.4. The poset HE has precaliber κ for every uncountable cardi-
nal κ.

Proof. Fix a family pξ, for ξ < κ, in HE . By the ∆-system lemma and
passing to a subfamily of the same cardinality, we may assume that there
exists R ⋐ E such that Dξ ∩ Dη = R for all distinct ξ and η below κ.
By the pigeonhole principle, we may also assume that there exists n such
that nξ = n for all ξ. Also, since there are only finitely many possibilities
for fξ(a), for a ∈ R, we may assume that the functions fξ agree on R and
therefore we are in the situation of Lemma 3.3. Therefore, after this refining
argument, Lemma 3.3 implies that every finite subset of {pξ | ξ < κ} has a
common lower bound. □

A proof of the following lemma is omitted as straightforward.

Lemma 3.5. For any poset E the following holds.

(1) For every n and every a ∈ E, the set

D(HE , n, a) := {p ∈ HE | np ≥ n, a ∈ Fp}

is dense in HE.
(2) If b ≰E a in E, then for every n ∈ N the set

E(HE , n, a, b) := {p ∈ HE | (∃k ≥ n)fp(a)(k) < fp(b)(k)}

is dense in HE. □

Lemma 3.6. If E is a poset and G ⊆ HE is a generic filter, then

ΥG(a)(j) := fp(a)(j)

for p ∈ G defines a strictly increasing function ΥG : E → (
!

n n,≤∗).

Proof. By genericity, G intersects all dense sets defined in Lemma 3.5 and
therefore Υ is a strictly increasing map from E into (

!
n n,≤∗). □

If E is a subordering of E′ then every p ∈ HE is (literally) a condition
in HE′ . We will therefore identify HE with a subordering of HE′ .

Lemma 3.7. If E′ is a poset and E is a subposet of E′, then HE is a regular
subordering of HE′.

Proof. The identity map from HE into HE′ is clearly an order-embedding. It
suffices to prove that there exists a reduction (or projection) π : HE′ → HE :

Paper Sh:1202, version 2020-11-14 2. See https://shelah.logic.at/papers/1202/ for possible updates.



BETWEEN REDUCED POWERS AND ULTRAPOWERS, II. 11

A map such that for every p ∈ HE′ we have p ≤E′ π(p) and every q ∈ HE

such that q ≤E π(p) is compatible with p ([25, Lemma III.3.72]). Let

πE(p) := (Dp ∩ E, np, fp ↾ (Dp ∩ E)).

Clearly, p ≤ πE(p). If q ≤E π(p), then Dq ∩ Dp = Dp ∩ E and fp(a)(j) =
fq(a)(j) for all a ∈ Dp ∩ Dq and all j < np. By Lemma 3.3, p and q are
compatible. □

In the situation when E is a subordering of E′, as in Lemma 3.7, we will
need a description of the quotient forcing HE′/Ġ, for a generic G ⊆ HE . If
for some k ∈ N we have s ∈

!
n<k n and f ∈

!
n n, then s ⊏ f stands for

s = f ↾ k.
Definition 3.8. If E ⊆ E′ are partial orderings and Υ : E → (

!
n n,≤∗)

is a strictly increasing function, a forcing notion HE′(E,Υ) is defined as
follows. The conditions in HE′(E,Υ) are the triples p = (Dp, np, fp), where
Dp ⋐ E′, np ∈ N, fp : Dp →

!
j<n n, and for a ∈ E we have fp(a) ⊏ Υ(a).

The ordering is defined by p ≤E q if the following conditions hold.

(1) Dp ⊇ Dq, np ≥ nq, fp(a) ↾ nq = fq(a) for all a ∈ Dq, and
(2) for all a and b in Dq, if a ≤E b then fp(a)(j) ≤E fp(b)(j) for all

j ∈ [nq, np).

Thus HE′(E,Υ) is a subordering of HE′ consisting of those conditions
that ‘agree’ with Υ on E. Note that HE′(E,Υ) is not necessarily separative;
this will not cause any issues.

The proofs of the two parts of Lemma 3.9 below are virtually identical to
the proofs of [8, Theorem 4.2] and [8, Lemma 4.3], respectively. For a ∈ E
let

L(a) := {b ∈ E | b ≤E′ a}
and

R(a) := {b ∈ E | b ≥E′ a}.

Lemma 3.9. Suppose E′ is a poset, E is a subposet of E′, and Ġ is a name
for the HE-generic filter.

(1) With the projection πE : HE′ → HE as in the proof of Lemma 3.7, the

map p $→ (πE(p), p) from HE into HE′ ∗HE′/Ġ is a dense embedding.

(2) HE forces that HE′/Ġ is forcing-equivalent to HE′(E ∩X,ΥĠ).
(3) If X ⊆ E is such that for every a ∈ E′ \E the set X ∩L(a) is cofinal

in L(a) and the set X∩R(a) is coinitial in R(a), then HE forces that
HE′(E,ΥĠ) and HE′(E ∩X,ΥĠ ↾ X) are forcing-equivalent. □

The following is [8, Lemma 5.1] (see also [3, Lemma 2.5]).

Lemma 3.10. Suppose P0 and P1 are forcing notions and ḟj is a Pj-name

for an element of
!

n n for j < 2. If P0 × P1 ⊩ ḟ0 ≤∗ ḟ1 then the set of
all p ∈ P0 × P1 such that there exist m ∈ N and h ∈

!
n n which satisfy

p ⊩ ḟ0 ≤m ȟ and p ⊩ ȟ ≤m ḟ1 is dense in P0 × P1. □
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12 ILIJAS FARAH AND SAHARON SHELAH

The following lemma will be used in a crucial place in the proof of Theo-
rem 3.12 in combination with Lemma 3.10.

Lemma 3.11. Suppose (E,≤) is a poset and A,B, and D are subsets of E
such that E = A ∪B, D = A ∩B, and for every a ∈ A and every b ∈ B the
following conditions hold.

(1) a ≤ b if and only if a ≤ d and d ≤ b for some d ∈ D, and
(2) a ≥ b if and only if a ≥ d and d ≥ b for some d ∈ A ∩B.

Then HD forces that the map

Ξ : HE(D,ΥĠ) → HA(D,ΥĠ)×HB(D,ΥĠ)

defined by Ξ(p) := (πA(p),πB(p)) is a dense embedding.

Proof. We use the notation from Lemma 3.9 and write Ġ(X) for the canon-
ical name for the generic filter for HX where X is A,B,D, or E.

By Lemma 3.9, the map p $→ (πD(p), p) is a dense embedding of HE into
HD ∗HE(D,ΥĠ(D)), and the latter embeds densely into

(3) HD ∗HB(D,ΥĠ(D)) ∗HE(B,ΥĠ(B)).

The assumptions imply that L(a) ∩ D is cofinal in L(a) and R(a) ∩ D is
coinitial in R(a), for every a ∈ A. Therefore HB(D,ΥĠ(D)) forces that

HA(D,ΥĠ(D)) is dense in HE(B,ΥĠ(B)). Since the former does not depend

on Ġ(B), the natural embedding of the iteration in (3) into

HD ∗ (HB(D,ΥĠ(D))×HA(A,ΥĠ(D)))

is a dense embedding. □
In the proof of Theorem 3.12 below, for f and g in CN (with (C, ⊳) as

guaranteed by Lemma 2.2) we will write f ⊳n g if f(j) ≤E g(j) for all
j ≥ n. A proof of Theorem 3.12 is analogous to, but shorter than, the
proof of [8, Theorem 9.1] (a baroque writeup of this proof with an ample
supply of limiting examples and all sorts of digressions (many of which were
warranted) can be found in [8]).

Theorem 3.12. Suppose κ is a regular cardinal such that κ > c and E is a
partial ordering such that neither κ nor κ∗ embeds into E. Then HE forces
that

!
Fin(An, ⊳n) has no κ-chains for any sequence (An, ⊳n), for n ∈ N, of

countable sets with asymmetric binary relations.

Proof. By Lemma 2.2, HE forces that
!

Fin(An, ⊳n) has a κ-chain for some
sequence (An, ⊳n) (not necessarily in the ground model) if and only if HE

forces that (CN, ⊳∗) :=
!

Fin(C, ⊳) has a κ chain. It will therefore suffice to
prove the theorem with the additional assumption that (An, ⊳n) = (C, ⊳) for
all n.

Assume that ḟξ, for ξ < κ, is a name for a κ-chain in (CN, ⊳∗). (We

emphasize that this means that for all ξ < η, HE forces both ḟξ ⊳
∗ ḟη and

ḟη ⋪∗ ḟξ.) The ccc-ness ofHE and Lemma 3.7 together imply that for every ξ
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there exists a countable E(ξ) ⊆ E such that ḟξ is an HE(ξ)-name. By the ∆-
system lemma (for countable sets, using κ > c) and passing to a subfamily,
we may assume that the sets E(ξ) form a ∆-system with countable root A.

For a limit ordinal ξ fix qξ ∈ HE and n ∈ N such that

(4) qξ ⊩ ḟξ ⊳
n ḟξ+1 ⊳

n ḟξ+2.

Writing qξ = (Dξ, nξ, fξ), let F (ξ) := Dξ \ A. Fix a well-ordering <w of C.
For a moment fix a generic filter G ⊆ HA∪F (ξ) such that qξ ∈ G, and for

j ∈ N let hξ(j) be the <w-least element of C such that r ⊩ ḟξ+1(j) = č for
some r in the quotient HE(A ∪ F (ξ),ΥG)/G (see Lemma 3.9).

This defines hξ ∈ CN in V [G]. Use the Maximal Principle ([25, Theo-

rem IV.7.1]) to choose a name ḣξ for this function.

Claim 3.13. The condition qξ forces that ḟξ ⊳
n ḣξ ⊳

n fξ+2.

Proof. If there are r ≤ qξ in HE and j ≥ n such that r ⊩ ḟξ(j) ⋪ ḣξ(j), fix

a generic filter G in HE containing r. Then in V [G] we have ḟξ ⋪n ḟξ+1,
although qξ ∈ G; contradiction. An analogous argument gives that there is

no j ≥ n such that some r ≤E qξ forces that ḣξ(j) ⋪ ḟξ+2(j). □

By the pigeonhole principle and passing to a subset if necessary, we may
assume that n as in (4) is the same for all ξ. The pairs (qξ, ḣξ) are indexed
by limit ordinals below κ. We re-enumerate them preserving the order and
obtain conditions qξ and names ḣξ for ξ < κ. Since HE has the ccc, some
condition q ∈ HE forces that κ of the qξ’s belong to the generic filter.

Therefore this family is a name for a κ-chain in (CN, ⊳∗).
Every set F (ξ) is finite, and by the pigeonhole principle we can assume

that there exists m such that for all ξ we have

F (ξ) = {a(ξ, 0), . . . , a(ξ,m− 1)}

and that for all ξ and η the map

(5) a(ξ, i) $→ a(η, i)

is an order-isomorphism between F (ξ) and F (η). Since κ > c, by another
application of the pigeonhole principle we can assume that there are subsets
L(j) and R(j) of the root A for j < m such that

(6) L(j) = {b ∈ A | b ≤E a(ξ, j)} and R(j) = {b ∈ A | b ≥E a(ξ, j)}

for all ξ < κ. Clearly, L(j)∩R(j) is empty for all j. Therefore, the extension
of the map in (5) by the identity map on A is an order-isomorphism between
A ∪ F (ξ) and A ∪ F (η).

For ξ < η < κ, let τξ,η be the restriction of the relation ≤E to F (ξ)×F (η).
For n ≥ 2 and an increasing n-tuple ξ̄ := (ξ(j) : j < n) of ordinals let ≪ξ̄

denote the depletion of ≤E determined by Definition 2.3 with A := ∅ and
F (ξ(j)), for j < n.
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14 ILIJAS FARAH AND SAHARON SHELAH

Claim 3.14. Suppose that for every n and every n-tuple ξ̄ there are x ∈
F (ξ(0)) and y ∈ F (ξ(n− 1)) such that x ≪ξ̄ y. Then there is a κ-chain or
a κ∗-chain in E.

Proof. This is essentially a result of Kurepa ([26]); for a proof see e.g., [8,
Theorem 7.1]. □

We can therefore assume that

≪ξ̄ ∩(F (ξ(0))× F (ξ(n− 1))) = ∅

for some n and some n-tuple ξ̄. If this applies for a given ξ̄, we’ll then slightly
abuse the language and say that ‘≪ξ̄ is empty’. Moreover, we can assume

that there is such a tuple for an arbitrarily large ξ(0). This is because every
end-segment of κ is order-isomorphic to κ; thus by applying Claim 3.14 to
an end-segment we would otherwise obtain a copy of κ or κ∗ inside E. Also,
if ≪ξ̄ is empty and η̄ extends ξ̄, then ≪η̄ is also empty. We can therefore
recursively choose a cofinal X ⊆ κ such that for every pair η < ζ in X
there exist an n = n(ξ, η) and an increasing n-tuple ξ̄ such that ξ(0) = η,
ξ(n− 1) = ζ, and ≪ξ̄ is empty.

We now fix an n and an increasing n-tuple ξ̄ such that ≪ξ̄ is empty and

analyze the relation between the names ḣξ(0) and ḣξ(n−1).
Consider the depletion ≪ξ̄ of ≤E on the set A′ := A ∪

#
j<n F (ξ(j)).

Then x ≪ξ̄ y implies x ≪ξ̄ y, and this implies x ≤E y for all x and y. By

Lemma 2.4, ≪ξ̄ is a partial ordering on A′. We’ll write ≪ for ≪ξ̄ whenever ξ̄
is clear from the context.

For i < j < n let

A(i, j) := A ∪ F (ξ(i)) ∪ F (ξ(j)),

ordered by ≪. Then HA(i,j) ⋖HA′ by Lemma 3.7. For every i < n− 1, the
ordering on A(i, i+1) agrees with the ordering induced from E, and therefore

in addition we have HA(i,i+1) ⋖HE . Since ḣξ(i) and ḣξ(j) are HA(i,j)-names,

and HE forces ḣξ(i) ⊳
∗ ḣξ(i+1) for all i < n − 1, this implies that HA′ forces

ḣξ(i) ⊳
∗ ḣξ(i+1) for all i < n− 1. Therefore HA′ forces ḣ(ξ(0)) ⊳∗ ḣ(ξ(n− 1)).

Since ḣ(ξ(0)) and ḣ(ξ(n − 1)) are HA(0,n−2)-names and HA(0,n−2) ⋖ HA′ ,

HA(0,n−2) forces ḣ(ξ(0)) ⊳
∗ ḣ(ξ(n− 1)).

However, if G ⊆ HA is generic, then since ≪ξ̄ is empty, by Lemma 3.11

the quotient forcing HA(0,n−1)/G is isomorphic to the product of the quo-
tients HA∪ξ(0)/G and HA∪ξ(n−1)/G. By Lemma 3.10, there exists a p ∈ HA

and an HA-name ġ such that

p ⊩ ḣξ(0) ≤∗ ġ ≤∗ ḣξ(n−1).

Therefore for every ξ ∈ X and ξ(n− 1) := minX \ (ξ(0) + 1) we can find ξ̄
such that ξ(0) = ξ, ≪ξ̄ is empty, and there are pξ ∈ HA and an HA-name ġξ
such that

pξ ⊩ ḟξ ≤∗ ġξ ≤∗ ḣξ(n−1).
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Since HA has the ccc, some q ∈ HA forces that the set of pξ that belong
to the generic filter has cardinality κ. Therefore q forces that HA adds a
strictly increasing κ-chain ġξ, for ξ < κ, to (NN,≤∗). Since A is countable,
HA cannot add more than c reals; contradiction. □

Proposition 3.15. For every theory T and every formula ϕ(x̄, ȳ) such that
(T,ϕ) has the order property, HE forces that E embeds into

!
Fin(An, ⊳ϕ)

for every sequence (An) of models of T .

Proof. Working in the forcing extension, note that since An |= T , there

exists a ⊳ϕ-chain of length η(n) in An. Therefore there is an HE-name Ξ̇ for
a strictly increasing map from (

!
n n,≤∗) into

!
Fin(An, ⊳ϕ). By Lemma 3.6,

if G ⊆ HE is a sufficiently generic filter then in V [G] there exists a strictly
increasing function ΥG : E → (

!
n n,≤∗). By Lemma 2.1, there is a strictly

increasing Φ : (
!

n n,≤∗) → (
!

n η(n), <
∗) for some η ∈ NN. Hence Ξ̇◦Φ◦ΥG

is a name for an embedding as required. □

4. Proofs of Theorem C and Corollary D

Proof of Theorem C. Fix a theory T that has the robust order property, a
sequence (An) of countable models of T , and an ultrafilter U on N. We will
prove that the Levy collapse of the continuum to ℵ1 followed by HE for an
appropriate choice of a poset E forces all three statements of Theorem C.
The proofs have a common initial segment.

By Lemma 2.1 there are η ∈ NN and a strictly increasing

Φ : (
!

n n,≤∗) → (
!

n η(n), <
∗).

Since (T,ϕ) has the robust order property, each Bn has a ⊳ϕ∞-chain of length
η(n), and there exists an embedding Ξ :

!
U (η(n), <) →

!
U (Bn, ⊳ϕ∞).

Thus Φ followed by the quotient map from (
!

n η(n), <
∗) onto the ultra-

power
!

U (η(n), <) and Ξ gives a strictly increasing map

Ω : (
!

n n,≤∗) →
!

U (Bn, ⊳ϕ∞).

In the extension by the Levy collapse of the continuum to ℵ1 choose the
poset E as follows. Let κ > c be a regular cardinal. By a result of Galvin
that appears in [8, Theorem 3.2], there exists a partial ordering Eκ such
that Eκ has no infinite chains but for every linear ordering L and a strictly
increasing map Φ : E → L, there exists a κ-chain or a κ∗-chain in L.

By Theorem 3.1, HE adds a strictly increasing map ΥG : E → (
!

n n,≤∗).
If U is a nonprincipal ultrafilter on N and Ψ : (

!
n η(n), <

∗) →
!

n η(n)/U
is the quotient map, then Ψ ◦ΥG is strictly increasing. Since

!
n η(n)/U is

a linear ordering, it has a κ-chain by the choice of E. By composing with Ω,
we obtain a κ-⊳ϕ∞-chain in

!
U (Bn, ⊳ϕ∞).

However, Theorem 3.1 implies that there are no κ-chains in
!

Fin(An, ⊳ϕ).
Therefore

!
U Bn cannot be isomorphic to

!
FinAn or to an elementary

submodel of
!

FinAn. This proves parts (1) and (2) of Theorem C.
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To prove (3), note that if the formula ϕ is quantifier-free, then
!

U Bn

cannot even be isomorphic to a submodel of
!

FinAn. □
Proof of Corollary D. Suppose that A is a separable C∗-algebra and U is
an ultrafilter on N. If U is principal, then (A ⊗ C(K))U is isomorphic to
A ⊗ C(K) while A∞ is nonseparable. We may therefore assume that A is
infinite-dimensional and that U is nonprincipal.

The theory of infinite-dimensional C∗-algebras has the order property
witnessed by an atomic formula ([13, Lemma 5.3]). Therefore the theory of
A ⊗ C(K) has the robust order property, and Theorem C (3) implies that
(A⊗ C(K))U does not embed into B∞ for any C∗-algebra B. □

5. Proofs of Theorem A and Theorem B: Tie points

The contents of this section is rather accurately described by its title.

Definition 5.1. Suppose X is a compact Hausdorff space. A point x ∈ X
is a tie point if there are closed subsets A and B of X such that A∪B = X
and A ∩B = {x} (in symbols, A ⊲⊳x B).

Two subsets I and J of a Boolean algebra B are orthogonal if a∧ b = 0B
for all a ∈ I and all b ∈ J . The following is proved by parsing the definitions.

Proposition 5.2. Suppose B is a Boolean algebra. The following are equiv-
alent for an ultrafilter U on B.

(1) The complement of U is equal to the union of two orthogonal ideals.
(2) U is a tie-point in the Stone space of B. □

Definition 5.3. By analogy with true P-points, an ultrafilter U in a Boolean
algebra is called a true tie point if the ideals as in Proposition 5.2 (2) can be
chosen so that each one of them is generated by a linearly ordered subset.

The salient point of the proof of the following is the observation that true
tie points are Σ1-definable, but the reader may choose to ignore this remark
(at the risk of their own loss).

Lemma 5.4. Every ultraproduct of countable atomless Boolean algebras has
a true tie point.

Proof. Every ultrafilter in a countable atomless Boolean algebra is a true tie
point, since the generating sets of order type ω can be chosen by recursion.
Suppose

!
U Cn is an ultraproduct of countable atomless Boolean algebras.

If U is principal, then
!

nCn is isomorphic to one of the Cn’s and the
assertion follows from the first sentence of this proof.

Now assume U is nonprincipal. For every Cn fix a true tie point pn and
linearly ordered generating sets An and Bn for the ideal Cn \ pn. Then
(Cn,An,Bn) is an expansion of Cn to the language with two additional
unary predicates. Each one of these structures satisfies the following: Both
An and Bn are linearly ordered, A ∧B = ∅ for all A ∈ An and B ∈ Bn, and
for every X ∈ Cn either X or its complement belongs to An∪Bn. These are
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all first-order statements, and they imply that the complement of An ∪ Bn

is an ultrafilter.
The ultraproduct

!
U (Cn,An,Bn) is an expansion of

!
nCn and by *Loś’s

Theorem the sets A :=
!

U An and B :=
!

U Bn generate ideals of
!

U Cn

whose complement is a true tie point. □
Proof of Theorem A. We need to prove that PFA implies P(N)/Fin is not
isomorphic to an ultraproduct of Boolean algebras associated with a non-
principal ultrafilter on N. By [37] (see [7, Corollary 1.9]), PFA implies that
there are no tie points in P(N)/Fin, while there are tie points in an ultra-
product of countable atomless Boolean algebras by Lemma 5.4. □

The following will be used in the proof of Theorem B.

Lemma 5.5. The poset for adding at least c+ Cohen reals forces that every
atomless Boolean algebra B definable from a real has no true tie points.

Proof. By passing to an intermediate forcing extension, without a loss of
generality we may assume that B is in the ground model. Let κ ≥ c+ be the
number of the Cohen reals added. By genericity, no nonprincipal ultrafilter
on N is generated by fewer than κ subsets of N. (After adding κ Cohen
reals, for every X ⊆ U of cardinality less than κ there is a Cohen real Y
generic over V [X ]. For every infinite X ⊆ N, the set of all Y ⊆ N such that
X∩U and X \Y are both infinite is comeager. Therefore X does not ‘decide’
whether Y ∈ U or N \ Y ∈ U .) Assume p is a true tie point in B and let A
and B be the linearly ordered (modulo I) sets whose complements generate
B \ p. By genericity, at least one of A and B has cofinality κ > c. Kunen’s
isomorphism of names argument ([24]) implies that B does not contain a
well-ordered κ-chain; contradiction. □

Clearly, Lemma 5.5 can be improved by relaxing its assumption to ‘B is
definable from a set of at most cV reals’.

Proof of Theorem B. In the model obtained by adding at least c+ Cohen
reals to a model of ZFC, suppose that B is a Boolean algebra definable from
a real. By Lemma 5.5, there are no true tie points in B. By Lemma 5.4, in
every model of ZFC there is a true tie point in any ultraproduct of countable
atomless Boolean algebras. □

6. The existence of universal ultrapowers

In this section we collect a few easy observations. Since our ‘results’ are
immediate consequences of known results, we do not include the definitions
of SOP, SOP4, and the olive property (references are included below).

Fix a first-order theory T . Let

MT = {AU | A |= T, A is countable, and U ∈ N \ N}.
The Continuum Hypothesis implies that, up to isomorphism, MT has exactly
one element. If T has the order property, then the converse holds: if MT
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has one element (or even fewer than 2c elements) up to isomorphism, then
the Continuum Hypothesis holds ([13], [16]). We don’t know whether, for
a T with an order property, the existence of an injectively universal element
for MT is relatively consistent with the failure of CH.

Proposition 6.1. Suppose that T is a first-order theory with the order prop-
erty.

(1) Then T has a universal model of cardinality c if and only it has a
universal model of cardinality c in MT .

(2) If T has the SOP, SOP4, or the olive property, and there exists a
cardinal κ such that κ < c < 2κ, then T does not have a universal
model in MT .

(3) If the assumptions of (2) are strengthened to ‘κ+ < c < 2κ and
c is regular’, then MT does not contain a basis consisting of fewer
than 2κ models.6

Proof. (1) It is well-known that every model of T of cardinality c is isomor-
phic to an elementary submodel of an ultrapower of a countable model of T .
This follows from the results of [29, Chapter VI.5] or [16].

(2) This was proved in [21] (when T has SOP), [33, §2] (when T has
SOP4), and in [36] (when T has the olive property).

(3) We will prove a stronger statement: For every family Mξ, ξ < 2κ,
of elements of MT there exists X ⊆ 2κ of cardinality κ and Nξ such that
Mξ ≺ Nξ, |Nξ| = c, and Nξ does not embed into Nη for all ξ ∕= η in X.

Let ϕ(x̄, ȳ) be such that (T,ϕ) has the order property. By the methods
of [21], [33], and [36], there exists a function invϕ from the set

Modc(T ) = {A | A |= T and |A| = c}
into [P(κ)]c such that

(1) IfM0 ∈ Modc(T ) is embeddable intoM1 ∈ Modc(T ) then invϕ(M0) ⊆
invϕ(M1).

(2) If M0 ∈ Modc(T ) and S ⊆ κ then there exists M1 ∈ Modc(T ) such
that M0 ≺ M1 and S ∈ invϕ(M1).

Fix Mξ, for ξ < 2κ, in MT . Let Sξ, for ξ < 2κ, be pairwise distinct subsets
of κ. By a realizing types argument and (1), there are Nξ ∈ MT such that
Mξ ≺ Nξ and Sξ ∈ invϕ(Nξ). By Hajnal’s free subset theorem ([20]), there
exists X ⊆ 2κ of cardinality 2κ such that Sξ /∈ invϕ(Nη) for all ξ ∕= η in X,
and therefore Nξ, for ξ ∈ X, are as required. □

7. Concluding remarks and questions

The methods of [35], [32], and [31] may be relevant to the question whether!
U A can be isomorphic to

!
FinA for a countable model A of a theory with

the order property in a model of ZFC+¬CH.
6I.e., every X ⊆ MT such that every element of MT embeds into an element of X has

cardinality at least 2κ.

Paper Sh:1202, version 2020-11-14 2. See https://shelah.logic.at/papers/1202/ for possible updates.



BETWEEN REDUCED POWERS AND ULTRAPOWERS, II. 19

Our proof of Theorem B uses a variant of Kunen’s well-known proof that
after adding κ > c Cohen reals to a model of ZFC there are no κ-chains in
(NN, ρ) for any Borel partial ordering ρ on NN. The proof of Theorem C uses
a related (i.e., semicohen; see [22]) forcing notion and a somewhat similar
analysis of names. These results are however different, since the forcing HE

used in the proof of Theorem C can add an ω2-chain to some Borel poset
(NN, ρ) without adding an ω2-chain to (NN,≤∗) (see [8, Theorem 2.1]).

The argument of the proof of Theorem B works for many other forcings
that add more than c reals, as long as one can uniformize the names and
in the extension there are no ultrafilters on N with small generating sets.
The latter does not apply to the Sacks forcing. As a matter of fact, after
adding c+ Sacks reals to a model of CH with countable supports (by either
product or iteration), there exists a selective ℵ1-generated ultrafilter on N,
and it is a true tie point ([1]). It is therefore not clear whether in the Sacks
model(s) P(N)/Fin is isomorphic to an ultraproduct of countable atomless
Boolean algebras.

We conclude with a few words on ‘definable’ reduced products
!

F An.
If F is an analytic filter on N (i.e., a filter that is analytic as a subset of
P(N), given its Cantor-set topology) that extends the Fréchet filter, then the
restriction of F to any F-positive set is not an ultrafilter. (This is because
all analytic sets have the universal property of Baire, unlike the nonprin-
cipal ultrafilters.) Therefore the Feferman–Vaught theorem ([17], and for
the metric case [18] or [10, §16.3]) implies that if all An are elementarily
equivalent, and if F extends the Fréchet filter then

!
F An is elementarily

equivalent to
!

FinAn. Many (but not all) of the reduced products
!

F An

are countably saturated7 and therefore isomorphic to
!

FinAn if the CH
holds. One can ask for what analytic filters F is

!
F An

∼=
!

FinAn provable
in ZFC. In the case when all An are Boolean algebras, this is a question about
abelian C∗-algebras. This is because the category of Boolean algebras is, via
the Stone duality, equivalent to the category of compact, zero-dimensional,
Hausdorff spacesand the latter category is, by the Gelfand–Naimark dual-
ity, equivalent to the category of unital, abelian, C∗-algebras (see [10, §1.3]).
By this observation and the main result of [15], PFA implies that two such
reduced products are isomorphic if and only if there is an (appropriately de-
fined) ‘trivial’ isomorphism between them. For example, PFA implies that!

FinB ∕∼= P(N)/Fin if B is the atomless countable Boolean algebra. The
ultimate extension of the result of [15] to the coronas of arbitrary separable
C∗-algebras was proved in [27] and [39].
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