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Strong Partition Realations Below the
Power Set: Consistency

Was Sierpinski Right? II.

S. SHELAH*

We continue here [Sh276] (see the introduction there) but we do not
relay on it. The motivation was a conjecture of Galvin stating that 2¢ > wq
+ w2 = [wi]j,) is consistent for a suitable h : w — w. In section 5
we disprove this and give similar negative results. In section 3 we prove
the consistency of the conjecture replacing wy by 2¢, which is quite large,
starting with an Erddés cardinal. In section 1 we present iteration lemmas
which needs when we replace w by a larger A and in section 4 we generalize
a theorem of Halpern and Lauchli replacing w by a larger A.

0. Preliminaries

Let <} be a well ordering of H(x), where H(x) = {z : the transitive closure
of x has cardinality < x}, agreeing with the usual well-ordering of the
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ordinals. P (and @, R) will denote forcing notions, i.e. partial orders with
a minimal element () = (p.

A forcing notion P is A-closed if every increasing sequence of members
of P, of length less than A, has an upper bound.

If P € H(x), then for a sequence p = (p; : i < ) of members of P let

o =aq, & sup{j : {B; : j < j} has an upper bound in P} and define the

canonical upper bound of p, &p as follows:

(a) the least upper bound of {p; : i < a} in P if there exists such an
element,

(b) the <}-first upper bound of p if (a) can’t be applied but there is such,
(c) po if (a) and (b) fail, v > 0,
(d) Opify=0.

Let po&p1 be the canonical upper bound of (p, : £ < 2).

Take [a]® = {b C a: [b| = £} and [a]<" = [, ,.[a]’.

For sets of ordinals, A and B, define Hgfé as the maximal order
preserving bijection between initial segments of A and B, i.e, it is the
function with domain {a € A : otp(a N A) < otp(B)}, and HX% (a) =B if
and only if & € A, 5 € B and otp(an A) = otp(8 N B).

Definition 0.1 A\ =% (a)5* holds provided whenever F is a function from
[A]<“ to u, C C X is a club then there is A C C of order type « such that
[wl, Wo € [A]<w, \w1| = |U]2| = F(wl) = F(wg)]

Definition 0.2 X\ — [a]} , if for every function F' from [A]" to x there is
A C X of order type « such that {F(w) : w € [A]"™} has power < 6.

Definition 0.3 A forcing notion P satisfies the Knaster condition (has
property K) if for any {p; : i < w1} C P there is an uncountable A C w;
such that the conditions p; and p; are compatible whenever i,j € A.

1. Introduction

Concerning 1.1-1.3 see Shelah [Sh80], Shelah and Stanley [ShSt154, 154a).
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Definition 1.1. A forcing notion Q satisfies *;, where € is a limit ordinal
<, if player I has a winning strategy in the following game:

Playing: the play finishes after € moves.
in the at® the move:
Player I — if a # 0 he chooses (q? : ¢ < pu™) such that q¢ € Q and
(VB < a) (V¢ < /ﬁ)p? < g¢ and he chooses a regressive
function fo : p* — put (ie. fo(i) <1+1i);ifa=0 let
qca = @Qa fa = @
Player II — he chooses <pg : ¢ < pt) such that @ <pFeq.
The outcome: Player I wins provided whenever p < ¢ < & < u*, cf(() =

cf(§) = p and Ng<cf5(C) = fp(€) the set {p¢ : a < e} U{pg : @ < ¢} has
an upper bound in Q).

Definition 1.2. We call (P;, Q; : i < i(x), j < i(x)) a xj-iteration
provided that:
(a) it is a (< p)-support iteration (u is a regular cardinal)

(b) ifiy < iy <i(x), cfiy # p then P;,/P;, satisfies x;,.

The Iteration Lemma 1.3. If Q = (P, Q; : i < i(x), j < i(x)) is a
(< p)-support iteration, (a) or (b) or (c) below hold, then it is a x,-iteration.

1)-
(a) i() is limit and Q[j(x) is a *;-iteration for every j(x) < i(x).
i

(b) i(x) = j(*) +1, QIj(*) is a %5 -iteration and Q;(,) satisfies S, in Vi

(c) i(x) = j(*) + 1, cfji(x) = pt, QTj(x) is a *,-iteration and for every
successor i < j(x), Pix)/P; satisfies *j,.

Proof. Left to the reader (after reading [Sh80] or [ShSt154al).

Theorem 1.4. Suppose i = p~* < x < A, and X is a strongly inaccessible
k3-Mahlo cardinal, where k3 is a suitable natural number (see 3.6(2) of
[Sh289]), and assume V = L for the simplicity. Then for some forcing
notion P:

(a) P is pu-complete, satisfies the u*-c.c., has cardinality A\, and VI |=
oM — N7

(b) Ikp X — [uT]3 and even A — [uT]2 , for K < p.
(c) if p =Ny then IF “MA,".
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(d) if p > Vg then: |Fp “for every forcing notion @) of cardinality < x, u-
complete satistying x},, and for any dense sets D; C Q for i < ig < A, there
is a directed G C Q, iGN D; # 0.

As the proof is very similar to [Sh276], (particularly after reading section
3) we do not give details. We shall define below just the systems needed to
complete the proof. More general ones are implicit in [Sh289].

Convention 1.5. We fix a one to one function Cd = Cd) , from *~ X onto
A

Remark. Below we could have otp(B,) = p* + 1 with little change.

Definition 1.6. Let u < x < kK <\, A= ASH, x = xH, p= p~H.
1) Wecall x a (A, K, x, iv)-precandidate if x = (aZ : u € I,;) where for some
set B, (unique, in fact):
(i) I, ={s: s C By, || <2},
(ii) B, is a subset of k of order type ut,
(iii) a? is a subset of \ of cardinality < x closed under Cd,
(iv) al N B, = u,
(v) aZnaz C azp,,
(vi) ifu, v € I, |u| = |v| then af and af have the same order type (and
so HOP - maps a, onto a?),

at,a
(vii) ifug,vp € I, for 0 = 1,2, |uq| = |v1|, |ua| = |va|, |ur Uus| = |vg Uvs|,
H%I;Uagg,ailutzgg maps u, onto vy for { = 1,2 then H‘%’Iiaﬁl and

HQOF .. are compatible.
ug ? vy

2) We say x is a (A, K, x, i)-candidate if it has the form (M} : u € I)

u
where

(o) (1) (|MZ]:ue€l,)isa (K, x, u)-precandidate (with B, o ul, )

(ii) L, is a vocabulary with < y-many < p-ary placespredicates and
function symbols,

(iii) each MY is an L,-model,
(iv) for u, v € I, |u| = |v|, MZT(|]MZ| N |MZ|) is a model, and in fact
an elementary submodel of M, M.} and M}, .

154 %) for u, v € I, |u| = |v|, the function HQE, . . is an isomorphism
from M onto MY .

3) The set A is a (A, k, X, p)-system if
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(A) each x € A is a (A, k, X, u)-candidate,
(B) guessing: if L is as in (2)(«)(ii), M* is an L-model with universe A
then for some x € A, s € By = MY < M*.
Definition 1.7. 1) We call the system 2 disjoint when:

x) if x # y are from A and otp(|MZ|) < otp(|M|) then for some By C B,,
0 0
By C B, we have

a) |Bi|+ [Bo| < p*
b) the sets
(M2 s € [B.\ BIS?)
and
J{1M2] s € (B, \ B2)=*)
have intersection C Mé’ )
2) We call the system 2 almost disjoint when:

(#x) if 2,y € A, otp(|M{]) < otp(|Mj|) then for some By C By,
By C B, we have:
(a) |Bal + |Bal < i*,
(b) if s € [B, \ B, t € [By \ Bo]< then |M2| 1 [M| C M),

2. Introducing the partition on trees

Definition 2.1. Let
1) Per(#=2) = {T : where

(a) TCH2 el

(b) (¥€T)(Ya <lgm)nlaeT,

(c) ifneT N2, a < < then for some
veTnh2, n<v,

(d) ifn €T then for some v, n<v,
v (0)eT, v (1) eT,

(e) ifn€?’2, 6 < uis a limit ordinal and
{nfa:a< 0} CT thenneT.
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2) Pery(H=2) = {T € Per("”2) : ifa < p and vy, vo € *2N T, then

1 1
[An () eT = N\wni)e T]}.
=0 =0
3) Per,(*>2) = {T € Per("72) : ifa < p, v # vy from “2N 7T,

12
then \/ \/ Vm " (€) & T}.
£=0m=1

4) For T € Per(#~2) let imT = {n € *2: (Va < p)nla € T}.

5) For T € Pery(*~2) let clpp : T — 22 be the unique one-to-one
function from sp(T') o {ne T:n0) e T,n (1) € T} onto "2,
which preserves < and lexicographic order.

6) Let SP(T) = {lg(n) : n € sp(T)}, sp(n,v) = min{i : n(i) # v(i) ori =
lg(n) or i =lg(v)}.

Definition 2.2. 1) For cardinals u,0 and n < w and T € Per(#~2) let
Col(T) = {d : d is a function from Uy, [*2]" NT to o}. We will write
d(vg,...,Vn-1) for d{vo,...,vn—1}).

2) Let <} denote a well ordering of “2 (in this section it is arbitrary). We
call d € Col(T) end-homogeneous for { <! : a < p) provided that: if
a < B are from SP(T), {vo,...,vn_1} CP2N0T, (yyla : £ < n) are
pairwise distinct and )\ [ve <h vm = vila <, vn, la] then

l,m

d(vo, ... ,Vn—1) =d(vola, ... ,Up_1]a).

3) Let EhCol(T) = {d € Col}(T) : d is end-homogeneous } (for some
(<tia<p).
4) For vg,...,Un—1,1M0,---,Nn—1 from =2, we say v = (vg,...,vp—1) and
7= (Noy-.-,NMn—1) are strongly similar for { <': a < p) if:
(i) 1g(ve) = 1g(ne)
(ii) sp(ve, Vm) = sp(ne, m)
(iii) if £1,02,03,04 < n and o = sp(ve,, ve,) then

Vis TOZ <Z Viy [O[ = Ny [O[ <2 Ney [O[ and Vig (Oé) = Nes (O[)

5) Forvg,...,v¢_,,v8,...,v%_| from ">2 we say v® = (vg,...,v2_,) and
b= (W8,...,vb_) are similar if the truth values of (i)-(iii) below doe

not depend on t € {a,b} for any ¢(1),£(2),4(3),¢(4) < n:
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(i) lg(%u)) < lg(Vé(z))
(i) sP(Vy(1)» Vigay) < SP(Vya)» Viay)

(iii) for a = Sp(l/g(l)y Vg(z))’
I/E(?)) fa <Z Vg(4) ra

and

6) We say d € Col(T) is almost homogeneous [homogeneous] on Ty C T
(for ( <}: o < py) if for every a € SP(T1), v, n € [*2]" N Ty which are
strongly similar [similar] we have d(v) = d(7).

7) We say ( <: a < p) is nice to T € Per(#~2), provided that: if
a < B are from SP(T), (o, ) NSP(T) = 0, m # ns € P2NT,

[m o <, mela or mifa = nala, m(a) < na(a)] then m <j na.

Definition 2.3. 1) Pr.p:(p, n, o) means: for every d € Coll}(#~2) for some
T € Per(#~2), d is end homogeneous on T.

2) Prone(p,n, o) means for every d € Coll}(#~2) for some T € Per(#~2), d
is almost homogeneous on T'.

3) Prpi(p,n, o) means for every d € Coll(#~2) for some T € Per(*~2), d
is homogeneous on T'.

4) For x € {eht, aht, ht}, Prf(u,n,o) is defined like Pr,(uu,n,0) but we
demand T € Per("~2).

5) If above we replace eht, aht, ht by ehtn, ahtn, hin, respectively, this
means ( <X:« < p) is fixed apriori.

6) Replacing n by “< k”, 0 by ¢ = (0y : £ < k) for kK < Xy, means that
(dn, : n < k) are given, d, € Col}(*>2) and the conclusion holds for
all d,, (n < k) simultaneously. Replacing “c” by “< ¢” means that the
assertion holds for every o1 < 0.

Definition 2.4. 1) Prap(p,n,0(1),0(2)) means: for every d € Coly
(#=2) for some T € Per(#~2) and ( <X: o < p) for every i € |J{[*2]"NT :
a € SP(T)},

{d(z?) el N T a e SP((T)},

n and v are strongly similar for ( <}: a < u)}
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has cardinality < o(2).

2) Prpi(p,n,0(1),0(2)) is defined similarly with “similar” instead of
“strongly similar”.
3) Pro (1< r. (0} £ < w) (07 : € < 1)), Prl(un.0(1),0(2), Pr(u <

Ng, o1, 52) are defined in the same way:.
There are many obvious implications.

Fact 2.5. 1) For every T € Per(* >2) there is a Ty C T, T} € Per,("~2).
2) In defining Prf(p,n, o) we can demand T C Ty for any Ty € Per;(#>2),
similarly for Pr!(u, < k,0).

3) The obvious monotonicity holds.

Claim 2.6. 1) Suppose p is regular, o > Xy and Prﬁht(u,n, < o). Then
Prght(u,n, < o) holds.
2) If p is weakly compact and Prght(u, n,< o), o < u, then Pr{tt(,u, n,< o)
holds.
3) If p is Ramsey and Prf:ht(u, < Wg,< 0), 0 < u, then Prﬁt(,u, < Ny, < 0).
Y a < p) disappear.

4) If p = w, in the “nice” version, the orders ( <}:

Proof. : Check it.

The following theorem is a quite strong positive result for y = w.
Halpern Lauchli proved 2.7(1), Laver proved 2.7(2) (and hence (3)), Pincus
pointed out that Halpern Lauchli’s proof can be modified to get 2.7(2), and
then Prght(w, n,< o) and (by it) Prit(w, n,< o) are easy.

Theorem 2.7. 1) If d € Col}(“~2), o < Vg, then there are Ty, ..., Tp_1 €
Pery(¥>2) and kg < k1 < ... < k¢ < ... and s < o such that for every
0 < w:ifpu € To,un € Thyoo sVt € Tne1y, N 1g(vm) = ke, then

m<n
d(vo, ..., Vp_1) = S.

2) We can demand in (1) that

SP(T}) = {ko. k1, ...}

3) Przm(w,n,a) for o < Ny.

n

4) prt (w, < Vg, (o in<w), (02 :n< w>) ifol < Vg and (02 : n < w)
diverge to infinity.
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Definition 2.8. Let d be a function with domain 2 [A]", A be a set of
ordinals, F be a one-to-one function from A to **)2, <} be a well ordering
of “2 for a < a(x) such that F(a) <!, F(B) <= a < 3, and ¢ be a cardinal.

1) We say d is (F,o)-canonical on A if for any ay < -+ < a,, € A,

Hd(ﬁl, s Bn) (F(B1),..., F(By)) similar to

(F(al),...,F(an))H <o.

2) We define “almost (F,o)-canonical” similarly using strongly similar
instead of “similar”.

3. Consistency of a strong partition below the continuum

This section is dedicated to the proof of

Theorem 3.1. Suppose A is the first Erdés cardinal, i.e. the first such that
A = (w1)5%. Then, if A is a Cohen subset of \, in V[A] for some N;—c.c.
forcing notion P of cardinality A, I-p “MAy, (Knaster) + 2% = \” and:

1) IFp “X— [Ni]j,)” for suitable h : w — w (explicitly defined below).
2.) In V¥ for any colorings d,, of \, where d,, is n-place, and for any diver-
gent (o, : n < w) (see below), there is a W C X, |W| = Ry and a function

F : W — “2 such that: d, is (F,o,) — canonical on W for each n.
(See definition 2.8 above.)

Remark 3.2. h(n) is n! times the number of u € [“2|" satisfying (if
M, 72, M3, M4 € u are distinct then sp(ni,m2), sp(ns,ns) are distinct) up to
strong similarity for any nice ( <!: a < w).

2) A sequence (0, : n < w) is divergent if Vm 3k Vn > k o, > m.

Notation 3.3. For a sequence a = («a;, ef : i < a), we call b C « closed if

(ii) ifi < o, ef =1 and sup(bN i) =i theni € b.
Definition 3.4. Let & be the family of Q = (P, Qj, aj,ef 1 j<a,i<aq)

such that

*
J
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(a) a; C1i, |a;| <Ny,

(b) a; is closed for {aj, €] : j < i), ef € {0,1}, and [e] =1 = cfi=1N]

(c) P; is a forcing notion, Q) = is a Pj-name of a forcing notion of power Ry
with minimal element () or (; and for simplicity the underlying set of
Qj is C [w1]<N0 (we do not lose by this).

(d) Ps = {p : p is a function whose domain is a finite subset of § and for
i € dom(p), IFp, “f(i) € Qi”} with the order p < q if and only if for
i € dom(p), qli IFp, “p(i) < q(3)”.

(e) for j < i, Qj is a Pj-name involving only antichains contained in
{p e P; : dom(p) C a;}.

For p € P, j < i, j & domp we let p(j) = (). Note for p € P;, j < i,
plj € P;

Definition 3.5. For Q) € & as above (so a = 1g(Q)):
1) for any b C B < « closed for (a;,el : i < [5) we define P5™ [by

i
simultaneous induction on f3]:

={p € P :domp Cb, and for i € domp, p(i) is a canonical name}

ie., for any x, {p € Py* : plkp, “p(i) = x” or pI-p, “p(i) # x” } is a predense
subset of P;.

2) For QQ as above, a = 1g(Q), take Q|8 = (P; Q..aj i< p,j<p) for
B < « and the order is the order in P, (if § > « Q[B =Q).

3) “b closed for QQ means “b closed for {(a;, e} :i <lgQ)”.

’L

Fact 3.6. 1) if Q € & then Q[ € .
2) Suppose b C ¢ C 8 < 1g(f), b and c are closed for Q € 8.

(i) If p € PS™ then plb € P".
(ii) If p,q € P and p < q then p[b < q]c.
(iii) P oPs. 3)1gQ is closed for Q.
4) if Q € R, a =lgQ then P is a dense subset of P,.
5) If b is closed for Q, p,q € PlcgnQ, p < qin B, g andi € domp then qla; IFp,
D) < (i) hence I pen (i) <g, 4(i)”"
Definition 3.7. Suppose W = (W, <) is a finite partial order and Q € f.
1) INw (Q) is the set of b-s satisfying («)—(vy) below:
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() b= (b, : w € W) is an indexed set of Q-closed subsets of 1g(Q),

(B) W = “wy <ws” = by, C by,

(7) € € by, Nby,, w1 < w, wy < w then (Ju € W)( € by Au < wiAu < wa.
We assume b codes (W, <).
2) For b € INw(Q), let

def

Q] =

with ordering Q[b] |= p' < p? iff \cy Py < P2y
3) Let & be the family of Q € & such that for every 8 < lg(Q) and (Q!3)-
closed b, Pg and Pg/P" satisfy the Knaster condition.

{pw :weW) :p, € B2 W E w <ws = pu, [buw, = Puw, |}

Fact 3.8. Suppose Q € &', (W, <) is a finite partial order, b € I Ny (Q)
and p € QI[b]. o
1) Ifw e W, py, < q € P" then there is 7 € Q[b], ¢ < 1y, p < T, in fact

pu(Y) if v € Dom p,, \ Dom ¢

pu(y) & q(v) ify € b, N Domq and for some v € W,
v<u,v<wand~yEb,

Pu(7) if v € b, Ndom q but the previous case fails

2) Suppose (W- §) is a submodel of (W3, <), both finite partial orders,
bt € INw,(Q), b, = b2, for w € Wy.

(a) Ifg € Q[b?] then <qw:w€W1) Q[b'].
(B) If p € Q[b'] then there is ¢ € Q[b?], gI|W1 = b, in fact q,(7) is pu(7y) if
u € Wy, v € by, u < w, provided that

() if wy,wy € Wi, w € Wy, w1 < w, we < w and ¢ € by, N by, then for
somev € Wi, ¢ € by, v < wy, v < wa.

(this guarantees that if there are several u’s as above we shall get the same
value).

3) If Q € &' then Q[b] satisfies the Knaster condition. If () is the minimal
element of W (i.e. u € W = W = 0 < u) then Q[b |/ Py, also satisfies the
Knaster condition and so (©Q[b], when we identify p € P with (p : w €

w).

Proof. 1) It is easy to check that each r,(7) is in P5™. So, in order to prove
7 € Q[b], we assume W |= uq < ug and has to prove that 7, [b,, = ry,. Let
¢ € by,-

First case: ¢ ¢ Dom(p,, ) UDomg.
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So ¢ ¢ Dom(r,,) (by the definition of r,,) and ( ¢ Domp,, (as
p € Qb)) hence ¢ ¢ (Domp,,) U (Domgq) hence ¢( ¢ Dom(r,,) by the
choice of r,,, so we have finished.

Second case: ( € Dom p,, \ Domg.

As p € Q[b] we have p,, (¢) = pu,(¢), and by their definition, ., (¢) =
Puy (C)? Tug (C) = Pus (C)

Third case: ¢ € Domq and (v e W) (¢ € by Av <uj; Av < w). By the
definition of r, (¢), we have r,, (¢) = pu, ({)&q((), also the same v witnesses
Tus (€) = Puy (€)&q((€), (as ¢ € byAv < us Av < w = ( € byAv <usAv < w)
and of course py, (¢) = pu,(¢) (as p € Q[b]).

Fourth case: ( € Domg and ~(3v e W) (( € by ANv <up Av < w).

By the definition of r,,, (¢) we have r,, (¢) = pu, (). It is enough to prove
that 74,(() = pu,(¢) as we know that p,, () = pu,(¢) (because p € Q[b],
u1 < ug). If not, then for some vy € W, ¢ € by, Avg < uz Avg < w. But
b € INy (Q), hence (see Def. 3.7(1) condition (v) applied with ¢, wy, wa, w
there standing for (, vg, uy, us here) we know that for some v € W, ¢ €
vAv <wvgAv <wup. As (W, <) is a partial order, v < vy and vy < w, we
can conclude v < w. So v contradicts our being in the fourth case. So we
have finished the fourth case.

Hence we have finished proving 7 € Q[E] We also have to prove g < r,,,
but for ¢ € Domgq we have ¢ € b, (as ¢ € PS" is on assumption) and
rw(€) = q(¢) because r,(¢) is defined by the second case of the definition
as (FueW) ((ebyAhv<wAv<w),ie v=uw.

Lastly we have to prove that p < 7 (in Q[b]). So let u € W, ¢ € Dom p,,

and we have to prove ry [ ¢ IFp, “pu(¢) <p, ru(€)”. As r4(¢) is pu(C) or
pu(€)&q(¢) this is obvoius.

2) Immediate.

3) We prove this by induction on |W|.

For [W| = 0 this is totally trivial.

For [W| = 1,2 this is assumed.

For |[W| > 2 fix p' € Q[b] for i < w;. Choose a maximal element v € W and

let ¢ = {bw : W | w < v}. Clearly c is closed for Q.

We know that P", Py/P¢" are Knaster by the induction hypothesis.
We also know that p!|c € P for i < wy, hence for some r € P,

def [ . ; .
riE”7 A = {z <wip:pylce GPgn} is uncountable”
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hence
I ”there is an uncountable A' C Asuch that
[i,j € A" = pl, pl are compatible in Pg"/ GP@] .
Fix a PS"-name A' for such an A'.
Let A2 = {z <wp:dge PM gl e Al}. Necessarily
|A2] = Ny, and for i € A? there is ¢¢ € P, ¢ I+ i € A', and

w.l.o.g. p [c < ¢'. Note that p! &q' € P,

For i € A? let, 7 be defined using 3.8(1) (with p?, p &q*). Let Wy =
WA {v}, V' = (b, : we Wy).

By the induction hypothesis applied to Wy, ¥, 7 | W, for i € A2
there is an uncountable A3 C A? and for i < j in A3, there is 77 € Q[b'],
W, <759 and 7 [W, < 757, Now define ri’j € P as follows: its domain
is J{domri : W= w < v}, riJ[(domrif) = ri;J whenever W = w < v.
Why is this a definition? As if W = wy < v Awy < v, ( € by, A( € by,
then for some u € W, u < wy A u < ws and ¢ € u. It is easy to check that
rid € P Now 1% IFpen “pl , pj. are compatible in P /P

So there is r € Pysuch that rid <o pgv <, pZU < r. Asin part (1) of
3.8 we can combine r and 7/ to a common upper bound of p*, p’ in Q[b].
|

Claim 3.9. Ife= 0,1 and ¢ is a limit ordinal, and P;, Qi, a;, el (i < 0) are
such that for each o < 6, Q® = <Pi,§2j,ozj,e;‘ 11 < a, j < a) belongs to
R, then for a unique Ps, Q = (P;, Qj,aj,e; 14 <6, j<0d) belongs to &.

Proof. We define Ps by (d) of Definition 3.4. The least easy problem is to
verify the Knaster conditions (for Q € &!). The proof is like the preservation
of the c.c.c. under iteration for limit stages. =

Convention 3.9A. By 3.9 we shall not distinguish strictly between (P;, Qj,
aj,ej 11 <6, j<d)and <P¢,Qi,ai,e* 11 < 0).

i
Claim 3.10. IfQ € &, a = 1g(Q), a C « is closed for Q, |a| < Ny, Ql is

a P -name of a forcing notion satisfying (in V¥« ) the Knaster condition,
its underlying set is a subset of [w1]<N0 then there is a unique Q' € &Y,

lg(Q) =a+1,Q,=Q,Qla=Q.
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Proof. Left to the reader. m

Proof of Theorem 3.1.

A Stage: We force by 8L, = {Q € &' : 1g(Q) < \,Q € H(\)} ordered by
being an initial segment (which is equivalent to forcing a Cohen subset of
A). The generic object is essentially Q* € &)}, lg(Q*) = A, and then we force
by Py = lim Q*. Clearly ﬁé y is a A-complete forcing notion of cardinality
A, and P, satisfies the c.c.c. Clearly it suffices to prove part (2) of 3.1.
Suppose d,, is a name of a function from [A]" to &, for n < w, g, < w,
(on : n < w) diverges (i.e. Vm 3k Vn >k 0, > m) and for some Q° € &L ,.

Q° g1 “thereis p € Py [plFp, (d
counterexample to (2) of 3.17].

L in<w)isa

In V we can define (Q¢ : ( < \), Q¢ € AL, (<¢= Q¢ = QNg(Q%),
in Q¢*1, e;‘g@g) =1, Q°*! forces (in ﬁ1<)\) a value to p and the P/\—namies
d 1¢, a,,k, for n < w, ie. the values here are still Py-names. Let Q*
be the limit of the Q%-s. So Q* € &', 1g(Q*) = A\, Q* = <PZ-*,Q;,0¢;?,6;T :
i < A, j <), and the P{-names d, , ¢, , k, are defined such that in Vs,
d., g, k, contradict (2) (as any P;-name of a bounded subset of A is a

P . -name for some £ < \).

1g(Q¢)

B Stage: Let x = xTand <} be a well-ordering of H(x). Now we can apply
A = (w1)5¥ to get §, B, Ny (for s € [B]<Y°) and hy; (for s,t € [B]<N0, |s| =
|t|) such that:

a) B C A, otp(B) = wy, sup B = 4,

—

(b) Ny < (H(x),€,<}), Q* € Ny, (d g, k, :n <w) € N,
() NeN Ny = Nyny,
(d) NN B =s,
(e) if s=tNa,t € [B]<" then N, N\ is an initial segment of Ny,
(f) hy, is an isomorphism from N; onto Ny (when defined)
(g) hys = hs_tl
(h) po € Ny, po lFp, “(d,,,2,.k, : n <) is a counterexample”,
)

—~
e

w1 € Ny, |Ns| =Ny and if 7y € Ng, c¢f v > Ny then cf(sup(y N Ny)) =
w1.
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Let Q = Q*1§, P = P} and P, = P (for @), where a is closed for Q.

Note: Py NNy = PN Ng = Psyprnn, N Ns = PsNNg. Note also v € AN N
= ai‘y C AN N;.

C Stage: It suffices to show that we can define 95 in V5 which forces
a subset W of B of cardinality ¥y and F' : W — “2 which exemplify the
desired conclusion in (2), and prove that Q satisfies the Ny-c.c.c. (in Vs
(and has cardinality ®;)) and moreover (see Definitions 3.4 and 3.7(3)) we
also define a5 = Use[B}<No Ng,es =1, Q = QA(Pg‘,Qé,a(;,e@ and prove
Q' € /.
We let d(u) = d,,(u).
Let F : w; — “2 be one-to-one such that Vn € “>2 o < wy [n<aF (a)].
(This will not be the needed F', just notation).
For s,t € [B]<Y, we say s =% t if |s| = |t| and V€ € s, V( € t[¢ =
h, (¢) = F(§)In = F({)In]. Let I, = I(F) = {s € [B]<™ : (V¢ # £ € 5),
[F(C)In # F(§)In]}.
We define R,, as follows: a sequence (ps : s € I,) € R,, if and only if
(i) for s € I, ps € Py N N,
(ii) for some cs we have pg IF “d(s) = ¢s”,
(iii) for s,t € I, s =% t = hy(pt) = ps,
(iV) for s,t € I, ps[Nsnt = Pt Nsne-
R, is defined similarly omitting (ii).
For x = (ps : s € I,) let n(x) = n, p! = ps, and (if defined)
c¥ = c¢s. Note that we could replace x € R, by a finite subsequence.

Let R = U, ., Bn, B~ = U, <, R,. We define an order on R™ : z < y if

and only if n(z) < n(y), and [s € L,z At € Iy As Ct = pt < pfl.

D Stage: Note the following facts::

D(«) Subfact: If x € R, t € I, and pf < p' € P} N Ny, then there is y
such that z <y € R, p{ = p".

Proof. We let for s € I,

def
pg = &{hslytl(pl [Ntl) ps1 S8t St E%‘ tl}&pg'

(This notation means that p? is a function whose domain is the union
of the domains of the conditions mentioned, and for each coordinate we
take the canonical upper bound, see preliminaries.) Why is p¥ well defined?
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Suppose 8 € Ny N A (for B € A\ Ng, clearly p¥(8) = 03), s¢ C s, te C t,

s¢ =t for £ =1,2 and 8 € Dom [hsm (p* the)} and it suffices to show

that p?(ﬁ)a h81,t1 (p1 rNt1)(/8)7 hSz,t2 (pl rNt2)(B) are pairwise Comparable.
Let v = N{v € [B]<Y : B8 € N,}, necessarily v C s; N sy, and let
Up = hs_;tg(u). As sp,ty,t € I, s¢ =% tp and uy C tp C ¢, necessarily

def _
u; = us. Thus 7 = h;’})(ﬁ) = hs;té
equal.

Now pg(8) = pu(B) = huo(pS(7)) < b, e, ((PF [Nt ) (7)) = (hsz,u(pff

M) )(9)

We leave to the reader checking the other requirements. m

(B) and so the last two conditions are

D(pB) Subfact: If v € R, t € I then |J{p? : s € I,, s C t} (as union of
functions) exists and belongs to Py N Nj.

Proof. See (iv) in the definition of R;,. =

D(v) Subfact: If x <y, x € R,, y € R,,, theny € R,,.
Proof. Check it. =

D(d) Subfact: If z € R,,, n < m, then there is y € R,,, x < y.

Proof. By subfact D(3) we can find 2! = (p! : t € I,,) € inR,, with
x < x'. Using repeatedly subfact D(a) we can increase x! (finitely many
times) to get y € R,,. W

D(e) Subfact: If x € R, s,t € I, s = t, p? <11 € PY NN, pf <1y €

PNy, (V€ € t) [F(Q)(n) # (F(hst(€)))(n)] (or just pg, Ts1 = . (pf, [t1)
def def

where £, % {¢ € £ : F(€)(n) = (F(ha(©))(m)}, 51 < {h(6) : € € 1)),

then there is y € R, 41, © < y such that 71 = p¥ and ro = py.
Proof. Left to the reader. m

E Stage I

T We will have T C “Z2 gotten by 2.7(2) and then want to get a subtree with as

few as possible colors, we can find one isomorphic to w>2, and there restrict ourselves to

UnTr.
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We define: T} C 229 by induction on k as follows:

Ty ={0, (1)}
Ty ={v:veTyor 2" <lg(v) <2" v2% € T} and
28 <i< 2" Av()=1]=i=28+ (> w(i)2™)]}

m<2k

We define

Tr Emb(k,n) = {h . h a is function from T} into =2 such that
for v,p € Ty, :
[n=v & h(n)=hv)
m<v & h( ) <h(v)]
lg(n) = 1g(v) = lg(h(n) = lg(h(v)]
v =n"(i) = (h(¥)[lg(h(n))]
(

[Ig(n) = ¥2 = I(h(n)) = 1}

I
=

T(k,n) ={Rang h : h € Tr Emb(k,n)},
= JT(k,n),
k
= UT(k,n).
k

For T € T(k, ) let n(T) be the unique n such that 7' € T(k,n) and let
Br ={a € B: F(a)[n(T) is a maximal member of T'},

fsp :{thT:netAuetAn#V=>nfn(T)#an(T)}v
Or :{<ps : SGfST> :psGPHNS,[Sgt/\{S,t}ngijs:ptrNs]}'

Let further
Or =\ J{Or : T € T(k, %)}

e =|Jo
k

For p € ©, n; = n(p), T} are defined naturally.
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For p,q € ©, p < q iff n; < ng and for every s € fst, we have p, < gs.
F Stage: Let g : w — w, g € N, g grows fast enough relative (o, : n < w).
We define a game Gm. A play of the game lasts after w moves, in the n*®
move player I chooses p" € ©,, and a function h,, satisfying the restrictions
below and then player II chooses g,, € ©,,, such that p,, < @, (so T, = T3,).
Player I loses the play if sometimes he has no legal move; if he never loses,
he wins. The restrictions player I has to satisfy are:

(a) for m < n, gm < Pn, py forces a value to g[(n + 1),

(b) hy, is a function from [Br, ]9 to w,

(c) if m < n = hy, h,, are compatible,

(d) If m <n, £ < g(m), s € [Br, ]*, then p? I d(s) = hy(s),

(e) Let s1,s2 € Domh,. Then h,(s1) = h,(s2) whenever s1,sy are
similar over n which means:

(i) (F (Hgf;(o)) mfp"] = (F(Q)) Infp"] for ¢ € 51,

(i) HOL preserves the relations sp (F(Cl), F(Cg)) < sp (F({g),

52,51

F(C4)) and F(§3)<sp (F(gl),F(@))) — i (in the interesting
case (3 # (1, (2 implies i = 0).

G Stage/Claim: Player I has a winning strategy in this game.

Proof. As the game is closed, it is determined, so we assume player II has

a winning strategy , and eventually we shall get a contradiction. We define

by induction on n, 7” and ®" such that

(a) 7" € Ry, 7" < 7ML

(b) ®" is a finite set of initial segments of plays of the game,

(c) in each member of ®™ player II uses his winning strategy,

(d) if y belongs to ®™ then it has the form (p¥¢, h¥¢, g%* : £ < m(y)); let
hy = h¥" and T, = Tgy m(y); also Ty CnZ 2, q¥f <7 for s € fsr,-

(e) &, C ®,11, @, is closed under taking the initial segments and the
empty sequence (which too is an initial segment of a play) belongs to
(I)().

(f) For any y € ®,, and T,h either for some z € ®p4q, n, = ny, + 1,
y=2[(ny+1), T, =T and h, = h or player I has no legal (n, + 1)**
move p",h" (after y was played) such that Tpn = T, h™ = h, and
p =71l for s € fsp (or always < or always >).
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There is no problem to carry the definition. Now (7 : n < w) define a

function d*: if n1,...,nr €™ 2 are distinct then d*((n1,...,nx)) = c iff for
every (equivalently some) (1 < -+ < (i from B, 1y < F({,) and r’{“Cl _____ o) I+
“d, ({C1y--- C}) ="

Now apply 2.7(2) to this coloring, get T* C“~ 2 as there. Now player
I could have chosen initial segments of this 7* (in the n*" move in ®,,) and
we get easily a contradiction. =

H Stage: We fix a winning strategy for player I (whose existence is guar-
anteed by stage G).

We define a forcing notion Q*. We have (r,y, f) € Q* iff
(i) re P
(i) y = (%, h*,q" : £ < m(y)) is an initial segment of a play of Gm in which
player I uses his winning strategy
(iii) f is a finite function from B to {0,1} such that f~*({1}) € fsr, (where
T, = Tymin ).

. _ym(y)
(V) 7= a;" 1y

The Order is the natural one.

I Stage: If J C P5} is dense open then {(r,y, f) € Q" : r € J} is dense in
Q"
Proof. By 3.8(1) (by the appropriate renaming). m

J Stage: We define Q5 in V% as {(r,y,f) € Q* : r € Gp, }, the order is
as in Q*.

The main point left is to prove the Knaster condition for the partial

ordered set Q* = Q" (P, Q(;’ as, es) demanded in the definition of &!. This
will follow by 3.8(3) (after you choose meaning and renamings) as done in
stages K,L. below.
K Stage: So let i < 0, cf(i) # Ry, and we shall prove that P(;;l/Pi satisfies
the Knaster condition. Let p, € Pj,, for « < wi, and we should find
p € P;, p lkp, “there is an unbounded A C {a : po i € GPi} such that for
any o, B € A, pa,pg are compatible in P§<+1/Qpi”.

Without loss of generality:

(a) Pa € szl
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(b) for some (i, : a < wi) increasing continuous with limit & we have:
ig > 14, cfiq # N1, pald € Pi,, Palia € Pjy.
Let pl, = p*lio, P = Pald = paliat1, Pal(8) = (Ta, Yo fa), so without
loss of generality
(€) Ta € Pi 1, Talia € Py, m(ya) = m*,
(d) Dom f, CigU [in,ia+1),
(e) falio is constant (remember otp(B) = wy,
(f) if Dom fo = {j§,...Ji 1} then ko = k, [ji < ia & £ < k7],
Nveie 38 = 3% FGE) = FGD), PG Imlya) = F(7) Im(ys).
The main problem is the compatibility of the g¥«™¥«)  Now by the
definition ©, (in stage E) and 3.8(3) this holds. m

L Stage: If ¢ C §+ 1 is closed for Q*, then Py, /P:™ satisfies the Knaster
condition.

If c is bounded in d, choose a successor i € (supc,d) for Qi € K. We
know that P;/Pg" satisfies the Knaster condition and by stage K, Py, ,/P;
also satisfies the Knaster condition; as it is preserved by composition we
have finished the stage.

So assume c¢ is unbounded in § and it is easy too. So as seen in stage J,
we have finished the proof of 3.1. =

Theorem 3.11. If A\ > 1, P is the forcing notion of adding A\ Cohen reals
then

()1 in VP ifn <wd: [NS" = o, 0 <N, then for some c.c.c. forcing
notion ) we have g ‘“there are an uncountable A C X and an one-
to-one F' : A —*“ 2 such that d is F-canonical on A” (see notation in
§2).

(%)2 ifin V, X > 1 —vysp (K)r, (see [Sh289]) and in VE, d : [u]=" — o,
o < N then in VT for some c.c.c. forcing notion Q we have IFq “there
are A € [p)® and one-to-one F' : A —% 2 such that d is F-canonical
on A” (see §2, ).

(¥)3 ifin V, X > p—wsp (N1)§, and in VE d : [u]<" — 0, 0 < Rg then in
VP for every a < wy and F : o« —* 2 for some A C p of order type
aand F' : A =¥ 2 F'() o F(otp(ANpB)), d is F'-canonical on A.

(¥)4 in VP 2% — (a,n)? for every a < wy, n < w. Really, assuming V |=
GCH, we have N,;; — (v, n) see [Sh289].
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Proof. Similar to the proof of 3.1. Superficially we need more indiscerni-

bility then we get, but getting (M, : u € [B]=") we ignore d({a, 3}) when
there is no u with {«, 8} € M,,.

Theorem 3.12. If X is strongly inaccessible w-Mahlo, u < A, then for some
c.c.c. forcing notion P of cardinality \, V¥ satisfies

(a) MA,
(b) 2% = X\ = 2% for k < A
(¢) A= [R4]] ) forn <w, o <R, h(n) is as in 3.1.

Proof. Again, like 3.1.

4. Partition theorem for trees on large cardinals

Lemma 4.1 Suppose u > o + Xg and

(), for every u-complete forcing notion P, in V¥, p is measurable.
Then

(1) for n < w, Pr({ht(u,n, o).
<w
(2) PT,{M(M < Ng,0), if there is X > j, A — (/ﬁ) .
2

(3) In both cases we can have the Prf:hm version, and even choose the
(<%: a < p) in any of the following ways.
(a) We are given (<%: a < p), and we let for n,v €*2NT, a € SP(T)
(T is the subtree we consider):

n <j v if and only if clpy(n) <§ clpy(v) where 8 = otp(aNSP(T))
and clpr(n) = (n(j) : j € 1g(n), 5 € SP(T)).
(b) We are given (<%: o < p), we let that for v,n €* 2NT, o € SP(T):
n <} v ifand only if n|(f + 1) <%+1 v[(8+ 1) where 8 = sup(an SP(T)).

Remark. 1) (x), holds for a supercompact after Laver treatment. On
hypermeasurable see Gitik Shelah [GiSh344].

2) We can in (x), restrict ourselves to the forcing notion P actually used.
For it by Gitik [Gi] much smaller large cardinals suffice.

3) The proof of 4.1 is a generalization of a proof of Harrington to Halpern
Lauchli theorem from 1978.



Paper Sh:288, version 1993-08-27_10. See https://shelah.logic.at/papers/288/ for possible updates.

22
Conclusion 4.2. In 4.1 we can get Pr}{t(,u, n,o) (even with (3)).

Proof of 4.2. We do the parallel to 4.1(1). By (x),, p is weakly compact
hence by 2.6(2) it is enough to prove Prght(u, n,o). This follows from 4.1(1)
by 2.6(1). =

Proof of Lemma 4.1. 1), 2). Let k < w, o(n) < p, d, € Coly,,)(#2) for
n < K.

Choose A such that A — (u7)52% (there is such a A\ by assumption
for (2) and by k < w for (1)). Let @ be the forcing notion (#~2,<), and
P = Py be {f : dom(f) is a subset of A of cardinality < u, f(i) € Q}
ordered naturally. For i ¢ dom(f), take f(i) =<>; Let . be the P-name
for {f(i) : f € Gp}. Let D be a P-name of a normal ultrafilter over w (in
V). For each n < w, d € Colj,, (*>2), j < o(n) and u = {ag,...,an 1},

where ag < -+ < ap_1 < A, let Aé(u) be the Py-name of the set

Afl(u) = {z <p:{n [i:{<n)are pairwise distinct and

g
Jj= d(nao fi, s Nag, g fl)}

So Azl(u) is a Py-name of a subset of p, and for j(1) < j(2) < o(n) we have
IFp, “Aé(l)(u) N AZI(Q)(U) =0, and U; <) Al (u) is a co-bounded subset of
p’. Aslkp “D is p-complete uniform ultrafilter on p1”, in VP there is exactly
one j < o(n) with A’ (u) € ®. Let zd(u) be the P-name of this j.

Let I;(u) € P be a maximal antichain of P, each member of I;(u)
forces a value to j (u). Let Wy(u) = U{dom(p) : p € l4(u)} and W (u) =
U{Wa, (u) : n < k}. So Wu(u) is a subset of A of cardinaltiy < p as well as
W (u) (as P satisfies the u*-c.c. and p € P = |dom(p)| < ).

As A = (uth)52% | d, € Coly (#>2) there is a subset Z of A of
cardinality p** and set W+ (u) for each u € [Z]<" such that:
(i) WH(up) N WH(uz) = W (ug Nug),
(i) W(u) C Wt(u) if u € [Z]<F,
(iii) if |u1| = |uz| < Kk and w1, us € Z then W (uy) and W™ (uz) have the
same order type and note that H [uq,us] Lof HVOV]i(ul),WﬂuQ)’ induces

naturally a map from P | ug o {p € P : dom(p) C Wt(u1)} to
Plus & {pe P : dom(p) C W(us)}.
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(iv) if ug,ug € [Z]<", |u1| = |uzg| then Huy,us] maps I4, (u1) onto Iy, (us2)
and: ¢ IF “id(ul) = j"< Hluy,us)(q) IF “id(uQ) =5,

(v) if uy C ug € [Z]%F, ug C ug € [Z]<", |ug| = |up|, HOFE, maps uy onto

us then Hluy,us] C Hug, uy).

Let (i) be the i*" member of Z.

Let s(m) be the set of the first m members of Z and R,, = {p € P :
dom(p) € W (s(n)) = Uscsmy W (0}

We define by induction on a < p a function F, and p, € R), for

u€Ugo ,[72]<% where we let ()5 be the empty subset of [*2] and we behave
as if [3 # v = 03 # 0,] and we also define {(5) < p, such that:

(i) Fy is a function from *~2 into #~2, extending F for 8 < «,
(i) F, maps #2 to ¢(®2 for some ¢(B) < pand B; < B2 < a = ((B1) <
¢(B2),
(i) n<v €*> 2 implies F,(n) < F,(v),
(iv) for n €% 2, B+ 1 < a and ¢ < 2wehaveF,(n) () < F,(n" (L)),
(V) pu € Ry whenever u € [P2]™, m < k, 8 < « and for u(1) € [Z]™ let
Puu(y = Hls(|ul), u(1)](pu) -
(vi) n €72, B < a, then pg,;y(min Z) = F,(n).
(vii) if B < o, u € [2]", n < K, h : u — s(n) one-to-one onto (not necessarily
order preserving) then for some c(u, h) < o(n):

U pt,h”(t) |Fp>\ “an((]’y(o), ey U'\/(n—l)) = C(U, h)”,

tCu
(Note: as p, € Ry, the domains of the conditions in this union are
pairwise disjoint.)

(viii) If n,u, B, h are as in (vii), u = {vo, ..., Un—1}, e <pr €7 2, <y < «
then d,,(Fu(po),-- -, Fa(pn-1)) = ¢(u, h) where h is the unique function
from u onto s(n) such that [h(ve) < h(vm) = pe <% pm]-

(ix) f B <y <a,vi,...,0p—1 €7 2, n < K, and vy [B,...,vp—1 [ are
pairwise distinct then:

p{ugf,@,...,l/n[/j} - P{vo,ccvm_1}-

For o limit: no problem.

For a + 1, a limit: we try to define Fy,(n) for n € 2 such that s, Fa+1(n]
B) < Fo(n) and (viil) holds. Let ¢ = Uz, ((B), and for n € 2, F(n) =
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def
Upca Fa(n1B) and for u € 2217, % < Ufp0, o+ B < au ful = [{v]

B :veu}l}. Clearly p)) € Ry
Then let h :* 2 — Z be one-to-one, such that n <} v < h(n) < h(v) and
let p = U0,y ull) € 12057, w e [*2<%, |u(1)| = Jul, h(u) = u(1)}.
For any generic G C P, to which p belongs, 8 < « and ordinals
ip < -+ < in,_1 from Z such that (h=1(i,)|B : £ < n) are pairwise distinct
we have that

B{ie:€<n},,8 = {§ <p: dn(nio M€y Nin_1 rf) = C(“: h*)}a

belongs to D[G], where u = {h™1(if) |8 : £ < n} and h* : u — s(|u]) is
defined by h*(h=1(i;) | 8) = Hgikn}’s(n) (i¢). Really every large enough
B < p can serve so we omit it. As D[G] is p-complete uniform ultrafilter on
w, we can find € € (¢, k) such that £ € B, for every u € [*2]", n < k. We
let for v €* 2, F,,(v) = U [G]1€, and we let p, = p° except when u = {v},

then:
ORI )
Pu(f) {Fa+1(7/) i = (0)

For a4 1, a is a successor: First for n €¥~1 2 define F(n"(£)) = Fn(n)"{¢).
]

Next we let {(u;, h;) =i < i*}, list all pairs (u, h), u € [*2]<", h:u — s(|ul),
one-to-one onto. Now, we define by induction on i < i*, p! (u € [*2]<F)
such that :

(a) pi, € Rjy|;

(b) p, increases with i,

(c) for ¢ + 1, (vii) holds for (u,, h;),

(d) if vy, €* 2form <n,n <k, (Un[(a—1) : m < n) are pairwise distinct,

then i, ja—1) im<n} < Plo,, cmeny
(e) if v €*2, v(aw— 1) ={ then p?y}(O) = F,(v[(a—1))"(0).
There is no problem to carry the induction.
Now F,i1 [ *2 is to be defined as in the second case, starting with
1=+ Py (0)-
For o = 0. 1: Left to the reader.
So we have finished the induction hence the proof of 4.1(1), (2).
3) Left to the reader ( the only influence is the choice of h in stage of the

induction). m
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5. Somewhat complimentary negative partition relation in
ZFC

The negative results here suffice to show that the value we have for 2%¢ in
§3 is reasonable. In particular the Galvin conjecture is wrong and that for
every n < w for some m < w, N, A [Ny

See Erdos Hajnal Mété Rado [EHMR] for
Fact 5.1. If 2<F < A < 2Ky A [u]? then \ 4 [(2<#)T]n+L

This shows that if e.g. in 1.4 we want to increase the exponents, to 3
(and still u = p=*) e.g. pu cannot be successor (when o < Xg) (by [Sh276],

3.5(2)).

Definition 5.2. Pr,,(\, p1,0), where ¢ = (0, : n < w), means that
there are functions F, : [A\]™ — o, such that for every W € [A\* for
some n, F/'([W]™) = o(n). The negation of this property is denoted by
NPrp(\ 1,5).

If 0,, = 0 we write o instead of (o, : n < w).

Remark 5.2A. 1) Note that A — [p|5% means: if F': [\|<¥ — o then for
some A € [N*, F"([A]<¥) # 0. So for A > u > 0 = Ro, A 4 [p]s¥, (use
F : F(a) = |a|) and Pry,(X\, p, o) is stronger than X 4 [p]5%.

2) We do not write down the monotonicity properties of Pry, — they are

obvious.

Claim 5.3 1) We can (in 5.2) w.lo.g. use F, ,, : [\|" = o, for n,m < w
and obvious monotonicity properties holds, and A > p > n.
2) Suppose NPry,(\ u, k) and k 4 [K]} or even k /4 [k]$¥. Then the

following case of Chang conjecture holds:

(*) for every model M with universe A\ and countable vocabulary, there is
an elementary submodel N of M of cardinality p,

INNEk| <k

3) IfNP’I"np()\, Nl, No) then (/\7 Nl) — (Nl, No)

Proof. Easy.



Paper Sh:288, version 1993-08-27_10. See https://shelah.logic.at/papers/288/ for possible updates.

26
Theorem 5.4. Suppose Pry,(Xo, i1, No), p regular > Xy and Ay > Ao, and
no p' € (X, A1) is p'-Mahlo. Then Pry, (A1, p1, Ro).

Proof. Let xy = Js(M\)*, let {F?, : m < w} list the definable n-
place functions in the model (H(x), €, <}), with Ao, , A1 as parameters,

let Fﬁ,m(ao,...,an_l) (for ag,...,an—1 < A1) be F}im(ag,...,an_l) if
it is an ordinal < A; and zero otherwise. Let F, (co,...,an—1) (for
ag,...,an_1 < A1) be Fp  (ag,...,an_1) if it is an ordinal < w and zero

otherwise. We shall show that F}, ,,(n,m < w) exemplify Pry,(A1, @, Ro)
(see 5.3(1)).

So suppose W € [A\1]* is a counterexample to Pr(Ay, i, Np) i.e. for no
n,m, Fl!  ([W]") = w. Let W* be the closure of W under F, (n,m < w).
Let N be the Skolem Hull of W in (H(x), €, <}), so clearly N N Ay = W*.
Note W* C Ay, [W*| = u. Also as cf(u) > Ro if A C W*, |A| = p then for
some n,m < w and u; € [W]" (for i < p), F, ,,(u;) € Aand [i < j < p =
Fp o (wi) # Fy o (ug)]. Tt is easy to check that also W' = {F} | (u;) @ < p}
is a counterexample to Pr(Ai, p, o). In particular, for n,m < w, W, =
{F, ,(u) : u e [W]"} is a counterexample if it has power . W.lo.g. Wis a

counterexample with minimal ¢ dof sup(W) = U{a+1 : a € W}. The above
discussion shows that |[W* Nal < p for a < §. Obviously c¢fd = put. Let
(cv; =1 < p) be a strictly increasing sequence of members of W*, converging
to d, such that for limit ¢ we have a; = min(W* —J,_,(a; +1). Let
N = Ui<u N;, N; < N, |N;| < p, N; increasing continuous and w.l.o.g.
Ni Né=NnN Q.

ao Fact: 6 is > Ag.
Proof. Otherwise we then get an easy contradiction to Pr(Ag,pu,0)) as
choosing the Fgm we allowed A as a parameter.

B Fact: If F' is a unary function definable in N, F'(«) is a club of « for every
limit ordinal a(< A1) then for some club C of p we have

(Vj € C\ {minC})(Fir < j)(Vi € (i1,7))[i € C = oy € F(a;)).
Proof. For some club Cy of p we have j € Cyp = (N;,{cy : 1 < j}, W) <
(Na{ai 11 < M},W)

We let C' = C|) = acc(C) (= set of accumulation points of Cp).

We check C' is as required; suppose j is a counterexample. So j =
sup(j N C) (otherwise choose iy = max(j N C)). So we can define, by
induction on n, i,, such that:
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(a) in <int1 <J
(b) i, & F(oy)
(c) (o, i, ) NF(aj) #0.

Why (C})? = “F(a;) is unbounded below a;” hence N = “F(a;) is
unbounded below «;”, but in N, {«; : i € Cy, i < j} is unbounded below
Oéj.

Clearly for some n,m,a; € W, ,,, (see above). Now we can repeat the

proof of [Sh276,3.3(2)] (see mainly the end) using only members of W,, ,,.
Note: here we use the number of colors being N.

B* Fact: Wolog the C in Fact 3 is p.
Proof: Renaming.

~ Fact: § is a limit cardinal.
Proof: Suppose not. Now § cannot be a successor cardinal (as c¢fd = p <
Ao < 9) hence for every large enough i, |a;| = |d], so [6] € W* C N and
|6]7 € W*.

So W*N 4| has cardinality < p hence order-type some v* < u. Choose
i* < p limit such that [j < i* = j +~* < i*]. There is a definable function
F of (H(x), €, <}) such that for every limit ordinal o, F'(«) is a club of a,
0€ F(a), if |a| < a, F(a) N |a] =0, otp(F(a)) = cf a.

So in N there is a closed unbounded subset C,,, = F'(;) of o of order
type < cf a; <[6], hence Cy; NN has order type < v, hence for i* chosen
above unboundedly many i < i*, a; € C,,.. We can finish by fact SF.

0 Fact: For each i < pu, oy is a cardinal.
Proof: If |a;| < i then |o;| € N;, but then |a;|T € N; contradicting to Fact
7, by which |a;|T < §, as we have assumed N; Nd = N N ;.

¢ Fact: For a club of i < p, a; is a regular cardinal.

(Proof: if S = {i : a; singular} is stationary, then the function a; — cf (o)
is regressive on S. By Fodor lemma, for some o* < 0, {i < p : cf o; < a*} is
stationary. As [N Na*| < p for some *, {i < p: cf a; = f*} is stationary.
Let Fi,,(a) be a club of a of order type cf(«), and by fact 8 we get a
contradiction as in fact 7.

¢ Fact: For a club of ¢ < u, «; is Mahlo.

Proof: Use Fy,,(a) = a club of o which, if « is a successor cardinal or
inaccessible not Mahlo, then it contains no inaccessible, and continue as in
fact .
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& Fact: For a club of ¢ < u, a; is ay-Mahlo.

Proof: Let F ,,,(0y(a) = sup{¢ : a is (-Mahlo}. If the set {i <yt : ; is not
a;-Mahlo} is stationary then as before for some v € N, {i : Fy 1, 0)(cs) = 7}
is stationary and let Fy ,,(1y(ca) — a club of a such that if a is not (v + 1)-
Mahlo then the club has no y-Mahlo member. Finish as in the proof of fact
). m

Remark 5.4.A. We can continue and say more.

Lemma 5.5 1) Suppose A > u > 6 are regular cardinals, n > 2 and

(i) for every regular cardinal k, if A\ > k > 0 then k / [9];‘*{)

(i) for some a(*) < p for every regular r € (a(*),A), k 7 [a()]7 )

Then

(a) X\ A [u]"t! where 0 = min{o(1),0(2)},

(b) there are functions dy : [N\|"*! — o(2), di : [\ — o(1) such that for
every W € [\J*, d{([W]3) = o(1) or dy([W]"*1) = 0(2).

2) Suppose A > p > 0 are regular cardinals, and

(i) for every regular k € [0, \), k /> [9]5(“{),

(ii) sup{r < A : & regular} # [u]g o).

Then

(a) X\ 4 [u]?>™ where 0 = min{o(1),0(2)}

(b) there are functions dy : [A\?* — o(1), da : [A\]*" — o(2) such that for

every W € [AJ*, d{([W1]3) = o(1) or dy([W]*" = o(2).

Remark. The proof is similar to that of [Sh276] 3.3,3.2.

Proof. 1) We choose for each i, 0 < i < \;, C; such that: if 7 is a successor
ordinal, C; = {i — 1,0}; if 7 is a limit ordinal, C; is a club of ¢ of order type
cfi, 0 € Oy, [cfi < i = cfi <min(C; —{0})] and C; \ acc(C;) contains only
successor ordinals.

Now for a < B, a > 0 we define by induction on /¢, 7[(6,04), v, (B, ),
and then (8, a), €(8, o).

(B) if v,/ (B, ) is defined and > « and « is not an accumulation point of
Cﬁ(,&a) then we let v,. (3, a) be the maximal member of Cﬁ(,@,a)

which is < a and v/, (8, ) is the minimal member of Cﬁ(,@,a) which
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is > « (by the choice of Cﬁ(ﬁ’a) and the demands on v, (3, @) they are
well defined).

So

(B1) (a) v, (B,a) < a < 7/ (B, a), and if the equality holds then ~/, (8, a)
is not defined.

(b) 711 (B, @) </ (B, @) when both are defined.

(C) Let k = k(B, a) be the maximal number k such that v, (3, «) is defined
(it is well defined as (v, (8, ) : £ < w) is strictly decreasing). So

(C1) ’y,j(ﬂ a)(ﬂ,a) =« or ’y]j(ﬁ o > ’y]j(ﬁ o) 15 @ limit ordinal and a is an

accumulation point of C_+ (8, ).
Tr(8,)

(D) For m < k(f, «) let us define
em (B, ) = max{y, (B,a) +1:¢<m}.

Note
(D1) (a) em (B, o) < a (if defined),
(b) if « is limit then €,,(8, a) < « (if defined),
(c) if e (B, ) < & < a then for every ¢ < m we have

72_(6705) :7;(5,5% 7;(/8705) :7;(/8a€)7 EE(Bva) = 52(575)'

(explanation for (c): if €,,,(5, ) < « this is easy (check the definition)

and if €,,(8, a) = «, necessarily £ = « and it is trivial).

(d) if £ < m then g/(8,a) < e (B, @)

For a regular x € (a(x),\) let gl : [5]<% — o(2) exemplify x 4 [9];“{)
and for every regular cardinal k € [0, \) let g2 : [k]" — o(2) exemplify
K [a(*)]Z(Q). Let us define the colourings:

Let ag > a1 > ... > «,. Remember n > 2.

Let n = n(ap, a1, a2) be the maximal natural number such that:

(1) en(ao, 1) < ag is well defined,
(ii) for £ < n, v, (ao,a1) =7, (g, az).
We define da(ag, ag,...,ay) as g2(B1, ..., Bn) where

_l’_

Kk =cf ('yn(aovahaz)(oz()7 a1)),

Be =otp |ay, N C,YJr

n(ao,al,ag)(ao’al) ’



Paper Sh:288, version 1993-08-27_10. See https://shelah.logic.at/papers/288/ for possible updates.

30
Next we define dy (ag, a1, a2) .

Let i(x) = sup |:C'yj[(oco,oc2) N Cﬁ(ahaz)] where n = n(ag, a1, az), E be

the equivalence relation on C_+, .,y \i(*) defined by

NEY2 € VY € C ot (4 ann <7 72 <7

If the set w = {'y € Cotiapgan) 1 V> i(x), v = minfy/E} is finite,
s 57 =

we let di(ao, a1, a2) be gL({B8, : v € w}) where k = ’C’7

otp (7 n C’Y:—(aoﬂl))'
We have defined d;, ds required in condition (b) ( though have not yet
proved that they work) We still have to define d (exemplifying A /4 [u]7T1).

::,»(‘XO#XI)

Let n > 3, forag > a1 > ... > ay,, welet d(ag, ..., ay) bedy (g, ag, az) if w
defined during the definition has odd number of members and da (v, . . ., )
otherwise.

Now suppose Y is a subset of A of order type u, and let § =sup Y. Let
M be a model with universe A and with relations Y and {(7,j) : i € C;}. Let
(N; : i < p) be an increasing continuous sequence of elementary submodels
of M of cardinality < p such that a(i) = o; = min(Y \ N;) belongs to N, 41,
sup(N Na;) =sup(N NJ). Let N = |J N;. Let 6(i) =6; o sup(N; N a;),
1<
so 0 < §; < «;, and let n = n; be the first natural number such that §; an
def

accumulation point of C* = C%T(ai,(S(i))? let e; = €p0:)(ci,d;). Note that
Y (e, 6;) = vt (i, €;) hence it belongs to N.

Case I: For some (limit) i < p, cf(i) > 0 and (Vy < i)[y + a(x) < i] such
that for arbitrarily large j < i, C* N N; is bounded in N; N = N; N J;.
This is just like the last part in the proof of [Sh276],3.3 using ¢! and d; for
k= cf(y,} (i, 6;).

Case II: Not case I.

Let So = {i < p: Va < i)[y+a(x) <1i], cf(i) = 0}. So for every i € Sy
for some j(i) < i, (Vj) [j € (j(i),i) = C* N N; is unbounded in 5]}. But as
CiN &, is a club of &, clearly (V) [j € (j(i),i) = 6, € Ci].

We can also demand j(i) > ep(a(i),5¢i)) (@(), 5()).

As S is stationary, (by not case I) for some stationary S; C Sy and
n(x), j(x) we have (Vi € Sy) [j(@) =j(x) An(a(i),d;) = n(*)}
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Choose i(x) € S1, i(x) = sup(i(x) N S1), such that the order type of
S10i(x) is i(x) > ax). Now if ip < iy € S1Ni(x) then n(ay(), aiy, a4,) =

n(*). Now L;,) o {otp(ai NC™) :ie 8N z(*)} are pairwise distinct

and are ordinals < x < |C**)|, and the set has order type a(*). Now apply
the definitions of dy and g,% on Lj(y).

2) The proof is like the proof of part (1) but for oy > a3 > -+ we let
da(g, .-y on—1) = g2(Bo, - - -, Bn) where
def
Be = otb (Ct (5, 8004 1) (B265 B2e41) N Bars1)

and in case II note that the analysis gives u possible §,’s so that we can
apply the definition of g2.

Definition 5.7. Let X\ /g [l mean: if d : [N\]" — 6, and (o; : i < p) is
strictly increasingly continuous and for i < j < p, 7v;; € [, iy1) then

0= {d(w) : for some j < p, we [{y; i< ]}]n}

Lemma 5.8. 1) X, /4 [Nl]ﬁjl forn > 1.
2) N, Aty [Nl]gjl for n > 1.

Proof. 1) For n = 2 this is a theorem of Torodcevi¢, and if it holds for
n > 2 by 5.5(1) we get that it holds for n+1 (with n, A, u, 0, a(x), o(1),
0(2) there corresponding to n + 1, 8,11, Ry, Rg,Rg, Ng,Xg here).

2) Similar.
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