COLLOQUIA MATHEMATICA SOCIETATIS JÁNOS BOLYAI 60. SETS, GRAPHS AND NUMBERS, BUDAPEST (HUNGARY), 1991

Strong Partition Realations Below the Power Set: Consistency Was Sierpinski Right? II.

S. SHELAH*

We continue here [Sh276] (see the introduction there) but we do not relay on it. The motivation was a conjecture of Galvin stating that $2^{\omega} \geq \omega_2 + \omega_2 \rightarrow [\omega_1]_{h(n)}^n$ is consistent for a suitable $h: \omega \rightarrow \omega$. In section 5 we disprove this and give similar negative results. In section 3 we prove the consistency of the conjecture replacing ω_2 by 2^{ω} , which is quite large, starting with an Erdős cardinal. In section 1 we present iteration lemmas which needs when we replace ω by a larger λ and in section 4 we generalize a theorem of Halpern and Lauchli replacing ω by a larger λ .

0. Preliminaries

Let $<^*_{\chi}$ be a well ordering of $H(\chi)$, where $H(\chi) = \{x : \text{the transitive closure of } x \text{ has cardinality } < \chi\}$, agreeing with the usual well-ordering of the

^{*} Publication no 288, summer 86. The author would like to thank the United States – Israel Binational Science Foundation for partially supporting this research. Minor proof October 2018.

ordinals. P (and Q, R) will denote forcing notions, i.e. partial orders with a minimal element $\emptyset = \emptyset_P$.

A forcing notion P is λ -closed if every increasing sequence of members of P, of length less than λ , has an upper bound.

If $P \in \mathcal{H}(\chi)$, then for a sequence $\bar{p} = \langle p_i : i < \gamma \rangle$ of members of P let $\alpha = \alpha_{\bar{p}} \stackrel{\text{def}}{=} \sup\{j : \{\beta_j : j < j\} \text{ has an upper bound in } P\}$ and define the canonical upper bound of \bar{p} , & \bar{p} as follows:

- (a) the least upper bound of $\{p_i : i < \alpha\}$ in P if there exists such an element,
- (b) the $<_{\chi}^*$ -first upper bound of \bar{p} if (a) can't be applied but there is such,
- (c) p_0 if (a) and (b) fail, $\gamma > 0$,
- (d) \emptyset_P if $\gamma = 0$.

Let $p_0 \& p_1$ be the canonical upper bound of $\langle p_\ell : \ell < 2 \rangle$.

Take
$$[a]^{\kappa} = \{b \subseteq a : |b| = \kappa\}$$
 and $[a]^{<\kappa} = \bigcup_{\theta < \kappa} [a]^{\theta}$.

For sets of ordinals, A and B, define $H_{A,B}^{OP}$ as the maximal order preserving bijection between initial segments of A and B, i.e, it is the function with domain $\{\alpha \in A : \operatorname{otp}(\alpha \cap A) < \operatorname{otp}(B)\}$, and $H_{A,B}^{OP}(\alpha) = \beta$ if and only if $\alpha \in A$, $\beta \in B$ and $\operatorname{otp}(\alpha \cap A) = \operatorname{otp}(\beta \cap B)$.

Definition 0.1 $\lambda \to^+ (\alpha)^{<\omega}_{\mu}$ holds provided whenever F is a function from $[\lambda]^{<\omega}$ to μ , $C \subseteq \lambda$ is a club then there is $A \subseteq C$ of order type α such that $[w_1, w_2 \in [A]^{<\omega}, |w_1| = |w_2| \Rightarrow F(w_1) = F(w_2)].$

Definition 0.2 $\lambda \to [\alpha]_{\kappa,\theta}^n$ if for every function F from $[\lambda]^n$ to κ there is $A \subseteq \lambda$ of order type α such that $\{F(w) : w \in [A]^n\}$ has power $\leq \theta$.

Definition 0.3 A forcing notion P satisfies the Knaster condition (has property K) if for any $\{p_i : i < \omega_1\} \subset P$ there is an uncountable $A \subset \omega_1$ such that the conditions p_i and p_j are compatible whenever $i, j \in A$.

1. Introduction

Concerning 1.1–1.3 see Shelah [Sh80], Shelah and Stanley [ShSt154, 154a].

<u>Playing</u>: the play finishes after ε moves.

in the α^{th} the move:

Player I – if $\alpha \neq 0$ he chooses $\langle q_{\zeta}^{\alpha} : \zeta < \mu^{+} \rangle$ such that $q_{\zeta}^{\alpha} \in Q$ and $(\forall \beta < \alpha)(\forall \zeta < \mu^{+})p_{\zeta}^{\beta} \leq q_{\zeta}^{\alpha}$ and he chooses a regressive function $f_{\alpha} : \mu^{+} \to \mu^{+}$ (i.e. $f_{\alpha}(i) < 1 + i$); if $\alpha = 0$ let $q_{\zeta}^{\alpha} = \emptyset_{Q}$, $f_{\alpha} = \emptyset$.

Player II – he chooses $\langle p_{\zeta}^{\alpha} : \zeta < \mu^{+} \rangle$ such that $q_{\zeta}^{\alpha} \leq p_{\zeta}^{\alpha} \in Q$.

<u>The outcome</u>: Player I wins provided whenever $\mu < \zeta < \xi < \mu^+$, $\operatorname{cf}(\zeta) = \operatorname{cf}(\xi) = \mu$ and $\wedge_{\beta < \varepsilon} f_{\beta}(\zeta) = f_{\beta}(\xi)$ the set $\{p_{\zeta}^{\alpha} : \alpha < \varepsilon\} \cup \{p_{\xi}^{\alpha} : \alpha < \varepsilon\}$ has an upper bound in Q.

Definition 1.2. We call $\langle P_i, Q_j : i \leq i(*), j < i(*) \rangle$ a $*^{\varepsilon}_{\mu}$ -iteration provided that:

- (a) it is a $(< \mu)$ -support iteration (μ is a regular cardinal)
- (b) if $i_1 < i_2 \le i(*)$, cf $i_1 \ne \mu$ then P_{i_2}/P_{i_1} satisfies $*_{\mu}^{\varepsilon}$.

The Iteration Lemma 1.3. If $\bar{Q} = \langle P_i, Q_j : i \leq i(*), j < i(*) \rangle$ is a $(< \mu)$ -support iteration, (a) or (b) or (c) below hold, then it is a $*^{\varepsilon}_{\mu}$ -iteration.

- (a) i(*) is limit and $\bar{Q} \upharpoonright j(*)$ is a $*_{\mu}^{\varepsilon}$ -iteration for every j(*) < i(*).
- (b) i(*) = j(*) + 1, $\bar{Q} \upharpoonright j(*)$ is a $*^{\varepsilon}_{\mu}$ -iteration and $Q_{j(*)}$ satisfies $*^{\varepsilon}_{\mu}$ in $V^{P_{j(*)}}$.
- (c) i(*) = j(*) + 1, cf $j(*) = \mu^+$, $\bar{Q} \upharpoonright j(*)$ is a $*_{\mu}^{\varepsilon}$ -iteration and for every successor i < j(*), $P_{i(*)}/P_i$ satisfies $*_{\mu}^{\varepsilon}$.

Proof. Left to the reader (after reading [Sh80] or [ShSt154a]).

Theorem 1.4. Suppose $\mu = \mu^{<\mu} < \chi < \lambda$, and λ is a strongly inaccessible k_2^2 -Mahlo cardinal, where k_2^2 is a suitable natural number (see 3.6(2) of [Sh289]), and assume V = L for the simplicity. Then for some forcing notion P:

- (a) P is μ -complete, satisfies the μ^+ -c.c., has cardinality λ , and $V^P \models$ " $2^{\mu} = \lambda$ ".
- (b) $\Vdash_P \lambda \to [\mu^+]_3^2$ and even $\lambda \to [\mu^+]_{\kappa,2}^2$ for $\kappa < \mu$.
- (c) if $\mu = \aleph_0$ then \Vdash " MA_{χ} ".

(d) if $\mu > \aleph_0$ then: \Vdash_P "for every forcing notion Q of cardinality $\leq \chi$, μ -complete satisfying $*_{\mu}^{\varepsilon}$, and for any dense sets $D_i \subseteq Q$ for $i < i_0 < \lambda$, there is a directed $G \subseteq Q$, $\wedge_i G \cap D_i \neq \emptyset$ ".

As the proof is very similar to [Sh276], (particularly after reading section 3) we do not give details. We shall define below just the systems needed to complete the proof. More general ones are implicit in [Sh289].

Convention 1.5. We fix a one to one function $Cd = Cd_{\lambda,\mu}$ from $\mu > \lambda$ onto λ .

Remark. Below we could have $otp(B_x) = \mu^+ + 1$ with little change.

Definition 1.6. Let $\mu < \chi < \kappa \le \lambda$, $\lambda = \lambda^{<\mu}$, $\chi = \chi^{<\mu}$, $\mu = \mu^{<\mu}$.

- 1) We call x a $(\lambda, \kappa, \chi, \mu)$ -precandidate if $x = \langle a_u^x : u \in I_x \rangle$ where for some set B_x (unique, in fact):
 - (i) $I_x = \{s : s \subseteq B_x, |x| \le 2\},\$
 - (ii) B_x is a subset of κ of order type μ^+ ,
 - (iii) a_u^x is a subset of λ of cardinality $\leq \chi$ closed under Cd,
 - (iv) $a_u^x \cap B_x = u$,
 - $(v) \ a_u^x \cap a_v^x \subseteq a_{u \cap v}^x,$
 - (vi) if $u, v \in I_x$, |u| = |v| then a_u^x and a_v^x have the same order type (and so $H_{a_x^x, a_x^x}^{OP}$ maps a_u^x onto a_v^x),
 - (vii) if $u_{\ell}, v_{\ell} \in I_x$ for $\ell = 1, 2, |u_1| = |v_1|, |u_2| = |v_2|, |u_1 \cup u_2| = |v_1 \cup v_2|, H_{a_{u_1}^x \cup a_{u_2}^x, a_{v_1}^x \cup a_{v_2}^x}^{OP}$ maps u_{ℓ} onto v_{ℓ} for $\ell = 1, 2$ then $H_{a_{u_1}^x, a_{v_1}^x}^{OP}$ are compatible.
- 2) We say x is a $(\lambda, \kappa, \chi, \mu)$ -candidate if it has the form $\langle M_u^x : u \in I_x \rangle$ where
- (α) (i) $\langle |M_u^x| : u \in I_x \rangle$ is a $(\lambda, \kappa, \chi, \mu)$ -precandidate (with $B_x \stackrel{\text{def}}{=} \cup I_x$)
 - (ii) L_x is a vocabulary with $\leq \chi$ -many $< \mu$ -ary placespredicates and function symbols,
 - (iii) each M_u^x is an L_x -model,
 - (iv) for $u, v \in I_x$, |u| = |v|, $M_u^x \upharpoonright (|M_u^x| \cap |M_v^x|)$ is a model, and in fact an elementary submodel of M_v^x , M_u^x and $M_{u \cap v}^x$.
- (β) (*) for $u, v \in I_x$, |u| = |v|, the function $H_{|M_u^x|,|M_v^x|}^{OP}$ is an isomorphism from M_v^x onto M_v^x .
 - 3) The set \mathfrak{A} is a $(\lambda, \kappa, \chi, \mu)$ -system if

(B) guessing: if L is as in $(2)(\alpha)(ii)$, M^* is an L-model with universe λ then for some $x \in \mathfrak{A}$, $s \in B_x \Rightarrow M_s^x \prec M^*$.

Definition 1.7. 1) We call the system $\mathfrak A$ disjoint when:

- (*) if $x \neq y$ are from \mathfrak{A} and $\operatorname{otp}(|M_{\emptyset}^{x}|) \leq \operatorname{otp}(|M_{\emptyset}^{y}|)$ then for some $B_{1} \subseteq B_{x}$, $B_{2} \subseteq B_{y}$ we have
 - a) $|B_1| + |B_2| < \mu^+$
 - b) the sets

$$\bigcup\{|M_s^x|:s\in[B_x\setminus B_1]^{\leq 2}\}$$

and

$$\bigcup\{|M_s^y|:s\in[B_y\setminus B_2]^{\leq 2}\}$$

have intersection $\subseteq M_{\emptyset}^{y}$.

- 2) We call the system $\mathfrak A$ almost disjoint when:
 - (**) if $x, y \in \mathfrak{A}$, $\operatorname{otp}(|M_{\emptyset}^{x}|) \leq \operatorname{otp}(|M_{\emptyset}^{y}|)$ then for some $B_{1} \subseteq B_{x}$, $B_{2} \subseteq B_{y}$ we have:
 - (a) $|B_1| + |B_2| < \mu^+$,
 - (b) if $s \in [B_x \setminus B_1]^{\leq 2}$, $t \in [B_y \setminus B_2]^{\leq 2}$ then $|M_s^x| \cap |M_t^x| \subseteq |M_{\emptyset}^y|$.

2. Introducing the partition on trees

Definition 2.1. Let

- 1) $Per(^{\mu}>2) = \{T : where$
 - (a) $T \subseteq {}^{\mu >} 2, \ \langle \rangle \in T,$
 - (b) $(\forall \eta \in T) (\forall \alpha < \lg(\eta)) \eta \upharpoonright \alpha \in T$,
 - (c) if $\eta \in T \cap {}^{\alpha}2$, $\alpha < \beta < \mu$ then for some $\nu \in T \cap {}^{\beta}2$, $\eta \triangleleft \nu$,
 - (d) if $\eta \in T$ then for some ν , $\eta \triangleleft \nu$, $\nu^{\hat{}}\langle 0 \rangle \in T$, $\nu^{\hat{}}\langle 1 \rangle \in T$,
 - (e) if $\eta \in {}^{\delta}2$, $\delta < \mu$ is a limit ordinal and $\{\eta \upharpoonright \alpha : \alpha < \delta\} \subseteq T$ then $\eta \in T$.

2) $\operatorname{Per}_{f}(^{\mu >}2) = \left\{ T \in \operatorname{Per}(^{\mu >}2) : \text{if } \alpha < \mu \text{ and } \nu_{1}, \ \nu_{2} \in {}^{\alpha}2 \cap T, \text{ then } n \in \mathbb{N} \right\}$

$$\left[\bigwedge_{\ell=0}^{1} \nu_1 \hat{\langle \ell \rangle} \in T \iff \bigwedge_{\ell=0}^{1} \nu_2 \hat{\langle \ell \rangle} \in T\right].$$

3) $\operatorname{Per}_{u}(\mu > 2) = \{ T \in \operatorname{Per}(\mu > 2) : \text{if } \alpha < \mu, \ \nu_{1} \neq \nu_{2} \text{ from } {}^{\alpha}2 \cap T, \}$

then
$$\bigvee_{\ell=0}^{1} \bigvee_{m=1}^{2} \nu_m \hat{\langle \ell \rangle} \notin T$$
.

- 4) For $T \in \text{Per}(\mu > 2)$ let $\lim T = \{ \eta \in \mu : (\forall \alpha < \mu) \, \eta \upharpoonright \alpha \in T \}$.
- 5) For $T \in \operatorname{Per}_f({}^{\mu>}2)$ let $\operatorname{clp}_T: T \to {}^{\mu>}2$ be the unique one-to-one function from $\operatorname{sp}(T) \stackrel{\text{def}}{=} \{ \eta \in T: \eta \hat{\ }\langle 0 \rangle \in T, \eta \hat{\ }\langle 1 \rangle \in T \}$ onto ${}^{\mu>}2$, which preserves \triangleleft and lexicographic order.
- 6) Let $SP(T) = \{ \lg(\eta) : \eta \in \operatorname{sp}(T) \}$, $\operatorname{sp}(\eta, \nu) = \min\{ i : \eta(i) \neq \nu(i) \text{ or } i = \lg(\eta) \text{ or } i = \lg(\nu) \}$.
- **Definition 2.2.** 1) For cardinals μ, σ and $n < \omega$ and $T \in \text{Per}(^{\mu >}2)$ let $\text{Col}_{\sigma}^{n}(T) = \{d : d \text{ is a function from } \bigcup_{\alpha < \mu} [^{\alpha}2]^{n} \cap T \text{ to } \sigma\}.$ We will write $d(\nu_{0}, \ldots, \nu_{n-1})$ for $d(\{\nu_{0}, \ldots, \nu_{n-1}\}).$
- 2) Let $<_{\alpha}^*$ denote a well ordering of $^{\alpha}2$ (in this section it is arbitrary). We call $d \in \operatorname{Col}_{\sigma}^{n}(T)$ end-homogeneous for $\langle <_{\alpha}^* : \alpha < \mu \rangle$ provided that: if $\alpha < \beta$ are from $\operatorname{SP}(T)$, $\{\nu_0, \ldots, \nu_{n-1}\} \subseteq {}^{\beta}2 \cap T$, $\langle \nu_{\ell} \upharpoonright \alpha : \ell < n \rangle$ are pairwise distinct and $\bigwedge_{\ell,m} [\nu_{\ell} <_{\beta}^* \nu_m \iff \nu_{\ell} \upharpoonright \alpha <_{\alpha}^* \nu_m \upharpoonright \alpha]$ then

$$d(\nu_0,\ldots,\nu_{n-1})=d(\nu_0\!\upharpoonright\!\alpha,\ldots,\nu_{n-1}\!\upharpoonright\!\alpha).$$

- 3) Let $\operatorname{Eh} \operatorname{Col}_{\sigma}^{n}(T) = \{d \in \operatorname{Col}_{\sigma}^{n}(T) : d \text{ is end-homogeneous } \}$ (for some $\langle <_{\alpha}^{*} : \alpha < \mu \rangle$).
- 4) For $\nu_0, \ldots, \nu_{n-1}, \eta_0, \ldots, \eta_{n-1}$ from $\mu > 2$, we say $\bar{\nu} = \langle \nu_0, \ldots, \nu_{n-1} \rangle$ and $\bar{\eta} = \langle \eta_0, \ldots, \eta_{n-1} \rangle$ are strongly similar for $\langle \cdot \cdot \rangle_{\alpha}^* : \alpha < \mu$ if:
 - (i) $\lg(\nu_{\ell}) = \lg(\eta_{\ell})$
 - (ii) $\operatorname{sp}(\nu_{\ell}, \nu_{m}) = \operatorname{sp}(\eta_{\ell}, \eta_{m})$
 - (iii) if $\ell_1, \ell_2, \ell_3, \ell_4 < n \text{ and } \alpha = sp(\nu_{\ell_1}, \nu_{\ell_2}) \text{ then}$

$$\nu_{\ell_3} \upharpoonright \alpha <_{\alpha}^* \nu_{\ell_4} \upharpoonright \alpha \iff \eta_{\ell_3} \upharpoonright \alpha <_{\alpha}^* \eta_{\ell_4} \upharpoonright \alpha \quad \text{and} \quad \nu_{\ell_3}(\alpha) = \eta_{\ell_3}(\alpha)$$

5) For $\nu_0^a, \ldots, \nu_{n-1}^a, \nu_0^b, \ldots, \nu_{n-1}^b$ from $\mu^> 2$ we say $\bar{\nu}^a = \langle \nu_0^a, \ldots, \nu_{n-1}^a \rangle$ and $\bar{\nu}^b = \langle \nu_0^b, \ldots, \nu_{n-1}^b \rangle$ are similar if the truth values of (i)–(iii) below doe not depend on $t \in \{a, b\}$ for any $\ell(1), \ell(2), \ell(3), \ell(4) < n$:

- (i) $\lg(\nu_{\ell(1)}^t) < \lg(\nu_{\ell(2)}^t)$
- (ii) $\operatorname{sp}(\nu_{\ell(1)}^t, \nu_{\ell(2)}^t) < \operatorname{sp}(\nu_{\ell(3)}^t, \nu_{\ell(4)}^t)$
- (iii) for $\alpha = \text{sp}(\nu_{\ell(1)}^t, \nu_{\ell(2)}^t)$,

$$\nu_{\ell(3)}^t \!\!\upharpoonright \!\! \alpha <^*_{\alpha} \nu_{\ell(4)}^t \!\!\upharpoonright \!\! \alpha$$

and

$$\nu_{\ell(3)}^t(\alpha) = 0.$$

- 6) We say $d \in \operatorname{Col}_{\sigma}^{n}(T)$ is almost homogeneous [homogeneous] on $T_{1} \subseteq T$ (for $\langle <_{\alpha}^{*} : \alpha < \mu \rangle$) if for every $\alpha \in \operatorname{SP}(T_{1})$, $\bar{\nu}$, $\bar{\eta} \in [^{\alpha}2]^{n} \cap T_{1}$ which are strongly similar [similar] we have $d(\bar{\nu}) = d(\bar{\eta})$.

Definition 2.3. 1) $\operatorname{Pr}_{eht}(\mu, n, \sigma)$ means: for every $d \in \operatorname{Col}_{\sigma}^{n}(\mu \geq 2)$ for some $T \in \operatorname{Per}(\mu \geq 2)$, d is end homogeneous on T.

- 2) $\operatorname{Pr}_{aht}(\mu, n, \sigma)$ means for every $d \in \operatorname{Col}_{\sigma}^{n}(\mu \geq 2)$ for some $T \in \operatorname{Per}(\mu \geq 2)$, d is almost homogeneous on T.
- 3) $\operatorname{Pr}_{ht}(\mu, n, \sigma)$ means for every $d \in \operatorname{Col}_{\sigma}^{n}(\mu \geq 2)$ for some $T \in \operatorname{Per}(\mu \geq 2)$, d is homogeneous on T.
- 4) For $x \in \{eht, aht, ht\}$, $\Pr_x^f(\mu, n, \sigma)$ is defined like $\Pr_x(\mu, n, \sigma)$ but we demand $T \in \Pr_f(\mu > 2)$.
- 5) If above we replace eht, aht, ht by ehtn, ahtn, htn, respectively, this means $\langle <_{\alpha}^* : \alpha < \mu \rangle$ is fixed apriori.
- 6) Replacing n by " $<\kappa$ ", σ by $\bar{\sigma} = \langle \sigma_{\ell} : \ell < \kappa \rangle$ for $\kappa \leq \aleph_0$, means that $\langle d_n : n < \kappa \rangle$ are given, $d_n \in \operatorname{Col}_{\sigma}^n(\mu^{>}2)$ and the conclusion holds for all d_n $(n < \kappa)$ simultaneously. Replacing " σ " by " $<\sigma$ " means that the assertion holds for every $\sigma_1 < \sigma$.

Definition 2.4. 1) $\operatorname{Pr}_{aht}(\mu, n, \sigma(1), \sigma(2))$ means: for every $d \in \operatorname{Col}_{\sigma(1)}^n$ $(\mu > 2)$ for some $T \in \operatorname{Per}(\mu > 2)$ and $\langle <_{\alpha}^* : \alpha < \mu \rangle$ for every $\bar{\eta} \in \bigcup \{ [^{\alpha}2]^n \cap T : \alpha \in \operatorname{SP}(T) \}$,

$$\left\{ d(\bar{\nu}) : \bar{\nu} \in \bigcup \{ [^{\alpha}2]^n \cap T_1 : \alpha \in SP((T_1)) \}, \right.$$

$$\bar{\eta} \text{ and } \bar{\nu} \text{ are strongly similar for } \langle <_{\alpha}^* : \alpha < \mu \rangle \right\}$$

has cardinality $< \sigma(2)$.

- 2) $\Pr_{ht}(\mu, n, \sigma(1), \sigma(2))$ is defined similarly with "similar" instead of "strongly similar".
- 3) $\operatorname{Pr}_x\left(\mu, <\kappa, \langle \sigma_\ell^1 : \ell < \kappa \rangle \langle \sigma_\ell^2 : \ell < \kappa \rangle\right)$, $\operatorname{Pr}_x^f(\mu, n, \sigma(1), \sigma(2))$, $\operatorname{Pr}_x^f(\mu, <\kappa_0, \bar{\sigma}^1, \bar{\sigma}^2)$ are defined in the same way.

There are many obvious implications.

Fact 2.5. 1) For every $T \in \text{Per}(^{\mu} > 2)$ there is a $T_1 \subseteq T$, $T_1 \in \text{Per}_u(^{\mu} > 2)$.

- 2) In defining $\Pr_x^f(\mu, n, \sigma)$ we can demand $T \subseteq T_0$ for any $T_0 \in \operatorname{Per}_f(^{\mu >} 2)$, similarly for $\Pr_x^f(\mu, < \kappa, \sigma)$.
- 3) The obvious monotonicity holds.

Claim 2.6. 1) Suppose μ is regular, $\sigma \geq \aleph_0$ and $\Pr_{eht}^f(\mu, n, < \sigma)$. Then $\Pr_{aht}^f(\mu, n, < \sigma)$ holds.

- 2) If μ is weakly compact and $\operatorname{Pr}_{aht}^f(\mu, n, <\sigma)$, $\sigma < \mu$, then $\operatorname{Pr}_{ht}^f(\mu, n, <\sigma)$ holds.
- 3) If μ is Ramsey and $\Pr_{aht}^f(\mu, < \aleph_0, < \sigma)$, $\sigma < \mu$, then $\Pr_{ht}^f(\mu, < \aleph_0, < \sigma)$.
- 4) If $\mu = \omega$, in the "nice" version, the orders $\langle <_{\alpha}^* : \alpha < \mu \rangle$ disappear.

Proof.: Check it.

The following theorem is a quite strong positive result for $\mu=\omega$. Halpern Lauchli proved 2.7(1), Laver proved 2.7(2) (and hence (3)), Pincus pointed out that Halpern Lauchli's proof can be modified to get 2.7(2), and then $\Pr_{eht}^f(\omega,n,<\sigma)$ and (by it) $\Pr_{ht}^f(\omega,n,<\sigma)$ are easy.

Theorem 2.7. 1) If $d \in \operatorname{Col}_{\sigma}^{n}(\omega \geq 2)$, $\sigma < \aleph_{0}$, then there are $T_{0}, \ldots, T_{n-1} \in \operatorname{Per}_{f}(\omega \geq 2)$ and $k_{0} < k_{1} < \ldots < k_{\ell} < \ldots$ and $s < \sigma$ such that for every $\ell < \omega$: if $\mu_{0} \in T_{0}$, $\mu_{1} \in T_{1}, \ldots, \nu_{n-1} \in T_{n-1}$, $\bigwedge_{m < n} \operatorname{lg}(\nu_{m}) = k_{\ell}$, then $d(\nu_{0}, \ldots, \nu_{n-1}) = s$.

2) We can demand in (1) that

$$SP(T_{\ell}) = \{k_0, k_1, \ldots\}$$

- 3) $\operatorname{Pr}_{htn}^f(\omega, n, \sigma)$ for $\sigma < \aleph_0$.
- 4) $\operatorname{Pr}_{htn}^f\left(\omega, <\aleph_0, \langle \sigma_n^1: n<\omega\rangle, \langle \sigma_n^2: n<\omega\rangle\right)$ if $\sigma_n^1<\aleph_0$ and $\langle \sigma_n^2: n<\omega\rangle$ diverge to infinity.

1) We say d is (F, σ) -canonical on A if for any $\alpha_1 < \cdots < \alpha_n \in A$,

$$\left| \left\{ d(\beta_1, \dots, \beta_n) : \langle F(\beta_1), \dots, F(\beta_n) \rangle \text{ similar to } \right. \\ \left. \langle F(\alpha_1), \dots, F(\alpha_n) \rangle \right\} \right| \leq \sigma.$$

2) We define "almost (F, σ) -canonical" similarly using strongly similar instead of "similar".

3. Consistency of a strong partition below the continuum

This section is dedicated to the proof of

Theorem 3.1. Suppose λ is the first Erdős cardinal, i.e. the first such that $\lambda \to (\omega_1)_2^{<\omega}$. Then, if A is a Cohen subset of λ , in V[A] for some \aleph_1 -c.c. forcing notion P of cardinality λ , \Vdash_P " $MA_{\aleph_1}(Knaster) + 2^{\aleph_0} = \lambda$ " and:

- 1.) \Vdash_P " $\lambda \to [\aleph_1]_{h(n)}^n$ " for suitable $h : \omega \mapsto \omega$ (explicitly defined below).
- 2.) In V^P for any colorings d_n of λ , where d_n is n-place, and for any divergent $\langle \sigma_n : n < \omega \rangle$ (see below), there is a $W \subseteq \lambda$, $|W| = \aleph_1$ and a function $F: W \mapsto {}^{\omega}2$ such that: d_n is (F, σ_n) canonical on W for each n. (See definition 2.8 above.)

Remark 3.2. h(n) is n! times the number of $u \in [^{\omega}2]^n$ satisfying (if $\eta_1, \eta_2, \eta_3, \eta_4 \in u$ are distinct then $\operatorname{sp}(\eta_1, \eta_2), \operatorname{sp}(\eta_3, \eta_4)$ are distinct) up to strong similarity for any nice $\langle <_{\alpha}^* : \alpha < \omega \rangle$.

2) A sequence $\langle \sigma_n : n < \omega \rangle$ is divergent if $\forall m \; \exists k \; \forall n \geq k \; \sigma_n \geq m$.

Notation 3.3. For a sequence $a = \langle \alpha_i, e_i^* : i < \alpha \rangle$, we call $b \subseteq \alpha$ closed if (i) $i \in b \Rightarrow a_i \subseteq b$

(ii) if $i < \alpha$, $e_i^* = 1$ and $\sup(b \cap i) = i$ then $i \in b$.

Definition 3.4. Let \mathfrak{K} be the family of $\bar{Q} = \langle P_i, Q_j, a_j, e_j^* : j < \alpha, i \leq \alpha \rangle$ such that

- 10
- (a) $a_i \subseteq i$, $|a_i| \leq \aleph_1$,
- (b) a_i is closed for $\langle a_j, e_i^* : j < i \rangle$, $e_i^* \in \{0, 1\}$, and $[e_i^* = 1 \Rightarrow \operatorname{cf} i = \aleph_1]$
- (c) P_i is a forcing notion, Q_j is a P_j -name of a forcing notion of power \aleph_1 with minimal element \emptyset or \emptyset_j and for simplicity the underlying set of Q_i is $\subseteq [\omega_1]^{\leq \aleph_0}$ (we do not lose by this).
- (d) $P_{\beta} = \{p : p \text{ is a function whose domain is a finite subset of } \beta \text{ and for } \beta \}$ $i \in \text{dom}(p), \Vdash_{P_i} "f(i) \in Q_i"$ with the order $p \leq q$ if and only if for $i \in \text{dom}(p), q \upharpoonright i \Vdash_{P_i} \text{"}p(i) \leq q(i)$ ".
- (e) for j < i, Q_j is a P_j -name involving only antichains contained in $\{p \in P_j : \operatorname{dom}(p) \subseteq a_j\}.$

For $p \in P_i$, j < i, $j \notin \text{dom } p$ we let $p(j) = \emptyset$. Note for $p \in P_i$, $j \leq i$, $p | j \in P_j$

Definition 3.5. For $\bar{Q} \in \mathfrak{K}$ as above (so $\alpha = \lg(\bar{Q})$):

1) for any $b \subseteq \beta \leq \alpha$ closed for $\langle a_i, e_i^* : i < \beta \rangle$ we define P_b^{cn} [by simultaneous induction on β]:

 $P_b^{\mathrm{cn}} = \{ p \in P_\beta : \operatorname{dom} p \subseteq b, \text{ and for } i \in \operatorname{dom} p, p(i) \text{ is a canonical name} \}$

i.e., for any x, $\{p \in P_{a_i}^{cn} : p \Vdash_{P_i} "p(i) = x" \text{ or } p \Vdash_{P_i} "p(i) \neq x" \}$ is a predense subset of P_i .

- 2) For \bar{Q} as above, $\alpha = \lg(\bar{Q})$, take $\bar{Q} \upharpoonright \beta = \langle P_i, Q_j, a_j : i \leq \beta, j < \beta \rangle$ for $\beta \leq \alpha$ and the order is the order in P_{α} (if $\beta \geq \alpha$, $\bar{Q} \upharpoonright \beta = \bar{Q}$).
- 3) "b closed for \bar{Q} means "b closed for $\langle a_i, e_i^* : i < \lg \bar{Q} \rangle$ ".

Fact 3.6. 1) if $\bar{Q} \in \mathfrak{K}$ then $\bar{Q} \upharpoonright \beta \in \mathfrak{K}$.

- 2) Suppose $b \subseteq c \subseteq \beta \leq \lg(\bar{\theta})$, b and c are closed for $\bar{Q} \in \mathfrak{K}$.
- (i) If $p \in P_c^{cn}$ then $p \upharpoonright b \in P_b^{cn}$.
- (ii) If $p, q \in P_c^{cn}$ and $p \leq q$ then $p \upharpoonright b \leq q \upharpoonright c$.
- (iii) $P_c^{cn} \langle P_\beta . 3 \rangle \lg \bar{Q}$ is closed for \bar{Q} .
- 4) if $\bar{Q} \in \mathfrak{K}$, $\alpha = \lg \bar{Q}$ then P_{α}^{cn} is a dense subset of P_{α} . 5) If b is closed for \bar{Q} , $p, q \in P_{\lg \bar{Q}}^{\text{cn}}$, $p \leq q$ in $P_{\lg \bar{Q}}$ and $i \in \text{dom } p$ then $q \upharpoonright a_i \Vdash_{P_i}$ " $p(i) \leq q(i)$ " hence $\Vdash_{P_{a_i}^{\text{cn}}}$ " $p(i) \leq_{Q_i} q(i)$ ".

Definition 3.7. Suppose $W = (W, \leq)$ is a finite partial order and $\bar{Q} \in \mathfrak{K}$. 1) $IN_W(\bar{Q})$ is the set of \bar{b} -s satisfying (α) - (γ) below:

- (α) $\bar{b} = \langle b_w : w \in W \rangle$ is an indexed set of \bar{Q} -closed subsets of $\lg(\bar{Q})$,
- (β) $W \models "w_1 \leq w_2" \Rightarrow b_{w_1} \subseteq b_{w_2},$
- (γ) $\zeta \in b_{w_1} \cap b_{w_2}, w_1 \leq w, w_2 \leq w \text{ then } (\exists u \in W) \zeta \in b_u \land u \leq w_1 \land u \leq w_2.$ We assume \bar{b} codes (W, \leq) .
 - 2) For $\bar{b} \in IN_W(\bar{Q})$, let

$$\bar{Q}[\bar{b}] \stackrel{\mathrm{def}}{=} \{ \langle p_w : w \in W \rangle : p_w \in P_{b_w}^{\mathrm{cn}}, [W \models w_1 \leq w_2 \Rightarrow p_{w_2} \restriction b_{w_1} = p_{w_1}] \}$$

with ordering $\bar{Q}[\bar{b}] \models \bar{p}^1 \leq \bar{p}^2$ iff $\bigwedge_{w \in W} p_w^1 \leq p_w^2$.

3) Let \mathfrak{K}^1 be the family of $\bar{Q} \in \mathfrak{K}$ such that for every $\beta \leq \lg(\bar{Q})$ and $(\bar{Q} \upharpoonright \beta)$ -closed b, P_{β} and $P_{\beta}/P_b^{\text{cn}}$ satisfy the Knaster condition.

Fact 3.8. Suppose $\bar{Q} \in \mathfrak{K}^1$, (W, \leq) is a finite partial order, $\bar{b} \in IN_W(\bar{Q})$ and $\bar{p} \in \bar{Q}[\bar{b}]$.

1) If $w \in W$, $p_w \leq q \in P_{b_w}^{cn}$ then there is $\bar{r} \in \bar{Q}[\bar{b}]$, $q \leq r_w$, $\bar{p} \leq \bar{r}$, in fact

$$r_u(\gamma) = \begin{cases} p_u(\gamma) & \text{if } \gamma \in \operatorname{Dom} p_u \setminus \operatorname{Dom} q \\ p_u(\gamma) \& q(\gamma) & \text{if } \gamma \in b_u \cap \operatorname{Dom} q \text{ and for some } v \in W, \\ v \leq u, v \leq w \text{ and } \gamma \in b_v \\ p_u(\gamma) & \text{if } \gamma \in b_u \cap \operatorname{dom} q \text{ but the previous case fails} \end{cases}$$

- 2) Suppose (W_1, \leq) is a submodel of (W_2, \leq) , both finite partial orders, $\bar{b}^l \in IN_{W_l}(\bar{Q}), \ \bar{b}^1_w = \bar{b}^2_w$ for $w \in W_1$.
- (α) If $\bar{q} \in \bar{Q}[\bar{b}^2]$ then $\langle q_w : w \in W_1 \rangle \in \bar{Q}[\bar{b}^1]$.
- (β) If $\bar{p} \in \bar{Q}[\bar{b}^1]$ then there is $\bar{q} \in \bar{Q}[\bar{b}^2]$, $\bar{q} \upharpoonright W_1 = \bar{p}$, in fact $q_w(\gamma)$ is $p_u(\gamma)$ if $u \in W_1$, $\gamma \in b_u$, $u \leq w$, provided that
- (**) if $w_1, w_2 \in W_1$, $w \in W_2$, $w_1 \leq w$, $w_2 \leq w$ and $\zeta \in b_{w_1} \cap b_{w_2}$ then for some $v \in W_1$, $\zeta \in b_v$, $v \leq w_1$, $v \leq w_2$.
- (this guarantees that if there are several u's as above we shall get the same value).
- 3) If $\bar{Q} \in \mathfrak{K}^1$ then $\bar{Q}[\bar{b}]$ satisfies the Knaster condition. If \emptyset is the minimal element of W (i.e. $u \in W \Rightarrow W \models \emptyset \leq u$) then $\bar{Q}[\bar{b}]/P_{b_{\emptyset}}^{\mathrm{cn}}$ also satisfies the Knaster condition and so $\langle \bar{Q}[\bar{b}],$ when we identify $p \in P_b^{\mathrm{cn}}$ with $\langle p : w \in W \rangle$.

Proof. 1) It is easy to check that each $r_u(\gamma)$ is in $P_{b_u}^{\text{cn}}$. So, in order to prove $\bar{r} \in \bar{Q}[\bar{b}]$, we assume $W \models u_1 \leq u_2$ and has to prove that $r_{u_2} \upharpoonright b_{u_1} = r_{u_1}$. Let $\zeta \in b_{u_1}$.

First case: $\zeta \notin \text{Dom}(p_{u_1}) \cup \text{Dom } q$.

So $\zeta \not\in \mathrm{Dom}(r_{u_1})$ (by the definition of r_{u_1}) and $\zeta \not\in \mathrm{Dom}\,p_{u_2}$ (as $\bar{p} \in \bar{Q}[\bar{b}]$) hence $\zeta \not\in (\mathrm{Dom}\,p_{u_2}) \cup (\mathrm{Dom}\,q)$ hence $\zeta \not\in \mathrm{Dom}(r_{u_2})$ by the choice of r_{u_2} , so we have finished.

Second case: $\zeta \in \text{Dom } p_{u_1} \setminus \text{Dom } q$.

As $\bar{p} \in \bar{Q}[\bar{b}]$ we have $p_{u_1}(\zeta) = p_{u_2}(\zeta)$, and by their definition, $r_{u_1}(\zeta) = p_{u_1}(\zeta)$, $r_{u_2}(\zeta) = p_{u_2}(\zeta)$.

Third case: $\zeta \in \text{Dom } q$ and $(\exists v \in W)$ $(\zeta \in b_v \land v \leq u_1 \land v \leq w)$. By the definition of $r_{u_1}(\zeta)$, we have $r_{u_1}(\zeta) = p_{u_1}(\zeta) \& q(\zeta)$, also the same v witnesses $r_{u_2}(\zeta) = p_{u_2}(\zeta) \& q(\zeta)$, (as $\zeta \in b_v \land v \leq u_1 \land v \leq w \Rightarrow \zeta \in b_v \land v \leq u_2 \land v \leq w$) and of course $p_{u_1}(\zeta) = p_{u_2}(\zeta)$ (as $\bar{p} \in \bar{Q}[\bar{b}]$).

Fourth case: $\zeta \in \text{Dom } q \text{ and } \neg (\exists v \in W) \ (\zeta \in b_v \land v \leq u_1 \land v \leq w).$

By the definition of $r_{u_1}(\zeta)$ we have $r_{u_1}(\zeta) = p_{u_1}(\zeta)$. It is enough to prove that $r_{u_2}(\zeta) = p_{u_2}(\zeta)$ as we know that $p_{u_1}(\zeta) = p_{u_2}(\zeta)$ (because $\bar{p} \in \bar{Q}[\bar{b}]$, $u_1 \leq u_2$). If not, then for some $v_0 \in W$, $\zeta \in b_{v_0} \wedge v_0 \leq u_2 \wedge v_0 \leq w$. But $\bar{b} \in \mathrm{IN}_W(\bar{Q})$, hence (see Def. 3.7(1) condition (γ) applied with ζ , w_1 , w_2 , w there standing for ζ , v_0 , u_1 , u_2 here) we know that for some $v \in W$, $\zeta \in v \wedge v \leq v_0 \wedge v \leq u_1$. As (W, \leq) is a partial order, $v \leq v_0$ and $v_0 \leq w$, we can conclude $v \leq w$. So v contradicts our being in the fourth case. So we have finished the fourth case.

Hence we have finished proving $\bar{r} \in \bar{Q}[\bar{b}]$. We also have to prove $q \leq r_w$, but for $\zeta \in \text{Dom } q$ we have $\zeta \in b_w$ (as $q \in P_w^{\text{cn}}$ is on assumption) and $r_w(\zeta) = q(\zeta)$ because $r_w(\zeta)$ is defined by the second case of the definition as $(\exists v \in W)$ ($\zeta \in b_w \land v \leq w \land v \leq w$), i.e. v = w.

Lastly we have to prove that $\bar{p} \leq \bar{r}$ (in $\bar{Q}[\bar{b}]$). So let $u \in W$, $\zeta \in \text{Dom } p_u$ and we have to prove $r_u \upharpoonright \zeta \Vdash_{P_{\zeta}} "p_u(\zeta) \leq_{P_{\zeta}} r_u(\zeta)"$. As $r_u(\zeta)$ is $p_u(\zeta)$ or $p_u(\zeta) \& q(\zeta)$ this is obvoius.

- 2) Immediate.
- 3) We prove this by induction on |W|.

For |W| = 0 this is totally trivial.

For |W| = 1, 2 this is assumed.

For |W| > 2 fix $\bar{p}^i \in \bar{Q}[\bar{b}]$ for $i < \omega_1$. Choose a maximal element $v \in W$ and let $c = \bigcup \{b_w : W \models w < v\}$. Clearly c is closed for \bar{Q} .

We know that $P_c^{\rm cn}$, $P_{b_v}^{\rm cn}/P_c^{\rm cn}$ are Knaster by the induction hypothesis. We also know that $p_v^i \mid c \in P_c^{\rm cn}$ for $i < \omega_1$, hence for some $r \in P_c^{\rm cn}$,

$$r \Vdash \text{``} \underline{A} \stackrel{\text{def}}{=} \left\{ i < \omega_1 : p_v^i {\restriction} c \in \underline{G}_{P_c^{\text{cn}}} \right\} \quad \text{is uncountable''}$$

hence

 \Vdash "there is an uncountable $A^1 \subseteq A$ such that

$$\left[i, j \in A^1 \Rightarrow p_v^i, p_v^j \text{ are compatible in } P_{b_v}^{\text{cn}} / \mathcal{G}_{P_c^{\text{cn}}} \right].$$

13

Fix a P_c^{cn} -name A^1 for such an A^1 .

Let $A^2 = \{i < \omega_1 : \exists q \in P_c^{\text{cn}}, \ q \Vdash i \in A^1\}$. Necessarily $|A_2| = \aleph_1$, and for $i \in A^2$ there is $q^i \in P_c^{\text{cn}}, \ q^i \Vdash i \in A^1$, and w.l.o.g. $p_v^i \upharpoonright c \leq q^i$. Note that $p_v^i \& q^i \in P_c^{\text{cn}}$.

For $i \in A^2$ let, \bar{r}^i be defined using 3.8(1) (with \bar{p}^i , $p_v^i \& q^i$). Let $W_1 = W \setminus \{v\}, \ \bar{b}' = \langle b_w : w \in W_1 \rangle$.

By the induction hypothesis applied to W_1 , \bar{b}' , $\bar{r}^i \upharpoonright W_1$, for $i \in A^2$ there is an uncountable $A^3 \subseteq A^2$ and for i < j in A^3 , there is $\bar{r}^{i,j} \in \bar{Q}[\bar{b}']$, $\bar{r}^i \upharpoonright W_1 \leq \bar{r}^{i,j}$, and $\bar{r}^j \upharpoonright W_1 \leq \bar{r}^{i,j}$. Now define $r_c^{i,j} \in P_c^{\text{cn}}$ as follows: its domain is $\bigcup \left\{ \text{dom } r_w^{i,j} : W \models w < v \right\}$, $r_c^{i,j} \upharpoonright (\text{dom } r_w^{i,j}) = r_w^{i,j}$ whenever $W \models w < v$. Why is this a definition? As if $W \models w_1 \leq v \land w_2 \leq v$, $\zeta \in b_{w_1} \land \zeta \in b_{w_2}$ then for some $u \in W$, $u \leq w_1 \land u \leq w_2$ and $\zeta \in u$. It is easy to check that $r_c^{i,j} \in P_c^{\text{cn}}$. Now $r_c^{i,j} \Vdash_{P_c^{\text{cn}}}$ " $p_{b_v}^i$, $p_{b_v}^j$ are compatible in $P_{b_v}^{\text{cn}}/P_c^{\text{cn}}$ ".

So there is $r \in P_{b_v}^{\text{cn}}$ such that $r_c^{i,j} \leq r$, $p_{b_v}^i \leq r$, $p_{b_v}^j \leq r$. As in part (1) of 3.8 we can combine r and $\bar{r}^{i,j}$ to a common upper bound of \bar{p}^i , \bar{p}^j in $\bar{Q}[\bar{b}]$.

Claim 3.9. If e = 0, 1 and δ is a limit ordinal, and $P_i, Q_i, \alpha_i, e_i^* (i < \delta)$ are such that for each $\alpha < \delta$, $\bar{Q}^{\alpha} = \langle P_i, Q_j, \alpha_j, e_j^* : i \leq \alpha, j < \alpha \rangle$ belongs to \mathfrak{K}^{ℓ} , then for a unique P_{δ} , $\bar{Q} = \langle P_i, Q_j, \alpha_j, e_j^* : i \leq \delta, j < \delta \rangle$ belongs to \mathfrak{K}^{ℓ} .

Proof. We define P_{δ} by (d) of Definition 3.4. The least easy problem is to verify the Knaster conditions (for $\bar{Q} \in \mathfrak{K}^1$). The proof is like the preservation of the c.c.c. under iteration for limit stages.

Convention 3.9A. By 3.9 we shall not distinguish strictly between $\langle P_i, Q_j, \alpha_j, e_j^* : i \leq \delta, \ j < \delta \rangle$ and $\langle P_i, Q_j, \alpha_i, e_i^* : i < \delta \rangle$.

Claim 3.10. If $\bar{Q} \in \mathfrak{K}^{\ell}$, $\alpha = \lg(\bar{Q})$, $a \subset \alpha$ is closed for \bar{Q} , $|a| \leq \aleph_1$, Q_1 is a P_a^{cn} -name of a forcing notion satisfying (in $V^{P_{\alpha}}$) the Knaster condition, its underlying set is a subset of $[\omega_1]^{<\aleph_0}$ then there is a unique $\bar{Q}^1 \in \mathfrak{K}^{\ell}$, $\lg(\bar{Q}_1) = \alpha + 1$, $Q_{\alpha}^1 = Q$, $\bar{Q} \upharpoonright \alpha = \bar{Q}$.

Proof. Left to the reader.

Proof of Theorem 3.1.

A Stage: We force by $\mathfrak{K}^1_{<\lambda} = \{\bar{Q} \in \mathfrak{K}^1 : \lg(\bar{Q}) < \lambda, \bar{Q} \in H(\lambda)\}$ ordered by being an initial segment (which is equivalent to forcing a Cohen subset of λ). The generic object is essentially $\bar{Q}^* \in \mathfrak{K}^1_{\lambda}$, $\lg(\bar{Q}^*) = \lambda$, and then we force by $P_{\lambda} = \lim \bar{Q}^*$. Clearly $\mathfrak{K}^{\ell}_{<\lambda}$ is a λ -complete forcing notion of cardinality λ , and P_{λ} satisfies the c.c.c. Clearly it suffices to prove part (2) of 3.1.

Suppose \underline{d}_n is a name of a function from $[\lambda]^n$ to \underline{k}_n for $n < \omega$, $\underline{\sigma}_n < \omega$, $\langle \sigma_n : n < \omega \rangle$ diverges (i.e. $\forall m \; \exists k \; \forall n \geq k \; \sigma_n \geq m$) and for some $\bar{Q}^0 \in \mathfrak{K}^1_{<\lambda}$.

$$\bar{Q}^0 \Vdash_{\mathfrak{K}^1_{<\lambda}} \text{ "there is } p \in \underline{P}_{\lambda} \left[p \Vdash_{P_{\lambda}} \langle \underline{d}_n : n < \omega \rangle \text{ is a counterexample to (2) of 3.1"} \right].$$

In V we can define $\langle \bar{Q}^\zeta : \zeta < \lambda \rangle$, $\bar{Q}^\zeta \in \mathfrak{K}^1_{<\lambda}$, $\zeta < \xi \Rightarrow \bar{Q}^\zeta = \bar{Q}^\xi \upharpoonright \lg(\bar{Q}^\zeta)$, in $\bar{Q}^{\zeta+1}$, $e^*_{\lg(\bar{Q}_\zeta)} = 1$, $\bar{Q}^{\zeta+1}$ forces (in $\mathfrak{K}^1_{<\lambda}$) a value to p and the P_λ -names $d_n \upharpoonright \zeta$, σ_n , k_n for $n < \omega$, i.e. the values here are still P_λ -names. Let \bar{Q}^* be the limit of the \bar{Q}^ξ -s. So $\bar{Q}^* \in \mathfrak{K}^1$, $\lg(\bar{Q}^*) = \lambda$, $\bar{Q}^* = \langle P_i^*, \bar{Q}_j^*, \alpha_j^*, e_j^* : i \leq \lambda, j < \lambda \rangle$, and the P_λ^* -names d_n , σ_n , k_n are defined such that in $V^{P_\lambda^*}$, d_n , σ_n , k_n contradict (2) (as any P_λ^* -name of a bounded subset of λ is a $P_{\lg(\bar{Q}^\xi)}^*$ -name for some $\xi < \lambda$).

B Stage: Let $\chi = \kappa^+$ and $<_{\chi}^*$ be a well-ordering of $H(\chi)$. Now we can apply $\lambda \to (\omega_1)_2^{<\omega}$ to get δ, B, N_s (for $s \in [B]^{<\aleph_0}$) and $\mathbf{h}_{s,t}$ (for $s, t \in [B]^{<\aleph_0}$, |s| = |t|) such that:

- (a) $B \subseteq \lambda$, $otp(B) = \omega_1$, $sup B = \delta$,
- (b) $N_s \prec (H(\chi), \in, <^*_{\chi}), \bar{Q}^* \in N_s, \langle \underline{d} \ \underline{\sigma}_n, \underline{k}_n : n < \omega \rangle \in N_s,$
- (c) $N_s \cap N_t = N_{s \cap t}$,
- (d) $N_s \cap B = s$,
- (e) if $s = t \cap \alpha$, $t \in [B]^{<\aleph_0}$ then $N_s \cap \lambda$ is an initial segment of N_t ,
- (f) $\mathbf{h}_{s,t}$ is an isomorphism from N_t onto N_s (when defined)
- (g) $\mathbf{h}_{t,s} = \mathbf{h}_{s,t}^{-1}$
- (h) $p_0 \in N_s, p_0 \Vdash_{P_{\lambda}}$ " $\langle \underline{d}_n, \underline{\sigma}_n, \underline{k}_n : n < \rangle$ is a counterexample",
- (i) $\omega_1 \subseteq N_s$, $|N_s| = \aleph_1$ and if $\gamma \in N_s$, $\operatorname{cf} \gamma > \aleph_1$ then $\operatorname{cf}(\sup(\gamma \cap N_s)) = \omega_1$.

Let $\bar{Q} = \bar{Q}^* \upharpoonright \delta$, $P = P_\delta^*$ and $P_a = P_a^{\rm cn}$ (for \bar{Q}), where a is closed for \bar{Q} . Note: $P_\lambda^* \cap N_s = P_\delta^* \cap N_s = P_{\sup \lambda \cap N_s} \cap N_s = P_s \cap N_s$. Note also $\gamma \in \lambda \cap N_s$ $\Rightarrow a_\gamma^* \subseteq \lambda \cap N_s$.

C Stage: It suffices to show that we can define Q_{δ} in $V^{P_{\delta}}$ which forces a subset W of B of cardinality \aleph_1 and $F:W\to {}^{\omega}2$ which exemplify the desired conclusion in (2), and prove that Q_{δ} satisfies the \aleph_1 -c.c.c. (in $V^{P_{\delta}}$ (and has cardinality \aleph_1)) and moreover (see Definitions 3.4 and 3.7(3)) we also define $a_{\delta} = \bigcup_{s \in [B]^{<\aleph_0}} N_s$, $e_{\delta} = 1$, $\bar{Q}' = \bar{Q}^{\hat{\ }} \langle P_{\delta}^*, Q_{\delta}, a_{\delta}, e_{\delta} \rangle$ and prove $\bar{Q}' \in \mathfrak{K}^1$.

We let $\underline{d}(u) = \underline{d}_{|u|}(u)$.

Let $F: \omega_1 \to {}^{\omega}2$ be one-to-one such that $\forall \eta \in {}^{\omega}>2 \; \exists^{\aleph_1}\alpha < \omega_1 \; [\eta \triangleleft F(\alpha)]$. (This will not be the needed \mathcal{F} , just notation).

For $s, t \in [B]^{<\aleph_0}$, we say $s \equiv_F^n t$ if |s| = |t| and $\forall \xi \in s$, $\forall \zeta \in t[\xi = \mathbf{h}_{s,t}(\zeta) \Rightarrow F(\xi) \upharpoonright n = F(\zeta) \upharpoonright n]$. Let $I_n = I_n(F) = \{s \in [B]^{<\aleph_0} : (\forall \zeta \neq \xi \in s), [F(\zeta) \upharpoonright n \neq F(\xi) \upharpoonright n]\}$.

We define R_n as follows: a sequence $\langle p_s : s \in I_n \rangle \in R_n$ if and only if

- (i) for $s \in I_n$, $p_s \in P_{\lambda}^* \cap N_s$,
- (ii) for some c_s we have $p_s \Vdash "d(s) = c_s"$,
- (iii) for $s, t \in I_n$, $s \equiv_F^n t \Rightarrow \mathbf{h}_{s,t}(p_t) = p_s$,
- (iv) for $s, t \in I_n$, $p_s \upharpoonright N_{s \cap t} = p_t \upharpoonright N_{s \cap t}$.

 R_n^- is defined similarly omitting (ii).

For $x = \langle p_s : s \in I_n \rangle$ let n(x) = n, $p_s^x = p_s$, and (if defined) $c_s^x = c_s$. Note that we could replace $x \in R_n$ by a finite subsequence. Let $R = \bigcup_{n < \omega} R_n$, $R^- = \bigcup_{n < \omega} R_n^-$. We define an order on $R^- : x \leq y$ if and only if $n(x) \leq n(y)$, and $[s \in I_{n(x)} \land t \in I_{n(y)} \land s \subseteq t \Rightarrow p_s^x \leq p_t^y]$.

D Stage: Note the following facts::

D(α) **Subfact:** If $x \in R_n^-$, $t \in I_n$ and $p_t^x \leq p^1 \in P_\delta^* \cap N_t$, then there is y such that $x \leq y \in R_n^-$, $p_t^y = p^1$.

Proof. We let for $s \in I_n$

$$p_s^y \stackrel{\text{def}}{=} \& \left\{ \mathbf{h}_{s_1,t_1}(p^1 \upharpoonright N_{t_1}) : s_1 \subseteq s, t_1 \subseteq t, s_1 \equiv_F^n t_1 \right\} \& p_s^x.$$

(This notation means that p_s^y is a function whose domain is the union of the domains of the conditions mentioned, and for each coordinate we take the canonical upper bound, see preliminaries.) Why is p_s^y well defined?

Suppose $\beta \in N_s \cap \lambda$ (for $\beta \in \lambda \setminus N_s$, clearly $p_s^y(\beta) = \emptyset_\beta$), $s_\ell \subseteq s$, $t_\ell \subseteq t$, $s_\ell \equiv_F^n t_\ell$ for $\ell = 1, 2$ and $\beta \in \text{Dom}\left[\mathbf{h}_{s_\ell, t_\ell}(p^1 \upharpoonright N_{t_\ell})\right]$, and it suffices to show that $p_s^x(\beta)$, $\mathbf{h}_{s_1, t_1}(p^1 \upharpoonright N_{t_1})(\beta)$, $\mathbf{h}_{s_2, t_2}(p^1 \upharpoonright N_{t_2})(\beta)$ are pairwise comparable. Let $u = \bigcap \{v \in [B]^{<\aleph_0} : \beta \in N_v\}$, necessarily $u \subseteq s_1 \cap s_2$, and let $u_\ell = \mathbf{h}_{s_\ell, t_\ell}^{-1}(u)$. As $s_\ell, t_\ell, t \in I_n$, $s_\ell \equiv_F^n t_\ell$ and $u_\ell \subseteq t_\ell \subseteq t$, necessarily $u_1 = u_2$. Thus $\gamma \stackrel{\text{def}}{=} \mathbf{h}_{u,v}^{-1}(\beta) = \mathbf{h}_{s_\ell, t_\ell}^{-1}(\beta)$ and so the last two conditions are equal.

Now
$$p_s^x(\beta) = p_u^x(\beta) = \mathbf{h}_{u,v}(p_s^x(\gamma)) \le \mathbf{h}_{s_\ell,t_\ell}((p_t^x \upharpoonright N_{t_\ell})(\gamma)) = \left(\mathbf{h}_{s_\ell,t_\ell}(p_t^x \upharpoonright N_{t_\ell})\right)(\beta).$$

We leave to the reader checking the other requirements.

D(β) **Subfact:** If $x \in R_n^-$, $t \in I$ then $\bigcup \{p_s^x : s \in I_n, s \subseteq t\}$ (as union of functions) exists and belongs to $P_{\lambda}^* \cap N_t$.

Proof. See (iv) in the definition of R_n^- .

D(γ) **Subfact:** If $x \leq y$, $x \in R_n$, $y \in R_n^-$, then $y \in R_n$.

Proof. Check it.

D(δ) **Subfact:** If $x \in R_n^-$, n < m, then there is $y \in R_m$, $x \le y$.

Proof. By subfact $D(\beta)$ we can find $x^1 = \langle p_t^1 : t \in I_m \rangle \in inR_m^-$ with $x \leq x^1$. Using repeatedly subfact $D(\alpha)$ we can increase x^1 (finitely many times) to get $y \in R_m$.

 $\mathbf{D}(\varepsilon) \text{ Subfact: } \text{If } x \in R_n^-, \ s,t \in I_n, \ s \equiv_F^n t, \ p_s^x \leq r_1 \in P_\lambda^* \cap N_s, \ p_t^x \leq r_2 \in P_\lambda^* \cap N_t, \ (\forall \zeta \in t) \left[F(\zeta)(n) \neq (F(\mathbf{h}_{s,t}(\zeta)))(n) \right] \ (\text{ or just } p_{s_1}^x \upharpoonright s_1 = \mathbf{h}_{s,t}(p_{t_1}^x \upharpoonright t_1) \right]$ where $t_1 \stackrel{\text{def}}{=} \{\xi \in t : F(\xi)(n) = (F(\mathbf{h}_{s,t}(\xi)))(n)\}, \ s_1 \stackrel{\text{def}}{=} \{\mathbf{h}_{s,t}(\xi) : \xi \in t_1\},$ then there is $y \in R_{n+1}, \ x \leq y$ such that $r_1 = p_s^y$ and $r_2 = p_t^y$.

Proof. Left to the reader.

E Stage †:

[†] We will have $T \subset {}^{\omega}>2$ gotten by 2.7(2) and then want to get a subtree with as few as possible colors, we can find one isomorphic to ${}^{\omega}>2$, and there restrict ourselves to $\cup_n T_n^*$.

We define: $T_k^* \subseteq 2^{k \ge 2}$ by induction on k as follows:

$$\begin{split} T_0^* = & \{ \langle \rangle, \langle 1 \rangle \} \\ T_{k+1}^* = & \{ \nu : \nu \in T_k^* \text{ or } 2^k < \lg(\nu) \le 2^{k+1} , \nu \! \mid \! 2^k \in T_k^* \text{ and} \\ & [2^k \le i < 2^{k+1} \wedge \nu(i) = 1] \Rightarrow i = 2^k + (\sum_{m < 2^k} \nu(i) 2^m)] \}. \end{split}$$

We define

$$\begin{aligned} \operatorname{Tr} \; \operatorname{Emb}(k,n) &= \left\{ h : h \text{ a is function from } T_k^* \text{ into } ^{n \geq} 2 \text{ such that} \right. \\ & \quad \text{for } \nu, \rho \in T_k^* : \\ & \quad \left[\eta = \nu \Leftrightarrow h(\eta) = h(\nu) \right] \\ & \quad \left[\eta \lhd \nu \Leftrightarrow h(\eta) \lhd h(\nu) \right] \\ & \quad \left[\lg(\eta) = \lg(\nu) \Rightarrow \lg(h(\eta) = \lg(h(\nu)) \right] \\ & \quad \left[\nu = \eta \hat{\ } \langle i \rangle \Rightarrow (h(\nu)) [\lg(h(\eta))] = i \right] \\ & \quad \left[\lg(\eta) = {}^k 2 \Rightarrow \lg(h(\eta)) = n \right] \right\}. \\ & \quad \mathbf{T}(k,n) = \! \left\{ \operatorname{Rang} \; h : h \in \operatorname{Tr} \; \operatorname{Emb}(k,n) \right\}, \\ & \quad \mathbf{T}(*,n) = \bigcup_k \mathbf{T}(k,n), \\ & \quad \mathbf{T}(k,*) = \bigcup_i \mathbf{T}(k,n). \end{aligned}$$

For $T \in \mathbf{T}(k,*)$ let n(T) be the unique n such that $T \in \mathbf{T}(k,n)$ and let

$$\begin{split} B_T = & \{\alpha \in B : F(\alpha) \upharpoonright n(T) \text{ is a maximal member of } T \}, \\ fs_T = & \Big\{ t \subseteq B_T : \eta \in t \land \nu \in t \land \eta \neq \nu \Rightarrow \eta \upharpoonright n(T) \neq \nu \upharpoonright n(T) \}, \\ \Theta_T = & \Big\{ \langle p_s : s \in fs_T \rangle : p_s \in P \cap N_s, [s \subseteq t \land \{s,t\} \subseteq fs_T \Rightarrow p_s = p_t \upharpoonright N_s] \Big\}. \end{split}$$

Let further

$$\Theta_k = \bigcup_k \{\Theta_T : T \in \mathbf{T}(k, *)\}$$

$$\Theta = \bigcup_k \Theta_k.$$

For $\bar{p} \in \Theta$, $\mathbf{n}_{\bar{p}} = \mathbf{n}(\bar{p})$, $T_{\bar{p}}$ are defined naturally.

For $\bar{p}, \bar{q} \in \Theta$, $\bar{p} \leq \bar{q}$ iff $\mathbf{n}_{\bar{p}} \leq \mathbf{n}_{\bar{q}}$ and for every $s \in fs_{T_{\bar{p}}}$ we have $p_s \leq q_s$.

F Stage: Let $\underline{g}: \omega \to \omega$, $\underline{g} \in N_s$, \underline{g} grows fast enough relative $\langle \sigma_n : n < \omega \rangle$. We define a game \underline{Gm} . A play of the game lasts after ω moves, in the n^{th} move player I chooses $\bar{p}^n \in \Theta_n$ and a function h_n satisfying the restrictions below and then player II chooses $\bar{q}_n \in \Theta_n$, such that $\bar{p}_n \leq \bar{q}_n$ (so $T_{\bar{p}_n} = T_{\bar{q}_n}$). Player I loses the play if sometimes he has no legal move; if he never loses, he wins. The restrictions player I has to satisfy are:

- (a) for m < n, $\bar{q}_m \leq \bar{p}_n$, p_s^n forces a value to $\underline{g} \upharpoonright (n+1)$,
- (b) h_n is a function from $[B_{T_{\bar{p}_n}}]^{\leq g(n)}$ to ω ,
- (c) if $m < n \Rightarrow h_n, h_m$ are compatible,
- (d) If $m < n, \ \ell < g(m), \ s \in [B_{T_{\bar{p}_n}}]^{\ell}$, then $p_s^n \Vdash d(s) = h_n(s)$,
- (e) Let $s_1, s_2 \in \text{Dom } h_n$. Then $h_n(s_1) = h_n(s_2)$ whenever s_1, s_2 are similar over n which means:

(i)
$$\left(F\left(H_{s_2,s_1}^{OP}(\zeta)\right)\right) \upharpoonright \mathbf{n}[\bar{p}^n] = \left(F(\zeta)\right) \upharpoonright \mathbf{n}[\bar{p}^n] \text{ for } \zeta \in s_1,$$

(ii)
$$H_{s_2,s_1}^{OP}$$
 preserves the relations sp $\left(F(\zeta_1),F(\zeta_2)\right) < \text{sp}\left(F(\zeta_3),F(\zeta_4)\right)$ and $F(\zeta_3)\left(\text{sp}\left(F(\zeta_1),F(\zeta_2)\right)\right) = i$ (in the interesting case $\zeta_3 \neq \zeta_1,\zeta_2$ implies $i=0$).

G Stage/Claim: Player I has a winning strategy in this game.

Proof. As the game is closed, it is determined, so we assume player II has a winning strategy, and eventually we shall get a contradiction. We define by induction on n, \bar{r}^n and Φ^n such that

- (a) $\bar{r}^n \in R_n, \bar{r}^n \leq \bar{r}^{n+1},$
- (b) Φ^n is a finite set of initial segments of plays of the game,
- (c) in each member of Φ^n player II uses his winning strategy,
- (d) if y belongs to Φ^n then it has the form $\langle \bar{p}^{y,\ell}, h^{y,\ell}, \bar{q}^{y,\ell} : \ell \leq m(y) \rangle$; let $h_y = h^{y,n_y}$ and $T_y = T_{\bar{q}^y,m(y)}$; also $T_y \subseteq^{n \geq 2}$, $q_s^{y,\ell} \leq r_s^n$ for $s \in fs_{T_y}$.
- (e) $\Phi_n \subseteq \Phi_{n+1}$, Φ_n is closed under taking the initial segments and the empty sequence (which too is an initial segment of a play) belongs to Φ_0 .
- (f) For any $y \in \Phi_n$ and T, h either for some $z \in \Phi_{n+1}$, $n_z = n_y + 1$, $y = z \upharpoonright (n_y + 1)$, $T_z = T$ and $h_z = h$ or player I has no legal $(n_y + 1)^{\text{th}}$ move \bar{p}^n, h^n (after y was played) such that $T_{\bar{p}^n} = T$, $h^n = h$, and $p_s^n = r_s^n$ for $s \in f_{s_T}$ (or always \leq or always \geq).

Now apply 2.7(2) to this coloring, get $T^* \subseteq^{\omega} 2$ as there. Now player I could have chosen initial segments of this T^* (in the n^{th} move in Φ_n) and we get easily a contradiction.

H Stage: We fix a winning strategy for player I (whose existence is guaranteed by stage G).

We define a forcing notion Q^* . We have $(r, y, f) \in Q^*$ iff

- (i) $r \in P_{a_{\delta}}^{cn}$
- (ii) $y = \langle \bar{p}^{\ell}, h^{\ell}, \bar{q}^{\ell} : \ell \leq m(y) \rangle$ is an initial segment of a play of \underline{Gm} in which player I uses his winning strategy
- (iii) f is a finite function from B to $\{0,1\}$ such that $f^{-1}(\{1\}) \in fs_{T_y}$ (where $T_y = T_{\bar{q}^{m(y)}}$).
- (iv) $r = q_{f^{-1}(\{1\})}^{y,m(y)}$.

The Order is the natural one.

I Stage: If $\underline{J} \subseteq P_{a_{\delta}}^{\mathrm{cn}}$ is dense open then $\{(r, y, f) \in Q^* : r \in \underline{J}\}$ is dense in Q^* .

Proof. By 3.8(1) (by the appropriate renaming).

J Stage: We define Q_{δ} in $V^{P_{\delta}}$ as $\{(r, y, f) \in Q^* : r \in \mathcal{G}_{P_{\delta}}\}$, the order is as in Q^* .

The main point left is to prove the Knaster condition for the partial ordered set $\bar{Q}^* = \bar{Q}^{\hat{}} \langle P_{\delta}, Q_{\delta}, a_{\delta}, e_{\delta} \rangle$ demanded in the definition of \mathfrak{K}^1 . This will follow by 3.8(3) (after you choose meaning and renamings) as done in stages K,L below.

K Stage: So let $i < \delta$, cf $(i) \neq \aleph_1$, and we shall prove that $P_{\delta+1}^+/P_i$ satisfies the Knaster condition. Let $p_{\alpha} \in P_{\delta+1}^*$ for $\alpha < \omega_1$, and we should find $p \in P_i$, $p \Vdash_{P_i}$ "there is an unbounded $A \subseteq \{\alpha : p_{\alpha} \mid i \in \mathcal{G}_{P_i}\}$ such that for any $\alpha, \beta \in A$, p_{α}, p_{β} are compatible in $P_{\delta+1}^*/\mathcal{G}_{P_i}$ ".

Without loss of generality:

(a) $p_{\alpha} \in P_{\delta+1}^{cn}$.

- (b) for some $\langle i_{\alpha}: \alpha < \omega_{1} \rangle$ increasing continuous with limit δ we have: $i_{0} > i$, cf $i_{\alpha} \neq \aleph_{1}$, $p_{\alpha} \upharpoonright \delta \in P_{i_{\alpha+1}}$, $p_{\alpha} \upharpoonright i_{\alpha} \in P_{i_{0}}$. Let $p_{\alpha}^{0} = p^{\alpha} \upharpoonright i_{0}$, $p_{\alpha}^{1} = p_{\alpha} \upharpoonright \delta = p_{\alpha} \upharpoonright i_{\alpha+1}$, $p_{\alpha}(\delta) = (r_{\alpha}, y_{\alpha}, f_{\alpha})$, so without
- loss of generality
- (c) $r_{\alpha} \in P_{i_{\alpha+1}}, r_{\alpha} \upharpoonright i_{\alpha} \in P_{i_0}, m(y_{\alpha}) = m^*,$
- (d) Dom $f_{\alpha} \subseteq i_0 \cup [i_{\alpha}, i_{\alpha+1}),$
- (e) $f_{\alpha} \upharpoonright i_0$ is constant (remember $otp(B) = \omega_1$,
- (f) if $\operatorname{Dom} f_{\alpha} = \{j_{0}^{\alpha}, \dots j_{k_{\alpha}-1}^{\alpha}\}$ then $k_{\alpha} = k$, $[j_{\ell}^{\alpha} < i_{\alpha} \Leftrightarrow \ell < k^{*}]$, $\bigwedge_{\ell < k^{*}} j_{\ell}^{\alpha} = j^{\ell}$, $f(j_{\ell}^{\alpha}) = f(j_{\ell}^{\beta})$, $F(j_{\ell}^{\alpha})) \upharpoonright m(y_{\alpha}) = F(j_{\ell}^{\beta}) \upharpoonright m(y_{\beta})$.

The main problem is the compatibility of the $q^{y_{\alpha},m(y_{\alpha})}$. Now by the definition Θ_{α} (in stage E) and 3.8(3) this holds.

L Stage: If $c \subset \delta + 1$ is closed for \bar{Q}^* , then $P_{\delta+1}^*/P_c^{cn}$ satisfies the Knaster condition.

If c is bounded in δ , choose a successor $i \in (\sup c, \delta)$ for $\bar{Q} \upharpoonright i \in \mathfrak{K}_1$. We know that P_i/P_c^{cn} satisfies the Knaster condition and by stage K, $P_{\delta+1}^*/P_i$ also satisfies the Knaster condition; as it is preserved by composition we have finished the stage.

So assume c is unbounded in δ and it is easy too. So as seen in stage J, we have finished the proof of 3.1.

Theorem 3.11. If $\lambda \geq \beth_{\omega}$, P is the forcing notion of adding λ Cohen reals then

- (*)₁ in V^P , if $n < \omega$ $d : [\lambda]^{\leq n} \to \sigma$, $\sigma < \aleph_0$, then for some c.c.c. forcing notion Q we have \Vdash_Q "there are an uncountable $A \subseteq \lambda$ and an one-to-one $F : A \to^\omega 2$ such that d is F-canonical on A" (see notation in §2).
- (*)₂ if in V, $\lambda \geq \mu \to_{\text{wsp}} (\kappa)_{\aleph_0}$ (see [Sh289]) and in V^P , $d: [\mu]^{\leq n} \to \sigma$, $\sigma < \aleph_0$ then in V^P for some c.c.c. forcing notion Q we have \Vdash_Q "there are $A \in [\mu]^{\kappa}$ and one-to-one $F: A \to^{\omega} 2$ such that d is F-canonical on A" (see §2,).
- (*)₃ if in V, $\lambda \geq \mu \to_{\text{wsp}} (\aleph_1)_{\aleph_2}^n$ and in V^P $d : [\mu]^{\leq n} \to \sigma$, $\sigma < \aleph_0$ then in V^P for every $\alpha < \omega_1$ and $F : \alpha \to^{\omega} 2$ for some $A \subseteq \mu$ of order type α and $F' : A \to^{\omega} 2$, $F'(\beta) \stackrel{\text{def}}{=} F(\text{otp}(A \cap \beta))$, d is F'-canonical on A.
- (*)₄ in V^P , $2^{\aleph_0} \to (\alpha, n)^3$ for every $\alpha < \omega_1$, $n < \omega$. Really, assuming $V \models GCH$, we have $\aleph_{n_2^1} \to (\alpha, n)$ see [Sh289].

Proof. Similar to the proof of 3.1. Superficially we need more indiscernibility then we get, but getting $\langle M_u : u \in [B]^{\leq n} \rangle$ we ignore $d(\{\alpha, \beta\})$ when there is no u with $\{\alpha, \beta\} \in M_u$.

Theorem 3.12. If λ is strongly inaccessible ω -Mahlo, $\mu < \lambda$, then for some c.c.c. forcing notion P of cardinality λ , V^P satisfies

- (a) MA_{μ}
- (b) $2^{\aleph_0} = \lambda = 2^{\kappa}$ for $\kappa < \lambda$
- (c) $\lambda \to [\aleph_1]_{\sigma,h(n)}^n$ for $n < \omega, \, \sigma < \aleph_0, \, h(n)$ is as in 3.1.

Proof. Again, like 3.1.

4. Partition theorem for trees on large cardinals

Lemma 4.1 Suppose $\mu > \sigma + \aleph_0$ and

- $(*)_{\mu}$ for every μ -complete forcing notion P, in V^{P} , μ is measurable. Then
- (1) for $n < \omega$, $Pr_{eht}^f(\mu, n, \sigma)$.
- (2) $Pr_{eht}^f(\mu, < \aleph_0, \sigma)$, if there is $\lambda > \mu$, $\lambda \to (\mu^+)_2^{<\omega}$.
- (3) In both cases we can have the Pr_{ehtn}^f version, and even choose the $\langle <_{\alpha}^* : \alpha < \mu \rangle$ in any of the following ways.
 - (a) We are given $\langle <_{\alpha}^0 : \alpha < \mu \rangle$, and we let for $\eta, \nu \in ^{\alpha} 2 \cap T$, $\alpha \in SP(T)$ (T is the subtree we consider):

$$\eta <_{\alpha}^* \nu$$
 if and only if $\operatorname{clp}_T(\eta) <_{\beta}^0 \operatorname{clp}_T(\nu)$ where $\beta = \operatorname{otp}(\alpha \cap SP(T))$ and $\operatorname{clp}_T(\eta) = \langle \eta(j) : j \in \operatorname{lg}(\eta), j \in \operatorname{SP}(T) \rangle$.

(b) We are given $\langle <_{\alpha}^0 : \alpha < \mu \rangle$, we let that for $\nu, \eta \in {}^{\alpha} \ 2 \cap T$, $\alpha \in SP(T)$: $\eta <_{\alpha}^* \nu$ if and only if $n \upharpoonright (\beta + 1) <_{\beta+1}^0 \nu \upharpoonright (\beta + 1)$ where $\beta = \sup(\alpha \cap SP(T))$.

Remark. 1) $(*)_{\mu}$ holds for a supercompact after Laver treatment. On hypermeasurable see Gitik Shelah [GiSh344].

- 2) We can in $(*)_{\mu}$ restrict ourselves to the forcing notion P actually used. For it by Gitik [Gi] much smaller large cardinals suffice.
- 3) The proof of 4.1 is a generalization of a proof of Harrington to Halpern Lauchli theorem from 1978.

Conclusion 4.2. In 4.1 we can get $Pr_{ht}^f(\mu, n, \sigma)$ (even with (3)).

Proof of 4.2. We do the parallel to 4.1(1). By $(*)_{\mu}$, μ is weakly compact hence by 2.6(2) it is enough to prove $Pr_{aht}^{f}(\mu, n, \sigma)$. This follows from 4.1(1) by 2.6(1).

Proof of Lemma 4.1. 1), 2). Let $\kappa \leq \omega$, $\sigma(n) < \mu$, $d_n \in \operatorname{Col}_{\sigma(n)}^n(\mu^{>}2)$ for $n < \kappa$.

Choose λ such that $\lambda \to (\mu^+)_{2^{\mu}}^{<2\kappa}$ (there is such a λ by assumption for (2) and by $\kappa < \omega$ for (1)). Let Q be the forcing notion $(\mu^>2, \triangleleft)$, and $P = P_{\lambda}$ be $\{f : \text{dom}(f) \text{ is a subset of } \lambda \text{ of cardinality } < \mu, f(i) \in Q\}$ ordered naturally. For $i \notin \text{dom}(f)$, take f(i) = <>; Let $\underline{\eta}_i$ be the P-name for $\{f(i) : f \in \underline{G}_P\}$. Let \underline{D} be a P-name of a normal ultrafilter over μ (in V^P). For each $n < \omega$, $d \in \text{Col}_{\sigma(n)}^n(\mu^>2)$, $j < \sigma(n)$ and $u = \{\alpha_0, \dots, \alpha_{n-1}\}$, where $\alpha_0 < \dots < \alpha_{n-1} < \lambda$, let $\underline{A}_d^j(u)$ be the P_{λ} -name of the set

$$\begin{split} A_d^j(u) = \Big\{ i < \mu : \langle \underline{\eta}_{\alpha_\ell} \! \upharpoonright \! i : \ell < n \rangle \text{ are pairwise distinct and } \\ j = d(\eta_{\alpha_0} \! \upharpoonright \! i, \dots, \eta_{\alpha_{n-1}} \! \upharpoonright \! i) \Big\}. \end{split}$$

So $A_d^j(u)$ is a P_λ -name of a subset of μ , and for $j(1) < j(2) < \sigma(n)$ we have $\Vdash_{P_\lambda} {}^*A_d^{j(1)}(u) \cap A_d^{j(2)}(u) = \emptyset$, and $\bigcup_{j < \sigma(n)} A_d^j(u)$ is a co-bounded subset of μ . As $\Vdash_P {}^*\mathfrak{D}$ is μ -complete uniform ultrafilter on μ , in V^P there is exactly one $j < \sigma(n)$ with $A_d^j(u) \in \mathfrak{D}$. Let $j_d(u)$ be the P-name of this j.

Let $I_d(u) \subseteq P$ be a maximal antichain of P, each member of $I_d(u)$ forces a value to $\underline{j}_d(u)$. Let $W_d(u) = \bigcup \{ \operatorname{dom}(p) : p \in I_d(u) \}$ and $W(u) = \bigcup \{ W_{d_n}(u) : n < \kappa \}$. So $W_d(u)$ is a subset of λ of cardinaltiy $\leq \mu$ as well as W(u) (as P satisfies the μ^+ -c.c. and $p \in P \Rightarrow |\operatorname{dom}(p)| < \mu$).

As $\lambda \to (\mu^{++})_{2\mu}^{\leq 2\kappa}$, $d_n \in \operatorname{Col}_{\sigma_n}^n(\mu^{>}2)$ there is a subset Z of λ of cardinality μ^{++} and set $W^+(u)$ for each $u \in [Z]^{<\kappa}$ such that:

- (i) $W^+(u_1) \cap W^+(u_2) = W^+(u_1 \cap u_2)$,
- (ii) $W(u) \subseteq W^+(u)$ if $u \in [Z]^{<\kappa}$,
- (iii) if $|u_1| = |u_2| < \kappa$ and $u_1, u_2 \subseteq Z$ then $W^+(u_1)$ and $W^+(u_2)$ have the same order type and note that $H[u_1, u_2] \stackrel{\text{def}}{=} H^{OP}_{W^+(u_1), W^+(u_2)}$, induces naturally a map from $P \upharpoonright u_1 \stackrel{\text{def}}{=} \{p \in P : \text{dom}(p) \subseteq W^+(u_1)\}$ to $P \upharpoonright u_2 \stackrel{\text{def}}{=} \{p \in P : \text{dom}(p) \subseteq W^+(u_2)\}$.

- (iv) if $u_1, u_2 \in [Z]^{<\kappa}$, $|u_1| = |u_2|$ then $H[u_1, u_2]$ maps $I_{d_n}(u_1)$ onto $I_{d_n}(u_2)$ and: $q \Vdash "j_d(u_1) = j" \Leftrightarrow H[u_1, u_2](q) \Vdash "j_d(u_2) = j"$,
- (v) if $u_1 \subseteq u_2 \in [Z]^{<\kappa}$, $u_3 \subseteq u_4 \in [Z]^{<\kappa}$, $|u_4| = |u_2|$, H_{u_2,u_4}^{OP} maps u_1 onto u_3 then $H[u_1,u_3] \subseteq H[u_2,u_4]$.

Let $\gamma(i)$ be the i^{th} member of Z.

Let s(m) be the set of the first m members of Z and $R_n = \{p \in P : dom(p) \subseteq W^+(s(n)) - \bigcup_{t \subset s(n)} W^+(t)\}.$

We define by induction on $\alpha < \mu$ a function F_{α} and $p_u \in R_{|u|}$ for $u \in \bigcup_{\beta < \alpha} [\beta^2]^{<\kappa}$ where we let \emptyset_{β} be the empty subset of $[\beta^2]$ and we behave as if $[\beta \neq \gamma \Rightarrow \emptyset_{\beta} \neq \emptyset_{\gamma}]$ and we also define $\zeta(\beta) < \mu$, such that:

- (i) F_{α} is a function from $\alpha > 2$ into $\mu > 2$, extending F_{β} for $\beta < \alpha$,
- (ii) F_{α} maps $^{\beta}2$ to $^{\zeta(\beta)}2$ for some $\zeta(\beta) < \mu$ and $\beta_1 < \beta_2 < \alpha \Rightarrow \zeta(\beta_1) < \zeta(\beta_2)$,
- (iii) $\eta \triangleleft \nu \in {}^{\alpha} > 2$ implies $F_{\alpha}(\eta) \triangleleft F_{\alpha}(\nu)$,
- (iv) for $\eta \in {}^{\beta} 2$, $\beta + 1 < \alpha$ and $\ell < 2 we have F_{\alpha}(\eta) \hat{\langle \ell \rangle} \triangleleft F_{\alpha}(\eta \hat{\langle \ell \rangle})$,
- (v) $p_u \in R_m$ whenever $u \in [\beta 2]^m$, $m < \kappa$, $\beta < \alpha$ and for $u(1) \in [Z]^m$ let $p_{u,u(1)} = H[s(|u|), u(1)](p_u)$.
- (vi) $\eta \in {}^{\beta} 2$, $\beta < \alpha$, then $p_{\{\eta\}}(\min Z) = F_{\alpha}(\eta)$.
- (vii) if $\beta < \alpha, u \in [\beta 2]^n, n < \kappa, h : u \to s(n)$ one-to-one onto (not necessarily order preserving) then for some $c(u,h) < \sigma(n)$:

$$\bigcup_{t \subset u} p_{t,h''(t)} \Vdash_{P_{\lambda}} "\underline{\mathring{q}}_{n}(\underline{\mathring{\eta}}_{\gamma(0)}, \dots, \underline{\mathring{\eta}}_{\gamma(n-1)}) = c(u,h)",$$

(Note: as $p_u \in R_{|u|}$ the domains of the conditions in this union are pairwise disjoint.)

- (viii) If n, u, β, h are as in (vii), $u = \{\nu_0, \dots, \nu_{n-1}\}, \nu_{\ell} \triangleleft \rho_{\ell} \in^{\gamma} 2, \beta \leq \gamma < \alpha$ then $d_n(F_{\alpha}(\rho_0), \dots, F_{\alpha}(\rho_{n-1})) = c(u, h)$ where h is the unique function from u onto s(n) such that $[h(\nu_{\ell}) \leq h(\nu_m) \Rightarrow \rho_{\ell} <^*_{\gamma} \rho_m]$.
- (ix) if $\beta < \gamma < \alpha$, $\nu_1, \ldots, \nu_{n-1} \in {}^{\gamma} 2$, $n < \kappa$, and $\nu_0 \upharpoonright \beta, \ldots, \nu_{n-1} \upharpoonright \beta$ are pairwise distinct then:

$$p_{\{\nu_0|\beta,\ldots,\nu_n|\beta\}}\subseteq p_{\{\nu_0,\ldots,\nu_{n-1}\}}.$$

For α limit: no problem.

For $\alpha + 1$, α limit: we try to define $F_{\alpha}(\eta)$ for $\eta \in^{\alpha} 2$ such that $\bigcup_{\beta < \alpha} F_{\beta+1}(\eta \upharpoonright \beta) \triangleleft F_{\alpha}(\eta)$ and (viii) holds. Let $\zeta = \bigcup_{\beta < \alpha} \zeta(\beta)$, and for $\eta \in^{\alpha} 2$, $F_{\alpha}^{0}(\eta) = 0$

 $\bigcup_{\beta < \alpha} F_{\alpha}(\eta \upharpoonright \beta) \text{ and for } u \in [^{\alpha}2]^{<\kappa}, \ p_{u}^{0} \stackrel{\text{def}}{=} \bigcup \{p_{\{\nu \beta : \nu \in u\}}^{0} : \beta < \alpha, \ |u| = |\{\nu \upharpoonright \beta : \nu \in u\}|\}. \text{ Clearly } p_{u}^{0} \in R_{|u|}.$

Then let $h:^{\alpha}2 \to Z$ be one-to-one, such that $\eta <_{\alpha}^{*} \nu \Leftrightarrow h(\eta) < h(\nu)$ and let $p \stackrel{\mathrm{def}}{=} \bigcup \{p_{u,u(1)}^{0}: u(1) \in [Z]^{<\kappa}, \ u \in [^{\alpha}2]^{<\kappa}, \ |u(1)| = |u|, \ h''(u) = u(1)\}.$

For any generic $G \subseteq P_{\lambda}$ to which p belongs, $\beta < \alpha$ and ordinals $i_0 < \cdots < i_{n-1}$ from Z such that $\langle h^{-1}(i_{\ell}) \upharpoonright \beta : \ell < n \rangle$ are pairwise distinct we have that

$$B_{\{i_{\ell}:\ell < n\},\beta} = \Big\{ \xi < \mu : d_n(\eta_{i_0} \upharpoonright \xi, \dots, \eta_{i_{n-1}} \upharpoonright \xi) = c(u, h^*) \Big\},\,$$

belongs to $\mathfrak{D}[G]$, where $u=\{h^{-1}(i_{\ell}) \upharpoonright \beta: \ell < n\}$ and $h^*: u \to s(|u|)$ is defined by $h^*(h^{-1}(i_{\ell}) \upharpoonright \beta) = H^{OP}_{\{i_{\ell}: \ell < n\}, s(n)}(i_{\ell})$. Really every large enough $\beta < \mu$ can serve so we omit it. As $\mathfrak{D}[G]$ is μ -complete uniform ultrafilter on μ , we can find $\xi \in (\zeta, \kappa)$ such that $\xi \in B_u$ for every $u \in [^{\alpha}2]^n$, $n < \kappa$. We let for $\nu \in ^{\alpha}2$, $F_{\alpha}(\nu) = \eta_{h(i)}[G] \upharpoonright \xi$, and we let $p_u = p_u^0$ except when $u = \{\nu\}$, then:

$$p_u(i) = \begin{cases} p_u^0(i) & i \neq \gamma(0) \\ F_{\alpha+1}(\nu) & i = \gamma(0) \end{cases}.$$

For $\alpha + 1$, α is a successor: First for $\eta \in {}^{\alpha-1} 2$ define $F(\eta \hat{\ } \langle \ell \rangle) = F_{\alpha}(\eta) \hat{\ } \langle \ell \rangle$. Next we let $\{(u_i, h_i) : i < i^*\}$, list all pairs (u, h), $u \in [{}^{\alpha}2]^{\leq n}$, $h : u \to s(|u|)$, one-to-one onto. Now, we define by induction on $i \leq i^*$, $p_u^i(u \in [{}^{\alpha}2]^{<\kappa})$ such that :

- (a) $p_u^i \in R_{|u|}$,
- (b) p_u^i increases with i,
- (c) for i+1, (vii) holds for (u_i, h_i) ,
- (d) if $\nu_m \in {}^{\alpha} 2$ for $m < n, n < \kappa, \langle \nu_m \upharpoonright (\alpha 1) : m < n \rangle$ are pairwise distinct, then $p_{\{\nu_m \upharpoonright (\alpha 1) : m < n\}} \leq p_{\{\nu_m : m < n\}}^0$,
- (e) if $\nu \in {}^{\alpha} 2$, $\nu(\alpha 1) = \ell$ then $p_{\{\nu\}}^{0}(0) = F_{\alpha}(\nu \upharpoonright (\alpha 1)) \upharpoonright \langle \ell \rangle$.

There is no problem to carry the induction.

Now $F_{\alpha+1} \upharpoonright {}^{\alpha}2$ is to be defined as in the second case, starting with $\eta \to p_{\{\eta\}}^{i^*}(\eta)$.

For $\alpha = 0, 1$: Left to the reader.

So we have finished the induction hence the proof of 4.1(1), (2).

3) Left to the reader (the only influence is the choice of h in stage of the induction). \blacksquare

The negative results here suffice to show that the value we have for 2^{\aleph_0} in §3 is reasonable. In particular the Galvin conjecture is wrong and that for every $n < \omega$ for some $m < \omega$, $\aleph_n \not\to [\aleph_1]_{\aleph_0}^m$.

See Erdos Hajnal Máté Rado [EHMR] for

Fact 5.1. If $2^{<\mu} < \lambda \le 2^{\mu}$, $\mu \to [\mu]_{\sigma}^{n}$ then $\lambda \to [(2^{<\mu})^{+}]_{\sigma}^{n+1}$.

This shows that if e.g. in 1.4 we want to increase the exponents, to 3 (and still $\mu = \mu^{<\mu}$) e.g. μ cannot be successor (when $\sigma \leq \aleph_0$) (by [Sh276], 3.5(2)).

Definition 5.2. $Pr_{np}(\lambda,\mu,\bar{\sigma})$, where $\bar{\sigma} = \langle \sigma_n : n < \omega \rangle$, means that there are functions $F_n : [\lambda]^n \to \sigma_n$ such that for every $W \in [\lambda]^\mu$ for some n, $F''_n([W]^n) = \sigma(n)$. The negation of this property is denoted by $NPr_{np}(\lambda,\mu,\bar{\sigma})$.

If $\sigma_n = \sigma$ we write σ instead of $\langle \sigma_n : n < \omega \rangle$.

Remark 5.2A. 1) Note that $\lambda \to [\mu]_{\sigma}^{<\omega}$ means: if $F : [\lambda]^{<\omega} \to \sigma$ then for some $A \in [\lambda]^{\mu}$, $F''([A]^{<\omega}) \neq \sigma$. So for $\lambda \geq \mu \geq \sigma = \aleph_0$, $\lambda \not\to [\mu]_{\sigma}^{<\omega}$, (use $F : F(\alpha) = |\alpha|$) and $Pr_{np}(\lambda, \mu, \sigma)$ is stronger than $\lambda \not\to [\mu]_{\sigma}^{<\omega}$.

- 2) We do not write down the monotonicity properties of Pr_{np} they are obvious.
- **Claim 5.3** 1) We can (in 5.2) w.l.o.g. use $F_{n,m}: [\lambda]^n \to \sigma_n$ for $n, m < \omega$ and obvious monotonicity properties holds, and $\lambda \ge \mu \ge n$.
- 2) Suppose $NPr_{np}(\lambda, \mu, \kappa)$ and $\kappa \not\to [\kappa]_{\sigma}^n$ or even $\kappa \not\to [\kappa]_{\sigma}^{<\omega}$. Then the following case of Chang conjecture holds:
- (*) for every model M with universe λ and countable vocabulary, there is an elementary submodel N of M of cardinality μ ,

$$|N \cap \kappa| < \kappa$$

3) If $NPr_{np}(\lambda, \aleph_1, \aleph_0)$ then $(\lambda, \aleph_1) \to (\aleph_1, \aleph_0)$.

Proof. Easy.

Theorem 5.4. Suppose $Pr_{np}(\lambda_0, \mu, \aleph_0)$, μ regular $> \aleph_0$ and $\lambda_1 \ge \lambda_0$, and no $\mu' \in (\lambda_0, \lambda_1)$ is μ' -Mahlo. Then $Pr_{np}(\lambda_1, \mu, \aleph_0)$.

Proof. Let $\chi = \beth_8(\lambda_1)^+$, let $\{F_{n,m}^0 : m < \omega\}$ list the definable n-place functions in the model $(H(\chi), \in, <^*_{\chi})$, with $\lambda_0, \mu, \lambda_1$ as parameters, let $F_{n,m}^1(\alpha_0, \ldots, \alpha_{n-1})$ (for $\alpha_0, \ldots, \alpha_{n-1} < \lambda_1$) be $F_{n,m}^0(\alpha_0, \ldots, \alpha_{n-1})$ if it is an ordinal $< \lambda_1$ and zero otherwise. Let $F_{n,m}(\alpha_0, \ldots, \alpha_{n-1})$ (for $\alpha_0, \ldots, \alpha_{n-1} < \lambda_1$) be $F_{n,m}^0(\alpha_0, \ldots, \alpha_{n-1})$ if it is an ordinal $< \omega$ and zero otherwise. We shall show that $F_{n,m}(n, m < \omega)$ exemplify $Pr_{np}(\lambda_1, \mu, \aleph_0)$ (see 5.3(1)).

So suppose $W \in [\lambda_1]^\mu$ is a counterexample to $Pr(\lambda_1,\mu,\aleph_0)$ i.e. for no $n,m,F''_{n,m}([W]^n)=\omega$. Let W^* be the closure of W under $F^1_{n,m}(n,m<\omega)$. Let N be the Skolem Hull of W in $(H(\chi),\in,<^*_\chi)$, so clearly $N\cap\lambda_1=W^*$. Note $W^*\subseteq\lambda_1$, $|W^*|=\mu$. Also as $\mathrm{cf}(\mu)>\aleph_0$ if $A\subseteq W^*$, $|A|=\mu$ then for some $n,m<\omega$ and $u_i\in [W]^n$ (for $i<\mu$), $F^1_{n,m}(u_i)\in A$ and $[i< j<\mu\Rightarrow F^1_{n,m}(u_i)\neq F^1_{n,m}(u_i)]$. It is easy to check that also $W^1=\{F^1_{n,m}(u_i):i<\mu\}$ is a counterexample to $Pr(\lambda_1,\mu,\sigma)$. In particular, for $n,m<\omega$, $W_{n,m}=\{F^1_{n,m}(u):u\in [W]^n\}$ is a counterexample if it has power μ . W.l.o.g. W is a counterexample with minimal $\delta\stackrel{\mathrm{def}}{=}\sup(W)=\cup\{\alpha+1:\alpha\in W\}$. The above discussion shows that $|W^*\cap\alpha|<\mu$ for $\alpha<\delta$. Obviously cf $\delta=\mu^+$. Let $\langle\alpha_i:i<\mu\rangle$ be a strictly increasing sequence of members of W^* , converging to δ , such that for limit i we have $\alpha_i=\min(W^*-\bigcup_{j< i}(\alpha_j+1)$. Let $N=\bigcup_{i<\mu}N_i,\ N_i\prec N_i\prec N,\ |N_i|<\mu,\ N_i\ \text{increasing continuous and w.l.o.g.}$ $N_i\cap\delta=N\cap\alpha_i$.

 $\underline{\alpha}$ Fact: δ is $> \lambda_0$.

Proof. Otherwise we then get an easy contradiction to $Pr(\lambda_0, \mu, \sigma)$) as choosing the $F_{n,m}^0$ we allowed λ_0 as a parameter.

<u> β Fact</u>: If F is a unary function definable in N, $F(\alpha)$ is a club of α for every limit ordinal $\alpha(<\lambda_1)$ then for some club C of μ we have

$$(\forall j \in C \setminus \{\min C\})(\exists i_1 < j)(\forall i \in (i_1, j))[i \in C \Rightarrow \alpha_i \in F(\alpha_j)].$$

Proof. For some club C_0 of μ we have $j \in C_0 \Rightarrow (N_j, \{\alpha_i : i < j\}, W) \prec (N, \{\alpha_i : i < \mu\}, W)$.

We let $C = C'_0 = \text{acc}(C)$ (= set of accumulation points of C_0).

We check C is as required; suppose j is a counterexample. So $j = \sup(j \cap C)$ (otherwise choose $i_1 = \max(j \cap C)$). So we can define, by induction on n, i_n , such that:

- (b) $\alpha_{i_n} \notin F(\alpha_i)$
- (c) $(\alpha_{i_n}, \alpha_{i_{n+1}}) \cap F(\alpha_j) \neq \emptyset$.

Why (C'_0) ? \models " $F(\alpha_j)$ is unbounded below α_j " hence $N \models$ " $F(\alpha_j)$ is unbounded below α_j ", but in N, $\{\alpha_i : i \in C_0, i < j\}$ is unbounded below α_j .

Clearly for some $n, m, \alpha_j \in W_{n,m}$ (see above). Now we can repeat the proof of [Sh276,3.3(2)] (see mainly the end) using only members of $W_{n,m}$. Note: here we use the number of colors being \aleph_0 .

 β^+ Fact: Wolog the C in Fact β is μ .

Proof: Renaming.

 γ Fact: δ is a limit cardinal.

Proof: Suppose not. Now δ cannot be a successor cardinal (as cf $\delta = \mu \le \lambda_0 < \delta$) hence for every large enough i, $|\alpha_i| = |\delta|$, so $|\delta| \in W^* \subseteq N$ and $|\delta|^+ \in W^*$.

So $W^* \cap |\delta|$ has cardinality $< \mu$ hence order-type some $\gamma^* < \mu$. Choose $i^* < \mu$ limit such that $[j < i^* \Rightarrow j + \gamma^* < i^*]$. There is a definable function F of $(H(\chi), \in, <^*_{\chi})$ such that for every limit ordinal α , $F(\alpha)$ is a club of α , $0 \in F(\alpha)$, if $|\alpha| < \alpha$, $F(\alpha) \cap |\alpha| = \emptyset$, $\operatorname{otp}(F(\alpha)) = \operatorname{cf} \alpha$.

So in N there is a closed unbounded subset $C_{\alpha_j} = F(\alpha_j)$ of α_j of order type \leq cf $\alpha_j \leq |\delta|$, hence $C_{\alpha_j} \cap N$ has order type $\leq \gamma^*$, hence for i^* chosen above unboundedly many $i < i^*$, $\alpha_i \notin C_{\alpha_{i^*}}$. We can finish by fact β^+ .

 $\underline{\delta}$ Fact: For each $i < \mu$, α_i is a cardinal.

Proof: If $|\alpha_i| < i$ then $|\alpha_i| \in N_i$, but then $|\alpha_i|^+ \in N_i$ contradicting to Fact γ , by which $|\alpha_i|^+ < \delta$, as we have assumed $N_i \cap \delta = N \cap \alpha_i$.

 $\underline{\varepsilon}$ Fact: For a club of $i < \mu$, α_i is a regular cardinal.

(Proof: if $S = \{i : \alpha_i \text{ singular}\}$ is stationary, then the function $\alpha_i \to \operatorname{cf}(\alpha_i)$ is regressive on S. By Fodor lemma, for some $\alpha^* < \delta$, $\{i < \mu : \operatorname{cf} \alpha_i < \alpha^*\}$ is stationary. As $|N \cap \alpha^*| < \mu$ for some β^* , $\{i < \mu : \operatorname{cf} \alpha_i = \beta^*\}$ is stationary. Let $F_{1,m}(\alpha)$ be a club of α of order type $\operatorname{cf}(\alpha)$, and by fact β we get a contradiction as in fact γ .

 $\underline{\zeta}$ Fact: For a club of $i < \mu$, α_i is Mahlo.

Proof: Use $F_{1,m}(\alpha) = a$ club of α which, if α is a successor cardinal or inaccessible not Mahlo, then it contains no inaccessible, and continue as in fact γ .

 ξ Fact: For a club of $i < \mu$, α_i is α_i -Mahlo.

Proof: Let $F_{1,m(0)}(\alpha) = \sup\{\zeta : \alpha \text{ is } \zeta\text{-Mahlo}\}$. If the set $\{i < \mu : \alpha_i \text{ is not } \alpha_i\text{-Mahlo}\}$ is stationary then as before for some $\gamma \in N$, $\{i : F_{1,m(0)}(\alpha_i) = \gamma\}$ is stationary and let $F_{1,m(1)}(\alpha)$ — a club of α such that if α is not $(\gamma+1)$ -Mahlo then the club has no γ -Mahlo member. Finish as in the proof of fact δ .

Remark 5.4.A. We can continue and say more.

Lemma 5.5 1) Suppose $\lambda > \mu > \theta$ are regular cardinals, $n \geq 2$ and

- (i) for every regular cardinal κ , if $\lambda > \kappa \geq \theta$ then $\kappa \neq [\theta]_{\sigma(1)}^{<\omega}$.
- (ii) for some $\alpha(*) < \mu$ for every regular $\kappa \in (\alpha(*), \lambda)$, $\kappa \not\to [\alpha(*)]_{\sigma(2)}^n$. Then
- (a) $\lambda \not\to [\mu]_{\sigma}^{n+1}$ where $\sigma = \min\{\sigma(1), \sigma(2)\},$
- (b) there are functions $d_2: [\lambda]^{n+1} \to \sigma(2)$, $d_1: [\lambda]^3 \to \sigma(1)$ such that for every $W \in [\lambda]^{\mu}$, $d_1''([W]^3) = \sigma(1)$ or $d_2''([W]^{n+1}) = \sigma(2)$.
- 2) Suppose $\lambda > \mu > \theta$ are regular cardinals, and
- (i) for every regular $\kappa \in [\theta, \lambda)$, $\kappa \not\to [\theta]_{\sigma(1)}^{<\omega}$,
- (ii) $\sup \{ \kappa < \lambda : \kappa \text{ regular} \} \not\to [\mu]_{\sigma(2)}^n$.

Then

- (a) $\lambda \neq [\mu]_{\sigma}^{2n}$ where $\sigma = \min{\{\sigma(1), \sigma(2)\}}$
- (b) there are functions $d_1: [\lambda]^3 \to \sigma(1)$, $d_2: [\lambda]^{2n} \to \sigma(2)$ such that for every $W \in [\lambda]^{\mu}$, $d_1''([W]^3) = \sigma(1)$ or $d_2''([W]^{2n} = \sigma(2)$.

Remark. The proof is similar to that of [Sh276] 3.3,3.2.

Proof. 1) We choose for each i, $0 < i < \lambda_i$, C_i such that: if i is a successor ordinal, $C_i = \{i - 1, 0\}$; if i is a limit ordinal, C_i is a club of i of order type of i, $0 \in C_i$, [cf $i < i \Rightarrow$ of $i < \min(C_i - \{0\})$] and $C_i \setminus \operatorname{acc}(C_i)$ contains only successor ordinals.

Now for $\alpha < \beta$, $\alpha > 0$ we define by induction on ℓ , $\gamma_{\ell}^{+}(\beta, \alpha)$, $\gamma_{\ell}^{-}(\beta, \alpha)$, and then $\kappa(\beta, \alpha)$, $\varepsilon(\beta, \alpha)$.

- (A) $\gamma_0^+(\beta, \alpha) = \beta, \ \gamma_0^-(\beta, \alpha) = 0.$
- (B) if $\gamma_{\ell}^{+}(\beta, \alpha)$ is defined and $> \alpha$ and α is not an accumulation point of $C_{\gamma_{\ell}^{+}(\beta, \alpha)}$ then we let $\gamma_{\ell+1}^{-}(\beta, \alpha)$ be the maximal member of $C_{\gamma_{\ell}^{+}(\beta, \alpha)}$ which is $< \alpha$ and $\gamma_{\ell+1}^{+}(\beta, \alpha)$ is the minimal member of $C_{\gamma_{\ell}^{+}(\beta, \alpha)}$ which

So

- (B1) (a) $\gamma_{\ell}^{-}(\beta, \alpha) < \alpha \leq \gamma_{\ell}^{+}(\beta, \alpha)$, and if the equality holds then $\gamma_{\ell+1}^{+}(\beta, \alpha)$ is not defined.
 - (b) $\gamma_{\ell+1}^+(\beta,\alpha) < \gamma_{\ell}^+(\beta,\alpha)$ when both are defined.
- (C) Let $k = k(\beta, \alpha)$ be the maximal number k such that $\gamma_k^+(\beta, \alpha)$ is defined (it is well defined as $\langle \gamma_\ell^+(\beta, \alpha) : \ell < \omega \rangle$ is strictly decreasing). So
- (C1) $\gamma_{k(\beta,\alpha)}^+(\beta,\alpha) = \alpha$ or $\gamma_{k(\beta,\alpha)}^+ > \alpha$, $\gamma_{k(\beta,\alpha)}^+$ is a limit ordinal and α is an accumulation point of $C_{\gamma_{k(\beta,\alpha)}^+}(\beta,\alpha)$.
 - (D) For $m \leq k(\beta, \alpha)$ let us define

$$\varepsilon_m(\beta, \alpha) = \max\{\gamma_\ell^-(\beta, \alpha) + 1 : \ell \le m\}.$$

Note

- (D1) (a) $\varepsilon_m(\beta, \alpha) \leq \alpha$ (if defined),
 - (b) if α is limit then $\varepsilon_m(\beta, \alpha) < \alpha$ (if defined),
 - (c) if $\varepsilon_m(\beta, \alpha) \leq \xi \leq \alpha$ then for every $\ell \leq m$ we have

$$\gamma_{\ell}^{+}(\beta,\alpha) = \gamma_{\ell}^{+}(\beta,\xi), \quad \gamma_{\ell}^{-}(\beta,\alpha) = \gamma_{\ell}^{-}(\beta,\xi), \quad \varepsilon_{\ell}(\beta,\alpha) = \varepsilon_{\ell}(\beta,\xi).$$

(explanation for (c): if $\varepsilon_m(\beta, \alpha) < \alpha$ this is easy (check the definition) and if $\varepsilon_m(\beta, \alpha) = \alpha$, necessarily $\xi = \alpha$ and it is trivial).

(d) if $\ell \leq m$ then $\varepsilon_{\ell}(\beta, \alpha) \leq \varepsilon_{m}(\beta, \alpha)$

For a regular $\kappa \in (\alpha(*), \lambda)$ let $g_{\kappa}^1 : [\kappa]^{<\omega} \to \sigma(2)$ exemplify $\kappa \not\to [\theta]_{\sigma(1)}^{<\omega}$ and for every regular cardinal $\kappa \in [\theta, \lambda)$ let $g_{\kappa}^2 : [\kappa]^n \to \sigma(2)$ exemplify $\kappa \not\to [\alpha(*)]_{\sigma(2)}^n$. Let us define the colourings:

Let $\alpha_0 > \alpha_1 > \ldots > \alpha_n$. Remember $n \geq 2$.

Let $n = n(\alpha_0, \alpha_1, \alpha_2)$ be the maximal natural number such that:

- (i) $\varepsilon_n(\alpha_0, \alpha_1) < \alpha_0$ is well defined,
- (ii) for $\ell \leq n$, $\gamma_{\ell}^{-}(\alpha_0, \alpha_1) = \gamma_{\ell}^{-}(\alpha_0, \alpha_2)$.

We define $d_2(\alpha_0, \alpha_1, \dots, \alpha_n)$ as $g_{\kappa}^2(\beta_1, \dots, \beta_n)$ where

$$\kappa = \operatorname{cf} \left(\gamma_{n(\alpha_0, \alpha_1, \alpha_2)}^+(\alpha_0, \alpha_1) \right),$$

$$\beta_{\ell} = \operatorname{otp} \left[\alpha_{\ell} \cap C_{\gamma_{n(\alpha_0, \alpha_1, \alpha_2)}^+(\alpha_0, \alpha_1)} \right].$$

Next we define $d_1(\alpha_0, \alpha_1, \alpha_2)$.

Let $i(*) = \sup \left[C_{\gamma_n^+(\alpha_0,\alpha_2)} \cap C_{\gamma_n^+(\alpha_1,\alpha_2)} \right]$ where $n = n(\alpha_0,\alpha_1,\alpha_2)$, E be the equivalence relation on $C_{\gamma_n^+(\alpha_0,\alpha_1)} \setminus i(*)$ defined by

$$\gamma_1 E \gamma_2 \Leftrightarrow \forall \gamma \in C_{\gamma_n^+(\alpha_0, \alpha_2)} [\gamma_1 < \gamma \leftrightarrow \gamma_2 < \gamma].$$

If the set $w=\left\{\gamma\in C_{\gamma_n^+(\alpha_0,\alpha_1)}: \gamma>i(*), \ \gamma=\min\gamma/E\right\}$ is finite, we let $d_1(\alpha_0,\alpha_1,\alpha_2)$ be $g^1_\kappa(\{\beta_\gamma: \gamma\in w\})$ where $\kappa=\left|C_{\gamma_n^+(\alpha_0,\alpha_1)}\right|, \ \beta_\gamma=\exp\left(\gamma\cap C_{\gamma_n^+(\alpha_0,\alpha_1)}\right)$.

We have defined d_1 , d_2 required in condition (b) (though have not yet proved that they work) We still have to define d (exemplifying $\lambda \not\to [\mu]_\ell^{n+1}$). Let $n \ge 3$, for $\alpha_0 > \alpha_1 > \ldots > \alpha_n$, we let $d(\alpha_0, \ldots, \alpha_n)$ be $d_1(\alpha_0, \alpha_1, \alpha_2)$ if w defined during the definition has odd number of members and $d_2(\alpha_0, \ldots, \alpha_n)$ otherwise.

Now suppose Y is a subset of λ of order type μ , and let $\delta = \sup Y$. Let M be a model with universe λ and with relations Y and $\{(i,j): i \in C_j\}$. Let $\langle N_i: i < \mu \rangle$ be an increasing continuous sequence of elementary submodels of M of cardinality $< \mu$ such that $\alpha(i) = \alpha_i = \min(Y \setminus N_i)$ belongs to N_{i+1} , $\sup(N \cap \alpha_i) = \sup(N \cap \delta)$. Let $N = \bigcup_{i < \mu} N_i$. Let $\delta(i) = \delta_i \stackrel{\text{def}}{=} \sup(N_i \cap \alpha_i)$, so $0 < \delta_i \le \alpha_i$, and let $n = n_i$ be the first natural number such that δ_i an accumulation point of $C^i \stackrel{\text{def}}{=} C_{\gamma_n^+(\alpha_i,\delta(i))}$, let $\varepsilon_i = \varepsilon_{n(i)}(\alpha_i,\delta_i)$. Note that $\gamma_n^+(\alpha_i,\delta_i) = \gamma_n^+(\alpha_i,\varepsilon_i)$ hence it belongs to N.

<u>Case I</u>: For some (limit) $i < \mu$, $\operatorname{cf}(i) \ge \theta$ and $(\forall \gamma < i)[\gamma + \alpha(*) < i]$ such that for arbitrarily large j < i, $C^i \cap N_j$ is bounded in $N_j \cap \delta = N_j \cap \delta_j$. This is just like the last part in the proof of [Sh276],3.3 using g_{κ}^1 and d_1 for $\kappa = \operatorname{cf}(\gamma_{n_i}^+(\alpha_i, \delta_i))$.

Case II: Not case I.

Let $S_0 = \{i < \mu : (\forall \alpha < i)[\gamma + \alpha(*) < i], \text{ cf}(i) = \theta\}$. So for every $i \in S_0$ for some $j(i) < i, (\forall j)[j \in (j(i), i) \Rightarrow C^i \cap N_j \text{ is unbounded in } \delta_j]$. But as $C^i \cap \delta_i$ is a club of δ_i , clearly $(\forall j)[j \in (j(i), i) \Rightarrow \delta_j \in C^i]$.

We can also demand $j(i) > \varepsilon_{n(\alpha(i),\delta(i))}(\alpha(i),\delta(i))$.

As S_0 is stationary, (by not case I) for some stationary $S_1 \subseteq S_0$ and n(*), j(*) we have $(\forall i \in S_1) \left[j(i) = j(*) \land n(\alpha(i), \delta_i) = n(*) \right]$.

2) The proof is like the proof of part (1) but for $\alpha_0 > \alpha_1 > \cdots$ we let $d_2(\alpha_0, \ldots, \alpha_{2n-1}) = g_{\kappa}^2(\beta_0, \ldots, \beta_n)$ where

$$\beta_{\ell} \stackrel{\text{def}}{=} \operatorname{otp}\left(C_{\gamma_{n}^{+}(\beta_{2\ell},\beta_{2\ell+1})}(\beta_{2\ell},\beta_{2\ell+1}) \cap \beta_{2\ell+1}\right)$$

and in case II note that the analysis gives μ possible β_{ℓ} 's so that we can apply the definition of g_{κ}^2 .

Definition 5.7. Let $\lambda \not\to_{\text{stg}} [\mu]_{\theta}^n$ mean: if $d : [\lambda]^n \to \theta$, and $\langle \alpha_i : i < \mu \rangle$ is strictly increasingly continuous and for $i < j < \mu$, $\gamma_{i,j} \in [\alpha_i, \alpha_{i+1})$ then

$$\theta = \{d(w) : \text{ for some } j < \mu, \ w \in [\{\gamma_{i,j} : i < j\}]^n\}.$$

Lemma 5.8. 1) $\aleph_t \not\to [\aleph_1]_{\aleph_0}^{n+1}$ for $n \ge 1$. 2) $\aleph_n \not\to_{\operatorname{stg}} [\aleph_1]_{\aleph_0}^{n+1}$ for $n \ge 1$.

Proof. 1) For n=2 this is a theorem of Torodčevič, and if it holds for $n \geq 2$ by 5.5(1) we get that it holds for n+1 (with n, λ , μ , θ , $\alpha(*)$, $\sigma(1)$, $\sigma(2)$ there corresponding to n+1, \aleph_{n+1} , \aleph_1 , \aleph_0,\aleph_0 , \aleph_0,\aleph_0 here).

2) Similar.

References

- [EHMR] P. Erdős, A. Hajnal, A. Máté, R. Rado, Combinatorial set theory: partition relations for cardinals, Disq. Math. Hung., no 13, (1984)
 - [Gi] M. Gitik, Measurability preserved by κ -complete forcing notion
- [GiSh344] M. Gitik, S. Shelah, On certain indiscernibility of strong cardinals and a question of Hajnal, Archive für Math. Logic, 28(1989) 35–42
 - [HL] Halpern, Lauchli,

- 32
- [Sh80] S. Shelah, A Weak Generalization of MA to Higher Cardinals, Israel J. of Math, [BSF], 30(1978), 297-306.
- [Sh289] S. Shelah, Consisting of Partition Theorem for Graphs and Models, Proc. of the Torontp 8/87 Conference in General Topology.
- [Sh276] S. Shelah, Was Sierpinsky right I ? Israel J. Math. 62 (1988) 355–380
- [ShSt154] S. Shelah and L. Stanley, Generalized Martin Axiom and the Souslin Hypothesis for Higher Cardinals, Israel J. of Math, [BSF], 43(1982), 225-236.
- [ShSt154a] S. Shelah and L. Stanley, Corrigendum to "Generalized Martin's Axiom and Souslin's Hypothesis for Higher Cardinal, Israel J. of Math, 53(1986), 309-314.
 - [To] S. Todorčevič, Partitions of pairs of uncountable ordinals, Acta MAth, 159 (1987), 261–294

Saharon Shelah

Institute of Mathematics The Hebrew University Jerusalem, Israel