THOMAS JECH AND SAHARON SHELAH

$\underline{Abstract}$

It is consistent that for every $n \ge 2$, every stationary subset of ω_n consisting of ordinals of cofinality ω_k where k = 0 or $k \le n-3$ reflects fully in the set of ordinals of cofinality ω_{n-1} . We also show that this result is best possible.

Typeset by $\mathcal{A}_{\mathcal{M}}S$ -T_EX

Supported in part by NSF and by a Fulbright grant at the Hebrew University. Shelah's Publ. No. 387. Supported in part by the BSF.

1. <u>Introduction</u>.

 $\mathbf{2}$

A stationary subset S of a regular uncountable cardinal κ reflects at $\gamma < \kappa$ if $S \cap \gamma$ is a stationary subset of γ . For stationary sets $S, A \subseteq \kappa$ let

$$S < A$$
 if S reflects at almost all $\alpha \in A$

where "almost all" means modulo the closed unbounded filter on κ , i.e. with the exception of a nonstationary set of α 's. If S < A we say that S reflects fully in A. The <u>trace</u> of S, Tr(S), is the set of all $\gamma < \kappa$ at which S reflects. The relation < is well-founded [1], and o(S), the <u>order of</u> S, is the rank of S in this well-founded relation.

In this paper we investigate the question which stationary subsets of ω_n reflect fully in which stationary sets; in other words the structure of the well founded relation <. Clearly, o(S) < o(A) is a necessary condition for S < A, and moreover, a set $S \subseteq \omega_n$ has order k just in case it has a stationary intersection with the set

$$S_k^n = \{ \alpha < \omega_n : cf\alpha = \omega_k \}$$

Thus the problem reduces to the investigation of full reflection of stationary subsets of S_k^n in stationary subsets of S_m^n for k < m < n.

The problem for n = 2 is solved completely in Magidor's paper [2]: It is consistent that every stationary $S \subseteq S_0^2$ reflects fully in S_1^2 . The problem for n > 2 is more complicated. It is tempting to try the obvious generalization, namely S < Awhenever o(S) < o(A), but this is provably false:

<u>Proposition 1.1</u>. There exist stationary sets $S \subset S_0^3$ and $A \subset S_1^3$ such that S does not reflect at any $\gamma \in A$.

Proof. Let $S_i, i < \omega_2$, be any family of pairwise disjoint subsets of S_0^3 , and let $\langle C_{\gamma} : \gamma \in S_1^3 \rangle$ be such that each C_{γ} is a closed unbounded subset of γ of order type ω_1 . Clearly, at most \aleph_1 of the sets S_i can meet each C_{γ} , and so for each γ there is $i(\gamma) < \omega_2$ such that $C_{\gamma} \cap S_i = \emptyset$ for all $i \ge i(\gamma)$.

There is $i < \omega_2$ such that $i(\gamma) = i$ for a stationary set of γ 's. Let $A \subset S_1^3$ be this stationary set and let $S = S_i$. Then $S \cap C_{\gamma} = \emptyset$ for all $\gamma \in A$ and so $S \cap \gamma$ is nonstationary. Hence S does not reflect at any $\gamma \in A$.

There is of course nothing special in the proof about \aleph_3 (or about \aleph_1) and so we have the following generalization:

3

<u>Proposition 1.2</u>. Let k < m < n - 1. There exist stationary sets $S \subseteq S_k^n$ and $A \subseteq S_m^n$ such that S does not reflect at any $\gamma \in A$.

Consequently, if n > 2 then full reflection in S_m^n is possible only if m = n - 1. This motivates our Main Theorem.

1.3 <u>Main Theorem</u>. Let $\kappa_2 < \kappa_3 < \cdots < \kappa_n < \cdots$ be a sequence of supercompact cardinals. There is a generic extension V[G] in which $\kappa_n = \aleph_n$ for all $n \ge 2$, and such that

(a) every stationary subset of S_0^2 reflects fully in S_1^2 , and

(b) for every $n \ge 3$, every stationary subset of S_k^n for all $k = 0, \dots, n-3$, reflects fully in S_{n-1}^n .

We will show that the result of the Main Theorem is best possible. But first we prove a corollary:

<u>1.4 Corollary</u>. In the model of the Main Theorem we have for all $n \ge 2$ and all m, 0 < m < n:

(a) Any \aleph_m stationary subsets of S_0^n reflect simultaneously at some $\gamma \in S_m^n$.

(b) For every $k \leq m - 2$, any \aleph_m stationary subsets of S_k^n reflect simultaneously at some $\gamma \in S_m^n$.

Proof. Let us prove (a) as (b) is similar. Let m < n and let $S_{\xi}, \xi < \omega_m$, be stationary subsets of S_0^n . First, each S_{ξ} reflects fully in S_{n-1}^n and so there exist club sets $C_{\xi}, \xi < \omega_m$, such that each S_{ξ} reflects at all $\alpha \in C_{\xi} \cap S_{n-1}^n$. As the club filter is ω_n - complete, there exists an $\alpha \in S_{n-1}^n$ such that $S_{\xi} \cap \alpha$ is stationary, for all $\xi < \omega_m$. Next we apply full reflection of subsets of S_0^{n-1} in S_{n-2}^{n-1} (to the ordinal α of cofinality ω_{n-1} rather than to ω_{n-1} itself) and the ω_{n-1} - completeness of the club filter on ω_{n-1} , to find $\beta \in S_{n-2}^n$ such that $S_{\xi} \cap \beta$ is stationary for all $\xi < \omega_m$. This way we continue until we find a $\gamma \in S_m^n$ such that every $S_{\xi} \cap \gamma$ is stationary.

Note that the amount of simultaneous reflection in 1.4 is best possible:

1.5 <u>Proposition</u>. If $cf\gamma = \aleph_m$ and if $S_{\xi}, \xi < \omega_{m+1}$, are disjoint stationary sets then some S_{ξ} does not reflect at γ .

Proof. γ has a club subset of size \aleph_m , and it can only meet \aleph_m of the sets $S_{\xi} \cap \gamma$.

4

THOMAS JECH AND SAHARON SHELAH

By Corollary 1.4, the model of the Main Theorem has the property that whenever $2 \leq m < n$, every stationary subset of S_k^n reflects quite strongly in S_m^n , provided $k \leq m-2$. This cannot be improved to include the case of k = m-1, as the following proposition shows:

1.6 <u>Proposition</u>. Let $m \ge 2$. Either

(a) for all k < m-1 there exists a stationary set $S \subseteq S_k^m$ that does not reflect fully in S_{m-1}^m ,

or

(b) for all n > m there exists a stationary set $A \subseteq S_{m-1}^n$ that does not reflect at any $\delta \in S_m^n$.

We shall give a proof of 1.6 in Section 3. In our model we have, for every $m \ge 2$, full reflection of subsets of S_0^m in S_{m-1}^m (and of subsets of S_k^m for $k \le m-3$) and therefore 1.6 (a) fails in the model. Thus the model necessarily satisfies 1.6 (b), which shows that the consistency result is best possible.

2. <u>Proof of Main Theorem</u>

Let $\kappa_2 < \kappa_3 < \cdots < \kappa_n < \cdots$ be a sequence of cardinals with the property that for each $n \ge 2, \kappa_n$ is a $< \kappa_{n+1}$ - supercompact cardinal, i.e. for every $\gamma < \kappa_{n+1}$ there exists an elementary embedding $j: V \to M$ with critical point κ_n such that $j(\kappa_n) > \gamma$ and $M^{\gamma} \subset M$.¹ We construct the generic extension by iterated forcing, an iteration of length ω with full support. The first stage of the iteration P_1 makes $\kappa_2 = \aleph_2$, and for each n, the n^{th} stage P_n (a forcing notion in $V(P_1 * \cdots * P_{n-1})$) makes $\kappa_{n+1} = \aleph_{n+1}$. In the iteration, we repeatedly use three standard notions of forcing: $Col(\kappa, \alpha), C(\kappa)$ and $CU(\kappa, T)$.

<u>Definition</u>. Let κ be a regular uncountable cardinal.

(a) Col (κ, α) is the forcing that collapses $\alpha \geq \kappa$ with conditions of size $< \kappa$:

A condition is a function p from a subset of κ of size $< \kappa$ into α ; a condition q is stronger than p if $q \supseteq p$.

(b) $C(\kappa)$ is the forcing that adds a Cohen subset of κ : A condition is an 0-1function p on a subset of κ of size $\langle \kappa \rangle$; a condition q is stronger than p if $q \supseteq p$.

¹We note in passing that the condition about the κ_n is equivalent to "every κ_n is $< \kappa_{\omega}$ - supercompact" where $\kappa_{\omega} = sup_{m < \omega} \kappa_m$.

(c) $CU(\kappa, T)$ is the forcing that shoots a club through a stationary set $T \subseteq \kappa$:

A condition is a closed bounded subset of T; a condition q is stronger than p if q end-extends p.

The first stage P_1 of the iteration $P = \langle P_n : n = 1, 2, \dots \rangle$ is a forcing of size κ_2 that is ω - closed², satisfies the κ_2 - chain condition and collapses each cardinal between \aleph_1 and κ_2 (it is essentially the Levy forcing with countable conditions.) For each $n \geq 2$, we construct (in V(P|n)) the n^{th} stage P_n such that

(2.1) (a) $|P_n| = \kappa_{n+1}$

- (b) P_n is \aleph_{n-2} closed
- (c) P_n satisfies the κ_{n+1} chain condition
- (d) P_n collapses each cardinal between $\aleph_n (= \kappa_n)$ and κ_{n+1}
- (e) P_n does not add any ω_{n-1} sequences of ordinals

and such that P_n guarantees the reflection of stationary subsets of \aleph_n stated in the theorem.

It follows, by induction, that each κ_n becomes \aleph_n : Assuming that $\kappa_n = \aleph_n$ in V(P|n), the n^{th} stage P_n preserves \aleph_n by (e), and the rest of the iteration $\langle P_{n+1}, P_{n+2}, \cdots \rangle$ also preserves \aleph_n because it is \aleph_{n-1} - closed by (b); P_n makes κ_{n+1} the successor of κ_n by (c) and (d).

We first define the forcing P_1 :

 P_1 is an iteration, with countable support, $\langle Q_\alpha : \alpha < \kappa_2 \rangle$ where for each α ,

$$Q_{\alpha} = Col \; (\aleph_1, \aleph_1 + \alpha) \times C(\aleph_1).$$

It follows easily from well known facts that P_1 is an ω -closed forcing of size κ_2 , satisfies the κ_2 - chain condition and makes $\kappa_2 = \aleph_2$.

Next we define the forcing P_2 . (It is a modification of Magidor's forcing from [2], but the added collapsing of cardinals requires a stronger assumption on κ_2 than weak compactness. The iteration is padded up by the addition of Cohen forcing which will make the main argument of the proof work more smoothly). The definition of P_2 is inside the model $V(P_1)$, and so $\kappa_2 = \aleph_2$:

 P_2 is an iteration, with \aleph_1 - support, $\langle Q_\alpha : \alpha < \kappa_3 \rangle$ where for each α ,

$$Q_{\alpha} = Col \; (\aleph_2, \aleph_2 + \alpha) \times C(\aleph_2) \times CU(T_{\alpha})$$

²A forcing notion is $\underline{\lambda}$ - closed if every descending sequence of length $\leq \lambda$ has a lower bound.

where T_{α} is, in $V(P_1 * P_2 | \alpha)$, some stationary subset of ω_2 . We choose the T_{α} 's so that each T_{α} contains all limit ordinals of cofinality ω . It follows easily that for each $\alpha < \kappa_3, P_2 |\alpha| \vdash Q_{\alpha}$ is ω -closed.

The crucial property of the forcing P_2 will be the following:

Lemma 2.2. P_2 does not add new ω_1 - sequences of ordinals.

6

One consequence of Lemma 2.2 is that the conditions $(p, q, s) \in Q_{\alpha}$ can be taken to be sets in $V(P_1)$ (rather than in $V(P_1 * P_2 | \alpha)$). Once we have Lemma 2.2, the properties (2.1) (a) - (e) follow easily.

It remains to specify the choice of the T_{α} 's. By a standard argument using the κ_3 - chain condition, we can enumerate all potential subsets of ω_2 by a sequence $\langle S_{\alpha} : \alpha < \kappa_3 \rangle$ in such a way that each S_{α} is already in $V(P_1 * P_2 | \alpha)$. At the stage α of the iteration, we let $T_{\alpha} = \omega_2$, unless S_{α} is, in $V(P_1 * P_2 | \alpha)$, a stationary set of ordinals of cofinality ω . If that is the case, we let

$$T_{\alpha} = (Tr(S_{\alpha}) \cap S_1^2) \cup S_0^2$$

Assuming that Lemma 2.2 holds, we now show that in $V(P_1 * P_2)$, every stationary $S \subseteq S_0^2$ reflects fully in S_1^2 :

The set S appears as S_{α} at some stage α , and because it is stationary in $V(P_1 * P_2)$, it is stationary in the smaller model $V(P_1 * P_2|\alpha)$. The forcing Q_{α} creates a closed unbounded set C such that $C \cap S_1^2 \subseteq Tr(S)$ (note that because P_2 does not add ω_1 - sequences, the meaning of Tr(S) or of S_1^2 does not change).

Thus in $V(P_1 * P_2)$ we have full reflection of subsets of S_0^2 in S_1^2 . The later stages of the iteration do not add new subsets of ω_2 and so this full reflection remains true in V(P).

We postpone the proof of Lemma 2.2 until after the definition of the rest of the iteration.

We now define P_n for $n \ge 3$. We work in $V(P_1 * \cdots * P_{n-1})$. By the induction hypothesis we have $\kappa_n = \aleph_n$.

 P_n is an iteration with \aleph_{n-1} - support, $\langle Q_\alpha : \alpha < \kappa_{n+1} \rangle$, where for each α ,

$$Q_{\alpha} = Col(\aleph_n, \aleph_n + \alpha) \times C(\aleph_n) \times CU(T_{\alpha})$$

where T_{α} is a $P_n | \alpha$ - name for a subset of ω_n . To specify the T_{α} 's, let $\langle S_{\alpha} : \alpha < \kappa_{n+1} \rangle$ be an enumeration of all potential subsets of ω_n such that each S_{α} is a $P_n | \alpha$ - name.

At the stage α , let $T_{\alpha} = \omega_n$ unless S_{α} a stationary set of ordinals and $S_{\alpha} \subseteq S_k^n$ for some $k = 0, \dots, n-3$, in which case let

$$T_{\alpha} = (Tr(S_{\alpha}) \cap S_{n-1}^{n}) \cup (S_{0}^{n} \cup \dots \cup S_{n-2}^{n})$$
$$= \{\gamma < \omega_{n} : cf\gamma \le \omega_{n-2} \text{ or } S_{\alpha} \cap \gamma \text{ is stationary} \}$$

Due to the selection of the T_{α} 's, Q_{α} is ω_{n-2} - closed, and so is P_n . The crucial property of the forcing is the analog of Lemma 2.2:

Lemma 2.3. P_n does not add new ω_{n-1} - sequences of ordinals.

Given this lemma, properties (2.1) (a) - (e) follow easily. The same argument as given above for P_2 shows that in $V(P_1 * \cdots * P_n)$, and therefore in V(P) as well, every stationary subset of $S_k^n, k = 0, \cdots, n-3$, reflects fully in S_{n-1}^n .

It remains to prove Lemmas 2.2 and 2.3. We prove Lemma 2.3, as 2.2 is an easy modification.

Proof of Lemma 2.3.

Let $n \geq 3$, and let us give the argument for a specific n, say n = 4. We want to show that P_4 does not add ω_3 -sequences of ordinals.

We will work in $V(P_1 * P_2)$ (and so consider the forcing $P_3 * P_4$). As $P_1 * P_2$ has size κ_3, κ_4 is a $< \kappa_5$ - supercompact cardinal in $V(P_1 * P_2)$, and $\kappa_3 = \aleph_3$. The forcing P_3 is an iteration of length κ_4 that makes $\kappa_4 = \aleph_4$ and is \aleph_1 - closed; then P_4 is an iteration of length κ_5 . By induction on $\alpha < \kappa_5$ we show

(2.4)
$$P_4|\alpha$$
 does not add ω_3 - sequences of ordinals.

As P_4 has the \aleph_5 - chain condition, (2.4) is certainly enough for Lemma 2.3. Let $\alpha < \kappa_5$.

Let j be an elementary embedding $j: V \to M$ (as we work in $V(P_1 * P_2), V$ means $V(P_1 * P_2)$) such that $j(\kappa_4) > \beta$ and $M^\beta \subset M$, for some inaccessible cardinal $\beta > \alpha$. Consider the forcing $j(P_3)$ in M. It is an iteration of which P_3 is an initial segment. By a standard argument, the elementary embedding $j: V \to M$ can be extended to an elementary embedding $j: V(P_3) \to M(j(P_3))$. We claim that every β -sequence of ordinals in $V(P_3)$ belongs to $M(j(P_3))$: the name for such a set has size $\leq \beta$ and so it belongs to M, and since $P_3 \in M$ and $M(P_3) \subseteq M(j(P_3))$, the claim follows. In particular, $P_4 | \alpha \in M(j(P_3))$.

Let $p, \dot{F} \in V(P_3)$ be such that $p \in P_4 | \alpha$ and \dot{F} is a $(P_4 | \alpha)$ - name for an ω_3 sequence of ordinals. We shall find a stronger condition that decides all the values of \dot{F} . By the elementarity of j, it suffices to prove that

(2.5) $\exists \bar{p} \leq j(p)$ in $j(P_4|\alpha)$ that decides $j(\dot{F})$.

The rest of the proof is devoted to the proof of (2.5).

Let G be an M - generic filter on $j(P_3)$.

Lemma 2.6. In M[G] there is a generic filter H on $P_4|\alpha$ over $M[G \cap P_3]$ such that M[G] is a generic extension of $M[G \cap P_3][H]$ by an \aleph_1 - closed forcing, and such that $p \in H$.

Proof. There is an $\eta < j(\kappa_4)$ such that $P_4|\alpha$ has size \aleph_3 in $M_\eta = M[G \cap (j(P_3)|\eta)]$. Since $P_4|\alpha$ is \aleph_2 - closed, it is isomorphic in M_η to the Cohen forcing $C(\aleph_3)$. But $Q_\eta = (j(P_3))(\eta) = Col(\aleph_3, \aleph_3 + \eta) \times C(\aleph_3) \times CU(T_\eta)$, so $G|Q_\eta = G_{Col} \times G_C \times G_{CU}$, and using G_C and the isomorphism between $P_4|\alpha$ and $C(\aleph_3)$ we obtain H. Since the quotient forcing $j(P_3)/(P_3 \times C(\aleph_3))$ is an iteration of \aleph_1 - closed forcings, it is \aleph_1 - closed.

Lemma 2.7. In M[G] there is a condition $\bar{p} \in j(P_4|\alpha)$ that extends p, and extends every member of j''H.

Lemma 2.7 will complete the proof of (2.5): since every value of \dot{F} is decided by some condition in H, every value of $j(\dot{F})$ is decided by some condition in j''H, and therefore by \bar{p} .

Proof of Lemma 2.7. Working in M[G], we construct $\bar{p} \in j(P_4|\alpha)$, a sequence $\langle p_{\xi} : \xi < j(\alpha) \rangle$ of length $j(\alpha)$, by induction. When ξ is not in the range of j, we let p_{ξ} be the trivial condition; that guarantees that the support of \bar{p} has size $|\alpha|$ which is \aleph_3 (because $\alpha < j(\kappa_4) = \aleph_4$ in M[G]). So let $\xi < \alpha$ be such that $\bar{p}|j(\xi)$ has been defined, and construct $p_{j(\xi)}$.

The condition $p_{j(\xi)}$ has three parts u, v, s where $u \in Col(j(\kappa_4), j(\kappa_4) + j(\xi)), v \in C((\kappa_4))$ and $s \in CU(T_{j(\xi)})$. It is easy to construct the u - part and the v - part, as follows: The filter $H|P_4(\xi)$ has three parts; a collapsing function f of κ_4 onto $\kappa_4 + \xi$, a 0-1-function g on κ_4 , and a club subset C of T_{ξ} . We let $u = j^n f$ and $v = j^n g$, and these are functions of size \aleph_3 and therefore members of Col and C respectively. For

the s - part, let $s = j^{"}C \cup \{\kappa_4\}$. In order that this set be a condition in $CU(T_{j(\xi)})$, we have to verify that $\kappa_4 \in T_{j(\xi)}$.

This is a nontrivial requirement if $S_{j(\xi)}$ is in $M(j(P_3) * (j(P_4)|j(\xi)))$ a stationary subset of $j(\kappa_4)$ and is a subset of either S_0^4 or of S_1^4 (of S_k^n for n = 4 and $k \le n-3$). Then κ_4 has to be reflecting point of $S_{j(\xi)}$, i.e. we have to show that $S_{j(\xi)} \cap \kappa_4$ is stationary, in $M(j(P_3) * (j(P_4)|j(\xi)))$.

By the assumption and by elementarity of j, S_{ξ} is a stationary subset of κ_4 in $V(P_3 * P_4|\xi)$, and $S_{\xi} \subseteq S_0^4$ or $S_{\xi} \subseteq S_1^4$, i.e. consists of ordinals of cofinality $\leq \omega_1$. Since $S_{j(\xi)} \cap \kappa_4 = j(S_{\xi}) \cap \kappa_4 = S_{\xi}$, it suffices to show that S_{ξ} is stationary not only in $V(P_3 * P_4|\xi)$ but also in $M(j(P_3) * (j(P_4)|j(\xi)))$.

Firstly $M(P_3 * P_4|\xi) \subseteq V(P_3 * P_4|\xi)$, and so S_{ξ} is stationary in $M(P_3 * P_4|\xi)$. Secondly, $j(P_4)$ is \aleph_1 - closed, and by Lemma 2.6, $M(j(P_3))$ is an \aleph_1 - closed forcing extension of $M(P_3 * P_4|\xi)$, and so the proof is completed by application of the following lemma (taking $\kappa = \aleph_0$ or $\aleph_1, \lambda = \aleph_4$).

<u>Lemma 2.8</u> Let $\kappa < \lambda$ be regular cardinals and assume that for all $\alpha < \lambda$ and all $\beta < \kappa, \alpha^{\beta} < \lambda$. Let Q be a κ - closed forcing and S a stationary subset of λ of ordinals of cofinality κ . Then $Q \parallel S$ is stationary.

This lemma is due to Baumgartner and we include the proof for lack of reference.

Proof of Lemma 2.8. Let q be a condition and let \dot{C} be a Q - name for a closed unbounded subset of λ . We shall find $\bar{q} \leq q$ and $\gamma \in S$ such that $\bar{q} \models \gamma \in \dot{C}$. Let Mbe a transitive set such that M is a model of enough set theory, is closed under $< \kappa$ - sequences and such that $M \supseteq \lambda, q \in M, Q \in M, \dot{C} \in M$. Let $\langle N_{\gamma} : \gamma < \lambda \rangle$ be an elementary chain of submodels of M such that each N_{γ} has size $< \lambda$, contains q, Qand $\dot{C}, N_{\gamma} \cap \lambda$ is an ordinal, and $N_{\gamma+1}$ contains all $< \kappa$ - sequences in N_{γ} . Since Sis stationary, there exists a $\gamma \in S$ such that $N_{\gamma} \cap \lambda = \gamma$. As $cf\gamma = \kappa, N = N_{\gamma}$ is closed under $< \kappa$ - sequences.

Let $\{\gamma_{\xi} : \xi < \kappa\}$ be an increasing sequence with limit γ . We construct a descending sequence $\{q_{\xi} : \xi < \kappa\}$ of conditions such that $q_0 = q$, such that for all $\xi < \kappa, q_{\xi} \in N$ and for some $\beta_{\xi} \in N$ greater than $\gamma_{\xi}, q_{\xi+1} \models \beta_{\xi} \in \dot{C}$. At successor stages, $q_{\xi+1}$ exists because in N, q_{ξ} forces that \dot{C} is unbounded. At limit stages $\eta < \kappa$, the η - sequence $\langle q_{\xi} : \xi < \eta \rangle$ is in N and has a lower bound in N because $N \models Q$ is κ - closed.

Since Q is κ - closed, the sequence $\langle q_{\xi} : \xi < \kappa \rangle$ has a lower bound \bar{q} , and because of the β 's, \bar{q} forces that \dot{C} is unbounded in γ . Therefore $\bar{q} \parallel \gamma \in \dot{C}$.

3. <u>Negative results</u>.

We shall now present several negative results on the structure of the relation S < T below \aleph_{ω} . With the exception of the proof of Proposition 1.6, we state the results for the particular case of reflection of subsets of S_0^3 in S_1^3 , but the results generalize easily to other cardinalities and other cofinalities.

The first result uses a simple calculation (as in Proposition 1.1):

<u>Proposition 3.1</u>. For any \aleph_3 stationary sets $A_{\alpha} \subseteq S_1^3, \alpha < \omega_3$, there exists a stationary set $S \subseteq S_0^3$ such that $S \not\leq A_{\alpha}$ for all α .

Proof. Let $A_{\alpha}, \alpha < \omega_3$, be stationary subsets of S_1^3 . By [3], there exist \aleph_4 almost disjoint stationary subsets of S_0^3 ; let $S_i, i < \omega_4$, be such sets. Assuming that each S_i reflects fully in some $A_{\alpha(i)}$, we can find \aleph_4 of them that reflect fully in the same A_{α} . Take any \aleph_2 of them and reduce each by a nonstationary set to get \aleph_2 pairwise disjoint stationary subsets $\{T_{\xi} : \xi < \omega_2\}$ of S_0^3 , such that each of them reflects fully in A_{α} . Hence there are clubs $C_{\xi}, \xi < \omega_2$, such that $Tr(T_{\xi}) \supseteq A_{\alpha} \cap C_{\xi}$ for every ξ . Let $\gamma \in \bigcap_{\xi < \omega_2} C_{\xi} \cap A_{\alpha}$. Then every T_{ξ} reflects at γ , and so γ has \aleph_2 pairwise disjoint stationary subsets $\{T_{\xi} \cap \gamma : \xi < \omega_2\}$. This is a contradiction because γ has a closed unbounded subset of size $cf\gamma = \aleph_1$.

The next result uses the fact that under GCH there exists a \diamond - sequence for S_1^3 . <u>Proposition 3.2</u>. (GCH) There exists a stationary set $A \subseteq S_1^3$ that is not the trace of any $S \in S_0^3$; precisely: for every $S \subseteq S_0^3$ the set $A\Delta(Tr(S) \cap S_1^3)$ is stationary.

Proof. Let $\langle S_{\gamma} : \gamma \in S_1^3 \rangle$ be a \diamond - sequence for S_1^3 ; it has the property that for every set $S \subseteq \omega_3$, the set $D(S) = \{\gamma \in S_1^3 : S \cap \gamma = S_{\gamma}\}$ is stationary. Let

$$A = \{ \gamma \in S_1^3 : S_\gamma \text{ is nonstationary} \}.$$

The set A is stationary because $A \supseteq D(\emptyset)$. If S is any stationary subset of S_0^3 , then for every γ in the stationary set $D(S), \gamma \in A$ iff $\gamma \notin Tr(S)$, and so $D(S) \subseteq A\Delta Tr(S)$.

The remaining negative results use the following theorem of Shelah which proves the existence of sets with the "square property".

<u>Theorem</u> ([4], Lemma 4.2). Let $1 \leq k \leq n-2$. The set S_k^n is the union of \aleph_{n-1} stationary sets A, each having the following property. There exists a collection $\{C_{\gamma} : \gamma \in A\}$ (a "square sequence for A") such that for each $\gamma \in A, C_{\gamma}$ is a club subset of γ of order type ω_k , consisting of limit ordinals of cofinality $\langle \omega_k$, and such that for all $\gamma_1, \gamma_2 \in A$ and all α , if $\alpha \in C_{\gamma_1} \cap C_{\gamma_2}$ then $C_{\gamma_1} \cap \alpha = C_{\gamma_2} \cap \alpha$.

Square sequences can be used to construct a number of counterexamples. For instance, if $S_n, n < \omega$, are \aleph_0 stationary subsets of S_0^3 , then $Tr(\bigcup_{n=0}^{\infty} S_n) = \bigcup_{n=0}^{\infty} S_n$. Using a square sequence we get:

<u>Proposition 3.3</u>. There is a stationary set $A \subseteq S_1^3$ and stationary subsets $S_i, i < \omega_1$, of S_0^3 such that $Tr(S_i) \cap A = \emptyset$ for each i but $Tr(\bigcup_{i < \omega_1} S_i) \supseteq A$.

Proof. Let A be a stationary subset of S_1^3 with a square sequence $\{C_{\gamma} : \gamma \in A\}$, and let $S = \bigcup_{\gamma \in A} C_{\gamma}$. Clearly, $S \subseteq S_0^3$ is stationary, and $Tr(S) \supseteq A$. For each $\xi < \omega_1$, let

$$S_{\xi} = \{ \alpha \in S : \text{ order type } (C_{\gamma} \cap \alpha) = \xi \}$$

(this is independent of the choice of $\gamma \in A$). For every $\gamma \in S$ and every $\xi < \omega_1$, the set $S_{\xi} \cap C_{\gamma}$ has exactly one element, and so S_{ξ} does not reflect at γ . It is easy to see that \aleph_1 of the sets S_{ξ} are stationary. [The definition of S_{ξ} is a well known trick]

The argument used in the above proof establishes the following:

<u>Proposition 3.4</u>. If a stationary set $A \subseteq S_m^n$ has a square sequence and if k < mthen there exists a stationary $S \subseteq S_k^n$ that does not reflect at any $\gamma \in A$.

Proof of Proposition 1.6. Let $2 \le m < n$ and let us assume that (b) fails, i.e. that every stationary set $A \subseteq S_{m-1}^n$ reflects at some δ of cofinality \aleph_m . We shall prove that (a) holds. For each k < m-1 we want a stationary set $S \subseteq S_k^m$ that does not reflect fully in S_{m-1}^m . Let k < m-1.

Let A be a stationary subset of S_{m-1}^n that have a square sequence $\{C_{\gamma} : \gamma \in A\}$. The set A reflects at some δ of cofinality ω_m . Let C be a club subset of δ of order type ω_m . Using the isomorphism between C and ω_m , the sequence $\{C_{\gamma} \cap C : \gamma \in A\}$ becomes a square sequence for a stationary subset B of S_{m-1}^m . It follows that there is a stationary subset of S_k^m that does not reflect at any $\gamma \in B$. 12

THOMAS JECH AND SAHARON SHELAH

The last counterexample also uses a square sequence.

<u>Proposition 3.5.</u> (GCH) There is a stationary set $A \subseteq S_1^3$ and \aleph_4 stationary sets $S_i \subseteq S_0^3$ such that the sets $\{Tr(S_i) \cap A : i < \omega_4\}$ are stationary and pairwise almost disjoint.

Proof. Let A be a stationary subset of S_1^3 with a square sequence $\langle C_{\gamma} : \gamma \in A \rangle$, and let $S = \bigcup_{\gamma \in A} C_{\gamma}$. Let $\{f_i : i < \omega_4\}$ be regressive functions on $S_0^3 \cup S_1^3$ with the property that for any two f_i, f_j , the set $\{\alpha : f_i(\alpha) = f_j(\alpha)\}$ is nonstationary (such a family exists by [3]). For each *i* and each $\gamma \in A$, the function f_i is regressive on C_{γ} and so there is some $\eta = \eta(i, \gamma) < \gamma$ such that $\{\alpha \in C_{\gamma} : f_i(\alpha) < \eta\}$ is stationary. Let $T_{i,\gamma} \subseteq \omega_1$ be the stationary set $\{o.t.(C_{\gamma} \cap \alpha) : f_i(\alpha) < \eta\}$ and let $H_{i,\gamma}$ be the function on $T_{i,\gamma}$ (with values $< \eta$) defined by $H(\xi) = f_i(\xi^{th}$ element of C_{γ}). For each *i*, the function on A that to each γ assigns $(T_{i\gamma}, H_{i\gamma})$ is regressive, and so constant $= (T_i, H_i)$ on a stationary set. By a counting argument, (T_i, H_i) is the same for \aleph_4 *i*'s; so w.l.o.g. we assume that they are the same (T, H) for all *i*.

Now we let, for each i,

$$A_i = \{ \gamma \in A : (\forall \alpha \in C_{\gamma}) \text{ if } \xi = o.t.(C_{\gamma} \cap \alpha) \in T \text{ then } f_i(\alpha) = H(\xi) \}$$
$$S_i = \{ \alpha \in S : o.t.(C_{\gamma} \cap \alpha) \in T \text{ and} (\forall \beta \le \alpha, \beta \in C_{\gamma}) \text{ if } \xi = o.t.(C_{\gamma} \cap \beta) \in T \text{ then } f_i(\beta) = H(\xi) \}$$

By the definition of T and H, each A_i is a stationary set, and each S_i reflects at every point of A_i . We claim that if $\gamma \in A$ and $S_i \cap \gamma$ is stationary then $\gamma \in A_i$. So let $\gamma \in A$ be such that $S_i \cap \gamma$ is stationary. Let $\xi \in T$ and let α be the ξ^{th} element of C_{γ} ; we need to show that $f_i(\alpha) = H(\xi)$. As $S_i \cap \gamma$ is stationary, there exists a $\beta \in S_i \cap C_{\gamma}$ greater than α . By the definition of $S_i, f_i(\alpha) = H(\xi)$. Thus $\gamma \in A_i$, and $A_i = A \cap Tr(S_i)$.

Finally, we show that the sets A_i are pairwise almost disjoint. Let C be a club disjoint from the set $\{\alpha : f_i(\alpha) = f_j(\alpha)\}$. We claim that the set C' of all limit points of C is disjoint from $A_i \cap A_j$. If $\gamma \in C'$ then $C \cap \gamma$ is a club in γ , and so is $C \cap C_{\gamma}$. Since T is stationary in ω_1 , there is a $\xi \in T$ such that the ξ^{th} element α of C_{γ} is in C, and therefore $f_i(\alpha) \neq f_j(\alpha)$; it follows that γ cannot be both in A_i and in A_j .

- T. Jech, Stationary subsets of inaccessible cardinals, in "Axiomatic Set Theory" (J. Baumgartner, ed.), Contemporary Math. 31, Amer. Math. Soc. 1984, 115-142.
- [2] M. Magidor, Reflecting stationary sets, J. Symbolic Logic <u>47</u> (1982), 755-771.
- [3] S. Shelah [Sh 247], More on stationary coding, in "Around Classification Theory of Models", Springer-Verlag Lecture Notes 1182 (1986), pp. 224-246.
- [4] S. Shelah [Sh 351], Reflecting stationary sets and successors of singular cardinals.

The Pennsylvania State University

The Hebrew University