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Abstract

It is consistent that for every n ≥ 2, every stationary subset of ωn consisting of

ordinals of cofinality ωk where k = 0 or k ≤ n−3 reflects fully in the set of ordinals

of cofinality ωn−1. We also show that this result is best possible.
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2 THOMAS JECH AND SAHARON SHELAH

1. Introduction.

A stationary subset S of a regular uncountable cardinal κ reflects at γ < κ if

S ∩ γ is a stationary subset of γ. For stationary sets S,A ⊆ κ let

S < A if S reflects at almost all α ∈ A

where “almost all” means modulo the closed unbounded filter on κ, i.e. with the

exception of a nonstationary set of α’s. If S < A we say that S reflects fully in A.

The trace of S, Tr(S), is the set of all γ < κ at which S reflects. The relation <

is well-founded [1], and o(S), the order of S, is the rank of S in this well-founded

relation.

In this paper we investigate the question which stationary subsets of ωn reflect

fully in which stationary sets; in other words the structure of the well founded

relation <. Clearly, o(S) < o(A) is a necessary condition for S < A, and moreover,

a set S ⊆ ωn has order k just in case it has a stationary intersection with the set

Snk = {α < ωn : cfα = ωk}.

Thus the problem reduces to the investigation of full reflection of stationary subsets

of Snk in stationary subsets of Snm for k < m < n.

The problem for n = 2 is solved completely in Magidor’s paper [2]: It is consistent

that every stationary S ⊆ S2
0 reflects fully in S2

1 . The problem for n > 2 is more

complicated. It is tempting to try the obvious generalization, namely S < A

whenever o(S) < o(A), but this is provably false:

Proposition 1.1. There exist stationary sets S ⊂ S3
0 and A ⊂ S3

1 such that S does

not reflect at any γ ∈ A.

Proof. Let Si, i < ω2, be any family of pairwise disjoint subsets of S3
0 , and let

〈Cγ : γ ∈ S3
1〉 be such that each Cγ is a closed unbounded subset of γ of order type

ω1. Clearly, at most ℵ1 of the sets Si can meet each Cγ , and so for each γ there is

i(γ) < ω2 such that Cγ ∩ Si = ∅ for all i ≥ i(γ).

There is i < ω2 such that i(γ) = i for a stationary set of γ’s. Let A ⊂ S3
1 be

this stationary set and let S = Si. Then S ∩ Cγ = ∅ for all γ ∈ A and so S ∩ γ is

nonstationary. Hence S does not reflect at any γ ∈ A.

There is of course nothing special in the proof about ℵ3 (or about ℵ1) and so we

have the following generalization:
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Proposition 1.2. Let k < m < n − 1. There exist stationary sets S ⊆ Snk and

A ⊆ Snm such that S does not reflect at any γ ∈ A.

Consequently, if n > 2 then full reflection in Snm is possible only if m = n− 1. This

motivates our Main Theorem.

1.3 Main Theorem. Let κ2 < κ3 < · · · < κn < · · · be a sequence of supercompact

cardinals. There is a generic extension V [G] in which κn = ℵn for all n ≥ 2, and

such that

(a) every stationary subset of S2
0 reflects fully in S2

1 , and

(b) for every n ≥ 3, every stationary subset of Snk for all k = 0, · · · , n−3, reflects

fully in Snn−1.

We will show that the result of the Main Theorem is best possible. But first we

prove a corollary:

1.4 Corollary. In the model of the Main Theorem we have for all n ≥ 2 and all

m, 0 < m < n:

(a) Any ℵm stationary subsets of Sn0 reflect simultaneously at some γ ∈ Snm.

(b) For every k ≤ m− 2,any ℵm stationary subsets of Snk reflect simultaneously

at some γ ∈ Snm.

Proof. Let us prove (a) as (b) is similar. Let m < n and let Sξ, ξ < ωm, be

stationary subsets of Sn0 . First, each Sξ reflects fully in Snn−1 and so there exist

club sets Cξ, ξ < ωm, such that each Sξ reflects at all α ∈ Cξ ∩ Snn−1. As the club

filter is ωn - complete, there exists an α ∈ Snn−1 such that Sξ ∩ α is stationary, for

all ξ < ωm. Next we apply full reflection of subsets of Sn−10 in Sn−1n−2 (to the ordinal

α of cofinality ωn−1 rather than to ωn−1 itself) and the ωn−1 - completeness of the

club filter on ωn−1, to find β ∈ Snn−2 such that Sξ ∩ β is stationary for all ξ < ωm.

This way we continue until we find a γ ∈ Snm such that every Sξ ∩ γ is stationary.

Note that the amount of simultaneous reflection in 1.4 is best possible:

1.5 Proposition. If cfγ = ℵm and if Sξ, ξ < ωm+1, are disjoint stationary sets then

some Sξ does not reflect at γ.

Proof. γ has a club subset of size ℵm, and it can only meet ℵm of the sets Sξ ∩ γ.
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By Corollary 1.4, the model of the Main Theorem has the property that whenever

2 ≤ m < n, every stationary subset of Snk reflects quite strongly in Snm, provided

k ≤ m − 2. This cannot be improved to include the case of k = m − 1, as the

following proposition shows:

1.6 Proposition. Let m ≥ 2. Either

(a) for all k < m− 1 there exists a stationary set S ⊆ Smk that does not reflect

fully in Smm−1,

or

(b) for all n > m there exists a stationary set A ⊆ Snm−1 that does not reflect at

any δ ∈ Snm.

We shall give a proof of 1.6 in Section 3. In our model we have, for every m ≥ 2,

full reflection of subsets of Sm0 in Smm−1 (and of subsets of Smk for k ≤ m − 3) and

therefore 1.6 (a) fails in the model. Thus the model necessarily satisfies 1.6 (b),

which shows that the consistency result is best possible.

2. Proof of Main Theorem

Let κ2 < κ3 < · · · < κn < · · · be a sequence of cardinals with the property that

for each n ≥ 2, κn is a < κn+1 - supercompact cardinal, i.e. for every γ < κn+1

there exists an elementary embedding j : V → M with critical point κn such that

j(κn) > γ and Mγ ⊂ M .1 We construct the generic extension by iterated forcing,

an iteration of length ω with full support. The first stage of the iteration P1 makes

κ2 = ℵ2, and for each n, the nth stage Pn (a forcing notion in V (P1 ∗ · · · ∗ Pn−1))

makes κn+1 = ℵn+1. In the iteration, we repeatedly use three standard notions of

forcing: Col (κ, α), C(κ) and CU(κ, T ).

Definition. Let κ be a regular uncountable cardinal.

(a) Col (κ, α) is the forcing that collapses α ≥ κ with conditions of size < κ:

A condition is a function p from a subset of κ of size < κ into α; a condition q is

stronger than p if q ⊇ p.

(b) C(κ) is the forcing that adds a Cohen subset of κ: A condition is an 0-1-

function p on a subset of κ of size < κ; a condition q is stronger than p if q ⊇ p.

1We note in passing that the condition about the κn is equivalent to “every κn is < κω -
supercompact” where κω = supm<ωκm.
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(c) CU(κ, T ) is the forcing that shoots a club through a stationary set T ⊆ κ:

A condition is a closed bounded subset of T ; a condition q is stronger than p if

q end-extends p.

The first stage P1 of the iteration P = 〈Pn : n = 1, 2, · · · 〉 is a forcing of size

κ2 that is ω - closed2, satisfies the κ2 - chain condition and collapses each cardinal

between ℵ1 and κ2 (it is essentially the Levy forcing with countable conditions.)

For each n ≥ 2, we construct (in V (P |n)) the nth stage Pn such that

(2.1) (a) |Pn| = κn+1

(b) Pn is ℵn−2 closed

(c) Pn satisfies the κn+1 - chain condition

(d) Pn collapses each cardinal between ℵn(= κn) and κn+1

(e) Pn does not add any ωn−1 - sequences of ordinals

and such that Pn guarantees the reflection of stationary subsets of ℵn stated in the

theorem.

It follows, by induction, that each κn becomes ℵn: Assuming that κn = ℵn
in V (P |n), the nth stage Pn preserves ℵn by (e), and the rest of the iteration

〈Pn+1, Pn+2, · · · 〉 also preserves ℵn because it is ℵn−1 - closed by (b); Pn makes

κn+1 the successor of κn by (c) and (d).

We first define the forcing P1:

P1 is an iteration, with countable support, 〈Qα : α < κ2〉 where for each α,

Qα = Col (ℵ1,ℵ1 + α)× C(ℵ1).

It follows easily from well known facts that P1 is an ω-closed forcing of size κ2,

satisfies the κ2 - chain condition and makes κ2 = ℵ2.

Next we define the forcing P2. (It is a modification of Magidor’s forcing from

[2], but the added collapsing of cardinals requires a stronger assumption on κ2

than weak compactness. The iteration is padded up by the addition of Cohen

forcing which will make the main argument of the proof work more smoothly). The

definition of P2 is inside the model V (P1), and so κ2 = ℵ2:

P2 is an iteration, with ℵ1 - support, 〈Qα : α < κ3〉 where for each α,

Qα = Col (ℵ2,ℵ2 + α)× C(ℵ2)× CU(Tα)

2A forcing notion is λ - closed if every descending sequence of length ≤ λ has a lower bound.
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where Tα is, in V (P1 ∗ P2|α), some stationary subset of ω2. We choose the Tα’s

so that each Tα contains all limit ordinals of cofinality ω. It follows easily that for

each α < κ3, P2|α‖–Qα is ω-closed.

The crucial property of the forcing P2 will be the following:

Lemma 2.2. P2 does not add new ω1 - sequences of ordinals.

One consequence of Lemma 2.2 is that the conditions (p, q, s) ∈ Qα can be taken

to be sets in V (P1) (rather than in V (P1 ∗ P2|α)). Once we have Lemma 2.2, the

properties (2.1) (a) - (e) follow easily.

It remains to specify the choice of the Tα’s. By a standard argument using the

κ3 - chain condition, we can enumerate all potential subsets of ω2 by a sequence

〈Sα : α < κ3〉 in such a way that each Sα is already in V (P1 ∗ P2|α). At the stage

α of the iteration, we let Tα = ω2 , unless Sα is, in V (P1 ∗ P2|α), a stationary set

of ordinals of cofinality ω. If that is the case, we let

Tα = (Tr(Sα) ∩ S2
1) ∪ S2

0

Assuming that Lemma 2.2 holds, we now show that in V (P1 ∗P2), every station-

ary S ⊆ S2
0 reflects fully in S2

1 :

The set S appears as Sα at some stage α, and because it is stationary in V (P1 ∗

P2), it is stationary in the smaller model V (P1 ∗ P2|α). The forcing Qα creates a

closed unbounded set C such that C ∩ S2
1 ⊆ Tr(S) (note that because P2 does not

add ω1 - sequences, the meaning of Tr(S) or of S2
1 does not change).

Thus in V (P1 ∗P2) we have full reflection of subsets of S2
0 in S2

1 . The later stages

of the iteration do not add new subsets of ω2 and so this full reflection remains true

in V (P ).

We postpone the proof of Lemma 2.2 until after the definition of the rest of the

iteration.

We now define Pn for n ≥ 3. We work in V (P1 ∗ · · · ∗ Pn−1). By the induction

hypothesis we have κn = ℵn.

Pn is an iteration with ℵn−1 - support, 〈Qα : α < κn+1〉, where for each α,

Qα = Col(ℵn,ℵn + α)× C(ℵn)× CU(Tα)

where Tα is a Pn|α - name for a subset of ωn. To specify the Tα’s, let 〈Sα : α < κn+1〉

be an enumeration of all potential subsets of ωn such that each Sα is a Pn|α - name.

Paper Sh:387, version 1993-08-28 10. See https://shelah.logic.at/papers/387/ for possible updates.



FULL REFLECTION OF STATIONARY SETS BELOW ℵω 7

At the stage α, let Tα = ωn unless Sα a stationary set of ordinals and Sα ⊆ Snk for

some k = 0, · · · , n− 3, in which case let

Tα = (Tr(Sα) ∩ Snn−1) ∪ (Sn0 ∪ · · · ∪ Snn−2)

= {γ < ωn : cfγ ≤ ωn−2 or Sα ∩ γ is stationary}

Due to the selection of the Tα’s, Qα is ωn−2 - closed, and so is Pn. The crucial

property of the forcing is the analog of Lemma 2.2:

Lemma 2.3. Pn does not add new ωn−1 - sequences of ordinals.

Given this lemma, properties (2.1) (a) - (e) follow easily. The same argument as

given above for P2 shows that in V (P1 ∗ · · · ∗ Pn), and therefore in V (P ) as well,

every stationary subset of Snk , k = 0, · · · , n− 3, reflects fully in Snn−1.

It remains to prove Lemmas 2.2 and 2.3. We prove Lemma 2.3, as 2.2 is an easy

modification.

Proof of Lemma 2.3.

Let n ≥ 3, and let us give the argument for a specific n, say n = 4. We want to

show that P4 does not add ω3 -sequences of ordinals.

We will work in V (P1 ∗ P2) (and so consider the forcing P3 ∗ P4). As P1 ∗ P2

has size κ3, κ4 is a < κ5 - supercompact cardinal in V (P1 ∗ P2), and κ3 = ℵ3. The

forcing P3 is an iteration of length κ4 that makes κ4 = ℵ4 and is ℵ1 - closed; then

P4 is an iteration of length κ5. By induction on α < κ5 we show

(2.4) P4|α does not add ω3 - sequences of ordinals.

As P4 has the ℵ5 - chain condition, (2.4) is certainly enough for Lemma 2.3. Let

α < κ5.

Let j be an elementary embedding j : V → M (as we work in V (P1 ∗ P2), V

means V (P1∗P2)) such that j(κ4) > β and Mβ ⊂M , for some inaccessible cardinal

β > α. Consider the forcing j(P3) in M . It is an iteration of which P3 is an initial

segment. By a standard argument, the elementary embedding j : V → M can be

extended to an elementary embedding j : V (P3)→M(j(P3)). We claim that every

β-sequence of ordinals in V (P3) belongs to M(j(P3)): the name for such a set has

size ≤ β and so it belongs to M , and since P3 ∈ M and M(P3) ⊆ M(j(P3)), the

claim follows. In particular, P4|α ∈M(j(P3)).
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Let p, Ḟ ∈ V (P3) be such that p ∈ P4|α and Ḟ is a (P4|α) - name for an ω3 -

sequence of ordinals. We shall find a stronger condition that decides all the values

of Ḟ . By the elementarity of j, it suffices to prove that

(2.5) ∃p̄ ≤ j(p) in j(P4|α) that decides j(Ḟ ).

The rest of the proof is devoted to the proof of (2.5).

Let G be an M - generic filter on j(P3).

Lemma 2.6. In M [G] there is a generic filter H on P4|α over M [G ∩ P3] such that

M [G] is a generic extension of M [G ∩ P3][H] by an ℵ1 - closed forcing, and such

that p ∈ H.

Proof. There is an η < j(κ4) such that P4|α has size ℵ3 in Mη = M [G∩(j(P3)|η)].

Since P4|α is ℵ2 - closed, it is isomorphic in Mη to the Cohen forcing C(ℵ3). But

Qη = (j(P3))(η) = Col(ℵ3,ℵ3+η)×C(ℵ3)×CU(Tη), so G|Qη = GCol×GC×GCU ,

and using GC and the isomorphism between P4|α and C(ℵ3) we obtain H. Since

the quotient forcing j(P3)/(P3 ×C(ℵ3)) is an iteration of ℵ1 - closed forcings, it is

ℵ1 - closed.

Lemma 2.7. In M [G] there is a condition p̄ ∈ j(P4|α) that extends p, and extends

every member of j
′′
H.

Lemma 2.7 will complete the proof of (2.5): since every value of Ḟ is decided by

some condition in H, every value of j(Ḟ ) is decided by some condition in j
′′
H, and

therefore by p̄.

Proof of Lemma 2.7. Working in M [G], we construct p̄ ∈ j(P4|α), a sequence

〈pξ : ξ < j(α)〉 of length j(α), by induction. When ξ is not in the range of j, we let

pξ be the trivial condition; that guarantees that the support of p̄ has size |α| which

is ℵ3 (because α < j(κ4) = ℵ4 in M [G]). So let ξ < α be such that p̄|j(ξ) has been

defined, and construct pj(ξ).

The condition pj(ξ) has three parts u, v, s where u ∈ Col(j(κ4), j(κ4)+ j(ξ)), v ∈

C((κ4)) and s ∈ CU(Tj(ξ)). It is easy to construct the u - part and the v - part, as

follows: The filter H|P4(ξ) has three parts; a collapsing function f of κ4 onto κ4+ξ,

a 0-1-function g on κ4, and a club subset C of Tξ. We let u = j”f and v = j”g, and

these are functions of size ℵ3 and therefore members of Col and C respectively. For
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the s - part, let s = j”C ∪{κ4}. In order that this set be a condition in CU(Tj(ξ)),

we have to verify that κ4 ∈ Tj(ξ).

This is a nontrivial requirement if Sj(ξ) is in M(j(P3)∗ (j(P4)|j(ξ))) a stationary

subset of j(κ4) and is a subset of either S4
0 or of S4

1 (of Snk for n = 4 and k ≤ n−3).

Then κ4 has to be reflecting point of Sj(ξ), i.e. we have to show that Sj(ξ) ∩ κ4 is

stationary, in M(j(P3) ∗ (j(P4)|j(ξ)).

By the assumption and by elementarity of j, Sξ is a stationary subset of κ4 in

V (P3 ∗ P4|ξ), and Sξ ⊆ S4
0 or Sξ ⊆ S4

1 , i.e. consists of ordinals of cofinality ≤ ω1.

Since Sj(ξ) ∩κ4 = j(Sξ)∩κ4 = Sξ, it suffices to show that Sξ is stationary not only

in V (P3 ∗ P4|ξ) but also in M(j(P3) ∗ (j(P4)|j(ξ)).

Firstly M(P3 ∗ P4|ξ) ⊆ V (P3 ∗ P4|ξ), and so Sξ is stationary in M(P3 ∗ P4|ξ).

Secondly, j(P4) is ℵ1 - closed, and by Lemma 2.6, M(j(P3)) is an ℵ1 - closed

forcing extension of M(P3 ∗ P4|ξ), and so the proof is completed by application of

the following lemma (taking κ = ℵ0 or ℵ1, λ = ℵ4).

Lemma 2.8 Let κ < λ be regular cardinals and assume that for all α < λ and all

β < κ, αβ < λ. Let Q be a κ - closed forcing and S a stationary subset of λ of

ordinals of cofinality κ. Then Q‖– S is stationary.

This lemma is due to Baumgartner and we include the proof for lack of reference.

Proof of Lemma 2.8. Let q be a condition and let Ċ be a Q - name for a closed

unbounded subset of λ. We shall find q̄ ≤ q and γ ∈ S such that q̄‖– γ ∈ Ċ. Let M

be a transitive set such that M is a model of enough set theory, is closed under < κ

- sequences and such that M ⊇ λ, q ∈ M,Q ∈ M, Ċ ∈ M . Let 〈Nγ : γ < λ〉 be an

elementary chain of submodels of M such that each Nγ has size < λ, contains q,Q

and Ċ,Nγ ∩ λ is an ordinal, and Nγ+1 contains all < κ - sequences in Nγ . Since S

is stationary, there exists a γ ∈ S such that Nγ ∩ λ = γ. As cfγ = κ,N = Nγ is

closed under < κ - sequences.

Let {γξ : ξ < κ} be an increasing sequence with limit γ. We construct a de-

scending sequence {qξ : ξ < κ} of conditions such that q0 = q, such that for all

ξ < κ, qξ ∈ N and for some βξ ∈ N greater than γξ, qξ+1‖– βξ ∈ Ċ. At successor

stages, qξ+1 exists because in N, qξ forces that Ċ is unbounded. At limit stages

η < κ, the η - sequence 〈qξ : ξ < η〉 is in N and has a lower bound in N because

N |= Q is κ - closed.
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Since Q is κ - closed, the sequence 〈qξ : ξ < κ〉 has a lower bound q̄, and because

of the β’s, q̄ forces that Ċ is unbounded in γ. Therefore q̄‖– γ ∈ Ċ.

3. Negative results.

We shall now present several negative results on the structure of the relation

S < T below ℵω. With the exception of the proof of Proposition 1.6, we state the

results for the particular case of reflection of subsets of S3
0 in S3

1 , but the results

generalize easily to other cardinalities and other cofinalities.

The first result uses a simple calculation (as in Proposition 1.1):

Proposition 3.1. For any ℵ3 stationary sets Aα ⊆ S3
1 , α < ω3, there exists a sta-

tionary set S ⊆ S3
0 such that S 6< Aα for all α.

Proof. Let Aα, α < ω3, be stationary subsets of S3
1 . By [3], there exist ℵ4 almost

disjoint stationary subsets of S3
0 ; let Si, i < ω4, be such sets. Assuming that each

Si reflects fully in some Aα(i), we can find ℵ4 of them that reflect fully in the same

Aα. Take any ℵ2 of them and reduce each by a nonstationary set to get ℵ2 pairwise

disjoint stationary subsets {Tξ : ξ < ω2} of S3
0 , such that each of them reflects fully

in Aα. Hence there are clubs Cξ, ξ < ω2, such that Tr(Tξ) ⊇ Aα ∩ Cξ for every ξ.

Let γ ∈ ∩
ξ<ω2

Cξ ∩Aα. Then every Tξ reflects at γ, and so γ has ℵ2 pairwise disjoint

stationary subsets {Tξ ∩ γ : ξ < ω2}. This is a contradiction because γ has a closed

unbounded subset of size cfγ = ℵ1.

The next result uses the fact that under GCH there exists a ♦ - sequence for S3
1 .

Proposition 3.2. (GCH) There exists a stationary set A ⊆ S3
1 that is not the trace

of any S ∈ S3
0 ; precisely: for every S ⊆ S3

0 the set A∆(Tr(S) ∩ S3
1) is stationary.

Proof. Let 〈Sγ : γ ∈ S3
1〉 be a ♦ - sequence for S3

1 ; it has the property that for

every set S ⊆ ω3, the set D(S) = {γ ∈ S3
1 : S ∩ γ = Sγ} is stationary. Let

A = {γ ∈ S3
1 : Sγ is nonstationary}.

The set A is stationary because A ⊇ D(∅). If S is any stationary subset of S3
0 ,

then for every γ in the stationary set D(S), γ ∈ A iff γ /∈ Tr(S), and so D(S) ⊆

A∆Tr(S).

The remaining negative results use the following theorem of Shelah which proves

the existence of sets with the “square property”.
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Theorem ([4], Lemma 4.2). Let 1 ≤ k ≤ n − 2. The set Snk is the union of ℵn−1
stationary sets A, each having the following property. There exists a collection

{Cγ : γ ∈ A} (a “square sequence for A”) such that for each γ ∈ A,Cγ is a club

subset of γ of order type ωk, consisting of limit ordinals of cofinality < ωk, and

such that for all γ1, γ2 ∈ A and all α, if α ∈ Cγ1 ∩ Cγ2 then Cγ1 ∩ α = Cγ2 ∩ α.

Square sequences can be used to construct a number of counterexamples. For

instance, if Sn, n < ω, are ℵ0 stationary subsets of S3
0 , then Tr(

∞⋃
n=0

Sn) =
∞⋃
n=0

Sn.

Using a square sequence we get:

Proposition 3.3. There is a stationary set A ⊆ S3
1 and stationary subsets Si, i < ω1,

of S3
0 such that Tr(Si) ∩A = ∅ for each i but Tr(

⋃
i<ω1

Si) ⊇ A.

Proof. Let A be a stationary subset of S3
1 with a square sequence {Cγ : γ ∈ A},

and let S =
⋃
γ∈A

Cγ . Clearly, S ⊆ S3
0 is stationary, and Tr(S) ⊇ A. For each ξ < ω1,

let

Sξ = {α ∈ S : order type (Cγ ∩ α) = ξ}

(this is independent of the choice of γ ∈ A). For every γ ∈ S and every ξ < ω1,

the set Sξ ∩Cγ has exactly one element, and so Sξ does not reflect at γ. It is easy

to see that ℵ1 of the sets Sξ are stationary. [The definition of Sξ is a well known

trick]

The argument used in the above proof establishes the following:

Proposition 3.4. If a stationary set A ⊆ Snm has a square sequence and if k < m

then there exists a stationary S ⊆ Snk that does not reflect at any γ ∈ A.

Proof of Proposition 1.6. Let 2 ≤ m < n and let us assume that (b) fails, i.e.

that every stationary set A ⊆ Snm−1 reflects at some δ of cofinality ℵm. We shall

prove that (a) holds. For each k < m − 1 we want a stationary set S ⊆ Smk that

does not reflect fully in Smm−1. Let k < m− 1.

Let A be a stationary subset of Snm−1 that have a square sequence {Cγ : γ ∈ A}.

The set A reflects at some δ of cofinality ωm. Let C be a club subset of δ of order

type ωm. Using the isomorphism between C and ωm, the sequence {Cγ∩C : γ ∈ A}

becomes a square sequence for a stationary subset B of Smm−1. It follows that there

is a stationary subset of Smk that does not reflect at any γ ∈ B.
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The last counterexample also uses a square sequence.

Proposition 3.5. (GCH) There is a stationary set A ⊆ S3
1 and ℵ4 stationary sets

Si ⊆ S3
0 such that the sets {Tr(Si)∩A : i < ω4} are stationary and pairwise almost

disjoint.

Proof. Let A be a stationary subset of S3
1 with a square sequence 〈Cγ : γ ∈ A〉,

and let S =
⋃
γ∈A

Cγ . Let {fi : i < ω4} be regressive functions on S3
0 ∪ S3

1 with the

property that for any two fi, fj , the set {α : fi(α) = fj(α)} is nonstationary (such

a family exists by [3]). For each i and each γ ∈ A, the function fi is regressive

on Cγ and so there is some η = η(i, γ) < γ such that {α ∈ Cγ : fi(α) < η} is

stationary. Let Ti,γ ⊆ ω1 be the stationary set {o.t.(Cγ ∩ α) : fi(α) < η} and let

Hi,γ be the function on Ti,γ (with values < η) defined by H(ξ) = fi(ξ
th element of

Cγ). For each i, the function on A that to each γ assigns (Tiγ , Hiγ) is regressive,

and so constant = (Ti, Hi) on a stationary set. By a counting argument, (Ti, Hi)

is the same for ℵ4 i’s; so w.l.o.g. we assume that they are the same (T,H) for all i.

Now we let, for each i,

Ai = {γ ∈ A : (∀α ∈ Cγ) if ξ = o.t.(Cγ ∩ α) ∈ T then fi(α) = H(ξ)}

Si = {α ∈ S : o.t.(Cγ ∩ α) ∈ T and(∀β ≤ α, β ∈ Cγ) if ξ = o.t.(Cγ ∩ β) ∈ T then fi(β) = H(ξ)}

By the definition of T and H, each Ai is a stationary set, and each Si reflects at

every point of Ai. We claim that if γ ∈ A and Si ∩ γ is stationary then γ ∈ Ai. So

let γ ∈ A be such that Si ∩ γ is stationary. Let ξ ∈ T and let α be the ξth element

of Cγ ; we need to show that fi(α) = H(ξ). As Si ∩ γ is stationary, there exists a

β ∈ Si ∩ Cγ greater than α. By the definition of Si, fi(α) = H(ξ). Thus γ ∈ Ai,

and Ai = A ∩ Tr(Si).

Finally, we show that the sets Ai are pairwise almost disjoint. Let C be a club

disjoint from the set {α : fi(α) = fj(α)}. We claim that the set C ′ of all limit

points of C is disjoint from Ai ∩ Aj . If γ ∈ C ′ then C ∩ γ is a club in γ, and so is

C ∩ Cγ . Since T is stationary in ω1, there is a ξ ∈ T such that the ξth element α

of Cγ is in C, and therefore fi(α) 6= fj(α); it follows that γ cannot be both in Ai

and in Aj .
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