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1 Introduction

In 1979 Shelah proved that in order to obtain a model in which every set of
reals has Baire property, a large cardinal assumption is not necessary. The
model he constructed satisfied wf = w;. Therefore Woodin asked if we can
get a model for “ZF 4+ DC(w;) + each set of reals has Baire property”.
Recall here that DC(wy) is the following sentence:

if R is a relation such that (VX)(3Y)(R(X,Y)) then there is a
sequence < Z, : a < wy > such that

Va<w)(R(< Zsg: B<a>, Z,)).

Note that DC(w;) implies the following version of choice:
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if R C wy X R
then there exists a choice function f : w; — R such that
R(a, f(a)) for each a < wy.

In [JS1] we studied the consistency strength of “ZFC + variants of MA +
suitable sets of reals have Baire property”. We showed that Baire property
for 31-sets of reals plus MA (o-centered) implied that w; is a Mahlo cardinal
in L.

The natural question that arises at this point is:

Do we need large cardinals to construct a model in which all
projective sets of reals have Baire property and the union of any
w1 meager sets is meager?

Note that if unions of w; many null sets are null then every 3i-set of reals is

Lebesgue measurable. Consequently if each projective sets of reals has Baire

property and any union of w; null sets is null then w; is inaccessible in L.
The aim of the present paper is to prove the following two theorems:

Theorem 1.1 If ZF 1is consistent then the following theory is consistent:

ZF + DC(wy) + “Fvery set of reals has Baire property”

Theorem 1.2 If ZF is consistent then the following theory is consistent:

ZFC + “FEvery projective set of reals has Baire property” + “Any
union of wi meager sets is meager”

Our notation is standard and derived from [Jec]. There is one exception,
however. We write p < ¢ to say that ¢ is a stronger condition then p. ()
denotes the smallest element of a forcing notion.

2 Basic definitions and facts

In this section we recall some definitions and results from [She|. They will
be applied in the next section.

The basic tool in the construction of models in which definable sets have
Baire property is the amalgamation. To define this operation we need the
following definition.
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Recall that P <« P’ means P C P’ and each maximal antichain in P is a
maximal antichain in P’. For a forcing notion P let I'p be a P-name for the
generic subset of P.

Definition 2.1  Suppose that P < BA(Q). Then (Q:P) is the P-name of
a forcing notion which is a subset of Q,

(Q:P) ={q € Q: q is compatible with every p € I'p}.

Thus p - ¢ € (Q:P) if and only if every p’ € P, p’ > p is compatible with
q. Recall that if P <« BA(Q) then forcing notions Q and P * (Q : P) are
equivalent.

Definition 2.2  Let P°, P! and P? be forcing notions. Suppose that f :
PY =8 BAPY), f, : P° 125 BA(P?) are complete embeddings (i.e. they
preserve order and f;[P°] < BA(PY) ). We define the amalgamation of P!

and P? over f1, fo by P! xp p, P? =
{(p1,p2) P xP?: (3peP)(pI-“pre (P f1[PY)) & pr € (P*: £5[P")) ")}

P! xy, 1, P? is ordered in the natural way: (p1,p2) < (pi,ph) if and only if
P1 <Py, P2 < Py

Note that P!, P2 can be completely embedded into the amalgamation
P! x4 5, P? by p1 € P! — (p1,0) and py € P2 — (0, ps). Thus we think of
P! xy 1, P? as an forcing notion extending both P! and P2

The amalgamation is applied in constructing of Boolean algebras admit-
ting a lot of automorphisms. The mapping

frltofit: AP — P?
can be naturally extended to an embedding
¢ : ].:)1 — ].:)1 X f1,f2 PQ.

Now. suppose that B is a complete Boolean algebra such that for sufficiently
many pairs (P!, P?) of complete suborders of B and for complete embeddings
fi : PY — P, (i = 1,2) the algebra B contains the amalgamation P! X, ,
P2. Then B is strongly Cohen-homogeneous:

Suppose T is a B-name for an wi-sequence of ordinals. Then there exists a
complete subalgebra B’ of the algebra B such that
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e 7 is a B'-name,

o if B/ «B" <« B, B I-“(B": B) is the Cohen algebra” and f : B — B
is a complete embedding such that f|B’ = idg

then there exists an automorphism ¢ : B onto i extending f.

For more details on extending homomorphisms see [JuR].

Solovay showed the connection between the strong homogeneity of the
algebra B and the fact that in generic extensions via B all projective sets of
reals have Baire property. Let S; be the class of all w;-sequences of ordinal
numbers.

Theorem 2.3 (Solovay) Let B be a strongly Cohen homogeneous complete
Boolean algebra satisfying ccc. Suppose that for any B-name 1 for an w-
sequence of ordinals

B I “the union of all meager Borel sets coded in V|[r| is meager”.
Then BIF “any set of reals definable over Sy has Baire property”.

PROOF  See theorem 2.3 of [JuR]. m

The class HOD(S;) consists of all sets hereditarily ordinal definable over S;.

Theorem 2.4 (Solovay) Assume that every set of reals ordinal definable
over S1 has Baire property. Then
HOD(S))E“ZF + DC(w,) + every set of reals has Baire property”.

PROOF  See [Sol]. =

In the next section we will built a model in which there exists an algebra
B satisfying the assumptions of theorem 2.3 and such that

B I-“the union of w; meager sets is meager”.

To be sure that the algebra B satisfies ccc we will use the following notion.

Definition 2.5 A triple (P,D,{E,}nc.) is a model of sweetness if
1. P is a notion of forcing and D is a dense subset of P,

2. E, are equivalence relations on D such that
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e cach E, has countably many equivalence classes (the equivalence
class of the element p € D in the relation E, will be denoted by

[pln);

e cquivalence classes of all relations E,, are upward directed,

o if {p;:i <w} CD,p; € [pu)i for all i then for every n < w there
exists q € [py]n which is stronger than all p; fori > n,

e ifp,qe D, p<qandn € w then there exists k € w such that
(Vp'" € [ple)(3d € [aln) (0" < ).
Note that if (P, D,{FE, }ncw) is a model of sweetness then P is o-centered.

Definition 2.6 ~ We say that a model of sweetness (P?, D? {E?*},c.) ex-
tends a model (P, DY, {E!},co) (we write
(PL, D' {E}},c.) < (P2, D?* {E?},c.)) whenever

1. P! <« P?, D' CD? and E} = E?|D' for eachn € w,
2. ifp € D', n € w then [p]? C D!,
3. ifp<q,p€D?qec D" then p € D
Lemma 2.7 a) The relation < is transitive on models of sweetness.
b) Suppose that (P, D', {E" },c.) are models of sweetness such that
(P'. D' {E }new) < (P7, D7 {E] }new)
foralli<j <& (€ <wy). Then

111<H€1<PZ7 ,Div {Erlz}new) = (U Pi? U ,Div {U E:L}new)

i<§ 1<§ i<§

is a model of sweetness extending all models (P', D', {E’ },c.,). ®

The sweetness may be preserved by the amalgamation.

Lemma 2.8  Suppose that (P, D', {E!},c.) for i = 1,2 are models of
sweetness and f; : P® — BA(P") are complete embeddings. Then there ex-
ists a model of sweetness (P! Xy, 1, P?, D*, { Ef }nc) based on the amalgama-
tion P'x g, 1, P? and extending both (P*, D', {E},c.) and (P?, D {E2}cw)-
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PROOF  see lemmas 7.5, 7.12 of [She]. m

To ensure that our algebra satisfies
B I“the union of w; meager sets is meager”

we will use the Hechler order D. Recall that D consists of all pairs (n, f)
such that n € w, f € w¥. It is ordered by

(n, f) < (n/, f') if and only if
n<n', fln= f'Inand (Vkew)(f(k) < f'(k)).

The forcing with D adds both a dominating real and a Cohen real. Conse-
quently

DD I+“the union of all Borel meager sets coded in the ground
model is meager”.

The iteration with D preserves sweetness.

Lemma 2.9 Let (P, D, {E,}new) be a model of sweetness and let D be
a P-name for the Hechler forcing. Then there exists a model of sweetness
(P+D, D* {E}},c0) based on PxD and extending the model (P, D, {E, }new)-

PrROOF  Similar to the proof of lemmas 7.6, 7.11 of [She]. =

3 The proof of the main result

In this section we present proofs of theorems 1.2 and 1.1.

Definition 3.1  Let K be the class consisting of all sequences
P =< (P, M"): i<uw > such that

1. M? is a model of sweetness based on P?,
2. ifi < j <w then P < PJ.

If P € K is as above then we put Pt = Uicw, P
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Note that if P € K then each P is o-centered. Consequently P“' satisfies
cec.
We define the relation < on /.

Definition 3.2  Let P,Py € K. We say P, < P, if P < Py* and there
exists a closed unbounded subset C of wy such that

(1) ifi € C then M < M;

(") ifieC,qe ", pe P and pl-ps g € (P : P})
then pl-ps g € (P5": P3).

Clearly the relation < is transitive and reflexive.

Lemma_3.3 §uppose that P, € K for m < w are such that my < ms < w
implies Py, < P, (and let Cp,, 1, witness it). Let C' = N, <my<w Cmamea-
Put

Pl=|J PO ML= lim MO,

mew m<w

Then P, = < (P, M!): i <w; > € K and P,, < P,, for each m < w.

Proor  First note that C is a closed unbounded subset of w;. Since
C C Nimecw Cmmi1 we may apply lemma 2.7 b) to conclude that each M is
a model of sweetness based on P".

Cramm: If i < j < w; then P! < PJ.

Indeed, let i < j. We may assume that i, j € C (recall that P! = PJ(C\)),
Note that P¢ < P! and P!, <¢ PJ for each m € w. Let A C P! be a maximal
antichain. Clearly it is an antichain in P’ but we have to prove that it is
maximal. Let ¢ € PJ. Then ¢ € PJ, for some m < w. Let

Z={reP,: (@ cA)ritp, p e (Pi:P))

Clearly Z is dense in P?,. Hence we find r € Z such that r Ikp; g € (PJ,: Pl).
Let p, € A witness r € Z. Take k such that p, € P}, m < k < w. Consider
P,, and Py. Since i,j € C C C,,; we may apply condition (!!) to conclude
that .

ribp g € (P P).
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By the choice of p, we have
ritpi py € (PL: PL).

Thus p, and r are compatible and any p’ € P{, p’ > r,p, is compatible with
q. Consequently g and p, are compatible. The claim is proved.

It follows from the above claim that P, € K.

CrLAIM:  The club C witness that P,, < P, for each m < w.

Indeed, first note that

pr=Ur=U UB=U e

1<wi i<wi mM<w m<w

Since Pyl < Pyl for each m; < my we see that Pt < Pg'. It follows from
the definition of M! and lemma 2.7 that if i € C' then M < M¢. Thus
we have to check condition (!!) only. Suppose i € C, ¢ € P“*, p € P!, and
plEpi g € (P :PL). Assume plffpi g € (P : P.). Then we find r € P}
such that r > p and r is incompatible with g. Let k > m be such that r € P}.
Since i € Cry we have plb-pi g € (P : P{) (by condition (!!) for P,,, Py).
But 7l-pi ¢ & (P : Pj) - a contradiction.  m

Lemma 3.4  Assume that
o P. € K for & <uw,
o if £ < ( < w then Pe < P is witnessed by the club Ce ¢ C wy,
o if§ <wi is a limit ordinal and i € Necces Cec then My = limgos M{.

Let
C={0<wy:6islimit & (VE<(<0)(0 € Cee)}

and let C(i) = N(C\i) for i <wy. Put Pi =P, M = MZ[).
Then P, € K and (V€ < w,)(Pe < P,,).

PrROOF  First note that the set {d <w; : (V€ <(<0)(d € Cec)} is the
diagonal intersection of clubs N¢. Ce ¢ (for ¢ < wi). Hence C' is closed and
unbounded and P, is well defined.

Cram: If i < j <w; then P, < PJ .
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Indeed, suppose i < j < wy. Then P = Pg((;)), Pl = Pg(gj)) and we

may assume that C(i) < C(j). By 3.1 2) we have that Pg((;)) < Pg(%).
Since C' consists of limit ordinals only and C(j) € Neccco(j) Cec We get
Pg(g)) = U5<C(j) ch(j) (and it is a diregt limit).- Since C(i) < C(j) we conclude
Pg((i])) <6 Pg((j])) and consequently Pg((;)) s Pg((j)). The Claim is proved.
~ Since each M, is a model of sweetness based on F, we have proved that
P, € K. Let £ < w;.

Cram: P < Pyl

First note that

w1 i c@) i w
Pwlli U Pwli U PC(@) - U Pﬁi U PCI'
1<wi 1<wi ¢ i<wi (<wi

Since (; < (5 < w; implies 1541 < 1542 we have ng < PC‘;I for (1 < (o < wy.
Consequently P;" < P2t

Cramv:  If 2 € C\(£ + 1) then M} < M, .

If i € C\(§+ 1) then C(i) = ¢ > & Moreover it follows from our
assumptions that M, = lim¢.; M{. By lemma 2.7 we get M} < M} = Mg(%) =
M, .

CLAIM: Suppose i € C\(§+1), q€ P, pe Plandp ”‘Pg’ q € (P2 PY).
Then pitp; q € (B! F,,).

Assume not. Then we have r € szl = P!, r > p such that r and ¢ are

incompatible. There is ¢ € (§,4) such that r € P?. Thus p \VPE- q € (P Fp).
Since i € Cg¢ we get a contradiction with condition (!!) for P¢ < Pe.
We have proved that the club C'\({ + 1) witness P, <P,,. m

Suppose P = < (P, M%) :i < w; > € K. Let
Pi={(p,7) e P*+«D:pe P' & 7is a P-name }.

Note that P} is isomorphic to P s D. Let M} be the canonical model of
sweetness based on P} and extending the model M’ (see lemma 2.9). Let

Pp=<(P,,M}):i<w >.

Lemma 3.5 Ppc K, P <Pp and Py = P % D.
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PROOF  The last assertion is a consequence of the fact that P“! is a ccc
notion of forcing. It follows from properties of Souslin forcing (cf [JS2]) that
P} < Plj) provided i < j. Consequently Pp € K. To show P < P note that
M* < M§ for all i < w; and P“' < Py'. Suppose now that i < wy, p € P,
q € P and plbpi g € (P“1: P'). Assume that plffpi g € (Pp':Pp). Then
we find a condition 7 = (rg,7) € P} above p which is inconsistent with g.
Note that ¢ may be a member of P'xD < PJ (for some j > i) but we consider
it as an element of P!, while r is an element of P*' « D. Consequently
incompatibility of ¢ and r means that ¢ and ry are not compatible. But
ro € P? lies above p - a contradiction. m

Lemma 3.6  Suppose that B,C,D,Cy are complete Boolean algebras such
that

(1) B<D<C,Cy<C

Let By = BN Cy, Dy =D NCqy (note that By < Dy < Cy). We assume that
(2) BIF4D:B) is a subset of (Cy:B)”

(8) ifbe B,by€ By and by Ik, b € (B:By) then by ¢, b € (C:Cy).

Then

(3*) ifdeD,dy € Dy and dylFp, d € (D:Dy) then dy ¢, d € (C:Cy).

Proor

CrLAM: Suppose ¢ € Cy,dy € Dy and dy IFp, ¢ € (Co : Dy). Then
dolFp c € (C:D).

We have to prove that each d > dy,d € D is compatible with c. Let
d > dy,d € D. By (2) we find b € B and d; € D, such that

biFg “d € (D:B) & d =) dy”

(the last means that b-d = b-dy). Thus b-d;-dy = b-d-dy = b-dy # 0. We find
by € By such that by IFg, b € (B:By) and by-d;-dy # 0 (it is enough to take
bo such that bo H_Bo b'dl'do € (DB())) Note that then bg H_Co be (CCO) (by
(3)). Since by-d;-dy € Dy and it is stronger than dy we get by-d;-do-c # 0. The
last condition is stronger than by and belongs to Cy. Hence b-by-d;-dy-c # 0.
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Finally note that b-bg-dy-dy-c > b-dy = b-d > d so d and ¢ are compatible.
The claim is proved.

Now suppose that d € D, dy € Dy and dy IFp, d € (D:Dy). Let ¢ € Cy, ¢ > dy.
Take d* € Dy such that d* > dy and d* IFp, ¢ € (Cp:Dy). By the claim we
have d* IFp ¢ € (C: D). Since d* > dy we have d*-d # 0,d*-d € D and
consequently d*-d-c # 0. Hence d and ¢ are compatible and we are done. m

B SuEpose th@t ].E’OL].E’I, P,,P; € K and the club C' C w; witness that both
Py < P; and P, < P3. Assume that Qg, Q2 are complete Boolean algebras
such that for some iy < wy

e BA(F;") < Qo < BA(P™), BA(Py") < Qo < BA(P5™)

e BA(PY) IF (Qo:BA(PS")) C (BA(P):BA(PS"))
BA(P;") IF (Q2:BA(P)) C (BA(P):BA(P;™))

Let f : Qy — Q2 be an isomorphism such that f[Qy N BA(P})] = Q2N
BA(P}) for all i € C'\iy. For i € C\iy put

Pt ={(p1,p2) € P xiq, P* i p1 € P{ & pa € P3},

where id stands for the identity on Q. It follows from lemma 3.6 that P? is
isomorphic to P} Xy, s, Pi, where f3 = f|QoNBA(P]) and f; is the identity
on Qp N BA(Pf). Therefore we have the canonical model of sweetness M*
based on P’ and extending both models M} and Mj (compare lemma 2.8).
Let

].51 fo3:<(Pi,Mi):i<w1>.

Note that U, P' = Pr* xjq ; 5"
Lemma 3.7 ].51 XngEIC CLTLdPthSPl Xfpg.

PROOF  To prove Py x; P3 € K we have to show the following

CraM: P < P7 for each i < j < wy, 1,7 € C\ig.

Let A C P! be a maximal antichain and let (py,ps) € P7. Let ¢ € Qq be
such that

qIF “pr € (P : Qo) & p2 € (P f1Qo])”.

Take r; € Py such that ry IFpi “p1,q € (P : P})” (note that ¢ and p; are
compatible). Next find ¢ € Qg such that ¢ > ¢ and ¢’ IF r; € (P : Qo)

11
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(recall that r; and ¢ are compatible). Since p, and f(¢’) are compatible we
find ro € Pj such that ra IFpi “pa, f(¢') € (P5" : P3)”. Consider the pair
(r1,72). There is ¢" € Qo, ¢"” > ¢ such that ¢" I-ry € (P5: f[Qo]). Then

q¢"1F € (P Qo) &y € (P57 f[Qo))”

and consequently (r1,79) € P'. Since (71, 79) has to be compatible with some
element of A we are done.

CrAM: Suppose ¢ € P*, i € C\ig, p € P} are such that p Fpiq €
(PPr:Pl). Then plpi g € (P*1: PY).

Suppose r € P' is stronger than p. Let r = (ry,r9) and let 1y € Qg
witness 7 € Py x;q P, We may get 7o € Qo N BA(P}). Remember that
really we have p ~ (p,0), ¢ =~ (q,0). Since ro,71 € BA(P}) are compatible
and r; > p we find r} € P above 1,7, and ¢. Then (r},ry) € P and it is
a condition stronger than both (r1,72) and (g, ). The claim is proved.

Since M} < M for each i € C\ig it follows from the above claim that
P, < P, x; P3 (and C\ij is a witness for it). Similarly one can prove
P;<P; x;P;. =m

Lemma 3.8 Suppose Py, P, € K, Py < Py. Let Qy,Qq be complete
Boolean algebras such that (for k =0,1):

o BA(Fy") < Qi < BA(P™)
o BA(P;") IF“Qg:BA(Fy")) is the Cohen algebra”

Let f: Qo — Qq be an isomorphism such that f|BA(Py*) = id.

Then there exist p € K and an automorphism ¢ : P*! Oﬂ> P“t such that

P, <P and f C ¢.

PROOF  We may apply lemma 3.7 to get that Py = Py x;P; € K. The
amalgamation over f produces an extension of f — there is f; : P/ — Pyt
such that f C fi (we identify p € P{* with (0, p) € Py*). Moreover Py, Py, fi
satisfy assumptions of lemma 3.7 and thus P; = P, x £ P, € K. If we
identify p € P with (p,0) € P3 we get a partial isomorphism f, such that
fi € f; and mg(fy) = Ps*. And so on, we build P,, € K and partial

isomorphisms f,, such that P,, < P41, fm C fms1 and either Pev C

12
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dom(f,,) or P“* C rng(f,). Next we apply lemma 3.3 to conclude that

P, € K and f, = Upew fm : P (M) P#1 is the desired automorphism. =

Definition 3.9  We define the following notion of forcing
e R={Peck:pecH(w)}
o <g is the relation < of 3.2.

A notion of forcing P is (w; + 1)-strategically closed if the second player
has a winning strategy in the following game of the length w; + 1.

For ¢ = 0 Player I gives py € P;

Player I gives in the i-th move a dense subset D; of P;

Player II gives p;y1 > pi, pit1 € D;, for a limit ¢ Player II gives
p; above all p; (for j < i).

Player II looses if he is not able to give the respective element of P for some
) S Ww1.

Note that (w; 4 1)-strategically closed notions of forcings do not add new
wi-sequences of elements of the ground model.

Proposition 3.10  The forcing notion R is w; -closed and (wy+1)-strategically
closed. Consequently forcing with R does not collapse wy and ws.

Proor  For the first assertion use lemma 3.3. The second follows from
3.3 and 3.4. ]

Note that |[R| = 2¥'. Thus if we assume that 2! = wy then forcing with
R does not collapse cardinals.

Suppose V =GCH.

Let G C R be a generic over V. Let P = U{P“* : P € G}.

Proposition 3.11 1. P is a ccc notion of forcing.

2. If T 1s a P-name for an wi-sequence of ordinals then
P I “the union of all Borel meager sets coded in V1| is meager”.

13
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3. The Boolean algebra BA(P ) is strongly Cohen-homogeneous.

4. PIF “any union of wi meager sets is meager”.

PROOF 1. Work in V. Suppose that A is a R-name for an w;-sequence
of pairwise incompatible elements of P. Let P € R. By proposition 3.10
there is P; > P which decides all values of A. We may assume that all these
elements belong to P”*. A contradiction.

2. Let 7 be a P-name for an wi-sequence of ordinals. Then 7 is actually
an wi-sequence of (countable) antichains in P. Therefore 7 € V and it is a
Pg¢'-name for some Py € G. By density arguments we have that (Pp)p € G
for some P > Py (compare lemma 2.9). Hence

P I-“the union of all Borel meager sets coded in V[G][7] is
meager”

3. Work in V[G]. Let 7 be a P-name for an w;-sequence of ordinals. As
in 2. we find Py € G such that 7 is a Py*-name. Suppose now that

e BA(F;") < B < BA(P),
e BA(Fy") IF “(B:BA(Fy")) is the Cohen algebra”,
e f: B — BA(P) is a complete embedding such that f|BA(FP;") = id.

Note that B and f are determined by countably many elements. Each element
of BA(P) is a countable union of elements of P. Consequently B, f € V and
there is Py € G such that B,mg(f) € BA(P;"), Py < Py. By density
argument and lemma 3.8 we find P, € G and f, such that P; < P, and f,
is an automorphism of BA(P5") extending f. Similarly, if P, € G, P3 < P4
and f3 is an automorphism of BA(Ps") then there are P5 € G, f5 such that
f5 is an automorphism of BA(P5™") extending f5.

It follows from the above that, in V[G], we can extend f to an automor-
phism of BA(P).

4. Similar arguments as in 1. and 2. =

Theorems 1.2 and 1.1 follow directly from the above proposition and
theorems 2.3 and 2.4.
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