A saturated model of an unsuperstable theory of cardinality greater than its theory has the small index property

Garvin Melles*
Hebrew University of Jerusalem
Saharon Shelah[†]
Hebrew University of Jerusalem
Rutgers University

September 15, 2020

Abstract

A model M of cardinality λ is said to have the small index property if for every $G \subseteq Aut(M)$ such that $[Aut(M):G] \leq \lambda$ there is an $A \subseteq M$ with $|A| < \lambda$ such that $Aut_A(M) \subseteq G$. We show that if M^* is a saturated model of an unsuperstable theory of cardinality > Th(M), then M^* has the small index property.

1 Introduction

Throughout the paper we work in \mathfrak{C}^{eq} , and we assume that M^* is a saturated model of T of cardinality λ . We denote the set of automorphisms of M^* by $Aut(M^*)$ and the set of automorphisms of M^* fixing A pointwise by $Aut_A(M^*)$. M^* is said to have the small index property if whenever G is a subgroup of $Aut(M^*)$ with index not larger than λ then for some $A \subset M^*$ with $|A| < \lambda$, $Aut_A(M^*) \subseteq G$. The main theorem of this paper is the following result of Shelah: If M^* is a saturated model of cardinality $\lambda > |T|$ and there is a tree of height some uncountable regular cardinal

^{*}Would like to thank Ehud Hrushovski for supporting him with funds from NSF Grant DMS 8959511

[†]partially supported by the U.S.-Israel Binational Science Foundation. Publ. 450

 $\kappa \geq \kappa_r(T)$ with $\mu > \lambda$ many branches but at most λ nodes, then M^* has the small index property, in fact

$$[Aut(M^*):G] \ge \mu$$

for any subgroup G of $Aut(M^*)$ such that for no $A \subseteq M^*$ with $|A| < \lambda$ is $Aut_A(M^*) \subseteq G$. By a result of Shelah on cardinal arithmetic this implies that if $Aut(M^*)$ does not have the small index property, then for some strong limit μ such that $cf \mu = \aleph_0$,

$$\mu < \lambda < 2^{\mu}$$

So in particular, if T is unsuperstable, M^* has the small index property.

In the paper "Uncountable Saturated Structures have the Small Index Property" by Lascar and Shelah, the following result was obtained:

Theorem 1.1 Let M^* be a saturated model of cardinality λ with $\lambda > |T|$ and $\lambda^{<\lambda} = \lambda$. Then if G is a subgroup of $Aut(M^*)$ such that for no $A \subseteq M^*$ with $|A| < \lambda$ is $Aut_A(M^*) \subseteq G$ then $[Aut(M^*) : G] = \lambda^{\lambda}$.

PROOF See [L Sh].

Corollary 1.2 Let M^* be a saturated model of cardinality λ with $\lambda > |T|$ and $\lambda^{<\lambda} = \lambda$. Then M^* has the small index property.

Theorem 1.3 T has a saturated model of cardinality λ iff $\lambda = \lambda^{<\lambda} + D(T)$ or T is stable in λ .

PROOF See [Sh c] chp. VIII.

So we can assume in the rest of this paper that T is stable in λ .

Theorem 1.4 T is stable in μ iff $\mu = \mu_0 + \mu^{<\kappa(T)}$ where μ_0 is the first cardinal in which T is stable.

PROOF See [Sh c] chp. III.

Since T is stable in λ , we must have $\lambda = \lambda^{<\kappa(T)}$, so $cf \lambda \ge \kappa(T)$. Since the first cardinal κ , such that $\lambda^{\kappa} > \lambda$ is regular, we also know that $cf \lambda \ge \kappa_r(T)$. **Definition 1.5** Let Tr be a tree. If $\eta, \nu \in Tr$, then $\gamma[\eta, \nu] =$ the least γ such that $\eta(\gamma) \neq \nu(\gamma)$ or else it is $min(height(\eta), height(\nu))$.

Notation 1.6 Let Tr be a tree. If $h \in Aut(M^*)$ and $\alpha < height(Tr)$, η , $\nu \in Tr$, then

$$h^{\eta(\alpha) < \nu(\alpha)} = h$$

if $\eta(\alpha) < \nu(\alpha)$ and id_{M^*} otherwise.

Lemma 1.7 Let $\{C_i \mid i \in I\}$ be independent over A and let $\{D_i \mid i \in I\}$ be independent over B. Suppose that for each $i \in I$, $tp(C_i/A)$ is stationary. Let f be an elementary map from A onto B, and let for each $i \in I$, f_i be an elementary map extending f which sends C_i onto D_i . Then

$$\bigcup_{i \in I} f_i$$

is an elementary map from $\bigcup_{i \in I} C_i$ onto $\bigcup_{i \in I} D_i$.

PROOF Left to the reader.

Lemma 1.8 Let $|T| < \lambda$. Let Tr be a tree of height ω with κ_n nodes of height n for some $\kappa_n < \lambda$. Let $n < \omega$ and let $\langle M_i \mid i \leq n \rangle$ be an increasing chain of models. Let $M_n \subseteq N_0 \subseteq N_1 \subseteq M^*$ with $|N_1| < \lambda$. Suppose $\langle h_i \mid i \leq n \rangle$ are automorphisms of M^* such that

- 1. $h_i = id_{M_i}$
- 2. $h_i[N_j] = N_j$ for $j \leq 1$
- 3. $h_i[M_k] = M_k$ for $k \le n$

For each $\nu \in Tr \upharpoonright level(n+1)$ let m_{ν}, l_{ν} be automorphisms of N_0 . Let $\eta \in Tr \upharpoonright level(n+1)$. Suppose $g_{\eta} \in Aut(N_0)$ such that for all $\nu \in Tr \upharpoonright level(n+1)$,

$$g_{\eta}m_{\eta}(m_{\nu})^{-1}(g_{\eta})^{-1} = l_{\eta}(l_{\nu})^{-1}h_{\gamma[\eta,\nu]}^{\eta(\gamma[\eta,\nu]) < \nu(\gamma[\eta,\nu])}$$

Let m_{ν}^+, l_{ν}^+ be extensions of m_{ν} and l_{ν} to automorphisms of N_1 for all $\nu \in Tr \upharpoonright level(n+1)$. Then there exists a model $N_2 \subseteq M^*$ containing N_1 such that $|N_2| \leq |N_1| + |T| + \kappa_{n+1}$ and $h_i[N_2] = N_2$ for $i \leq n$

and a $g'_{\eta} \in Aut(N_2)$ extending g_{η} and for all $\nu \in Tr \upharpoonright level(\alpha + 1)$ automorphisms of N_2 , m'_{ν} and l'_{ν} extending m^+_{ν} and l^+_{ν} respectively such that

 $g_{\eta}'m_{\eta}'(m_{\nu}')^{-1}(g_{\eta}')^{-1} = l_{\eta}'(l_{\nu}')^{-1}h_{\gamma[\eta,\nu]}^{\eta(\gamma[\eta,\nu]) < \nu(\gamma[\eta,\nu])}$

PROOF Let g_{η}^+ be a map with domain N_1 such that $g_{\eta}^+(N_1) \bigcup_{N_0} N_1$,

 $g_{\eta}^+(N_1) \subseteq M^*$ and g_{η}^+ extends g_{η} . Let g_{η}^{++} be a map extending g_{η} such that the domain of $(g_{\eta}^{++})^{-1}$ is N_1 , $(g_{\eta}^{++})^{-1}(N_1) \subseteq M^*$ and $(g_{\eta}^{++})^{-1}(N_1) \bigcup_{N_0} N_1$.

So $g_{\eta}^+ \cup g_{\eta}^{++}$ is an elementary map. Let l_{η}'' and m_{η}'' be an extensions of l_{η}^+ and m_{η}^+ to an automorphisms of M^* . Let

$$m_{\nu}^{++} = (g_{\eta}^{++})^{-1} (h_{\eta,\nu})^{-1} l_{\nu} (l_{\eta})^{-1} g_{\eta}^{++} m_{\eta}^{\prime\prime} \upharpoonright (m_{\eta}^{\prime})^{-1} [(g^{++})^{-1} [N_{1}]]$$

Note that $m_{\nu}^{+} \cup m_{\nu}^{++}$ is an elementary map. Let

$$l_{\nu}^{++} = (l_{\eta}'')^{-1} g_{\eta}^{+} m_{\eta}^{+} (m_{\nu}^{+})^{-1} (g_{\eta}^{+})^{-1} (h_{\eta,\nu})^{-1} \upharpoonright h_{\eta,\nu} [g_{\eta}^{+} [N_{1}]]$$

Note that $l_{\nu}^+ \cup l_{\nu}^{++}$ is an elementary map. Let g_{η}'' , m_{ν}'' , l_{ν}'' be elementary extensions to M^* of $g_{\eta}^+ \cup g_{\eta}^{++}$, $m_{\nu}^+ \cup m_{\nu}^{++}$, and $l_{\nu}^+ \cup l_{\nu}^{++}$. Let N_2 be a model of size $|N_1| + |T| + \kappa_{n+1}$ containing N_1 such that N_2 is closed under m_{η}'' , g_{η}'' , l_{η}'' all the $h_{\eta,\nu}$ and m_{ν}'' , l_{ν}'' . Let m_{ν}' , l_{ν}' , g_{η}' , $h_{\eta,\nu}'$, m_{η}' , l_{η}'' be the restrictions to N_2 of the m_{ν}'' , l_{ν}'' , g_{η}'' , $h_{\eta,\nu}''$, m_{η}'' , l_{η}'' .

Theorem 1.9 If $\lambda > |T|$, $cf \lambda = \omega$, M^* is a saturated model of cardinality λ and if G is a subgroup of $Aut(M^*)$ such that for no $A \subseteq M^*$ with $|A| < \lambda$ is $Aut_A(M^*) \subseteq G$ then $[Aut(M^*) : G] = \lambda^{\omega}$.

PROOF Suppose not. Let $\{\kappa_i \mid i < \omega\}$ be an increasing sequence of cardinals each greater than |T| with $\sup = \lambda$. Let $Tr = \{\eta \in {}^{<\omega}\lambda \mid \eta(i) < \kappa_i\}$. Let $M^* = \bigcup_{i < \omega} B_i$ with $|B_i| \le \kappa_i$. By induction on $n < \omega$ for every $\eta \in Tr \upharpoonright level n$ we define models $N_n \subset M^*$ and $h_n \in Aut_{N_n}(M^*) - G$ such that $B_n \subseteq N_n$ and $|N_n| \le \kappa_n$, and automorphisms $g_{\eta}, m_{\eta}, l_{\eta}$ of N_n such that if $\rho \neq \nu$ then $l_{\rho} \neq l_{\nu}$ and

$$g_{\rho}m_{\rho}(m_{\nu})^{-1}(g_{\rho})^{-1} = l_{\rho}(l_{\nu})^{-1}h_{\gamma[\rho,\nu]}^{\rho(\gamma[\rho,\nu]) < \nu(\gamma[\rho,\nu])}$$

Suppose we have defined the $g_{\eta}, m_{\eta}, l_{\eta}$ for $height(\eta) \leq m$, and N_j for $j \leq m$. If n = m + 1, for each $i < \kappa_n$ we define models $N_{n,i}$ such that

 $B_n \subseteq N_{n,i}, \ N_m \subseteq N_{n,i}, \ \langle N_{n,i} \mid i < \kappa_n \rangle$ is increasing continuous, and for some $\eta_i \in Tr \upharpoonright level n, \ g_{\eta_i} \in Aut(N_{n,i})$ such that for each $\eta \in Tr \upharpoonright level n, \ \eta = \eta_i$ cofinally many times in κ_n , and for every $\nu \in Tr \upharpoonright level n, \ m_{\nu}^i \neq l_{\nu}^i \in Aut(N_{n,i})$ such that

$$g_{\eta_i} m_{\eta_i}^i (m_{\nu}^i)^{-1} (g_{\eta_i})^{-1} = l_{\eta_i}^i (l_{\nu}^i)^{-1} h_{\gamma[\eta_i,\nu]}^{\eta_i(\gamma[\eta_i,\nu]) < \nu(\gamma[\eta_i,\nu])}$$

The g_{η_i} , m_{ν}^i , l_{ν}^i are easily defined by induction on $i < \kappa_n$ using lemma 1.8 so that if $i_1 < i_2$ then $m_{\nu}^{i_1} \subseteq m_{\nu}^{i_2}$, $l_{\nu}^{i_1} \subseteq l_{\nu}^{i_2}$, and if $\eta_{i_1} = \eta_{i_2}$ then $g_{\eta_{i_1}} \subseteq g_{\eta_{i_2}}$. Then if we let $g_{\eta} = \bigcup \{g_{\eta_i} \mid \eta_i = \eta\}$, $m_{\eta} = \bigcup_{i < \kappa_n} m_{\eta}^i$, $l_{\eta} = \bigcup_{i < \kappa_n} l_{\eta}^i$, $N_n = \bigcup_{i < \kappa_n} N_{n,i}$ and $h_n \in Aut_{N_n}(M^*) - G$ we have finished. Let Br be the set of branches of Tr of height ω . For $\rho \in Br$ let $g_{\rho} = \bigcup \{g_{\eta} \mid \eta < \rho\}$, $m_{\rho} = \bigcup \{m_{\eta} \mid \eta < \rho\}$, and $l_{\rho} = \bigcup \{l_{\eta} \mid \eta < \rho\}$. If $\rho \neq \nu$, $g_{\rho} \neq g_{\nu}$ since without loss of generality $\rho(\gamma[\rho, \nu]) < \nu(\gamma[\rho, \nu])$ and

$$g_{\rho}m_{\rho}(m_{\nu})^{-1}(g_{\rho})^{-1} = l_{\rho}(l_{\nu})^{-1}h_{\gamma[\rho,\nu]}^{\rho(\gamma[\rho,\nu]) < \nu(\gamma[\rho,\nu])}$$

and

$$g_{\nu}m_{\nu}(m_{\rho})^{-1}(g_{\nu})^{-1} = l_{\nu}(l_{\rho})^{-1}$$

implies

$$g_{\rho}(g_{\nu})^{-1}l_{\rho}(l_{\nu})^{-1}g_{\nu}(g_{\rho})^{-1} = l_{\rho}(l_{\nu})^{-1}h_{\gamma[\rho,\nu]}^{\rho(\gamma[\rho,\nu]) < \nu(\gamma[\rho,\nu])}$$

So if $g_{\rho}=g_{\nu}$ this would imply $h_{\gamma[\rho,\nu]}^{\rho(\gamma[\rho,\nu])}<\nu(\gamma[\rho,\nu])=id_{M^*}$ a contradiction. If

$$[Aut(M^*):G]<\lambda^{\omega}$$

then for some $\rho, \nu \in Br$ we must have $l_{\rho}(l_{\nu})^{-1} \in G$ and $g_{\rho}(g_{\nu})^{-1} \in G$, but then we get a contradiction as $g_{\rho}(g_{\nu})^{-1}l_{\rho}(l_{\nu})^{-1}g_{\nu}(g_{\rho})^{-1} \in G$ and $l_{\rho}(l_{\nu})^{-1} \in G$, but $h_{\gamma[\rho,\nu]}^{\rho(\gamma[\rho,\nu])} \neq G$.

Corollary 1.10 If $\lambda > |T|$, $cf \lambda = \omega$ and M^* is a saturated model of cardinality λ then M^* has the small index property.

So we will assume in the remainder of the paper that in addition to T being stable, $cf \lambda \geq \kappa_r(T) + \aleph_1$ and T, M^* , and λ are constant.

2 Constructing M^* as a chain from K_{δ}

Definition 2.1 Let $\delta < \lambda^+$, $cf \delta \geq \kappa_r(T)$.

 $K_{\delta}^{s} = \left\{ \bar{N} \mid \bar{N} = \langle N_{i} \mid i \leq \delta \rangle, \ N_{i} \ is increasing \ continuous, \ |N_{i}| = \lambda, \right\}$

 N_0 is saturated, $N_\delta = M^*$, and $(N_{i+1}, c)_{c \in N_i}$ is saturated

For $\mu > \aleph_0$,

$$K^{\mu}_{\delta} = \left\{ \bar{A} \mid \bar{A} = \langle A_i \mid i \leq \delta \rangle, \right.$$

 A_i is increasing continuous, $|A_{\delta}| < \mu$, $acl A_i = A_i$

If $\bar{A} \in K_{\delta}^{\lambda^+}$, then $f \in Aut(\bar{A})$ if f is an elementary permutation of A_{δ} and if $i \leq \delta$, then $f \upharpoonright A_i$ is a permutation of A_i .

 $\begin{array}{lll} \textbf{Definition 2.2} \ \ Let \ \ \bar{A}^0, \bar{A}^1 \in K^\mu_\delta. & Then \ \ \bar{A}^0 \leq \bar{A}^1 \ \ iff \ \ \bigwedge_{i \leq \delta} A^0_i \subseteq A^1_i \ \ and \\ i < j \leq \delta \ \ \Rightarrow \ \ A^1_i \ \bigcup_{A^0_i} \ A^0_j. \end{array}$

Lemma 2.3 1. (K^{μ}_{δ}, \leq) is a partial order

2. Let $\bar{A}^{\zeta} \in K^{\mu}_{\delta}$ for $\zeta < \zeta(*)$ and let $\xi < \zeta \Rightarrow \bar{A}^{\xi} \leq \bar{A}^{\zeta}$. If we let $A_i = \bigcup_{\zeta < \zeta(*)} A_i^{\zeta}$, and $\left| \bigcup_{\zeta < \zeta(*)} A_i^{\delta} \right| < \mu$, then

$$\bar{A} = \langle A_i \mid i \le \delta \rangle \in K_\delta^\mu$$

and for every $\zeta < \zeta(*), \ \bar{A}_{\zeta} \leq \bar{A}$.

3. If $\bar{A}^{\zeta} \leq \bar{A}^*$ for $\zeta < \zeta(*)$, and \bar{A} is as above, then $\bar{A} \leq \bar{A}^*$

PROOF

- 1. By the transitivity of nonforking.
- 2. By the finite character of forking.
- 3. By the finite character of forking.

Definition 2.4 Let $A \subseteq M$, with $|A| < \kappa_r(T)$ and let $p \in S(acl A)$. Then dim(p, M) = the minimal cardinality of an maximal independent set of realizations of p inside M. If M is $\kappa_r^{\epsilon}(T)$ -saturated (κ_r^{ϵ} -saturated means \aleph_{ϵ} -saturated if $\kappa_r(T) = \aleph_0$ and $\kappa_r(T)$ saturated otherwise) then by $[Sh\ c]$ III 3.9. dim(p, M) = the cardinality of any maximal independent set of realizations of p inside M.

Lemma 2.5 Let $|M| = \lambda$ and assume that M is $\kappa_r^{\epsilon}(T)$ -saturated. Then M is saturated if and only if for every $A \subseteq M$, with $|A| < \kappa_r(T)$ and $p \in S(acl A)$, $dim(p, M) = \lambda$.

PROOF See [Sh c] III 3.10.

Lemma 2.6 Let $\langle \bar{A}^{\alpha} \mid \alpha < \lambda \rangle$ be an increasing continuous sequence of elements of $K_{\delta}^{\lambda^+}$ such that $\forall \gamma < \delta$, $\forall A \subseteq \bigcup_{\alpha < \lambda} A_{\gamma}^{\alpha}$ if $|A| < \kappa_r(T)$ and $p \in S(acl A)$ then for λ many $\alpha < \lambda$,

1.
$$A_{\zeta}^{\alpha} = A_{\zeta}^{\alpha+1} \ \forall \zeta \leq \gamma$$

2. There exists $a \in A_{\gamma+1}^{\alpha+1}$ such that the type of $a/A_{\gamma+1}^{\alpha}$ is the stationarization of p

then

$$\langle N_{\gamma} \mid \gamma < \delta \rangle \in K_{\delta}^{s}$$

where $N_{\gamma} = \bigcup_{\alpha < \lambda} A_{\gamma}^{\alpha}$.

PROOF It is enough to show $\forall \gamma < \delta$ that $(N_{\gamma+1}, c)_{c \in N_{\gamma}}$ is saturated. For this by lemma 2.5 it is enough to show $\forall A \subseteq N_{\gamma+1}$ such that $|A| < \kappa_r(T)$ and for every type $p \in S(acl A \cup N_{\gamma})$,

$$dim(p, N_{\gamma+1}) = \lambda$$

By the assumption of the lemma, there exists $\{a_i \mid i < \lambda\}$ realizations of $p \upharpoonright acl\ A$ and $\langle A_{\gamma+1}^{\alpha_i} \mid i < \lambda \rangle$ such that for each $i < \lambda$, $a_i \in A_{\gamma+1}^{\alpha_i+1}$, $A_{\gamma}^{\alpha_i+1} = A_{\gamma}^{\alpha_i}$, and

$$a_i \bigcup_A A_{\gamma+1}^{\alpha_i}$$
 and $a_i A_{\gamma+1}^{\alpha_i} \bigcup_{A_{\gamma}^{\alpha_i}} N_{\gamma}$

which implies

$$a_i \bigcup_{A_{\gamma+1}^{\alpha_i}} N_{\gamma} \quad \text{and} \quad a_i \bigcup_{A} N_{\gamma}$$

Since $cf \ \lambda \geq \kappa_r(T)$ without loss of generality $A \subseteq A_{\gamma+1}^{\alpha_0}$. We must show the $\langle a_i \mid i < \lambda \rangle$ are independent over $N_{\gamma} \cup A$. By induction on $i < \lambda$, we show that

$$\langle a_j \mid j \leq i \rangle$$

are independent over $A \cup \{A_{\gamma}^{\alpha_j} \mid j \leq i\}$. This is enough as

$$\{a_j \mid j \le i\} \bigcup_{A \cup \{A_{\gamma}^{\alpha_j} \mid j \le i\}} N_{\gamma}$$

Since $\langle a_j \mid j < i \rangle$ are independent over $A \cup \{A_{\gamma}^{\alpha_i} \mid j < i\}$, and

$$\{a_j \mid j < i\} \bigcup_{A \cup \{A_{\gamma}^{\alpha_j} \mid j < i\}} A_{\gamma}^{\alpha_i}$$

 $\langle a_j \mid j < i \rangle$ are independent over $A \cup A_{\gamma}^{\alpha_i}$. Since $a_i \bigcup_{A \cup A_{\gamma}^{\alpha_i}} A_{\gamma+1}^{\alpha_i}$ we

have

$$a_i \bigcup_{A \cup A_{\gamma}^{\alpha_i}} \{a_j \mid j < i\}$$

Lemma 2.7 Let $\langle \bar{N}^{\alpha} \mid \alpha < \delta \rangle$ be an increasing continuous sequence of elements of $K_{\delta}^{\mu^+}$ such that $\bigcup_{\alpha < \delta} N_{\delta}^{\alpha} = M^*$ and for every $\gamma < \delta$, and $\alpha < \delta$,

$$(N_{\gamma+1}^{\alpha+1},c)_{c\in N_{\gamma+1}^{\alpha}\cup N_{\gamma}^{\alpha+1}}$$

and

$$(N_0^{\alpha+1}, c)_{c \in N_0^{\alpha}}$$

are saturated of cardinality λ . Then

$$\langle N_{\gamma} \mid \alpha < \delta \rangle \in K_{\delta}^{s}$$

where $N_{\gamma} = \bigcup_{\alpha < \delta} N_{\gamma}^{\alpha}$.

PROOF Similar to the proof of the previous lemma.

Lemma 2.8 Let $cf \delta \geq \kappa_r(T) + \aleph_1$. Let $\bar{M} \in K^s_{\delta}$. Let $A_{\delta} \subseteq M^*$ such that $|A_{\delta}| < \lambda$ and $A_{\delta} = \bigcup_{i < \delta} A_i$ where $\langle A_i \mid i < \delta \rangle$ is an increasing continuous chain. Suppose $\forall \beta < \delta$, and $\forall i < \delta$,

$$M_{\beta} \bigcup_{A_i \cap M_{\beta}} A_i$$

Let $a \subseteq M_{\beta^*}$ such that $|a| < \kappa_r(T)$. Then there exists a continuous increasing sequence $\langle A_i' \mid i < \delta \rangle$ and a set B such that $|B| < \kappa_r(T)$, $A_i \subset A_i'$, $a \subset \bigcup A_i' = A_\delta'$, $|A_\delta'| < \lambda$, for some non-limit $i^* < \delta$, $A_i' = A_i$ if $i < i^*$, and $A_i' = A_i \cup B$ if $i^* \le i$ and $\forall i, \beta < \delta$,

$$M_{\beta} \bigcup_{A'_{i} \cap M_{\beta}} A'_{i}$$

and $\forall i, \beta < \delta$,

$$M_{\beta} \cup (M_{\beta+1} \cap A_{\delta}) \bigcup_{M_{\beta} \cup (M_{\beta+1} \cap A_i)} A'_i \cap M_{\beta+1}$$

and

$$A_{\delta} \bigcup_{A_i} A'_i$$

PROOF First by induction on $n \in \omega$, we define $\langle B_n \mid n < \omega \rangle$ such that $B_0 = a$, $|B_n| < \kappa_r(T)$ and $\forall i < \delta, \forall \beta < \delta$,

$$B_n \bigcup_{(M_\beta \cap (A_i \cup B_{n+1})) \cup A_i} M_\beta \cup A_i$$

So suppose B_n has been defined. By induction on $m < \omega$ we define subsets C_1 and C_2 of δ such that $0 \in C_i$, $|C_i| \le \kappa_r(T)$ and such that if $(a_1,b_1),(a_2,b_1),(a_1,b_2),(a_2,b_2)$ are four neighboring points in $C_1 \times C_2$ with $a_1 < a_2$ and $b_1 < b_2$, then for all i,j such that $a_1 \le i < a_2$ and $b_1 \le j < b_2$

$$B_n \bigcup_{M_{a_1} \cup A_{b_1}} M_{a_1+i} \cup A_{b_1+j}$$

So it is enough to find $|B_{n+1}| < \kappa_r(T)$ such that for every $(a, b) \in C_1 \times C_2$,

$$B_n \bigcup_{(M_a \cap (A_b \cup B_{n+1})) \cup A_b} M_a \cup A_b$$

As $|C_1 \times C_2| < \kappa_r(T)$ this is possible. Let $B = \bigcup_{n \in \omega} B_n$. (If $\kappa_r(T) = \aleph_0$ then without loss of generality we can define the B_n such that for some $k < \omega$, $\bigcup_{n \in \omega} B_n = \bigcup_{n \in k} B_n$.) It is enough to prove the following statement.

There exists a non-limit $i^* < \delta$ such that if $A_i' = A_i$ for $i < i^*$, and $A_i' = A_i \cup B$ for $i \ge i^*$ then the conditions of the theorem hold. PROOF $\forall \beta < \delta, \ \forall i < \delta, \ \text{if} \ A_i' = A_i \cup B, \ \text{then since}$

$$B \bigcup_{(M_{\beta} \cap (A_i \cup B)) \cup A_i} M_{\beta} \cup A_i$$

we have

$$A_i' \bigcup_{A_i' \cap M_\beta} M_\beta$$

Let $i^{**} < \delta$ such that for all $i \ge i^{**}$,

$$A_\delta \bigcup_{A_i} A_i'$$

It is enough to find $i^{**} \leq i^* < \delta$ such that $\forall \beta < \delta$,

$$B \bigcup_{M_{\beta} \cup (M_{\beta+1} \cap A_{i^*})} M_{\beta} \cup (M_{\beta+1} \cap A_{\delta})$$

Let $\langle \beta_{\alpha} \mid \alpha \in \gamma \rangle$ where $\gamma < \kappa_r(T)$ be the set of all places such that

$$B \bigcup_{M_{\beta_{\alpha}-1} \cup (M_{\beta_{\alpha}} \cap A_{\delta})} M_{\beta_{\alpha}} \cup (M_{\beta_{\alpha}+1} \cap A_{\delta})$$

For each $\beta \in \langle \beta_{\alpha} \mid \alpha \in \gamma \rangle$ let i_{α} be such that

$$B \bigcup_{M_{\beta_{\alpha}} \cup (M_{\beta_{\alpha}+1} \cap A_{i_{\alpha}})} M_{\beta-1} \cup (M_{\beta_{\alpha}+1} \cap A_{\delta})$$

Let i_{γ} be such that

$$B \bigcup_{M_0 \cup (M_1 \cap A_{i_\gamma})} M_0 \cup (M_1 \cap A_\delta)$$

Let $i^* = \sup\{i_{\alpha} \mid \alpha \in \gamma + 1\} + 1 + i^{**}$. As $|B| < \kappa_r(T)$ and $cf \delta \ge \kappa_r(T)$, $i^* < \delta$, so there is no problem.

Lemma 2.9 Let $\bar{M} \in K_{\delta}^s$. Let $A \subseteq M^*$ such that $|A| < \lambda$ and $A = \bigcup_{i < \delta} A_i$ where $\langle A_i \mid i < \delta \rangle$ is increasing continuous, each A_i is algebraically closed and $\forall i < \delta, \ \forall \beta < \delta$,

$$M_{\beta} \bigcup_{M_{\beta} \cap A_i} A_i$$

Let i^* be a successor $< \delta$, $\beta^* < \delta$, β^* a successor, and let $p \in S(A_{i^*} \cap M_{\beta^*})$. (Or even $a < \lambda$ type over $A_i \cap M_{\beta^*}$.) Let $p' \in S((A_{i^*} \cap M_{\beta^*}) \cup M_{\beta^*-1})$ such that p' does not fork over p. Then there exists an $a \in M_{\beta^*}$ such that a realizes p',

$$A \bigcup_{M_{\beta^*} \cap A_{i^*}} a$$

and if $A'_i = A_i \cup \{a\}$ for $i \geq i^*$ and $A'_i = A_i$ for $i < i^*$, then $\forall \beta < \delta$, $\forall i < \delta$,

$$M_{\beta} \bigcup_{M_{\beta} \cap A'_{i}} A'_{i}$$

PROOF Let $B \subseteq M_{\beta^*}$ such that $|B| < \lambda$, $A_i^* \cap M_{\beta^*} \subseteq B$, and

$$M_{\beta^*} \bigcup_{M_{\beta^*-1}B} A$$

Let $a \in M_{\beta^*}$ such that a realizes p and

$$a \bigcup_{A_i^* \cap M_{\beta^*}} B \cup M_{\beta^*-1}$$

Since

$$M_{\beta^*} \bigcup_{M_{\beta^*-1} \, \cup \, B} \ A$$

we have

$$a \bigcup_{M_{\beta^*-1} \cup B} A$$

which implies

$$a \bigcup_{A_i^* \, \cap \, M_{\beta^*}} \, M_{\beta^*-1} \cup A$$

Since for all $i \ge i^*$,

$$a \bigcup_{A_i} M_{\beta^*-1} \cup A$$

we have for all $\gamma < \beta^*$,

$$a \bigcup_{A_i} M_{\gamma} \cup A$$

which implies

$$a \cup A_i \bigcup_{A_i \cap M_\gamma} M_\gamma$$

Since $a \subseteq M_{\beta^*}$ we also have $\forall \gamma \geq \beta^*$,

$$a \cup A_i \bigcup_{(a \cup A_i) \cap M_\gamma} M_\gamma$$

Lemma 2.10 Let $\bar{M} \in K_{\delta}^s$. Let $A \subseteq M^*$ such that $|A| < \lambda$ and $A = \bigcup_{i < \delta} A_i$ where $\langle A_i \mid i < \delta \rangle$ is increasing continuous, each A_i is algebraically closed and $\forall i < \delta, \ \forall \beta < \delta$,

$$M_{\beta} \bigcup_{M_{\beta} \cap A_i} A_i$$

Let $i^* < \delta$, $\beta^* < \delta$, β^* , i^* successors, and let $p \in S(A_i \cap M_\beta)$. Let $p' \in S((A_i \cap M_{\beta^*}) \cup M_{\beta^*-1})$ such that p' does not fork over p. Let $f \in Aut(A)$ such that $\forall i < \delta$, $f[A_i] = A_i$. Then there exists $\{a_i \mid i \in \mathbb{Z}\} \subseteq M^*$ and an extension f' of f with domain $A \cup \{a_i \mid i \in \mathbb{Z}\}$ such that a_0 realizes p', $a_0 \in M_{\beta^*}$, and $\forall i \in \mathbb{Z}$ $\mho'(\partial_{\square}) = \partial_{\square + \square}$ and if $A'_i = A_i \cup \{a_i \mid i \in \mathbb{Z}\}$ for $i \geq i^*$ and $A'_i = A_i$ for $i < i^*$, then for all $\beta < \delta$,

$$M_{\beta} \bigcup_{M_{\beta} \cap A_{i}'} A_{i}'$$

$$A_\delta \bigcup_{A_i} A_i'$$

and

$$M_{\beta-1} \cup (M_{\beta} \cap A) \bigcup_{M_{\beta-1} \cup (M_{\beta} \cap A_i)} M_{\beta} \cap A_i'$$

PROOF We define $\{a_i \mid i \in -n, \dots, 0, \dots, n\}$ by induction on n such that if $A'_i = acl(A_i \cup \{a_i \mid i \in -n, \dots, 0, \dots, n\})$ if $i \geq i^*$ and $A'_i = A_i$ if $i < i^*$, then $\forall i < \delta, \ \forall \beta < \delta$,

$$M_{\beta} \bigcup_{M_{\beta} \cap A_i'} A_i'$$

$$A_{\delta} \bigcup_{A_i} A'_i$$

and

$$M_{\beta-1} \cup (M_{\beta} \cap A) \bigcup_{M_{\beta-1} \cup (M_{\beta} \cap A)} M_{\beta} \cap A'_{i}$$

and $f_n = f \cup \{(a_i, a_{i+1}) \mid -n \leq i < n\}$ is an elementary map. In addition we define a sequence of successor ordinals $\langle \beta_i \mid i \in \mathbb{Z} \rangle$ such that $\beta_i < \beta_j$ if |i| < |j|, and $\beta_n < \beta_{-n}$ such that

$$a_{n+1} \bigcup_{M_{\beta_{n+1}} \cap A_{i^*}} M_{\beta_{n+1}-1} \cup A \cup \{a_{-n}, \dots, a_0, \dots, a_n\}$$

and

$$a_{-(n+1)} \bigcup_{M_{\beta_{-(n+1)}} \cap A_{i^*}} M_{\beta_{-(n+1)}-1} \cup A \cup \{a_{-n}, \dots, a_0, \dots, a_n, a_{n+1}\}$$

Define a_0 as in the previous lemma. Suppose that $\{a_{-n}, \ldots, a_0, \ldots, a_n\}$ and β_i for $-n \leq i \leq n$ have been defined satisfying the conditions. Let C = acl C such that for some $B \subseteq C$ with $|B| < \kappa_r(T)$, acl B = C, $C \subseteq M_{\beta_{-n}} \cap A_{i^*}$ and

$$a_n \bigcup_C A \cup \{a_{-n}, \dots, a_0, \dots, a_{n-1}\}$$

Let $\beta_{n+1} > \beta_{-n}$ be a successor such that $f(C) \subseteq M_{\beta_{n+1}} \cap A_{i^*}$. Let $a_{n+1} \in M_{\beta_{n+1}}$ realize

$$f_n\Big(tp(a_n/A\cup\{a_{-n},\ldots,a_0,\ldots,a_{n-1}\})\Big)$$

and in addition

$$a_{n+1} \bigcup_{M_{\beta_{n+1}} \cap A_i^*} A \cup M_{\beta_{n+1}-1}$$

Similarly for $a_{-(n+1)}$. Now as in the proof of the previous lemma, all the conditions of the induction hold.

Lemma 2.11 Let δ be an ordinal less than λ^+ such that $cf \delta \geq \aleph_1 + \kappa_r(T)$. Let $f \in Aut_E(M^*)$ with $|E| < \lambda$. Let $\bar{M} \in K^s_{\delta}$. Then there exists $\bar{N}^1, \bar{N}^2 \in K^s_{\delta}$, $f_1 \in Aut_E(\bar{N}^1)$, $f_2 \in Aut_E(\bar{N}^2)$ with $E \subseteq N^1_0$, $E \subseteq N^2_0$ such that

- 1. $f = f_2 f_1$
- 2. $\forall i, \beta < \delta, \forall l \in \{0, 1\},$

$$M_etaigcup_{M_eta\cap N_i^l} N_i^l$$

3. $\forall i, \beta < \delta, \ \forall l \in \{0, 1\},$

$$(N_{i+1}^l \cap M_{\beta+1}, c)_{c \in (N_{i+1}^l \cap M_{\beta}) \cup (N_i^l \cap M_{\beta+1})}$$

is saturated of cardinality λ

4. $(N_{i+1}^l \cap M_0, c)_{c \in N_i^l \cap M_0}$ is saturated of cardinality λ

PROOF Without loss of generality $E = \emptyset$. By induction on $\alpha < \lambda$ we build increasing continuous sequences $\langle A_i^{\alpha} \mid i \leq \delta \rangle$, $\langle B_i^{\alpha} \mid i \leq \delta \rangle$, $\langle f_1^{\alpha} \mid \alpha < \lambda \rangle$, $\langle f_2^{\alpha} \mid \alpha < \lambda \rangle$ such that

1.
$$M^* = \bigcup_{\alpha < \lambda} A^{\alpha}_{\delta} = \bigcup_{\alpha < \lambda} B^{\alpha}_{\delta}$$

$$2. \quad N_i^1 = \bigcup_{\alpha < \lambda} A_i^\alpha \quad N_i^2 = \bigcup_{\alpha < \lambda} B_i^\alpha$$

- 3. $f_1^{\alpha} \in Aut(A_{\delta}^{\alpha})$ such that $f_1^{\alpha}[A_i^{\alpha}] = A_i^{\alpha}$
- 4. $f_2^{\alpha} \in Aut(B_{\delta}^{\alpha})$ such that $f_2^{\alpha}[B_i^{\alpha}] = B_i^{\alpha}$
- 5. $f[A_i^{\alpha}] = A_i^{\alpha}, \quad f[B_i^{\alpha}] = B_i^{\alpha}$
- 6. $|A_{\delta}^{\alpha}| < |\alpha|^+ + \kappa_r(T) + \aleph_1$
- 7. $|B_{\delta}^{\alpha}| < |\alpha|^{+} + \kappa_{r}(T) + \aleph_{1}$
- 8. $A^{\alpha}_{\delta} = B^{\alpha}_{\delta}$

9.
$$f_{\alpha}^2 f_{\alpha}^1 = f \upharpoonright A_{\delta}^{\alpha}$$

10.
$$\forall \beta < \delta, \ \forall i < \delta, \ \forall \alpha < \lambda,$$

$$M_{\beta} \bigcup_{M_{\beta} \cap A_i^{\alpha}} A_i^{\alpha}$$

11. $\forall \beta < \delta, \ \forall i < \delta, \ \forall \alpha < \lambda,$

$$M_{\beta} \bigcup_{M_{\beta} \cap B_i^{\alpha}} B_i^{\alpha}$$

12. $\forall i, \beta < \delta, \ \forall l \in \{0, 1\},\$

$$(N_{i+1}^l \cap M_{\beta+1}, c)_{c \in (N_{i+1}^l \cap M_{\beta}) \cup (N_i^l \cap M_{\beta+1})}$$

is saturated of cardinality λ

13. $(N_{i+1}^l \cap M_0, c)_{c \in N_i^l \cap M_0}$ is saturated of cardinality λ

14.
$$\forall i < \delta, \ \forall \alpha < \lambda,$$

$$A^\alpha_\delta \ \bigcup_{A^\alpha_i} \ A^{\alpha+1}_i$$

15. $\forall i < \delta, \ \forall \alpha < \lambda,$

$$B^{\alpha}_{\delta} \bigcup_{B^{\alpha}_{i}} B^{\alpha+1}_{i}$$

16. $\forall \beta < \delta, \ \forall i < \delta, \forall \alpha < \lambda,$

$$M_{\beta} \cup (M_{\beta+1} \cap A_{\delta}^{\alpha}) \bigcup_{M_{\beta} \cup (M_{\beta+1} \cap A_{i}^{\alpha})} M_{\beta+1} \cap A_{i}^{\alpha+1}$$

17. $\forall \beta < \delta, \ \forall i < \delta, \forall \alpha < \lambda,$

$$M_{\beta} \cup (M_{\beta+1} \cap B_{\delta}^{\alpha}) \bigcup_{M_{\beta} \cup (M_{\beta+1} \cap B_{i}^{\alpha})} M_{\beta+1} \cap B_{i}^{\alpha+1}$$

At limit stages we take unions. Let α be even. Let $M^* = \langle m_{\alpha} \mid \alpha < \lambda \rangle$. In the induction we define $\langle p_{\alpha} \mid \alpha$ is even and $\alpha < \lambda \rangle$ such that each $p_{\alpha} \in S((M_{\beta+1} \cap A_{i+1}^{\alpha}) \cup M_{\beta})$ for some $i, \beta < \delta$ and such that $\forall i < \delta, \ \forall \beta < \delta, \ \forall A \subseteq M^*$ such that $|A| < \kappa_r(T), \ \forall p \in S(acl A)$ there exists λ many $p_{\alpha} \in \langle p_{\alpha} \mid \alpha < \lambda \rangle$ such that $p_{\alpha} \in S((M_{\beta+1} \cap A_{i+1}^{\alpha}) \cup M_{\beta}), p_{\alpha}$ is a nonforking extension of p, p_{α} is realized in $A_{i+1}^{\alpha+1} \cap M_{\beta+1}$, and $\forall j \leq i, A_j^{\alpha} = A_j^{\alpha+1}$. By the proof of lemma 2.6 this insures 12. and 13. holds for l = 1 when we finish our construction. So let $i^*, \beta^* < \delta$ such that $p_{\alpha} \in S((M_{\beta^*+1} \cap A_{i+1^*}^{\alpha}) \cup M_{\beta^*})$. By lemma 2.10 we can find an extensions $(A_i^{\alpha})'$ of A_i^{α} with $(A_i^{\alpha})' = A_i^{\alpha}$ for $i \leq i^*$ and extension f_1' of f_1 such that $f_1'[(A_i^{\alpha})'] = (A_i^{\alpha})'$, p_{α} is realized in $M_{\beta^*+1} \cap (A_{i^*+1}^{\alpha})'$ and $\forall \beta < \delta, \ \forall i < \delta$,

$$M_{\beta-1} \cup (M_{\beta} \cap A_{\delta}^{\alpha}) \bigcup_{M_{\beta-1} \cup (M_{\beta} \cap A_{i}^{\alpha})} M_{\beta} \cap (A_{i}^{\alpha})'$$
$$A_{\delta}^{\alpha} \bigcup_{A_{i}^{\alpha}} (A_{i}^{\alpha})'$$

and

$$M_{\beta} \bigcup_{M_{\beta} \cap (A_i^{\alpha})'} (A_i^{\alpha})'$$

Let F_1' be an extension of f_1' to an automorphism of M^* . By iterating ω times the procedure in the proof of lemma 2.8 we can find $D \subset M^*$ such that $|D| < \kappa_r(T) + \omega_1$, if m is the least element of $\langle m_\alpha \mid \alpha < \lambda \rangle$ then $m \in D$, D is closed under $f, f^{-1}, F_1', (F_1')^{-1}$ and for some $i^{**}, i^{***} < \delta$ if $A_i^{\alpha+1} = (A_i^{\alpha})' \cup D$, for $i \geq i^{**}$ and $(A_i^{\alpha})'$ for $i < i^{**}$ and if $B_i^{\alpha+1} = B_i^{\alpha} \cup D$, for $i \geq i^{***}$ and B_i^{α} for $i < i^{***}$ then

$$M_{\beta} \cup (M_{\beta} \cap A_{\delta}^{\alpha}) \bigcup_{M_{\beta+1} \cap A_{i}^{\alpha}} M_{\beta+1} \cap A_{i}^{\alpha+1}$$

$$A_{\delta}^{\alpha} \bigcup_{A_{i}^{\alpha}} A_{i}^{\alpha+1}$$

$$M_{\beta} \cup (M_{\beta+1} \cap A_{i}^{\alpha})$$

and

$$M_{\beta} \bigcup_{M_{\beta} \cap A_{i}^{\alpha+1}} A_{i}^{\alpha+1}$$

and

$$M_{\beta} \cup (M_{\beta+1} \cap B_{\delta}^{\alpha}) \bigcup_{M_{\beta} \cup (M_{\beta+1} \cap B_{i}^{\alpha})} M_{\beta+1} \cap B_{i}^{\alpha+1}$$
$$B_{\delta}^{\alpha} \bigcup_{B_{i}^{\alpha}} B_{i}^{\alpha+1}$$

and

$$M_{\beta} \bigcup_{M_{\beta} \cap B_i^{\alpha+1}} B_i^{\alpha+1}$$

Similarly for α odd. Let $f_1^{\alpha+1}=F_1\upharpoonright A_i^{\alpha+1}$ and $f_2^{\alpha+1}=f(f_1^{\alpha+1})^{-1}$.

3 The proof of the small index property

Definition 3.1 Let δ be a limit ordinal and let $\bar{N} \in K_{\delta}^s$. Then $f \in Aut^*(\bar{N})$ if and only if $f \in Aut(M^*)$ and for some $n \in \omega$, $f[N_{\alpha}] = N_{\alpha}$ for every α such that $n \leq \alpha \leq \delta$. $Aut_A^*(\bar{N}) = \{f \in Aut^*(\bar{N}) \mid f \upharpoonright A = id_A\}$.

Definition 3.2 Let δ be a limit ordinal and let $\bar{N} \in K_{\delta}^s$. Let $B \subseteq N_0$ as in the above definition. If for every $f \in Aut(M^*)$

$$(f \in Aut^*(\bar{N}) \land f \upharpoonright B = id_B) \Rightarrow f \in G$$

then we define

$$E = \left\{ C \subseteq B \mid f \in Aut^*(\bar{N}) \land f \upharpoonright C = id_C \Rightarrow f \in G \right\}$$

Lemma 3.3 Let δ be a limit ordinal and let $\bar{N} \in K^s_{\delta}$. Let $B \subseteq N_0$ such that $(N_0, c)_{c \in B}$ is saturated. Let C = acl C, $C \subseteq B$, and g an elementary map with dom g = B, $g \upharpoonright C = id_C$, $(N_0, c)_{c \in B \cup g[B]}$ is saturated, and

$$B \bigcup_{C} g(B)$$

Then the following are equivalent.

- 1. $C \in E$
- 2. All extensions of g in $Aut^*(\bar{N})$ are in G

3. Some extension of g in $Aut^*(\bar{N})$ is in G

PROOF $1. \Rightarrow 2$. is trivial.

2. \Rightarrow 3. We just need to prove g has some extension in $Aut^*(\bar{N})$. But this follows easily by the saturation for every $j < \delta$ of $(N_{j+1}, c)_{c \in N_i}$.

3. \Rightarrow 1. Let $f \in Aut^*(\bar{N})$ such that $f \upharpoonright C = id_C$. Let $n \in \omega$ and $g^* \in Aut^*(\bar{N})$ such that $g^* \supseteq g$, $f, g^* \in Aut(\bar{N} \upharpoonright [n, \delta))$, and $g^* \in G$. Let $B' \subseteq N_{n+1}$ such that $B' \bigcup_C N_n$ and tp(B'/C) = tp(B/C). Let $g_1 \in C$

 $Aut(\bar{N} \upharpoonright [n+2,\delta))$ such that g_1 maps g(B) onto B' and $g_1 \upharpoonright B = id_B$. Since $g_1 \upharpoonright B = id_B$, $g_1 \in G$. Let $g_2 = g_1g^*(g_1)^{-1}$. Again $g_2 \in G$, $g_2 \upharpoonright C = id_C$, and $g_2[B] = B'$. As

$$B' \bigcup_{C} N_n$$

 $f \in Aut(\bar{N} \upharpoonright [n, \delta))$ and $f \upharpoonright C = id_C$, clearly

$$f(B') \bigcup_{C} N_n$$

Therefore there exists $g_3 \in Aut(\bar{N} \upharpoonright [n+2,\delta))$ such that $g_3 \upharpoonright B' = f \upharpoonright B'$ and $g_3 \upharpoonright N_n = id_{N_n}$, hence $g_3 \in G$. $(g_3)^{-1}f \upharpoonright B' = id_{B'}$ so $(g_2)^{-1}(g_3)^{-1}fg_2 = id_B$ hence $(g_2)^{-1}(g_3)^{-1}fg_2 \in G$. But this implies $f \in G$.

Theorem 3.4 Let $|T| < \lambda$. Let $\bar{M} \in K_{\delta}^s$. Let $G \subseteq Aut^*(M)$. If

$$f \in Aut_{M_0}^*(\bar{M}) \Rightarrow f \in G$$

but for no $C \subseteq M_0$ with $|C| < \lambda$ does

$$f \in Aut_C^*(\bar{M}) \Rightarrow f \in G$$

then

$$[Aut(M^*):G] > \lambda$$

PROOF Suppose not. Let $\langle h_i \mid i < \lambda \rangle$ be a list of the representatives of the left G cosets of $Aut(\bar{M} \upharpoonright [1, \delta))$ possibly with repetition. Let $\lambda = \bigcup_{\zeta < cf \lambda} \lambda_{\zeta}$ with $\langle \lambda_{\zeta} \mid \zeta < cf \lambda \rangle$ increasing continuous and $|T| \leq |\lambda_0| \leq |\lambda_{\zeta}| < \lambda$. Let

 $M_0 = \bigcup_{\zeta < cf \lambda} M_{\zeta}^0$ and $M_1 = \bigcup_{\zeta < cf \lambda} M_{\zeta}^1$ with each being a continuous chain such that $|M_{\zeta}^i| \leq |\lambda_{\zeta}|$.

Now we define by induction on $\zeta < cf \lambda$, $N_{0,\zeta}$, $N_{1,\zeta}$, f_{ζ} , B_{ζ} , and $h_{j,\zeta}$ for $j < \lambda_{\zeta}$ such that

- 1. f_{ζ} is an automorphism of $N_{1,\zeta}$
- 2. $\langle f_{\zeta} \mid \zeta < cf \lambda \rangle$ is increasing continuous
- 3. If $j < \lambda_{\zeta}$ and there is an $h \in Aut(\bar{M} \upharpoonright [1, \delta))$ such that
 - (a) h extends f_{ζ}
 - (b) $hG = h_iG$

then $h_{j,\zeta}$ satisfies a. and b.

- 4. B_{ζ} is a subset of $N_{1,\zeta}$ of cardinality $\leq |\lambda_{\zeta}|$
- 5. $M_{\zeta}^1 \subseteq B_{\zeta}$
- 6. $N_{0,\zeta} \subseteq B_{\zeta+1}$ and $B_{\zeta+1}$ is closed under $h_{j,\epsilon}$ and $h_{j,\epsilon}^{-1}$ for $j < \lambda_{\epsilon}$ and $\epsilon \leq \zeta$
- 7. $f_{\zeta+1}^{-1}(B_{\zeta+1}) \bigcup_{N_{0,\zeta}} N_{0,\zeta+1}$
- 8. $N_{1,\zeta} \bigcup_{N_{0,\zeta}} M_0$
- 9. $M_1 = \bigcup_{\zeta < cf \lambda} N_{1,\zeta}$ $M_0 = \bigcup_{\zeta < cf \lambda} N_{0,\zeta}$
- 10. $|N_{0,\zeta}| \leq |\lambda_{\zeta}|$
- 11. $(N_{1,\zeta+1},c)_{c\in N_{1,\zeta}}$ is saturted of cardinality λ
- 12. $(M_1, c)_{c \in M_0 \cup N_{1,\zeta}}$ is saturated of cardinality λ

For $\zeta=0$ let B_0 be empty, let $N_{0,0}$ be a submodel of M_0 of cardinality $|\lambda_0|$, let $N_{1,0}$ be a saturated submodel of M_1 of cardinality λ such that $N_{1,0} \bigcup_{N_{0,0}} M_0$ and let $f_{\zeta}=id_{N_{1,0}}$. At limit stages take

unions. If $\zeta = \epsilon + 1$, let B_{ζ} be as in 4,5,6. Let $N_{0,\zeta} \subseteq M_0$ such that

 $B_{\zeta} \bigcup_{N_{0,\zeta}} M_0, \ N_{0,\epsilon} \subseteq N_{0,\zeta}, \ M_{\zeta}^0 \subseteq N_{0,\zeta}, \ |N_{0,\zeta}| \le \lambda_{\zeta}. \ \text{Let} \ N_{1,\zeta} \subseteq M_1 \ \text{such}$

that $B_{\zeta} \subseteq N_{1,\zeta}, \ N_{1,\zeta} \bigcup_{N_{0,\zeta}} M_0, \ (N_{1,\zeta},c)_{c \in N_{1,\epsilon}}$ is saturated of cardinal-

ity λ , and $(M_1,c)_{c\in M_0\cup N_{1,\zeta}}$ is saturated of cardinality λ . Let f_{ζ} be an extension of $f_{\epsilon} \upharpoonright N_{1,\epsilon}$ to an automorphism of $N_{1,\zeta}$ so that

$$f_{\zeta}^{-1}(B_{\zeta}) \bigcup_{N_{1,\epsilon}} N_{0,\zeta}$$

Since

$$N_{0,\zeta} \bigcup_{N_{0,\epsilon}} N_{1,\epsilon}$$

we have

$$f_{\zeta}^{-1}(B_{\zeta}) \bigcup_{N_{0,\epsilon}} N_{0,\zeta}$$

Let f be an extension of $\bigcup_{\zeta < cf \lambda} f_{\zeta}$ to an element of $Aut(\bar{M} \upharpoonright [1, \delta))$. We have defined f so that

1. (By nonforking calculus) $\forall \zeta < cf \lambda, \ \forall j < \lambda_{\zeta}$,

$$f^{-1}h_{j,\zeta}(M_0) \bigcup_{N_{0,\zeta}} M_0$$

2.
$$f^{-1}h_{i,\zeta} \upharpoonright N_{0,\zeta} = id$$

By lemma 3.3 none of the $f^{-1}h_{j,\zeta}$ are in G, a contradiction as for some $j < \lambda$, $fG = h_jG$ so for some ζ , $j < \lambda_{\zeta}$, $h_jG = h_{j,\zeta}G = fG$.

Lemma 3.5 Let $|T| < \lambda$. Let $cf \delta \ge \kappa_r(T) + \aleph_1$. Suppose $[Aut(M^*) : G] \le \lambda$ and assume that for no $A \subseteq M^*$ with $|A| < \lambda$ is $Aut_A(M^*) \subseteq G$. Then for some $\bar{N} \in K^s_{\delta}$,

$$\bigwedge_{\alpha < \delta} Aut_{N_{\alpha}}^{*}(\bar{N}) \not\subseteq G$$

PROOF Suppose not. Let $\bar{M} \in K^s_{\delta}$. Then there exists an $\alpha < \delta$ such that $Aut^*_{M_{\alpha}}(\bar{M}) \subseteq G$. Without loss of generality $\alpha = 0$. By lemma 3.4 there exists $E \subseteq M_0$ such that $|E| < \lambda$ and $Aut_E(\bar{M}) \subseteq G$. Let $f \in Aut_E(M^*) \setminus G$. By lemma 2.11 we can find $\bar{N}^1, \bar{N}^2 \in K^s_{\delta}$ and automorphisms $f_1 \in Aut_E(\bar{N}^1)$ and $f_2 \in Aut_E(\bar{N}^2)$ such that

- 1. $E \subset N_0^1$, $E \subset N_0^2$
- 2. $f = f_2 f_1$
- 3. $f_1 \upharpoonright E = f_2 \upharpoonright E = id_E$
- 4. $\forall \alpha, \beta < \delta$,
 - (a) $N_{\alpha}^1 \bigcup_{N_{\alpha}^1 \cap M_{\beta}} M_{\beta}$
 - (b) $N_{\alpha}^2 \bigcup_{N_{\alpha}^2 \cap M_{\beta}} M_{\beta}$
 - (c) $(N_{\alpha+1}^1 \cap M_{\beta+1}, c)_{c \in (N_{\alpha+1}^1 \cap M_{\beta}) \cup (N_{\alpha}^1 \cap M_{\beta+1})}$ is saturated of cardinality λ
 - (d) $(N_{\alpha+1}^2 \cap M_{\beta+1}, c)_{c \in (N_{\alpha+1}^2 \cap M_{\beta}) \cup (N_{\alpha}^2 \cap M_{\beta+1})}$ is saturated of cardinality λ
 - (e) $(N_{\alpha+1}^1 \cap M_0)_{c \in N_{\alpha}^1 \cap M_0}$ is saturated of cardinality λ
 - (f) $(N_{\alpha+1}^2 \cap M_0)_{c \in N_{\alpha}^2 \cap M_0}$ is saturated of cardinality λ

Since $f \notin G$ we can assume without loss of generality that $f_1 \notin G$. Also, by the hypothesis of suppose not we can assume there is a $F \subseteq N_0^1$ such that $(N_0^1,c)_{c\in F}$ is saturated and $Aut_F(\bar{N}^1)\subseteq G$. By lemma 3.4 we can assume that $|F|<\lambda$ and without loss of generality $E\subseteq F$. Let for $\alpha<\delta$,

$$F_{\alpha} = F \cap M_{\alpha}$$

By the lemma 3.6 we can find a sequence $\langle F'_{\alpha} \mid \alpha < \delta \rangle$ such that for each α , $F_{\alpha} \subseteq F'_{\alpha}$ with $|F'_{\alpha}| < \lambda$ and for each $\beta < \alpha$ $F'_{\alpha} \cap M_{\beta} = F'_{\beta}$ and if $F' = \bigcup_{\alpha < \delta} F'_{\alpha}$ then

$$M_{\alpha} \cap N_0^1 \bigcup_{F_{\alpha}'} F'$$

We define by induction on $\alpha < \delta$ a map g_{α} an automorphism of $M_{\alpha} \cap N_0^1$ such that

- 1. $\forall \beta, \alpha < \delta, \beta < \alpha \Rightarrow q_{\beta} \subseteq q_{\alpha}$
- 2. If α is a limit then $g_{\alpha} = \bigcup_{\beta < \alpha} g_{\beta}$

3.
$$g_{\alpha}(F'_{\alpha}) \bigcup_{E} F'_{\alpha}$$

4.
$$g_{\alpha} \upharpoonright E = id_E$$

Let $\alpha = \beta + 1$ and suppose g_{β} has been defined. Let $X \subseteq M_{\alpha} \cap N_0^1$ such that $X \frown g_{\beta}(F'_{\beta}) \equiv F'_{\alpha} \frown F'_{\beta}$ by h_{β} an extension of $g_{\beta} \upharpoonright F'_{\beta}$ and

$$X \bigcup_{g_{\beta}(F'_{\beta})} F'_{\alpha} \cup (M_{\beta} \cap N_0^1)$$

Let $g'_{\alpha} = g_{\beta} \cup h_{\beta}$. Since $X \bigcup_{g_{\beta}(F'_{\beta})} g_{\beta}(M_{\beta} \cap N_0^1)$ and $F'_{\alpha} \bigcup_{F'_{\beta}} M_{\beta} \cap N_0^1$,

 g'_{α} is an elementary map. Now let g_{α} be an extension of g'_{α} to an automorphism of $M_{\alpha} \cap N_0^1$. Let $g' = \bigcup_{\alpha < \delta} g_{\alpha}$. g' is an automorphism of N_0^1 such that for every $\alpha < \delta$,

$$g'[M_{\alpha} \cap N_0^1] = [M_{\alpha} \cap N_0^1]$$

By the saturation and independence of the N^1_{α} , M_{β} we can find an extension g of g' such that $g \in Aut(\bar{N}_1)$ and $g \in Aut(\bar{M})$. This gives a contradiction since $g(F) \bigcup_E F$ and $g \in Aut(\bar{N}_1)$ implies $g \notin G$, but $g \in Aut(\bar{M})$ and $g \upharpoonright E = id_E$ implies $g \in G$.

Lemma 3.6 Let $\bar{M} = \langle M_{\beta} \mid \beta \leq \delta \rangle \in K_{\delta}^{s}$. Let $F \subseteq M^{*}$ with $|F| < \lambda$. Then there exits a set F' such that $|F'| < \lambda$, $F \subseteq F'$, and $\forall \beta < \delta$,

$$* M_{\beta} \bigcup_{F' \cap M_{\beta}} F'$$

PROOF Let $w \subseteq F$ be finite. There are less than $\kappa_r(T)$ many $\alpha < \delta$ such that

$$w \bigcup_{M_{\alpha}} M_{\alpha+1}$$

Let a_w be the set of such α . For each $\alpha \in a_w$ let $w_\alpha \subseteq M_\alpha$ such that $|w_\alpha| < \kappa_r(T)$, and

$$w \bigcup_{w_{\alpha}} M_{\alpha}$$

Let $w^1 = \bigcup_{\alpha \in a_w} w_\alpha$. Let $F^1 = \bigcup_{\substack{w \subset F \\ finite}} w^1$ and repeat this procedure ω

times with F^n relating to F^{n+1} as F is related to F^1 . Let $F' = \bigcup_{n \in \omega} F^n$. F' satisfies *.

Lemma 3.7 Let Tr be a tree of infinite height. Let $\alpha < \operatorname{height}(Tr)$ and let $\eta \in Tr \upharpoonright \operatorname{level}(\alpha + 1)$. Let $\langle M_{\beta} \mid \beta \leq \alpha \rangle$ be an increasing chain of models such that for all $\beta < \alpha$, $(M_{\beta+1}, c)_{c \in M_{\beta}}$ is saturated. Let $M_{\alpha} \subseteq N_0 \subseteq N_1 \subseteq N_2 \subseteq N_3$ with $(N_{i+1}, c)_{c \in N_i}$ saturated for $i \leq 2$. Suppose $\langle h_{\beta} \mid \beta \leq \alpha \rangle$ are such that

- 1. $h_{\beta} = id_{M_{\beta}}$
- 2. $h_{\beta}[N_i] = N_i$ for $i \leq 3$
- 3. $h_{\beta}[M_{\gamma}] = M_{\gamma}$ for $\gamma \leq \alpha$

For each $\nu \in Tr \upharpoonright level(\alpha+1)$ let m_{ν}, l_{ν} be automorphisms of N_0 . Suppose $g_{\eta} \in Aut(N_0)$ such that for all $\nu \in Tr \upharpoonright level(\alpha+1)$,

$$g_{\eta}m_{\eta}(m_{\nu})^{-1}(g_{\eta})^{-1} = l_{\eta}(l_{\nu})^{-1}h_{\gamma[\eta,\nu]}^{\eta(\gamma[\eta,\nu]) < \nu(\gamma[\eta,\nu])}$$

Let m_{ν}^+, l_{ν}^+ be extensions of m_{ν} and l_{ν} to automorphisms of N_1 for all $\nu \in Tr \upharpoonright level(\alpha+1)$. Then there exists a $g'_{\eta} \in Aut(N_3)$ extending g_{η} and for all $\nu \in Tr \upharpoonright level(\alpha+1)$ automorphisms of N_3 , m'_{ν} and l'_{ν} extending m_{ν}^+ and l_{ν}^+ respectively such that

$$g_{\eta}'m_{\eta}'(m_{\nu}')^{-1}(g_{\eta}')^{-1} = l_{\eta}'(l_{\nu}')^{-1}h_{\gamma[\eta,\nu]}^{\eta(\gamma[\eta,\nu])\,<\,\nu(\gamma[\eta,\nu])}$$

PROOF Similar to the proof of lemma 1.8.

Theorem 3.8 Let $|T| < \lambda$. Let M^* be a saturated model of cardinality λ , and let $G \subseteq Aut(M^*)$. Suppose that for no $A \subseteq M$ with $|A| < \lambda$ is $Aut_A(M^*) \subseteq G$. Suppose Tr is a tree of height κ , where κ is a regular cardinal $\geq \kappa_r(T) + \aleph_1$ such that each level of Tr is of size at most λ , but Tr having more than λ branches. Then

$$[Aut(M^*):G] > \lambda$$

PROOF Suppose not. Then by lemma 3.5 there is a $\bar{N} \in K^s_{\lambda \times \kappa}$, such that

$$\bigwedge_{\alpha < \lambda \times \kappa} Aut_{N_{\alpha}}^*(\bar{N}) \not\subseteq G$$

By thinning \bar{N} if necessary we can assume for each $\alpha < \kappa$ there exists an automorphism $h_{\alpha} \in Aut_{N_{\lambda \times \alpha}}(\bar{N})$ such that $h_{\alpha} \notin G$. By induction on $\alpha < \kappa$ for every $\eta \in Tr \upharpoonright level \alpha$ we define automorphisms $g_{\eta}, m_{\eta}, l_{\eta}$ of $N_{\lambda \times \alpha}$ such that if $\rho \neq \nu$ then $l_{\rho} \neq l_{\nu}$ and

$$g_{\rho}m_{\rho}(m_{\nu})^{-1}(g_{\rho})^{-1} = l_{\rho}(l_{\nu})^{-1}h_{\gamma[\rho,\nu]}^{\rho(\gamma[\rho,\nu]) < \nu(\gamma[\rho,\nu])}$$

At limit steps we take unions. If $\alpha = \beta + 1$, for each $i < \lambda$ we define for some $\eta_i \in Tr \upharpoonright level \alpha$, $g_{\eta_i} \in Aut(N_{\lambda \times \beta + 3i})$ such that for each $\eta \in Tr \upharpoonright level \alpha$, $\eta = \eta_i$ cofinally many times in λ , and for every $\nu \in Tr \upharpoonright level \alpha$, $m_{\nu}^i \neq l_{\nu}^i \in Aut(N_{\lambda \times \beta + 3i})$ such that

$$g_{\eta_i} m_{\eta_i}^i (m_{\nu}^i)^{-1} (g_{\eta_i})^{-1} = l_{\eta_i}^i (l_{\nu}^i)^{-1} h_{\gamma[\eta_i,\nu]}^{\eta_i(\gamma[\eta_i,\nu]) < \nu(\gamma[\eta_i,\nu])}$$

The $g_{\eta_i}, \ m_{\nu}^i, \ l_{\nu}^i$ are easily defined by induction on $i < \lambda$ using lemma 3.7. Then if we let $g_{\eta} = \bigcup \{g_{\eta_i} \mid \eta_i = \eta\}, \ m_{\eta} = \bigcup_{i < \lambda} m_{\eta}^i$ and $l_{\eta} = \bigcup_{i < \lambda} l_{\eta}^i$ we have finished. Let Br the set of branches of Tr of height κ . For $\rho \in Br$ let $g_{\rho} = \bigcup \{g_{\eta} \mid \eta < \rho\}, \ m_{\rho} = \bigcup \{m_{\eta} \mid \eta < \rho\}, \ \text{and} \ l_{\rho} = \bigcup \{l_{\eta} \mid \eta < \rho\}.$ If $\rho \neq \nu, \ g_{\rho} \neq g_{\nu}$ since without loss of generality $\rho(\gamma[\rho, \nu]) < \nu(\gamma[\rho, \nu])$ and

$$g_{\rho}m_{\rho}(m_{\nu})^{-1}(g_{\rho})^{-1} = l_{\rho}(l_{\nu})^{-1}h_{\gamma[\rho,\nu]}^{\rho(\gamma[\rho,\nu]) < \nu(\gamma[\rho,\nu])}$$

and

$$g_{\nu}m_{\nu}(m_{\rho})^{-1}(g_{\nu})^{-1} = l_{\nu}(l_{\rho})^{-1}$$

implies

$$g_{\rho}(g_{\nu})^{-1}l_{\rho}(l_{\nu})^{-1}g_{\nu}(g_{\rho})^{-1} = l_{\rho}(l_{\nu})^{-1}h_{\gamma[\rho,\nu]}^{\rho(\gamma[\rho,\nu]) < \nu(\gamma[\rho,\nu])}$$

So if $g_{\rho}=g_{\nu}$ this would imply $h_{\gamma[\rho,\nu]}^{\rho(\gamma[\rho,\nu])}<\nu(\gamma[\rho,\nu])=id_{M^*}$ a contradiction. If

$$[Aut(M^*):G] \leq \lambda$$

then for some $\rho, \nu \in Br$ we must have $l_{\rho}(l_{\nu})^{-1} \in G$ and $g_{\rho}(g_{\nu})^{-1} \in G$, but then we get a contradiction as $g_{\rho}(g_{\nu})^{-1}l_{\rho}(l_{\nu})^{-1}g_{\nu}(g_{\rho})^{-1} \in G$ and $l_{\rho}(l_{\nu})^{-1} \in G$, but $h_{\gamma[\rho,\nu]}^{\rho(\gamma[\rho,\nu])} \neq G$.

Corollary 3.9 Let $G \subseteq Aut(M^*)$. Suppose that for no $A \subseteq M$ with $|A| < \lambda$ is $Aut_A(M^*) \subseteq G$. Suppose $|T| < \lambda$ and M^* does not have the small index property. Then

- 1. There is no tree of height an uncountable regular cardinal κ with at most λ nodes, but more than λ branches.
- 2. For some strong limit cardinal μ , $cf \mu = \aleph_0$ and $\mu < \lambda < 2^{\mu}$.
- 3. T is superstable.

PROOF

- 1. By the previous theorem
- 2. By 1. and [Sh 430, 6.3]
- 3. If T is stable in λ , then $\lambda = \lambda^{<\kappa_r(T)}$, so if $\kappa_r(T) > \aleph_0$ we can let κ from the previous theorem be the least κ such that $\lambda < \lambda^{\kappa}$.

REFERENCES

- 1. [L] D. Lascar The group of automorphisms of a relational saturated structure, (to appear)
- 2. [L Sh] D. Lascar and Saharon Shelah *Uncountable Saturated Structures* have the small index property, (to appear)
- 3. [Sh 430] S. Shelah, More cardinal arithmetic, (to appear)
- 4. [Sh c] S. Shelah, Classification theory and the number of isomorphic models, revised, North Holland Publ. Co., Studies in Logic and the foundations of Math, vol 92, 1990.
- 5. [ShT] S. Shelah and S. Thomas, Subgroups of small index in infinite symmetric groups II, J Symbolic Logic 54 (1989) 1, 95-99