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§0 Introduction

Homogeneous objects are often defined in terms of their automorphism groups. Rado’s

graph Γ, also known as the countable random graph, has the property that for any iso-

morphism f between two finite induced subgraphs of Γ there is an automorphism of Γ

extending f . This property is the homogeneity of Rado’s graph; and any graph whose

automorphism group satisfied this condition is called homogeneous.

The automorphism group of Rado’s graph was studied by Truss in [T2], and shown

to be simple. Truss studied also the group AAut(Γ) of almost automorphisms of Rado’s

graph (see [T3] and also [MSST]). This is a highly transitive group extending Aut(Γ)

(where “highly transitive” stands for “n-transitive for all n”; the group Aut(Γ) is not

highly transitive).

In this paper we shall study homogeneous families of sets over infinite sets. Our

definition of homogeneity of a family of sets implies that its automorphism group satisfies,

among other conditions, that it is highly transitive. However, while all homogeneous

graphs over a countable set are classified (see [LW]), this is not the case with homogeneous

families over a countable set.

We shall show that there are 22ℵ0 isomorphism types of homogeneous families over a

countable set. This is done in Section 4. Fromthe proof we shall get 22ℵ0 many permutation

groups, each acting homogeneously on some family over ω, and each being isomorphic to

the free group on 2ℵ0 generators, but such that no two are conjugate in Sym(ω).

In Section 3 we prove the existence of a bi-universal homogeneous family over any

given infinite set. The definitions of bi-embedding and bi-universality are generalization of

definitions made by Truss in his study of universal permutation groups [T1]. A short survey

of results concerning the existence of universal objects can be found in the introduction to

[KS1]. Results concerning abelian groups are in [KS2], and results on stable unsuperstable

first order theories are in [KS3].

Homogeneous families were studied in [GGK] (where they were treated as bipartite

graphs). There it was shown that the number of isomorphism types of homogeneous

families over ω of size ℵ1 is independent of ZFC and may be 1 as well as 2ℵ1 in different

models of set theory.

Model theorists will recognize that uncountable homogeneous families over a countable

set are examples of two-cardinal models which are ω-homogeneous as well. Set theorists

may be interested in the following
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0.1 Problem: Is it consistent that 2ℵ0 is large and that in some uncountable λ < 2ℵ0

there is a maximal homogeneous family (with respect to inclusion)?

We wish to remark finally that the existence of 22ℵ0 isomorphism types of homogeneous

families over ω follows from a general theorem about non-standard logics [Sh-c, VIII,§1] (for

more details see also [Sh 266]). The virtue of the proof here (besides being elementary) is

its explicitness and the information it gives about the embeddability of an arbitrary family

in a homogeneous one.

NOTATION We denote disjoint unions by ∪̇ and
.⋃
. A natural number n is the set

{0, 1, . . . n− 1} of all smaller natural numbers.

§1 Getting started

Let F ⊆ P(A) be a family of subsets of a given infinite set A. An automorphism of F is a

permutation σ ∈ Sym(A) which satisfies that X ∈ F ⇔ σ[X] ∈ F for every X ⊆ A. (By

σ[X] we denote {σ(x) : x ∈ X} for X ⊆ A.) The group Aut(F) ⊆ Sym(A) is the group of

all automorphisms of F .

One way of defining when a family F ⊆ P(A) is homogeneous is to demand that the

bipartite graph 〈A,F ,∈〉 is homogeneous, namely that every finite partial automorphism

of this graph which respects the sides extends to a total automorphism. We shall write a

more complicated (though equivalent) definition. This will be needed in what follows.

1.1 Definition: Suppose F ⊆ P(A) is a given family of subsets of a set A. A demand

on F is a pair d = (hd, fd) such that hd is a finite 1-1 function from A to A, fd is a finite

1-1 function from F to F and x ∈ X ⇔ hd(x) ∈ fd(X) for every x ∈ domhd, X ∈ domfd.

We denote by D = D(A,F) the set of all demands on F . Let FG(D) be the free group

over the set D(A,F). We say that an automorphism g ∈ Aut(F) satisfies a demand d

if g(x) = hd(x) for x ∈ domhd and g[X] = fd(X) for X ∈ domfd. We call a partial

homomorphism ϕ : FG(D) → Aut(F) a satisfying homomorphism if ϕ(d) satisfies d for

d ∈ domϕ. (By “partial” we mean that ϕ need not be defined on all generators of FG(D).)

1.2 Definition: A family F is homogeneous if and only if every d ∈ D is satisfiable if

and only if there is a (total) satisfying homomorphism ϕ : FG(D) → Aut(F). A group

G ⊆ AutF acts homogeneously on F if and only if G contains the image of a total satisfying

homomorphism, or, equivalently if and only if every demand is satisfied by some element

in G.

When ϕ is a homomorphism as above, we say that ϕ testifies the homogeneity of F .
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When the set A is clear from the context, we write D(F) instead of D(A,F).

1.3 Examples:

(1) The family F = {{x} : x ∈ A} of all singletons is homogeneous. The group Aut(F) is

the group Sym(A) of all symmetries of A.

(2) The family Fin(A) of all finite subsets ofA is not homogeneous, although Aut(Fin(A)) =

Sym(A), because a demand d = (∅, {(X,Y )}) cannot be satisfied when X and Y are

finite sets of different cardinalities.

(3) A countable family of random subsets of ω is homogeneous in probability 1. The

membership of a point in a random set is determined by flipping a coin.

In [GGK] the following was proved:

1.4 Theorem: Every homogeneous family of subsets of an infinite set A satisfies exactly

one of the conditions below:

(1) F = {∅}

(2) F = {A}

(3) F is the family of all singletons of A

(4) F is the family of all co-singletons of A

(5) F is an independent family, namely for every finite function τ : F → {+,−}, the set

Bτ =
⋂
X∈τ−1(+)X ∩

⋂
Y ∈τ−1(−)A \ Y is infinite, and F is dually independent, namely

for every function τ : A → {+,−} there are infinitely many members of F containing

τ−1(+) and avoiding τ−1(−). Equivalently, the first order theory of 〈A,F ,∈〉 is the first

order theory of the random countable bipartite graph.
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§2 Direct limits and homogeneity

In this section we exhibit a method of constructing homogeneous families as direct

limits. This method will be used in the following sections.

Homogeneity is not, in general, preserved under usual direct limits of families. For

example, an increasing union of homogeneous families need not be homogeneous itself. We

therefore consider here a stronger relation of embeddability, called here “multi-embeddability”,

which, roughly speaking, preserves the satisfaction of previously satisfied demands. Direct

limits of this relation can be made homogeneous, as we shall presently see.

2.1 Definition: Let Ti = 〈Ai,Fi, Di, Gi, ϕi〉, (i = 0, 1), be respectively a set Ai, a

family of subsets Fi ⊆ P(Ai), the collection of demands Di = D(Fi), an automorphism

group Gi ⊆ Aut(Fi) and a partial satisfying homomorphism ϕi : FG(Di) → Gi. Let

T̄i = Ai ∪ Fi ∪Di ∪ Gi. We call a function Φ : T̄0 → T̄1 a multi-embedding of T0 into T1

(and write Φ : T0 → T1) if:

(1) Φ�A0 is a 1-1 function into A1

(2) Φ�F0 is a 1-1 function into F1

(3) Φ�D0 is a 1-1 function into D1

(4) Φ�G0 is a group monomorphism into G1

And the following rules hold for x ∈ A0, X ∈ F0, d ∈ D0 and g ∈ G0:

(a) x ∈ X ⇔ Φ(x) ∈ Φ(X)

(b) Φ[domhd] = domhΦ(d), Φ[domfd] = domfΦ(d), Φ((hd(x)) = hΦ(d)(Φ(x)) and Φ((fd(X)) =

fΦ(d)(Φ(X)

(c) Φ(g(x)) = Φ(g)(Φ(x)) and Φ(g[X]) = Φ(g)[Φ(X)]

(d) Φ(d) ∈ domϕ1 and Φ(ϕ0(d)) = ϕ1(Φ(d)) for every d ∈ domϕ0

We say that a multi-embedding Φ is successful if in addition to the conditions above

also the following holds

(e) Φ(d) ∈ domϕ1 for every d ∈ D0.

2.2 Definition: Suppose I is a directed set and Ti = 〈Ai,Fi, Di, Gi, ϕi〉 is as in definition

2.1 above for i ∈ I. Suppose that Φji : Ti → Tj is a multi-embedding for i ≤ j, and

(i) Φii = id

(ii) ΦkjΦji = Φki for i ≤ j ≤ k.

Then we call T = 〈Ti : (i ∈ I); (Φji , ϕ
j
i )〉 a direct system of multi-embeddings. We call

T successful if in addition to (i) and (ii) the following condition holds:

(iii) for every i ∈ I there is j ≥ i such that Φji is successful.
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2.3 Theorem: Suppose 〈Ti : (i ∈ I); (Φji , ϕ
j
i )〉 is a successful direct system of embeddings.

Let T ∗ = 〈A∗,F∗, D∗, G∗, ϕ∗〉 := lim
−→I

Ti. Then F∗ is homogeneous, with ϕ∗ testifying

homogeneity, and the canonical mapping Φi : Ti → T ∗ is a successful multi-embedding.

Proof: : We first recall the definition of a direct limit.

An equivalence relation ∼ is defined over
.⋃
i∈I T̄i as follows: a∼b⇔ (∃i ≤ j)(Φji (a) =

b ∨ Φji (b) = a). Conditions (i)–(ii) above imply that ∼ is indeed an equivalence relation.

We define the canonical map Φi(a) = [a]∼. Next we set A∗ =
.⋃
i∈IAi/∼ and observe the

following:

2.4 Fact: For every infinite cardinal κ, if I and every Ai are of cardinality ≤ κ, then

|A∗| ≤ κ.

We let F∗ =
.⋃
i∈IFi/∼, G∗ =

.⋃
i∈IGi/∼ and D∗ =

.⋃
i∈IDi/∼.

For x∗, y∗ ∈ A∗, X∗ ∈ F∗, d∗ ∈ D∗ and g∗ ∈ G∗ we note:

(1) x∗ ∈ X∗ iff there is some i ∈ I and x ∈ Ai, X ∈ Fi such that x ∈ X and Φi(x) = x∗,

Φi(X) = X∗.

(2) g∗(x∗) = y∗ iff g(x) = y for some i ∈ I such that x ∈ Ai, g ∈ Gi and Φi(x) = x∗,

Φi(y) = y∗ and Φi(g) = g∗.

(3) ϕ∗(d∗) = g∗ iff there is i ∈ I such that ϕi(d) = g and Φi(d) = d∗,Φi(g) = g∗.

We leave verification of this to the reader and that the following hold.

(a) F∗ ⊆ P(A∗)

(b) G∗ ⊆ Aut(F∗)
(c) D∗ = D(F∗)
(d) ϕ∗ : D∗ → G∗ is a (total) satisfying homomorphism.

(e) ΦjΦ
j
i = Φi for i ≤ j in I

We conclude that Φi : Ti → T ∗ is a successful embedding for every i ∈ I.

Homogeneity of F∗ follows readily from (c) and (d) above. ·̂ ·i2.3
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§3 Bi-universal homogeneous families

The result proved in this section is the existence of a bi-universal member in the class of

homogeneous families over a given infinite set.

Let us make the following definition:

3.1 Definition: We call an embedding of structures Φ : M → N a bi-embedding if

for every automorphism g ∈ Aut(M) there is an automorphism g′ ∈ Aut(N) such that

Φ(g(x)) = g′(Φ(x)) for all x ∈M .

We observe that if f : M → N is a bi-embedding then f induces an embedding of

Aut(M) into the group of all restrictions to f [M ] of elements in the set-wise stabilizer of

f [M ] in Aut(N); that is, an embedding as permutation groups (see [T1]). We can think

of a bi-embedding as a simultaneous embedding of both a structure and its automorphism

group.

3.2 Definition: A structure M∗ in a class of structures K is bi-universal if for every

structure M ∈ K there is a bi-embedding Φ : M →M∗.

3.3 Remarks:

(1) The definition of embedding of permutation grpups (see [T1]) is obtained by from this

one by adding the condition that Φ is onto.

(2) Example 1.3 (1) above indicates that if a bi-universal family F∗ over a set A∗ exists,

then for some A ⊆ A∗ of cardinality |A∗| the restrictions of automorphisms of F∗ to

A include the full symmetric group Sym(A).

3.4 Lemma: For every infinite T = 〈A,F , D,G, ϕ〉 there is a set B such that |A| = |B|
and a successful multi-embedding

Φ : T → 〈A∪̇B,P(A∪̇B), D(A∪̇B,P(A∪̇B)),Sym(A∪̇B), ϕ′〉

Proof: We specify the points of B. A point in B is a finite function from the power set

of a finite subset of A to {0, 1}, namely f ∈ B ⇔ f : P(Df ) → {0, 1} and Df ⊆ A is

finite. We let Φ�A = id. For X ∈ F we define Φ(X) as follows: Φ(X) = X ∪ {f ∈ B :

f(X∩Df ) = 1}. We let Φ(σ)�A = σ and let Φ(σ)(f) = g ⇔ σ[Df ] = Dg∧f(X) = g(σ[X])

for all X ⊆ Df . It is straightforward to verify that Φ�Sym(A) is a group monomorphism.

We verify condition (c) in the definition of successful embedding (definition 2.1 above).

Suppose X ⊆ A and σ ∈ Sym(A) are given.
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Φ(σ)[Φ(X)] =

σ[X]∪̇Φ(σ)[{g ∈ B : g(X ∩Dg) = 1}] =

σ[X]∪̇{Φ(σ)(g) : g ∈ B ∧ g(X ∩Dg) = 1} =

σ[X]∪̇{f ∈ B : f(σ[X] ∩Df ) = 1} =

Φ(σ[X])

The definition of Φ�D(P(A) is determined uniquely by condition (b) in 2.1 above. We

need to specify ϕ′ and prove that (d) holds. For this we notice that:

3.5 Claim: The family F = {Φ(X) : X ⊆ A} satisfies that for every finite function

τ : F → {+,−} the set Bτ =
⋂
X∈τ−1(+) Φ(X) ∩

⋂
Y ∈τ−1(−)(A∪̇B) \ Φ(Y ) has the same

cardinality as A∪̇B.

Proof: The proof of this is well known. ·̂ ·i3.5

3.6 Corollary: For every demand d on F there is a permutation σ ∈ Sym(A∪̇B) such

that σ(x) = hd(x) and Φ(σ[X]) = Φ[fd(X)] for every x ∈ domhd and X ∈ domfd.

Proof: For every τ : domfd → {+,−} it holds that |Bτ | = |A∪̇B| = |B′τ | where B′τ =⋂
X∈τ−1(+) Φ(fd(X))∩

⋂
X∈τ−1(−) Φ(A\fd(X)). (This means, informally, that every ”cell”

in the Venn diagram of domfΦ(d) and every ”cell” of the Venn diagram of ranfΦ(d) is of

cardinality |A∪̇B|). Therefore it is trivial to extend hd to a permutation that carries Bτ

onto B′τ for every τ . ·̂ ·i3.6

Now let us define ϕ′(Φ(d)) = Φ(ϕ(d)) for every d ∈ domϕ and for all d ∈ D \ domϕ

let us pick by claims 3.5 and 3.6 above a permutation ϕ′(Φ(d)) that extends Φ(d). ·̂ ·i3.4

3.7 Theorem: Suppose A0 is a given infinite set. There is a successful direct system of

embeddings T = 〈Tn : (n ∈ ω); (Φnm, ϕ
n
m)〉 such that:

(1) An is of cardinality |A0|
(2) Fn = P(An)

(3) Gn = Sym(An).

Proof: Let T0 = 〈A0,P(A0), D(F0),Sym(A0), ϕ0 : {e} → {idA0
}〉. Now use Lemma 3.4

inductively. ·̂ ·i3.7

3.8 Theorem: For every infinite set A∗ there is a homogeneous family F∗ ⊆ P(A∗),

and an infinite subset A ⊆ A∗ of cardinality |A∗| such that P(A) = {X ∩ A : X ∈ F∗}
and Sym(A) ⊆ {g�A : g ∈ Aut(F∗)}. Therefore any injection f : A∗ → A induces
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a bi-embedding of every family F ⊆ P(A∗) (not necessarily homogeneous) into F∗. In

particular, F∗ is bi-universal in the class of all homogeneous families over A∗.

Proof: By Theorem 3.7 there is a successful direct system of embeddings T = 〈Tn : (n ∈
ω); (Φnm, ϕ

n
m)〉 such that:

(1) |An| = |A∗|
(2) Fn = P(An)

(3) Gn = Sym(An).

By Theorem 2.3 and the side remark 2.4 it follows that the family F∗ obtained by

the direct limit is a homogeneous family of subsets of a set A∗∗ of size |A∗|, and we

may assume that A∗∗ = A∗. The canonical map Φ0 is a successful multi-embedding,

and therefore in particular a bi-embedding. Let A be the image of A0 under Φ0. As

F0 = P(A0) and G0 = Sym(A0), we conclude that P(A) = {X ∩ A : X ∈ F∗} and

Sym(A) ⊆ {g�A : g ∈ Aut(F∗)}. The Theorem is now obvious. ·̂ ·i3.8

§4 The number of isomorphism types of homogeneous families over ω

In this section we make a second use of the method of direct limits as introduced in Section

2 to determine the number of isomorphism types of homogeneous families over a countable

set. It was conjectured in [GGK] that this number is the maximal possible, namely 22ℵ0 .

An isomorphism between two families F0 ⊆ P(A0) and F1 ⊆ P(A1) is, of course, a 1-1

onto function f : A0 → A1 which satisfies X ∈ F0 ⇔ f [X] ∈ F1.

To obtain 22ℵ0 non isomorphic homogeneous families over a countable set, it is enough

to obtain 22ℵ0 different such families; for then dividing by isomorphism, the size of each

class is 2ℵ0 , and therefore there are 2ℵ0 classes (see below).

The technique used to achieve this is embedding a family F ⊆ P(A) in a homogeneous

family F ′ ⊆ P(A∗) for A∗ ⊇ A in such a way that {X ∩A : X ∈ F ′} = F . In other words,

we will “homogenize” a family F “without adding sets” to F . Thus, starting with distinct

F-s we obtain distinct homogeneous F ′-s.

4.1 Lemma: There is a pair of countable sets A0 ⊆ A∗ (in fact, for every pair A0 ⊆ A∗ of

countable sets satisfying A∗ \A0 infinite) such that for every family F ⊆ P(A0) satisfying

Fin(A0) ⊆ F there is a homogeneous family F ′ ⊆ P(A∗) satisfying {X∩A0 : X ∈ F ′} = F
This lemma determines the number of isomorphism types of homogeneous families

over a countable set:

8
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4.2 Corollary: There are 22ℵ0 isomorphism types of homogeneous families over a count-

able set.

Proof: There are 22ℵ0 different families {Fα : α < 22ℵ0 }, such that Fin(A0) ⊆ Fα ⊆
P(A0). For each Fα there is, by 4.1, a homogeneous family F ′α ⊆ P(A∗) that satisfies

{X ∩ A0 : X ∈ F ′α} = Fα. Therefore, α 6= β implies that F ′α 6= F ′β . Let us define an

equivalence relation over 22ℵ0 : α ∼ β ⇔ there is an isomorphism between F ′α and F ′β .

There are at most 2ℵ0 many members in an equivalence class [α]∼, as there are 2ℵ0 many

permutations of A∗, and therefore at most 2ℵ0 many different isomorphic images of F ′α.

As 2ℵ0 × 2ℵ0 = 2ℵ0 , while 22ℵ0 > 2ℵ0 , there must be 22ℵ0 many equivalence classes over

∼, and therefore 22ℵ0 many isomorphism types of homogeneous families over A∗. ·̂ ·i4.2

We prepare for the proof lemma 4.1. Before plunging into the formalism, let us state

the idea behind the proof. We use the set of demands over a family and the free group

associated with this set to construct a successful extention in which the automorphisms

act freely. Thus, we can control sets in the orbit of an “old” set so that their intersections

with the “old” set is either finite or “old”.

We need some notation: Let FG(D) be the free group over the set D = D(F) for

some family F . If F is countable, this group is also countable. We view FG(D) as the

collection of all reduced words in the alphabet C = D ∪ {d−1 : d ∈ D} (a word is reduced

if there is no occurrence of dd−1 or d−1d in it) and the group operation, denoted by ◦, is

juxtaposition and cancellation (so w1 ◦w2 is a reduced word, and its length may be strictly

smaller than lgw1 + lgw2). We let c range over the alphabet C, and let c−1 denote d−1

if c = d or d if c = d−1. We denote by e the unit of the free group, which is the empty

sequence 〈〉. For convenient discussion we also adopt the notation hc and f c, by which we

mean hd and fd if c = d and the respective inverses (hd)−1 and (fd)−1 otherwise. Now we

can define:

4.3 Definition: Suppose that T = 〈Ti : (i ∈ I); Φji 〉 is a successful direct system of

multi-embeddings. For every j ∈ I:

(1) A homomorphism ξj : FG(Di)→ Gj is defined by ξj(d) := ϕj(Φ(d)).

(2) We call a word w = c0 . . . ck ∈ FG(Dj) new if cl is not in the range of Φji for all l ≤ k
and all i < j. A word w ∈ FG(Dj) is old if it is in the range of Φji for some i < j.

(3) For a word w ∈ FG(Dj) and X ∈ Fi we define what fw(X) is. Let w = w0w1 . . . wl

where for each k ≤ l the word wk is either new or old. For a new word wk = c0k . . . c
l(k)
k

we denote by fwk the composition f c
l(k)

k . . . f c
0
k . If this composition is empty, we say

9
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that fwk is not defined. If wk is old, then ξj(w) ∈ Aut(Fj) and induces a 1-1 function

fwk : Fj → Fj . Let fw be the composition fwl . . . fw0 . If this composition is empty,

we say that fw is not defined.

(4) Analogously to the definition in (3), we define hw.

To prove lemma 4.1 we need an expansion of the technique of direct limits by some

more structure. This is needed to enable us to handle uncountably many demands by

adding just countably many points. We first define (a particular case of) inverse systems.

Then we form direct limits of inverse systems to obtain a pair of sets as required by the

lemma.

4.4 Definition: a sequence T = 〈Tm : m < ω〉, where Tm = 〈Am,Fm, Dm, Gm, ϕm〉, is

called an inverse system if:

(1) Fm ⊆ P(Am), D = D(Am,Fm), Gm ⊆ Aut(Fm) and ϕm : FG(Dm) → Gm is a

partial satisfying homomorphism.

(2) Am and Fm are countable

For m ≤ m′

(3) Am ⊆ Am′

(4) Fm ⊆ {X ∩Am : X ∈ Fm′}
(5) Gm ⊆ {g�Am : g ∈ Gm′ , g�Am ∈ Sym(Am)}

For a demand d ∈ Dm′ we define d�Am iff domhd∪ ranhd ⊆ Am and for every distinct

X,Y ∈ domfd ∪ ranfd the sets X ∩Am and Y ∩Am are distinct. When d�Am is defined,

hd�A
m

= hd and fd�A
m

is obtained from fd by replacing every X ∈ domfd ∪ ranfd by

X ∩ Am. Clearly, when d�Am is defined, it belongs to Dm, and every d ∈ Dm equals

d′�Am for some d′ ∈ Dm′ by (3) and (4).

If w = c0 . . . ck ∈ FG(Dm′) and ci�Am is defined for every i ≤ k, we define w�Am as

c0�Am . . . ck�Am (it is obvious what c�Am is). The restriction � is a partial homomorphism

from FG(Dm′) onto FG(Dm). The last condition is

(6) If d ∈ domϕm
′

and d�Am is defined, then d�Am ∈ domϕm and ϕm(d�Am) =

ϕm
′
(d)�Am (the operation of ϕm

′
(d) on Am depends only on d�Am when d�am is de-

fined).

4.5 Definition: Given an inverse system T = 〈Tm : m < ω〉 we define the inverse limit

lim
←−

T = T ∗ = 〈A∗,F∗, D∗, G∗, ϕ∗〉 as follows:

(a) A∗ =
⋃
mA

m.

For every x ∈ A∗ let m(x) be the least m such that x ∈ Am.
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(b) F∗ = {X ⊆ A∗ : (X ∩ Am ∈ Fm) for all but finitely many m}. For X ∈ F∗ we let

m(X) be the least such that X ∩Am ∈ Fm for every m ≥ m(X).

We call X ∈ F∗ bounded if X ⊆ Am for some m.

(c) G∗ = {g ∈ Sym(A∗) : (g�Am ∈ Gm) for all but finitely many m}. Let m(g) be the

least such that g�Am ∈ Gm for every m ≥ mg.

It is easy to verify that G∗ ⊆ Aut(F∗).

(d) D∗ = D(F∗)

It is easy to verify that for every d∗ ∈ D∗ there is some m(d∗) such that for all

m ≥ m(d∗) it is true that d∗�Am is defined, and d∗�Am ∈ Dm.

(e) ϕ∗(d∗) =
⋃
m≥md∗

ϕm(d∗�Am) and is defined iff d∗�Am ∈ domϕm for all m ≥ md∗

4.6 Definition: Suppose that T0 = 〈Tm0 : m < ω〉 and T1 = 〈Tm1 : m < ω〉 are inverse

systems, and let lim
←−

T0 = T0 = 〈A0,F0, D0, G0, ϕ1〉 and lim
←−

T1 = T1 = 〈A1,F1, D1, G1, ϕ1〉

be their respective inverse limits. We call a sequence 〈
m

Φ : Tm0 → Tm1 : m < ω〉 of multi-

embeddings an inverse system of multi-embeddings if for m ≤ m′ we have:

(1)
m′

Φ�Am0 =
m

Φ�Am0

(2)
m′

Φ(X)�Am1 =
m

Φ(X ∩Am0 ) for every X ∈ Fm′0 for which X ∩Am0 ∈ Fm0

(3)
m′

Φ(g)�Am1 =
m

Φ(g�Am0 ) for every g ∈ Gm0 for which g�Am0 ∈ Gm

When 〈
m

Φ : Tm0 → Tm1 : m < ω〉 is an inverse system of multi-embeddings we define a

multi-embedding Φ = lim
←−

m

Φ : T0 → T1 as follows:

Φ�A∗0 =
⋃m

Φ�Am0
Φ(X) =

⋃
m≥m(X)

m

Φ(X ∩Am0 ) for X ∈ F ∗0
Φ(g) =

⋃
m≥mg

m

Φ(g ∩Am0 ) for g ∈ G∗0
Call Φ = lim

←−

m

Φ a multi-embedding of inverse systems.

4.7 Claim: If T0 = 〈Tm0 : m < ω} and T1 = 〈Tm1 : m < ω} are inverse system and

〈
m

Φ : Tm0 → Tm1 : m < ω〉 is an inverse system of multi-embeddings such that every
m

Φ is

successful, then Φ = lim
←−m

m

Φ is also successful.

Proof: Suppose that d ∈ D0 and we shall show that Φ(d) ∈ domϕ1. There is some md such

that for all m ≥ md the restriction d�Am is defined. As
m

Φ is successful,
m

Φ(d�Am) belongs

to domϕm1 for m ≥ md. Therefore ϕ1(
⋃
m≥md

m

Φ(d�Am) = ϕ1(Φ(d)) exists and belongs to

G1. ·̂ ·i4.7
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We shall construct a two dimensional system T = 〈Tmn : n,m < ω〉 and successful

multi-embeddings
m

Φn+1
n : Tmn → Tmn+1 such that for every n,

(1) Tn = 〈Tmn : m < ω〉 is an inverse system.

(2) 〈
m

Φn+1
n : m < ω〉 is an inverse system of successful multi-embeddings.

Then a direct system will result: Tn = lim
←−

Tn and Φn+1
n = lim

←−

m

Φn+1
n .

Let Tm0 = 〈m + 1,P(m + 1), D(P(m + 1)), {id}, {(e, id)}〉. Clearly, T0 = lim
←−

T0 =

〈ω,P(ω), D(P(ω)), {id}, {(e, id)}〉.
Suppose now that Tn = lim

←−
Tmn is defined, where Tmn = 〈Amn ,Fmn , Dm

n , G
m
n , ϕ

m
n 〉, and

that Φnn−1 = lim
←−

m

Φnn−1 is also defined (when n > 0)

We assume, for simplicity, that Φnn−1�An−1 = id (if n > 0) and, furthermore, iden-

tify FG(Dm
n−1) with its image under

m

Φnn−1, and write FG(Dm
n−1) ⊆ FG(Dm

n ) as well as

FG(Dn−1) ⊆ FG(Dn). Thus, the new words of FG(Dn) coincide with FG(Dn \ Dn−1),

and similarly for FG(Dm
n ).

Let
.⋃
mD

m
n be the disjoint union of Dm

n . We view An as a subset of the following

set Bn+1 = {xw : x ∈ An, w ∈ FG(
.⋃
mD

m
n )}. The expression xw is the formal string

xc0 . . . cw where w = c0 . . . , ck, and x is identified with xe (where e is the empty string).

4.8 Fact: Bn+1 is countable.

The fact holds because each Dm
n is countable.

Now define Bmn+1 = {xw : x ∈ Amn , w ∈ FG(
.⋃
m′≤mD

m′

n )}. Clearly, Amn ⊆ Bmn+1.

Next we define an operation ξn+1(c) : Bn+1 → Bn+1 for every c ∈ Dn (there are, of

course, uncountably many c-s!).

We want that ξn+1(c)�Bnn+1 to depend only on c�Ann whenever c�Amn is defined.

If x ∈ domhc, we let ξn+1(c)(x) = hc(x).

For all other points in Bn+1, we let ξn+1(c)(xw) = xw ◦ (c�Am0 ) if m is the least such

that xw ∈ Bmn and c�Am0 (∈ Cm1 ) is defined.

There is a unique extension of ξn+1 to a homomorphism from FG(Dn) to Sym(Bn+1),

which we also call ξn+1.

4.9 Claim: For every w ∈ FG(Dn) there is some m(w) such that:

(1) Bmn+1 is invariant under ξn+1(w) for all m ≥ mw.

(2) If w 6= e then for every xv ∈ Bn+1 \Amw
n , we have ξn+1(w)(xv) = xv ◦ w 6= xv.

Proof: (1) is clear from the definition. For (2) notice that if c�Am0 is defined then the

finitely many points in domhc belong to Am0 . Then ξn+1(c)(xv) = xv ◦ (w�Am0 ).
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From4.9 (2) it follows readily that ξn+1 is, in fact a monomorphism, as for every

w ∈ FG(d0) there is some mw for which w�Am0 is defined.

Let
m

ξ n+1(c�Amn ) = ξn+1(c)�Bnn+1 for all c ∈ Dn for which c�Amn is defined.

Now we can define An+1 = {ξn+1(w)(x) : x ∈ An, w ∈ FG(Dn)} and Amn+1 = An ∩

Bmn+1 = {
m

ξ (w)(x) : x ∈ Am0 , w ∈ FG(Dm
0 ). (We remark that An+1 6= Bn+1, because when

x ∈ domhc, the point xc /∈ An+1).

Clearly, An+1 is invariant under ξn+1(w) for every w ∈ FG(Dn), and also Amw
n+1 is, if

w�Amw
n is defined.

Having defined An+1 we let
m

Φn+1
n : Amn → Amn+1 be the identity. Therefore also

Φn+1
n �An is the identity.

Now let us define
m

Φn+1
n �Fmn . For every X ∈ Fmn and xw ∈ Amn+1 we determine

whether xw ∈
m

Φn+1
n (X) by induction on the length of w.

If lgw = 0 then necessarily xw = x, and we let x ∈
m

Φ1
0(X)⇔ x ∈ X for every X ∈ Fmn

and x ∈ Amn .

Suppose that this is done for all words of length k and that lgwc = k + 1.

Distinguish two cases: when c is old and when c is new.

First case: c is old, namely c ∈ Cmn−1 (this case does not exist when n = 0). Here we

have that
m

ξ n(c) =
m
ϕn(c) is defined, and is an automorphism of Fmn . Let xwc ∈

m

Φ1
0(X)⇔

xw ∈
m

Φn+1
n (

m

ξ n−1(c−1)[X]).

Second case: c is new. Let xwc ∈
m

Φn+1
n (X) ⇔ xw ∈

m

Φn+1
n (f c

−1(X)). In the right

hand side we mean that f c
−1

(X) is defined and xw ∈
m

Φn+1
n (f c

−1

(X)).

Now we can set Φm+1
n (X) =

⋃
m≥m(X)

m

Φn+1
n X ∩Amn .

4.10 Fact: For every old w ∈ FG(Dn) and every X ∈ Fn it holds that Φn+1
n (ϕn(w)[X]) =

ξn+1(w)[Φn+1
n (X)] (rule (c) in 2.1).

The proof of the fact is straightforward using induction on word length.

4.11 Claim: For every w ∈ FG(Dn) and every X ∈ Fn there is m ≥ mw such that

(1) fw(X) is defined iff fw�A
m
n (X ∩Amn ) is defined

(2) fw
−1

(X) is defined iff fw
−1�Am

n (X ∩Amn ) is defined

(3) for every x ∈ An with m(x) ≥ m, ξn+1(w)(x) = x(w�Am(x)
n ) ∈ Φn+1

n (X) ⇔ x ∈
fw
−1

(X) (where by x ∈ fw−1

(X) we mean that fw
−1

(X) is defined and x ∈ fw−1

(X)).

Proof: If fw(X) is defined, then fw�A
m
n (X ∩ Amn ) is defined whenever w�Amn is defined

and equals fw(X) ∩Amn . Conversely, if fw(X) is not defined, then there is some m ≥ mw
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such that X ∩ Amn 6= Y ∩ Amn for all Y ∈ domw (if there is one X for which fw(X) is not

defined, then domfw is necessarily finite) and therefore fw�A
m
n (X ∩Amn ) is not defined.

Fromthe definition of ξn+1 and m(x) ≥ mw it follows that ξn+1(x) = x(w�Amn ).

From the definition of Φn+1
n �Fn it is immediate that x(w�Amn ) ∈ Φn+1

n (X) ⇔ x ∈
fw
−1

(X). ·̂ ·i4.11

4.12 Fact: Φn+1
n (X) ∩Amn+1 depends only on X ∩Amn whenever X ∩Amn ∈ Fmn . ·̂ ·i4.12

Now we can define Fn+1 = {ξn+1(w)[Φn+1
n (X)] : X ∈ Fn, w ∈ FG(Dn)}.

Let Fmn+1 = {
m

ξ n+1(w)(X) : X ∈ Fmn+1, w ∈ FG(Dm
n )}.

4.13 Claim: Fmn+1 is countable for every m.

Proof: The fact follows by the countability of FG(Dm
n ) and 4.12. ·̂ ·i4.13

We finished defining Tn+1 and 〈
m

Φn+1
n : m < ω〉, and verified that Tn+1 is an inverse

system, that 〈
m

Φn+1
n : m < ω〉 is an inverse system of successful multi-embedding and that,

consequently, Φn+1
n : Tn → Tn+1 is a multi-embedding of inverse systems.

Let T ∗ = 〈A∗,F∗, D∗, G∗, ϕ∗〉 = lim
−→

Tn. We show that the conclusion of lemma 4.1

holds for the pair of sets A0 and A∗. Clearly, these sets are countable and A0 ⊆ A∗. So

all we need is:

4.14 Claim: For every family F ⊆ P(A0) which includes Fin(A0) there is a homogeneous

family F ′ ⊆ F∗ such that F ′�A0 = F .

Proof: Suppose that F ⊆ P(A0) is a family which includes Fin(A0). We work by induction

on n and define F ′n ⊆ P(An) for every n:

(1) F ′0 = F .

(2) F ′n+1 = {ξn(w)[Φn+1
n (X)] : w ∈ FG(D(F ′n)), X ∈ F ′n}

Let F ′ = {Φn(X) : X ∈ F ′n}.
We claim that

(a) F ′ ⊆ F∗ and ϕ∗�D(F ′) testifies that F ′ is homogeneous.

(b) {X ∩A0 : X ∈ F ′} = F .

To prove (a) suppose that d ∈ D(F ′) is a demand. Then there is some n and a demand

dn ∈ D(F ′n) such that Φn(dn) = d. As Φn+1
n is successful, ξn(d) = ϕn+1(Φn+1

n (dn)) =: g

is defined. Now Φn+1(g) = ϕ∗(d) satisfies d and is an automorphism of F∗. Why is it also

an automorphism of F ′? Because of (2) above.

To prove (b) we notice that it is enough to prove by induction that for every n and

X ∈ F ′n+1, we have
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(∗)n X ∩An ∈ F ′n or is bounded.

For then it follows by induction that X ∩ A0 ∈ F for every n and X ∈ Fn: if

X ∩ An ∈ Fn we have that X ∩ A0 ∈ F by the induction; if X ∩ An is bounded, then

X ∩A0 is finite and again in F .

So let us prove (∗)n. We have to show that for every w ∈ FG(Dn) and every X ∈ Fn
the set ξn+1[Φn+1

n (X)] ∩An belongs to F ′n or is bounded. We show something stronger.

(∗∗)n For every X ∈ F ′n and w ∈ FG(D(F ′n)) if fw(X) is defined then ξn+1[Φn+1
n (X)] =

Φn+1
n (fw(X)) (and therefore ξn+1[Φn+1

n (X)] ∩ An = Φn+1
n (fw(X)) ∩ An = fw(X) ∈

F ′n). If fw(X) is not defined, then ξn+1[Φn+1
n (X)] ∩An is bounded.

Suppose first that fw(X) is defined. Then obviously it belongs to F ′n, because w ∈
FG(D(F ′n)). It is easy to check that ξn+1(w)(xv) ∈ Φn+1

n (fw(X))⇔ xv ∈ Φn+1
n (X).

So assume that fw(X) is not defined, and we want to prove that ξn+1(w)[Φn+1
n (X)]∩

An is bounded.

If fw(X) is not defined, then X /∈ ranfw
−1

. It is sufficient to see that the set

{x ∈ An : ξn+1(w−1)(x) ∈ Φn+1
n (X)}

is bounded, because this set equals ξn+1(w)[Φn+1
n (X)] ∩ An. By 4.11 there is a large

enough m > m(w) such that for all x ∈ An with m(x) ≥ m we have that

ξn+1(w)(x) =
m(x)

ξ n+1(x) = x(w�Am(x)
n ) ∈

m(x)

Φ
n+1
n (X ∩Am(x)

n )⇔ x ∈ fw
−1

(X)

But fw
−1

(X) is not defined, and therefore ξn+1(w)(x) /∈ Φn+1
n (X) for all x ∈ An with

m(x) > m, which is what we wanted. ·̂ ·i4.1

We give a corollary of this proof.

4.15 Corollary: There is a collection of 22ℵ0 permutation groups over ω, 〈Gα : α < 22ℵ0 〉
such that:

(1) Every Gα is isomorphic to the free group on 2ℵ0 generators.

(2) Every Gα testifies the homogeneity of some family Fα ⊆ P(ω)

(3) If α < β < 2ℵ0 , then Gα and Gβ are not isomorphic as permuatatio groups.

Proof: We have shown that there are 22ℵ0 many homogeneous sub-families of F ∗, F ′α for

α < 22ℵ0 . The restriction of ϕ∗ to FG(D(A∗,Fα)) is a monomorphism of the free group

over a set of cardinality 2ℵ0 into G∗ which testifies homogeneity of Fα. This gives us

15

Paper Sh:499, version 1994-05-18 10. See https://shelah.logic.at/papers/499/ for possible updates.



22ℵ0 different groups satisfying (1) and (2) in the corollary. To obtain (3), divide by the

relation “isomorphic via a permutation of ω”, and pick a member from every equivalence

class. As in each class there are 2ℵ0 many members at the most, we get that there are

22ℵ0 classes. ·̂ ·i4.15

We now wish to show that there is no homogeneous family over ω such that every

homogeneous family over ω is isomorphic to one of its subfamilies. This will follow from

the next lemma about the number of pairwise incompatible homogeneous families over a

countable set. Two families over ω are incompatible if for some X ⊆ ω the set X belongs

to one family while the set ω \ X belongs to the other. For every X ⊆ ω let us denote

X0 := X and X1 := ω \X.

4.16 Lemma: There is a collection {Fα : α < 22ℵ0 } of pairwise incompatible homoge-

neous families over ω.

4.17 Corollary: There is no homogeneous family over ω such that every homogeneous

family over ω is isomorphic to one of its subfamilies.

Proof: (of Corollary) Suppose to the contrary that F∗ is a homogeneous family over ω with

this property. By Lemma 4.16 pick a collection {Fα : α < 22ℵ0 } of pairwise incompatible

homogeneous families over ω. For each α < 22ℵ0 fix a permutation σα which embeds Fα
in F∗. By the pigeon hole principle there are α < β < 22ℵ0 and a permutation σ such that

σα = σβ = σ. As Fα and Fβ are incompatible, let us find a set X ⊆ ω such that X0 ∈ Fα
and X1 ∈ Fβ . Now σα(X0) = σ(X0) ∈ F∗, and σβ(X1) = σ(X1) ∈ F∗. This means that

in F∗ there is a set and its complement. This contradicts Theorem 1.4 that states that

there is no homogeneous family over ω that contains a set and its complement. ·̂ ·i4.17

We prove now lemma 4.16.

Proof: We use the direct system of inverse systems from the proof of lemma 4.1. The

pairwise disjoint families will be over A∗ rather than over ω, but as this is a countable set

this makes no difference.

Let the variable η range over the set of all functions η : P(A0) → 2 which satisfy

η(X) + η(A0 \X) = 1 for all X ⊆ A0. These are functions that select exactly one element

from each pair of a set and its complement (for example, characteristic functions of ultra

filters). There are 22ℵ0 such functions.

For every function η : P(A0) → 2 as above let F0
η = {X ⊆ A0 : η(X) = 1}. The

collection {Fη : η : P(A0) → 2} is a collection of 22ℵ0 pairwise incompatible families over
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A0. For every m < ω let F0,m
η be the projection of Fη on Am0 .

We know that for every Fη there is a homogeneous family F ′η overA∗ whose projection

on A0 equals Fη (modulo finite sets). However, it is NOT true that {F ′η : η : P(A0)→ 2}
is a collection of pairwise incompatible families. In fact, Φ1

0(X0) ∩ Φ1
0(X1) is not empty

for every X ⊆ A0.

What we shall do now is refine the extension operation is such a way that not only

the projection on A0 is preserved, but also the disjointness of X0 and X1. This will be

achieved by removing some of the points of A∗.

We define by induction on n a subset D̄n ⊆ Dn and a subset En ⊆ An. Restricting

ourselves to the points of E =
⋃
nEn will provide the desired conservation property.

Let E0 = A0. Let D̄0 =
⋃
ηD(E0,F0

η ).

4.18 Fact:If d ∈ D̄0 then for no X ⊆ A0 is it true that both X0, X1 belong to ranfd.

We remove, thus, from the collection of demands all demands which mention simul-

taneously a set and its complement in their range.

Let us now define E1 as follows:

E1 = {xw : x ∈ E0, w = c0 . . . ck ∈ FG(
.⋃
m
D̄m

0 ) & x /∈ domf c0}

The variation on to the proof of 4.1 is that only a proper subset of words is being

used. Hence, E1 ⊆ A1

4.19 Claim: For every X ⊆ A0 it holds that Φ1
0(X0) ∩ Φ1

0(X1) ∩ E1 = ∅.

Proof: By induction on the length of w ∈ FG(
.⋃
mD̄

m
0 ) we shall see that xw /∈ Φ1

0(X0) ∩
Φ1

0(X1).

If lgw = 0 then xw = x ∈ E0 = A0. As Φ1
0(X) ∩ A0 = X for all X, it follows that

x /∈ Φ1
0(X0) ∩ Φ1

0(X1).

Now suppose that lgwc = k + 1. By the definition of the ∈ relation over the set A1

we know that xwc ∈ Φ1
0(X0) iff there is some Y such that xw ∈ Φ1

0(Y ) and f c(Y ) = X0.

Similarly, xwc ∈ Φ1
0(X1) iff there is some Z such that xw ∈ Φ1

0(Z) and f c(Z) = X1. But

X0 and X1 cannot both appear in ranf c because c ∈ D̄m
0 . Therefore xwc is not in the

intersection. ·̂ ·i4.19

Now we should notice that E1 is invariant under ξ1(w) for all w ∈ FG(D̄0). Also, for

every w ∈ FG(D̄0) and every X ⊆ E0 it holds that ξ1(w)[Φ1
0(X0)]∩ξ1(w)[Φ1

0(X1)∩E1 = ∅.
Let F̄1 = {ξ1(w)[Φ1

0(X)] : X ∈ F̄0, w ∈ D̄0}.

17

Paper Sh:499, version 1994-05-18 10. See https://shelah.logic.at/papers/499/ for possible updates.



We proceed by induction on n, defining D̄n and En+1 for all n > 0.

First, let us view each η : P(E0) → 2 as a partial function η : F̄1 → 2 by replacing

every X ⊆ E0 by Φ1
0(X). Next extend each η to contain F̄1 in its domain, demanding that

η(ξ1(w)[Φ1
0(X)]) = η(X)

We refer to the resulting extended function also as η to avoid cumbersome notation.

For every η let F̄η,1 = {X ∈ F̄1 : η(X) = 1}.
Now define D̄1 =

⋃
ηD(F̄η,1).

Define En+1 e‘z F̄n+1 as before. We should check the following:

4.20 Claim: For all X ∈ F̄n it holds that Φn+1
n (X0) ∩ Φn+1

n (X1) ∩ En+1 = ∅.

Proof: By induction of word length. The case which should be added to the proof of 4.19

is the case when c as old, and is easily verified.

Having done the induction, we set E =
⋃
nEn. For every η : P(E0)→ 2 let F ′η be the

homogeneous family obtained from Fη as in the proof of 4.1. The reader will verify that

(1) For every X ⊆ E0 it holds that Φ0(X0) ∩ Φ0(X1) ∩ E = ∅
(2) For every η : P(E0)→ 2 the family F ′η�E is homogeneous.

This completes the proof. ·̂ ·i4.16
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