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2 SAHARON SHELAH

§0 INTRODUCTION

An aim of the pcf theory is to answer the question, what are the possible cofi-

nalities (pcf) of the partial orders [[ A;/I, where cf(\;) = \;>x, for different ideals
1<K

I on k. For a quick introduction to the pcf theory see [Sh 400a], and for a detailed
exposition, see [Sh:g] and more history. In §1 and §2 we generalize the basic theo-
rem of this theory by weakening the assumption £ < min;<, A; to the assumption
that I extends a fixed ideal I* with wsat(/*) < min;<, \;, where wsat(I*) is the
minimal 6 such that x cannot be divided to 0 sets ¢ I* (not just that the Boolean
algebra & (k)/I* has no 6 pairwise disjoint non zero elements). So §1, §2 follow
closely [Sh:g, Ch.I=Sh345a], [Sh:g, I1,3.1], [Sh:g, VIIL,§1]. It is interesting to note
that some of those proofs which look to be superceded when by [Sh 420, §1] we know
that for regular § < \, 07 < X\ = 3 stationary S € I[\], S C {6 < X : cf(d) = 6},
give rise to proofs here which seem neccessary. Note wsat(I*) < |Dom(I*)|* (and
reg,(I*) < |Dom(I*)|" so [Sh:g, 1,§1,62,11,§1,VII,2.1,2.2,2.6] are really a special
case of the proofs here.

During the sixties the cardinalities of ultraproducts and reduced products were
much investigated (see Chang and Keisler [\CK |). For this the notion “regular filter”
(and (A, p)-regular filter) were introduced, as: if A\; > Ng, D a regular ultrafilter

(or filter) on x then [][ A;/D = (liminfp A;)". We reconsider these problems in §3
<K

(again continuing [Sh:g]). We also draw a conclusion on the depth of the reduced

product of Boolen algebras partially answering a problem of Monk; and make it

clear that the truth of the full expected result is translated to a problem on pcf.

On those problems on Boolean algebras see Monk [M]. In this section we include

known proofs for completeness (mainly 3.7).

Let us review the paper in more details. In 1.2, 1.4 we give basic definition
of cofinality, true cofinality, pcf(\) and J-x[\] where usually A = (\; : i < &) is
a sequence of regular cardinals, I* a fixed ideal on x such that we consider only
ideals extending it (and filter disjoint to it). Let wsat([*) be the first 6 such that we
cannot partition  to 6 I*-positive set (so they are pairwise disjoint, not just disjoint
modulo I*). In 1.5, 1.8 we give the basic properties. In lemma 1.9 we phrase the
basic property enabling us to do anything: (1.9 (x)): essentially if lim inf;-(\) > 6 >
wsat(I[*) and [JA\/I* is 0F-directed then we prove that IIN/J»[)\] is A-directed. In
1.11, 1.13 we deduce more properties of (J-x[\] : A € pcf())) and in 1.12 deal with
<j_,[-increasing sequence (fq : @ < A) with no <;_| 5;-bound in I\ In 1.14 we

prove pcf(A) has a last element. In 1.13 we deal with the connection between the
true cofinality of [[ A;/D* and [] w;/E when p; =: tcf([[ Ai/D;) and D* is the

1<K 1<o 1<K
FE-limit of the D;’s.

In 2.1 we define normality of A for A : J<z[A] = J<x[A] + By and we define semi-
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normality: J<x[A] = Joa[A] + {Ba : @ < A} where B,/J<x[)] is increasing. We
then (in 2.2) characterize semi-normality (there is a <;_||y-increasing f={(fa:
a < M) cofinal in II\/D for every ultrafilter D (disjoint to I* of course) such that
tcf(IIA/D) = \) and when semi normality implies normality (if some such f has a
<J<)\[§\] — eub).

We then deal with continuity system @ and <;_| 5-increasing sequence obeying
a, in a way adapted to the basic assumption (x) of 1.9.

Here as elsewhere if min(\) > 6% our life is easier than when we just assume
limsup;.(\) > 0, I\/T* is F-directed (where 6 > wsat(I*), of course). In 2.3 we
give the definitions, in 2.5 we quote existence theorem, show existence of obedient
sequences (in 2.7), essential uniqueness (in 2.10) and better consequence to 1.12
(in the direction to normality). We define (2.12) generating sequence and draw a
conclusion (2.13(1)). Now we get some desirable properties: in 2.11 we prove semi
normality, in 2.13(2) we compute cf(IIA/I*) as max pcf()\). Next we relook at the
whole thing: define several variants of the pcf-th (Definition 2.16). Then (in 2.17)
we show that e.g. if min(\) > 6T, we get the strongest version (including normality
using 2.9, i.e. obedience). Lastly, we try to map the implications between the
various properties when we do not use the basic assumption 1.9 (*) (in fact there
are considerable dependence, see 2.18, 2.19).

In 3.1, 3.3 we present measures of regularity of filters, in 3.2 we present measures
of hereditary cofinality of IIA/D: allowing to decrease A and/or increase the filter.

In 3.4 - 3.9 we try to estimate reduced products of cardinalities [[ A;/D and
1<K
in 3.10 we give a reasonable upper bound by hereditary cofinality (< (0%/D +
hefp o (T A7))<? when 6 > regg(D)).
1<K
In 3.13 - 3.14 we return to existence of eub’s and obedience (Saharon, new point

over 2.9) and in 3.15 draw conclusion on “downward closure”.

In 3.16 - 3.17 we estimate Tp(A) and in 3.18 try to translate it more fully to pcf
problem (countable cofinality is somewhat problematic (so we restrict ourselves to
Tp(\) > u = pX°). We also mention R;-complete filters; (3.19, 3.20) and see what
can be done without relaying on pcf (3.23)).

Now we deal with depth: define it (3.21, see 3.22), give lower bound (3.25), com-
pute it for ultraproducts of interval Boolean algebras of ordinals (3.27). Lastly we
translate the problem “does \; < Depth™ (B;) for i < x implies 4 < Depth™([] B;/D)”

1<K
at least when p > 2% and (Vo < p)[|al™ < p], to a pcf problem (in 3.29).

In the last section we phrase a reason 1.9(x) works (see 4.1), analyze the case we
weaken to 1.9() to lim inf7- (\) > 6 > wsat(I*) proving the pseudo pcf-th (4.4).

I thank Norm Greenberg and Adi Yarden for corrections.
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§1 BAsIC pPCF

1.1 Notation 1) I, J denote ideals on a set Dom(I), Dom(.J) resp., called its domain

(possibly U A C Dom(I). If not said otherwise the domain is an infinite cardinal
Ael

denoted by x and also the ideal is proper i.e. Dom([) ¢ I. Similarly D denotes a

filter on a set Dom(D); we do not always distinguish strictly between an ideal on

x and the dual filter on k. B

2) Let A denote a sequence of the form (\; : i < k). We say \ is regular if every

A; is regular, Min(\) = Min{); : i < s} (of course also in A\ we can replace »
by another set), and let TIA = [] A;; usually we are assuming A is regular. Let
1<K

A5\ = (AL s a < 0) = (45 [N : a < 0) be defined by: A% = {i < r: X\ > a}.
But we can replace k by any set (in the definitions and claims). Let I* denote a

fixed ideal on k.
3) For I afilter on k let I = P(k) \ I (similarly Dt = {ACr:x\ A ¢ D}), let

lim inf;A = min{p: {i<k: )\ <plelt}and
lim sup;A = Min{u: {i <k: ;> pu} €I} and

atomA = {p:{i: \; =p} el }

4) For a set A of ordinals with no last element, J8¢ = {B C A : sup(B) < sup(A)},
i.e. the ideal of bounded subsets.

5) Generally, if inv(X) = sup{|y| :F (X, y)} then invt (X) = sup{|y|* :F ¢[X,y]},
and any y such that F p[X,y] is a wittness for |y| < inv(X) (and |y| < invT (X)),
and it exemplifies this.

6) Let Ord be the class of ordinals.

7) Considering [] f(i), considering H f(@)/I formally if (3i) f(i) = O then [] f(i) =

1<K i<k 1<K
(); but we usually ignore this, particularly when {i: f(i) = 0} € I.

1.2 Definition. 1) For a partial order! P:

(a) P is A-directed if: for every A C P, |A| < A there is ¢ € P such that

/\ p < q, and we say: ¢ is an upper bound of A;
pEA

Lactually we do not require p < ¢ < p = p = ¢ so we should say quasi order
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(b) P has true cofinality A if there is a sequence p = (p, : a < A) increasing

and cofinal in P, i.e.: /\ Pa < pg and Vg € P[\/ q < pa). We write

a<f a<A
tcf(P) = A for the minimal such A, in fact it is unique and we say that p

witness A = tcf(P). (Note: if P is linearly ordered it always has a true
cofinality but, e.g., (w, <) X (w1, <) does not)

(¢) P is called endless if Vp € P3q € P[q > p] (so if P is endless, in clauses (a),
(b), (d) above we can replace < by <)

(d) A C P is a cover (of P) if: Vp € P3q € Alp < ¢l; we also say “A is cofinal
in P”

(e) cf(P) = min{|A|: A C P is a cover}

(f) We say that, in P, p is a lub (least upper bound) of A C P if:
(o) pis an upper bound of A (see (a))
(B) if p’ is an upper bound of A then p < p/

2) If D is afilter on S, a; (for s € S) are ordinals, f, g € [] as, then: f/D < g/D,
ses
f<pgand f < gmod D all mean {s € S: f(s) < g(s)} € D. Also if f, g are
partial functions from S to ordinals, D a filter on S then f < g mod D means
{i € Dom(D) :i ¢ Dom(f) or f(i) < g(i) (so both are defined)} belongs to D.
We write X = A mod D if Dom(D)\ [(X \ A)U(A\ X)] belongs to D. Similarly for
<, and we do not distinguish between a filter and the dual ideal in such notions. So
if J is an ideal on x and f, g € II\, then f < g mod Jiff {i < Kk : —f(i) < g(i)} € J.
Similarly if we replace the ay’s by partial orders.
3) For f, g : S — Ordinals, f < ¢g means /\ f(s) < g(s); similarly f < g. So
ses
(IT\, <) is a partial order, we denote it usually by IT\; similarly ILf or ] f(i).
1<K
4) If I is an ideal on k, F' C ®Ord, we call g € "Ord an <;-eub (exact upper bound)
of F' if:

(o) g is an <j-upper bound of F (in *Ord)

(B) if h € "Ord, h <; Max{g, 1} then for some f € F', h < max{f,1} mod I

() fACk,A#Pmod I and [f € F= f | A=; 04, e, {i € A: f(i) #0} €
Il then g | A=;04.

ba) We say the ideal I (on k) is f-weakly saturated if x cannot be divided to 6
pairwise disjoint sets from I (which is 2 (k) \ I).
5b) wsat(l) = Min{0 : I is f-weakly saturated}.
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1.3 Observation. 1) Concerning 1.2(4), note: ¢’ = Max{g,1} means ¢'(i) =
Max{g(i),1} for each i < k; if for every f € F,{i < k : f(i) = 0} € I we
can replace Max{g, 1}, Max{f,1} by g, f respectively in clause (/) and omit clause
(7)-

2) The ideal I on k is #-weakly saturated iff in the topological space of the ultrafil-
ters on k the subspace {D : D an ultrafilter on x disjoint to I} has spread < 6, or
6 is a limit ordinal, it has spread # but the spread is not obtained (hence 2¢1(%) > ¢
but it is consistently singular, see [Sh 233], [JuSh 231]).

1.4 Definition. Below if I' is “the ultrafilters disjoint to I”, we write I instead of
I'. Recall that we can replace x by any set.
1) For a property T of ultrafilters (if T" is the empty condition, we omit it):

pcefr(\) = pef(A, T) = {tcf(ITA/D) : D is an ultrafilter on  satisfying I'}

(so X is a sequence of ordinals, usually of regular cardinals, note: as D is an
ultrafilter, IT\/D is linearly ordered hence has true cofinality).

1A) More generally, for a property I' of ideals on x we let pcfp(A) = {tcf(IIN/J) : J
is an ideal on & satisfying I" such that II\/J has true cofinality}; we call I' closed
when if I € T and A,B € I are disjoint then I + A € T' is a maximal ideal.
Similarly below.

2) Joa[MT] = {B C k: for no ultrafilter D on  satisfying I' to which B belongs,
is tcf(IIA/D) > A}.

3) Jal\ T = Jaox+ AT

4) pefr(A, I) = {tcf(IIN/D) : D is an ultrafilter on x disjoint to I satisfying I'}.
5)If B € I, pcfr(A | B) = pefri ) (A) (soif B € I'itis0), also Jex(A | B,I) C
P (B) is defined similarly.

6) If I = I we may omit it, similarly in (2), (4).

7)IfT' =Ty« ={D: D an ultrafilter on x disjoint to I*} we may omit it.

Remark. We mostly use pcf(A), Jox[A]. Below we list some of the obvious proper-
ties.

1.5 Claim. 0) (II\,<;) and (IL\,<;) are endless (even when each \; is just a
limit ordinal). B B

1) min(pcf;(A)) > liminf;(A) for A regular.

2)

(i) If By C By are from I then pcfr (A | By) C pef; (A | Bs);
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(ii) if I C J then pcfy(\) C pef(N); and

(iii) for By, By C k we have pcfr(X [ (B1U Bs)) = pef (X | By) Upcf;(A | By).
Also

(’L’U) Ae J<)\[5\ [ (Bl UBQ)] S ANB; € J<)\[5\ fBl] & ANBy € J<)\[5\ fBQ]

(U) Zf Al,AQ S I+,A1_ﬂ AQ = @, A1 U AQ = K, and tC_f(H/_\ r Ag,<[) = A fO’f’
¢ =1,2 then tcf(II\, <;) = \; and if the sequence f = (fo : @ < \) witness
both assumptions then it witness the conclusion.

3)

(i) if By C By C k, By finite and X\ regular then

pcf (A [ B2) \ Rang(A [ By) € pef; (A [ (B2 \ B1)) € pef; (A | B)
(i) if in addition i € By = \; < Min(Rang[X | (Bz \ By)]),
then pcfr(A | B2) \ Rang(A | B1) = pef (A [ (B2 \ B1)).

4) Let X be regular (i.e., each \; is regular);

(i) if @ = liminf; A then IIN/I is O-directed
(ii) if @ = liminf; X is singular then TIN/I is 0T -directed
(iii) if @ = liminf; X is a reqular uncountable cardinal, for some club E of 0,{i <
kK:XN € FE or )\ =0} €l then TIN/I is 07 -directed. We can weaken the

assumption to “I is not lowly normal for (0,)\)” (defined in 1.6 below, it is
a weaker assumption)

(iv) If {i : \y = 0} = k mod I and I is weakly normal then (II\, <;) has true
cofinality 0

(v) IfTIN/I is O-directed then cf(IIN/I) > 6 and min pcf;(A) > 6

(vi) pcfr(A) is non empty set of regular cardinals. [See part (7)].

5) Assume 5\_ is reqular and: if 0" =: lim sugl(j\) is reqular then I is not weakly nor-
mal for (0, X). Then pcfr(\) € (limsup;(A))*; in fact for some ideal J extending
I, TIN/J is (limsup; (X)) T -directed.

6) If D is a filter on a set S and for s € S, ay is a limit ordinal then:

(i) of(J] ass<p) = (] ] ef(es), <p) = cf( [ (a5, <)/ D), and

seS seS seS

(i) tef(] | ess <p) = tef (] [ (cf(es), <p)) = tef (] [ (s, <)/ D).

seS seS seS
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In particular, if one of them is well defined, then so are the others. This is true
even if we replace as by linear orders or even partial orders with true confinality.

7) If D is an ultrafilter on a set S, \s a reqular cardinal, then 6 =: tcf(H As, <D)
sES

is well defined and 6 € pcf({\s : s € S}).
8) If D is a filter on a set S, for s € S, Ag is a reqular cardinal, S* = {\s : s € S}
and

E={B:BCS"and{s: s € B} € D}

and As > |S| or at least A > |{t : \p = A\s}| for any s € S then:

(i) E is a filter on S*, and if D is an ultrafilter on S then E is an ultrafilter
on S*

(13) S* is a set of reqular cardinals and
if s €S = As > |S| then (VA € S*)\ > |S*,

(iit) F={f¢€ H As 1 As = M = f(s) = f(t)} is a cover of H Ass
sesS ses
(iv) cf(]] As/D) = cA(ILS*/E) and tef (] As/D) = tef(11S*/E).
ses s€S

9) Assume I is an ideal on k, F C*Ord and g € "Ord. If g is a <;-eub of F then

g is a <y-lub of F.

10) sup pefr(N) < |[TIN/I].

11) If I is an ideal on S and (][] as,<p) has true cofinality A as exemplified by
ses

f = {(fa:a <)) then the function (o, : s € S) is a <r-eub (hence <;-lub) of f.
12) The inverse of (11) holds: if I is an ideal on S and f, € SOrd for a <
A = cf(N), (fa 1 a < A) is <p-increasing with <j-eub f then tcf(]] f(i),<;) =

tef (IIcf[f(7)], <1) = A.
13) If I C J are ideals on k then

(a) wsat(l) > wsat(J)
(b) liminf7()\) < liminf;(\)
(c) if A=tcf([] M\, <p) then A =tcf(J] i, <u)-

1<K 1<K

14) If fi1, f2 are <;-lub of F then fi =1 fo.
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1.6 Definition. 1) Let “I is not almost normal for (6, \)” mean: for some h € II\,
fornoj<fis{i<r: N\ <0=h(i)<j}=~kmodI.

2) Let “I is not lowly normal for (6, A\)” mean: for some h € II\, for no ¢ < 6, is
{i<k:N<O0=h(1)<(}elt.

Remark. Note that weakly normals implies lowly normal.

Proof. They are all very easy, e.g.
0) We shall show (II\, < ;) is endless (assuming, of course, that .J is a proper ideal
on k). Let f € I\, then g =: f + 1 (defined (f +1)(y) = f(7) + 1) is in I\ too as
each )\, being an infinite cardinal is a limit ordinal and f < ¢ mod J.
4) Clause (iii):

First, assume that I is not medium normal for (6, \), and let h € II\ witness
this. Without loss of generality \; > 6 = h(i) > 6. So assume that f, € II\ for
a < 0. We now define a function f with domain s by

f(i) =U{fa(i) :a < h(i)(and a < 0)}.

Now first i < x = f(i) < A; because \; is regular, h(i) < A\; and a < 0 = f,(i) <
Ai- So f eIl

Second, for any a < 6 we have

{it <r:=2(falt) < ()} CH{i < ko> h(i)}

and this set belongs to I by the choice of h above. So a < 6 = f, <; f. Together
we are done. To finish we need

® if thereis a club E of § and {i: \; € E or A\; = 0} € I then [ is not medium
normal for (6, \).
[Why ®7 Without loss of generality 8 < \;, we define a function h with
domain k, h(i) =sup(ENN\;) if \; ¢ EU{0} and h(i) =0if \; € EU{6}.
So i < k = h(i) < A\; hence h € TI\. Also for every a < 6 choose 3 €
E, 5> a (e.g., Min(E\(a + 1)), the set {i < A : h(i) < a} is included in
{i<Hi)\i:9}U{i</€1)\iEE}U{Z'<I£Z)\1'Sﬂ}.]

Now the first and second belong to I by an assumption and the third as a < 0 =

liminf; (), so we are done.

5) Let ¢/ =: lim sup;(\) and define

J=:{ACk: for some 6 < ¢ the set {i < r:\; >0 and i € A} belongs to I}.
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Clearly J is an ideal on x extending I (and & ¢ J) and lim sups(A) = lim inf;()\) =
g’

Case 1: 0" is V.

We do not use the J above. Now the desired conclusion fails then every ultrafilter
on x disjoint to I is Nyj-complete. Now if {i < k: \; > Rg} € J* the construction
is immediate so without loss of generality: < kK = A\; = Ng. But “not weakly
normal for (§,A)” then j < w = A; =: {i < rk : h(i) < j} # k mod I but
U{A4; : j < w} = k. There is an ultrafilter D on x disjoint to J U {4, : j < w} so
(Aj:j <w) exemplifies D is not N;-complete.

Case 2: ¢ is singular. )
By part (4), clause (ii), IIA/I is (6")*-directed and by part (4) clause (v) we get
the desired conclusion.

Case 3: 0 is regular > N. )
Let h* € II\ witness that “I is not weakly normal for (', \)” and let

J* ={A C k: for every h € I\, for some j < 6’ we have {i € A: h(i) < j} = A mod I}.

Note that if A € J then for some 6 < ¢ the set A" =: {i € A: \; >0} € I
hence for every h € I\, the choice j =: @ witness A € J*. So J C J*. Also
J* C P (k) by its definition. J* is closed under subsets (trivial) and under union
[why? assume Ag, A; € J*, A = AgU Ay; for every h € I\, choose jo, j1 < 6’
such that A, =: {i € Ay : h(i) < jo} = Ar mod I, so j =: max{jo,j1} < ¢ and
A ={ieA:h(i) <j}=Amod I;so A€ J*]. Also k ¢ J* [why? as h* witness

that I is not weakly normal for (6’,\)]. So together J* is an ideal on k extending
I. Now J* is not medium normal for (¢’,\), as witnessed by h*.

[Why? Let us check Definition 1.6(2), so let ¢ < #’. We should prove that A; =
{i<rk: N <O0=h(l)<( ¢Jnow Al ={i<rk: )\ >0} e€JCJ and
A? = {i < k:h(i) < j} € J" hence Af U A? € J but it includes A¢, so we are
done.]

Lastly, ITA/J* is (§’)T-directed (by part (4) clause (iii)), and so pcfy- () is disjoint
to (0")7.

9) Let us prove g is a <;-lub of F' in (*Ord, <;). As we can deal separately with
I+ A I+ (k\A) where A =: {i : g(i) = 0}, and the later case is trivial we can
assume A = ). So assume g is not a <;-lub, so there is an upper bound ¢’ of F,
but not g <; ¢’. Define g” € #Ord:
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g,,(i):{o & if g(i) < g'(7)

g'(i) & if g'(i) < g(i).

Clearly ¢ <; g. So, as g in an <j-eub of F for I, there is f € F such that
g" <y max{f,1}, but B =: {i : ¢'(i) < g(i)} # 0 mod(I) (as not g <; ¢') so
g | B=g¢g" | B <; max{f,1} | B. But we know that f <; ¢’ (as ¢’ is an
upper bound of F') hence f | B <; ¢’ | B, so by the previous sentence neccessarily
f I B =5 0 hence ¢ | B =7 Op; as ¢’ is a <r-upper bound of F' we know
[f' € F = f'| B= 0p], hence by (v) of Definition 1.2(4) we have g | B =; 0p, a
contradiction to B ¢ I (see above). O 5

1.7 Remark. In 1.5 we can also have the straight monotonicity properties of

pefr(TIA, T).

1.8 Claim. 1) Joy\[)\] is an ideal (of P(k), i.e., on k, but the ideal may not be
proper).

2) If X <, then Joa[N] C J<u[N].

8) If X is singular, Jox[N] = Jox+ [N = J<a [N

4) If X ¢ pef(N), then Jox[A] = J<a[A].
5)If A C kA& Ja[A, and fo € TN [ A, (fo 1 a < A) is <;_ xj-increasing
cofinal in (II\ | A)/JA[\] then A € J<x[)N].

Also this holds when A C k,(fo : @ < A) is <j-increasing cofinal in (IL\ | A)/J
for any ideal J on k such that I* C J C J<x[N,A & J.

6) The earlier parts hold for J-x[\,T], too.

Proof. Straight.

1.9 Lemma. Assume

(%)

X is T egular and
(@) Min(\) > 60 > wsat(I*) (see 1.2(5)(b)) or at least
(B) liminfr-(\) > 6 > wsat(I*), and IIN/I* is 07 -directed.?

2n(3te, if cf(f) < 0 then “Ot-directed” follows from “f-directed” which follows from “lim
infr=(\) > 67, i.e. first part of clause (8). Note also that if clause (a) holds then IIN/I* is
6T -directed (even (II\, <) is 6T -directed), so clause («) implies clause (83).
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If X is a cardinal > 0, and r ¢ J<\[X] then (II\, <;_ \[\]) 8 A-directed (remember:
J<)\[/\] — J<)\[/\,I ])

1.10 Remark. Note that above (o) = (B) so in any case also (IT\,<-) is 07F-
directed.

Proof. Note: if f € 1A then f < f + 1 € 11\, (i.e., (II), <) is endless) where
[+ 1is defined by (f 4+ 1)(i) = f(i) +1). Let F C II\, |F| < A, and we shall
prove that for some g € II\ we have (Vf € F)(f < g mod J<A[)\]) this suffices.
The proof is by induction on |F|. If |F| is finite, this is trivial. Also if |F| < 6,
when (a) of () holds it is easy: let g € TI\ be g(z) =sup{f(i) : f € F} < \;
when () of (x) holds use second clause of (). So assume |F| = pu, 6 < u < X so
let F = {fY:a < u}. By the induction hypothesis we can choose by induction on
a < p, fL € TIX such that:

(a) f3 < fa mod Jex[A]
(b) for B < a we have f/B1 < £l mod Joz\[)N].

If 1 is singular, there is C' C y unbounded, |C| = cf(u) < p, and by the induction
hypothesis there is g € I\ such that for a € C, f! < g mod J-»[\]. Now g is as
required: fO < fl < frlnin(C’\a) < g mod J-[A\]. So without loss of generality u is
regular. Let us define A7 =: {i <r:\; > [e|} fore <0,s0e < (<= A C A;
and € < § = Al = k mod I*. Now we try to define by induction on ¢ < 0, g.,
a: = ae) < pand (BS : a < u) such that:

(1) ge € TIA

(i) for e < ¢ we have g. [ A7 < g¢ | Af

(i1i) for a < plet BE =: {i <k : f1(i) > g-(i)}

(iv) for each e < 0, for every a € [aer1, i), B # BT mod J-\[).

We cannot carry this definition: as letting a(x) = sup{a. : € < 0}, then a(x) < u
since pp = cf(p) > 0. We know that Bf ) N A, # BZJ(:}) N A%y, mod Jox[A] for
e <0 (by (iv) and as A%, = £ mod I* and I* C J.5[\]) and Bg( o € # (by (iii))
and [e < ( = BC( yNAZ C B; ] (by (i), together (AZ, N(Bg, )\BZJ(T) re<6)
is a sequence of § pairwise disjoint members of (I*)T, a contradiction®

Now for € = 0 let g. be f} and a. = 0.

3i.e we have noted that for no B: C x (¢ < ) do we have: Be # Bey1 mod I* and € < ¢ <
0 = BN A¢ C Be where A¢ =k mod I* (e.g., A¢ = A7) to the definition of 6 = wsat(I*).
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For ¢ limit let g.(i U g¢ (1) for i € Af and zero otherwise (note: g. € I\ as
(<e

£ <0, )\ >eforic A* and ) is a sequence of regular cardinals) and let o, = 0.

For ¢ = ¢ + 1, suppose that g; hence (BS:a < u) are defined. If BS € J-[)] for
unboundedly many o < p (hence for every o < ) then gc is an upper bound for F
mod J»[\] and the proof is complete. So assume this fails, then there is a minimal
a(e) < p such that Bi(a) ¢ Joa[N. As Ba(g) ¢ Jx[)\], by Definition 1.4(2) for

some ultrafilter D on & disjoint to J-z[\] we have Ba(g) € D and cf(IL\/D) > .

But 4 < X. Hence {f}/D : a < pu} has an upper bound h./D where h. € ILX. Let
us define g. € IIA:

9¢(1) = Max{gc(i), he (i)}

Now (i), (ii) hold trivially and B¢, is defined by (iii). Why does (iv) hold (for ¢)
with a§+1 = a. =: a(e)? Suppose a(e) < a < p. As fé(s) < £l mod Jx[)]

clearly BS ate) S BS mod J-\[A\]. Moreover J[]] is disjoint to D (by its choice)

so B® a(e) € D implies BS, ¢ Jx[\ ]

On the other hand BE is {i < r : f1(i) > g-(i)} which is equal to {i < x : f1(4)
9¢ (1), he (i)} which does not belong to D (h. was chosen such that f1 < h. mod D
We can conclude BE ¢ D, whereas BS, € D; so they are distinct mod J-y[\] as
required in clause (iv).

Now we have said that we cannot carry the definition for all € < 0, so we are stuck
at some €; by the above ¢ is successor, say ¢ = ¢ + 1, and g¢ is as required: an

upper bound for F' modulo J_[\]. Lo

>
)-

1.11 Claim. If () of 1.9, D is an ultrafilter on x disjoint to I* and \ = tef (I, <p
), then for some B € D,(II\ | B,<;_, 1)) has true cofinality A. (So B € J<x A\

Jx[Al by 1.8(5).)

Proof. As (I\, <;+) is 0% -directed (by 1.9) clearly A > 6. By the definition of
Ja[A] clearly DN JoA[A] = 0.

Let (f,/D : a < )) be increasing unbounded in IIA/D (so f, € II\). By 1.9
without loss of generality (V3 < a)(fs < fo mod J<A[A]).

Now 1.11 follows from 1.12 below: its hypothesis clearly holds. If A, _, Bo = 0
mod D, (see (A) of 1.12) then (see (D) of 1.12) J N D = () hence (see (D) of 1.12)
g/ D contradicts the choice of (fo/D : a < \). So for some a < A\, B, € D; by (C)
of 1.12 we get the desired conclusion. 0111
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1.12 Lemma. Suppose (x) of 1.9, cf(\) > 0, fo € I\, fo < fz mod J[\ for
a < B <\, and there is no g € I\ such that for every a < \, fo < g mod J-x[\].
Then there are By, (for a < \) such that:

(A) B, C k and for some a(x) < A :a(x) <a <\ = By & Joa[A]

(B) a < B8= B, C Bg mod Jox[\ (i.e. By \ Bg € Joa[N])

(C) for each o, {fs | Bao: B < A) is cofinal in (II\ | B, <J_\ () (be_tter restrict
yourselves to a > ax) (see (A)) so that necessarily By & J<a[\);

(D) for some g € IIX, A,y fa < g mod J where* J = JA\[A]+{Bas : a0 < A};
wn fact

(D)t for some g € TIX for every o < A\, we have fo < g mod (Jox[A + Ba), in

fact B, ={i < Kk : fo(i) > g(i)}

(E) if g < g €I\, then for arbitrarily large o < \:

{i <r:g(i) > fa(i) & ¢'(i) = fa()]} =k mod Jox[A]

(hence for every large enough oo < X\ this holds)
(F) if 6 is a limit ordinal < A, fs is a <;_ x-lub of {fo : < &} then Bs is a
lub of {By : a < 6} in P(k)/JA[N.

Proof. Remember that for e < 0, A* = {i <k : \; > |g|} so A = k mod I'* and
e < (= Af C AZ. We now define by induction on e < 0, g, a(e) < A, (B : a < \)
such that:

(i) g- € TIA

(i) forC<5 ge [ Af < g. [ A}

(1it) BE, = {i € k: fo(i) > g-(i)}

(iv) if ( ) < a < Athen BE # BEtY mod Joy[).
For e =0 let g. = fo, and 04(5) = 0.

For ¢ limit let g. (i U gc(1) if i € A% and zero otherwise; now
(<e

[ <e=gc | AZ < g- [ A7

holds trivially and g. € II\ as each \; is regular and [i € A* < X\; > €]), and let

ae) = 0.

40f course, if B, = £ mod J-»[)\], this becomes trivial.
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For e = ¢+ 1, if {a < A : B, € JoA[A]} is unbounded in A, then g¢ is a bound for
(fa : < A) mod J-x[A], contradicting an assumption. Clearly

a<fB <A =BSCB; modJ[)
hence {a < X : B, € J-A[A]} is an initial segment of A. So by the previous sentence
there is a(e) < A such that for every a € [a(e), \), we have BS ¢ J-x[)\] (of course,
we may increase a(e) later). If (BS : a < \) satisfies the desired conclusion, with
a(e) for a(x) in (A) and g¢ for g in (D), (D)* and (E), we are done. Now among
the conditions in the conclusion of 1.12, clause (A) holds by the choice of B and of
a(e), clause (B) holds by B$’s definition as a < 8 = f, < fs mod JA[A], (D)*
holds with g = g¢ by the choice of BS hence also clause (D) follows. Lastly if (E)
fails, say for ¢/, then it can serve as g.. Now condition (F) follows immediately from
(iii) (if (F) fails for §, then there is B C Bg such that /\ BS, € B mod J_[\] and
a<é

B§\B ¢ J<[\]; now the function g* =: (g¢ | (k\ B))U(fs | B) contradicts “fs is a
<j_ plubof {fo : @ < 6}7, because: g* € IIX (obvious), —(f5s < g* mod J[A])
[why? as By \ B ¢ Jox[\ and g" [ (B§\ B) =g | (B;\ B) < fs | (B§\ B) by the
choice of Bg], and for a < 0 we have:

fa IB<;_x/fs | B=g"|Band

fa T (R\B) <;_ .9 (k\B)=g" | (k\B)

(the <;_ (5 holds as (x \ B) N B € J-i[A] and the definition of BS). So only
clause (C) (of 1.12) may fail, without loss of generality for a« = a(e). Le. (fsz |
fo(e) : B < A) is not cofinal in (TII\ | Bi(a), _<J<k[;\]). As this sequence of functions
is increasing w.r.t. <;_ (5}, there is he € TI(A | Bi(g)) such that for no 5 < A do we
have he < fg | B, mod Jox[A]. Let AL = ho U0, gc , and g. € IIX be defined
a(e)

by g-(i) = Max{gc (i), h.(7)}. Now define B, by (iii) so (i), (ii), (iii) hold trivially,
and we can check (iv).

So we can define g, a(e) for e < 0, satisfying (i)—(iv). As in the proof of 1.9, this
is impossible: because (remembering cf(A) = A > 6) letting a(x*) =: U ale) < A

we have: (Bé(*) N A7 e < () is C-decreasing, for each ¢ < 6, and A? €:<Z mod I*
and BZJ(T) # Bg, ., mod J<x[A] so (Bey MAZLL\ BZJ(F*l) € < 0) is a sequence of 0
pairwise disjoint members of (J<x[A])" hence of (I*)* which give the contradiction
to () of 1.9; so the lemma cannot fail. O 19
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1.13 Lemma. Suppose (x) of 1.9 and 6 < .
1) For every B € J<x[\]\ J<a[A], we have:

(II\ | B, <J_\[3)); has true cofinality A; (hence X is regular).

2) If D is an ultrafilter on k, disjoint to I*, then tcf(IT\/D) is min{\ : DNJ<)[)\] #
0}.
3)(i) For \ a limit cardinal J-)\[\] = U J<u[A], hence

<A

(1) For every A, :]<>\[)\] = UM<>\ Jgu_P\]- .

4) JS/\[)_‘] 75 J</§[)\] _ZﬁJS,\[)\] \ J<,\[>\] 75 0 }ﬁA c ch()\).

5) Ja[N/J<A[A] ds A-directed (i.e. if B, € J<x[\] for v < 7%, v* < X then for
some B € J<x[A] we have By C B mod J<x[\] for every v < v*.)

Proof. 1) Let

J={BCk:BeJoxAorBeJx[\\ Jcr[\] and
(TIX | B, <j_,[r)) has true cofinality A}.

By its definition clearly J C J<,[A]; it is quite easy to check it is an ideal (use
1.5(2)(v)). Assume J # J<)[\] and we shall get a contradiction. Choose B €
J<A[A]\ J; as J is an ideal, there is an ultrafilter D on & such that: DNJ = () and
B € D. Now if tcf(ITA/D) > A*, then B ¢ J<)[\] (by the definition of J<x[\]);
contradiction.

On the other hand if F C II\, |F| < A then there is g € II\ such that (Vf €

F)(f < g mod Jox[A]) (by 1.9), so (Vf € F)[f < g mod D] (as Jex[A] C J,
DN J =), and this implies cf(ITA/D) > X. By the last two sentences we know

that tcf(ILA/D) is A. Now by 1.11 for some C € D, (II(X | O), <JoA[N ) has true

cofinality \, of course C N B C C and CN B € D hence C N B ¢ J-5[)\]. Clearly
if 0" C C, C" ¢ J-x[)\] then also (TI\ | ¢, <j_,) has true cofinality A, hence by
the last sentence without loss of generality C' C B; hence by 1.8(5) we know that
C € J<i[A] hence by the definition of J we have C' € J. But this contradicts the
choice of D as disjoint from J.

We have to conclude that J = J<[A] so we have proved 1.13(1).

2) Let A be minimal such that DNJ<[A] # @ (it exists as by 1.5(10) that is because
J<(H5\)+[5‘] = P(k)) and choose B € DN J<)[A. So [u < A= B & J<,[\]] (by

the choice of \) hence by 1.13(3)(ii) below, we have B ¢ Jx[A]. It similarly follows
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that D N J-z[\] = 0. Now (II\ | B, <j_,)) has true cofinality A by 1.11. As we

know that B € DN J<x[A], and Jox[A]N D = ; clearly we have finished the proof.
3) Note that we should not use part (2)!

Clause (i): B B
Let J =:J, J<u[A]. Now J is an ideal by 1.8(2) and (IIA, <) is A-directed;

ie., if a* < Xand {f, : @ < a*} CII)\, then there exists f € II\ such that
(Va < a®)(fo < f mod J).

[Why? If a* < 0%, as (%) of 1.9 holds, this is obvious by 1.9. So without loss of generality a* >
0" and o* = cf(a*); suppose not; A is a limit cardinal, hence there is u* such that

a* < p* < X. Without loss of generality |o*|T < p*. By 1.9, there is f € IT\ such

that (Vo < o*)(fa < f mod J,+[A]). Since J<,«[A] C J, it is immediate that

(Va < a™)(fa < f mod J).]

Clearly U J<u[A] € J<a[A] by 1.8(2). On the other hand, let us suppose that
p<A
there is B € (J<x[\]\ U J<u[A]). Choose an ultrafilter D on & such that B € D

“S/\ _
and DNJ = (. Since (IT\, <) is A-directed and DNJ = (), one has tcf(IIA/D) > A,

but B € D N J-x[A], in contradiction to Definition 1.4(2).

Clause (ii):

If A limit — by part (i) and 1.8(2); if A successor — by 1.8(2) and Definition
1.4(3). Note that we hae not used part (2).
4) Easy.
5) Let (fo : o < A) be <;_| 3]+ (x\B,)-increasing and cofinal in I\ mod J<_>\[5\] +
(k\By) (for v < ~v*). Let us choose by induction on a < A a function f, € II\, as a
<j_yp-Pound to {fs : B < a}U{f] :v <~"}, such f, exists by 1.9 and apply 1.12
to (fo 1 @ < A), getting (B, : a < A\), now B/, for «a large enough is as required.
Oias

1.14 Conclusion. If (%) of 1.9, then pcf(\) has a last element.

Proof. This is the minimal A such that x € J<x[A]. [\ exists, since \* =: [II\| €
{\:k € Ja[A]} # 0] and by 1.5(10). U114
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1.15 Claim. Suppose (x) of 1.9 holds. Assume for j < o, D; is a filter on k
extending {r \ A: A€ I*}, E a filter ono and D* ={BCk:{j<oc:BeD,;} e
E} (a filter on k). Let p; =: tcf(IIN, <p,) be well defined for j < o, and assume
further p; > o + 0. '

Let

A = tcf(II\, <p+), u = tcf(H Wi, <E).

<o

Then A = p (in particular, if one is well defined, then so is the other).

Proof. Without loss of generality o > 6. (Why? Otherwise we can add p; =: o,
Dj =: Dy for j € 6\ 0, and replace o by ¢ and E by £/ ={AC0: ANo € E}).
Let (fJ : o < pj) be an <p,-increasing cofinal sequence in (II\, <p,).

Now £ = 0,1, for each f € I\, define Gy(f) € H pi by Ge(f)(7) = min{a < p;:
j<o

if £ =1 then f < fJ mod D; and if £ = 0 then: not f < f mod Dy} (it is well

defined for f € IIX by the choice of (fJ : a < ;).

Note that for f!, f2 € II\ and ¢ < 2 we have:

f1< f? mod D* & B(f', f?) =:{i < rx: f(i) < f*(i)} € D*
s A(fL ) =1{j<o:B(f',f*)eD;} €FE
& for some A € E, for every i € A we have f! <p. f?
= for some A € F for every i € A we have

Go(f1)(5) < Go(f?)(4)
<~ Gg(fl) < Gg(fz) mod F.

So

®1 Gy is a mapping from (II\, <p-) into (H ij, <g) preserving order.
<o

Next we prove that

®qo for every g € H p; for some f € I\, we have g < Go(f) mod E.
j<o
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[Why? Note that min{s; : j < o} > o > 0T and J<g[A] € J<,[A]. By 1.9 we
know (IIA, <;__(x)) is 0" -directed, hence for some f € TI\:

(x)1 for j < o we have fg(j) < f mod J<,[\.

We here assumed o < 17, hence J<[A] € J<,; [A] (by 1.8(2)) but J, [A] is disjoint

to D; by the definition of J., [A] (by 1.13(2) + 1.5(13)(c)) so together with (x);:

() for j <o, f7

06 < f mod Dj.

So for every j < o we have g(j) < Go(f)(j) hence clearly g < Go(f).]

®3 for f € I\ we have Go(f) < G1(f).
[Why? Read the definitions].

®q if f1, fo € I\ and Gl(fl) <E Go(fg) then f1 <p- fs.
[(Why? As G1(f1) <g Go(f2) there is B € E such that: j € B =

Gi(f1)(j) < Gol(f2)(j). For each j € B we have fy <p, f ;) by

the definition of G1(f1)) and fél(fl)(j) <p, f2 (as G1(f1)(j) < Go(f2)(J)
and the definition of Go(f2)(j)) so together fi <p, f2. So A(f1,f2) =
{i < k: fi(i) < fo(i)} satisfies: A(f1, f2) € D, for every j € B, hence
A(f1, f2) € D* (by the definition of D*) hence fi; <p~ f2 as required.]

Now first assume \ = t(:f(l_[j:7 <p~) is well defined, so there is a sequence f =

(fo : a < A) of members of II\, <p-«-increasing and cofinal. So (Go(fs) : @ < A)

is <pg-increasing in H p; (by ®1), for every g € H p; for some f € I\ we

1<o j<o_

have g <p Go(f) (why? by ®2), but by the choice of f for some 5 < A we have

f <p~ fs hence by ®; we have g <p Go(f) <g Go(fs), so (Go(fa) : @ < A) is

cofinal in (H Ki, <g). Also for every a < A, applying the previous sentence to
j<o

Gi(fa) +1 (€ H,uj) we can find f < A such that G1(fa) +1 <g Go(fs), so

<o

Gi1(fa) <g Go(fs), so for some club C of X\, (Go(fa) : a € C) is <g-increasing

cofinal in (H wi, <g). So if A is well defined then p = tcf(H Wi, <g) is well
j<o j<o

defined and equall to A.

Lastly, assume that p is well defined i.e. H p;i/E has true cofinality g, let
j<o
g = (ga : a < p) exemplifies it. Choose by induction on o < p, a function f, and
ordinals B, 74 such that
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(i) fo €TIN
(“) 98, <E GO(fa) SE Gl(fa) <E 9va (SO Ba < ’Yoz)
(1i1) a1 < g < = Yo, < Ba, (80 Bo > ).

In stage a, first choose B, = (J{Va, + 1 : a1 < a}, then choose f, € II\ such
that gg, +1 <g Go(fa) (possible by ®2) then choose v, such that Gi(fo) <g ¢, -
Now Go(fa) <g Gl(fa) by 3. By ®4 we have a1 < ag = fal <D= fa2. Also if
f € [IX then G1(f) € H p; hence by the choice of g, for some o < p we have
Jj<o
Gl(f) <E o but «a S Boz SO Gl(f) <E Jo §E GO(fa) hence by ®47 f <D= fa-
Altogether, (f, : a < p) exemplifies that (IT\, <p«) has true cofinality p, so A is
well defined and equal to p. 04 15

1.16 Conclusion. If (x) of 1.9 holds, and o, p = (u; : j < 0),(D; : j < o) are
as in 1.15 and o + 6 < min(n), and J is an ideal on o and I an ideal on & such
that [* C I C {A C k: for some B € J for every j € 0 \ B we have A ¢ D;},
Ael= /\ (k\ A) € D; (e.g. I =1TI%) then pcf;({p;:j<o})C pefr(N).

i<o

Proof. Assume A € pcf;({p; : j < o}). Let E be an ultrafilter on o disjoint to J

such that A = tcf(H pi/E) then we can define an ultrafilter D* on £ as in 1.15,
j<o B B

so clearly D* is disjoint to I and A\ = tcf(IIA/I) hence X\ € pcfr(A) as required.

Uie
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§2 NORMALITY OF A € PCF(A) FOR A

Having found those ideals J<x[A], we would like to know more. As Joy[)] is

increasing continuous in A, the question is how J.[\], J,+[A] are related.

The simplest relation is J_y+ [\ = J<x[\] + B for some B C k, and then we call
A normal (for A\) and denote B = By[)\] though it is unique only modulo J[\].
We give a sufficient condition for exsitence of such B, using this in 2.11; giving the
necessary definition in 2.3 and needed information in 2.5, 2.7, 2.9; lastly 2.10 is the

essential uniqueness of cofinal sequences in appropriate II\/I.

2.1 Definition. 1) We say A\ € pcf()) is normal (for ) if for some B C &,
Ja[Al = T[] + B. .
2) We say A € pcf(A) is semi-normal (for A) if there are B, for a < A such that:

(1) a < B = By C Bg mod J-\[\] and
(i) J<a[M = J<x[M +{Bas : a < A}

3) We say A is normal if every A € pcf()) is normal for A. Similarly for semi
normal.

4) In (1), (2), (3) instead A we can say (A, 1) or IIN/I or (II\, <) if we replace I*
by I (an ideal on Dom(\)).

2.2 Fact. Suppose () of 1.9 and A € pcf()).

Now:

1) A is semi-normal for X iff for some F = {f, : a < A} C II\ we have: [a < 3 =
fo < fz mod Jx[)\]] and for every ultrafilter D over s disjoint to Joz[A], F is
unbounded in (IT\, <p) whenever tcf(II\, <p) = .

2) In 2.1(2), without loss of generality, we may assume that

either: B, = By mod J<x[\] (so A is normal)

or: By # Bg mod J<y[)] for a < 8 < .
3) Assume ) is semi normal for A. Then A is normal for X iff for some F as in
part (1) (of 2.2) F' has a <;_,(y-exact upper bound g € H()\Z + 1) and then

1<K

B =:{i < k:g(i) = \;} generates J<x[\] over J<x[\].
4) If X is semi normal for A then for some f = (fo : @ < A), B = (By : a < \)
we have: B is increasing modulo JoA[A], J<a[A = Joa[A + {Ba : @ < A}, and

(fa 1 < A)is <;_, y-increasing and f, B as in 1.12.

Proof. 1) For the direction =, given (B, : a < A) as in Definition 2.1(2), for each
a < A, by 1.13(1) we have (IIA | Bo, <;_,(y)) has true cofinality A, and let it be
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exemplified by ( fg:8< A). By 1.9 we can choose by induction on v < A a function
fy € ITA such that: 5, vy <a= f§ <;_ 5 fyand 8 <~v= fs <;_,5 fr

Now F =: {f, : @ < A} is as required. [Why? First, obviously a < = fo < f3
mod J_-x[\]. Second, if D is an ultrafilter on x disjoint to I* and ([[\,<p) has
true cofinality A, then by 1.11 for some B € J<x[\]\ J<A[A\] we have B € D, so by
the choice of (B, : a < \) for some a < \, B C B, mod J-[A] hence B, € D.
As f§ <;_ i fs for B € [a, A) clearly F'is cofinal in (A, <p).]

The other direction, < follows from 1.12 applied to F' = {f, : @ < A\}. [Why?
By 1.12 there is a sequence (B, : o < ) as there, in particular B, € J<x[\]
increasing modulo J-x[A] so J =: Jox[A] + {Ba : @ < A} C J<u[N.

If equality does not hold then for some ultrafilter D over x, D NJ = ) but
D N J<x[A] # 0 so by clause (D) of 1.12, F is bounded in IIA/D whereas by
1.13(1),(2), tcf(II\, <p) = A contradicting the assumption on F]

2) Because we can replace (B, : a < \) by (B, : i < A) whenever {(a; : i < \) is
non decreasing, non eventually constant.

3) If X is normal for A, let B C & be such that J<x[\] = J<A[\] + B. By 1.13(1)
we know that ([T(A | B), <,_ L) has true cofinality A, so let it be exemplified by
(f§ o< A). Let fo = f2 U0\ p) for a < X\. Now (fs : @ < A) is as required by
1.5(11).

Now suppose (fo : a < A) is as in part (1) of 2.2 and g is a <;_, (5-eub of F,

g€ H()" + 1) and B = {i : g(i) = A\i}. Let D be an ultrafilter on ~ disjoint to

1<K

J<x[A]. If B € D then for every f € [\, let f' = (f | B) U 0(x\ By, now necessarily
[ <max{g,1} (as[i € B= f'(i) <X\ =g(i)] and [i € K\ B= f'(i) =0 < g(7)]),
hence (see Definition 1.4(4)) for some o < A we have f' < max{f,,1} mod Jx[\]
hence for some a < A, f < f, mod J-x[A\] hence f < f' < f, mod D; also
a < B = fo < fg mod D, hence together (f, : a < \) exemplifies tcf(II\, <p
J)=AX If B¢ Dthenk\Be Dsog =g (k\B)UOg =g mod D and
a < A= fo <p fas1 <D g =p ¢, so g’ € II\ exemplifies F' is bounded in
(TI\, <p) so as F is as in 2.2(1), tcf(II\,<p) = A is impossible. As D is disjoint
to J-x[)], necessarily tcf(IT\, <p) > . The last two arguments together give, by
1.13(2) that J<a[A] = J<x[\] + B as required in the definition of normality.

4) Should be clear. Os o

We shall give some sufficient conditions for normality.

Remark. In the following definitions we slightly deviate from [Sh:g, Ch.I] = [Sh
345a]. The ones here are perheps somewhat artificial but enable us to deal also
with case (5) of 1.9(x). Le. in Definition 2.3 below we concentrate on the first ¢
elements of an a, and for “obey” we also have A* = (A4, : a < #) and we want to
cover also the case 6 is singular.
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2.3 Definition. Let there be given regular A\, § < u < A\,u possibly an ordinal,
S C A, sup(S) = A and for simplicity S is a set of limit ordinals or at least have no
two successive members.

1) We call @ = (a, : @ < A) a special continuity condition for (S, u,#) (or is an
(S, i, 0)-continuity condition) if: S is an unbounded subset of A, a,, C «, otp(as) <
w, and [B € aq = ag = a, N B] and, for every club E of A, for some® § € S we have
0 = otp{a € a5 : otp(as) < 0 and for no B € asNais (B,a) N E = ()}. We say a
is continuous in S* if & € S* = o = sup(a,).

2) Assume f, € "Ord for a < X and A* = (A% : o < 0) is a decreasing sequence of
subsetes of x such that k\ A%, € I*. Wesay f = (fo : a < A\) obeysa = (ay : @ < \)
for A* if:

(i) for B € aq, if € = otp(as) < 0 then we have f3 | A* < f, | AZ (note: A*
determine 0).

2A) Let x, A\, I* be as usual. We say f obeys a for A* continuously on S* if: @
is continuous in S* and f obeys a for A* and in addition S* C S and for a € S*
(a limit ordinal) we have f, = f,, from (2B) below, i.e., for every i < xk we have
fa(i) =sup{fs(i) : B € an} when |as| < ;.

2B) For given A = (\; i < k), f = (fa : @ < \) where f, € IIX and a C A, and 6
let f, € IIX be defined by: f,(i) is 0 if |a| > A; and U{f.(i) : « € a} if |a| < \;.

3) Let (S, 0) stands for (S,0+1,6); (A, u, 0) stands for “(.S, i, 6) for some unbounded
subset S of \” and (), #) stands for (A, 0+ 1,0).

If each A7 is k then we may omit “for A*” (but @ should be fixed or said).

4) We add to “continuity condition” (in part (1)) the adjective “weak” [“f-weak” ]
if “B € ay = ag=a,Np" isreplaced by “a € S & € ay = (Fy < a)lan NP C
ay & v <min(a, \ (B+1)) & [laa NPl <8 = |a,N S| <0]]” [and we demand
that ~ exists only if otp(a, N B) < 0]. (Of course a continuity condition is a weak
continuity condition which is a §-weak continuity condition).

2.4 Remark. There are some obvious monotonicity implications, we state below
only 2.5(3).

0 cf() =0

0t  cf(f) <6
some stationary S C {§ < X : cf(d) = 6.}, there is a continuity condition a for
(S,0,.); moreover, it is continuous in S and § € S = otp(as) = 0,; so for every

2.5 Fact. 1) Let 0, = { and assume \ = cf(\) > 6;F. Then for

5Note: if otp(as) = 0 and § = sup(as) (holds if § € S, u = 6 + 1 and a continuous in S (see
below)) then § € E.
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club E of X for some 6 € S, Vo, Bla< B & acas & B€as— (a,8)NE #0}].
2) Assume A = 071 then for some stationary S C {§ < A : ¢f(d) = cf(0)} there is
a continuity condition for (S,0 + 1,0).

3) If a is a (A, p, 61)-continuity condition and 6; > 6 then there is a (X, 0 + 1,0)-
continuity condition.

Proof. 1) By [Sh 420, §1].
2) By [Sh 351, 4.4](2) and®.
3) Check. U5

2.6 Remark. Of course also if A = 6% the conclusion of 2.5(2) may well hold. We
suspect but do not know that the negation is consistent with ZFC.

2.7 Fact. Suppose (x) of 1.9, fo, € TIX for a < A\, A = cf(\) < @ (of course
k= dom()\)) and A* = A*[)\] is as in the proof of 1.9 (i.e., A% = {i < K : \; > a}).
Then

1) Assume a is a #-weak continuity condition for (5,0), A = sup(.S), then we can

find f' = (f/,: @ < \) such that:
(i) fo € 1IN,
(i7) for a < X we have f, < f/,
(7i7) for a < B < X\ we have f! <Joa[N fé
(iv) f' obeys a for A*.

2) If in addition min(\) > p, S* C S are stationary subsets of A and a is a continuity
condition for (.S, 1, 0) then we can find f" = (f/, : @ < ) such that:

(i) £, €A

(17) for @ € A\S* we have f, < fl anda=[+1€ A\S* & fe€S*= fzg < fl
(#43) for a < B < A we have f, <;_ 5 f5

(iv) f' obeys @ for A* continuously on S*.

3) Suppose (f;, : @ < ) obeys @ continuously on S* and satisfies 2.7(2)(ii) (and
2.7(2)’s assumption holds). If g, € IIA and (g, : @ < \) obeys a continuously on

S* and [ € A\ S* = g4 < fo] then /\gagf&.

6the definition of B¢ in the proof of [Sh:g, I11,2.14](2) should be changed as in [Sh 351, 4.4](2),
[Sh:g, 111,2.14](2),clause(c),p.135-7
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4) If ¢ < 0, for ¢ < ¢ we have f© = (f5 : a < \), where f € IL\, then in 2.7(1)
(and 2.7(2)) we can find f’ as there for all f¢ simultaneously. Only in clause (ii)
we replace fo < f1 by fo | AL < fl 1 A% (and fo < fl by fi | AL < fl, 1 AL

Proof. Easy (using 1.9 of course).

2.8 Claim. In 2.7 we can replace “(*) from 1.97 by “UN/JA[N] is A-directed”.

2.9 Claim. Assume (x) of 1.9 and let A* be as there.

1) In 1.12, if (fo : @ < A) obeys some (S, 0)-continuity condition or just a O-weak
one for A* (where S C X is unbounded) then we can deduce also:

(GQ) the sequence (By/J<A[A\] : o < \) is eventually constant.

2) If 67 < X then J<x[\]/J<A[A] is AT -directed (hence if \ is semi normal for A

then it is normal to \).

Proof. 1) Assume not, so for some club E of A\ we have

(x) a<d <X & 0 € E= B, # Bs mod Jy[\].

As a is a f-weak (.5, 0)-continuity condition, there is 6 € S such that b =: {«a €
as : otp(as Na) < O and for no B € as N« is (B,a) N E = ()} has order type
6. Let {a. : € < 6} list b (increasing with €). So for every ¢ < 6 there is 7. €
(e, a-11)NE, and let . < az41 be such that as Na. C ag, and otp(ag. Na.) < 6;
by shrinking and renaming without loss of generality 8. < 7. and a. € ag.. Let
£(e) =: otp(ap, Nag).

Lastly, let B =: {i < & : fo.(i) < f5.(i) < fy.(i) < fa.., (i)}, clearly it is
=+ mod I" and let (remember (x) above) BZ =: A7), N (B \ Bg.) N BY, now
Ba. € Bg. € B,. mod J<y[A] by clause (B) of 1.12, and B,_ # Bj_. by () above
hence B,_ \ Bg, # 0 mod J.\[\]. Now BY, Af )11 = £ mod I* by the previous

sentence and by 1.9(x) which we are assuming respectively and I* C J.y[A] by
the later’s definition; so we have gotten B # () mod J-x[\]. But fore < ¢ < 6
we have B N B = (), for suppose i € BX N Bf, s0 i € Af (o1 and also fy (i) <
facii (i) < fp.(i) (as i € BY and as a1 € ag, & i€ Af ()41 respectively); now
i € BZ hence i € B,_ i.e., (where g is from 1.12 clause (D)™) f,.(¢) > g(¢) hence (by
the above) fp, (i) > g(i) hence i € B, hence i ¢ B}, contradiction. So (B : £ < 0)
is a sequence of # pairwise disjoint members of (Jx[\])*, contradiction.

2) The proof is similar to the proof of 1.13(4), using 2.9(1) instead 1.12 (and a from

2.5(1) if A > 6 or 2.5(2) if A =67T). Lao

We note also (but shall not use):
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2.10 Claim. Suppose (x) of 1.9 and

(@) fo €TIN for a < X\, A € pcf(N) and f = (fo : a0 < A) is <J_\[n-increasing

(b) f obeys a continuously on S*, where a is a continuity condition for (.S,0)

and A = sup(S) (hence A > 6 by the last phrase of 2.3(1))

(¢) J is an ideal on k extending Jox[A], and (fo/J : a < X) is cofinal in
(I, <g) (.6 J = Jox [N + (5 B), B € Jea N\ Jea X))

(d) (fl,:a <) satisfies (a), (b) above

() fo < fl forae X\ S* (alternatively: (f., : a < \) satisfies (c))

(f) if 0 € S* then J is cf(d)-indecomposable (i.e., if (Ac : e < cf(d)) is a
C-increasing sequence of members, of J then U Ac € J).

e< cf(9)
Then:

(A) the set
{6 <X: if 6 € S* and otp(as) = 0 then f5 = fs mod J}

contains a club of A
(B) the set

{6 <X:iifaeS and § =sup(d Nay) and otp(aNas) =6
then fina; = fanas mod J}

contains a club of \.

Proof. We concentrate on proving (A).
Suppose § € S*, and fs # f; mod J. Let

Ay ={i <r: fs(i) < f5(i)}

AQ’(S = {Z < K: f(s(l) > fé(l)}

So A1 s U Ags € JT, suppose first A; 5 € J7. By Definition 2.3(2A), for every
i € Ay for every large enough a € as, fs(i) < fl(i), say for a € as \ Bi. As
J is cf(d)-indecomposable for some 8 < « we have {i < k : 3; < 8} € Jt so
fs 1 A1s < fz 1 A1 (and B < 6). Now by clause (c), £ =: {§ < A: for every 8 < §
we have fé < fs mod J} is a club of A\, and so we have proved
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5EE$A1,5EJ.

If /\ fo < f (first possibility in clause (e)) also As s € J hence for no 6 € S*NE

a<
do we have fs # fs mod J. If the second possibility of clause (e) holds, we can
interchange f, f’ hence [0 € E = Ay s € J] and we are done. Oy 10

We now return to investigating the J,[)], first without using continuity conditions.

2.11 Lemma. Suppose (x) of 1.9 and X\ = cf(A\) € pcf()). Then A is semi normal
for \.

Proof. We assume \ is not semi normal for A\ and eventually get a contradiction.
Note that by our assumption (IL\, <j) is #F-directed hence A\ > min pecfr(\) > 67
(by 1.5(4)(v)) hence let us define by induction on & < 6, f¢ = (f5 : a < \), B¢ and
D¢ such that:

(1)(i) f§ € TIA
(i) @ < B< A= f§ < f5 mod Jo[A
(iii) a <X & €< 0= 5<% mod Joy[)
(iv) for ( <& <@and a < \: f§ [Azgfg [ Af
(II)(i) D¢ is an ultrafilter on & such that: cf(IIA\/D¢) = A
(ii) (fS$/D¢ : o < A) is not cofinal in TI\/Dg
(iii) (f$T1/Dg¢ : o < A) is increasing and cofinal in IIA/Dg¢; moreover
(iii)* B¢ € D¢ and (f5+! 1 o < \) is increasing and cofinal in TIN/(Jz[A] + (K \
Be))
(1v) f§+1/D£ is above {f5/D¢ : a < A}

For £ = 0: No problem. [Use 1.13(1)+(4)].

For ¢ limit < 0: Let g5 € I\ be defined by g5 (i) = sup{f5(i) : ¢ < &} for i € Af
and f5(i) = 0 else, (remember that x \ Af € I"). Then choose by induction on
a < A, f§ € I\ such that g§ < f§ and 8 < a = fg < fo mod Jox[)\]. This is
possible by 1.9 and clearly the requirements (I)(i),(ii),(iv) are satisfied.

Use 2.2(1) to find an appropriate D¢ (i.e.. satisfying II(i)-+(ii)). Now (f§:a < \)
and D¢ are as required.
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For ¢ = 6: Choose f? by induction of « satisfying 1(i), (ii), (iii) (possible by 1.9).

For £ = (4 1: Use 1.11 to choose B¢ € D¢ N Jea[A]\ Jea[A]. Let (g5 : oo < A) be
cofinal in (IIA, <p, ) and even in (II\, <;_{5)4(x\B,)) and without loss of generality
Nacr 1$/De < gg/DC and /\ S I Ag < g5 | Af. We get (f§ : @ < \) increasing
a<A

and cofinal mod (J<A[A] + (k \ Be)) such that g§ < f§ by 1.9 from (g5 : @ < \).
Then get D¢ as in the case “§ limit”.

So we have defined the f§’s and D¢’s. Now for each £ < 6 we apply (II) (iii)*
for (fSt1:a < A), (f¢:a < A). We get a club C¢ of A such that:

(%) a<BEC:e= flBe<f57 [ Be mod Jo\[)]

So C =: ﬂ C¢ is a club of A\. By 2.2(1) applied to (ff : & < A) (and the assumption
£<o
“) is not semi-normal for \”) there is g € I\ such that

(%) -9 < f2 mod Jy[A] for a < X

by 1.9 without loss of generality

(*)2 F$ < g mod Jox[A for € < 6

For each £ < 0, by II (iii), (iii)* for some ag < A we have

(%)3 §<0=g1]Be <[5 1 Be mod Joa[)]

Let a(*) = supg g a¢, 0 a(x) < A and so

(%)4 §<0=g1Be<f5l) 1 Be mod Jox[A

For ¢ < 0, let Bf = {i € A : g(i) < fg(*)@)}. By ()4, clearly 8¢,; C B¢ mod

J<a[Al, but B¢ € De by (IT)(i)" hence Bf,; € Dg; by (IT)(iv)+(*)2 we know
B ¢ Dg, hence Bf # Bf,; mod D¢ hence Bf # Bf,; mod Jx [\
On the other hand by (I)(iv) for each ¢ < 6 we have (B N Af : £ < () is C-

increasing and (as A7 = k mod J<x[A] for each ¢ < 6) we have (Bg/I*: £ < 0) is

C-increasing, and by the previous sentence Bf # B, mod J<)[A] hence (B /I* :
£ < 0) is strictly C-increasing. Together clearl;i (Bigt NAF \Bf 1§ <0)isa

sequence of 6 pairwise disjoint members of (J<x[A])", hence of (I*)"; contradiction
to 0 > wsat(I*). Lo
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2.12 Definition. 1) We say B = (B) : A € ¢) is a generating sequence for X if:

(i) By C k and ¢ C pef(N)

(ZZ) JS)\[)\] = J<,\[)\] + B, for each \ € c.

2) We call B = (B, : A € ¢) smooth if:
1€ By & \; €c= By, C B,.
3) We call B = (B, : A € Rang())) closed if for each A
ByD{i<r:\ € pcf(A] By)}.

4) We call B = (By : A € ¢) full when ¢ = pcf()).

2.13 Fact. Assume () of 1.9. B
1) Suppose ¢ C pcf(A), B = (B, : A € ¢) is a generating sequence for A, and B C k.
If pcf(A [ B) C ¢ then for some finite 0 C ¢, B C U B, mod I*.

HED

2.14 Remark. For another proof of 2.13(2) see 2.17(2) + 2.17(4) and for another
use of the proof of 2.13(2) see 2.19(1).

Proof. 1) If not, then I = I* + {B N U B, : 0 C ¢, 0 finite} is a family of subsets
HeD
of k, closed under union, B ¢ I, hence there is an ultrafilter D on & disjoint from I

to which B belongs. Let p =: cf(H \;/D); necessarily i € pcf(X | B), hence by
1<K

the last assumption of 2.13(1) we have p € ¢. By 1.13(2) we know B,, € D hence

BN B, € D, contradicting the choice of D.

2.15 Claim. 1) cf (TIN/I*) = maz pcf(N).

2) The case 0 = Nq is trivial (as wsat(I*) < Vo implies P(k)/I* is a Boolean
algebra satisfying the Rg-c.c. (as here we can substract) hence this Boolean algebra
is finite hence also pcf()) is finite) so we assume 0 > Ny.

For B € (I*)* let \(B) = maz pcfr-1g(\ | B).
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We prove by induction on X that for every B € (I*)T, cf(IIX\, <7«4 (0 5)) = A(B)

when A(B) < A; this will suffice (use B = k and A = |H)\1]+) Given B let
1<K

A = A\(B), by renaming without loss of generality B = . By 1.14, pcf(II\) has a
last element, necessarily it is A =: N(B). Let (fo : o < A) be <;_ 5 increasing
cofinal in TIN/J<x[N], it clearly exemplifies max pef(\) < cf(l:IX/I*). Let us prove
the other inequality. For A € J<x[A] \ I* choose Fa C IIX which is cofinal in
IIN/(I*+ (k\ A)), |Fal = AM(A) < X (exists by the induction hypothesis). Let x be a
large enough regular, and we now choose by induction on € < 6, N, g such that:

—~

N, : e < 0) is increasing continuous

{e:e < A+1} C Ny, {\I*} € Ny, {fa : @ <)) € Ny and the function
A+ Fy belongs to Ny

(B)(i) g € I and g € Noy1
(ii) for no f € N.NTI\ do we have g. <r- f
(131) ¢ <e & A > el = gc(i) < g=(i).

There is no problem to define N, and if we cannot choose g. this means that N.NII\
exemplifies cf(TI\, <) < X as required. So assume (N, g. : € < ) is defined. For

each € < 0 for some a(e) < A, ge < fae) mod Jox[A] hence afe) < a < A =

9e <j_\p fa- As A= cf(A) > 0, we can choose a < X such that a > U ae).

<0
Let Be = {i < k1 g=(i) > fa(i)}; so for each & < 6 we have (B: N Af 1 & < §)
is increasing with ¢, (by clause (B)(iii)), hence as usual as 6 > wsat(I*) (and
0 > Vo) we can find e(x) < 0 such that N\, Bo(x)4n = Bexy mod I* [why do we
not demand ¢ € (¢(x),0) = B. = B,y mod I*? as 0 may be singular]. Now as
Ge(x) € Ney+1 and fo € No < N4 clearly, by its definition, B.(s) € Ne(x)41
hence Fp,_,, € Ne(x)41. Now:

Ge(%)+1 [ ('% \ Bs(*)) =I* Je(x)+1 f ("f \ Bs(*)—l—l) < foc f (K' \ Bs(*)+1)
=1 fa | (K\ Be(x))-

[Why first equality and last equality? As Be(w41 = Bex) mod I, why the < in
the middle? By the definition of Be(s)+1].
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But ge(s)41 | Bex) € H Xi, and By € JaalN as go < fae) < fa
1€ B (x)

mod J_x[\] so for some f € Fp e C I\ we have gewy+1 | Bewy < f | Beg
mod I*. By the last two sentences

(+) Je(x)+1 < max{f, fo} mod I*

Now fa € Ne(*)—|—1 and f € NE(*)+1 (GS f € FBE(*);
the function B — F'g belongs to No < N.(x)41 and Be(y) € Ne(x)+1 05 {ge(x), fa)} €
Ne(x)+1) so together

(**) ma:z:{f, fa} € Ns(*)+1;

But (x), (xx) together contradict the choice of go(x)4+1 (i.e., clause (B)(ii)). Og 15
—> scite{ 2.10A} ambiguous

2.16 Definition. 1) We say that I* satisfies the pcf-th for (the regular) (), ) if:

(a) TIN/I* is 6-directed and
(b) for every A € pcfr (), (IT\, <j_,p) 18 A-directed and
(¢) we can find (By : A € pcfr-(N)), such that:
®g (a) By Ck,
(B) JaxM\I*) =TI +{B,: peAn pcfr« (N},
(v)  Bx ¢ Jaa[A,I*] and

(6) TI(A | Bx)/J<a[A I*] has true cofinality A (so By € J<a[A]'\
J<)\[/\] and JS)\[/\] J<)\[/\] + B,\).

1A) We say that I* satisfies the weak pcf-th for (A, 0) if:

(a) (I\, <7-) is O-directed
(b) (I, <J_y)) is A-directed for each A € pcf;- (\)
(¢) there are By o C k for a < A € pefr+(A) such that
(@) a<B<upée pef«(N) = By C B,g mod _J<H[5\,I*]
(B) JaxN|=I* +{Bua:a<p<p€ pefr-(N)} and
y < 51) 1s A-directed an
(v) (TIX, <j_,p5) is A-di d and
(6) (X ] Bpu.a), <j_,[n) has true cofinality A.
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1B) We say that I* satisfies the weaker pcf-th for (), 0) if:

(a) (IIA, <r+) is O-directed
(b) each (IL\, <j_,[r) is A-directed

(¢) for any ultrafilter D on x disjoint to Jg[A] letting A = tcf(IIN, <p) we
have: A > 0 and for some B € D N J<x[A] \ J<a[A], the partial order
(IL(A T B), <,_,[x) has true cofinality A.

1C) We say that I* satisfies the weakest pcf-th for (X, 0) if:

(a) (II\, <p+) is O-directed and
(b) (I, <J_y3)) is A-directed for any A > 6.

1D) Above we write A instead (A, #) when we mean

0 = max{0 : (II\, <;-) is O-directed}.

2) We say that I* satisfies the pcf-th for # if for any regular A such that lim
infr«(\) > 0, we have: I* satisfies the pcf-th every for \. We say that I* satisfies
the pcf-th above p if it satisfies the pef-th for A with lim inf7«(\) > p. Similarly
(in both cases) for the weak pcf-th and the weaker pcf-th.

3) Given I*, 6 let

JPY—{ACKk:AeTI*or A¢ I* and I* + (r\ A) satisfies the pcf-theorem for 6}.

Jyt = {ACk:wsat(I* | A) <fOor AeI*}

similarly J3P"; we may write J#[I*]. )
4) We say that I* satisfies the pseudo pcf-th for A if for every ideal I on x extending
I*, for some A € I'™ we have (II(\ | A), <;) has a true cofinality.
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2.17 Claim. 1) If (%) of 1.9 then I* satisfies the weak pcf-th for (\,07).

2) If () of 1.9 holds, and TIN/I* is 67T -directed (e.g., F < min \) or just there
is a continuity condition for (0,0)) then I* satisfies the pcf-th for (X, 07).

8) If I* satisfy the pcf-th for (X, 0) then I* satisfy the weak pcf-th for (X,0) which
implies that I* satisfies the weaker pcf-th for (X, 0), which implies that I* satisfies
the weakest pcf-th for (X, 0).

Proof. 1) Let appropriate A be given. By 1.9, 1.13 most demands holds, but we
are left with normality. By 2.11, if A € pcf()), then X is semi normal for A\. This
finishing the proof of (1).

2) Let A € pcf(A) and let f, B be as in 2.2(4). By 2.5(1)+(2) there is @, a (), 0)-
continuity condition; by 2.7(1) without loss of generality f obeys a, by 2.9(1) the
relevant B, /I* are eventually constant which suffices by 2.2(2).

3) Should be clear. Os 17

2.18 Claim. Assume (II\, <) is given (but possibly () of 1.9 fails).

1) If I*, X satisfies (the conclusions of) 1.11, then I*, ) satisfy (the conclusion of)
1.13(1), 1.13(2), 1.15(3), 1.13(4), 1.14.

1A) If I* satisfies the weaker pcf-th for \ then they satisfy the conclusion of 1.11
(and 1.9).

2) If I*, X satisfies (the conclusion of) 1.9 then I*, X satisfies (the conclusion of)
1.15.

2A) If I* satisfies the weakest pcf-th for X then I*, X satisfy the conclusion of 1.9.

3) If I*, X satisfies 1.9, 1.11 then I*, X satisfies 2.2(1) (for 2.2(2) - no assumptions).

4) If I*, X satisfies 1.13(1), 1.13(2) then I*, ) satisfies 2.2(3).

5) If I*, X satisfies 1.13(2) then I*, X satisfies 2.13(1).

6) If I* X\ satisfy 1.13(1) + 1.13(3)(i) then I*, \ satisfies 1.13(2).

7) If I*, X satisfies 1.13(1) + 1.13(2) and is semi normal then 2.13(2) holds, i.e.,

cf (A, <7+) < sup pefy. (A).

Proof. 1) We prove by parts.

Proof of 1.13(2). Let A = tcf(II\/D); by the definition of pcf, DNJ-x[A] = 0. Also

by 1.11 for some B € D we have A = tcf(II(A [ B),<;_,[5]), so by the previous

sentence B ¢ J.»[A], and by 1.8(5) we have B € J<,[A], together we finish.

Proof of 1.13(1). Repeat the proof of 1.13(1) replacing the use of 1.9 by 1.13(2).
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Proof of 1.8(3)(i). Let J =: |J J<pu[A], so J C Jca[A] is an ideal because (J<,[A] :
RN

p < A) is C-increasing (by 1.8(2)), if equality fail choose B € J-»[\]\ J and choose
D an ultrafilter on x disjoint to J to which B belongs. Now if u = cf(u) < A then
pt < X (as X is a limit cardinal) and p = cf(p) & pt < X = DNJc,[)\ =
D N J.,+[A] = 0 hence by 1.13(2) we have p # cf(IIA/D). Also if p = cf(p) > A
then DN Jc,[A\] € DN Jcy[A] = 0 hence by 1.13(2) we have pu # cf(IT\/D).
Together contradiction by 1.5(7).

Proof of 1.13(3)(ii). Follows.
Proof of 1.13(4). Follows.

Proof of 1.14. As in 1.14.

1) Check.

2) Read the proof of 1.15.

2A) Check.

3) The direction = is proved directly as in the proof of 2.2(1) (where the use of
1.13(1) is justified by 2.18(1)).

So let us deal with the direction <=. So assume f = (f, : @ < A) is a sequence
of members of []JA which is < J_a[-increasing such that for every ultrafilter D
on r disjoint to J-z[\] we have: A = tcf(II\, <p) iff f is unbounded (equiva-
lently cofinal) in (II\, <p). By (the conclusion of) 1.9 without loss of generality f
is <j_,[p-increasing, and let

J={ACk:A€ J\[A or fis cofinal in (TL\, <o a4\ A) )

Clearly J is an ideal on & (by 1.5(2)(v)), and J<x[A] € J C J<a[A]. If J # Joa[A
choose A € J<x[\]\ J and an ultrafilter D on x disjoint to J to which A belongs.
By (the conclusion of) 1.11, there is A € J N D; contradiction, so actually
J = J<x[A. By 1.9 there is g € II\ such that f, < g mod J<)[)] for each a < A,
and let B, =: {i < k: g(i) < fa(i)}. Hence B, € J<[\] (by the previous sentence)
and (By/J<A[A\] @ @ < A) is C-increasing (as (fo : o < \) is <j_,[-increasing).
Lastly if B € J<a[A], but B\ B, ¢ J<[A] for each a@ < A, let D be an ultrafilter
on k disjoint to Jx[A] + {Ba : @ < A} but to which B belongs, so tcf(IT\, gp) = A
(by 1.13(3) which holds by 2.17(1)) but {f./D : a < A} is bounded by g/D (as
fa/D < g/D by the definition of B,), contradiction. So the sequence (B, : a < \)
is as required.
4) — 6) Left to the reader.
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7) For A € pcf()\) let (B3 : i < A) be such that J<x[\] = Joa[N + {B} : i < A}
(exists by semi-normality; we use only this equality). Let (2% : e < A) be cofinal
in (ITI(X | B{\),<JYA[;\]), it exists by 1.13(1). Let F be the closure of {f} : a <
A\, i < A\ A€ pef(M\)}, under the operation max{g, h}. Clearly |F| < sup pcf()), so
it suffice to prove that F is a cover of (J[]A, <r). Let g € I\, if (3f € F)(g < f)

we are done, if not
I={AU{i<k:f(i)>gl)}: feFAcI"}

is Ng-directed, k ¢ I, so there is an ultrafilter D on k disjoint to I, (so f € F =
g <p f) and let A = tcf(ILN/D), so by 1.13(2) we have D N J<x[A]\ J<a[A] # 0,
hence for some 7 < A, BZ?‘ € D, and we get contradiction to the choice of the
{f(i\’a Ta< /\} (g F) (o 18

2.19 Claim. If I* satisfies pseudo pct-th then

(1) cf(TII\, <7+) = sup pefy (A)

(2) We can find ((J¢,0¢) : ¢ < ¥), ¢* a successor ordinal such that Jo = I*,
Jeyr = {A C k: if A& Je then tef(II(N | A),<;.) = 0¢ and for no
A€ (Jo)t does (IL(A | A), <y.) has true cofinality which is < 6¢}

(3) If I* satisfies the weaker pcf-th for X then I* satisfies the pseudo pcf-th for
A.

Proof. 1) Similar to the proof of 2.13(2).
2) Check (we can also present those ideals in other ways).
3) Check. U219
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§3 REDUCED PRODUCTS OF CARDINALS

We characterize here the cardinalities H Xi/D and Tp((\; : i < k)) using pct’s
<K

and the amount of regularity of D (in 3.1 - 3.4). Later we give sufficient conditions
for the existence of <p-lub or <p-eub. Remember the old result of Kanamori
[Kn| and Ketonen [Kt]: for D an ultrafilter the sequence (/D : o < k) (i.e., the
constant functions) has a <p-lub if reg(D) < k; and see [Sh:g, II1,3.3] (for filters).
Then we turn to depth of ultraproducts of Boolean algebras.

The questions we would like to answer are (restricting ourselves to “\; > 2%” or
“A\; > 22" and D an ultrafilter on x will be good enough).

Question A: What can be Carp =: {H Xi/D : \; a cardinal for i < k}, i.e.,
1<K
characterize it by properties of D; (or at least Cardp \ 2%) (for D a filter also
{TD(H i)+ A; a cardinal for i < k is natural).
1<K

Question B: What can be DEPTH, = {Depth+(H i/ D) : \; aregular cardinal}
1<K
(at least DEPTH, \ 2%, see Definition 3.21).

If D is an Nj-complete ultrafilter, the answer is clear. For D a regular ultrafilter
on K, \; > Ny the answer to question A is known ([\CK ]) in fact it was the reason for
defining “regularity of filters” (for \; < X¢ see [Sh 7], [Sh:a, VI,§3,Th. 3.12,pp.357-
370] better [Sh:c, VI,§3] and Koppleberg [Ko].) For D a regular ultrafilter on &, the
answer to the question is essentially completed in 3.25(1), the remaining problem
can be answered by pp (see [Sh:g]) except the restriction (Vo < \)(|a|R < A),
which can be removed if the cov = pp problem is completed (see [Sh:g, AG]). So
the problem is for the other ultrafilters D, on which we give a reasonable amount on
information translating to a pcf problem, sometimes depending on the pcf theorem.

3.1 Definition. 1) For a filter D let reg(D) = Min{f : D is not #-regular} (see
below).

2) A filter D is f-regular if there are A, € D for € < 6 such that the intersection of
any infinitely many A.-s’ is empty.

3) For a filter D let

reg.(D) = Min{# : there are no A. € D for ¢ < 6 such that

no i < k belongs to infinitely many A.’s}
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and

regg (D) =: {0 : there are no A, € D7 for & < 6 such that :
e<(=A:CA. mod Dandnoi <~k
belongs to infinitely many A.’s}.

4) reg?(D) = min{f : D is not (0, 0)-regular} where “D is (0, 0)-regular” means
that there are A, € D for a < 6 such that the intersection of any o of them is
empty.

Lastly, reg? (D), regZ (D) are defined similarly using A. € D*. Of course, reg(I),
etc., means reg(D) where D is the dual filter.

3.2 Definition. 1) Let

htefp , (Iy;) = sup{tcf(H Ni/D) i < \j = cf\; <, for i < k and
1<K

tef(TIN; /D) is well defined}

and

thD,M(H vi) = sup{cf(II\; /D) : p < X\; = cf\; < v}
1<K
if © = Ny we may omit it.
2) For E a family of filters on  let hcfE,u(H a;) be
1<K

sup{tcf(H Ai/D):D € Eand p < \; = cf\; < for i < k and
1<K
tef(J ] Ai/D) is well defined}.

1<K

Similarly for hefg , (using cf instead of tcf).

3) hcf}*’lu(H «;) is hcfE,u(H «;) for E = {D' : D" a filter on x extending D}.
1<K 1<K

Similarly for htefy, ,.

4) When we write I, e.g., in hefr ,, we mean hefp ,, where D is the dual filter.
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3.3 Claim. 1) reg(D) is always regular.

2) If 0 < reg, (D) then some filter extending D is 0-regular.

3) wsat(D) < reg, (D).

4) reg(D) < regg (D) < reg, (D).

5) reg. (D) = min{0: no ultrafilter D1 on k extending D is 0-regqular}.
6) If D C E are filters on k then:

(a) reg(D) < reg(E)
(b) reg.(D) = reg.(E).

Proof. Should be clear. E.g.

2) Let (ue : &€ < 0) list the finite subsets of 0, and let {A. : ¢ < 8} C DT exemplify
“0 < reg.(D)”. Now let D* =: {A C k: for some finite u C 0, for every ¢ < 0 we
have: v C u. = A. € A mod D}, and let A7 = (J{A¢ : € € u¢}. Now D* is a
filter on k extending D and for € < 6 we have AZ € D.

Finally, the intersection of AZ N Az N... for distinct &, < 6 is empty, because
for any memeber j of it we can find ¢, < 6 such that j € A¢, and ¢,, € u¢,. Now if
{¢n : m < w} is infinite then there is no such j by the choice of (A : € < 0), and if
{¢n : n < w} is finite then without loss of generality /\ (n = (o contradicting “u¢,

nw
is finite” as /\ En € U, - L33

n<w

3.4 Observation. Ai/I| > |NG/I| holds when i > No.
0

1<K <K

3.5 Observation. 1) | H Ni/I| > htcff(H Ai)-
<K 1<K
2) If I* satisfies the pcf-th for \ or even the weaker pcf-th or even the pseudo pcf-th
for A (see Definition 2.16) then: cf(IIA/I*) = max pcfr-(N).
3) If I'* satisfies the pcf-th for p for and min(\) > p then

hefp ,, (TIA) = hcfau(l'[;\) = htcfj})’u(l'[j\)
whenever D is disjoint to I*.

4) hefp ([ [ A0) = hefy (T2

1<K 1<K
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5) [ [ Ai/I = hefr (] A) = hefi (] ) > htef; (]| M) and hefy o (] Xo) >
i<k 1<K 1<K 1<K 1<K
htefy, (T M)

1<K
3.6 Remark. In 3.5(3) concerning htcfp , see 3.13.

Proof. 1) By the definition of htcf} it suffices to show | H Ni/I| > tef(TIN, /1),
1<K
when I’ is an ideal on x extending I, \; = cf\; < \; for i < k and tcf(H /T
1<K
is well defined. Now | [T Ai/I| > | [[ Xi/I1 = [ [ M/T'| = cf(TIX;/T'), so we have
1<K <K 1<K
finished.
2) By 2.18(1) and 1.14 and 2.19.
3) Left to the reader (see Definition 2.16(2)).
4), 5) Check. Us.s

3.7 Claim. If A\ = |H)‘Z/I| (and \; > R and, of course, I an ideal on k) and
1<K

0 < reg(I) then A\ = \°.

Proof. For each i < k, let (n}, : « < A;) list the finite sequences from A;. Let

M; = (\i, Fy, G;) where Fy(a) =1g(n,), Gi(a, B) is ng,(8) if 8 < Lg(nz,) (= Fi(a)),

and F(a, ) = 0 otherwise; let M = HMZ/I so |M| = |[IIN;/I| and let M =
1<K

(ITX; /I, F,G). Let (A; : i < 0) exemplifies [ is f-regular. Now

(%)1 Wecanfind f € "wand f. € Hf(z) fore < @suchthat: e < (< 0= f. <;
1<K
fe [just for ¢ < Kk let w; = {e < 0 :i € A.}, it is finite and let f(i) = |w;]|
and f.(7) = |e Nw;| < f(3), and note ¢ < (&i € A. N Ar = f-(i) < fe(7)].

()2 For every sequence g = (gc : € < ) of members of H Ai, there is h € H i
1<K <K
such that e <0 = M E F(h/1I, f./I) = g:/1.
[Why? Let, in the notation of (x)1, h(z) be such that 77;1(1‘) = (g:(1) : € € wy)
(in the natural order).]
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So in M, every 6-sequence of members is coded by at least one member so ||M||® =

| M ||, but [|M] = | H Ai/I| hence we have proved 3.7. Os 7
1<K

3.8 Fact. 1) For D a filter on s, (A1, A2) a partition of x and (non zero) cardinals
A; for i < k we have

T 2/Dl= T[N/ (D + A x| ] X/ (D + Ag)]

1<K 1<K 1<K

(note: | [J Ai/2 (k)| =1).
1<K
2) DM = {AC k| H Xi/(D+(k\ A))| < p} is a filter on x (p an infinite cardinal
1<K
of course) and if Ny < p < H \i/D then DM is a proper filter.
1<K

3) If A < |H)\¢/I|, ()\; infinite, of course, I an ideal on x) and A € IT =
1<K
| T] 2i/I1 = X and o < regg(I) then [TIX;/I| > A7,

i€A

Proof. Check (part (3) is like 3.7).

3.9 Claim. If D C E are filters on k then

[TTA/Dr< 1] 2/El +A:%pD| [T /(D + (\ 4))] + (2°/D) + Ro.

1<K 1<K 1<K

We can replace 2% /D by | 2| if & is a maximal subset of E such that A #+# B €
P = (A\B)U(B\ A)#0 mod D.

Proof. Think.
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3.10 Lemma. | H Ai/D| < (0”“/D+hch79(H i)=Y (see Definition 3.2(1)) pro-
1<K 1<K
vided that:

(%) 0 > regg, (D)

8.11 Remark. 1) If § = 6], we can replace 0%/D by 65/D. In general we can
replace 6% /D by sup{H f@)/D: febr}.

1<k
2) If D satisfies the pcf-th above 6 (see 2.16(1A), 2.17(2)) then by 3.5(3) we can
use htcf* (sometime even htcf, see 3.13). But by 3.8(1) we can ignore the \; < 0,
and when i < 2 = \; > 0 we know that 1.9(*)(«) holds by 3.3(3).

Proof. Let A = 0%/D + hefpo(J] M) Let for ¢ < 0, pe = AU ie, pe =
1<K
(0%/D + hcfp g HN)'Q’ clearly pe = ,u'cq. Let x = Js(sup,., \i)" and N¢ <
1<K
(A(X), €, <%) be such that ||[N¢|| = pc, NSIUC N, A+1C N and {D, (A; i <
K)} € Ne and [e < ¢ = N. < N¢J. Let N = U{N; : ¢ < 6}. Let g* € [J Ai and
1<K
we shall find f € N such that ¢g* = f mod D, this will suffice. We shall choose by
induction on ¢ < 0, f¢(e < 3) and AS such that:

(a) fee [T +1)
1<K
(b) fg € NC and f§2 S N<
(¢) AS=(AS:i<k)e N,
(d) \i € Ag C A+ 1, |Af| < [¢| 41, and (A : ¢ < 6) is increasing continuous
(in ¢)
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So assume everything is defined for every e < (. If ( =0, let Ag = {\;}, if ¢ limit
Ag = UE<C A, for ( =e+1, Ag will be defined in stage €. So arriving to ¢, AS is
well defined and it belongs to N¢: for ¢ = 0 check, for ¢ = e+1, done in stage ¢, for ¢
limit it belongs to N as we have Nfld C N¢eand § < ¢ = N¢ < N¢. Now use clause
(e) to define f2/D. As (A§ :i < k) € N¢, |Af| < 0 and 60%/D <X < A+1C N,
clearly ]H |A$|/D| < X hence {f/D : f € HAf} C N¢ hence f2/D € N¢ hence
1<K 1<K

there is fé € N¢ such that f<1 € fg/D i.e. clause (f) holds. As g* < fg clearly
g* < ft mod D, let ys = {z < K :gti) > flE)}, Y = {i < k:i ¢y and
cf(fgl(i)) < 0} and y2 A yO \yl So (yS : e < 3) is a partition of x and g* < fé
mod (D + y¢) for e =1, 2.

Let y§ = {i < k : Cf(fcl(z)) > 6} so fC1 € N¢, and 0 € N¢ hence Y5 e N¢, so

(I 1) s <piys) € Ne. Now

1<K

([ 12, <pyye) < hefpy e ([T A) < hefpa([[A) SA<A+1C N

1<K 1<K 1<K

hence there is F' € N¢, |[F| <\, F C H fC ) such that:

zEyi

Vg)lge [ fi6) = Gf e F)(g < f mod (D +y})))).

z€y4

As A+ 1 C N necessarily F' C N¢. Apply the property of F' to (g | yg) U O(K\yg)
2

and get ff € FF C N such that ¢g* < ff mod (D + yg) Now use similarly
H cf(fcl(z))/(D +45) < |0%/D| < X; by the proof of 3.8(1) there is a function
1<K

fg € Ne N Hfé(z) such that ¢g* | (yf + yg) < fg mod D. Let Ag“ be: Af if

1<K
i € yg and Af U {fg(z)} if i € y$ UyS.
It is easy to check clauses (g), (h). So we have carried the definition.

Let

Xe=:{i<r:fQ(0) < f2(i)}.

Note that by the choice of fcl7 f41+1 we know X = yf Uyg mod D, if this last set is
not D-positive then g* > fg mod D, hence g*/D = fé/D € N¢, contradiction, so
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y$ UyS # 0 mod D hence X e DT, Also (y$ UyS : ¢ < ) is C-decreasing hence
(X¢/D : ¢ < 0) is C-decreasing.

Alsoifi € X¢, NX¢, and i < ¢ then f& (1) < f§1+1(i) < fgl (i) (first inequality:
as A§1+1 C A? and clause (e) above, second inequality by the definition of X, ),
hence for each ordinal i the set {( < 6 : i € X/} is finite. So 6 < regg(D),
contradiction to the assumption (). Us.10

Note we can conclude

3.12 Claim.

H \i/D = sup{( H f(i))<rese(D1) 4 thDl(H Ai)<reee (DY) 2 Dy s a filter on
1<K 1<K 1<K

k extending D such that

AeDf = [[N/(Dr+A) = [[Ai/D1 and f €07, f(i) < A}

1<K 1<K

Proof. The inequality > should be clear by 3.8(3). For the other direction let u

be the right side cardinality and let D; = {k \ A: if A € D" then H Ni/D < u},
1<K
so we know by 3.8(2) that D; is a filter on x extending D. Now u > Ro"/D (by
the term (H f(i)/Dy)<re&2(P1)) 50 by 3.9 we have H Ai/D1 > p. By 3.10 (see
i 1<K
3.11(1)) we get a contradiction. Os.12

Next we deal with existence of <p-eub.

3.13 Claim. 1) Assume D a filter on k, g} € *Ord for a <6, g* = (g : a < 9)
158 < p-increasing, and

(%) cf(6) > 0 > reg, (D).

Then at least one of the following holds:

(A) (g} : a <) has a <p-eub g € "Ord; moreover, § < lim infp(cf[g(i)] : i <
K)
(B) cf(d) = reg, (D)
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(C) for some club C of § and some 01 < 6 and ~; < 0 and w; C Ord of order
type v; for i < K, there are f, € Hwi (for a € C) such that f,(i) =
1<K
min(w; \ g4(7)) anda € C & feC & a<f=fo<p fs & —fa =D
fs & ~fa<p g} & g4 < fa

2) In (C) above if for simplicity D is an ultrafilter we can find w; C Ord, otp(w;) =
Yis (ag 1 & < cf(0)) increasing continuous with limit 0, and he € Hwi such that
1<K
fa. <D he <D fa..,, moreover, /\ v < Ww.
1<K

Proof. 1) Let 0 = reg,(D). We try to choose by induction on ¢ < o, g¢, fa,c (for
a < §), AS, a¢ such that:

(a) AS = (AS:i<k)

(0) Af = {fac(i),9¢(i) 1 & < G U{[supaes g5(i)] + 1}

(€) facli)= Mm(Ag \ g(1)) (and fq,c € "Ord, of course)
)

(d) o is the first a, U a. < a < dsuch that [ € [a,d) = fa,c = fa,c mod D]
e<(¢
if there is one
(€) 9¢ < fac,c; moreover, gc < max{fa, ¢, 1x} but for no o < § do we have
gc <max{g},1} mod D

Let ¢* be the first for which they are not defined (so (* < o).
Note

(*) €< 6 < C* & Qe S a < 5:>fa6,5 =D fa,s & foz,ﬁ S foz,s & fa,£ 7éD fa,s-

[Why last phrase? applying clause (e) above, second phrase with «, € here standing
for v, ¢ there we get Ag =: {i < k : max{g%(i),1} < g.(i)} € DT and applying
clause (e) above first phrase with e here standing for ¢ there we get 41 = {i < k:
9e(?) < fae(i) or g-(1) =0 = fo (i)} € D, hence Ag N Ay € DT, and g-(7) > 0 for
i€ AgN Ay (even for i € Ap). Also by clause (c) above g (i) < g-(i) = fa,e(i) <

g=(i). Now by the last two sentences i € Ag N A1 = g2 (1) < g:(i) < fa (i) =

fa,e(i) < g:(i) < fa,c(7), together fo ¢ #p fa,e as required.]

Case A: (* =0 and U ae < 0.
(<o
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Let Oé(*) = U§<a g, for ¢ < o let Y¢ = {7’ < K: foz(*),((i) # fa(*),(—kl(i)} # 0
mod D. Now for i < &, {fa(s),c(7) : { < o) is non increasing so i belongs to finitely
many y¢’s only, so (yc : ¢ < o) contradict o > reg, (D).

Case B: (* =0 and U ac =90.
(<o

So possibility (B) of Claim 3.13 holds.

Case C: (* < o.
Still AS™ (i < k), fa,c+(a < §) are well defined.

Subcase C1: o« cannot be defined.
Then possibility C' of 3.13 holds (use w; =: Ag*, [ = fagetpc)-

Subcase C2: o~ can be defined.

Then fq. ¢« is a <p-eub of (g, : @ < J) as otherwise there is g¢+ as required in
clause (e). Now far ¢+ is almost as required in possibility (A) of Claim 3.13 only
the second phrase is missing. If for no 61 < 0, {i < s : cf[fa.. c(9)] < 01} € DY,
then possibility (A) holds.

So assume 0 < 6 and B =: {i < £ : Vg < cf[fa . ¢+ (7)] < 61} belongs to DT,
we shall try to prove that possibility (C) holds, thus finishing. Now we choose w;
for i < k: for i € k we let w) =: {fa.. c-(2), [sup g (i)] + 1}, for i € B let w; be

a<é

an unbounded subset of f, . ¢«(i) of order type cf[fs . ¢+(i)] and for i € x\ B let
wi =0, lastly let w; = w? Uw}, so |w;| < 0; as required in possibility (C). Define
fo € "Ord by fo(i) = min(w; \ g7 (i)) (by the choice of w? it is well defined). So
(fa : @ < 0) is <p-increasing; if for some a* < 9§, for every a € [a*,d) we have
fa/D = fox/D, we could define g¢« € “Ord by:

9o+ | B = for (which is < fo .. ¢+),

g¢+ [ (/i \ B) = OKZ\B'

Now g¢- is as required in clause (e) so we get contradiction to the choice of ¢*. So
there is no a* < § as above so for some club C of § we have o < € C = f, #p f3,
so we have actually proved possibility (C).

2) Easy (for /\'yi < w, without loss of generality § = reg.(D) but reg.(D) =

reg(D) so 01 < reg(D)). Us.13

3.14 Claim. 1) In 3.13(1), if A= = cf(\), g* obeys a (a as in 2.1), a a O-weak
(S, 0)-continually condition, S C X\ unbounded, then clause (C) of 3.13 implies:
(C) there are 01 < reg,(D) and A. € DT for e < 6 such that the intersection of
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any 07 of the sets A. is empty (equivalently i < k = (35%¢)[i € A.] (reminds
(0,07 )-regularity of ultrafilters).

2) We can in 3.13(1) weaken the assumption (x) to (x)" below if in the conclusion
we weaken clause (A) to (A) where

(x)" cf(d) > 6 > reg(D)
(A)' there is a <p-upper bound f of {g’ : o < &} such that
no f" <p f (of course f" € “Ord) is a <p-upper bound of {g’ : o < 6}
and 0 < lim infp(cf[f(i)] : i < k).

3) If g% € *Ord, (g% : a < ) is <p-increasing and f € "Ord satisfies (A)" above
and

()" cf(0) > wsat(D) and for some A € D for every i < k, cf(f(i)) > wsat(D)

then for some B € Dt we have H cf[f(9)]/(D + B) has true cofinality cf(d).

1<K
Remark. Compare with 2.9.

Proof. 1) By the choice of @ = (a, : @ < A) as C (in clause (c) of 3.14(1)) is a club
of A\, we can find 8 < A such that letting (a. : € < ) list {a € ag : otp(aNag) < 6}
(or just a subset of it) we have (ae, aey1) N C # (.

Let 7. € (@, aeq1) NC, and & € (e, ac41) be such that {a¢ : ( < e} C ag,
and as we can use (ag : £ < 0), without loss of generality £, < .. For { < 6 let
Be = {i < K fa (i) < fp (1) < fr.(1) < facy, (@) and sup{fa. (i) +1: & < (¢} <
Sup{ fa (1) +1: € < C+1}.

2) In the proof of 3.13 we replace clause (e) by

(€') g¢ < fae,c and for a < 0 we have f, < g; mod D.

3) By 1.13(1). Us.14

3.15 Claim. 1) Assume A = tcf(]] A/ D) and p = cf(u) < A then there is N <p A,
X a sequence of reqular cardinals and p = tcf(J[ N /D) provided that

(%) p > reg, (D), min(\) > reg‘f(D) whenever o < reg, (D)
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2) Let I* be the ideal dual to D, and assume (x) above. If (x)(a) of 1.9 holds and
w is semi-normal (for (A, I*)) then it is normal.

Proof.

Case 1 p < lim infp(N).
We let

\ - pwooif p < A
Sl ifa>Nn
and we are done.

Case 2: lim infp(A) > 6 > reg.(D), p > 0, and (Vo < reg.(D))[reg? (D) < 6.
Let 6 =: reg.(D). There is an unbounded S C p and an (S, #)-continuity system
a (see 2.5). As IIN/D has true cofinality A\, A > p clearly there are g} € II\ for

a < p such that g* = (¢ : @ < p) obeys a (exists as # < lim infp(N)).
Now if in claim 3.13(1) for g* possibility (A) holds, we are done. By 3.14(1) we
get that for some o < reg,(D),reg?(I) > u, contradiction.

Case 3: lim infp(A) > 6 reg. (D), p > 0, and (Vo < reg.(D))[reg? (D) < 6].
Like the proof of [Sh:g, Ch.II,1.5B] using the silly square.

x * *

We turn to other measures of II\/D.
3.16 Definition.
(a) TH(A) =sup{|F|: FCIIX and f, # fo € F = f1 #p fo}
(b)
TH(A) = Min{|F|:(i) F CII\
(i) fi#f€F = fi#pfo
(#47) F maximal under (¢) + (ii)}

(c) TA(N\) = Min{|F| : F C TI\ and for every f; € I\, for some f; € F we
have —f1 #p fa}

(d) ETE(N) = TEH(N) = TA(A) then let Tp(A\) = TH(N) for I < 3

(e) for f € *Ord and £ < 3 let TH(f) means TH({f(a) : a < K)).
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8.17 Theorem. 0) If Dy C D are filters on k then Tf, (X) < T} (X) for £ =0,2.
Also if k = AgUA1, Ag € DT, and Ay € DY then ThH(X) = min{Tf_ 4 (), ThH, 4, (A)}
for £ =0,2.

1) htefp (TIN) < TA(\) < TH(A) < TH(N).

2) If TO(N\) > L@(/ﬁ)/D| 07' ' just T0 2(A) > p, and P(k)/D satisfies the u*-c.c.
then TO( ) = TH(\) = T3()\) so the supremum in 3.16(a) is obtained (so, e.g.,
TO(N) > 2% suﬁice}

3) T (N)<ree(P) = TY(X) (each \; infinite of course).

4) ntefp [T £(0)) < TH(f) < [tefp [ £()]=5P) + wsat(D)"/D.

5)If D 2512’;1 ultrafilter |TIN/D| = Z?I{) fore < 2.
6) In (4), if /\ f(i) > 2% (or just (wsat(D) + 2)*/D < mmf( )), the second and
1<K

third terms are equal. B
7) If the sup in the definition of TS () is not obtained then it has cofinality > reg(D)
and even s reqular.

Proof. 0) Check. B B

1) First assume p =: T3(\) < htefp(ITIN\); then we can find p* = cf(u*) €

(u, htefp(JTA)] and i = {u; : i < k), a sequence of regular cardinals, /\ i < A
1<K

such that p* = tcf(llp/D) and let (f, : a < p*) exemplify this. Now let F

exemplify u = T3 (\), for each g € F let

. g(i) if g(i) < pi
"e i be g (i) =
g g,u g0) { 0 otherwise.

So there is a(g) < p* such that ¢’ <p fa(g). Let o* = sup{a(g) : g € F'}, now
a* < p* (as p* = cf(p*) > p=|F|). Sog € F = g #p far, contradiction. So
really T3/(A\) < htefp(IT\) as required.

If F exemplifies the value of T}h()), it also exemplifies T3 (A\) < |F| hence
T3(N) < ThH(N).

Lastly if F' exemplifies the value of T} (f) it also exemplifies T9(\) > |F|, so
TH(N) < TSN,
2) Let u be ]3”(;@)/D| or at least p is such that the Boolean algebra Z(k)/D
satisfies the pu-c.c. Assume that the desired conclusion fails so T3(\) < T (A), so
there is Fy C I\, such that [f1 # fao € Fy = f1 #p fo], and |[Fo| > T3 (\) + p (by
the definition of TD()\)) Also there is F, C T\ exemplifying the value of T3 ()).
For every f € Fy there is gf € F» such that -f #p g¢ (by the choice of F3).
As |Fy| > T3(\) + p for some g € Fy, F* =: {f € Fy : gy = g} has cardinality
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> T3(f)+u. Now for each f € F*let Ay = {i < r: f(i) = g(i)} clearly Ay € DT.
Now f — A;/D is a function from F* into &(k)/D, hence, if p = |2 (k)/D|, it is
not one to one (by cardinality consideration) so for some f’ # f” from F* (hence
form Fy) we have Ay /D = Aypv/D; but so

{i<r:f())=f"O}2{i<r:fi)=g@}n{i<r:f(i)=g()}=Ap/D

hence is # ) mod D, so ~f" #p f”, contradition the choice of Fy. If u # | (k) /D|
(as F™* C Fy by the choice of Fj) we have:

fiF#foe F"= A NA;, =0 modD

so {Af: f € F*} contradicts “the Boolean algebra Z?(k)/D satisfies the u*-c.c.”.
3) Assume that § < reg(D) and” p <t T9(\). As p <t TP(\) we can find
fo € I for a < p such that [a < 8 = fo #p fz]. Also (as 6 < reg(D)) we can
find {A. : € < 8} C D such that for every i < k the set w; =: {e <0 :7i € A.} is
finite. Now for every function h : § — p we define g, a function with domain k:

gn(1) ={(&, fn(e)(9) : € € wi}.

So {gn(i) : h € O} < ()Wl = \;, and if hy # hy are from ?u then for some ¢ < 6,
hl(e) # hQ(S) s0 By, hy, = {’L : fh1(€)<i) =+ fhz(g)(i)} € D that is By, hy N A. €D so

®1 if i € Bp, h, N Ae then € € w;, 50 gp, (1) # g, ()
X2 Bhl,hz NA:. € D.

So (gn : h € ?p) exemplifies TH(A) > p?. If the supremum in the definition of
T2 ()) is obtained we are done. If not then T9()) is a limit cardinal, and by the
proof above:

<TO(N) & 6< reg(D) = pu? <1

So if TH(A) has cofinality > reg(D) we are done; otherwise let it be >°__, pe
with e < TH(A) and 6 < reg(D). Note that by the previous sentence T9(\)? =
T (N)<resD) = H“E’ and let {fS : a < pu.} C IIX be such that [a < 8 = fS #p

€<
/%] and repeat the previous proof with f,i(g) replacing fj(c)-

7<+ means the left side is a supremum, right bigger than the left or equal but the supremum
is obtained
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4) For the first inequality assume it fails so p =: T3 (f) < hthD(H f(@)) hence for
1<K
some g € H (f(i)+1), tcf(H 9(1),<p)is Awith A = cf(A) > p. Let (fo : aa < A)
1< f(3) <K
exemplifies this. Let F be as in the definition of T3(f), now for each h € F, there
is a(h) < A such that

{i <k : if h(d) < g(4) then h(i) < fo(q) (i)} € D.

Let a* = sup{a(h) + 1 : h € F}, now fu- € Hf(@) and h € F = h #p for
1<K
contradicting the choice of F'.

For the second inequality repeat the proof of 3.10 except that here we prove F' =:

U (NeN H f(i)) exemplifies T3(f) < \; we replace clause (g) in the proof by
¢<o <K

(9) 9" < fé, < f& mod D

the construction is for { < reg(D) and if we find satisfy —|f§1 #%p g* we are done.
5) Straightforward.

6) Note that all those cardinals are > 2" and 2% > wsat(D)"/D. Now write
successively inequalities from (2), (4), (1) and (3):

TH(f) = TH(f) < [btefp [ £(@)] <P < [TH(£)]75P) = TR (f).

1<K

7) See proof of part (3). Moreover, if u = > e, 7 < TOH(N), pe < TEH(N) as

e<T
exemplified by {f: : ¢ < 7}, {f5 : @ < uc} respectively. Let g, be: if Z,ug <a<
e<(
Z,ue then g, (i) = (f-(3), f5(7)). So {ga : @ < pu} show: if TH () is singular then
e<(
the supremum is obtained. O3 17

3.18 Claim. Assume D is a filter on k, f € *Ord, p° = p and 2% < p, Tp(f),
(see Definition 3.16(d) and Theorem 3.17(2)). If p < Tp(f) then for some sequence
A < f of requlars, pt = tcf(IIN/D), or at least
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(%) there are ((Niy :m < ny) @1 < K), Nin = cf(Nip) < f(i) and a filter
D* on U{z} X n; such that: pu* = tcf(H Xin/D*) and D = {A C & :
1<K (i,m)

A} x ni € D*}.

€A

Also the inverse is true.

Remark 3.15A. 1) It is not clear whether the first possibility may fail. We have
explained earlier the doubtful role of pX° = p.

2) We can replace pt by any regular p such that /\ la¥ < 1 and then we use

a<p
3.17(4) to get u <t Tp(f).
(3) The assumption 2" < p can be omitted.

Proof. The inverse should be clear (as in the proof of 3.7, by 3.17(3)). Without loss
of generality f(i) > 2" for ¢ < k, and trivially wsat(D))"/D < 2%, so by 3.17(4)

Tp(f) < tefp(] [ f0)] =P

1<K

If p < htch(H f(@)) we are done (by 3.15(1)), so assume htch(H f@) < p,
1<K 1<K
but we have assumed p < Tp(f) so we can conclude p<reg(D) > it Let y < p
be minimal such that \/ x? > p, and let § =: cf(x) so, as p > 2% we know
0< reg(D)
X = y<res(D) = <rea(D) > ;4§ > 9% AVSN || <ree(P) < v By the assumption
p = uto we know 6 > Ry (of course @ is regular). By [Sh:g, Ch.VIII,1.6](2),IX,3.5
and [Sh 513, 6.12] there is a strictly increasing sequence (. : € < ) of regular

cardinals with limit x such that ut = tcf(H e J5).

<0
As clearly x < htch(H f(i)), we can find for each € < 6, a sequence \° = () :
1<K
i < k) such that \; = cf(\$) < f(7), and tcf(H A; /D) = pe, also without loss of
1<K

generality A5 > 2%. Let (A : ¢ < 0) exemplify 6 < reg(D) and n;, = |[{e <6 :i¢€
A} and {A;, : n < w} enumerate {\$ : € satisfies i € A}, so we have gotten ().
Us.18
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3.19 Conclusion Suppose D is an Nj-complete filter on . If A; > 2% for i < x and
sup gcp+ Tp+a(N) > ™0 then for some N, = cf(\;) < \; we have

sup thD+A(H ;) > .
AeD+ 1<K

3.20 Conclusion Let D be an ¥;-complete filter on . If for i < x, B; is a Boolean
algebra and \; < Depth™(B;) (see below) and

2° < ™ < sup Tpya())
AeD+

then pt < Depth+(H B;/D).
1<K

Proof. Use 3.28 below and 3.19 above.

3.21 Definition. For a partial order P (e.g., a Boolean algebra) let Deptht(P) =
Min{:we cannot find a, € P for a < A such that o < 8 = a, <p ag}.

3.22 Discussion 1) We conjecture that in 3.19 (and 3.20) the assumption “D is N;-
complete” can be omitted.

2) Note that our results are for u = p™° only; to remove this we need to improve
the theorem on pp = cov (i.e., to prove cf(A) = Xy < A = pp(A) = cov(A, A, Ny, 2)
(or sup{pp(p) : cf(p) = Ro < p < A} = cf(S<ny(A), ©) (see [Sh:g], [Sh 430, §1]),
which seems to me a very serious open problem (see [Sh:g, Analytic guide,14]).

3) In 3.20, if we can find f, € H)\i fora<A:ja< B < A= fo < fzg mod D]

1<K
and —fo =p fa41 then A\ < Depth*(J] Bi/D). But this does not help for A

1<K

regular > 2~.
4) We can approach 3.18 differently, by 3.23 - 3.26 below.

3.23 Claim. If2%" < u < Tp(N\), (or at least 21P17% < 1 < Tp(N)) and u<? = p,

then for some 0-complete filter E C D we have Tg(\) > pu.

Proof. Without loss of generality ¢ is regular (as p<l=pu & cf(f) <= p<t" =
w). Let {fa : @ < pt} CII\, be such that [a < 8 = fo #p fs]. We choose by
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induction on ¢, a¢ < p* as follows: «, is the minimal ordinal @ < p™* such that
E¢ .o € D where E¢ o, = the 6-complete filter generated by

{{i <r:fa.(i) # fali)} e < ()
(note: each generator of E; , is in D but not necessarly E¢ , C D!).

Let a¢ be well defined if ¢ < ¢*, clearly € < ( = a. < a¢. Now if ¢* < pt, then
clearly a* = U ac < pt and for every a € (a*, ut), Ecx o € D, so for every

¢<¢r
such a there are A, € DV and aq € [¢*]<% such that Ay = U.c, {i < fo.(i) =

fa(i)}. But for every A € D, a € [¢*]<Y we have

{orae (@ u), A=A a0 =a} C{a: fol A€ [[{fali):c €an}},

1<K

hence has cardinality < 0% < 2% < u. Also |[¢*]<0 < u<? < u*,||DF|| <28 < p~
so we get easy contradiction.

So ¢* = u't, but the number of possible E’s is < 22", hence for some E we
have |[{e < u™ : E. .. = E}| = u*. Necessarily E C D and F is f-complete, and
{fa. ;e <pt, and E,, = E} exemplifies Tg(\) > u, so E is as required. O3 93

3.24 Fact 1) In 3.23 we can replace ut by p* if 22" < cf(p*) < p* < T9()\) and
N el < pr.

a<p* : B
2) We can, in 3.23, [and 3.24(1)] replace “T'p(\) > p” by “IIA/D has an increasing
sequence of lengths > u[> p]”, we can deduce this also otherwise.

3.25 Claim. 1) If 28 < |IIN/D|,D an ultrafilter on x, p = cf(u) < |TIN/D],
/\ i|R0 < u, and D is regular then p < Depth+(H Xi/D).

1<K 1<K

2) Similarly for D just a filter.

Proof. Without loss of generality A = limpA = sup()), so |[IIN/D| = A\* (by

[\CK ]). If © < X we are done; otherwise let x = Min{x : x* = \*}, so Y0 =

Nocf(x) < k but A < g < AF hence A" < pu hence cf(y) > N, also by x's

minimality /\ MCf(X) < |i|® < x, and remember x < u = cf(u) < x*X so by [Sh:g,
1< X

VIIL,1.6](2) there is (u. : € < cf(x)) strictly increasing sequence of regular cardinals
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with limit y;, H ,uE/Jffc(lX) has true confinality p. Let x. = sup{pu¢ : ¢ < e}+27,

e< cf(x)
let i : Kk — cf(x) be i(i) = sup{e + 1 : \; > x.}. If there is a function h € H i(7)
<K
such that /\ {i<k:h(i) <j} =0 mod D then H i)/ D has true cofinality
j<cf(x) i<K

w as required; if not (D, 1) is weakly normal (i.e. there is no such h - see [Sh 420]).
But for D regular, D is cf(x)-regular, some (A, : ¢ < cf(k)) exemplifies it and
h(i) = max{e : e < i(i) and i € A.} (maximum over a finite set) is as required.

3.26 Discussion 1) In 3.23 (or 3.24) > we can apply [Sh 410, §6] so u = tef(I1 U a;/D*,

where D ={A C k: U a; € D*} and each a; is finite.

In 3.18 we have g(j’ftin this also for u € (2%,2%7).
3.27 Claim. If D is a filter on k, B; is the interval Boolean algebra on the ordinal
a;, and | H a;/D| > 2% then for regular p we have p < Depth+(H B;/D) iff for
some [u; SK; (fori < k) and A € DT, the true cofinality of H ,ui;?;—i-A)) is well

1<K
defined and equal to .

Proof. The = (i.e., only if direction) is clear. For the < direction assume pu
is regular < Depth+(H B;/D) so there are f, € HBi such that HBi/D =

1<K 1<K 1<K
fa/D < f3/D for a < §5.
Without loss of generality p > 2%. Let f,(i) = U [Joi2e, Ja.i2e+1) where
L<n(a,i)

Jait < Joviet1 < a;forl <2n(a,i). Asp = cf(pu) > 2% without loss of generality n, ; =
n;. By [Sh 430, 6.6D] (see more [Sh 513, 6.1]) we can find A C A* =: {(3,4) : i <

Kk, 0 < 2nq} and (7], i < K, £ < 2n;) such that (i,£) € A = 7;, is a limit ordinal

and

(%) for every f € H v ¢ and o < p there is 8 € (a, p) such that
(i,6) €A
(i,0) € A"\ A= joiv =7}y
(i,€) € A= f(i,0) < Ja,ie <Vip
(i,£) € A= cf(v],) > 2"
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Let £(i) = max{¢ < 2n(i) : (i,£) € A} and let B = {i : (i) well defined}. Clearly
B € D% (otherwise we can find v < 8 < p such that f,/D = fg/D, contradiction).
For (i,¢) € A define 3], by 87, = sup{vj,, +1: (j,m) € A" and 7}, <~ ,}. Now
Bi e < i ascf(vf,) > 2. Let

Y = {a < p:if(i,0) € A*\ A then joie =},
and if (i,£) € A then 8y < ja.ei < v/}

Let By = {i € B : £(i) is odd}. Clearly By C B and B\ B; = () mod D (otherwise
as in (*)1, (%)2 below get contradiction) hence By € DT. Now

(x)1 for a < 8 from Y we have
(Jasie@) 2% € B1) < (Jgiei) 1 € Bi) mod (D [ By)

[Why? as f,/D was non decreasing in H B;/D]
1<K
()2 for every o € Y for some 8, « < € Y we have

(Jaieqy 21 € B1) < {jg,iee) 1 € By) mod (D | By)
[Why? by (%) above.]
Together for some unbounded Z C Y, <<ja7g,g(i) 1€ B)/(D ] By) :a € Z> is
<piB,-increasing, so it has a <(p;p,)-eub (as p > 2"), say (j; : i € B1) hence

H ji/(D | Bi) has true cofinality p, and clearly j* < ng(i) < @4, so we have
iGBl
finished. Us.27

3.28 Claim. If D is a filter on k, B; a Boolean algebra, \; < Depth™ (B;) then

(a) Depth(H B;/D) > sup tcf(H Xi/(D+ A)) (i.e., on the cases tcf is well
AeD+

1<K 1<K
defined)
(b) Depth+(H B;/D) is > Deptht (2(k)/D) and is at least
1<K

sup{[tef(] [ Aj/(D + A))]* : A < Depth™(B;), A € D*}.

1<K
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Proof. Check.

3.29 Claim. Let D be a filter on k, (\; : i < K) a sequence of cardinals and
28 < = cf(p). Then (a) & (B) = (7) = (9), and if (Vo < p)(o®° < u) we also
have () < (0) where

(a) if B; is a Boolean algebra, \; < Depth™ (B;) then u < Depth+(H B;/D)
1<K
(B) there are p; = cf(p;) < \; fori < k and A € DT such that pu = tef (U, /(D+
A))
(7) there are ((Ain :n < n;) i <K), Ain=ct(Nin) <A and a filter D* on
U{z} X n; such that:

1<K

p = tef( H Xin/D*) and D ={A C K : the set U{z} x n; belongs to D*}
(i’n) €A

(8) for some A€ DT, u <Tpra({\i:i<k)).

Remark. So the question whether (o) < (§) assuming (Vo < p)(o™0 < p) is
equivalent to () <> () which is a “pure” pcf problem.

Proof. Note (v) = (0) is easy (as in 3.18, i.e., as in the proof of 3.7, only easier).
Now (8) = () is trivial and () = («) by 3.28. Next (a) = (f) holds as we can
use (a) for B; =: the interval Boolean algebra of the order A\; and use 3.27. Lastly
assume (Vo < p)(o™ < p), now (y) < (8) by 3.18. O3.29

Discussion: We would like to have (letting B; denote Boolean algebra)
Depth™ ([ [ Bi/D) = [ [ Depth™)(B;)/D
1<K 1<K

if D is just filter we should use Tp and so by the problem of attainment (serious
by Magidor Shelah [MgSh 433]), we ask

® for D an ultrafilter on «, does \; < Depth™(B;) for i < s implies

[1»/D < Depth* (][ Bi/D)

1<K 1<K
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at least when \; > 2%;

®' for D a filter on k, does \; < Depth™(B;) for i < k implies, assuming
A; > 2% for simplicity,

Tp((i i < k) < Depth™ (][ B:/D).

<K

As explained in 3.29 this is a pcf problem.
However changing the invariant (closing under homomorphisms, see [M]) we get
a nice result; this will be presented in [Sh 580].
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64 REMARKS ON THE CONDITIONS FOR THE PCF ANALYSIS

We consider a generalization whose interest is not so clear.

4.1 Claim. Suppose A\ = ()\; : i < K) is a sequence of reqular cardinals, and 0 is a
cardinal and I* is an ideal on k; and H is a function with domain k. We consider
the following statements:

(k%) g lim infr«(A) > 0 > wsat(I*) and H is a function from k to Z(0) such that:
(a) for everye < 6 we have {i < k:e € H(i)} =k mod I*

(b) fori < k we have otp(H (7)) < A\; or at least {i < Kk : |H(i)] > \;} €
I*

(xx)T simalarly but
(b)T  fori < k we have otp(H (1)) < ;.

1) In 1.9 we can replace the assumption (x) by (x*)g above.

2) Also in 1.11, 1.12, 1.18, 1.14, 1.15, 7 we can replace 1.9(x) by (x*)p.
—> scite{1.11} undefined

3) Suppose in Definition 2.3(2) we say f obeys a for H (instead of for A*) if

(i) for B € ay such that e =: otp(as) < 0 we have
otp(ag), otp(an) € H(i) = fs(i) < fuoli)

and in 2.3(2A), fa(i) =sup{fs(i) : B € an and otp(ag), otp(ay) € H(i)}.
Then we can replace 1.9(x) by (x*) g in 2.7, 2.8, ?; and replace 1.9(x) by (xx) 1 in
—> scite{ 2,6} undefined
2.10 (with the natural changes).

Proof. 1) Like the proof of 1.9, but defining the g.’s by induction on & we change
requirement (ii) to

(1) if ( <e,and i € H(¢) N H(e) then g¢ (i) < g-(4).
We can not succeded as

((BZ(*)\BZJ(F*I))O{Z' <k:ge+1eH(i)}:e<b)



Paper Sh:506, version 2008-02-10_10. See https://shelah.logic.at/papers/506/ for possible updates.

THE PCF THEOREM REVISITED SH506 DEDICATED TO PAUL ERDOS 59

is a sequence of € pairwise disjoint member of (I*)*.
In the induction, for ¢ limit let g. (i) < U{g¢(¢) : ( € H(i¢) and € € H (i)} (so this

is a union at most otp(H( )Ne) but only when ¢ € H (i) hence is ( otp(H (7)) < A;).
2) The proof of 1.11 is the same, in the proof of 1.12 we again replace (ii) by (ii)’.

Also the proof of the rest is the same.

3) Left to the reader. Oy 1

We want to see how much weakening (*) of 1.9 to “lim inf;-(\) > 6 > wsat([*)
suffices. If # singular or lim inf7- (\) > 6 or just (IT\, <;+) is #F-directed then case
(8) of 1.9 applies. This explains (x) of 4.2 below.

4.2 Claim. Suppose A = (\; :i < k), \j = cf(\;), I* an ideal on k, and

(%) lim infr(\) = 0 > wsat(I*), 6 regular.

Then we can define a sequence J = (J: : ¢ < ((x)) and an ordinal ¢(x) < 0T such
that

(a) J is an increasing continuous sequence of ideals on k

(b) Jo=1TI", Jey1 = {A: AC Kk and: A€ J; or we can find h : A — 0 such
that X\; > h(i) and e < 8 = {i: h(i) <e} € J¢}

(c) for ¢ < ((*) and A € Jeiq1 \ Je, the pair (1IN, Je + (k \ A)) (equivalently
I\ [ A, J¢ | A)) satisfies condition 1.9(x) (case (B)) hence its consequences,
(in particular it satisfies the weak pcf-th for 0)

d) if k U oJe then (TI\, Usc 0 Je) has true cofinality 6.
¢<¢(%)Y¢ ¢<¢(%)Y¢

Proof. Straight. (We define J: for ¢ < 6 by clause (b) for ¢ = 0, ¢ successor
and as U Je for ¢ limit. Clause (¢) holds by claim 4.4 below. It should be clear

e<(
that Jo+,1 = Jp+, and let (%) = min{¢ : Je41 = U J:} so we are left with
e<(
checking clause (d). If A € JSE o € H i, choose by induction on ¢ < 6, £(¢) < 6

€A
increasing with ¢ such that {i < k : h(i) € (¢(¢),e(¢ + 1)) € J;“(*) If we succeed
we contradict § > wsat([*) as 6 is regular. So for some ¢ < 6, £(¢) is well defined
but not (¢ +1). As Je) = Je(u)41, clearly {i < x: h(i) < 5(()} =r mod J¢(y).

if ¢ < N\
Sogg(i):{g if €

0 ife> A exemplifies th(HS\/JC(*)) =0. 040

Now:
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4.3 Conclusion. Under the assumptions of 4.2, I* satisfies the pseudo pcf-th (see
Definition 2.16(4)), hence cf(II\, <j+) = sup pcfr«(A) (see 2.19).

4.4 Claim. Under the assumption of 4.2, if J is an ideal on k extending I* the
following conditions are equivalent

(a) for some h € TI\, for every e < 0 we have {i € A: h(i) <e} e J
(b) (IIX, <y4(s\a)) is 0T -directed.

Proof. (a) = (b) B
Let fe € IIX for ¢ < 8, we define f* € IIX by

f7(@) = sup{fe(i) + 1 : ¢ < h(i)}.

Now f*(i) < A;as h(i) < \j = cf(N\) and fe A<y f*TAas{ic A:h(i)<(} €
J.

b) = (a):
Let f¢ be the following function with domain x:

. ¢ Q<A
f<(2)={0 Y

As lim infy- > 0, clearly € < ¢ = f. <y~ f¢ and of course f. € IIX. By our
assumption (b) there is h € IIX such that ( <0 = f [ A<h [ A mod J. Clearly
h is as required. O4a
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regular cardinals and cardinal invariants of Boolean Algebra,
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