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ABSTRACT. There exists a complete atomless Boolean algebra that has no proper
atomless complete subalgebra.

An atomless complete Boolean algebra B is called simple [5] if it has no atomless
complete subalgebra A such that A # B. We prove below that such an algebra
exists.

The question whether a simple algebra exists was first raised in [8] where it was
proved that B has no proper atomless complete subalgebra if and only if B is rigid
and minimal. For more on this problem, see [4], [5] and [1, p. 664].

Properties of complete Boolean algebras correspond to properties of generic mod-
els obtained by forcing with these algebras. (See [6], pp. 266-270; we also follow [6]
for notation and terminology of forcing and generic models.) When in [7] McAloon
constructed a generic model with all sets ordinally definable he noted that the
corresponding complete Boolean algebra is rigid, i.e. admitting no nontrivial auto-
morphisms. In [9] Sacks gave a forcing construction of a real number of minimal

degree of constructibility. A complete Boolean algebra B that adjoins a minimal
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set (over the ground model) is minimal in the following sense:

(1) If A is a complete atomless subalgebra of B then there exists
a partition W of 1 such that for every w € W, A,, = B,
where A, = {a-w:a € A}.

In [3], Jensen constructed, by forcing over L, a definable real number of minimal
degree. Jensen’s construction thus proves that in L there exists rigid minimal
complete Boolean algebra. This has been noted in [8] and observed that B is rigid
and minimal if and only if it has no proper atomless complete subalgebra. McAloon
then asked whether such an algebra can be constructed without the assumption that
V = L. In [5] simple complete algebras are studied systematically, giving examples
(in L) for all possible cardinalities.

In [10] Shelah introduced the ( f, g)-bounding property of forcing and in [2] devel-
oped a method that modifies Sacks’ perfect tree forcing so that while one adjoins a
minimal real, there remains enough freedom to control the (f, g)-bounding property.

It is this method we use below to prove the following Theorem:

Theorem. There is a forcing notion P that adjoins a real number g minimal over

V' and such that B(P) is rigid.
Corollary. There exists a countably generated simple complete Boolean algebra.

The forcing notion P consists of finitely branching perfect trees of height w. In
order to control the growth of trees T' € P, we introduce a master tree T such that
every T' € P will be a subtree of 7. To define 7, we use the following fast growing

sequences of integers (Py)72, and (Ni)5,:
(2) Ph=Ny=1, Py,=Ny-...-Nj_1, N, =2

(Hence Nj, = 1,2,4,256,22" ...).

Definition. The master tree T and the index function ind:

3)() T C w]=*,
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ind is a one-to-one function of 7 onto w,

ind (< >) =0,

)
)
(iv) if s,t € T and length(s) < length(t) then ind(s) < ind(t),
) if s,t € T, length(s) = length(t) and s <je, ¢ then ind(s) < ind(t),
) if s € T and ind(s) = k then s has exactly Nj successors in 7, namely all

s74,1=0,..., N — 1.
The forcing notion P is defined as follows:

Definition. P is the set of all subtrees T" of T that satisfy the following:

(4) for every s € T and every m there exists some t € T, t D s,

such that t has at least Pj,q(;)" successors in T'.

(We remark that 7 € P because for every m there is a K such that for all k > K,
P < 2Pk — Nk)
When we need to verify that some 7" is in P we find it convenient to replace (4)

by an equivalent property:
Lemma. A tree T C T satisfies (4) if and only if

(5)(1) every s € T has at least one successor in T,
(ii) for every n, if ind(s) = n and s € T then there exists a k such that if

ind(t) =k thent € T, t D s and t has at least Py successors in T.

Proof. To see that (5) is sufficient, let s € T and let m be arbitrary. Find some

5 € T such that s D s and ind(5) > m, and apply (5ii). O

The forcing notion P is partially ordered by inclusion. A standard forcing ar-
gument shows that if G is a generic subset of P then V|[G] = V|[g| where g is the
generic branch, i.e. the unique function ¢ : w — w whose initial segments belong to
all T' € GG. We shall prove that the generic branch is minimal over V', and that the
complete Boolean algebra B(P) admits no nontrivial automorphisms.

First we introduce some notation needed in the proof:

(6) For every k, si is the unique s € T such that ind(s) = k.
3



Paper Sh:566, version 1996-05-04_10. See https://shelah.logic.at/papers/566/ for possible updates.

(7)  If T is a tree then s € trunk(7") if for all ¢ € T, either s Ct or t C s.

(8) If Tis a tree and a € T then (T), ={s€T:sCaoracCs}.

Note that if T € P and a € T then (T), € P. We shall use repeatedly the

following technique:

Lemma. Let T € P and, let | be an integer and let U = T Nw! (the I'* level of
T). Let & be a name for some set in V. For each a € U let T, C (T), and x, be
such that T, € P and T, IF © = x,.

Then T" = J{Ty, :a € U} isinP, T" CT, T"Nw = TNw' = U, and
T'F&e{z,:a€U}. O

We shall combine this with fusion, in the form stated below:

Lemma. Let (T,,)72, and (1,)52, be such that each T), is in P, Ty D11 2O --- D

T, 2., lo<li<-<lp<...,Tphi1 Nw» =T, Nwh, and such that

9) for every n, if s, € T, then there exists some t € Ty11, t D Sy, with

length(t) < ly1, such that t has at least Pi,qt)" successors in Tp 1.
Then T = (\o—q Ty € P.

Proof. To see that T satisfies (5), note that if s,, € T then s,, € T}, and the node

t found by (9) belongs to 7. d
We shall now prove that the generic branch is minimal over V:
Lemma. If X € V[G] is a set of ordinals, then either X € V or g € V[X].

Proof. The proof is very much like the proof for Sacks’ forcing. Let X be a name for
X and let Ty € P force that X is not in the ground model. Hence for every T' < Ty
there exist T/, T"” < T and an ordinal « such that T” IF « € X and T" IF « ¢ X.
Consequently, for any T3 < T and To < T there exist T] < Ty and T4 < T, and
an o such that both 77 and T} decide “a € X” and T} IF o € X if and only if

ThFad X.
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Inductively, we construct (73,)%%q, (1,)%%¢, Upn = T, Nw'", and ordinals a(a, b)

for all a,b € U, a # b, such that

(10)(1 T,ePand Ty DTy 2---DOT, D ...,

1)
) lo<lh < - <lp<--v,
(iii) Ty Nwh =T, Nwh» = U,
(iv) for every n, if s, € T, then there exists some t € Tj,,11, t D s,, with
length(t) < l,,41, such that ¢ has at least P;,q()" successors in T},41,
(v) for every n, for all a,b € U,, if a # b then both (7,), and (T,)s decide

“a(a,b) € X7 and (T},)q IF a(a,b) € X if and only if (T},), IF a(a,b) € X.

When such a sequence has been constructed, we let T = (°_,T,,. As (9) is
satisfied, we have T' € P and T' < Tj. If G is a generic such that T € G and if X is
the G-interpretation of X then the generic branch g is in V[X]: for every n, g | I,
is the unique a € U,, with the property that for every b € U,,, b # a, a(a,b) € X if
and only if (T), I+ a(a,b) € X.

To construct (7,)52 ., (1n)52, and «a(a,b), we let lp = 0 (hence Uy = {so})
and proceed by induction. Having constructed T, and [,, we first find 1,41 > [,
as follows: If s, € Tj,, we find t € T,,, t D sp, such that ¢ has at least Pyq()"
successors in T),. Let l,,;1 = length (¢) + 1. (If s,, ¢ T}, let l,41 = 1, +1.) Let
Upt1 =T, N whn+1,

Next we consider, in succession, all pairs {a,b} of district elements of U, 1,
eventually constructing conditions Ty, a € U, 1, and ordinals «(a,b), a,b € Uy, 41,
such that for all a, T, < (T},), and if a # b then either T}, I+ a(a,b) € X and
Ty, I a(a,b) ¢ X, or T, I+ afa,b) ¢ X and T, IF afa,b) € X. Finally, we let
Thi1=U{To:a €Uy}

It follows that (7),)5%, (In)52, and «a(a, b) satisfy (10). O

Let B be the complete Boolean algebra B(P). We shall prove that B is rigid.
Toward a contradiction, assume that there exists an automorphism 7 of B that is
not the identity. First, there is some u € B such that 7(u)-u = 0. Let p € P be

such that p < u and let ¢ € P be such that ¢ < 7(p). Since g £ p, there is some
5
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s € g such that s ¢ p. Let Ty = (q)s.

Note that for all ¢t € Ty, if t O s then ¢t ¢ p. Let
A = {ind(t) : t € p},

and consider the following property ¢(x) (with parameters in V):

(11)

p(x) <« if x is a function from A into w
such that z(k) < Nj, for all k, then there exists
a function u on A in the ground model V' such that the values of u are finite sets of
integers and for every k € A, u(k) C{0,..., Ny — 1} and |u(k)| < P,

and z(k) € u(k). |

We will show that

(12) p Ik Jz—p(z),
and
(13) there exists a T' < Tj such that T IF Vzo(x).

This will yield a contradiction: the Boolean value of the sentence Jx—¢(z) is

preserved by m, and so
To < g < m(p) < w([|[Fz—p(x)]]) = [|Fz—p(z)],

contradicting (13).
In order to prove (12), consider the following (name for a) function & : A — w.

For every k € A, let
(k) = g(length (si) + 1) if s, C ¢, and (k) =0 otherwise.

Now if p; < p and u € V is a function on A such that u(k) C {0, ..., N — 1} and
|u(k)| < Py then there exist a po < p; and some k € A such that s € ps has at
least P successors, and there exist in turn a ps < ps and some 4 ¢ u(k) such that
s @ € trunk(ps). Clearly, ps IF #(k) ¢ u(k).

Property (13) will follow from this lemma:
6
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Lemma. LetT; < Ty and  be such that T} forces that & is function from A into w
such that x(k) < Ny for all k € A. There exist sequences (T),)5 1, (1n)5 1, (Jn)22 1,
(Up)s2, and sets z,, a € Uy, such that
(14)3) TnePand Ty 2T, 2--- 2T, D...,
(i) h<lo< - <lp<...,
(iii) Tho1 Nwh =T, Nwh = U,
(iv) for every n, if s, € T, then there exists some t € Tyy1, t D sp, with
length(t) < l,41, such that t has at least Pq)" successors in Ty i1,
(V) 1 <je < <jn<...,
(vi) for every a € Uy, (T},)a IF (2(k) : k € AN jn) = 24,
(vii) for every k € A, if k > j, then |U,| < Py,
(viii) for every k € A, if k < jy, then |{z4(k) : a € Up}| < Py.

Granted this lemma, (13) will follow: If we let T = (", T}, then T € P and
T < T and for every k € A, T |+ @(k) € u(k) where u(k) = {z,(k) : a € U,} (for

any and all n > k).

Proof of Lemma. We let I3 = j; = length(s), Uy = {s} and strengthen T} if
necessary so that 77 decides (@(k) : k € AN ji), and let z; be the decided value.
We also assume that length(s) > 2 so that |U;| =1 < Py for every k € A, k > j;.

Then we proceed by induction.

Having constructed T),, l,, jn etc., we first find [,+1 > [, and j,41 > Jj, as
follows: If s, ¢ T;, (Case I), we let l,,01 =, + 1 and j,11 = j, + 1. Thus assume
that s, € T,, (Case II).

Since length(s,) < n < l,, we choose some v,, € U, such that s, C v,. By (4)
there exists some t € T},, t D vy, so that if ind(t) = m then t has at least P,**!
successors in T,,. Moreover we choose t so that m = ind(¢) is big enough so that
there is at least one k € A such that j, < k <m. We let [,,;1 = length(¢) + 1 and
Jnt1 = m = ind(t).

Next we construct Uy41,{2q : @ € Up+1} and T),41. In Case I, we choose for

each u € U, some successor a(u) of u and let U,4+1 = {a(u) : v € U,}. For every
7
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a € Up41 we find some T, C (T,), and z, so that T, IF (2(k) : k € AN jpi1) = 24,
and let T,11 = U{T, : @ € Up41}. In this case |Up4+1| = |U,| and so (vii) holds for
n + 1 as well, while (viii) for n 4+ 1 follow either from (viii) or from (vii) for n (the
latter if j,, € A).

Thus consider Case II. For each u € U,, other than v,, we choose some a(u) € T),
of length [, 41 such that a(u) D u, and find some T,y € (T)q(u) and zg(y) SO that
Ty IF(Z(k) : k€ ANm) = 24y

Let S be the set of all successors of ¢ (which has been chosen so that |S| > P,," !
where m = ind(t)); every a € S has length [,11. For each a € S we choose T,, C
(T))q and zg, so that T, IF (z(k) : k € ANm) = z,. If we denote K = max(ANm)

then we have
K
{zs :a € S}H < H N¢§HN¢=PK+1 < P,
1i€ANm =0

while |S| > P,*™1. Therefore there exists a set U C S of size P,,® such that for

every a € U the set z, is the same. Therefore if we let
Unt1 =UU{a(u) :ue U, —{v,}},

and Ty41 = U{Tw : @ € Upy1}, Ty satisfies property (iv). It remains to verify
that (vii) and (viii) hold.

To verify (vii), let k € A be such that k > j,11 = m. Since m = ind(¢), we have
m ¢ A and so k > m. Let K € A be such that j, < K < m. Since |U,| < Pk, we

have

|Un+1|<|Un‘+|U‘<PK+Nm<PmNm: m+1SPk-

To verify (viii), it suffices to consider only those k € A such that j, < k < m.

But then |U,| < P and we have

Hza(k) :a € Upir}| < {za:a € Upir} < |Un|+1< Py
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